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LOCAL DISTRIBUTED MOBILE COMPUTING SYSTEM FOR DEEP NEURAL

NETWORKS

Jiachen Mao, M.S.

University of Pittsburgh, 2017

Nowadays, Deep Neural Networks (DNN) are emerging as an excellent candidate in many ap-

plications (e.g., image classification, object detection and natural language processing). Though

ubiquitously utilized in many fields, DNN models are generally hard to be deployed on resource-

constrained devices (e.g., mobile devices). In the prior arts, the research topics mainly focus on

client-server computing paradigm or DNN model compression, which, respectively, ask for either

outside infrastructure support or special iterative training phases. In this work, I propose a lo-

cal distributed mobile computing system for the testing phase of DNNs called MDNN, short for

Mobile Deep Neural Network. MDNN partitions already trained DNN models onto several mo-

bile devices with the same local wireless network to accelerate DNN computations by alleviating

device-level computing cost and memory usage. Two model partition schemes are also designed

to minimize non-parallel data delivery time, including both wakeup time and transmission time.

Experimental results show that when the number of worker nodes increases from 2 to 4, MDNN

can accelerate the DNN computation by 2.17-4.28. Besides the parallel execution, the performance

speedup also partially comes from the reduction of the data delivery time, e.g., 30.02% w.r.t. con-

ventional 2D-grids partition. Furthermore, a model compression using group lasso is utilized for

simultaneously alleviating computing cost and transmission cost.
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1.0 INTRODUCTION

In recent years, Artificial Intelligence (AI) arouses many attention and has been viewed as the

beginning of next era in computer science and engineering. Among all the machine learning ap-

proaches, Neural Networks occupy a key position because of their dominant advantages like their

high accuracy, self-adaptive property, scale flexibility and data-driven property.

Neural networks refer to a computing system made up of several interconnected processing

neurons, which can process the external input data to get their information. Typically, neural

networks are organized in layers, which consist a number of interconnected neurons. For each

neuron, an activation function will be included for non-linearization so that the outputs of neuron

networks are not necessary to be strictly linearly related to the external inputs.

Different from conventional computing algorithm, neural networks are not deterministic. All

the information is contained in the activation state of the networks so as to extract the deep features

of the inputs and induce the output. When represented in computing platforms, a neural network

contains two kinds of data: symbol file and parameter file. Symbol files express the detailed layer

structures accompanied with their meta data such as the number of neurons, the type of activation

functions, and the filter size. Parameter files embody the weights of the neural network which

connect the current layer with the previous one where the values of the weights quantify the affect

of the previous neurons on the current one.

With the ever-increasing complexity of the datasets in the existing problem to be solved, the

scale of the neural networks come to be unprecedented large so as to reach the target functionality

(e.g. ImageNet). Those kinds of large-scale neural networks are called Deep Neural Networks

(DNN), which are both memory-intensive and computing-intensive when deployed on comput-

ing devices, especially mobile platforms. Hence, the popularity of DNN incurs the emergence of

many NN-oriented hardware design. [17] implemented a neuromorphic computing systems (NCS)
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on memristor crossbar. [15] demonstrated the promise of using resistive random access memory

(ReRAM) to perform neural computations in memory and gave dedicated hardware-level architec-

ture for executing deep neural networks in both the forward and backward procedures. [12] accel-

erated Field Programmable Gate Array (FPGA) when running Recurrent neural network (RNN)

based language model (RNNLM). The ever-increasing bandwidth of mobile networks inspired

rapid growth of multimedia interactive applications on mobile devices, which involve intensive

object recognition and classification tasks. With the emergence of massive mobile network band-

width, novel interactive applications in mobile devices utilize more and more multimedia process-

ing, boosting the performance requirement of object recognition and classification.

