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Introduction

Time series analysis provides a framework for modeling a wide variety of phenomena,

among which those in electrical engineering, astronomy, oceanography, ecology, demog-

raphy, macroeconomy, insurances. Some models are settled in continuous time, though

statisticians have paid specific attention to discrete models. A main problem faced in

presence of sampled a time series is the detection of the “signal” in conjunction with

the removal of the “noise”. This terminology, borrowed from electrical engineering with

reference to electrical devices, furnishes an insight also in modeling time series in different

contexts.

Series derived from natural phenomena are often thought as “stationary”, meaning

that the generating process should maintain the same properties during the time passing.

Stationary time series thus gave rise to a very popular and successful family of models

(see Box and Jerkins, 1970)

The hypothesis of stationarity immediately fails in presence of changing phenomena.

In particular the decomposition of time series in economics modeling arises from the

modern Macroeconomic theories, which use to explain Economic phenomena as made up

of two components: one of long-run equilibrium (trend), studied in the growth theories,

and one of short-run fluctuations (cycle), typically in the range of 1.5 and 8 years. Under

this assumption a discrete univariate time series admits the decomposition:

(1) yt = τt + κt + εt.

We shall refer to τt as the trend, to κt as the cycle, and we let εt be a random error.

Further, τt, κt and εt are modeled separately. Equation (1) furnishes a simple version of

an Unobserved Component (UC) model, and it constitutes one of the most discussed

model used for trend-cycle decomposition.

Even in presence of a long lasting trend it is interesting to capture the cyclical

component of a series. Deviation from the trend can heavily affect the evolution of a
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phenomena and thus have an impact on decisions to be undertaken. This is evident

for macroeconomic series data.For economic series, theoretical constructs and empirical

analysis have put the attention on the “Business Cycle”. In their seminal paper Burns

and Mitchell (1946) defined the business cycle as follows:

Business cycles are a type of fluctuation found in the aggregate economic activity

of nations that organize their work mainly in business enterprises: a cycle consists of

expansion occurring at about the same time in many economic activities, followed by

similarly general recessions, contractions, and revivals which merge into the expansion

phase of the next cycle: this sequence of changes is recurrent but not periodic; in duration

business cycles vary from more than one year to ten or twelve years; they are not divisible

into shorter cycles of similar character with amplitude approximating their own.

A specific quasi-periodical component of an economical time series is addressed as

“seasonality”, and is easily ascribed to alternating seasons and to the effect of it on human

activities.

The distinction among trend, cycle and seasonality can be more blurred, thus the

estimation of these components if often conducted jointly.

The aim of this thesis is modeling the cyclical component of time series by means of

a local trigonometric model.

Trigonometric functions appear to be a very natural technique to model cycles, and

their use can be ascribed first to Ancient Greeks, who described the motion of planets

by means of eccentrics, deferentes cycles, epicycles and gave a first application of what

would have be called later “Fourier analysis” (see Gallavotti, 2001). Schuster (1897, 1906)

and Fisher (1929) later tried to identify hidden periodicities in astronomical time series

fitting series by means of trigonometric trend.

Fitting by means of trigonometric functions gives rise to specific problems. First,

approximating a non periodic function in a finite interval by means of trigonometric

functions generates the so called “Gibbs phenomenon”, that is the presence of wiggles

at the extremes of the interval, which does not fade by increasing the order of the

approximation. Secondly, the rate of convergence trigonometric function is o(n−1/2)

globally and o(n−2/3) locally, and it does not reach the theoretical maximum order of

convergence o(n−4/5) available in nonparametric regression.

Open problems remain: estimating the order of the model and balancing between

localization in the time domain and in the frequency domain.

A variety of alternatives is available in order to model cycles in a time series, among

which stochastic harmonic models and pseudocycles generated in a ARMA(p, q) (see

Harvey, 1993).
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The thesis is structured as follows.

Chapter 1 reviews some basic concepts related to time series and to trigonometric

models, including the different possible definitions of trigonometric process, the notion of

filter of a series and the main cases of kernel smoothers and LTI filter, and the setting of

Fourier analysis, which allows to represent a series both in the “time domain” and in the

“frequency domain” .

Chapter 2 examines some time-limited filter commonly employed to extract cycles

from a macroeconomic time series. Among the chosen models there are the family of

Wiener-Kolmogorov filters, ad hoc filter such as the Hodrick-Prescott filter, the Baxter

and King filter, the Christiano and Fitzgerald filter, the family of Butterworth filters,

providing a comparison among their theoretical properties. In this chapter it is proposed a

generalization of the filter proposed by Christiano and Fitzgerald (2003) suitable to detect

cycles associated to specific frequencies in presence of high order integrated processes,

and they are performed simulation on IMA(2,1), IMA(2,2) processes.

Chapter 3 is focused on local methods of smoothing. Local models are gaining a major

importance in time series analysis because of their ability to better exploit information

relative to a fixed instant, possess lower variance and allow a faster detection of turning

points of the phenomenon under exam.It is presented the terminology associated to local

processes, and relevant examples are furnished. Then, it is proposed a local trigonometric

model and worked out its statistical properties, with application to the smoothing of

ARIMA processes.

In chapter 4 it is discussed the choice of the minimizing function arising in L2[0, 21π]

and its related rates of convergence. Namely, Mean Squared Error (MSE), Integrated

Mean Squared Error (MISE) and the Point-wise Mean Squared Error (PMSE) are

examined. Further there are compared some information criteria such as AIC, BIC for

selecting the order of the trigonometric model.

In chapter 5 will give some insight in some open questions, such as the problem of

the balance between time localization and frequency localization of the process, the use

of alternative local methods such as splines or wavelets, the possibility of minimizing a

different error criteria arising from Lp norms.
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Chapter 1

Preliminary concepts

In this chapter they are discussed the first concepts needed to model deterministic

and stochastic cycles of a time series. We recall that often the distinction between trend

and cycle is not sharp, and it make sense to speak of a “trend-cycle” component.

The notation y(t) will be used for a continuous process, that is t ∈ I ⊆ R, while the

notations yi, yti or yt are used for discrete processes, that is i = 1, . . . , n or t = 1, . . . , n.

1.1 Trigonometric Processes

We can distinguish two different way of modeling the cyclical component: as a

trigonometric trend or as a harmonic processes.

Definition 1. A model with trigonometric trend is the following:

(1.1) yi = µ+

λ∑
k=1

(ck cos(ωkti) + sk sin(ωkti)) + εi, i = i, . . . , n.

In this model the trend is a deterministic periodic function in sine and cosine terms,

and the random component is the noise εi. The εi are usually assumed to be independent

and identically distributed (i.i.d.) with zero mean and finite variance, or satisfying an

Autoregressive Moving Average process of orders p and q (ARMA(p, q)) , or being a

weakly mixing process. The frequencies ωk are usually the Fourier frequencies, and they

depend on the number of observation n: ωk = 2πk
n . Different choices are possible for the

ωk.

1



The same model can be written only in cosine terms, or only in cosine terms:

(1.2) yi = µ+

λ∑
k=1

%k cos(ωkti − φk) + εi.

for %k =
√

(c2
k + s2

k), cosφk = ck/%k, or

yi = µ+
λ∑
k=1

%k sin(ωkti + φk) + εi

for %k =
√

(c2
k + s2

k), sinφk = ck/%k.

The same model can be written in complex notation as

yi = µ+

λ∑
k=−λ

Ake
−iωkti + εi.

for A0 = µ, Ak = ck−isk
2 , A−k = ck+isk

2 (k > 0), complex numbers.

Definition 2. A harmonic process consists in a sum of sine and cosine terms amplified

by a random coefficient:

(1.3) yi = µ+

λ∑
k=1

αk cos(ωkti + φk)

where the αk are random processes, with zero mean and finite variance.

An alternative way of defining a harmonic process is taking the αk fixed and assuming

that the phases φk are independent random variables uniformly distributed over [−π, π].

If the αk are fixed and the φk are independent rvs φk ∼ U(−π, π), the harmonic model

can be rewritten as

(1.4) yi = µ+

λ∑
k=1

[βk cos(ωkti) + γk sin(ωkti)],

for βk, γk independent zero mean random variables. Under these assumptions the process

yi is stationary with mean equal to µ and covariance function given by:

cov(yi, yj) =

λ∑
l=1

α2
l cos(ωl(tj − ti))/2,

2



see Percival and Walden (1998).

The definition of harmonic process having random coefficients however is more general

than the harmonic process with the αk fixed. The complex form of eq.(1.3) is

yi =

λ∑
k=−λ

Ake
iωkti ,

for Ak = αke
iφk/2 (k ≥ 0), A−k = αke

−iφk/2 (k ≤ 0), A0 = 0, ω−k = −ωk.
If both the αk and the φk are fixed, the model becomes the deterministic part of the

trigonometric trend model.

Let {Xt|t ∈ Z} a discrete zero mean stationary stochastic process,and let Pt−1Xt

be the projection of Xt on the space generated by {Xs, s < t} (see 1.4). Xt The Wold

theorem states that if the one step prediction error σ2 = E|Xt − Pt−1Xt|2 > 0, Xt is

the sum of an MA(∞) process Ut and of a deterministic process Vt, with Ut and Vt

uncorrelated.

Xt = Ut + Vt =
+∞∑
j=0

ψjZt−j + Vt

Harmonic processes appear as the deterministic component of a zero-mean stationary

process in the Wold decomposition.

A stationary process can be approximated by an harmonic process consisting of a

finite number of terms. (Doob, 1953)

1.2 Filters

From an abstract point of view, the cyclical component of a deterministic or stochastic

process can be obtained from the process itself by applying a filter to it.

Definition 3. A filter is an operator L that associates a process y(·) to the process x(·).

The filter L is said to be linear if L(αx(·) + βy(·)) = αL(x(·)) + βL(y(·)), for every

choice of the series xt and yt and of the constants α and β.

The filter operates instantaneously if yt = L(xt).

L is said to be time-invariant if the identity yt = L(xt) implies yt+h = L(xt+h), for

every number h.

The filter L is said to be bounded if yt is bounded whenever xt is bounded.

The filter L is said to be realizable or causal if yt depends only on the past value xs,

s ≤ t of the input series {xt}.

3



Definition 4. The transfer function B(λ) is the response of the filter to the input series

xt = eiλt:

B(λ) = L(eiλt).

In a physical context, the index λ is called pulsation; if λ = 2πf , f is called frequency

and it is the inverse is the period T . The process xt = e2πift is an eigenfunction for a

linear time invariant (LTI) filter, since L(e2πift) = G(f)e2πift. The eigenvalue G(f) is

called frequency response function. In general G(f) is a complex function, thus it can be

written as G(f) = |G(f)|eiθ(f). Its modulus |G(f)| is called gain of the filter, while its

phase θ(f) is called phase of the filter.

A discrete linear filter y = L(x) acquires the form yt =
∑+∞

i=−∞ ψt,ixi. Such a filter is

time invariant if the weights ψt,i depend only on t− i: yt =
∑+∞

i=−∞ ψt−ixi.

A general class of linear transformation of x(·) is obtained by kernel smoothing:

y(t) =

∫ ∞
−∞

K(t, t′)x(t′)dt′,

for any choice of the function K(·, ·), which is called kernel. Usually kernel function need

to be symmetric and positive function. Such type of filter is also time invariant if and

only if K(t, t′) = g(t− t′). Thus LTI filter obtained by kernel smoothing are convolution

products:

y(t) =

∫ ∞
−∞

g(t− t′)x(t′)dt′.

The discrete version of the convolution product is

yt =
∞∑

i=−∞
gt−ixi.

If we allow g(·) = δ(·), for δ(·) Dirac delta function, then the class of the convolution

products coincides with the class of the LTI filters. The convolution product is symmetric:

y(t) =

∫ ∞
−∞

g(t′)x(t− t′)dt′.

The function g(·) that appears in the formulas above is called impulse response function

of the filter, and it is uniquely determined by the filter as the response to the unit impulse,

since

L(δ(t)) =

∫ ∞
−∞

g(t′)δ(t− t′)dt′ = g(t).

Its Fourier transform is the transfer function of the filter: F(L(δ(t); f)) = L(e2πift).

4



A LTI is bounded if and only if its impulse response function is summable.

A LTI filter is symmetric if it has a symmetric impulse response function; in this case

the phase of the filter is one.

Fundamental examples of LTI filters are:

• a high-pass filter defined by having transfer function G(f) = 0 for f < W and

G(f) = 1 for f > W ;

• a low-pass filter defined by having transfer function G(f) = 1 for f < W and

G(f) = 0 for f > W ;

• a band-pass filter defined by having transfer function G(f) = 1 for |f | < W and

G(f) = 0 for |f | > W .

The number W is called cut off frequency .

The impulse response function of a band-pass filter is

g(u) =
sin(2πWu)

πu
u 6= 0

2W u = 0.

A fundamental result in filter theory was worked out separately by Kolmogorov (1941)

and Wiener (1949):

Theorem 1. If the input series yt admits the decomposition yt = ηt + εt, where ηt is

the signal and εt is the noise, then the minimum mean square estimator of the signal is

η̂t = E(ηt|xt, xt−1, . . . ).

1.3 Fourier Transform

Analysis of time series can be cast in time domain or in frequency domain. In the

following paragraphs we will make precise the meaning of this expression, introducing

the Fourier transform defined on different spaces of function.

If xt, t ∈ Z is in l1, that is
∑+∞

t=−∞ |xt| < +∞, then xt is the Fourier series of a

periodic function y(ω), ω ∈ [−π, π]. Moreover, if xt ∈ l2, then y(ω) ∈ L2([−π, π]), and

this correspondence is an isomorphism between l2 and L2([−π, π]):

y(ω) =

+∞∑
t=−∞

xte
−itω, ω ∈ [−π, π]⇔ xt =

1

2π

∫ π

−π
y(ω)eiωtdω, t ∈ Z.

5



The equivalence of scalar products is written as:

+∞∑
−∞

xnx̄
′
n =

1

2π

∫ π

−π
y(ω)ȳ′(ω)dω.

If x(t) ∈ L1(R), that is
∫ +∞
−∞ |x(t)|dt < +∞, then x(t) admits the Fourier trans-

form y(ω) =
∫ +∞
−∞ x(t)e−iωtdt. If x(t) ∈ L2(R), then y(ω) ∈ L2(R), and the following

correspondence in an isomorphism between l2 and L2(R) (see Rudin, 1974):

y(ω) =
1√
2π

∫ +∞

−∞
x(t)e−itωdt, ω ∈ R⇔ x(t) =

1√
2π

∫ +∞

−∞
y(ω)eiωtdω, t ∈ Z.

The equivalence of scalar products in this case is written as:

1√
2π

∫ +∞

−∞
x(t)x̄′(t)dt =

1√
2π

∫ π

−π
y(ω)ȳ′(ω)dω

If xn is a finite discrete sequence of length T , then it admits Fourier expansion yk:

yk =
1

T

T−1∑
n=0

xte
−i2πnk

T , k = 0, . . . , T − 1⇔ xn =

T−1∑
n=0

yke
i2πnk
T , n = 0, . . . , T − 1.

The above mentioned identities makes sense in the counting measure. The equivalence of

scalar products in this last case is written as:

T−1∑
n=0

xnx̄
′
n =

T−1∑
n=0

ynȳ
′
n.

These relations constitutes the basis for Fourier analysis of deterministic processes.

Often they are referred as relations between “time domain” and “frequency domain”,

since in physical applications t plays the role of time and ω plays the role of frequency.

Among the many useful relations available for Fourier transforms we recall the

following theorem:

Theorem 2. If h(t) = f(t)g(t), then the Fourier transform of h(t) is given by the

convolution product of the Fourier transform of f(t) and the Fourier transform of g(t):

(Fh)(ω) = (Ff)(ω) ∗ (Fg)(ω). Viceversa, if H(t) = F (t) ∗ G(t), then the Fourier

transform of H(t) is given by the product of the Fourier transform of F (t) and the Fourier

transform of G(t) (FH)(ω) = (FF )(ω) ∗ (FG)(ω).

The proof is found in the appendix. From this theorem follows:

6



Theorem 3. If yt is the process obtained from the process xt by applying a linear filter,

that is yt =
∑+∞

i=−∞ gt−ixt, then the gain of the filter is Y (e−iω) = G(e−iω)X(e−iω),

where G(e−iω) =
∑−∞

k=−∞ gke
−iωt.

Fourier analysis has been extended by Wiener (1949) in a probabilistic context, as we

will see in the following paragraph.

1.4 Spectral Analysis of stationary time series

The space of complex random variable X on a measure space (Ω,F , P ) satisfying

E|X|2 < +∞, endowed with the scalar product < X,Y >= E(XȲ ) constitutes a Hilbert

space.

