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Abstract

The field of robotics is becoming increasingly important in our society. Today, robots can be
found in almost every aspect of our daily lives. Most of these robots are quite primitive and can
only executed simple tasks. Some robots are more advanced and can be described as autonomous.
So the question arises: which properties and skills does a robot need in order to be considered
autonomous? The first thing that comes to mind is, that the robot must be able to move and
perform other actions without direct external control information. Secondly, the robot needs a
goal, as without a goal the robot does not know what to do and might perform erratic actions
or non at all.

In order to perform movements without crashing into obstacles, a robot needs to see its environ-
ment. Another requirement for independent movement is a robots ability to find out where it is
located in its current environment. These two skills enable a robot to circumnavigate directly vis-
ible obstacles and exhibit seemingly autonomous movements. If we want to let a robot navigate
to a destination point, in other words supply it with a goal, the robot must be able to ‘remember’
the environment in order to plan a path from its position to the desired destination.

Additionally, sensors and actuators used by robots are usually very inaccurate and error prone.
One can never rely on the correctness of measurements or the accurate execution of movement
instructions. Therefore one must find a way to deal with this uncertainty during the localization
and mapping processes.

So in order to construct an autonomous robot it needs to remember its environment, in other
words: it has to generate a map. Therefore this activity is called mapping. It also must calculate
its position relative to this map, this is called localization. This thesis will examine the theoretical
foundations of these techniques and how they deal with the omnipresent problem of uncertainty.
Additionally it will illustrate how to implement localization and mapping for a typical sensor
equipped robot.
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1 Introduction

“A robot is an automatically guided machine which is able to do tasks on its own.
Another common characteristic is that by its appearance or movements, a robot often
conveys a sense that it has intent or agency of its own.”1

The field of robotics is becoming increasingly important in our society. Today, robots can be
found in almost every aspect of our daily lives, but most of the time robots are not recognized as
such. Who would think that for example his automatic coffee maker is a robot? The reason for
this is that when people think of robots, they think of robots as defined by pop culture, where
we encounter humanoid robots like C3PO, Commander Data and even the infamous Terminator.
Even when pop culture robots do not closely resemble human beings, they always possess some
human attributes so that people do not view them strictly as cold and heartless machines.

Figure 1: Pop culture robots with increasingly humanoid anatomy2

Now let us take a look at some of the fundamental differences between a simple coffee maker
and some of the previously mentioned, well known (although imaginary) robots. One of the
main differences that comes to mind is the fact that a coffee maker cannot freely move around
its environment. If we ask people why it cannot do that, most of them might say: Because the
coffee machine has no wheels/legs to move around. And while this is of course true, it is not the
whole story.

Suppose the coffee machine had some means of transportation, for example wheels, what else
would it need to move in its environment? Firstly it needs software that can interact with the
motors of the wheels. Now that the machine has wheels and software capable of operating them,
it could theoretically move around. But one problem remains: how does the machine know
where it is and where it can and cannot go, due to obstacles present in the environment? It does
not, therefore it needs some kind of device that enables it to ‘see’ or recognize its surroundings
in another way. So lets attach a sonar (sound navigation and ranging) scanner to the coffee

1http://en.wikipedia.org/wiki/Robot - 06.07.2010
2from left to right: Louie (Silent Running, 1972), R2D2 (Star Wars, 1977), B9 (Lost in Space, 1965), Cylon

Centurion (Battlestar Galactica, 1978), T-800 (Terminator, 1984)

5



machine. This sensor emits sound waves and measures the time it takes for their reflections to
return. The data of this sensor can be used to obtain accurate distance measurements. So now
our coffee machine, through the use of a sonar scanner and software that is able to calculate
distances from the scanners data, can ‘see’ its environment.

The question is, would people think of our enhanced coffee machine as a robot? I suppose
most of them would, but think about what would happen if you turn the coffee machine on. The
machine could move around through the use of its wheels, it might even be able to circumnavigate
appearing obstacles if its movement software is able to access and process the measurements of
the sonar scanner. This may look like autonomous and purposeful behavior to the layman and
therefore the coffee maker could be considered a genuine robot. In reality, up to this point the
robot is only able to see the directly visible part of its environment and react to it. But what
about the parts of the environment which are not directly visible to the robot? Would it not be
nice if the robot could ‘remember’ the obstacles it encountered and circumnavigated? This way
the robot would be able to return to any of these obstacles directly, without looking for them
again, all over the environment. An additional advantage of remembering the environment is,
that it can help the robot to find out its current location within this environment. This activity
is called Localization and it relies on sensor data as well as certain stored information about the
environment in order to calculate the robot’s position. This environmental information is best
described as a map, this is the reason why gathering, processing and storing of this information
is called Mapping.

The problems of Localization and Mapping are not easily solved. One thing further complicates
the matter: Uncertainty. Localization and mapping both rely heavily on data from the robot’s
sensors and effecters/actuators (wheels, arms, legs, ...). The problem is that this data is inher-
ently uncertain. No sensor and no actuator is 100% accurate, so in order to avoid calculation-
errors we need to take this uncertainty into account. This means that we can calculate neither
the robot’s position nor the map of its environment in a deterministic way. We will need to make
use of more complex, probabilistic techniques in order to obtain reliable results.

Localization and Mapping are two fundamental abilities any autonomous robot needs to possess
in order to be able to efficiently navigate around its environment. But keep in mind that by
simply implementing these two features, you will not automatically end up with a fully functional
robot ready to execute its tasks. These two abilities form the basis for any further development
of autonomous robots, so understanding and implementing them accurately and efficiently is of
great importance to anyone wanting to work with autonomous robots.

In this thesis I will provide an insight into technical and mathematical foundations as well
as detailed instructions that will illustrate how to implement selected localization and mapping
algorithms for an autonomous sensor equipped robot using probabilistic techniques. The software
development will be done in Matlab c© and I will use the Unified System for Automation and Robot
Simulation (USARSim) to provide virtual environments and simulate the robots.

1.1 Chicken and Egg

Before we dive into the details of localization algorithms and mapping techniques, let us take a
look at a very basic property of the task at hand: the chicken and egg problem.
What is this problem all about? We want to solve two individual problems: localization and
mapping. And this is exactly where we encounter the chicken and egg problem. In order to
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execute the critical resampling step of the particle filter (see Table 2 and Section 3.2.4) a fairly
accurate map of the environment has to be available. This means that we need to solve the
mapping problem in order to solve the localization problem. On the other hand, in order to
construct an accurate map of the environment, reliable information about the current pose is
necessary (see Section 4). This implies that we need to solve the localization problem before we
can begin to construct maps.

As it is now obvious why this is called a chicken and egg problem, we still need some kind of
solution. There exists a technique which overcomes this problem and enables a robot to execute
the two processes at the same time, as one builds on the results of the other. This technique is
called Simultaneous Localization and Mapping (SLAM). Introducing SLAM is not the scope of
this thesis and therefore we will make use of a ‘cheat’ to overcome the chicken and egg problem.
We will assume that there is some kind of oracle that will provide the missing information (map
or location). USARSim provides a so-called Ground-Truth Sensor. This sensor provides noise
and error free pose information for the robot. From there on we can start constructing a map
which can then be used by the particle filter for particle resampling. This way localization and
mapping can be introduced without directly solving the SLAM problem.

7



2 USARSim

The Unified System for Automation and Robot Simulation is an open-source simulator for search
and rescue robots. The simulator is based on the game Unreal Tournament 2004 (UT2004) and
makes use of its game and physics engine. The simulator provides the user with a small number
of preconfigured robots and scenarios that can be used right away. Additionally the user can
easily add new robots and/or configure the existing robots and their actuators/sensors to his
liking.
As USARSim is based on Unreal Tournament, it can be run on every operating system that
is supported by the game. Luckily UT2004 supports all major operating systems, these are
Microsoft Windows, Mac OSX and Linux. USARSim, precompiled or as source code, can be
downloaded from the USARSim Sourceforge page.3

Figure 2: USARSim, map: DM-TallTestWorld 250

USARSim offers simulation of robots and environments which are very close to reality. Simulated
robots and sensors behave just like in real life, their data contains noise and errors and the
communication interfaces are similar to their real world counterparts. The UT2004 engine used
by USARSim is able to perform elaborate physics simulation which in turn leads to further
increased realism in the simulation. These properties make USARSim a great platform to develop
and test robot control software in a very comfortable and inexpensive way. Keep in mind though,
that no simulation can simulate a 100% realistic environment. Therefore real life testing and
verification/modification of any software developed and/or tested with USARSim will still be
necessary.

For detailed installation instructions please consult Appendix A, while extensive information
about USARSim can be found in the corresponding documentation [Wang 05].