Deep Neural Networks (DNN) have been widely used in performing these tasks due to their

high accuracy and self-adaptiveness property. However, execution of DNN incurs considerably re-

sources. A representative example is VGG [14], which demonstrates state-of-the-art performance

in ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC14). VGG has 15M neu-

rons, 144M parameters, and 3.4B connections. When deployed on a mobile device, VGG spends

approximately 16 seconds to complete the identification procedure for one image, which is intol-

erable in practical.

The gap between large computing workloads of DNN and limited computing resources of mo-

bile devices adversely impact user experience and inspired some research works to fill the gap.

Thus, some research works have been done to fill the gap. To efficiently offload the huge comput-

ing cost to outside infrastructure, client-server computing paradigm is the most straight-forward

solution: In [8], Hauswald proposed a data offloading scheme in a pipelined machine learning

structure; In [11], Li established an efficient distributed parameter server framework for DNN

training. In addition, many studies have been performed to reduce the computing workloads of

DNN, such as model compression: To enable local execution of DNN models on mobile devices,

attempts have also been made in model compression during the training phase of DNN: In [7] Han

deeply compressed the DNN models using a three stage pipeline: pruning, trained quantization,

and Huffman coding; In [2], Chen introduced a low-cost hash function to group weights into hash

buckets for parameter sharing purpose.

We note that there is an important scenario that has not been fully explored yet in all the

previous works, say, running DNN on a local distributed mobile computing system. Compared

2



to client-server paradigm where a single mobile device is supported by external infrastructure,

local distributed mobile computing systems offer several important advantages, including more

local computing resources, higher privacy, less dependency on network bandwidth, etc. How-

ever, in previous research works, the opportunity of local distributed mobile computing systems

are overlooked with its huge potential in accumulated resources to identify an image with DNN

models. Moreover, such a system also offers the additional advantages of optimal privacy security,

infrastructure-less networks, no information loss of DNN models, and no extra training phases.

In this work, we propose MoDNN - a local distributed mobile computing system for DNN that

can work over a Wireless Local Area Network (WLAN). MoDNN can significantly speedup the

computation of DNN by introducing execution parallelism among multiple mobile devices. As

the overheads of non-parallel transmissions between the mobile devices in the formed comput-

ing cluster are considerably high, our research particularly focuses on minimizing the overheads

of non-parallel transmissions between the mobile devices in the formed computing cluster. Our

contributions include:

1) We investigate the method of building a computing cluster in WLAN with multiple autho-

rized Wi-Fi enabled mobile devices for DNN computations. The mobile device that carries the

testing data (e.g., image) acts as the Group Owner (GO) and the other devices act as the worker

nodes; 2) We propose two partition schemes to minimize the data delivery time between the mo-

bile devices based on the unique properties of two types of DNN layers (convolutional layers and

fully-connected layers) and various mobile computing abilities; 3) We employ a middleware on

each mobile device in the computing cluster to schedule the whole execution process. To the best

of our knowledge, this is the first work that utilizes heterogeneous mobile devices in WLAN as

computing resources for DNN with several innovations in execution parallelism enhancement and

data transmission. Experimental results show that when the number of worker nodes increases

from 2 to 4, MoDNN can speedup the DNN computation by 2.17 to 4.28 times, thanks to the

achieved high execution parallelism and the significantly reduced data delivery time.
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2.0 PRELIMINARY

2.1 OPPORTUNISTIC MOBILE NETWORK

Benefiting from high transmission bandwidth and robust protocol, WLAN serves as an ideal envi-

ronment to create opportunistic mobile networks for cluster computing. With the ever-developing

transmission bandwidth and protocol robustness, WLAN creates an optimal environment for an

opportunistic mobile network from which cluster computing is highly benefited. The topology of

opportunistic mobile networks allows mobile devices to communicate over a WLAN.

Such a proximity-based communication characteristic also enables high data transmission

bandwidth between the mobile devices. In this work, we adopt opportunistic mobile networks

as our network foundation and implement MoDNN using WiFi-Direct [1], which allows for a

transfer speed of up to 250 Mbps with an energy efficiency better than a cellular network.