If {Xt| ∈ Z} is a discrete stochastic process,the lag operator is defined by means of

L(Xt) = Xt−1. The projection of Xt on the space generated by M = {Xs, s < t} is the

process Y ∈M having minimum distance from X, and it is denoted by means of Pt−1Xt.

Definition 5. A stochastic process is weakly stationary if, for each t ∈ Z and for each

k ∈ Z, it appens E(yt) = µ and E((yt−k − µ)(yt − µ)) = γk independently of t, or, in an

equivalent formulation, if the first two moments of the process does not depend on the

time t.

The function γk, k ∈ Z is called autocovariance function (ACF) of the process Xt,

and it is a symmetric positive definite function.

Every discrete zero-mean stationary process Xt admits a decomposition into a series

of sinusoidal components with uncorrelated random effects, i.e.

Xt =

∫
(−π,π]

eitνdZ(ν)

where Z(λ) is a suitable right continuous orthogonal increment stochastic process. (Brock-

well and Davis, 1994). Correspondingly, the covariance function γk of Xt, being a

summable sequence, admits the spectral representation (Herglotz theorem):

γk =

∫
(−π,π]

eikνdF (ν),

where F (·) is a non-decreasing, right continuous bounded function on [−π, π] with

F (−π) = 0 and F (π) = γ(0) = E|Xt|2. The function F is called spectral distribution

of γ and if F (λ) =
∫ λ
−π f(ν)dν then f is called spectral density of γ. The orthogonal
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increment stochastic process Z and the spectral distribution F are linked by the relation

F (µ) − F (λ) = |Z(µ) − Z(λ)|2, −π ≤ λ ≤ µ ≤ π, and if T is the isomorphism of

s̄p{Xt, t ∈ Z} onto L(F ) then Z(λ) = T−1(χ(−π,λ]) where χ(−π,λ] is the indicator function

of (−π, λ].

If the one step prediction error σ2 is greater than zero then the spectral distribution

FX can be decomposed as FX = FU +FV , where FU and FV are respectively the spectral

distribution of the MA(∞) process Ut and the spectral distribution of the deterministic

Vt in the Wold decomposition of Xt. FU is absolutely continuous with respect to the

Lebesgue measure, and admits spectral density fU : FU (A) =
∫
A fU (u)du; FV has no

absolutely continuous component, and FV (A) =
∑

λj∈A p(λj), where p(λ) is the spectral

mass concentrated in λ.

A harmonic process without an additive error term has a pure discrete spectrum

(Percival and Walden, 1998).

In the following we will deal mainly with stationary processes, and when necessary

we will detrend series of data.

1.5 Ergodicity

The process yt is said to be ergodic with respect to the second moments if the

autocovariance function calculated with respect to the time converges almost surely to

autocovariance function calculated with respect to the ensamble:

CW (τ) ≡ lim
T→∞

1

T

∫ T

−T
yt+τytdt = E[yt+τyt] ≡ C(τ) a.s.

A linear process xt is always ergodic (Grenander and Rosenblatt, 1957). A normal

process is ergodic if and only if its spectrum is continuous.
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Chapter 2

Extraction of Business cycle in

finite samples

In this chapter there are presented some of the most frequently used filters for the

extraction of the cyclical component of an economic time series. A starting point is the

Wiener-Kolmogorov filter, which arises from the minimization of a quadratic function.

This kind of filter requires adjustments to deal with economic series. A first problem is

to smooth short series, so it make sense to work out finite sample version of the filter, or,

further local version of the filter. A second problem is the treatment of nonstationarity.

A modification of the minimization function with the addition of a penalized term is the

Hodrick-Prescott filter.

The problem of finding the filter can be settled both in the time domain and in the

frequency domain. The Baxter and King filter and the Christiano and Fitzgerald filter

rise from the analysis in the frequency domain. This second framework allows to select

the frequencies to describe the business cyclical activity.

As an alternative, one can try to model directly the stochastic cycle by modulating

a white noise, or a colored noise applying to it trigonometric coefficients (Harvey and

Trimbur, 2003).

In the second part of the chapter there are examined the links between the ideal

band-pass filter, the Baxter and King filter and the Christiano and Fitzgeralg filter, by

means of the analysis in the frequency domain. It is worked out the explicit solution of

the smoothing problem following the asset of CF in the case of a MA(q) error.Then it is

furnished a generalization of the CF filter appropriate to extract cycle from a high order

integrated series without a preparatory differentiation. Simulations are made in the case

of I(2)process.
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2.1 Mainstream in detecting Business Cycle

In econometric time series, the trend component is supposed to be originated by

structural causes such as institutional events, demographic and technological changes,

new ways of organization, and it has a slow evolution. The business cycle received

different definitions, and can be described as a quasi-periodic oscillation characterized by

periods of expansions and contractions. Often the estimation of both trend and cycle are

conducted simultaneously.

The literature distinguishes between real business cycle and business cycle tout court.

In the following paragraph we will discuss some of the most popular filters used to extract

the real business cycle, pointing out similarities and differences by means of a theoretical

analysis.

2.1.1 Wiener-Kolmogorov filter

Many filters used in physical and econometrical applications are encompassed by the

family of Wiener Kolmogorov (WF) filters.

The classical theory of linear filtering was developed independently by Wiener (1941)

and Kolmogorov (1941), and it assumes that data generating processes are stationary

and that adequately long data series are available. After some necessary adjustments

(Bell, 1984), this theory is often applied to the treatment of economic data.

The Wiener-Kolmogorov filter extract the signal of a sequence under the assumption

that observations are sum of signal and noise:

yt = st + nt.

The estimate of the signal is a linear combination of the data points available:

ŝt =

q∑
j=−p

ψt,jyt−j .

Under the assumptions that the filtered series ŝt is a LTI filter should minimize the mean

square error:

E[(yt − ŝt)2] = minψi .

Classical theory assumes that error and noise are independent, or at least uncorrelated.

So, denoted by γxx(z) the autocovariance generating function (AGV)
∑+∞

k=−∞ γkz
k of a
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process xt, the AGV of the process y admits the decomposition

γyy(z) = γss(z) + γnn(z).

An autocovariance is a positive definite function, so it admits the Cramér-Wold decom-

position (see Brockwell and Davis, 1991):

γyy(z) = φ(z−1)φ(z), γss(z) = θ(z−1)θ(z), γnn(z) = θn(z−1)θn(z).

The minimum mean square error criterion yields

0 = E[yt−j(st − ŝt)] = E[yt−jst]−
q∑

k=−p
ψt,kE[yt−jyt−k] = γysj −

q∑
k=−p

ψt,kγ
yy
j−k,

where, for each j ∈ Z, γysj = E[ytst−j ]. Multiplying the previous equation by zj , defined

γys(z) =
∑+∞

j=−∞ γ
ys
j z

j , one obtains the finite sample version of the WF filter:

γys(z)|(−p,q) = [γyy(z)ψ(z)]|(−p,q).

The subscript (−p, q) means that only the coefficient of zj for −p ≤ j ≤ q are involved,

and that ψj=0 for j 6∈ [−p, q]. For a casual Infinite Impulse Response (IIR) filter (p = 0,

q = +∞) the WK filter becomes (Whittle, 1983)

ψ(z) =
1

φ(z)

[
γss(z)

φ(z−1)

]
+

.

If yt is available for −∞ < j < +∞, the WF filter is simply given by

γss(z) = γyy(z)ψ(z),

that is

ψ(z) =
γss(z)

γyy(z)
=

γss(z)

γss(z) + γnn(z)
.

Let Byt = Lyt = yt−1 the backward operator , and Fyt = L−1yt = yt+1 the forward

operator. If the observed series admits a signal plus noise decomposition:

xt = st + nt,

and both signal and noise are generated by ARMA processes (see Kaiser and Maravall,
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2005):

φs(B)st = θs(B)ast,

φn(B)nt = θn(B)ant,

with ast and ant mutually independent white-noise processes whit zero mean, and variance

σ2
s and σ2

n respectively, polynomials φs(B) and φn(B) coprime, i.e. having no common

factors, θs(B) and θn(B) share no unit root in common, then also xt follows an ARMA

process:

φ(B)xt = θ(B)at,

with at white-noise process, θ(B) invertible and φ(B) given by φ(B) = φs(B)φn(B), and

at satisfying the equation:

θ(B)at = φn(B)θs(B)ast + φs(B)θn(B)ant.

The Wiener-Kolmogorov filter designed to extract the signal st in this model is

(2.1) ŝt =
AGF (st)

AGF (xt)
xt =

σ2
s
θs(B)θs(F )
φs(B)φs(F )

σ2
a
θ(B)θ(F )
φ(B)φ(F )

xt = ks
θs(B)φn(B)

θ(B)

θs(F )φn(F )

θ(F )
xt,

or

ŝt = ks
θs(B)

φs(B)

θs(F )φn(F )

θ(F )
at,

with ks = σ2
s/σ

2
a. The same filter can be construed as the AGFof the process zt satisfying

θ(B)zt = θs(B)φn(B)bt,

where bt is white noise whit variance ks = σ2
s/σ

2
a.

If st and nt are orthogonal, the spectral density of xt admits the decomposition

g(ω) = gs(ω) + gn(ω).

The gain of the WK filter is the Fourier transform of the ratio of the two gains:

G(ω) = gs(ω)/g(ω)
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and the gain of the Minimum Mean Square Error (MMSE) estimator ŝs is given by:

gŝ(ω) =
[gs(ω)

g(ω)

]2
g(ω) =

gs(ω)

g(ω)
gs(ω) = G(ω)gs(ω).

Since G(ω) ≤ 1, we have gŝ(ω) ≤ g(ω), hence the MMSE filter underestimates the

variance of the theoretical component. The WK filter is well definite even if the φ-

polynomials contain unit roots, and thus can be extended in a straightforward manner to

the nonstationary case. In fact in the latter case, the φs-polynomial can be factorized as

φs(B) = ϕ(B)Ds(B), where Ds contains all the unit roots and ϕs is stable. Thus, applying

Ds to equation (2.1) and replacing Dsxt by [θ(B)/(ϕs(B))φn(B)]at, it is obtained

ŝt = ks
θs(B)

ϕs(B)

θs(F )φn(F )

θ(F )
at,

which provides the model that generated the stationary transform of the estimator ŝt.

Wiener-Kolmogorov filter and Kalman filter yield the same results, although Kalman

filter is computationally advantageous and Wiener-Kolmogorov filter allows to show more

easily theoretical properties of the filter.

2.1.2 The Hodrick - Prescott filter

The Hodrick Prescott (HP) filter, introduced by Hodrick and Prescott (1997), consti-

tutes a standard method for removing trend movement in the business cycle literature.

The HP filter for the trend component is a highpass filter obtained as the solution of

(2.2) min
τt

T∑
t=1

[(xt − τt)2 + λ((τt+1 − τt)− (τt − τt−1))2]

where the residuals zt = xt − τt represent the business cycle, while the parameter λ

penalizes the second differences of the xt, and must be chosen by the researcher. This

criterium is the discrete version of (3.1): the summation takes the place of the integral

and the second derivative of the trend is substituted by ∆2τt = τt+1 − 2τt + τt−1.

The infinite sample version of the Hodrick-Prescott filter defines the cyclic component

of a time series yt as

yct =
λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
yt

where λ is a parameter that penalizes the variation in the growth component. It removes

non-stationary components that are integrated of order four or less. It is symmetric, so
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there is no phase shift. It is a two-sided moving average filter of infinite order.

The Hodrick-Prescot filter is an ad-hoc filter frequently used by national central bank

to detect and to predict the business cycle. Some important limitation of the HP filter

are imprecise end-point estimation, large revision in recent estimators, spurious result,

noise contamination of the cyclical signal, moreover the choice of λ is not supported

by an established theory (a common choice is λ = 1600 for GDP quarterly data ). A

frequently used method for the extraction of the business cycle from macroeconomic time

series is applying the Hodrick-Prescott filter to X11- seasonally adjusted time series.

An alternative to asymmetric filters, when the last k observations are missing, is to

substitute the future observations with their optimal forecasts, obtained by means on an

ARIMA estimators.

Another way of obtaining the HP filter for the cyclical component is to search for a

weighted averages of the original data:

yct =
T∑
h=1

dhtyh

with
∑T

h=1 dht = 0 for each t. More precisely (King and Rebelo, 1993)

yct =
θ1θ2

λ

( +∞∑
j=0

(A1θ
j
1 +A2θ

j
2)yt−j +

+∞∑
j=0

(A1θ
j
1 +A2θ

j
2)yt+j

)
,

with θ1, θ2, A1, A2 depending on λ.

The Hodrick-Prescott filter belongs to the family of the Butterworth filters, which

are characterized by a Gain function of the form:

G(ω) =
[
1 +

( sin(ω/2)

sin(ω0/2)

2d)]−1
, 0 ≤ ω ≤ π.

Thanks to the trigonometric identity

4 sin2(ω/2) = (1− e−iω)(1− eiω),

substituted e−iω by the backward operator B and eiω by the forward operator F , we

obtain the time-domain representation of the Butterworth filter:

ν(B,F ) =
1

1 + λ[(1−B)(1− F )]d
=

1
λ[(1−B)(1−F )]d

1 + 1
λ[(1−B)(1−F )]d

,
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with λ = [4 sin(ω0/2)2]−d.

This identity shows that a Butterworth filter is the Wiener-Kolmogorov filter used

to estimate the signal st in the model xt = st + nt when the signal st is a IMA(d, 0)

process:

(2.3) ∇dst = ast.

The equation (2.3) admits various generalizations, depending on the nature of the

phenomenon under examination, and can be substituted by an ARIMA model; so

accompanied by the unobserved component model it give raise to a reduce form equation.

Applying the WK filter for the signal to the reduce form equation, it is obtained a more

general HP filter, called HP-ARIMA filter. (Kaiser and Maravall, 1999).

The smoothing of an economic time series has a prominent role in detecting turning

points. A possible definition of turning point is the first of at least two successive periods

of negative/positive growth. The ability of detecting a turning point by means of an

established filter can be tested by counting, in a set of series, both the mean number of

turning points that are dated on the original series and missed by the filtered one, and

the mean number of turning points detected on the filtered series but not present in the

original one, maintaining separated “peaks” and “throughs”.

2.1.3 The ideal band-pass filter

In the following we assume that process generating the data xt has the decomposition

xt = yt + x̃t, where yt has power only in the frequencies belonging to the interval

I = {(a, b) ∪ (−b,−a)} ∈ (−π, π), and x̃t having power only in the complement of

this interval in (−π, π). This happens in particular if the spectral density fX and

fY are linked by fY (ω) = fX(ω)χI(ω), where χI is ideal band pass of I (that is the

characteristic function of the interval I). This property allows to represent the process

yt by applying to xt a LTI filter: Yt =
∑+∞

j=−∞BjXt−j , Since fY (ω) = |B(e−iω)|2fX(ω),

where B(e−iω) =
∑+∞

j=−∞Bje
−ijω, the weights Bj can be computed as Fourier coefficients

of B(e−iω) = χI(ω). This yields:

Bj =
sin(jb)− sin(ja)

πj
, j ≥ 1,

B0 =
b− a

2
, a =

2π

Tu
, b =

2π

Tl
.

(2.4)

The symmetric linear filter isolating a period of oscillation between Tl and Tu (2 ≤
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Tl < Tu < ∞) minimizing the mean squared error criterion E[(yt − ŷt)
2|x], where

x = [x1, . . . , xT ] is the observed sample, is

ŷt =
+∞∑

k=−∞
Bt−kxk

This is the ideal band-pass filter. Since it requires infinite, past and future observations,

and infinite weights, it is unfeasible. Obviously, it is not causal.

2.1.4 The Baxter and King filter

Baxter and King (1999) developed an approximate band-pass filter which isolates

business-cycle fluctuations in macroeconomic time series. The filter was designed to

isolate fluctuations that persist for periods of two through eight years, and it also renders

stationary a series that is integrated of order one or two or that contains a deterministic

trend.

The Baxter-King (BK) filter exhibits several desirable properties: it is a moving

average consisting of infinite terms, that extracts a specified interval of frequencies, it does

not introduce phase shift, it is optimal with respect to a specific loss function, it renders

stationary time series integrated of order one or two or presenting a quadratic trend.

As a consequence, the BK filter can be applied to the rough data without pre-filtering.

The underlying model implies that very slow moving can be interpreted as a trend, and

very high frequency components represent an irregularity in the phenomenon. Thus the

problem is to specifies which frequencies can be considered involved in the business cycle.

The filtered series is

y∗t =
∑

akyt−k.

The BK filter has the property
∑K

k=−K ak = 0, and it is symmetric. Simple algebra

shows that these two properties imply that 1 and −1 are roots of the lag polynomial:

a(L) =

K∑
k=−K

akL
k = (1− L)(1− L−1)ψ(L).