3http://sourceforge.net/projects/usarsim
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2.1 USARSim Communication

2.1.1 Protocol

USARSim uses a very straight forward communication protocol. All communication is done
through plain text messages which are sent over a TCP connection. The program is reachable
through the IP address of the computer it is running on and is listening for connections on port
3000. This standard port can be changed in the file $UT2004/System/BotAPI.ini in the
section [BotAPI.BotServer]. Note that in USARSim, length is measured in meters, and
angles in radians. For a listing of all possible messages please consult [Wang 05].

All messages sent by USARSim have the following form, which also messages sent to the program
must satisfy:
data_type {segment1} {segment2} ...
The data type and the first segment, as well as individual segments must be separated by one
blank space. Each segment consists of one or more name-value pairs, names and values are also
separated by one blank space.
{Name1 Value1 Name2 Value2 ...}
Blank spaces may not be used anywhere else in a message than in the above mentioned places!
Two characters have to be appended to each message, Carriage Return followed by Line Feed,
therefore \r\n. This character sequence indicates the end of the current message.

2.1.2 Toolbox

Communicating with USARSim can be tricky. There are a lot of messages to be sent and received
while always ensuring up-to-date sensor data and lag free controls. Detailed information on this
topic and an implemented communication program can be found in [Mader 10-1].

Implementing the communication protocol and program can be a time consuming process. There-
fore we will use a freely available MatLab toolbox to communicate with USARSim. This toolbox
is currently being actively developed at Drexel University, Philadelphia and a beta version can
be downloaded from the university website.4 Although currently only available as a beta version,
the toolbox runs stably and offers sufficient functionality for this project.

The toolbox makes it very easy to add robots to the simulation, receive sensor readings and
control the robot through simple MatLab commands. This works reliably and without any lag.
A complete list of available commands can be found on the toolbox‘s download page.

Please note that in the current version of the toolbox (Beta 1.4), communication is limited to the
local machine. This means that you have to run MatLab and USARSim on the same machine
in order for them to communicate. Although it would be convenient to execute the simulation
on a different machine than the control program, it poses no problem running them on the same
machine, as long as it is powerful enough. The functionality to communicate with USARSim on
remote systems will most likely be added in future versions of the toolbox.

4http://robotics.mem.drexel.edu/USAR/
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3 Localization

The process of determining one’s position in an environment is called Localization. All higher
developed organisms have the ability to locate themselves within their surroundings. This ability
seems to be ‘hardwired’ in their brains and happens mainly automatically or, in case of humans,
subconsciously. We take it for granted to know where we are, therefore we do not think about
the immense amounts of environmental information which has to be processed, stored, compared
and finally used to derive the individual’s real position, and all of this has to be done in real
time.

Without going into to much detail, let us take a look at two intuitive ways to figure out one’s
location:

Odometry: This technique is based on a simple principle: If you know where you were and
how you moved, then you know where you are! In other words: If you know your start
position and remember every move you made since then, you can easily calculate your
current position.

Sensing: This technique uses data from various sensory systems. The sensor data is compared to
a description of the current environment. This comparison process enables us to determine
the position relative to the stored environment description.

Both of these techniques have their own strengths and weaknesses, but there is one problem
that is present in both approaches: uncertainty. Mobile robots contain various sensors and
actuators to sense and manipulate the environment and change the robot’s position. As it is
almost impossible to build sensors and actuators which are error free, sensor measurements as
well as movements will always be error prone. For example, if you instruct your robot to travel
1 meter in a straight line and measure the covered distance afterwards, the real covered distance
will usually differ from the instructed distance. If the error were the same every time, it would
be easy to take it into account. But as the error differs between measurements, you can never be
sure how much error is present. The same is true for sensor measurements, for example distance
measurements from sonar or laser scanners.

Somehow we have to deal with the uncertainty inherent in all measurements and control instruc-
tions, but how? Sensor measurements supply us with simple values, for example a distance,
which already contain some error/uncertainty. The error is an attribute of the sensor that ob-
tains the measurements, but it cannot be extracted from a single value. Therefore we take a
series of measurements without moving the robot and calculate the error and other statistical
data from them.
The same procedure can also be used for actuators. Instead of obtaining several measurements
from the same position, we instruct the actuator to perform the same action several times and
measure the results. We can then use this data to compute the necessary statistical properties
of the actuator. Let us examine a simple example: Suppose we would like to identify the prob-
abilistic properties of a certain robot’s movement- apparatus. What we can do is instruct the
robot to travel a certain distance and measure the true traveled distance afterwards. If we repeat
this step several times, we can compute the average deviation from the instructed distance as
well as corresponding mean and variance values.

Now that we know the properties of our robot’s sensors and actuators, we can take uncertainty
into account when working with their data. The straightforward way to do this would be to
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Figure 3: Probability Density Functions

use a probability density function (PDF). There are many different types of PDFs and in this
thesis we will make use of Gaussian distributions, also known as normal distributions. To model
the uncertainty inherent in sensors and actuators, we construct a Gaussian PDF with the mea-
surement value as its mean and its standard deviation defined by the measured sensor/actuator
properties. So instead of relying on one value which we know is not absolutely correct, we have
a whole range of possible values where some are more probable to be correct than others. A look
at Figure 3a tells us that the measurements-mean, which represents the sensor-error corrected
value measured by the sensor, is located at about 0.5. This is where the probability (of being
the correct measurement) is the highest. To the left and right of the mean value, the probability
drops significantly but it is still possible that one of these is the correct value which reflects the
actual environment. How fast the probability drops is defined by the standard deviation which
can be computed from consecutive measurements as described in the previous paragraph. Please
see Figure 4 for an illustrated comparison of PDFs with varying parameters.

Apart from normal distributions, there is a plethora of other distributions to choose from. So
what makes normal distributed PDFs more suitable for modeling sensor and actuator errors
than other distribution types? First of all, the normal distribution is the most widely used and
prominent probability distribution in the field of statistics. According to [Casella, Berger 02]
there are several reasons for this:

Analytical tractability Gaussian distributions are very tractable analytically which means
that many results, which involve this distribution, can be derived in explicit form.

Central limit theorem The normal distribution emerges from the central limit theorem. This
theorem states that under normal conditions, the sum of many random variables is approx-
imately normal distributed.

Bell shape The bell shape of the distribution makes it especially suited for modeling a great
number of random variables which can be found in practice.

Please note that the benefits of the analytical tractability of Gaussian PDFs do not play a major
role in this thesis. This is because in Section 3.2 we will introduce the so-called particle filter
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which is able to reliably model any probability distribution.

Normal distributed PDFs (as in Figure 3a) provide a reliable way to model uncertainty, while
their computational complexity is not too demanding and the resulting algorithms can be under-
stood quite intuitively. The problem is, that normal distributed PDFs are not always the best
way to model uncertainties in sensors/actuators. Often multiple properties of the sensor/actua-
tor introduce uncertainty, which may be normal distributed or not, to the result. So in reality
we will require non-normal distributed PDFs as well as multimodal PDFs (as in Figure 3b) and
this leads to some drawbacks of the general PDF approach. First of all, the use of non-normal
distributed or multi modal PDFs leads to algorithms which are not as easy to understand intu-
itively. Secondly the complexity of multimodal distributions, especially when used in a field as
complex as robot localization, tends to be quite high. This complexity makes it difficult to ac-
curately fit PDFs to the encountered real world uncertainty. Additionally, complex multi modal
PDFs tend to complicate the process of ‘inference’, which means drawing conclusions from given
facts.

In this thesis I will work with a technique which overcomes the disadvantages of the general
PDF approach and is still able to model even the most complex PDFs. This technique is called
the Particle Filter. The idea behind the particle filter is to approximate a PDF through a finite
number of samples drawn from the PDF. These samples are called particles. Once a sufficient
quantity of particles is used, this sampling approach has almost no apparent disadvantages when
compared to directly working with PDFs. Instead it has the advantages of simplified complexity,
intuitively comprehensible algorithms and the ability to approximate even the most complex
PDFs.

Of course, the particle filter has some disadvantages of its own. The more particles are used
to approximate a PDF, the more ‘expensive’ the calculations become in terms of computing
time. Therefore it is important to carefully choose a quantity which leads to reasonably good
approximation as well as sufficient speed. There is also no 100% reliable way to tell when a
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particle distribution accurately describes the ‘true’ distribution it aims to approximate. Even
though drawbacks exist, the particle filter’s positive properties make it a very good choice when
dealing with robot localization.

The particle filter’s mode of operation and algorithms will be discussed in detail in Section
3.2.

3.1 Robot Localization Basics

Before we can begin to talk about localization techniques and algorithms, we need to take a step
back and get familiar with some basic concepts and notions.