2.2 DISTRIBUTED PROGRAMMING MODEL

MapReduce is a programming model for simplifying parallel data processing in distributed sys-

tems [4]. Its effectiveness has been proven in many machine learning applications through maxi-

mizing the usage of computing resources of the nodes in a computing cluster [13]. There are two

primitives in MapReduce applications: Map and Reduce. The Map procedure partitions a task to

pieces that can be executed in parallel while the Reduce procedure merges the intermediate data

from the Map procedure. In this work, we use these two primitives in our single-GO multiple-

clients network topology to describe the data transmissions between DNN layers.
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Figure 1: Average computing time and memory usage of the layers in DNNs.

2.3 PROPERTIES OF TWO TYPES OF LAYERS IN DNN

In a DNN, the most computing-intensive and memory-intensive layers are Convolutional Layers

(CL) and Fully-connected Layers (FL). Fig. 1 depicts our measurement results of the computing

time and the memory usage of different network layers from three popular DNN models running on

smartphones: Lenet [10], Inception-BN [9], and VGG [14]. Although these three models have very

different scales, two common properties are observed in all three measurements: (1) CLs contribute

to the majority (e.g., 86.5% to 97.8%) of the total computing time; (2) FLs contribute to more than

87.1% of the total memory that are used to store the parameters of the DNN model. Hence,

in this work, we will particularly investigate the partition schemes of these two types of layers

in the DNN. Sparsifying FLs is a promising technique that can effectively reduce the associated

computing cost [13]. For example, the connectivity of FLs in VGG-16 can be reduced by 95.6%

without incurring any accuracy loss [7]. As we shall show in the following section, model sparsity

in DNNs offer a great opportunity for MoDNN to reduce the data delivery time by optimizing the

network weight partition of sparse FLs.
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3.0 SYSTEM FRAMEWORK OF MODNN

Figure 2: System overview of MoDNN.
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3.1 OVERVIEW OF MODNN

Fig. 2 presents an overview of MoDNN which includes three main components: (1) A local dis-

tributed network cluster formed by GO and multiple worker nodes; (2) A model processor which

partitions the DNN model onto the worker nodes; and (3) A middleware that performs data delivery

and identification services of the DNN.

We note that the computing cost of CLs is primarily dependent on its input size. Hence,

we introduce a Biased One-Dimensional Partition (BODP) scheme to partition the CLs. On the

contrary, the memory usage of FLs is mainly decided by the number of weights in the layer. As

a result, a weight partition scheme that consists of Modified Spectral Co-Clustering (MSCC) and

Fine-Grain Cross Partition (FGCP) is introduced specifically for sparse FLs.

It is worth noting that here the DNN model partition only need to be performed once in the

application once the DNN is trained. Thus, the partition cost can be amortized over the execution

of the system as long as the trained DNN keeps the same.

3.2 NETWORK ESTABLISHMENT AND SETUP

In our proposed system topology, the concept of MapReduce is adopted. In our proposed MapReduce-

based topology, each worker node is mapped with a part of the layer inputs and the outputs are re-

duced back to the GO, which generates the inputs of the new layer in the following map procedure.

In order to form a computing cluster for DNN execution, the GO enables its WiFi module to act

as an AP that is prepared for responding to potential worker nodes. In the mean time, the available

worker nodes with extra computing resources are searching for the GO in an opportunistic mobile

network domain. Opportunistic mobile network means a form of mobile ad hoc networks that

exploit the human social characteristics, such as similarities, daily routines, mobility patterns, and

interests to perform the message routing and data sharing.