The ideal low-pass filter β(ω) which passes only frequencies −ω ≤ ω ≤ ω for a

suitable cut off frequency ω has the time-domain representation b(L) =
∑+∞

h=−∞ bhL
h,

where b0 = ω/π, bh = sin(hω)/hπ. Since it consists of infinite terms, it makes sense to

approximate it with finite moving average filter α(L). If αK(ω) is the Fourier transform

of discrete filter minimizing a quadratic loss function, in which every frequency has the
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same weight:

(2.5) Q =

∫ π

−π
|β(ω)− αK(ω)|2dω,

then αK(ω) is obtained by simply truncating the ideal filter’s weights ak at lag K.

If bh are the weights of the ideal low-pass filter, then the weights of the ideal high-pass

filter are 1− b0 at h = 0, and −bh at h 6= 0, and the optimal K−approximation of the

HP∞ filter is obtained by truncating the ideal HP∞ filter.

If β̄(ω) and β(ω) are the ideal symmetric low-pass filter relative to −ω̄ ≤ |ω| ≤ ω̄ and

to −ω ≤ |ω| ≤ ω respectively, the ideal band-pass relative to the interval of frequencies

ω ≤ |ω| ≤ ω̄ is obviously given by β̄(ω)− β(ω), and it has weights b̄h − bh.

Baxter and King (1999) deduce the optimal approximating low-pass filter minimizing

the quadratic form (2.5) under the constraints aj = 0 for |j| > K,
∑K

h=−K ah = 1 and

ah = a−h (so that 1−
∑K

h=−K ah = 0), which is determined by

(2.6) ah = bh + θ, θ = (1−
K∑

h=−K
bh)/(2K + 1).

Working in the frequency domain, researchers usually calculate the discrete Fourier

transform (DFT), computing the periodic components associated to a finite number

of harmonic frequencies, then they abruptly drop out the frequencies that lie outside

the band of interest, finally they calculate the inverse Fourier transform to get the

time-domain filtered series. The main risks of using this method are, firstly, the need of

detrending the series of the observation before applying the DFT, in order to remove

unit roots, and, secondly, the dependence of the weights and of the filtered series on the

sample length T , since the procedure is not recursive.

Baxter and King (1999) provide a detailed comparison between the approximated

band-pass filter and the Hodrick-Prescott filter, recognizing that the second one is a good

approximation of the BK filter for quarterly Gross National Product (GNP) data.

2.1.5 First differencing

If we extract the cyclical component of a time series by a first difference filter:

yct = (1 − L)yt, we obtain a filter that is not symmetric and introduces a time shift

between variables, more over, the filter are reweights strongly toward higher frequencies.

This is easily seen from |G(f)| =
√

2− 2 cos(2πf), arctan(θ(f)) = sin(2πf)
1−cos(2πf) .

In general, the application of a filter to a series of observation could produce some
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distortion and generate spurious cycles (Yule-Slutsky effect) . For difference filter and

summation filter the reason is the following. If the first difference operator 1 − L is

applied d times to the series yt, and then the summation filter 1 +L is applied s times to

the resulting series, the effect of the difference filter is to attenuate the low frequencies,

while the effect of the summation filter is to attenuate the high frequencies. Thus the

overall effect is the transfer function shows a peak, that could be misinterpreted as the

presence of a cycle.

Figure 2.1: Gain of a first difference filter

Figure 2.2: Gain of a first summation filter
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Figure 2.3: Gain of the filter (1− L)2(1 + L)2

2.1.6 Christiano and Fitzgerald filter

Christiano and Fitzgerald (2003) (CF) developed optimal finite-sample approximation

of the pass band filter. They used as weighting scheme the spectral density function

fx(ω), to obtain a filter as the solution of the minimization problem:

(2.7) min
B̂p,fj

∫ π

−π
|B(e−iω)− B̂p,f (e−iω)|2fx(ω)dω.

The rationale under this choice is to give a higher weight to more pronounced frequency.

The CF filter differs from BK filter because the weights solution of (2.7) will be attached

to Xt and not to the generating process ut.

Simulations show that such a filter is more accurate in the selected range of frequencies.

If the estimate x̂t of xt is calculated by means of the observations x−f , . . . , xp,

symmetry of the filter can be obtained by choosing f ≡ T − t = t− 1 ≡ p. In general,

the CF filter is not symmetric.The minimization problem depends on t, T different filters

are obtained for each data, and hence the filter is not stationary.

The so called Random Walk (RW) filter is obtained in the minimization problem by

putting fx(ω) pseudo spectral density of x(t) Random Walk, (or xt ARIMA(p,1,q)).

fx(ω) =
g(ω)

(1− e−iω)(1− eiω)
,

where (1− e−iω)(1− eiω) = 2(1− cos(ω)). Under this assumption, the process Xt does
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not belong anymore to L2([−π, π]).

If εt is a MA(q) process,

g(ω) =θ(e−iω)θ(eiω) = c0 + c1(e−iω − eiω) + · · ·+ cq(e
−iω + e−iω)

= c0 + 2

q∑
r=1

cr cos(ωr)

Such a filter is much more accurate in a neighborhood of ω = 0 than for higher values

of ω, even if fx(ω) does not exists for ω = 0 . The estimation of Bp,f
t involves the

spectral density of xt, that is unknown, and must be estimated from the data. In the

simulation study of CF, the RW filter dominates both the Baxter and King filter, and

the Trigonometric Regression filter.

The differences are most pronounced for filter approximations designed to extract

frequencies lower than the business cycle. In the approach of CF the condition B̂p,f (1) = 0

is not imposed as a constraint, but arises from the hypothesis that the data contain a

unit root.

The statistic used to compare the Hodrick-Prescott filter to the Random Walk filter is

Rt =
[V art(ŷt − yt)

V ar(yt)

]1/2
.

This statistic represents the squared root of the residual variance when ŷt is calculated

by means of the observations available at time t and the total variance, thus a large value

of Rt indicates a poor filter approximation.

The proper criterium to choose p and f is not clear, and it corresponds to the choice of

the width of the filter, this complication in Christiano and Fitzgerald (2003) is sidestepped

by the Random Walk filter, that uses all the data all the time.

2.1.7 Models for the stochastic cycle

Stochastic cycles are often used to model a business cycle (see, Harvey, 1993, Harvey

and Trimbur 2003 among others). The reason is easily understood by examining the

spectrum of the stationary process. For instance, for an AR(2) process, the spectral

density is

f(λ) =
(σ2

2π

)( 1

1 + φ2
1 + φ2

2 − 2φ1(1− φ2)cos(λ)− 2cos(2λ)

)
.

If the root of the characteristic equation φ(L) = 1 − φ1L − φ2L
2 are complex, the
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Figure 2.4: Spectral density Ma(2) complex roots

autocorrelation function led to a damped cyclical pattern, and this was interpreted

as an indication of some kind of cyclical behavior in the series. A plot shows a peak

that indicates a tendency toward a cycle at frequency λmax, and this is an indicator

of a pseudo-cyclical behavior. Harvey (1993) shows how a stochastic cycle may be

formulated in term of an ARMA(2,1) process. If ψt is a deterministic sinusoidal trend:

ψt = α cos(ωt) + β sin(ωt), a simple model for the cycle is yt = ψt + εt. Introducing the

complex conjugate process ψ∗t , the same model can be putted in the form[
ψt

ψ∗t

]
=

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
ψt−1

ψ∗t−1

]
, t = 1, . . . , T.

with the initial conditions ψ0 = α, ψ∗0 = β. A first modification is given by adding two

white noise disturbance κt e κ∗t :[
ψt

ψ∗t

]
=

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
ψt−1

ψ∗t−1

]
+

[
κt

κ∗t

]
, t = 1, . . . , T.

κt e κ∗t are assumed to be uncorrelated and to have the same variance for the identifiability

of the model. Further, a damping factor ρ ∈ [0, 1] is introduced to give the model more

flexibility: [
ψt

ψ∗t

]
= ρ

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
ψt−1

ψ∗t−1

]
+

[
κt

κ∗t

]
, t = 1, . . . , T.
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The reduced form for (ψt, ψ
∗
t )
′ shows that this process is a vector AR(1) process:[

ψt

ψ∗t

]
=

[
1− cos(ω)L −ρ sin(ω)L

ρ sin(ω)L 1− ρ cos(ω)L

]−1 [
κt

κ∗t

]
,

and substituting the value of ψt in the definition of yt gives

yt =
(1− ρ cos(ω)L)κt + (ρ sin(ω)L)κ∗t

1− 2ρ cos(ω)L+ ρ2L2
+ εt, t = 1, . . . , T.

that is

yt − 2ρ cos(ω)yt−1 + ρ2yt−2 =

κt − ρ cos(ω)κt−1 + ρ sin(ω)κ∗t−1 + εt − 2ρ cos(ω)εt−1 + ρ2εt−2.

Thus yt is an ARMA(2,2) process, while ψt is an ARMA(2,1) process. The root of the AR

polynomial are m1,m2 = ρ−1 exp(±iω), and they are complex conjugate for 0 < ω < π.

The process is stationary for 0 ≤ ρ ≤ 1. The analysis also shows that not every AR(2)

process gives rise to a pseudo-cyclical behavior. For ω = 0 or ω = π the process collapses

to an AR(1). In these cases the dynamic of ψt is given by ψt = ρψt−1 + κt for ω = 0 and

by ψt = −ρψt−1 + κt for ω = π.

The spectrum of ψt is

gψ(e−iλ) =
1 + ρ2 − 2ρ cos(ω) cos(λ)

1 + ρ4 + 4ρ2 cos2(λ)− 4ρ(1 + ρ2) cos(ω) cos(λ) + 2ρ2 cos(2λ)
σ2
κ,

and its plot shows a peak for ρ < 1. The autocovariance function (ACF) of ψt is

ρ(τ) = %τ cos(ωτ).

The model proposed by Harvey for the stochastic cycle can be putted in a vectorial

MA form as

Ψt = ρtOtΨ0 +
t∑

s=1

ρt−sOt−sΞs,

where Ψt = [ψt, ψ
∗
t ]
′, Ξt = [κt, κ

∗
t ], and O is the orthogonal matrix(

cosλ sinλ

− sinλ cosλ

)
,

and Ot becomes (
cosλt sinλt

− sinλt cosλt

)
.
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The real part of the process can be interpreted as a harmonic process with a number of

term depending on the same period length t:

ψt =ρt[cos(λt)ψ0 + sin(λt)ψ∗0]+

+
t∑

s=1

[
ρt−sκt−s cos

((t− s)λ
t

t
)

+ ρt−sκ∗t−s sin
((t− s)λ

t
t
)]
.

Harvey and Streibel (1998) give a different definition of stochastic cycle, distinguishing

indeterministic cycle a cycle modeled as a MA(∞) process with a peak in its spectrum

such as Beveridge and Nelson decomposition and deterministic cycle a cycle modeled as

a harmonic process, whose spectral distribution function exhibits a sudden jump.

A modification of the stochastic cycle proposed by Harvey is (Harvey and Trimbur,

2003) [
ψ1,t

ψ∗1,t

]
= ρ

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
ψ1,t−1

ψ∗1,t−1

]
+

[
κt

0

]
, t = 1, . . . , T.

that yields ψ1,t = c(L)κt, for

c(L) =
1− ρ cos(ω)L

1− 2 cos(ω)L+ ρ2L2
.

Further, the i-th order stochastic cycle is defined as

(2.8)

[
ψi,t

ψ∗i,t

]
= ρ

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
ψi,t−1

ψ∗i,t−1

]
+

[
ψi−1,t

0

]
, t = 1, . . . , T.

To model (2.8) it corresponds the Wiener-Kolmogorov filter

GBbp
n (L) =

qκc(L)nc(L−1)

qκc(L)nc(L−1) + 1
,

qκ = σ2
κ/σ

2
ε . For ρ = 1, it is obtained the band-pass Butterworth filter, corresponding to

the gain function

Bbp
n (λ, λc) =

[
1 +

1

q

( 4(cosλ− cosλc)
2

1 + cos2 λc − 2 cosλc cosλ

)n]−1
.

For ρ = 1 the spectrum is undefined at λc while the gain is still defined.
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2.1.8 Seasonality

The seasonal adjustment of time series is the removal of a special cyclical component

that is ascribable to climatic and institutional events repeated more or less regularly

every year, and that is “nearly” predictable. Seasonal component seems to be “easily”

recognized, and a common approach is to remove this component from rough or pre-

treated data before searching for trend and cycle components.

The simplest model for the seasonal component (Dagum...) is a regression with

dummy variable:

Yt = St + εt, t = 1, . . . , T,

St =

s∑
j=1

γjdjt subject to

s∑
j=1

γj = 0.

d is 4 for quarterly data, 12 for monthly data, {εt} ∼ WN(0, σ2
ε). St = St−s. This

model is deterministic. A stochastic alternative is St = St−s + ωt for all t > s where

{ω} ∼ WN(0, σ2
ω) and E(ωtεt) = 0 and

∑s−1
j=0 St−j = ωt, E(ωt) = 0. The stochastic

model can be written as (1−Bs)St = ωt, and since 1−Bs = (1−B)(1 +B+ · · ·+Bs−1)

the factor 1−B gives rise to a stochastic trend, while the factor S(B) = 1+B+ · · ·+Bs−1

can be properly attributed to the seasonal component. Thus a model for seasonality is

S(B)St = ωt, or S(B)St = ηs(B)bt, with the right side being a moving average.

A model often used is estimating seasonality is X11ARIMA developed by Dagum

(1978).

Hannan,Terrell and Tuckwell (1970) used spectral analysis to model the seasonal

component of an economic time series, developing a technique for dealing with a changing

seasonal pattern.

The authors compare a trigonometric model for the cycle

sn =
∑
j

{αj cosnλj + βj sinnλj}, λj =
2πj

12
.

with a harmonic model

s(n) =
∑
j

{αj(n) cosnλj + βj(n) sinnλj}, λj =
2πj

12
.

αj , βi can be AR(1) processes or more generally an ARMA process.
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2.2 Comments and Generalization of the presented models

2.2.1 Weighting frequencies with the density function in finite approx-

imation: finite and infinite version

It is unrealistic to dispose of infinite observations, so it makes sense to build a finite

version of approximate band pass filter:

y∗t = B0xt +B1xt+1 + · · ·+BT−1−txT−1 + B̃T−txT +B1xt−1 + · · ·+Bt−2x2 + B̃t−1x1,

where the Bk are defined as in the ideal band pass filter (2.4), and the B̃T−t, B̃t−1 linear

functions of the Bj ’s. If only a finite set of observations [x1, . . . , xT ] are available, the

solution of the projection problem ŷt =
∑t−1

j=−T+t B̃
p,f
j xt−j minimizing the mean squared

error in general is not a symmetric filter.

The approximate band-pass filter proposed by Baxter and King does not take into

account the properties of the random process generating the observed data xt. A natural

way of exploiting them is to weight the frequencies with the spectral density, if the

process admits it. If Xt follows an ARMA(p, q) process, that is φ(B)Xt = θ(B)ut, for

φ(z) = 1− φ1z − · · · − φpzp, θ(z) = 1 + θ1z + · · ·+ θqz
q and ut ∼WN(0, σ2), φ(z) and

θ(z) having roots outside the complex unit circle and not sharing roots, then the spectral

density of Xt is

fX(ω) =
σ2

2π

|θ(e−iω)|2

|φ(e−iω)|2
, −π ≤ ω ≤ π.

The minimization problem can be solved in the frequency domain. In fact, exploiting the

isomorphism between L2(F ) (F spectral distribution function) and the probability space

L2(Ω) given by I(eit) = Xt,

E[(yt − y∗t )2] = ||yt − y∗t ||L(Ω) = ||I(yt)− I(y∗t )||L([−π,π])

= ||Y (e−iω)− Y ∗(e−iω)||L([−π,π]) = ||B(e−iω)− B̂(e−iω)||||X(e−iω)||

= ||B(e−iω)− B̂(e−iω)||fX(ω).

that is

(2.9)
σ2

2π

∫ π

−π
|B(e−iω)−B∗(e−iω)|2 |θ(e

−iω)|2

|φ(e−iω)|2
dω.

The virtue of quadratic form (2.9) is that frequencies having higher gain receive a higher

weight. This criterium coincides with the one applied by Baxter and King in the trivial
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case of Xt ∼WN(0, σ2), for which fX(ω) = σ2

2π .

We impose B∗j = 0 for |j| > K since the property of minimality of the linear

projection in L2([−π, π]) allows to state that the best finite approximation of the Fourier

series of B(e−iω)θ(e−iω)/φ(e−iω) is given by the first K terms of its expansion, whose

coefficients are obtained as a convolution product of the Fourier series of B(eiω) with the

Fourier series of θ(e−iω)/φ(e−iω). Putting θ(z)/φ(z) = ψ(z) =
∑+∞

k=−∞ ψkz
k, we have

(B ∗ ψ)n =
∑+∞

k=−∞Bkψn−k.