3.1.1 Odometry

The location of a robot is described by a pair of coordinates (x, y). These coordinates can either
describe the robot’s absolute location on the map or its location relative to a start position. In
both cases the coordinate pair cannot be used to extract information about the robot’s orienta-
tion, which describes the direction the robot is facing. Just like x and y, the orientation θ can
be defined either absolute or relative and has to be added to the coordinate vector in order to
describe all aspects of a robot’s location. The resulting vector (x, y, θ) is called the Pose of the
robot. This data structure contains all necessary information on the robot’s current location,
therefore virtually all localization algorithms will return a pose as their final result. Please note
that such a pose (x, y, θ) allows only for two-dimensional localization. This might seem like a
problem at first, but once a map of the environment is available, the z-coordinate can be easily
recovered from it using the available x- and y-coordinates of the pose.

Pose = (x, y, θ)T (1)

Now that we know how we can describe a robot’s location and orientation, the question remains
how to find out the current pose or, in other words, calculate the current values x, y and θ.
Reliably computing a correct pose is no trivial task and providing a simple enough procedure to
do this is exactly the goal of this thesis. Contrary to the complexity of computing the ‘true’ pose,
an approximated or estimated pose is quite easy to compute. The way this is done is through
so-called odometry.

“Odometry is the use of data from moving sensors to estimate change in position
over time. Odometry is used by some robots, whether they be legged or wheeled, to
estimate (not determine) their position relative to a starting location. This method
is sensitive to errors due to the integration of velocity measurements over time to
give position estimates. Rapid and accurate data collection, equipment calibration,
and processing are required in most cases for odometry to be used effectively.” 5

Suppose we use a wheeled robot. We know the circumference of the wheels as well as their
individual positions relative to the center of the robot. If we equip the wheels with special
sensors, so-called Rotary Encoders, then we are able to measure every wheel’s rotation. As we
now know the circumference and position of the individual wheels as well as their individual

5http://en.wikipedia.org/wiki/Odometry - 20.11.2010
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amounts of rotation, we can easily calculate the robot’s position relative to the start position.
Not only does this technique work for traveling in a straight line, it works for every conceivable
path of the robot.

Although it is quite easy to estimate the pose of a robot, relying strictly on odometry data for
localization is not a good idea. The problem is that rotary encoder data contains a lot of noise
and is very error prone, just think of the wheel slip on a slippery surface. Additionally, the way
the pose is computed from wheel-spin data can only supply the correct result if the input data
was absolutely correct. As we know that the input data, provided by the rotary encoders, most
definitely contains noise and errors, the output pose will incorporate these flaws as well. As the
robot continues to move, the errors accumulate and after a short while the calculated position
will start to deviate a lot from the actual position of the robot. Therefore odometry is not suited
to single-handedly solve the localization problem. But, as we will see in Section 3.2, odometry
data can be used as input for more complex localization algorithms.

3.1.2 Belief

In a world of noisy sensors, error prone actuators and ever changing environmental conditions,
uncertainty is the only real constant. Not only do we have to take into account the uncertainty
inherent in the pose calculated either by odometry or a more advanced localization technique,
but sometimes we even get several poses as output of a localization algorithm, each with a certain
probability of being the correct pose.

What a robot knows about the state (e.g. its pose) of its environment, is reflected by its belief.
The state of the environment can usually not be measured directly. Every robot most definitely
has a pose relative to some coordinate system, but usually it is not capable to measure this
pose directly and therefore does not ‘know’ its pose. Instead of measuring a state directly, the
robot computes it from collected data by inference. Therefore we have to differentiate between
two concepts: The true state present in the environment and the robot’s belief in this specific
state.

In the probabilistic approach, which this thesis is based on, beliefs are represented through
conditional probability distributions which assign probabilities to any possible hypothesis with
regard to the true state. The posterior probabilities over state variables, represented by the
belief distribution, are dependent on available data. The belief over a state variable x at some
time t is denoted by bel(xt). The belief is dependent on two variables or data sources. The first
one is z which stands for the measurements of the robot. Additionally u describes the control
information that the robot has received. The complete formula for the posterior is given in
Equation (2).

bel(xt) = p(xt|z1:t, u1:t) (2)

Equation (2) illustrates that the belief depends on all measurements and controls of the robot
up to the moment of belief calculation. This is a quite undesirable property which can be
overcome. It is possible to keep a limited history of measurements and controls to use for
computation. In practice, this undesirable property is overcome by incorporating the previous
belief in the calculation, using it to compute the current belief with just the most recent control
and measurement. This works because all previous controls and measurements are already
incorporated in the previous belief. Please consult the chapter Recursive State Estimation in
[Thrun, Burgard, Fox 06] for comprehensive information on this topic.
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3.2 Particle Filter

In this section I will provide detailed information on a nonparametric implementation of the
Bayes filter, the so-called particle filter. Before engaging in the operating mode and algorithms
of the particle filter, we will explore some basic properties of the underlying technique: the Bayes
filter. As the particle filter is a nonparametric implementation of the Bayes filter, information
on the basic concept will be useful when examining its nonparametric implementation.

3.2.1 The Basics

A Bayes filter is a probabilistic technique which allows us to recursively estimate an unknown
probability density function, therefore this technique is also known as recursive Bayesian esti-
mation. Bayes filters rely on mathematical models and continuous measurements to estimate
the PDF.

“A Bayes filter is an algorithm used in computer science for calculating the prob-
abilities of multiple beliefs to allow a robot to infer its position and orientation.
Essentially, Bayes filters allow robots to continuously update their most likely posi-
tion within a coordinate system, based on the most recently acquired sensor data.
This is a recursive algorithm. It consists of two parts: prediction and innovation. If
the variables are linear and Gauss-distributed the Bayes filter becomes equal to the
Kalman filter.”6

Of course Bayes filters cannot only be used to estimate a robot’s position and orientation (which
together are called the pose), but any state variable. As this document deals with localization
and mapping, the pose is the logical prime example of a state and will be used as such throughout
the thesis.

The Bayes filter algorithm accomplishes the calculation of the posterior belief from the previous
belief and the most current control and measurement data.

1: Bayes filter(bel(xt−1), ut, zt):
2: for all xt do
3: bel(xt) =

∫
p(xt|ut, xt−1) bel(xt−1) dxt−1

4: bel(xt) = η p(zt|xt) bel(xt)
5: end for
6: return bel(xt)

Table 1: Bayes filter algorithm, [Thrun, Burgard, Fox 06]

The basic algorithm of the Bayes filter is given in Table 1. The algorithm input consists of the
belief at time t− 1 (bel(xt−1)) and the most recent controls (u) and measurements (z) at time t.
It computes the current belief bel(xt) from the previous one bel(xt−1), which makes the Bayes
Filter a recursive algorithm.

The Bayes filter is made up of two central steps. The so-called control update or prediction step
can be found in Line 3. It uses the previous belief and most recent control ut to calculate a

6http://en.wikipedia.org/wiki/Bayes filter - 01.12.2010
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belief over the state xt. The belief obtained is the integral of the product of two probability
distributions, bel(xt−1) and the probability that control ut introduces a change from xt−1 to xt.
In other words this step predicts the probability p(xt|ut, xt−1) of reaching state xt from xt−1
by executing the control ut. Line 4 is called measurement update and it is quite obvious why.
It multiplies the result of the prediction step ( bel(xt)) with the probability of measurement zt
being observed at state xt. You might ask yourself why there is an additional component (η)
present in Line 4. The problem is, that the result of the calculation in Line 4 is generally not
a valid probability as it may not integrate to 1. Therefore we introduce η as a normalization
constant to ensure that the result bel(xt) will integrate to 1 and therefore is a probability.

As this is a recursive algorithm, we need an initial belief at time t = 0. There are 2 possible
ways to initialize bel(x0):

If the value of x0 is measurable or known, then we should initialize bel(x0) so that the probability
of the correct x0 is 1 but 0 everywhere else. If x0 is unknown, then bel(x0) should be initialized
as a uniform distribution over the whole domain of x0, which means that every possible value of
x0 has the same probability.

The Bayes filter, as defined in Table 1, can only be used for very simple estimation problems.
This is due to mathematical limitations in the algorithm. To be more precise, we need to be able
to carry out the integration and the multiplication in Lines 3 and 4 of Table 1 in closed form. To
be able to do that, we can restrict the complexity of the problem or work with finite state spaces
in order to make the integral in Line 3 a finite sum. To overcome these and other limitations,
we will now focus on a nonparametric Bayes filter implementation, the particle filter.

3.2.2 Particle Filter - A Nonparametric Bayes Filter Implementation
p(y)

y

p(y)
Samples

x

y=
g(

x)

Function g(x)

x

p(
x)

p(x)
Samples

Figure 4.3 The “particle” representation used by particle filters. The lower right
graph shows samples drawn from a Gaussian random variable,X . These samples are
passed through the nonlinear function shown in the upper right graph. The resulting
samples are distributed according to the random variable Y .