7



3.3 DEFINITION OF TERMINOLOGIES AND VARIABLES

We define the terminologies and variables that are referred to in following sections as follows:

• Total Worker Nodes (k): Total number of the available worker nodes within the computing

cluster;

• Workload (W[i]): The workload assigned to node i;

• Estimated Time (ET[i]): Estimated time for node i to execute workload W[i] plus data delivery

time;

• Computing Ability (CA[i]): The normalized performance of node i, e.g., FLOPS;

• SpMV Time (S PT[i](n)): Time for node i to do Sparse Matrix-Vector multiplication (SpMV)

in which the matrix is represented by a linked list of size n;

• GEMV Time (GET[i](r, c)): Time for node i to perform General Matrix-Vector multiplication

(GEMV) in which the matrix is represented by r × c array;

• Sparsity Threshold (Thld[i](r, c)): Sparsity threshold of node i that achieves equivalent com-

puting time of the r × c matrix using SpMV and GEMV;

• Data Delivery Time: Data delivery time denotes the total time consumption for the data being

transmitted between nodes. Data delivery time includes two parts: wakeup time and transmis-

sion time. Wakeup time represents the amount of time for the head of the data traveling from

the sender to the receiver and transmission time denotes the amount of time for the receiver

receiving from the first bit to the last bit of the data.

Figure 3: Processing flow of MoDNN with optimized Mobile MapReduce on two worker nodes.

8



3.4 CONNECTION AND REGISTRATION

In our design, after getting the permission of the user, a mobile device will be permanently trusted

by the GO and automatically connected to the group when it is within the reachable WiFi range.

Once connected, in addition to the device IP address, performance-related meta data are also sent

to the GO for later utilization in partition schemes. The meta data includes the previously defined

variables and functions like computing ability, sparsity threshold and matrix multiplication etc.

The motivations to define and generate sparse matrix multiplication, general matrix multiplication

and threshold function will be discussed in detail later.

3.5 DATAFLOW IN MODNN

Fig. 3 demonstrates the whole dataflow of DNN execution. Thanks to the exists excellent data

affinity for the shared feature map between worker nodes, a comparatively small size of the feature

map is needed for transmission due to the small kernel size of convolutional layers, which is

expressed as the cubes in dashed contours in Fig. 3.

Hence, we introduce MoDNN under the concept of MapReduce as the distributed architecture

with several re-designed details for the low-level processing flow optimized to our DNN execution

scenario. Fig. 3 illustrates our optimized data processing flow for two worker nodes under the

guidance of the characterization in distributed DNN execution. GO first partitions the input image

and maps them to each the worker node. Then, after the computation of the convolution operation,

each worker node reduces the shared part of the output feature map back to GO by key-value

pairs. Finally, the GO gathers the output from the worker nodes and maps them back to the worker

nodes so that the they can combine the received data together with their local output feature map

in order to create the input feature map for the computation of next layer. Concretely, the main

optimizations include:

9



3.5.1 In-memory Weights

Concerning the response time and relatively small data size, in MoDNN, the intermediate data

are not stored on local disk. Instead, the overlapping part of the output feature map, namely

the intermediate data, will be immediately reduced from the worker nodes to GO for next map

procedure as shown in the reduce procedure in Fig. 3. Each weight of the DNN model is indexed

by a specific number so that it can be accessed fast by hashing. Such scheme actually tradeoffs the

execution time with the system robustness. However, because of the comparative small execution

granularity, the whole system can fast recover from the potential system failure.

3.5.2 Flexibility

The worker nodes in distributed mobile system is dynamically changing, calling for a partition

scheme that can adaptively fit all the situations with different worker nodes. Due to the mobility

of the system, MoDNN can dynamically detect the changes in the list of existing worker nodes

and adjust the scheduling and partitioning method accordingly. Therefore, as will be shown in the

following sections, we partition each layers with our proposed scheme dynamically according to

the total available nodes in the computing cluster.

3.5.3 Sweet Spot for the Worker Node

The total execution time does not decrease linearly with the increase of worker nodes because of

the communication overhead. When the number of worker nodes increases, more separate com-

munication channels will be established, leading to narrower communication bandwidth available

for each worker node in the computing cluster.

Hence, the optimal number of worker nodes will be chosen to avoid the performance degrada-

tion caused by network congestion. More specifically, by estimate the computing time based on

the available resources, our system can predict an optimal scenario for distributed DNN execution.