Thus the best approximation in L2 of χI(e
−iω)θ(e−iω)/φ(e−iω) under the constraint

Gj = 0 for |j| > K (that is minimizing the variance of yt − ŷt) is

B∗(e−iω)
θ(e−iω)

φ(−iω)
=

K∑
m=−K

(B ∗ ψ)me
−imω).

The weights calculated with this formula apply to ut:

ŷt =
K∑

m=−K
(B ∗ ψ)mut−m.

and since ut = φ(L)/θ(L)Xt, and we posses a sample of Xt and not of ut, we get:

ŷt =
K∑

m=−K
(B ∗ ψ)m

φ(L)

θ(L)
x̂t−m =

K∑
m=−K

(B ∗ ψ)mψ
−1(L)x̂t−m.

This expression contains only a finite number of xt if xt is an MA(q) process. This

filtered series is what we obtain when first Fourier-transforming the initial series, then

cut out frequencies not needed and data distant in time, and then calculate the inverse

Fourier transform when the spectral density of Xt is involved.

The non-constrained solution of the minimization problem is

ŷt =

∞∑
m=−∞

(B ∗ ψ)mψ
−1(L)x̂t−m = ((B ∗ ψ) ∗ ψ−1)(L)x̂t.

From algebra of convolution products we have (B ∗ ψ) ∗ ψ−1 = B ∗ (ψ ∗ ψ−1) = B,

and then ŷt = B(L)xt, that is that is the band pass filter discussed by Baxter and King,

not involving the spectral density.
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2.2.2 Smoothing of an ARIMA(p, d, q) process in the frequency domain

For a general ARIMA(p, d, q), defined ˜B(ω) = χI(ω)/(1− eiω)d, b(ω) = B̂(ω)/(1−
eiω)d, given the spectral density of the ARMA(p, q) part g(ω) = σ2

2πψ(eiω)ψ(e−iω), the

coefficients B̂j , −k ≤ j ≤ k are found by minimizing in the frequency domain the

functional ∫ π

−π
|B̃(ω)− b(ω)|2g(ω)dω,

which yields ∫ π

−π
(B̃(ω)− b(ω))e−ilg(ω)dω = 0, −k ≤ l ≤ k.

In the following paragraphs the solution to this problem will be solved in different

cases.

2.2.3 Some calculation for an approximate band-pass filter - MA pro-

cesses

In the following paragraph it will be calculated explicitly a finite version of the ideal

band pass filter with density function as weighting density. Assume that Xt follows a

MA(1), process, so that its spectral density is fX(ω) = θ0+θ1(e−iω+eiω) = θ0+2θ1 cos(ω)
1. We want to determine the best approximate band-pass filter of order p = 2, f = 2:

ŷt = B̂−2xt−2 + B̂−1xt−1 + B̂0xt + B̂t+1xt+1 + B̂t+2xt+2.

The coefficient B̂−2, . . . , B̂2 are obtained by minimizing the functional:

F (B̂−2, . . . , B̂2) =

∫ π

−π
|χI(ω)−

2∑
j=−2

B̂je
ijω|2[θ0 + θ1(eiω + e−iω)]dω,

where I = (−b,−a) ∪ (a, b), 0 < a < b < π.

The conditions
∂F

∂B̂k
= 0, k = −2, . . . , 2,

1Here the notation is slightly different from other books. The spectral density of a MA(1) process is
usually written as

fX(ω) =
σ2

2π
|1 + θe−iω|2 =

σ2

2π
(1 + 2θ cos(ω) + θ2).

It is θ0 = σ2

2π
(1 + θ2), θ1 = σ2

2π
θ.
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yield ∫ π

−π
χI(ω)eikω[θ0 + θ1(eiω + e−iω)]dω =∫ π

−π

2∑
j=−2

B̂je
ijωeikω[θ0 + θ1(eiω + e−iω)]dω, k = −2, . . . , 2;

∫ b

a
[eikω + e−ikω][θ0 + θ1(eiω + e−iω)]dω =

2∑
j=−2

B̂j

∫ π

−π
ei(j+k)ω[θ0 + θ1(eiω + e−iω)], k = −2, . . . , 2;

2

∫ b

a
{θ0 cos(kω) + θ1 cos((k + 1)ω) + θ1 cos((k − 1)ω)}dω =

2∑
j=−2

B̂j

∫ π

−π
[θ0e

i(j+k)ω + θ1e
i(k+j+1)ω + θ1e

i(k+j−1)ω]dω, k = −2, . . . , 2;

2
θ0

k

[
sin(kb)− sin(ka)

]
+ 2

θ1

k + 1

[
sin((k + 1)b)− sin((k + 1)a)

]
+ 2

θ1

k − 1

[
sin((k − 1)b)− sin((k − 1)a)

]
=

2∑
j=−2

B̂j

[ θ0

i(j + k)
ei(j+k)ω +

θ1

i(j + k + 1)
e(j+k+1)ω +

θ1

i(j + k − 1)
ei(j+k−1)ω

]ω=π

ω=−π
,

k = −2, . . . , 2;

In the last equation one must replace, for l = 0,

sin(lb)− sin(la)

l
with b− a,

and, in the same manner,
eilπ − e−ilπ

il
with 2π.

For l 6= 0, eilπ−e−ilπ
il = 0.

Since k+j = 0 if and only if j = −k, k+j+1 if and only if j = −(k+1), k+j−1 = 0
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if and only if j = −(k − 1), the second term of the last equality is reduced to

2π{θ0B̂−k + θ1B̂−(k+1) + θ1B̂−(k−1)}.

Thus, the B̂j are the solution of the system of equations:

θ0B̂−k + θ1B̂−(k+1) + θ1B̂−(k−1) =

θ0
sin(kb)− sin(ka)

πk
+ θ1

sin((k + 1)b)− sin((k + 1)a)

π(k + 1)

+ θ1
sin((k − 1)b)− sin((k − 1)a)

π(k − 1)
, k = −2, . . . , 2.

where B̂l = 0 for l 6∈ {−2, . . . , 2}.

Defining the tridiagonal matrix

Θ1 =


θ0 θ1 0 0 0

θ1 θ0 θ1 0 0

0 θ1 θ0 θ1 0

0 0 θ1 θ0 θ1

0 0 0 θ1 θ0


the vector θ as [0, θ1, θ0, θ1, 0]′ the vector B̂ = [B̂−2, . . . , B̂2]′ and B as the sequence{

sin(kb)−sin(ka)
πk

}
k∈Z

(that is the Fourier transform of the exact band-pass filter), the

translated of B LlB as
{

sin((k−l)b)−sin(k−l)a)
π(k−l)

}
k∈Z

, θ∗B as the vector of the convolutions

θ∗LlB, l = −2, . . . , 2 this system of equation is written in matrix notation as:

Θ1B̂ = θ∗B.

Finally, since det(Θ1) 6= 0 (Θ1 is a diagonally dominant matrix) the solution is B̂ =

Θ−1
1 θ∗B.

The right side is also written as Θ∗1B|3, where

Θ∗1 =


θ1 θ0 θ1 0 0 0 0

0 θ1 θ0 θ1 0 0 0

0 0 θ1 θ0 θ1 0 0

0 0 0 θ1 θ0 θ1 0

0 0 0 0 θ1 θ0 θ1
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and B|3 = { sin(−3b)−sin(−3a)
−3π , . . . , sin(3b)−sin(3a)

3π }.

Theorem 4. For a general MA(q) process, the 2k+1 unknown B̂k are determined by B̂ =

Θ−1
1 Θ∗1B|k+q, whereΘ1 is a Toeplitz band matrix of dimension (2k + 1)× (2k + 1) having

{Θ1}i,j = θ|i−j| if |i− j| ≤ q, {Θ1}i,j = 0 otherwise, and Θ∗1 is a (2k + 1)× (2k + 2q + 1)

band matrix having {Θ∗1}i,j = θ|j−i−q|.

These weights are symmetric. They do not sum to zero.

Figure 2.5: Smoothed MA(1) process

Figure 2.6: Smoothed MA(2) process
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2.2.4 A Christiano - Fitzgerald filter for I(d) processes

The approach of Christiano and Fitzgerald can be generalized in order to filter time

series which present more than one unit root. Infact if Xt follows an ARMA(p, d, q)

process, it is enough to set in the minimization criterion

fx(ω) =
σ2

2π

θ(eiω)θ(e−iω)

φ(eiω)φ(e−iω)

1

(1− e−iω)d(1− eiω)d
.

Also in this case, if a solution exists, it must be B̂f,p(z)
(1−z)d 6= ∞ for z = 1, in order to

make the integral in (2.7) to converge, and this implies

b(z) =
B̂f,p(z)

(1− z)d
= bp−dz

p−d + bp−d−1z
p−d−1 + · · ·+ b0 + · · ·+ b−f+1z

−f+1z−f .

If B̂p,f is the vector of the coefficients of the Laurent polynomial ˆBp,f (z) and b is the

vector of the coefficients of the Laurent polynomial b(z), the link between B̂p,f and b is

expressed by: QdB̂p,f = b, where Q is a (p+ f + 1− d)× (p+ f + 1) matrix, Qd = [Qd1,0],

where (−1)dQd1 is a (p+ f + 1− d)× (p+ f + 1− d) low-triangular matrix whose first

column of Qd1 is the d-st diagonal of the Pascal triangle, and the n-st column is obtained

by shifting the n− 1-st column, and 0 is a zero (p+ f + 1− d)× d matrix.

(−1)dQd1 =



(
d−1
d−1

)
0 0 · · · 0(

d
d−1

) (
d−1
d−1

)
0 · · · 0(

d+1
d−1

) (
d
d−1

) (
d−1
d−1

)
· · · 0

... . . . 0(
2d−2
d−1

) (
2d−3
d−1

) (
2d−4
d−1

)
· · ·

(
d−1
d−1

)


.

For example, if d = 5, p+ f + d− 1=6, then

−Q5
1 =



1 0 0 0 0 0

5 1 0 0 0 0

15 5 1 0 0 0

35 15 5 1 0 0

70 35 15 5 1 0

126 70 35 15 5 1


.
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Calculation proposed in the paper are easily generalized: d′ = AB̂f,p,∫ π

−π
B̃(e−iω)g(ω)eiωjdω = 2πFjQdB̂

p,f ,

where

B̃f,p(e−iω) = B(e−iω)/(1− e−iω)d = χI(ω)/(1− e−iω)d;

FJ is the row vector

Fj = [0, 0, ..., c, 0, . . . , 0],

where the first p − q − d − j and the last j − q + f positions are zero, for a MA(q)

stationary component, and

c = [cq, cq−1, . . . , c0, . . . , cq−1, cq]

is the vector of the autocovariances;

Under the hypothesis that B̂(z) do not possesses a zero for z = 1 up to d− 1 order,

then for h = 0, . . . , d− 1, the identity B̂p,f
h (z) = B̂p,f (z)/(1− z)h defines a polynomial

for which B̂p,f
h (1) = 0. These identities give rise to the last d equations of the system

that allows to determine the B̂p,f
j :

d′ =



∫ π
−π B̃(e−iω)g(ω)eiω(p−1)dω

...∫ π
−π B̃(e−iω)g(ω)eiω(−f+1)dω∫ π
−π B̃(e−iω)g(ω)eiω(−f)dω

0
...

0


, A =



Fp−1Qd
...

F−f+1Qd

F−fQd

1,
(
n−1

2

)
, . . . ,

(
n−1
d

)
. . .

1, 3, . . . ,
(
n−d+1

2

)
1, 2, . . . , n− d

1, 1, . . . 1



.

It may be useful to derive an Integrated Random Walk filter, which correspond to

d = 2, and can be compared to the Hodrick-Prescott filter. In this case the matrix Q2
1,
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for p+ f − 1 = 6 is

Q2
1 =



1 0 0 0 0 0

2 1 0 0 0 0

3 2 1 0 0 0

4 3 2 1 0 0

5 4 3 2 1 0

6 5 3 3 2 1


.

Also the recursive calculation suggested for the elements of the vector d′ still holds:

R(j) =

∫ π

−π
B̃(e−ω)g(ω)eiωjdω,

we have

R(0) =

∫ b

a

2
∑d

k=0

(
d
k

)
(−1)k cos(ωk)

2d
∑d

k=0

(
d
k

)
(−1)k cos(ω)k

g(ω)dω.

R(j)−R(j + 1) =

∫ b

a

[ e−iωj

(1− e−iω)d−1
+

eiωj

(1− eiω)d−1

]
g(ω)dω.

These integrals are evaluated numerically.

Figure 2.7: IMA(2,2) process smoothed by generalized CF filter. The figure shows only
the cyclical component of the MA(2)

In the simulations conducted, the generalized CF filter is applied to the original

simulated series. The figure compares the cyclical MA part of the process to the smoothed

series. Source codes are available on request.
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Chapter 3

A Local Trigonometric Model for

smoothing cycles

In this chapter we will introduce the main parameters which characterize local esti-

mators. There are presented models discussed in literature such as the local polynomial

regression and the polynomial spline. Then it is proposed a local trigonometric smoother,

with its statistical properties, and it is applied to the smoothing of a simulated pseudo-

cyclical process. Some insights is given for the choice of the parameters of interest and

for the testing of hypothesis. Connections between trigonometric filter and ideal band

pass filter are highlighted.

3.1 General properties of local fitting

In chapter 2 we pointed out that in an economic context it is impossible to dispose

of an as long series observations as infinite filters would require. Moreover, often they

are needed quick estimation for a parameter. Further, a reasonable conjecture is that

observation closer to a specific point yt would help to predict the same yt better than

distant observations, so a “local” estimator would furnishes more precise estimates.

An estimator is said to be local if it predicts yt only by means of observations taken

in a neighborhood of yt.

Several methods are known in literature to perform local fitting of time series. Among

these we point out kernel estimators, local polynomial fitting, wavelets, splines, orthogonal

series (see Fan and Gijbels, 1996). For a review relative to local polynomial regression

and polynomial splines see Proietti and Luati (2007).

Kernel estimators allow asymptotic bias corrections, whereas local regression provides
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finite sample solutions to the same problems.

3.1.1 Main parameters of a local model

In a local fitting they must be specified

• the bandwidth,

• the degree of the local trigonometric polynomial,

• the weight function,

• the fitting criterion.

The choice of the model depends on

• the variance reducing factor.

• the influence function.

• the degree of freedom.

The local regression estimate is said to be linear if for each t there exists a weight diagram

vector l(t) = {li(t)}ni=1 such that the estimate can be written as µ̂(t) =
∑n

i=1 li(t)yi.

The variance reducing factor ||l(t)||2 measures the reduction in variance due to the local

regression. Under mild condition one can show that (Loader, 1999)

1

n
≤ ||l(x)||2 ≤ li(ti) ≤ 1.

The extreme cases 1/n and 1 correspond, respectively, to µ̂(t) being the sample average

and interpolating the data. The is the n× n matrix which maps the data into the fitted

values: 
µ̂(t1)

...

µ̂n

 = LY.

It has rows (l1(ti), . . . , ln(ti)), i = 1, . . . , n.

The influence or leverage values are the diagonal elements infl(t1) = li(ti) of the

matrix L. These measure the sensitivity of the fitted curve µ̂(ti) to the individual data

points.
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The degrees of freedom of a local fit provide a generalization of the number of

parameters of a parametric model. They can be defined as

ν1 =

n∑
i=1

infl(ti) = tr(L);

or as

ν2 =
n∑
i=1

||li(ti)||2 = tr(LTL).

The two definitions of degrees of freedom coincide if L is a symmetric and idempotent

matrix, but in general 1 ≤ ν2 ≤ ν1 ≤ n.

Choosing the length of a graduation rule, or bandwidth, involves a compromise

between systematic error (bias) and random error (variance)

In a discrete setting a filter is given by any one of the rows of the matrix W = L

(Proietti and Luati, 2007). Thus it is possible to investigate the effect of the filter induced

on a particular sequence yi = cos(ωt), where ω is the frequency in radians. Applying

standard trigonometric identities, the filtered series is∑
j

wjyt−j =
∑
j

wj cos(ω(t− j))

=
∑
j

wj cos(ωt) cos(ωj) +
∑
j

wj sin(ωt) sin(ωj)

= α(ω) cos(ωt) + α∗(ω) sin(ωt)

= G(ω) cos(ωt− θ(ω))

where α(ω) =
∑

j wj cos(ωj), α∗(ω) =
∑

j wj sin(ωj).

The function

G(ω) =
√
α2(ω) + α∗2(ω)

is the gain of the filter and measures how the amplitude of the periodic components that

make up a signal are modified by the filter. If the gain is 1 at a particular frequency, this

implies that the periodic component defined at that frequency is preserved; if the gain is

less than 1 for some frequency, that frequency is compressed.