Figure 5: Particle representation of a PDF, [Thrun, Burgard, Fox 06]

As mentioned before, the particle filter is a nonparametric implementation of the Bayes filter. The
basic idea behind this technique is to approximate the posterior distribution by a finite number
of so-called particles, which are samples drawn from the same posterior bel(xt). See Figure 5 for
an illustration of this technique. The advantage of this nonparametric approximation technique
is that it is able to represent a much wider range of probability distributions than parametric
techniques, for example Gaussian distributions.

x
[m]
t = (x, y, θ)T (3)

Before we dive into the inner workings of the particle filter, let us take a closer look at the
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particles used to approximate the posterior. The domain of this posterior is the robot’s pose.
Therefore the particles used to approximate this posterior have to be from this domain as well.
The formal definition of particles can be found in Equation (3).

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t (4)

The set of particles is defined in Equation (4). Each of the particles represents a hypothesis for
the true state at time t. How many particles the set contains is denoted by M , which is usually
quite a large number. As we want to approximate the belief bel(xt) through the use of these
particles, the more particles we use (larger M) the better the approximation will be but at the
same time more particles lead to longer computation times. Not all state hypotheses are equally
likely to be included in Xt. Their likelihood of inclusion is proportional to their Bayes filter
posterior, which is given in Equation (5).

x
[m]
t ∼ p(xt|z1:t, u1:t) (5)

This posterior indicates how probable it is that xt is the true state. As you can see, the resulting
probability is dependent on all previous controls (u1:t) and measurements (z1:t). This has the
consequence that, the more samples are located in a subregion of the space of all possible states,
the more likely it is that the true state is also located in this region. To be precise, the property
given in Equation (5) only holds if M asymptotically approaches∞. Working with almost infinite
sets would be computationally unfeasible, therefore we will use finite sets of particles. Finite sets
of particles are drawn from slightly different distributions but in practice the differences are not
noticeable as long as a sufficient number of particles is used.

Like all Bayes filters, the particle filter is a recursive technique. This means that the current
belief bel(xt) is calculated from the previous belief bel(xt−1). As the particle filter represents
the belief through a set of particles, this naturally implies that the current set of particles Xt is
computed from the previous set Xt−1. Additional to Xt−1 the particle filter needs the current
controls ut and measurements zt as input for its calculations. A basic algorithm for the particle
filter can be found in Table 2.

1: Particle filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut, x[m]

t−1)

5: w
[m]
t = p(zt|x[m]

t )

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

Table 2: Particle filter algorithm, [Thrun, Burgard, Fox 06]

The particle filter algorithm requires three input parameters to compute the current particle set:
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the particle set Xt−1 which was calculated in the previous time step, the current controls ut and
measurements zt. The algorithm consists of two for loops which basically split the algorithm into
two parts. At first an extended temporary particle set X̄t is constructed. It is called extended
because it contains not only particles but also their respective importance-factors or weights.
After this set has been constructed, the algorithm iterates through all the particles in the input
set Xt−1 and uses each of them as a starting point to calculate a particle for the temporary set.
The first part is explained in detail below:

1. In Line 4 a so-called hypothetical state is generated. As you can see, this state is dependent
on the previous particle at the particular indexm and on the controls the robot has received.

Basically this line takes into account where the robot was before (x
[m]
t−1) and what it has

done since then (ut). Instead of deterministically calculating where the robot is now,
uncertainty is taken into account by sampling from a probability distribution. Please refer
to Section 3.2.3 where you can find detailed information on this step.

2. Line 5 calculates an importance factor, or weight, w for each particle. This importance fac-
tor equals the probability that the measurement zt has been observed under state (particle)

x
[m]
t , so naturally w can only be a value between, and including, 0 and 1. For more infor-

mation on this step, please refer to Section 3.2.4.

3. In Line 6 the weighed particles are appended to the temporary extended particle set. Once
all particles of Xt−1 have been considered, the temporary set of weighed particles represents
an approximation of the Bayes filter posterior bel(xt).

After the first loop has been executed, the real point of the particle filter comes into play:
resampling or importance sampling. This step, executed in Lines 8 to 11 in Table 2, generates
the resulting particle set Xt which is the same size as X̄t. In Line 9 the algorithm draws (with
replacement) M particles from the temporary set. The probability to draw a certain particle
from the set is given by its importance factor. Particles are drawn with replacement, this means
that it is possible to draw the same particle several times. This causes the resulting particle set to
include several duplicate particles, but more importantly this step leads to omission of particles
with a low importance factor. In short this means that the resulting set contains more particles
with high weights and less particles with low weights. This means that less particles end up
in regions with low posterior probability. This leads to the situation that the resulting particle
set consists mostly of the particles with a high weight or, in other words, the most probable
‘true’ particles. The resampling step can be compared to the process of evolution where only the
strongest and best are able to survive (survival of the fittest).

One topic which has not yet been discussed is the question of particle initialization or, in other
words, what particles does the first set contain before the particle filter is executed the first time?
Basically there are two options:

1. Initialize all particles with the known starting pose of the robot. This can be either x
[m]
t =

(0, 0, 0)T if the basis for initialization is odometry information, or the absolute coordinates

and rotation in the environment, for example x
[m]
t = (−12.334, 5.329, 0.341)T

2. Draw random particles from the state space. A particle is a hypothesis of the true pose
at time t. As, in the beginning, we know nothing about the location of the robot, it is
only logical to randomly initialize particles. The first particle set will therefore contain
particles that represent random poses at random locations. The particle filter‘s resampling
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technique (Lines 8-11 in Table 2) will, little by little, eliminate the bad particles and keep
the good ones. The only disadvantage to the first initialization technique is that it might
take a little while until the inaccurate particles are removed from the set.

The particle filter algorithm is quite intuitive, but until now two lines are still not illustrated
in full detail. It might not be absolutely clear how to calculate the hypothetical state in Line
4 and the importance factor in Line 5, therefore I will discuss them in detail in the next two
sections.

3.2.3 Odometry Motion Model

In order to calculate the hypothetical state in Line 4 of Table 2, we need to know about the
influence of control data on the state (in our case the pose) of the robot. There are many
different models that can be used. In my opinion the most intuitive and easy to use model
is the so-called Odometry Motion Model. This model uses odometry measurements instead of
real control information to model the motion of the robot. Real control information would be
data which directly controls the robot, for example instructions for wheel velocity or steering
angles. It might be surprising that modeling robot motion with error-prone odometry data is
usually more accurate than modeling it with, for example, velocity information. This is due to
the fact that, when measured at small enough intervals, the difference between two consecutive
odometry measurements is very close to the difference between the true poses in reality. However,
one problem with the odometry model is that data can only be acquired in retrospect, after the
robot has already moved. This property has no influence whatsoever on the usability of the
odometry motion model for localization and mapping, but keep in mind that it makes this model
unusable for accurate motion planning and control.

Before we can dive into the algorithm of the odometry motion model, we first need to define the
format and properties of our control data. Remember that the correct pose of our robot at time
t is defined by the random variable xt. The robot’s odometry estimates or approximates this
pose. Due to the approximate nature of odometry calculations and the uncertainty inherent in all
(odometry-)sensor measurements, we cannot define a deterministic transformation between the
odometry pose and real world coordinates. Instead we use two consecutive odometry measure-
ments, x̄t−1 = (x̄, ȳ, θ̄)T and x̄t = (x̄′, ȳ′, θ̄′)T , to estimate the robot’s relative motion from true
pose xt−1 to pose xt. As indicated by the indices of x, this motion takes place in time interval
(t − 1, t]. The logic behind this estimation is, that the difference between the odometry poses
x̄t−1 and x̄t will be very close to the difference between the true poses xt−1 and xt, especially if
the time interval is very small. Therefore we can use this data to calculate an approximated xt
from a known, usually also approximated, xt−1.

An important property of any motion defined by two coordinates from consecutive time steps is,
that this motion can be approximated by two rotations and one translation. These three steps
are illustrated in Figure 6. At first, we rotate (δrot1) the robot into the direction of the new
coordinates, then it travels (δtrans) in a straight line until the coordinates are reached. Finally
the robot rotates again (δrot2) until it reaches the desired final heading. Every movement from
one pose to another can be performed in this way and even if the movement of the robot was
not performed by executing these three steps, then it can still be approximated by them. The
odometry motion model sampling algorithm in Table 3 makes use of this property in order to
estimate the real pose of the robot. Keep in mind that all rotations and translations of the robot
are noisy, therefore we have to ‘add’ some uncertainty to our calculations. This is accomplished
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δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is ap-
proximated by a rotation δrot1, followed by a translation δtrans and a second rotation
δrot2. The turns and translations are noisy.

Figure 6: Odometry motion approximation, [Thrun, Burgard, Fox 06]

by the error parameters α1 to α4, the values of which have to be adjusted to the properties of
the robot in question. See Section 3.2.5 for details about these parameters.