10



4.0 INPUT PARTITION FOR CLS

4.1 CONVENTIONAL PARTITION SCHEME

Figure 4: Neurons in 2D-grids of 4 nodes.

Conventional partition schemes of CLs on other platforms usually maintain a structural sym-

metry for the layer inputs. For example, in [3], Coates arranged a GPU cluster into 2D-grids and

partitioned the input neurons along the two-dimensional space, as shown in Fig. 4.

However, such a two-dimensional partition may not be suitable for the proposed local dis-

tributed mobile computing system. Unlike in the GPU cluster, the wakeup time, rather than the

transmission time, dominates the data delivery time in MoDNN. The time interval between states,

determined in both previous research works and in our own experiments, is significantly greater

than transmission time itself. It is because of the Opportunistic Power Save Protocol that support

the sleep mode of the clients: If a mobile device has not been used for a certain time period, it

will turn off its radio modules automatically [1]. Turning on the radio modules and establish the

11



transmission channel takes a time period significantly longer than the data transmission itself. This

comes to be the most critical implementation obstacle and bottleneck, which calls for a partition

scheme including minimal number of transmission channels to be established.

4.2 PROPOSED 1-D PARTITION

Figure 5: BODP for 4 worker nodes.

In MoDNN, BODP is proposed to partition the input neurons along the longer edge of the input

matrix according to the computing abilities of individual node, as illustrated in Fig. 5. Using node3

as an example: the input of node3 overlaps all the other three nodes in the 2D partition in Fig. 4,

while the input of node3 in Fig. 5 only overlaps with that of node2. Note that only the overlapped

parts of the layer inputs need to be transferred during the computation. The size of the overlapping

part can be formulated as:

Wtrans = Min(H,W) ·C · (F − 1) · Z. (4.1)

Eq. 1 expresses the amount of bits to be shared between two worker nodes before the execution

of each convolutional layer. For a convolutional layer, we define F and C as the kernel size and the

channel size of the filters sliding across the feature map of size H W and there are K kernels in

12



total. Because the filter size F is relatively small in almost all the mainstream DNN models. The

transmission amount is thus not so much. To achieve this, BODP utilizes the tradeoff between the

transmission time and the propagation delay.

Since the wakeup time in MoDNN is greatly impacted by the number of the established trans-

mission channels, reducing the number of the neighbor nodes from 4 (in conventional 2D partition)

to 2 (in BODP) will effectively minimize the associated high propagation delay. More analysis on

the effectiveness of BODP can be found in the following section.
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5.0 WEIGHT PARTITION FOR SPARSE FLS

5.1 TWO APPROACHES FOR MATRIX MULTIPLICATION

Figure 6: Hybrid matrix representation for SpMV and GEMV.

The partition scheme of FLs in MoDNN targets the state-of-the-art sparse FLs. Because of

the comparatively short execution time of FLs, mobile devices will keep the wireless radio in

an active state and the transmission time dominates the data delivery time. The object of the

proposed partition scheme is to reduce the size of the data to be transmitted for the reduction of

the transmission time.

There are two approaches to compute matrix-vector multiplication, which is the main operation

in DNN: General Matrix-Vector multiplication (GEMV) and Sparse Matrix-Vector multiplication

(SpMV). GEMV is usually used to compute a dense matrix which often uses arrays to represent the

data while SpMV is effective in computing a sparse matrix that can be efficiently stored in a linked-

list, as illustrated in Fig 6. Modern machine learning platforms use array to represent matrix, which

takes the advantage of low-level optimization such as Single Instruction Multiple Data (SIMD),

cache optimization and multi-threads support. However, for sparse layers, high proportion of zeros

14



are left in array structure, costing tremendous meaningless calculations and extra storage spaces.

An alternative way is to adopt linked-list structure for sparse matrix multiplication, which converts

each row of the original matrix to index-value pairs of non-zeros indexed by column number so

that no redundant space or computing resources are cost.