The function

θ(ω) = arctan

[
α∗(ω)

α(ω)

]
is the phase function and measures the displacement of the periodic function along the

time axis. For symmetric filters the phase function is zero, since
∑

j wj sin(ωj) = 0.
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If the trigonometric trend presents more frequencies in general each frequency has

different gain and phase shift, in fact

yt =

n∑
i=1

{ai cos(ωit) + bi sin(ωit)} =

n∑
i=1

ri cos(ωit− θi),

with ri =
√
a2
i + b2i and θi = arctan (bi/ai) when smoothed gives rise to

∑
j

wjyt−j =
∑
i

ri

{[∑
j

−wj sin(ωij)
]

cos(ωit− θi) +
[∑

j

wj cos(ωij)
]

sin(ωit− θi)
}
,

so that the frequency ωi receives a gain and a phase shift given respectively by

G(ωi) =
√
α(ωi)2 + α∗(ωi)2, θ(ωi) = arctan

α∗(ωi)

α(ωi)
.

3.1.2 Estimation of the goodness of fit

In the following section there will be presented some useful statistics to test the

goodness of fit of a local model.

V ar(m̂t) = E[m̂t − E(m̂t)]
2 = E

[∑
j

wj(yt−j − µt−j)
]2

=

σ2
∑
j

W 2
j = σ2e′1(X ′KX)−1X ′K2X(X ′KX)−1e1.

The term
∑

jW
2
j = σ2 is addressed as variance inflation factor, and it represents

the proportionate increase in the variance of a filtered white noise sequence after the

smoothing.

If m̂t\t is the two-sided estimate of the signal at time t that doesn’t use yt then

m̂t\t = e′1(X ′KX − κ0e1e
′
1)−1(X ′Ky − κ0yte1) =

1

1− w0
m̂t −

w0

1− w0
yt,

and the leave-one-out residual leave-one-out residual is

yt − m̂t\t =
1

1− w0
(yt − m̂t).
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The cross-validation score is the sum of the squared deletion residuals:

CV =
n∑
t=1

(yt − m̂t\t)
2 =

∑
t

(yt − m̂t)
2

(1− w0t)2
,

where one writes w0t since the filter weights are different at the extremes of the sample.

The estimation of σ2 can be done by using the residuals from the local polynomial

fit: yt − m̂t = yt −
∑

j wjtyt−j . Under the hypothesis of a polynomial trend of degree p

and thanks to the polynomial preservation property of the filter, the expectation of the

residual sum of squares (RSS) is:

E(RSS) = E
[ n∑
t=1

(
yt −

∑
j

wjtyt−j

)2]
= σ2

[
n− 2

n∑
t=1

w0t +
n∑
t=1

(∑
j

w2
jt

)]
.

This suggests using the following estimator for the error variance:

σ̂2 =
RSS

n− 2
∑n

t=1w0t +
∑n

t=1

(∑
j w

2
jt

) .
An approximate 95% confidence interval for µt is

m̂t ± 2
(
σ̂2
∑
j

w2
jt

) 1
2
.

3.2 Some examples of local model

Very popular kernel smoothers are the Henderson smoother, the Macaulay smoother,

the Epanechnikov smoother.

3.2.1 Local polynomial regression

In general it is assumed an additive model as

yt = µt + εt, t = 1, . . . , n,

where µt is the trend component, also termed the signal, and εt is the noise, or irregular

component. µt can be either stochastic or deterministic. In the case of a deterministic

trend it is often assumed to be p times differentiable in t. If 2h+1 equispaced observations

yt+j , |j| ≤ h are available in a neighbor of t, then µt+j is approximated by its truncated
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Taylor polynomial of order p:

mt+j = β0 + β1j + · · ·+ βpj
p, j = 0,±1, . . . ,±h.

The problem of finding the vector of coefficients β is known as local polynomial regression.

p is the degree of the approximation and h is the bandwidth. The local polynomial model

is

yt+h =

p∑
k=0

βkj
k + εt+j , j = 0,±1, . . . ,±h,

in matrix notation y = Xβ + ε, ε ∼ N(0, σ2I). The vector β is chosen as the vector

minimizing a weighted squares summation:

S(β̂0, . . . , β̂p) =
h∑

j=−h
κj(yt+j − β̂0 − β̂1j − · · · − β̂pjp)2

for a suitable choice of kernel function κj , j = 0,±1, . . . ,±h such that κj ≥ 0 and

κj = κ−j . Such a kernel function is time-invariant. In matrix notation the solution is

β̂ = (X ′KX)−1X ′Ky. In particular, if e1 = [1, 0, . . . , 0] ∈ Rp+1, m̂t = β̂0 is given by

m̂t = e′1β̂ = e′1(X ′KX)−1X ′Ky = w′y =
h∑

j=−h
wjyt−j .

The vector w = e′1(X ′KX)−1X ′K is a filter. It is symmetric since κ is symmetric. The

condition X ′w = e1 is equivalent to

h∑
j=−h

wj = 1,
h∑

j=−h
jlwj = 0, l = 1, . . . , p.

These conditions imply that the filter w preserves a polynomial of degree p, that is it

reproduces it exactly, and in this case m̂t = β0 = yt. The central element of the vector

w, w0, represents the leverage, as defined above, that is the contribution of yt on the

estimate of the signal at time t.

Luati and Proietti (2010) establishes the conditions under which the generalized

least squares of the regression parameters is equivalent to the weighted least squares

estimator. The equivalence conditions allows to derive the optimal kernel associated with

a particular covariance structure of the measurement error.
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3.2.2 Polynomial splines

An alternative way of overcoming the limitations of a global polynomial model is

represented by a polynomial spline. Given the set of points t1 < · · · < ti < · · · < tk, a

polynomial spline function of degree p with k knots t1, . . . , tk is a polynomial of degree p

in each interval [ti, ti+1[, with p−2 continuous derivatives whereas the (p−1)st derivative

can have jumps at the knots. It can be represented as:

µ(t) = β0 + β(t− t1) + · · ·+ βp(t− t1)p +
k∑
i=1

ηi(t− ti)p+,

where

(t− ti)p+ =

{
(t− ti)p, t ≥ ti,
0, t < ti.

It has been pointed out that the piecewise nature of the spline “reflects the occurrence of

structural changes”. The knots ti are the timing of a structural break. The coefficients

ηi regulate the size of the break, and can be considered fixed or random; in the second

case the function (t− t1)p+ describes the impulse response function, that is the impact of

the future values of the trend.

For ηi random, the spline model can be formulated as a linear mixed model. Denoting

y = [y(t1), . . . , y(tn)]′, η = [η1, . . . , ηn]′, ε = [ε(t1), . . . , ε(tn)]′, µ = Xβ + Zη, the spline

model is

y = µ+ ε = Xβ + Zη + ε,

where the t-th row of X is [1, (t− 1), . . . , (t− 1)p], and Z is a known matrix whose i-th

column contains the impulse-response signature of the shock ηi, (t− ti)p+.

The spline model encompasses several type of models, such as the local level model

(p = 0), the local linear trend model (p = 1), that is an integrated random walk, and

the cubic spline. The cubic splines displays too much flexibility for economic time series,

that is paid for with excess variability, especially at the beginning and and at the end of

the sample period. Out of the sample forecast tend to be not very reliable, as they are

subject to high revision as new observations become available. This flexibility is usually

limited by imposing the so called boundary conditions, which constrain the spline to be

linear outside the boundary knots, i.e., the second and third derivative are zero for t ≤ 1

and t ≥ n.

A smoothing spline is a natural cubic spline which solves the following penalized least
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square indexpenalized least square(PLS) problem

(3.1) min
{

(y − µ)′(y − µ) + τ

∫
[µ′′(t)]2dt

}
.

Minimizing the PLS objective function is equivalent to maximizing the posterior density

f(µ|y) assuming the prior density γ ∼ N(0, σ2
γR
−1), R being a suitable diagonally

dominant tridiagonal matrix for the smoothing spline, τ = σ2
ε /σ

2
γ .

3.3 Local Trigonometric Regression

In chapter 2 we examined and extended the finite sample approximation of the exact

band-bass filter by working in the domain of frequency. In particular, we saw that

the optimal approximating smoother can be expressed as a finite sum of trigonometric

function. In this section we focus on time domain, and we shall build a local trigonometric

filter.

Trigonometric regression has been studied by Walker (1971), Hannan (1973), Quinn

(1979), Wang (1993) among others.

The minimization of the sum of squares of a local trigonometric regression in time

domain is

(3.2) F (c) =

T/2∑
t=−T/2

κj,t

∣∣∣yt+j − λ∑
k=0

cke
ixtk
∣∣∣2 = minck ,

where ck are assumed to be real. In the remaining part of the paragraph it is written κt

instead of κj,t for simplicity.

∂F
∂ck

= 0 yields

T/2∑
t=−T/2

κtyt+j cos(xtk) =

T/2∑
t=−T/2

λ∑
l=0

κtcl cos(xt(k − l)), k = 0; . . . , λ.

The simplest case is the uniform kernel: κt = 1, ∀t. In this case we have:

T/2∑
t=−T/2

erit =
sin(r (T+1)

2 )

sin( r2)
, r 6= kπ,
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T/2∑
t=−T/2

erit = T + 1, r = 2kπ,

T/2∑
t=−T/2

erit = −T − 1, r = (2k + 1)π,

and thus

T/2∑
t=−T/2

yt+j cos(xtk) =

λ∑
l=0

cl
sin(x(T+1

2 )(k − l))
sin(x (k−l)

2 )
, k = 0; . . . , λ.

For instance, if k = 3, this system of equation is explicitly written as:

a(T + 1) + b
sin x(T+1)

2

sin(x2 )
+ c

sinx(T + 1)

sin(x)
+ d

sin 3x(T+1)
2

sin(3x
2 )

=

T/2∑
t=−T/2

yj+t

a
sin x(T+1)

2

sin(x2 )
+ b(T + 1) + c

sin x(T+1)
2

sin(x2 )
+ d

sinx(T + 1)

sin(x)
=

T/2∑
t=−T/2

cos(xt)yj+t

a
sinx(T + 1)

sin(x)
+ b

sin x(T+1)
2

sin(x2 )
+ c(T + 1) + d

sin x(T+1)
2

sin(x2 )
=

T/2∑
t=−T/2

cos(2xt)yj+t

a
sin 3x(T+1)

2

sin(3x
2 )

+ b
sinx(T + 1)

sin(x)
+ c

sin x(T+1)
2

sin(x2 )
+ d(T + 1) =

T/2∑
t=−T/2

cos(3xt)yj+t

If the instant t belongs to the boundaries of the interval, the summations are modified

as
T/2∑

t=−T/2+m

Re(erit) = cos
(rm

2

)sin(r (T−m+1)
2 )

sin( r2)
, r 6= kπ,

T/2∑
t=−T/2+m

erit = T −m+ 1, r = 2kπ,

T/2∑
t=−T/2+m

erit = −T +m− 1, r = (2k + 1)π;

and
T/2−m∑
t=−T/2

Re(erit) = cos
(−rm

2

)sin(r (T−m+1)
2 )

sin( r2)
, r 6= kπ,
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T/2−m∑
t=−T/2

erit = T −m+ 1, r = 2kπ,

T/2−m∑
t=−T/2

erit = −T +m− 1, r = (2k + 1)π.

Here x is a wrapping parameter, that must be non zero to guarantee the uniqueness of the

solution. The problem of choosing x, k, T here is faced chiefly by means of simulations,

and the simultaneous estimation of these parameters is still an open problem.

The smoother is local if it is used only for the prediction of yj (t = 0). Thus

ŷj =
∑λ

k=0 ĉk. The obtained filter satisfies the trigonometric reproducing property up to

the order of the system: if the real process yt is a trigonometric polynomial, the system

of equations is trivially satisfied.

More generally, the minimization of the functional S(t) =
∑T/2

j=−T/2 κj |yt+j−
∑λ

k=0 cke
ix(t+j)k|2

with respect to c0, . . . , cλ, maintaining the κj fixed, can be putted in matrix form as follow.

Let t = 0. Define γ = [c0, c1, . . . , cλ]′, y = [y−T/2+t, y−T/2+1+t, . . . , yT/2−1+t, yT/2+t]
′,

J =



1 e−ixT/2 e−2ixT/2 · · · e−xλT/2

1 e−ix(T−1)/2 e−2ix(T−1)/2 · · · e−xλ(T−1)/2

...
...

...
. . .

...

1 eix(T−1)/2 e2ix(T−1)/2 · · · exλ(T−1)/2

1 eixT/2 e2ixT/2 · · · exλT/2

,


Λ = diag{κ−T/2, κ−T/2+1, . . . , κT/2−1, κT/2}.

Then γ is the solution of J̄ ′ΛJγ = J̄ ′Λy, where J̄ is the complex conjugate of J , which

implies y = (J̄ ′ΛJ)−1J̄ ′Λy. Hence ŷt =
∑λ

k=0 ck =
∑λ

k=0 ek(J̄
′ΛJ)−1J̄ ′Λy ≡ ψ′y, for

ek = [0, . . . , 0, 1, 0, . . . , 0]′, (1 in the k-th position) and the filter ψ transmits without

alteration the trigonometric trend of order λ.

The recourse to the use of complex number can be avoided by postulating a trend of the

form yj+t =
∑λ

k=−λ cke
ixtk, with c−k = c̄k. Thus the same trend assume the usual form∑λ

k=0(ak cos(xkt) + bk sin(xtk)), with ak = ck + c−k = 2<(ck), bk = ck− c−k = −2i=(ck).

Under this assumption, the system of equation becomes

λ∑
k=−λ

ck

T/2∑
t=−T/2

κte
ix(k−l)t =

T/2∑
t=−T/2

e−ixltyt+j , l = −λ, . . . , λ.

44



Let yt be a local trigonometric trend written in exponential form:

yj+t =

λ∑
k=−λ

cke
itk,

so that yj =
∑λ

k=−λ ck. Let ψt, t = −T/2, . . . , T/2 a discrete system of weights satisfying

(3.3)

T/2∑
t=−T/2

ψte
itk = 1; ∀k,

for each choice of ct. Thus we have: the weights have the trigonometric reproducing

property :

ŷt+j =

T/2∑
s=−T/2

ψsyj+t+s =

T/2∑
s=−T/2

ψs

λ∑
k=−λ

cke
i(t+s)k =

=
λ∑

k=−λ
cke

itk

T/2∑
s=−T/2

ψse
iks =

λ∑
k=−λ

cke
itk.

Taking T = 2k the system (3.3) can be putted in matrix form: Aψ = 1, where alm =

eixtk = eix(l−1−T/2)(m−1−λ).

if yt = µt+εt, with εt ∼ IID(0, σ2), then the variance of the estimator is σ2
∑T/2

t=−T/2 |ψt|
2.

Under the same hypothesis the local trigonometric estimator is unbiased. In fact if

yj = ηj + εj , the signal ηj is a deterministic trigonometric trend, ηj =
∑λ

k=0 cke
ijk, and

εt is a white noise process, then

E[ŷj ] = E[

T/2∑
t=−T/2

wtyj+t] =

T/2∑
t=−T/2

wtE[ηj+t] +

T/2∑
t=−T/2

wtE[εj+t]

T/2∑
t=−T/2

wtE[

λ∑
k=0

cke
i(t+j)k] =

λ∑
k=0

cke
ijk

T/2∑
t=−T/2

wte
itk = ηj .