Figure 7 shows an example of a circular motion being approximated by several particles. The
particles have been calculated by the algorithm in Table 3, making use of the principle illus-
trated in Figure 6 and the three sub-figures of Figure 7 show the effects of different values for
translational and rotational error terms used to model the noise inherent in every robot mo-
tion. This should provide a good example of the influence of different error parameters on the
particles. Figure 7a illustrates a particle distribution for typical error parameters. The form of
the particle cloud shows that the translational error is lower than the rotational error. In the
direction of translation, the particles are quite close to the actual position whereas they spread
out considerably to the left and the right, caused by the larger rotational error. In Figure 7b
the translational error is unusually large while the rotational error is abnormally low compared
to the typical situation. In Figure 7c it is the rotational error which has been exaggerated while
the translational error is exceptionally low.

(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as
in Figure 5.3. Each diagram shows 500 samples.

Figure 7: Sampling from the odometry motion model, [Thrun, Burgard, Fox 06]

The algorithm in Table 3 implements the functionality to sample from the distribution p(xt|ut, xt−1),
which is required in Line 4 of Table 2. It accepts control information ut = (x̄t, x̄t−1)T , consisting
of two consecutive odometry measurements (x̄t−1 = (x̄, ȳ, θ̄), x̄t = (x̄′, ȳ′, θ̄′)), and the pose at
the previous time step xt−1 = (x, y, θ)T as its input. The output of the algorithm is a random
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pose xt, distributed according to p(xt|ut, xt−1) and calculated using the approximation principle
presented in Figure 6. Every particle in Figure 7 represents one ‘random’ pose as calculated by
the algorithm in Table 3.

1: sample motion model odometry(ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
3: δtrans =

√
(x̄− x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

6: δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

7: δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans)

8: x′ = x+ δ̂trans cos(θ + δ̂rot1)

9: y′ = y + δ̂trans sin(θ + δ̂rot1)

10: θ′ = θ + δ̂rot1 + δ̂rot2

11: return xt = (x′, y′, θ′)T

Table 3: Odometry motion model sampling algorithm, [Thrun, Burgard, Fox 06]

The sampling algorithm in Table 3 consists of 3 main parts:

1. In Lines 2 to 4, the three components necessary for the approximation of the actual move-
ment, are calculated from the two consecutive odometry poses.

2. Lines 5 to 7 incorporate uncertainty into the calculations performed in the previous lines.
They take the deterministically calculated values and add a random error. This random
error is generated by the function sample(b2). This function samples a random number
from a zero-centered normal distribution with variance b2 or, in other words, standard
deviation b. As you can see in Lines 5 to 7, the value of b is dependent on the specified error
parameters α1 to α4. Therefore the amount of randomly added error/noise corresponds
to the noisiness of the robot’s active components. Information on how to define these
parameters correctly can be found in Section 3.2.5.

3. Lines 8 to 10 calculate the new pose by combining the previous pose, xt−1 = (x, y, θ)T

with the three error adjusted movement components. Line 11 defines the return value of
the algorithm: the new pose.

3.2.4 Particle Weights

In order for the particle filter to execute the crucial resampling step, a weight or importance factor
has to be calculated for every particle. This factor equals the probability of the measurement
zt being observed from the location defined by the particle/pose xt, therefore w can only be a
value between, and including, zero and one. Equation (6) formally defines this property of the
importance factor:
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wt = p(zt|xt) (6)

In order to calculate the importance factor of a certain particle we need a fairly accurate map.
For now, we will assume that such a map is available. Please consult Section 1.1 for more
information and justification of this decision. Please note that the maps discussed in this section
are occupancy grid maps as described in Section 4.2, so it might be useful to consult this section
if one has no prior knowledge about this type of map. Although the technique for calculating
the importance factor does not depend on a certain kind of range sensor, the illustrations and
explanations in this chapter are based on laser scanners as described in Section 4.2.2.

(a) Obstacles and robot (b) Sensor measurement beams

Figure 8: Occupancy grid map with measurement beams

Figure 8a shows a simple occupancy grid map. The cell representing the real pose of the robot
is marked in red while the black cells represent occupied space. Occupancy grid maps are
defined so that the greyscale color value of a cell directly reflects the likelihood that this cell
is occupied by an obstacle, more precisely dark cells have high occupational likelihoods while
lightly colored cells exhibit a low likelihood of occupation. Figure 8b shows the same situation
as 8a and additionally illustrates five laser scanner measurements. As you can see, four of those
measurements (marked blue) hit an obstacle therefore correctly measuring the distance to it. The
fifth measurement beam (red) does not hit an obstacle, which means that the reported distance
will be the scanner’s maximum range. Measurements like this, which do not hit an obstacle,
must be found and excluded from the set of measurements before calculating the importance
factor. The reason for this is simple: we want to rate a pose based on the measured obstacles.
If a measurement did not hit an obstacle, it does not contain any additional information about
the obstacles on the map, therefore we can safely discard them. In the special case, where
the environment features big open spaces with no obstacles within the sensors maximum range,
this method of weighing might not work satisfactory. In this case, all measurements would be
discarded, making the range sensor useless. In this case other means would have to be found, for
example analysis of pictures gathered by onboard cameras or sensors with a longer range.
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(a) Measurements from real pose (b) Measurements from particle pose (red)

Figure 9: Importance factor calculation

Figure 9a shows the robot’s real pose with only valid measurements, the invalid ones have been
removed from the set. This results in the situation that every laser measurement in the set
specifies the distance to an existing obstacle. This set will then be used in cooperation with any
arbitrary pose/particle to calculate the probability that these measurements were made from the
pose specified by the particle. If the particle is very close to the true pose, then all or most of
the measurements in the set will still be located in the same correct cell as if the real pose was
used for calculation, basically identical to Figure 9a. On the other hand if the particle deviates a
great deal from the true pose, then the projected measurements will be located in different cells,
as illustrated in Figure 9b where the red cell marks the particle pose and the orange cell the real
pose. Please keep in mind that poses that are very close together will mostly be located in the
same cell of the occupancy grid as this grid is a discrete representation of the environment.

In almost every environment there is more free- than occupied space and from this we can reason
that the probability is very high that, opposed to the true pose, not all measurements will be
located in occupied cells if a deviated particle is used as their origin. So the average likelihood
of the measurement cells in the case of an arbitrary particle tends to be lower than in the case of
the true pose or a particle located close to this pose. Therefore we will use this average likelihood
of the measurement cells as an indicator of the probability that a particle is good or not.

Now that we have established the basic technique, let us examine the associated algorithm in
Table 4:

1. Line 2 calculates the grid cell locations of all single measurement values.

2. The loop in Line 3 iterates through all measurement cells and appends their occupational
likelihood value to the set Mzt .

3. In Line 7 the average likelihood w is calculated while it is returned in Line 8.

23



1: weigh particle(xt, zt):

2: Mzt = calculateGridCells(xt, zt)

3: for all cells mi ∈Mzt do
4: wi = occupationalLikelihood(mi)
5: Mzt = Mzt + 〈wi〉
6: end for

7: w = average(Mzt)
8: return w

Table 4: Particle weighing algorithm

3.2.5 Error Parameters

Error parameters are used to incorporate noise and eventual errors of a robot’s active components.
These components, called actuators, are able to perform movements. Examples for actuators are
wheels, grapplers and so on. This section will focus on the error parameters of a robot’s movement
system, in the majority of cases consisting of several actuators, for example wheels. Therefore
the explanatory notes will be tailored to this field of application and especially the algorithm in
Table 3. In this case we have to deal with two distinct kinds of errors.

• The rotational error denotes a robot’s average deviation (in relation to a full rotation) from
the desired amount of rotational movement. If you instruct a robot to rotate a certain
amount and measure the actual amount it rotates, then you will find a difference between
the two values. The average of this difference, calculated over many measurements, gives
you an indication of how precise the robot is when executing rotational movements.

• The translational error denotes a robot’s average deviation (in relation to a translation of
1 meter) from the desired amount of translational movement. We measure this error the
same way as the rotational one. It indicates a robot’s precision in executing straight line
movements (translations).

As mentioned before, both error parameters have to reflect the amount of error in relation to
either a full 360 degree rotation or, in case of the translational error, to a translation of 1 meter.
Therefore these parameters can only be values between zero and one, which are equivalent to 0%
and 100% of the performed movement.

The algorithm illustrated in Table 3, like many others in this thesis, is taken from the book
Probabilistic Robotics ([Thrun, Burgard, Fox 06]). Unfortunately this book contains no expla-
nation for the error parameters α1 to α4, nor are there any details on their individual roles.
Therefore we have to take a look at the algorithm shown in Table 3 to find out more about them.
As you can see in Lines 5 to 7 of said algorithm, α1 and α4 are only related to the rotational
components, therefore we can safely assume that they model the rotational error of the robot.
It is also obvious that α2 and α3 model the translational error of the robot.

After testing different error parameter values, some calculated from measurements and some
chosen randomly, I can conclude that the precise value of the parameter is not extremely impor-
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tant, as long as some error is present. Of course large error parameters lead to fast deviation
of the particles from the true pose while small ones slow down this deviation. This difference
can almost be neglected if the resampling process in the particle filter is active, as resampling
removes the worst particles and keeps the good ones in the set. So even if you specify error terms
that are way too large, the resampling step will take care of extremely deviated particles.