The selection of the appropriate data representation can be decided by comparing the target

matrix sparsity with threshold function. Here sparse matrix multiplication and general matrix

multiplication are the time spent on the computation of the matrix-vector multiplication using

SpMV and GEMV, respectively. They can be obtained from real measurements on the mobile

devices via a linear regression method. When the sparsity of the matrix is larger than the threshold,

SpMV will be used for the computation; otherwise, GEMV will be applied.

5.2 MODIFIED SPECTRAL CO-CLUSTERING (MSCC)

5.2.1 Proposed partition scheme

We note that GEMV is more computationally efficient per matrix element than SpMV due to its

higher computing parallelism. Hence, it will be beneficial to partition the weight matrices onto the

worker nodes in a dense structure.

In the weight partition scheme of FLs in MoDNN, a clustering algorithm is leveraged to group

the nonzero weights into several clusters and minimize the number of the nonzero weights out-

side the clusters. If we consider the weight matrix as an undirected graph, generating k clusters

with minimal connections between them is a NP hard problem [6]. In MoDNN, we use spectral

clustering technique to find the solution heuristically.

Spectral clustering technique is widely used in graph partition problems, aiming at minimiz-

ing between-cluster similarities [16]. In MoDNN, the sparse FLs are treated as undirected graphs

where the graph vertices represent the input and output neurons and the edges represent the net-

work weights. Hence, we redefine the similarity in spectral clustering technique as the number of

between-clusters connections. Hence, the input neurons corresponding to these clusters are first

transmitted for parallel execution.
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However, traditional spectral clustering technique works only on a matrix with the same row

and column size, which greatly limits its applicability and scalability in DNN computations. There-

fore, spectral co-clustering algorithm is introduced to address this drawback by normalizing the

original connection matrix A to Anorm and performing Singular Value Decomposition (SVD) on

Anorm [5]. Here the elements of weight matrix A are binary where ’1’ represents a connection

between two neurons and ’0’ otherwise.

The Spectral clustering algorithm is commonly used in graph partitioning problems, targeting

at minimizing between-cluster similarities [5]. This algorithm converts r rows and c columns of the

original matrix A to a matrix Z of r+c rows using the results generated in obtaining Anorm. Each

column of Z is an eigenvector of A so that we can cluster matrix together based on the rows of

Z. Then, we apply appropriate data structure to each cluster based on their sparsity for computing

time reduction. We name this clustering procedure as modified spectral co-clustering (MSCC).

Figure 7: Two-stage processing: MSCC&FGCP.
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5.3 FINE-GRAIN CROSS PARTITION (FGCP)

Spectral co-clustering focuses on reducing only the external connectivity between the clusters with-

out considering the internal cluster density. To solve this problem, we propose FGCP to partition

the remaining outliers in the weight matrix after MSCC to balance the workloads between the GO

and the worker nodes. The basic idea here is to identify the sets of the weights with minimal num-

ber of nonzero elements and keep them computed on the GO rather than sending to the worker

nodes to avoid the high cost introduced by the long data delivery time.

For the sparse outlier matrix shown in Fig. 7(c), for example, since the number of its columns

is smaller than its rows, FGCP initially assigns the elements on the same rows where the cluster

(obtained in MSCC) resides to node i. Then FGCP iteratively finds the worker node i with the

maximum ET[i] and offloads the initially assigned weights on the same column in the outlier matrix

with the minimal number of non-zero elements from the worker node i to the GO. In addition,

FGCP needs to consider the discrepancy of execution time between the GO and the worker nodes

during the offloading process, especially the data delivery time on the network between the worker

node x and the GO, which can be conceptually formulated by:

Initial ET (x) =
(
∑x

i=0 Ccolumn[i] +
∑k

i=x Crow[i])
T PT

, (5.1)

where TPT is the mobile network throughput; the remaining parts describe the total non-

overlapping data size of the input and output neurons to be transmitted during the execution. Ob-

viously, the more sparse the outlier matrix is, the more elements can be possibly offloaded to the

GO to balance the workload.
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6.0 MODEL PROCESSOR

Figure 8: Two processing flows in model processor of MoDNN.