The figures show the smoothing of a AR(2) process (L2 − 0.6L+ 0.08)yt = εt where

εt ∼ WN(0, σ2), σ2 = 0.01. It has been build the smoother for different choices of

bandwidth and maximum frequency. The parameter x has been taken as small as

possible. The presence of higher frequencies could lead to oversmoothing. The gain of

the filter is about 1 in a neighborhood of zero frequency. Aliasing is also evident.
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Figure 3.1: Smoothed AR(2) process, λ = 1, W=N/5

Figure 3.2: Smoothed AR(2) process, λ = 1, W=N/5

Table 3.1: CV for different λ and windows

1 2 3 4

N/12 2.0143 1.8414 1.5757 1.7874
N/10 2.0891 1.9727 1.7182 1.7871
N/6 2.0173 2.0637 1.9164 2.1725
N/5 2.0292 2.0852 1.9433 2.1962
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Figure 3.3: Smoothed AR(2) process, λ = 1, W=N/10

Figure 3.4: Smoothed AR(2) process, λ = 1, W=N/12

Table 3.2: VIF, t inner point for different λ and windows

1 2 3 4

N/12 1.013 1.4535 1.5144 2.1628
N/10 1.0126 1.457 1.4881 2.1657
N/6 1.0119 1.4504 1.4806 2.1617
N/5 1.0117 1.453 1.4729 2.1447
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Figure 3.5: Smoothed AR(2) process, λ = 2, W=N/10

Figure 3.6: Smoothed AR(2) process, λ = 2, W=N/12

Table 3.3: RSS for different λ and windows

1 2 3 4

N/12 1.1097 1.0762 0.6395 0.6206
N/10 1.2981 1.2547 0.7783 0.754
N/6 1.6112 1.5914 1.353 1.3374
N/5 1.6976 1.6652 1.487 1.4721
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Figure 3.7: Smoothed AR(2) process, λ = 3, W=N/5

Figure 3.8: Smoothed AR(2) process, λ = 3, W=N/6

Table 3.4: σ̂2 for different λ and windows

1 2 3 4

N/12 0.0101 0.0113 0.0059 0.0072
N/10 0.0116 0.0127 0.0071 0.0082
N/6 0.0140 0.0148 0.0119 0.0129
N/5 0.0147 0.0152 0.0130 0.0139

49



Figure 3.9: Smoothed AR(2) process, λ = 3, W=N/10

Figure 3.10: Smoothed AR(2) process, λ = 3, W=N/12
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Figure 3.11: Gain of Smoothed AR(2) process, λ = 3, W=N/5

Figure 3.12: Gain of Smoothed AR(2) process, λ = 3, W=N/6
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Figure 3.13: Gain of Smoothed AR(2) process, λ = 3, W=N/10

Figure 3.14: Gain of Smoothed AR(2) process, λ = 3, W=N/12
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3.3.1 The choice of the sampling frequency

One problem faced in the previous section (3.3) was the choice of the parameter

x which decides the frequency of sampling. Pollock (2012) sheds some light on this

point. In fact, if the process under exam shows a precise range of frequencies, i.e. it is

band limited, an optimal choice of the parameter x is possible. x can be thought as the

maximum sampling frequency of a continuous time underlying process.

Macroeconomic data processes in fact are commonly thought as composed of compo-

nents that fall within limited frequency bands.

The following relation holds for x(t) ∈ L2(R):

x(t) =
1

2π

∫ +∞

−∞
eiωtξ(ω)dω ↔ ξ(ω) =

∫ +∞

−∞
e−iωtx(t)dt.

By sampling x(t) at integer time points, a sequence {xt, t = 0,±1,±2, . . . } is generated,

of which the transform ξS(ω) is a 2π-periodic function.

xt =
1

2π

∫ π

−π
eiωtξS(ω)dω ↔ ξS(ω) =

+∞∑
k=−∞

xke
−iωk.

At the sampling point xt = x(t) yields

1

2π

∫ +∞

−∞
eiωtξ(ω)dω =

1

2π

∫ π

−π
eiωtξS(ω)dω,

which implies

ξS(ω) =
+∞∑

k=−∞
ξ(ω + 2kπ).

The two functions will coincide if ξ(ω) = 0 for |ω| ≥ π, otherwise xS(ω) will be subject

to a process of aliasing, since elements of the continuous function that are at frequencies

in excess of π are confound with elements with frequencies less than π. Thus, the so

called Nyquist frequency of π radians per period represents the limit of what is directly

observable in sampled data.

If the condition is fulfilled ξ(ω) = 0, then it should be possible to reconstitute

the continuous function x(t) from its sampled ordinates. This is the statement of the

Nyquist-Shannon sampling theorem.

Theorem 1. If f is a continuous periodic function of period T , which results square-

integrable function in [0, T ], then it can be reconstructed by means of its sample taken at
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the frequency fc = 2/T .

If x(t) is a periodic function, then

x(t) =
1

2π

∫ π

−π

{
+∞∑

k=−∞
xke
−iωk

}
eiωπ =

1

2π

+∞∑
k=−∞

xk

∫ π

−π
eiω(t−k)dω =

+∞∑
k=−∞

xk
sin(π(t− k))

π(t− k)
.

The sequence of sinc functions φ(t− k) = sin(π(t−k))
π(t−k) , k ∈ Z constitute an orthonormal

basis for the set of all functions band-limited to the frequency interval [−π, π]. In fact,

recall that the sinc function is the Fourier transform of

χ(ω) =


1, ω ∈ (−π, π)

1/2, ω = ±π
0, ω 6∈ [−π, π].

Thus ∫
R
φ(t)φ(τ − t)dt =

∫
R
φ(t)

{ 1

2π

∫
R
χ(ω)eiω(τ−t)dω

}
dt

=
1

2π

∫
R
χ(ω)

{∫
R
φ(t)e−iωtdt

}
eiωτdω

=
1

2π

∫
R
χ(ω)χ(ω)eiωtdω

=
1

2π

∫ π

−π
eiωτdω = δ(t).

A continuous function y(t) that is limited by the frequency value ωc < π can be

similarly expressed as

y(t) =
+∞∑

k=−∞
yk

sin(ωc(t− k))

ωc(t− k)
.

The sequence of functions φc(t− k) = sin(ωc(t−k))
ωc(t−k) , k ∈ Z constitute an orthonormal basis

for the set of all functions band-limited to the frequency interval [−ωc, ωc].
If moreover {ht, t ∈ Z} is the sequence of ordinates sampled from the function φc(t)

at unit intervals of time, then according to the Shannon-Nyquist theorem

φc(t) =

+∞∑
k=−∞

hkφ(t− k).
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As a consequence, the same y(t) can be re-expressed as

y(t) =
+∞∑
j=−∞

yj

{ +∞∑
k=−∞

hkφ(t− j − k)
}
.

If x(t) is defined in [0, T ], then

x(t) =
+∞∑

k=−∞
ξke

iωkt ↔ ξk =
1

T

∫ T

0
x(t)e−iωktdt, ωk =

2πk

T
.

By truncating the series expansion of x(t) it is obtained a trigonometric polynomial

x(t) =

T−1∑
k=0

ξke
iωkt ↔ ξk =

1

T

T−1∑
k=0

xte
−iωkt.

Thus

x(t) =

T−1∑
j=0

{ 1

T

T−1∑
k=0

xte
−iωkt

}
eiωjt =

1

T

T−1∑
j=0

xk

T−1∑
j=0

eiωj(t−k)

=
T−1∑
j=0

xk
sin(ω1(t− k)T/2)

sin(ω1(t− k)/2)
eiω1(t−k)(T−1)/2.

where the Dirichlet kernel sin(ω1(t−k)T/2)
sin(ω1(t−k)/2) constitutes the discrete version of the sinc

function.

The forcing function ε(t), i.e. the error term, of the underlying continuous process

can be estimated by means of the sampled error term as follows:

ε(t) =
+∞∑

k=−∞
εkφ(t− k)

Similarly, the covariance function of the continuous process and the covariance of the

sampled process are linked by the relation:

γε(τ) = E[ε(t)ε(t+ τ)] =
+∞∑

k=−∞
E[εkεt]φ(t+ τ − k) = σ2

εφ(τ).

A discrete ARMA process is obtained by sampling the continuous analogous ARMA

process.
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γ(τ) =

+∞∑
k=−∞

γiφ(τ − i).

The prediction of a time limited stochastic process can be enhanced by resampling the

original data sequence to a rate r = ωc(Pollock). The frequency ωc can be evaluated

by visual inspection of the spectral density of the process, or, by inspection of the

periodogram (see 4.3.1) when the spectral density is not available.

The consequence of applying an unrestricted estimator to data that are strictly band

-limited will be to create an estimated autoregressive polynomial in which the complex

roots approach the perimeter of the unit circle of the complex plane, exhibiting an

artificial nonstationarity.

3.3.2 Test of hypothesis for trigonometric models

Rosenblatt and Grenander (1957) give some insight relative to the comparison of two

different trigonometric regressions. Suppose that we want to compare the two statistical

models

Hj = yt = xt +m
(j)
t , j = 0, 1,

where xt ∼ N(0, σ2) with spectral distribution F (ω). Assume that the two vector

m(0) = (m
(0)
1 , . . . ,m

(0)
n ) and m(1) = (m

(1)
1 , . . . ,m

(1)
n ) have real components. After having

observed y1, . . . , yn we want to test H0 against H1. Assume that the covariance matrix

R of the disturbance xt is not singular. Under Hj , j = 0, 1, the vector xt has pdf

fj(y1, y2, . . . , yn) =
1

(2π)n/2
exp

{1

2
(y −m(j))′R−1(y −m(j))

}
, j = 0, 1.

The most powerful test of H0 against H1 has the critical region

W = {y′R−1(m(1) −m(0)) > K}

Assume that the m(j) admits Fourier expansion

m
(j)
t =

∫ π

−π
eitωdϕj(ω), j = 0, 1

ϕj(ω) bounded variation function. Let the expected value be

Ejy
′R−1(m(1) −m(0)) = µj , j = 0, 1,
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and the variance

D2[y′R−1(m(1) −m(0))] = v,

which does not depend on j. Then there exists a consistent test of H0 against H1 if and

only if

τ ≡ (µ1 − µ0)2

v
→n ∞.

or equivalently, if and only if∫ π

−π

|d(ϕ1(ω)− ϕ0(ω))|2

dF (ω)
= +∞.

(Hellinger integral). In other words, the spectral densuty of the random error xt have to

be smaller than the squared Fourier transform of ∆m to assure the consistency of the test.

The presence of a discontinuity in the spectrum of xt makes it harder to discriminating

between H0 and H1and to find a consistent test.

If the disturbance xt are normally distributed and the covariance matrixR of x1, . . . , xn

are fixed and known, then ϕ′R−1y is a minimal sufficient statistic for the class of

distribution of m . The linear estimate

c = (ϕ′R−1ϕ)−1ϕ′R−1y

is an unbiased estimate of γ(ω) ≡ ϕ1(ω)− ϕ0(ω).

Suppose cn =
∑n

t=1 a
(n)
t yt is a sequence of consistent estimates of γ(ω) in mean square

sense.

cn =

∑n
t=1 ϕ̄tyt∑n
t=1 |ϕ̄t|2

.

cn is an asymptotic unbiased estimates if and only if

lim
n→+∞

n∑
t=1

|ϕt|2 = +∞.

In the trigonometric regression

yt = γ1e
itλ1 + γ2e

itλ2 + · · ·+ γpe
itλp + xt

if the frequencies λ1, λ2, . . . , λp are distinct, the least squares estimates of γ1, γ2, . . . ,

γp are asymptotically efficient.
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3.3.3 Trigonometric filter as an approximation of the ideal band-pass

filter

The global Trigonometric filter ŷt = B∗t (L)xt arises from a Trigonometric Regression

(1.3) without mean µ by rearranging the terms of the summations:

B∗t (L)xt =
t−1∑

l=t−T

{ 2

T

∑
j∈J

cos(ωjl)
}
xt−j ,

T

2
6∈ J,

B∗t (L)xt =

t−1∑
l=t−T

{ 2

T

∑
j∈J,j 6=T

2

cos(ωjl) +
1

T
cos(π(t− l)) cos(πt)}xt−j},

T

2
∈ J,

t = 1, . . . , T, ωj =
2π

T
j, J ⊆ {1, . . . , T}.

has a unit roots since B∗t (1) = 0, and it has at least two unit roots if it is symmetric. If

compared with the Random Walk filter, it has al lower correlation function in all the

frequencies, has a higher variance, especially in the lowest frequencies , and it shows a

substantial departure from covariance-stationarity (see CF, 2003).

If the frequencies selected are the first λ, that is J = {1, 2, . . . , λ}, the weights of the

trigonometric filter are:

B∗lt =
2

T

λ∑
j=1

cos(ωjl) =
2

T

λ∑
j=1

cos(ωlj) =
2

T

[sin(λ+ 1/2)ωl
2 sin(ωl/2)

− 1

2

]
=

=
sin(λ+ 1/2)ωl − sin(ωl/2)

T sin(ωl/2)
=

sin[(2πλ/T + π/T )l]− sin(πl/T )

T sin(πl/T )
.

The filter is linear and time invariant. The weight B∗lt is zero if λl/T is an integer.

If b = (2λ+ 1)π/T and a = π/T , since T sin(πl/T ) = πl + o((l/T )2), and if Bl is the

l-th weight of the ideal band-pass filter for the band [a, b], one obtains B∗l = Bl+o((l/T )2).

If λ(T )/T → c for T →∞, this weight converges to the weight Bl of an ideal band-pass

with a = 0 and b = 2πc.

If the frequencies selected are those between λ1 and λ2, then

B∗lt =
2

T

λ2∑
j=λ1+1

cos(ωjl) =
2

T

λ2∑
j=λ1+1

cos(ωlj) =
sin(λ2 + 1/2)ωl − sin(λ1 + 1/2)ωl

T sin(ωl/2)

=
sin[(2πλ2/T + π/T )l]− sin[(2πλ1/T + π/T )l]

T sin(πl/T )
.
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and the weight approximates the Bl of an ideal band-pass with a = (2λ1 + 1)π/T and

b = (2λ2 + 1)π/T . Moreover, if λ1(T )/T → c1 and λ2(T )/T → c2 for T →∞, then the

weight B∗l converges to the weight Bl of an ideal band-pass with a = 2πc1 and b = 2πc2.
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Chapter 4

Convergence properties of the

proposed models

In this chapter it will be discussed the rate of convergence of global and local

trigonometric estimators. Optimality criteria such as Mean Squared Error, Integrated

Mean Squared Error and Pointwise Mean Squared Error are proposed, and there are given

the condition on the order of the model that have to be satisfied in order to guarantee

the consistency of the estimators.

Then it is discussed the problem of choosing the order of the model by means of data

driven methods. Selection criteria such as the Generalized Cross Validation, AIC-like,

BIC and Mallows Cp are examined, showing their asymptotic equivalence and comparing

their performances.

4.1 General convergence properties of local models

Polynomial regression can be shown to produce an estimator of µ that attains the

theoretical optimal rate of convergence for mean squared error in certain sets (Rafajlowicz,

1987; Cox, 1988).

The rate of convergency of a trigonometric estimator can be not so satisfactory. In

fact the mean squared error convergence rates for trigonometric series estimators are

as slow as n−
1
2 globally, or n−

2
3 locally for a twice differentiable, non periodic function

(Hall, 1981, 1983) rather than the optimal n−
4
5 rate obtained both by kernel and cubic

smoothing spline (Walter and Blum (1979)). It is due to the fact that a trigonometric

polynomial is always periodical whereas the unknown function µ can be aperiodical.

It can be shown that the boundary behavior of a trigonometric series estimator
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dominates its squared error.

The result is that when a data driven method based on a mean squared error estimate

such as cross-validation is used to choose the number of trigonometric functions in the

regression, the result is often as estimator involving too many terms that undersmooths

and exhibits anomalous wiggles.

Eubank and Speckman (1990) try to improve the rate of convergence of the trigono-

metric estimator by adding to it a polynomial term of order d playing the role of a

deterministic trend. For a similar model the generalized cross-validation for selecting λ

is defined as

GCV (λ) = nRSS(λ)/(n− 2λ− d− 1)2

and the unbiased risk criteria is defined as

(4.1) R̂λ = n−1RSS(λ) + 2σ2(2λ+ d+ 1)/n

where

RSS(λ) =

n∑
i=1

(yi −mλ(ti))
2.

The t statistic can be employed to aid the detection of terms in the estimator which

do not contribute to the overall fit.

Define the mean squared prediction error of µλ as

Rn(λ) = n−1
n∑
i=1

E{µ(ti)− µλ(ti)}2

and assume that the ti are distributed as a sample from a distribution function W and

continuous positive density w on [0, 2π]. If 0 ≤ t1 ≤ · · · ≤ tn, let Wn be the corresponding

empirical distribution function Wn(t) = k/n for tk ≤ t ≤ tk+1 (k = 1, · · · , n) and let

δn = supt|W (t)−W (tn)|.
It can be proved that if µ has d− 1 absolutely continuous derivatives with µ(d) square

integrable, then

Rn(λ) = O(λ−2d) + σ2(2λ+ d+ 1)/n+O(δnλ
−2d+1).

Thus, taking λ ∝ n
1

2d+1 we obtain n−
2d

2d+1 as a rate of decay for Rn(λ). Stone (1982) and

Speckman (1985) have shown that n−
2d

2d+1 is the best uniform rate for linear estimator

over function with the same smoothness properties as µ.
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The orthogonality of the trigonometric functions allows one to avoid problems of

collinearity , so the proposed method is also a practical alternative to the use of orthogonal

polynomials. If a polynomial trend is added, the orthogonality is lost. The solution could

be again detrending the series of the observations, and then fitting via trigonometric

regression.

4.2 Convergence of trigonometric estimators in L2

Some properties of the global Trigonometric Regression Estimation has been high-

lighted by Popinski (1999).