As the exact value of the error parameters does not have a huge effect on the functionality of
the particle filter, and it seems to be better to use worst case error terms and let resampling
handle the deviated particles, I decided to use the measured worst-case error terms. Therefore
the parameters for the USARSim robot P2AT, the model used during this project, were chosen
as follows:

• Rotational parameters: α1 = α4 = 0.05

• Translational parameters: α2 = α3 = 0.1

These values lead to a good behavior of the particle filter which can be observed if you execute
the algorithm shown in Table 2 without the resampling step and monitor the output. See Figure
10 for an illustration of the particles generated using the specified error parameters.
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Figure 10: In each of the subfigures one can see the robots position, indicated by the big red circle,
and its orientation, where the direction it is facing is indicated by the line with the rectangle at its end.
The particles are indicated by a single dot. Note that only the location of the particles but not their
orientation is illustrated in the subfigures.
Figure 10a shows the robot’s position and orientation at the start position as returned by the Ground-
Truth sensor. As all particles are initialized with this start position, all of them are located there and
therefore there is only a single dot (particle) visible. In Figure 10b you can see that after the robot has
traveled along a straight line, the particles begin to deviate from the robot’s real position, in the direction
of translation as well as to the sides of the robot in a circular fashion. This illustrates the influence of
the error parameters. Figure 10c and d show the particles behavior after the robot has executed a
small rotation to the right. While 10c shows the state directly after the rotation, 10d illustrates how
the particles continue to follow their own trajectories, caused by the addition of ‘random’ noise to the
angle of orientation of these particles. Figure 10e shows the state after the robot has rotated about 180
degrees and has travelled a short distance in the opposite direction as before. Figure 10f illustrates the
final state after the robot has continued to travel in a constant direction.
Notice that in the end (Figure 10f) the particle cloud is spread out over a very big area, but some particles
are still very close to the real position of the robot. These would be the particles that get reselected very
often in the particle filters resampling step. The particles that are located very far from the robots real
position have less chance of being re-selected for the output particle set and therefore would disappear
over time. This also shows the importance of resampling in the particle filter, as without this step the
‘incorrect’ particles would stay in the set indefinitely and would have negative influence on the robot‘s
belief.
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4 Mapping

“A map is a visual representation of an area - a symbolic depiction highlighting
relationships between elements of that space such as objects, regions, and themes”7

Mapping is the process in which selected features of the environment are extracted, through
sensor measurements, and stored in a data structure. This data structure is called a map. Such
a map can represent the environment either three- or two-dimensionally. Although a three-
dimensional map represents the environment with increased accuracy, two-dimensional maps are
easier and more intuitive to generate and evaluate. Two-dimensional maps should be sufficiently
accurate for most cases. But, for example, in environments where there are several navigable
planes above each other (think of a skyscraper with its many levels), the use of a three-dimensional
map can be beneficial.

In this thesis we will use two-dimensional maps, as the encountered environments can be accu-
rately described by this type. To be more precise, I will make use of so-called Occupancy Grid
Maps. For more information on this map type and the associated mapping technique, please
consult Section 4.2.

4.1 Challenges

Generating maps with robots is not an easy problem to solve. This is mainly due to two prop-
erties:

Hypothesis Space: The hypothesis space for maps, in other words the space of all possible
maps, is incredibly big. Even if we use discrete techniques, like an occupancy grid, to
approximate this space, a map can easily consist of 1015 variables or more. This property
makes it difficult to calculate accurate probabilistic maps.

Chicken and Egg: Constructing a map of the robot’s environment is relatively easy under the
precondition that the robot’s pose is known, as we will see in Section 4.2. It is also relatively
easy to determine the robot’s pose if a map of the environment is available, as we have
seen in Section 3, especially 3.2.4. When neither a map exists nor the pose is known, that‘s
when the process becomes tricky, as the robot has to construct a map and localize itself
within this map at the same time. For now we will assume the poses to be known, due to
the circumstances discussed in Section 1.1 .

Additionally to the properties mentioned above, other properties of the robot and the en-
vironment have an effect on the difficulty or ‘hardness’ of the respective mapping problem.
[Thrun, Burgard, Fox 06] mentions and describes the four most important factors:

Size. The larger the environment relative to the robot’s perceptual range, the more
difficult it is to acquire a map.

Noise in perception and actuation. If robot sensors and actuators were noise-
free, mapping would be a simple problem. The larger the noise, the more difficult
the problem.

7http://en.wikipedia.org/wiki/Map - 01.02.2010

27



Perceptual ambiguity. The more frequently different places look alike, the more
difficult it is to establish correspondence between different locations traversed
at different points in time.

Cycles. Cycles in the environment are particularly difficult to map. If a robot just
goes up and down a corridor, it can correct odometry errors incrementally when
coming back. Cycles make robots return via different paths, and when closing
a cycle the accumulated odometric error can be huge!

Overcoming these challenges is not an easy task. This is especially true for perceptual ambiguity
and environmental cycles. As these two challenges are quite hard to overcome reliably, this thesis
will focus on size and noise. Only once those obstacles have been overcome, can the other two
be tackled.

4.2 Occupancy Grid Mapping

An occupancy grid is a type of map and in this section a way to construct such a map will be
illustrated. The mathematical foundations in this section are based on [Thrun, Burgard, Fox 06]
Most occupancy grid maps used in practice, as well as the ones that will be used in this thesis,
are 2-D floor plan maps. These maps represent a slice of the Three-dimensional world, much like
a constructional ground plan represents a single story of a skyscraper. Occupancy grids can be
generalized to three dimensions, but the computational complexity is very high and the practical
gains are not worth the expenses in most applications.

An occupancy grid map can be described as a rasterized data-structure, similar to a bitmap,
where each cell/pixel possesses a certain likelihood of occupation. This value can range from
zero to one and reflects the probability that the area represented by this cell is occupied. When
visualizing an occupancy grid, the convention is to use greyscale images and let the occupational-
likelihood define the greyscale value of the corresponding pixel. Pixels/cells with a high likelihood
of occupation are darker than those with lower likelihoods. This allows easy and intuitive inter-
pretation of such maps. Please refer to Figure 11 for a comparison between a ground plan8 and
the generated occupancy grid map.

The goal of any occupancy grid mapping algorithm is to compute the posterior over maps de-
pending on available data, as illustrated in Equation (7).

p(m | z1:t, x1:t) (7)

The variables used in this chapter follow the same convention as in previous chapters, m stands
for the map while z1:t denominates the set of all measurements and x1:t the set of all of the
robot’s poses up to time t. The set of all poses x1:t can also be called the path of the robot. As
the path of the robot is known, the controls u1:t, which are responsible for the path, contain no
additional useful information and are therefore omitted in this section.

Occupancy grid maps approximate the continuous space of locations. This is done by first
partitioning the environment into finitely many grid cells, where mi is the cell with index i.

8Ground plan and UT2004 map obtained from:
http://kos.informatik.uni-osnabrueck.de/download/UOSSim/UOSSim2004.html - 10.01.2011
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(a) Ground plan8 (b) Map, partially explored

Figure 11: Comparison of ground plan and occupancy grid map of an office environment

m = {mi} (8)

Each of these cells mi has an occupational probability value p(mi) attached to it. This value
defines how probable it is that the part of the environment which is represented by this cell, is
occupied by an obstacle. As with all probabilities this value can only range from 0 to 1.
The high-dimensionality of the posterior in Equation (7) is a problem. A sufficiently detailed
occupancy grid map may consist of several thousand or even tens of thousands of individual
cells. If we assume that each grid cell can only have one of two values (occupied or free) then
the number of different maps that can be represented by a map with 10000 cells equals 210000.
Therefore computing a posterior probability for every possible map is not a feasible approach.
As the occupancy grid map already partitions the continuous environment into separated smaller
areas, we can break down the problem of estimating the whole map into many smaller problems.
The new goal is to estimate the occupational probability of each individual cell.

p(mi | z1:t, x1:t) (9)

This is convenient as it gets rid of the high-dimensional posterior present in Equation (7), but it
also introduces a problem: Possible dependencies between neighboring cells cannot be represented
so the posterior over a map is approximated as the product of the probabilities of all cells of this
map.
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p(m | z1:t, x1:t) =
∏
i

p(mi | z1:t, x1:t) (10)

Now that we have established the theoretical foundations of occupancy grids, it is time to take
a look at the algorithm in Table 5 with which such maps can be generated. The basic func-
tionality of this algorithm is quite simple: it looks at every cell and determines if this cell is in
the perceptual field of the current measurement zt, which means that zt contains information
about the occupancy of this cell. Cells that are in the perceptual field have their probability
values updated by the result of the function inverse sensor model while the probability value
of other cells remains unchanged. The function inverse sensor model implements the inverse
measurement model p(mi | zt, xt) and therefore calculates the likelihood of occupation of cell
mi dependent on the robot’s current measurement data and pose. Please note that the func-
tion inverse sensor model, with special focus on laser sensors, will be closely examined in
Section 4.2.2. Another noteworthy property of this algorithm is that it uses the log odds rep-
resentation (lt,i) to define the likelihood of occupancy. This enables the algorithm, to not only
consider a finite number of previous occupational likelihoods, but all of them, in order to calcu-
late the probability of occupation at the current time. Please consult Section 4.2.1 for detailed
information on this representation.