Fig. 8 depicts the processing flows of CLs and FLs in MoDNN and how the two parts are

integrated. Given a trained DNN, the model processor scans each layer and identify their type. If

a CL is detected, the layer?s input will be partitioned by BODP into small pieces, which are then

combined with the subsequent non-overlapping layer structures e.g., ReLu layers, pooling layers,

normalization layers, etc. for computation. If a sparse fully-connected layer is detected, MSCC
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and FGCP will be applied in sequence to assign the workloads to the worker nodes in clusters and

the workloads for outliers, respectively, in order to achieve the minimum total execution time.

In the developing framework adopted in this work (MXNet), which can be spelled as mix net

or max net, the files that contain the model structure information is suffixed with .json . JavaScript

Object Notation (JSON) is a way to store information in an organized, easy-to-access manner. In

a nutshell, it gives us a human-readable collection of data that we can access in a really logical

manner. On the other hand, the files consist the weight information is formatted as .params , which

is a self-defined file structure by MXNet. We can read the contents of both file types through

Python interface.
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7.0 EXPERIMENTS

7.1 ENVIRONMENT SETUP AND TESTBENCH SELECTION

Figure 9: Two processing flows in model processor of MoDNN.

The implementation of MoDNN is based on MXNet, which is a deep learning framework

developed by the Distributed Machine Learning Community (DMLC) team for desktop platform

using C++. We modified and recompiled the MXNet libraries so that it can support Android

systems with ARM architecture through JAVA Native Interface (JNI) [19].

We adopt a pre-trained DNN model from ImageNet database: VGG-16 [4], as the testbench in

our experiments. VGG is a popular and clear-in-structure Convolutional Neural Network (CNN)

model that includes all mainstream layer types so that the significance of each component of
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MoDNN can be distinctly evaluated. In our experiments, VGG are executed locally or distributed

to different numbers of worker nodes by MoDNN; the adopted mobile devices are LG Nexus 5

running Android 4.4.2 with a 2.28 GHz processor and 2GB RAM.

The experiment setup is depicted in Fig. 9. Fig. 9 also presents the characterized results of

SPT[i](n) and GET[i](r,c), which are two important parameters used in the partition schemes of

MoDNN. Linked list and array structures are used in characterizing SPT[i](n) and GET[i](r,c),

respectively. Here x-axis denotes the amount of computations, i.e., n non-zeros for SPT[i](n) and

matrix for GET[i](r,c), respectively.

The results show that the calculation time of the worker nodes is proportional to the calculation

number. For the same workload, SpMV is much slower than GEMV. SpMV only taken as priority

when the matrix sparsity is below approximately 15.8%. Hence, we set Thld[i](r,c) to 15.8% in

our scheme. The measured average WLAN wakeup time and transmission throughput are 54.7ms

and 43.8Mbps, respectively.

7.2 DATA DELIVERY TIME EVALUATION OF BODP

The bars in Fig. 10 show the computing times of 13 CLs in VGG-16 during testing phase, excluding

the data delivery time. The results of running locally and on 2, 3, and 4 worker nodes in MoDNN

are depicted. For comparison purpose, the results of using conventional 2D-grids partition scheme

for 4 worker nodes is also included in the figure. When the number of the worker nodes increases,

the execution time of each CL keeps reducing, proving the effectiveness of MoDNN in parallel

computing.

The results of BODP with 4 worker nodes and 2D-grids partition are very close, implying lit-

tle impact of the input shapes of the CLs on the computing time. As also illustrated by the dot

lines in Fig. 10, compared to 2D-grids partition, BODP also slightly increases the average data

transmission size of each CL from 41048 bytes to 59856 bytes and hence, increases the average

transmission time from 7.15ms to 10.43ms. Such a close time consumption in execution of CLs

diverts our focus to the data delivery time. Nonetheless, when taking into account that the total

wakeup time contribute to approximately 30% of the total data delivery time in each data shar-
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Figure 10: Computing time and transmission time of CLs in VGG-16.

ing procedure. If we take into account the contribution from the data transmission time, BODP

still achieves shorter total data delivery time than 2D-grids partition for 4 worker nodes as less

transmission channels need be established.