Consider the model

yi = f(ti,n) + ηi, i = 1, . . . , n,

where the function f(t) = τ(t) + c(t) is the deterministic sum of trend and cycle, and

η(t) is the random component. For simplicity, we take the equidistant observations

ti,n = 2π(i−1)
n .

It is well known that each function f ∈ L2[0, 2π] has the representation

f(t) =
∞∑
k=0

ckek(t),

for

ck =
1

2π

∫ 2π

0
f(s)ek(s)ds

being the Fourier transform of f , where the functions:

e0(x) = 1, e2l−1(x) =
√

2 sin(lx), e2l =
√

2 cos(lx), l = 1, 2, · · · ,

constitute a complete normalized orthogonal system in the space L2[0, 2π].

In the Fourier decomposition of the function f , the highest components play the role

of the cycle, while the lowest components play the role of the trend. Both the components

are deterministic.

If one minimizes the function

n∑
i=1

[
yi −

λ∑
k=1

Ck cos(kti,n) + Sk sin(kti,n)
]2

=

n∑
i=1

[
yi −

2λ∑
k=1

ckek(ti,n)
]2
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one derives the estimates 1

ĉk,n =
1

n

n∑
i=1

yiek(ti,n), k = 1, 2, · · · , n,

that are the mean squared estimates of the Fourier coefficient ck.Notice that the ĉk,n are

the discrete Fourier transform of f , that is ĉk,n = Jn(ωk).

If the regression function f is continuous, the estimators ĉk of the Fourier coefficients

ck are asymptotically unbiased and consistent in the mean-square sense.

In the definition of an optimality criterium, it should be taken into account both

the error committed by truncating the infinite sum representing f , both the random

error η, and this requirement can be fulfilled in different ways. Following Popinski (1999)

we explore three different criteria for estimating the prediction error: the mean-square

prediction error

Rn(λ) =
1

n

n∑
i=1

E(f(xin)− f̂λ(n))
2 ≡ 1

n

n∑
i=1

∫
Ω

(yi − f̂λ(n) − ηi(ω))2dω,

the integrated mean-square error

E||f − f̂λ(n)||2 ≡
∫

Ω

{ 1

2π

∫ π

−π
(yi − f̂λ(n)(x)− ηi(ω))2dx

}
dω,

and the pointwise mean-square error

E(f(x)− f̂λ(n))
2 ≡

∫
Ω

(yi − f̂λ(n)(xi)− ηi)2dω

of the estimator

f̂λ(n) =

λ(n)∑
k=0

ĉkek(x), for f ∈ C[0, 2π].

The choice of the function f in the model arises from the theory under consideration

(economic, biological, astronomical...) such approach is not completely data driven, since

in a complete data driven approach it would be enough to minimize a functional of the

random error η(t), but this procedure can be useful if we have a strong believe in the

form of the function f , and f is difficult to be computed. Another approach could be

choosing f with a global trigonometric regression, and afterwards, determining the f̂λ(n)

by a local fitting. Moreover, minimizing such a composite criterium allows to work with

1Notice that if the observations are equispaced, then 1
n

∑n
i=1 ek(ti,n)el(ti,n) = δk,l.
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a series not filtered in advanced.

The paper proves that if f is a continuous 2π-periodic and not a trigonometric

polynomial, the estimator f̂λ(n) is consistent in the sense of the mean-square prediction

error if and only if the sequence of numbers λ(n), n = 1, 2, · · · satisfies

limn→∞λ(n) =∞, limn→∞
λ(n)

n
= 0.

As a corollary it follows that if the function f satisfies the Lipschitz condition with

exponent 0 < α ≤ 1 and if the sequence of natural numbers λ(n) satisfies λ(n) ∼ n
1

1+2α ,

then
1

n

n∑
i=1

E(f(xin)− f̂λ(n)(xin))2 = O
(
n−

2α
1+2α

)
.

This result complements the one obtained by Eubank and Speckman (1991) for a

more general fixed point design under more restrictive conditions on the smoothness of

the regression function.

In the case of the integrated meas-square error E||f − ˆfλ(n)|| Popinski (1999) finds

that, for f absolutely continuous function, if

limn→∞λ(n) =∞, limn→∞
λ(n)3/2

n
= 0

then the estimator f̂λ(n) of the absolutely continuous function f is consistent in the sense

of the integrated mean-square error.

With respect to the rate of convergence, if f is absolutely continuous, and λ(n) ∼
n1/2, then E||f − f̂λ(n)||22 = O(n−1/2). In general with the same argument it can be

shown that if f is absolutely continuous, and λ(n) ∼ nα for some positive α ≤ 2
3 ,

then E||f − f̂λ(n)||22 = O(n−α) for 0 < α ≤ 1/2 and E||f − f̂λ(n)||22 = O(n3α−2) for

1/2 < α ≤ 2/3.

Finally, for point-wise mean-square error, the paper demonstrates that under the

more restrictive hypothesis

limn→∞λ(n) =∞, limn→∞
λ(n)2

n
= 0,

if f is an absolutely continuous function, then for any δ ≥ 0 the estimator f̂λ(n) is

uniformly consistent in the sense of the pointwise mean-square error in the interval

(δ, 2π − δ). If moreover the function f is 2π-periodic, then the pointwise mean-square

estimator f̂λ(n) converges uniformly on [0, 2π].
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As a criterion of order selection, Popinski suggests the minimization of the Mallows’s

Cp:

(4.2) C(λ) =
1

n

n∑
i=1

(yi − f̂λ(ti,n))2 +
2λσ̂2

n

where σ̂ is a consistent estimator of σ2
η. This criterion does not require the knowledge of

the best deterministic trend f , and thus is completely data-driven.

The Mallows’s Cp furnishes a consistent estimate of the sum of squared error of the

regression obtained retaining only the first n regressors.

If λ̂(n) is the minimizer of C(λ), Posinski shows that for µ(t) absolutely continuous and

not a trigonometric polynomial of finite order, if there exits a sequence of positive number

εk such that (k + 1)εk is not increasing, |ck| ≤ εk,
∑∞

k=0 εk <∞, if µ4 = supEη4
i <∞

and σ̂2 → σ2
η as n→∞, then∫ π

−π
(f − f̂λ̂(n))

2 = Op(n
−1/2).

If moreover the function f = µ is 2π-periodic and satisfies the Lipschitz condition for

0 < α ≤ 1, then the discrete version of the loss function dn(λ) satisfies

dn(λ) ≡ 1

n

n∑
i=1

(f(ti,n)− f̂λ(ti,n))2 = Op(n
− 2α

1+2α ).

4.3 Estimation of the order of the model based on the

Periodogram

4.3.1 Definition of Periodogram

A basic tool to do inferences on the frequency-domain properties of a time series is

the periodogram, which helps in the detection of specific frequency contained in a time

series and in the choosing of the order of the model.

Definition 6. The periodogram Iy(ω), ω ∈ [−π, π] is defined as:

Iy(ωj) =
1

T

∣∣∣ T∑
t=1

y(t)e−iωjt
∣∣∣2, for ωj =

2πj

T

Iy(ω) = Iy(ωj) if ω ∈]ωj − π/T, ωj ] ∩ [0, π]
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Iy(ω) = Iy(−ω) if ω ∈ [−π, 0].

where y = (y1, . . . , yT ) is a sample of the (complex) time series Yt.

Taken the finite Fourier transform

JT (ω) =
1

T

T−1∑
t=0

y(t)e−iωt

IT (ωk) and JT (ωk) are linked by IT (ωk) = TJT (ωk)
2.

The periodogram decomposes |y|2 into a sum of components associated with the

Fourier frequencies ωj :

|x|2 =
∑
j∈FT

IT (ωj), FT = {−[(T − 1)/2], . . . , [T/2]}.

It is easily seen that the periodogram is closely related to the sample autocovariance func-

tion γ̂(k), |k| < T : if ωj is any non-zero Fourier frequency, and the sample autocovariance

function is defined as

γ̂(k) =
1

T

T−k∑
t=1

(y(t+ k)−m)(ȳ(t)− m̄), k ≥ 0,

ŷ(t) = ¯̂y(−k), for k < 0, where

m =
1

T

T∑
t=1

y(t),

then

IT (ωj) =
∑
|k|<T

γ̂(k)e−ikωj .

Recall the expression of the spectral density of a stationary process :

f(ω) =
1

2π

+∞∑
k=−∞

γ(k)e−ikω

with
∑

k∈Z |γ(k)| < +∞.

If the time series consists in a periodic trend plus a Gaussian error the periodogram

IT (ωj) at any set of frequencies 0 < ω1 < · · · < ωm < π are asymptotically independent

exponential random variables with mean 2πf(ωj) and variance (2π)2f2(ω) +O(T (−1/2)

for ω ∈ (0, π)), where f(ω) is the spectral density of y(t). Consequently, the periodogram
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IT is not a consistent estimator of 2πf .

The presence of a trigonometric trend can be tested with a test for hidden periodicity

based on the periodogram by means of test such as Fisher’s test (Fisher, 1929). The

visual inspection of the periodogram, or of a suitable smoothed version of it helps in

detecting hidden periodicities, since these correspond to lines in the spectrum, and hence

to local maxima of f(ω).

Since for large T the periodogram ordinates are approximatively uncorrelated with

variance changing only slightly over small frequency intervals, consistent estimator can

be constructed by averaging the periodogram ordinates in a small neighboring of ω. If

f̂(ω) =
1

2π

∑
|k|<mT

WT (k)IT (ωj+k),

under suitable hypothesis for the weight function WT and the integer mT f̂(ω) converges

in mean square to f uniformly on [−π, π].

4.3.2 A comparison among estimators presented in literature

The estimation of the periodogram is needed in some information criteria used to

select the order of a global or local Trigonometric Regression. A possible strategy when

smoothing a series by means of a LTR is to decide in advance a low order for the

trigonometric polynomial estimating the signal in each point t. An alternative strategy

is to estimate the order of the regression, and after constructing the LRT. This method

is not exonerated by criticism, since it alters the level of statistic tests; moreover the

convergence to the “true” model is not uniform(Pötscher and Leeb, 2005).

Quinn (1989) suggests an AIC-like estimator for the number of terms in a trigonometric

regression. In details, let the model consist only in cosine terms

(4.3) y(t) = µ+
λ∑
j=1

ρj cos(ωjt+ φj) + εt

let the φj and ρj be real numbers, with ρ1 ≥ ρ2 · · · ≥ ρλ > 0, and let the ωj be

the Fourier frequencies 2πj/T , 1 ≤ j ≤ [(T − 1)/2], and further assume (a) that εt is

stationary and ergodic, with E(ε2
t ) = σ2 <∞ and E(εt|Ft−1) = 0, where Ft denotes the

σ-field generated by {εs, s ≤ t}, or the more restrictive condition (b) εt i.i.d. sequence

with E(ε6
t ) <∞, and

sup
|s|>s0>0

|ψ(s)| = β(s0) < 1
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where ψ(s) is the characteristic function of εt.

If we fit this model by the least square method with ω1, . . . , ωλ known, the residual

sum after fitting is
T−1∑
t=0

(y(t)− ȳ)2 −
λ∑
j=1

Iy(ωj)

where

ȳ =
1

T

T−1∑
t=0

y(t)

and

Iy(ω) =
2

T

∣∣∣ T−1∑
t=0

y(t)eiωt
∣∣∣2.

If, otherwise, the ωj are unknown, the residual mean square is

σ̂2
λ =

1

T
{
T−1∑
t=0

(y(t)− ȳ)2 − Sλ}

where Sλ is the sum of the largest λ ordinates of the periodogram Iy(ω), for ω Fourier

frequencies. Thus Quinn (1989) constructs the information criterion

φg(λ) = T log(σ̂2
λ) + 2λg(T ), (λ = 0, 1, . . . )

where g(T ) is a suitable function satisfying T−1g(T ) → 0 as T → ∞ The number of

sinusoids is estimated by the first local minimum of φg(λ), in other words λ̂ is the first

integer for which φg(λ) < φg(λ+ 1). This λ̂ is a consistent estimator of λ under suitable

conditions on g(T ).

The proof of the consistency of the estimator λ̂ exploits the boundedness of the

periodogram as stated in An et al (1983), and uses the fact that

Iy(ω) =

{
Iε(ω) if ω 6= ωj , j = 1, . . . , λ,

|Iε(ω)
1
2 + (T2 )1/2ρje

−iφj |2 if ω = ωj , j = 1, . . . , λ.

It follows that T−1Iy(ωj) converges a.s. to ρ2
j/2, for j = 1, . . . , λ, and σ̂2

λ converges a.s. to

σ2 +
∑λ0

j=λ+1 ρ
2
j/2 if λ < λ0 and to σ2 for λ = λ0. Thus for λ < λ0, T−1{φg(λ)−φg(λ0)}

converges a.s to log(1−
∑λ0

λ+1 ρ
2
j/(2σ

2)), which is strictly positive and decreasing with λ,

while T−1{φg(λ0 + 1)− φg(λ0)} is proved to be a.s. greater than zero for T →∞, and

finally λ̂ converges to λ0.
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Wang (1993) discusses the same model (4.3), removing the hypothesis that the ωj

are the Fourier frequencies. In fact one can take the frequencies ω1, . . . , ωλ as those

frequencies maximizing the periodogram on (−π, π] Taken the finite Fourier transform

JT (ω), the mean squared error of the fitted model of order λ can be written as

σ2
λ(T ) =

1

T

T−1∑
t=0

∣∣∣y(t)−
λ∑
j=1

JT (ω̂j)e
iω̂jt
∣∣∣2.

Then the order of the regression λ is estimated as the minimum of the Best Information

Criterion BICT,b(λ) defined as

BICT,b(λ) = T log σ2
λ + bTλ,

where bT is a sequence of number satisfying T−1bT → 0 for T →∞. The λ̂ minimizing

such BICT,b(λ) obviously coincides with the estimator of Quinn (1989) if the ωj are the

Fourier frequencies.

If εt has continuous spectral density, and if it is ergodic and under suitable assumption

on maxω Iε(ω)/(log T max fε(ω)), λ̂ is a consistent estimator of λ.

The problems of estimating the frequencies and of estimating the order of the regression

are often treated together.

The frequencies of the trigonometric model can be found by Maximum likelyhood

estimation or maximizing the periodogram.

Hannan (1973) examines a harmonic model

y(t) = ρj cos(ωjt+ φj) + εt

and proves that, under the hypothesis of Gaussian error, the estimator ω̂ for the

only frequency ω0 is such that T 3/2(ω̂ − ω0) is asymptotically normal with variance

4πf(ω0)/ρ2
0, for f(ω) spectral density.

The results can be extended to a trigonometric regression with non-zero mean and

λ sinusoids, by first estimating µ by ȳ and then estimating 0 < ω1 < ω2 < · · · < ωλ by

locating the first ω relative maxima of the periodogram.

Kavalieris and Hannan (1994) have studied the model (1.1) under the hypothesis of

random errors following an ARMA process. Namely, the model is

y(t) = µ+

r∑
j=1

αj cos(λjt) + βj sin(λjt) + u(t), 0 < λj < π,
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where µ, αj , βj , λj are constant to be estimated, the λj are unrelated and u(t) is a

stationary process with absolutely continuous spectrum and continuous spectral density.

The authors wish to estimate the order of the model r, comparing three criteria, each of

them obtained as an AIC criterion, the first introduced by Hannan (1993)

φH(r,m) = log{σ̂2
r (m)}+ 5r

log T

T
+

logm

2m
,

with

log{σ̂2
r} =

2M

T

M∑
k=1

log [
1

m

km∑
j=(k−1)m+1

Ir(ωj)]

and the periodogram

Ir(ωj)
1

T

∣∣ T∑
t=1

ûr(t)e
itωj
∣∣2, ωj =

2πj

T

and ûr(t) is the residual from the regression of y(t)− ȳ on cos(λ̂jt), sin(λ̂jt), j = 1, . . . , r.

M = b(T − 1)/2mc and m needs to be estimated. Notice that this regression furnishes

also the estimates of αj and βj , while the λ̂j can be found sequentially by locating the

maximum of Ij−1(ω) over 0 < ω < π. The penalty terms takes into account the cost of

encoding the parameters of the r fitted sinusoid. Since the r estimators α̂j and β̂j have

standard deviation O(T−1/2), and the r λ̂j has standard deviation O(T−3/2), the code

length for α̂j , β̂j , λ̂j are respectively (1/2) log T ,(1/2) log T ,(3/2) log T , giving a total

code length of (5/2) log T for each sinusoid. The term logm/2m is derived from the code

length of the smoothed periodogram.