1: Occupancy grid mapping({lt−1,i}, xt, zt):
2: for all cells mi do
3: if mi in the perceptual field of zt then
4: lt,i = lt−1,i + inverse sensor model(mi, xt, zt)− l0
5: else
6: lt,i = lt−1,i
7: end if
8: end for
9: return {lt,i}

Table 5: Basic occupancy grid mapping algorithm, [Thrun, Burgard, Fox 06]

4.2.1 Log Odds Ratio

By making use of the so-called Log Odds Ratio to update the occupational likelihoods of cells
in an occupancy grid map, one is not confined to using a finite number of previous likelihoods
in order to calculate the absolute value. By using the log odds representation, one can use the
newly acquired occupational likelihood to update the previous value. This means that only one
value, the current one, has to be stored. This stored value incorporates all earlier updates and
therefore is a more complete representation of the environment than could be achieved by storing
a big but finite number of previous values and calculating some kind of average.

The following formal definitions use the notation from Table 5 in order to make the explanations
more intuitive. Table 5 is taken from [Thrun, Burgard, Fox 06], therefore most of the formal
definitions in this chapter are also from this particular book.

log odds ratio(p(x)) = log

(
p(x)

1− p(x)

)
(11)
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Equation (11) defines the log odds ratio. Now it should also become clear why it is called a ratio,
because it defines the ratio between the probability (p) and the complementary probability (1−p)
of the same event x. In order to calculate the probability of x from its log odds representation,
Equation (12) can be used.

p(x) = 1− 1

1 + exp (x)
(12)

Now that we know the basic formalisms of the log odds ratio, let us examine the definitions of
the variables used in Table 5:

lt,i = log
p(mi | z1:t, x1:t)

1− p(mi | z1:t, x1:t)
(13)

l0 = log
p(mi = 1)

p(mi = 0)
= log

p(mi)

1− p(mi)
(14)

inverse sensor model(mi, xt, zt) = log
p(mi | zt, xt)

1− p(mi | zt, xt)
(15)

As illustrated in Equation (15), the value returned by the function inverse sensor model(mi, xt, zt)
in Table 5 must of course be the log odds representation of the calculated probability. Remember
that the update functions in Lines 7 and 9 of Table 6, which basically implement Line 4 of Table
5, should of course also use the this representation when updating the occupational likelihoods
of cells.

4.2.2 Inverse Laser Sensor Model

The function inverse sensor model in Line 4 of Table 5 has the task to calculate the occu-
pational probability of a certain cell mi dependent on the current measurements zt and current
pose xt. Please note that because of the facts illustrated in Section 1.1, we will assume to have
knowledge about the current pose of the robot. Conveniently USARSim, as opposed to reality,
provides us with such an oracle in the form of the so-called ‘Ground Truth Sensor’. This sensor
can be queried by using the toolbox function getGroundTruth and it returns the precise pose of
the robot free from any noise or error.

You might ask yourself why this function is called an inverse measurement model. Remember
that the output of a range sensor consists of one or more single numerical values indicating the
distance from the sensor to an obstacle. This value is of course dependent on the environment in
which the measurement was taken, the robot’s position within this environment and the way the
sensor measures the distance. This means we can extract knowledge (the measurements) from
the environment by using the sensor. This process also works the other way around (inverse),
which means we can extract knowledge about the environment (the map) from the measurements
through the sensor. Notice that in both cases the sensor is used to extract knowledge. In the
first case it is used to conduct the measurements while its role in the second case is a little
different. To be able to draw conclusions about the environment from sensor measurements,
we must know exactly how the sensor works. The way the sensor works can then be modeled
by software, this is called the sensor model or measurement model. This model does not only
allow for simulation of the sensor, but as it defines how measurements arise, it can also be
used to reconstruct the environment from these values. How this process works in detail will be
illustrated in this section.
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Figure 12: Robot in office environment

For this process to work reliably, the available sensor has to be modeled as precise and accurate
as possible. For this thesis I will make use of a so-called Laser Scanner. This is a range sensor
which emits a laser-beam, measures the time it takes the laser to reach an obstacle and uses
it to calculate the distance to the obstacle. Laser scanners usually make use of more than one
laser-beam to gain a broadened field-of-view (FOV). Our sensor uses 181 laser beams to take
181 measurements, angle-wise separated by 1◦, which leads to a FOV of 180◦. A visualization
of such a measurement can be found in Figure 13a, where each measurement is represented by
a line between its point of origin (sensor) and the measured distance factoring in the respective
angle of the laser-beam. Please compare with Figure 12, which shows the environment and the
robot’s position at the time of the measurement.

(a) 181 Measurements (b) Measurement Contour

Figure 13: Visualized laser sensor measurements, sensor-position = (0,0)
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Figure 13a also illustrates the first step in processing the measurements: calculating the absolute
world coordinates of the measurements. What information can we extract from a single distance
value? The distance to an obstacle from the sensor. So if we know the world coordinates of the
measurement, we know the coordinates of the obstacle. Additionally we know that the space
between the sensor and the measurement is free from obstacles. This is due to the fact that
laser scanners cast a ray of light to determine the distance to an obstacle. If the line that the
light-ray has traveled were occupied at some point, then the measured distance would be lower,
but as this is not the case, this space has to be free. This property of this sensor is illustrated
in Figure 13b. Note that in this illustration, different colors indicate different likelihoods of
occupation. Following the principle of occupancy grid maps darker areas are more likely to be
occupied than light-colored areas.

Remember, that for each scan, a laser scanner returns many individual distance values. To
calculate the coordinates of these distances relative to the sensor itself, we need to know only
the angle, relative to the sensor, at which the measurement was taken. Provided the sensors
vertical measurement angle is axis-parallel, we can compute the x- and x-coordinates by using
the horizontal measurement angle in two simple formulas:

x = distance× cos(angle) (16)

y = distance× sin(angle) (17)

In order to compute the absolute coordinates of the measurements, we need to know where
the sensor is mounted on the robot and in which direction it is facing relative to the robot.
This information has to be combined with the current pose of the robot and the result is the
absolute world-coordinate of each measurement. Now it is time to transfer the knowledge about
measurement-coordinates and occupied/non-occupied space to the map.

Remember that an occupancy grid map is a finegrained grid of individual cells. These cells
partition the continuous space of the environment into small independent areas. A value is
attached to each cell, specifying the likelihood of this area being occupied by an obstacle.
In our case, a laser scanner is used to measure the distances, which it does by emitting a laser-
beam and measuring how long it takes the laser to reach an obstacle. In a more abstract way,
this means the sensor emits a straight line and the length of the line when its path crosses the
first obstacle in its way, is the returned measurement distance.

If we break this behavior down to the absolute basics and keep in mind our goal of updating the
map, this is what it boils down to: Connect two arbitrary cells of the occupancy grid map with
a line. Luckily the wheel does not have to be reinvented, as there exists an algorithm which does
exactly that: the Bresenham Line Algorithm9 illustrated in Figure 14.

This algorithm was developed in 1962 by Jack Bresenham, who was a programmer at IBM at
the time. He first published the algorithm in [Bresenham 65]. The algorithm operates on a
two-dimensional rasterized data-structure, for example a computer display, occupancy grid map
or any other two-dimensional array. It requires two pixels/coordinates as an input and connects
these two coordinates with a line while minimizing the visual effect of so-called Jaggies. Not only
is this algorithm easy to implement and computationally very fast, it also provides an accurate
model of a straight line in a rasterized data structure and is therefore perfectly suited to model
a laser scanner.

9http://en.wikipedia.org/wiki/Bresenham’s line algorithm - 01.02.2011
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Figure 14: Bresenham’s line algorithm

1: inverse laser sensor model(xt, zt):

2: mzt = calculateGridCell(zt)
3: mx′t = calculateSensorGridCell(xt)

4: Pt = bresenham(mx′t ,mzt)
5: Pt = Pt\{mzt}

6: for all cells mi ∈ Pt do
7: updateFree(mi)
8: end for
9: updateOccupied(mzt)

Table 6: Inverse laser sensor model algorithm

Please note that in this algorithm, zt denotes one single measurement value, therefore this
algorithm has to be executed for all values of a laser sensor measurement. Please keep in mind
that the algorithm in Table 6 does not strictly implement the inverse sensor model in Line 4 of
Table 5. The function inverse sensor model in Line 4 of Table 5 calculates the occupational
likelihood for a single cell while the algorithm in Table 6 calculates and updates all cells affected
by a single laser beam at once. The difference in functionality is partly due to the fact that we
use a laser scanner as opposed to the sonar scanners used in [Thrun, Burgard, Fox 06]. Also note
that the functions in Lines 2, 3, 7 and 9 of Table 6 are very implementation specific and will
therefore not be described here. For example implementations of these functions, please consult
the source code accompanying this thesis.