7.3 TRANSMISSION SIZE EVALUATION OF MSCC & FGCP

In order to evaluate the effectiveness of MSCC and FGCP on large-scale, sparse FLs, the FLs in

VGG-16 are sparsified by L1-norm group lasso with a predefined discarding threshold to control

the sparsity.

As our proposed partitioning scheme is specifically utilized for sparse FLs, we restrained the

sparsity of the layers within 70% to 96%. Fig. 11 shows the transmission size decrease ratio of all

the three FLs in VGG-16 of different sizes compared with the baseline implementation. We define

the evaluation baseline as the one-dimensional partition that divides the weight matrix along its

longer side without any overlaps between the partitioned parts.
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Figure 11: Two processing flows in model processor of MoDNN.

As our proposed partitioning scheme is specifically utilized for sparse FLs, we restrained the

sparsity of the layers within 70% to 96%. Fig. 11 shows the transmission size decrease ratio of all

the three FLs in VGG-16 of different sizes compared with the baseline implementation. The results

are normalized by the one of the baseline, as shown in Fig. 11. According to the results, MSCC

and FGCP effectively reduce the transmission size by at least 22.6% compared with the baseline

implementation. In most cases, the transmission size reduction ratio keeps increasing with the layer

sparsity, e.g., reaches as high as 49.3%, 69.2%, and 69% for FC6, FC7, and FC8, respectively at

different numbers of worker nodes. One exception occurs in the FC8 with 2 worker nodes, which

shows a decrease in the transmission size reduction ratio when the layer sparsity increases. It is

because of the residual unbalance in the clustering due to the limited solution space of the small-

scale layers (e.g. 1000 times 4096 for FC8). Nonetheless, following the increase of the number

of the worker nodes, the effectiveness of MSCC and FGCP also increases, demonstrating a good

design scalability. Moreover, with the layers being more sparse, the clustering algorithm comes

more effective, which leads to the acceleration of communication decrease with more worker nodes

converging to a high decrease ratio.
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7.4 OVERALL EVALUATION OF MODNN

Table 1 summarizes the overall execution time to compute the whole V GG-16 model in DoDNN

over different numbers of mobile devices. Following the increase of the number of the worker

nodes, the overall execution time reduces significantly, demonstrating excellent computing par-

allelism: the purely computation time improves by 2.17-4.28 with 2 to 4 worker nodes. Table I

also summarizes the data delivery time and the data transmission size of different scenarios, which

indicates the extra cost introduced by the distributed computing mechanism of MoDNN. MoDNN

also outperforms the conventional 2D-grids partition scheme by substantially reducing the data

delivery time though the data transmission size is slightly increased.

Table 1: Overall evaluation of MoDNN with 2-4 worker nodes.

Execution Time (ms) Data Delivery Time (ms) Transmission Size (KB)

Local 15809 0 0

2 Workers 8509 1819 1196

3 Workers 6884 2563 2257

4 Workers 5208 2567 3336

4 Workers 2D-grids 6324 3073 2256
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8.0 CONCLUSION

In this work, we propose MoDNN–a local distributed mobile computing system to enable parallel

computation of DNN on mobile platforms. As convolutional layers and fully- connected layers

are identified as the major DNN components that contribute to the total execution time, several

advanced partition schemes, i.e., BODP, MSCC, and FGCP are pro- posed to well balance the

workloads of each worker nodes and minimize the data delivery time. Experiments show that

MoDNN can achieve better than linear performance speedup on DNN computations, demonstrat-

ing great potential of mobile platforms in DNN applications.
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