The second criterion has been proposed by Wang (1993), and can be rewritten as:

φW (r, c) = log
1

T

∑
ûr(t)

2 + cr
log T

T
,

where the choice of c depends on max 2πf(ω)∫
f(ω)dω

. Hannan (1993) offers no proof of consistency

of any procedure based on φH(r, n). The third criterium is

φ(r, h) = log σ̃2
r (h) + (5r + h)

log T

T

where σ̃2
r (h) is an estimate of the prediction variance of u(t), and h must be estimated.
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φW (r, c) is shown to be consistent only if

c >
2 maxω 2πf(ω)∫

f(ω)dω
.

A simulation study with a real model having r = 2 shows that φ(r, h) behaves better,

especially in presence of a “large” sample.

Under the hypothesis of u(t) being an AR(∞) process, say u(t) +
∑∞

j=1 κju(t− j) =

ε(t), with
∑
|κj | <∞, κ(z) 6= 0 for |z| ≤ 1, if ε(t) is a stationary sequence of martingale

difference, where

E{ε(t)|Ft−1} = 0, E{ε(t)2|F−∞} = σ2, E{ε(t)4} < +∞,

Ft being the filtration generated by ε(t), s ≤ t, if σ̃2(h) is the estimated variance from

the AR(h) model for the correct trigonometric regression and σ̃2
0(h) is the estimated

variance from the AR(h) model for the model y(t) = u(t), then, uniformly for h ≤ H,

σ̃2
0(h) = σ̃2(h) +

r0∑
k=1

ρ2
k

2

|κh(eiλk)|22πf(λk)

h
+ o(h−1).

Under the same hypothesis, if r̂ is the first local minimum of φ(r, ĥr), then r̂ → r0 almost

surely.

4.4 Asymptotic equivalence of the Information criteria pro-

posed

If the lowest Fourier frequencies have the largest ordinates, a φg(λ) information

criterion can be built from the Mallows’s Cp discussed above. In fact σ̂2
λ = 1

T

∑T−1
i=0 (yi −

f̂λ(ti,n))2, and C(λ) = σ̂2
λ(1 + λ

T

σ̂2
η

σ̂2
λ

),

logC(λ) = log σ̂2
λ + log

(
1 +

λ

T

σ̂2
η

σ̂2
λ

)
= log σ̂2

λ +
λ

T

σ̂2
η

σ̂2
λ

+ o
( λ
T

)
for | λT

σ̂2
η

σ̂2
λ
| ≤ 1, and thus

φg(λ) = T logC(λ) + λ
σ̂2
η

σ̂2
λ

where g(T ) =
σ̂2
η

σ̂2
λ

, and obviously g(T )/T = (1/T )
σ̂2
η

σ̂2
λ
→ 0 for T →∞.
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In the same fashion,if λ/T → 0 as T →∞, the unbiased risk criterion (4.1) leads to a

φg(λ) information criterion by putting φg(λ) = T log (R̂λ)+o(T−1), for g(T ) = 2λ+d+1.
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Chapter 5

Concluding remarks and further

developments

In this thesis we have developed and discussed local trigonometric models for the

smoothing of time series, in particular for estimating business cycle. We have seen that

many models can be viewed as finite version of Wiener Kolmogorov filter, and we have

proposed a solution for smoothing ARIMA(p, d, q) series without prefiltering.

A local trigonometric model as been proposed, and it has been applied to the

smoothing of pseudocyclical time series.

We have evaluated the rates of convergence of a trigonometric model under suitable

criteria, and we have given criteria to best decide the order of the model.

We have seen that a problem associated with trigonometric estimators is the slowness

of the convergence, in particular in presence of a non periodic underlying signal. This

problem has been mitigated by means of local estimates arising from the minimization of

a L2 functional. Other approaches are possible.

One major problem faced when fitting a time series by means of trigonometric

function is the Gibbs phenomenon, that implies a systematic distortion of the estimators

at the end of the sample. This phenomenon can be mitigated thanks to a different

minimizating function: in fact the a L1-approximation of f(x) shows smaller wiggles

than usual L2 approximations. A different choice of the orthonormal basis function, such

as some families of wavelets functions allows to avoid Gibbs phenomenon under suitable

conditions. Some hints of this possibilities are given in this section.
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5.1 Gibbs phenomenon in splines

Richard and Foster (1991) discussed the problem of a Gibbs phenomenon in spline

approximation. They calculate an overshoot for linear splines of 0.134. They also showed

that for a spline of higher degree

lim
k→∞

S[k](x) = τ(x) uniformly in x,

for τ(x) = 2
πSi(x) = 2

π
sin(πx)
πx .

Richard (1991) also showed that the value of the overshoot is independent of the

location of the discontinuity ξ if ξ is irrational and depends of the overshoot if ξ is

rational.

Foster and Richard were able to prove that an Lp-approximation would result in a

Gibbs phenomenon even when piecewise- continuous function are used instead of the

trigonometric basis of the Fourier series, and then the overshoot is much larger than the

classical one of Fourier series.

Moskona, Petrushev and Saff proved that the Gibbs overshoot and undershoot occurs

also for best Lp approximation, p ≥ 1. They also noticed that the amount of overshooting

is a decreasing function of p. M.P. and S. define a Gibbs function for L1:

G(x) = −sinπx

π

∫ 1

0
u|x|−1 1− u

1 + u
du, t 6= 0, G(0) = 0,

and the number γ as

γ = max
|t|≥1
|G(x)| ≈ 0.06578389,

that is 1/2.7 times the Gibbs constant for L2 approximation, and Bn(x) = Bn,p,f (x) be

the best Lp-approximation of f(x) in the class Tn of the trigonometric polynomial of

degree at most n. The authors showed that if f is a 2π-periodic function with only one

jump at 0:

lim
n→∞

max
x∈(0,π]

[Bn,1,f (x)− f(x)] =
f(0+)− f(0−)

2
γ,

lim
n→∞

min
x∈[−π,0)

[Bn,1,f (x)− f(x)] = −f(0+)− f(0−)

2
γ,

lim
n→∞

max
x∈(0,π]

[Bn,1,f (x)− f(x)] = lim
n→∞

max
x∈[ π

n+1
, 2π
n+1

]
[Bn,1,f (x)− f(x)],

lim
n→∞

min
x∈[−π,0)

[Bn,1,f (x)− f(x)] = lim
n→∞

min
x∈[−2π

n+1
, −π
n+1

]
[Bn,1,f (x)− f(x)],
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and for x ∈ (−∞,∞),

lim
n→∞

[
Bn,1,f

( πx

n+ 1

)
− f

( πx

n+ 1

)]
=
f(0+)− f(0−)

2
G(x).

By integrating by parts it is shown that the function G(x) can be computed as

G(x) =
sinπx

πx

∞∑
k=1

2−kk!

(1 + x)(2 + x) · · · (k + x)
, x > 0.

By expanding 1−u
1+u in Taylor expansion and then recognizing the Fourier sine series of

sin tu, u ∈ (−π, π), it is shown that

G(x) =
1

π

∫ π

0
cot(

u

2
) sin(xu)du− 1.

For p > 1, the Lp approximating polynomial is unique, while the L1 approximating

polynomial is not unique. Uniqueness of the best interpolating polynomial in L1 holds

for f continuous or piecewise continuous with precisely one jump mod(2π).

5.2 Gibbs phenomenon in wavelets

General properties of the Fourier transform allows to state that if a function is very

localized in time domain, its Fourier transform is very widespread in frequency domain,

and viceversa if a function is very localized in frequency domain, its Fourier transform is

very widespread in time domain. A local trigonometric regression allowed us to exploit

time limited data using a limited range of frequency. A second approach that permits to

overcome this duality consists in wavelet analysis.

A wavelet is a family of functions very localized in the time domain whose Fourier

transform is very localized in the frequency domain.

The operator translation T : L2 → L2 is defined by (Tf)(x) = f(x−1). The dilatation

Da : L2 → L2 with scaling function a is defined by (Daf)(x) = 1√
a
f(xa ). Thus

((D−1
a )f)(x) =

√
af(ax),

and

(TnDn
af)(x) =

1√
am

f
(x− amn

am
)
.
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A dyadic orthonormal wavelet is a function ψ ∈ L2(R) such that the set

{
2
n
2 ψ(2nt− l) : n, l ∈ Z

}
forms an orthonormal basis for L2(R). The adjective ”dyadic” refers to the scaling

operator D2.

A first family of wavelets can be devised by means of the sinc function...

Some wavelet does not exhibit the Gibbs phenomenon, ex. Haar wavelet.

Let

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . .

a chain of closed subspaces in L2(R) such that
⋂
m∈Z={0} and

⋃
m∈Z = L2(R), let

f ∈ Vm ⇔ f(2·) ∈ Vm+1.

If φ is the scaling function defining the wavelet transform and φm,n(x) = 2
m
2 φ(2mx− n)

is an orthonormal basis of V0 ⊂ V = L2(R), there exist the subspaces Wm, m ∈ Z such

that for each m, Vm+1 = Vm ⊕Wm and

∞∑
m=−∞

⊕Wm = L2(R).

For f ∈ L2(R) it is defined the projection onto Vm as

fm(x) =Pmf(x) =
∑
n∈Z

φm,n(x)φ∗m,nf =∫ ∑
n∈Z

φm,n(x)φm,n(y)f(y)dy =

∫
Km(x, y)f(y)dy,

where

Km(x, y) =
∑
n∈Z

φm,n(x)φm,n(y).

Kelly (1991) showed that a Gibbs effect occurs near the origin if and only if∫ ∞
0

K0(a, u)du > 1 for some a > 0,

or ∫ ∞
0

K0(a, u)du > 0 for some a < 0.
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A positive kernel allows to reduce the Gibbs phenomenon for wavelets, such as the

Fejer kernel reduces the Gibbs phenomenon for trigonometric expansion.

Wavelet analysis can be used to accommodate structural changes of a more varied

nature than LTI structures.
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Appendix A

Convolution products

Theorem 5. If the periodic functions f(t) e g(t) admit the Fourier expansions f(t) =∑−∞
l=−∞ cle

ilt and g(t) =
∑−∞

l=−∞ dle
ilt respectively, then the product function f(t)g(t)

admits Fourier expansion, and its Fourier coefficients wt are obtained as convolution

product of {ck}k and {dk}k: wt =
∑+∞

n=−∞ cndk−n.

PROOF: f(t)g(t) is a periodic function, and admits a Fourier expansion f(t)g(t) =∑+∞
k=−∞wke

ikt. Now

wk =
1

2π

∫ π

−π
f(t)g(t)e−iktdt =

1

2π

∫ π

−π

+∞∑
l=−∞

cle
ilt

+∞∑
r=−∞

dre
irte−iktdt

=
1

2π

+∞∑
l=−∞

+∞∑
r=−∞

cldr

∫ π

−π
ei(l+r−k)dt =

+∞∑
l=−∞

+∞∑
r=−∞

cldrδl+r−k =
∑
l+r=k

cldr

that is the thesis.2

If it is calculated the convolution product of F(χI), χI characteristic function of the

interval [−b,−a]∪[a, b] with a trigonometric polynomial
∑+∞

k=−∞ ψkz
k, with

∑+∞
k=−∞ ψk <

∞, there are found the identities:

+∞∑
k=−∞

sin (bk)− sin (ak)

πk
ψk−n = ψk, k ∈ I,

+∞∑
k=−∞

sin (bk)− sin (ak)

πk
ψk−n = 0, k 6∈ I

The best approximation in L2 of χI(ω)θ(ω)/φ(ω) subject to the constraint that the
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Fourier coefficient cj are null for |j| > K is

K∑
m=−K

δm(B∗ψ)eimω.
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Appendix B

Useful trigonometric Identities

Let k ∈ Z, 0 ≤ k < T .

T−1∑
t=0

e
i2πkt
T =T for k = 0

1− ei2πk

1− e
i2πk
T

= 0 for k 6= T.

Since
T−1∑
t=0

e
i2πkt
T =

T−1∑
t=0

cos
(2πkt

T

)
+ i

T−1∑
t=0

sin
(2πkt

T

)
we obtain

T−1∑
t=0

cos
(2πkt

T

)
=T for k = 0

0 for k 6= 0,

and
T−1∑
t=0

sin
(2πkt

T

)
= 0.

Recall the Werner identities:

sinnx sinmx =
1

2
(cos(m− n)x− cos(m+ n)x),

sinnx cosmx =
1

2
(sin(m− n)x+ sin(m+ n)x),
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cosnx cosmx =
1

2
(cos(m− n)x+ cos(m+ n)x).

Assume k, l ∈ Z, 0 < k, l < T/2, in order to avoid problems of aliasing. We have

T−1∑
t=0

sin
(2πkt

T

)
sin
(2πlt

T

)
=

1

2

T−1∑
t=0

(
cos

2π(k − l)t
T

− cos
2π(k + l)t

T

)
=

T

2
if k = l,

0 if k 6= l.

T−1∑
t=0

cos
(2πkt

T

)
cos
(2πlt

T

)
=

1

2

T−1∑
t=0

(
cos

2π(k − l)t
T

+ cos
2π(k + l)t

T

)
=

T

2
if k = l,

0 if k 6= l.

T−1∑
t=0

sin
(2πkt

T

)
cos
(2πlt

T

)
=

1

2

T−1∑
t=0

(
sin

2π(k − l)t
T

+ sin
2π(k + l)t

T

)
= 0.

If k = l = 0 we have
T−1∑
t=0

cos
(2πkt

T

)2
= T,

T−1∑
t=0

sin
(2πkt

T

)2
= 0.

If f 6∈ Z, then
T∑
t=1

e2πift = eiπf(T−1) sin(Tπf)

sin(πf)
,

hence, if f + f ′, f − f ′ 6∈ Z,

T∑
t=1

cos(2πft) cos(2πf ′t) =
1

2

sin(Tπ(f − f ′))
sin(π(f − f ′))

cos((T + 1)π(f − f ′))+

+
1

2

sin(Tπ(f + f ′))

sin(π(f + f ′))
cos((T + 1)π(f + f ′)),
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T∑
t=1

cos(2πft) sin(2πf ′t) =
1

2

sin(Tπ(f + f ′))

sin(π(f + f ′))
sin((T + 1)π(f + f ′))+

+
1

2

sin(Tπ(f − f ′))
sin(π(f − f ′))

sin((T + 1)π(f − f ′)),

T∑
t=1

sin(2πft) sin(2πf ′t) =
1

2

sin(Tπ(f − f ′))
sin(π(f − f ′))

cos((T + 1)π(f − f ′))+

− 1

2

sin(Tπ(f + f ′))

sin(π(f + f ′))
cos((T + 1)π(f + f ′))

In f 6∈ Z then

T∑
t=1

cos(2πft)2 =
N

2
+

1

2

sin(T2πf)

sin(2πf))
cos((T + 1)2πf)),

T∑
t=1

cos(2πft) sin(2πft) =
1

2

sin(T2πf)

sin(2πf)
sin((T + 1)2πf),

T∑
t=1

sin(2πft)2 =
N

2
− 1

2

sin(Tπ(f + f ′))

sin(π(f + f ′))
cos((T + 1)π(f + f ′)).
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ACV, autocovariance function, 7

AGV, autocovariance generating function,
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AIC, 68

aliasing, 53

autocovariance, 11

backward operator, 11

band-pass filter, 5

Baxter and King filter, 16

BIC, 70

Business cycles, xii

Butterworth filters, 14
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convolution product, 4, 81

cross-validation score, 39
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degrees of freedom, 37

Dirichlet kernel, 55

ergodic process, 8

filter, 3, 37

first difference filter, 17

forward operator, 11

Fourier transform, 5

frequency response function, 4

gain, 4, 37

generalized cross-validation, 62

Gibbs phenomenon, xii, 76, 77

harmonic process, 2

hat matrix, 36

Herglotz theorem, 7

high-pass filter, 5

HP, Hodrick Prescott, 13

i.i.d., 1

IIR, Infinite Impulse Response, 11

impulse response function, 4

influence, 36

integrated mean-square error, 64

kernel smoothing, 4

lag operator, 7

leave-one-out residual, 38

leverage, 36

low-pass filter, 5

LRT, local trigonometric regression, 42

Mallows’s Cp, 66

mean squared prediction error, 62

mean-square prediction error, 64

Nyquist-Shannon sampling theorem, 53

one step prediction error, 3

periodogram, 66

phase, 37
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pointwise mean-square error, 64

polynomial reproducing property, 40

polynomial splines, 41

Random Walk filter, 19

residual sum of squares, 39

seasonal adjustment, 24

sinc function, 54

spectral density, 7, 67

spectral distribution, 7

transfer function, 4

trend, xi

trigonometric reproducing property, 45

trigonometric trend, 1

turning point, 15

unbiased risk criteria, 62

UO (Unobserved Component), xi

variance inflation factor, 38

variance reducing factor, 36

wavelet, 77

weakly stationary process, 7

WF, Wiener Kolmogorov filters, 10

Wold theorem, 3

Yule-Slutsky effect, 17
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