In order to update the map with knowledge from the measurements, the algorithm in Table 6
consists of three main parts:

1. In Lines 2 and 3 the grid cells representing the location of the measurement and the
sensor are calculated. For zt the containing cell is calculated directly from zt‘s world-
coordinates. For xt the procedure becomes a little bit more complicated: As we know, xt
denotes the pose of the robot and the coordinates refer to the center of the robot. The

34



measurements, on the other hand, are obtained by a sensor which is usually not located
exactly at the center of the robot. If we were to assume that xt is the location from where
the laser-beams are emitted, we could end up with the wrong starting cell for calculating
the respective line/laser-beam. Therefore we need to take into account the offset between
robot-center/angle and sensor-location/angle when calculating world-coordinates and grid
cell of xt.

2. Lines 4 and 5 model the laser-beam by calculating the cells of the occupancy grid which
are affected by the laser-beam or, in other words, are necessary to display the line in the
occupancy grid map between the cell mx′t , representing the sensor location and the cell
mzt , representing the coordinates of measurement zt.
In Line 4 Bresenham’s algorithm computes all cells necessary to connect the two input
cells, the result is a set of cells including the start- and end-cell.
In Line 5 the measurement cell mzt is removed from the set Pt. The reason for this is that
a measurement in the area of a particular cell indicates that this cell is occupied, or else
the laser-beam would not have hit an obstacle in this area.

3. Lines 6 to 9 form the final step: updating the occupational likelihood of each affected cell.
The loop iterates through every cell in Pt and updates their likelihoods with the information
that this cell is free. Line 9 makes it also clear why the cell mzt was previously removed
from Pt: because it is the only cell which will be updated as being occupied. Please refer
to Section 4.2.1 for details on updating cell likelihoods.

(a) Single measurement (b) Partially explored

Figure 15: Laser measurements embedded in occupancy grid

The algorithm, if executed for all 181 measurement values returned by our laser sensor, produces
a representation of a measurement‘s contour in the occupancy grid map. Figure 15a shows an
occupancy grid map which was updated with the measurement illustrated in Figure 13. Once
enough measurements have been taken at many different locations, the constructed map provides
a good representation of the whole environment, as can bee seen in Figure 15b.
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4.2.3 Learning Inverse Sensor Models

For the sake of completeness, I would like to mention that inverse measurement models can be
modeled not only by implementing the sensor’s attributes directly in software. It is also possible
to derive such a model through the use of machine learning algorithms. This section will only
provide a short introduction of how to learn measurement models, for more detailed information
please consult Section 9.3 of [Thrun, Burgard, Fox 06].

Keep in mind that we want to compute p(mi|x, z), the occupational likelihood of a single grid
cell mi depending on the robot’s pose x and measurements z.

We could now use a supervised machine learning algorithm to train the software to approximate
this expression. But for any training of learning algorithms, we need a data-set to train with.
Such a set would consist of several value-triplets, each consisting of pose, measurement and
correct occupational likelihood of a cell. Such triplets can be generated by executing four simple
steps as described in [Thrun, Burgard, Fox 06]:

1. Sample a random map m[k]. This map has to be sampled from p(m), which can be repre-
sented by a collection of maps.

2. Sample a pose x
[k]
t within the previously sampled map.

3. Sample a measurement z
[k]
t . This measurement sample has to be dependent on the map and

the robot’s pose within the map, therefore one samples from the distribution p(z|x[k]t ,m[k]).
Please note that this sampling step uses a forward measurement model to simulate the
measurements of the particular sensor.

4. Look up the true occupational likelihood value of the target cell mi in m.

After these four steps have been executed, we end up with one of the desired triplets. In order
to train the software, we use the pose x and the measurements z as the input of the learning
algorithm. The occupational likelihood of mi, denoted as occ(mi), is the target result of the
algorithm. After training a supervised learning algorithm with a sufficient amount of triplets,
the software should be able to reliably approximate the expression p(mi | z1:t, x1:t) for any
random triplet.

It is also possible to use real data acquired by the robot to train the software. In theory, this
would result in more accurate training of the software as the measurement model used in Step
3 can only be an approximation of the real sensor. The big disadvantage to acquiring the data
this way is, that it is more complex to accomplish. In order to collect training data with a real
robot, the robot needs to operate in a known environment with a known map, additionally the
used localization technique has to be very accurate. These requirements are not easy to satisfy,
therefore many applications will use simulated training data, as illustrated above, for training as
the expenses of using real data outweigh the advantages.
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5 Implementation

Up until now, this thesis has focused on illustrating the theoretical background of certain lo-
calization and mapping techniques. However, this theoretical background could not have been
compiled without concurrent implementation, testing and adaptation of the required algorithms.
This section will illustrate the way in which the individual algorithms were encapsulated in func-
tional units and implemented. Challenges that were overcome will be highlighted and interesting
details of the implementation will be examined in order to provide an extensive overview of the
practical implementation of the before mentioned localization and mapping techniques.

As mentioned before, the implementation was completed in the well known technical comput-
ing suite Matlab c©. This application provides the benefit of being able to implement and test
components very quickly and with minimum hassle. The availability of a toolbox, which handles
the communication with USARSim, did not influence the decision to use Matlab c© but came in
handy nonetheless.

The implementation is split into two parts: localization and mapping. Each of these parts works
in isolation and does not rely on the other, please consult Sections 5.3 and 5.4 for implementation
details. Due to the straightforward nature of the problems to be tackled, the design of the software
did not need to be very involved. Each of the two parts consists only of a couple of functions,
no object orientation and no advanced design concepts were required. Please consult the files
accompanying this thesis for the complete source code of this project.

5.1 Start Scripts

To begin execution of either Localization or Mapping, all that needs to be done is to make sure
that USARSim is running on the system and execute the appropriate start script from within
Matlab to kick off the desired process.

Localization: ParticleFilterStartScript.m

Mapping: OGmappingStartScript.m

These scripts are used to add a robot to the simulation and start either the localization- or
mapping-process. As it is outlined in [Mader 10-1], each map used by USARSim has one or
more recommended starting positions. By initializing the robot on one of these recommended
positions has several benefits, the most important being: these spaces are guaranteed to not be
occupied by any obstacles.

In order to find out the coordinates of the recommended start positions one has to send a message
with the following content to USARSim: GETSTARTPOSES. USARSim will then respond by
sending a message which contains all start poses of the current map.

The problem that presented itself, was that the toolbox does not offer any way to send a
GETSTARTPOSES message, or any user defined messages for that matter, therefore a workaround
had to be developed. I wrote a small and simple Matlab class called NetworkInterface which
can connect to a TCP/IP socket, like the one provided by USARSim, and send and receive lines of
plain text. In both start scripts this class is used to connect to USARSim, send GETSTARTPOSES
and receive the response containing the start positions for the current map. After the response
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has been received, the connection to USARSim is closed and NetworkInterface has fulfilled
its purpose.

The next step is to extract the individual start positions from the message and store them for
later use. Then the script constructs a dialog window and populates it with a list of available
robots. This robot list is defined at the beginning of the script and contains only one robot at
the moment. This robot is called P2AT and all implemented algorithms are tailored especially
to this particular model. This means that robot specific information, such as sensor mount
positions, are hard coded in the respective functions. Therefore it does not make a lot of sense
to extend the list with additional robots at the current moment. After a robot has been selected,
the user has to choose the robot’s desired start position from a similar dialog. Of course the user
can only choose one of the previously received start positions, thus making sure that the robot
will be initialized in appropriate surroundings.

After the start position has been selected, the script uses the toolbox’s initializeRobot
function to add the robot to the simulation. Please note that the z-coordinate of the start
position has to be adjusted according to the specific robot you want to use. The z-coordinate of
the position relates to the center of the robot, so if you initialize it with the received value, the
robot might end up submerged in the floor instead standing on its wheels on the floor. Therefore
you have to adjust the start position z-coordinate by decreasing (USARSim uses an inverted
Z-axis) it by half of the robot’s height in order to ensure that the robot is initialized above the
floor.

After the robot has been added to the simulation, the script starts the control interface for the
robot as well as the respective functions to start either Localization or Mapping.

5.2 Control Interface

Figure 16: Robot control interface

In order to be able to execute localization and mapping algorithms, the robot needs to move
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around the environment. As the robot has no will of its own own, we need to tell it what we
want it to do. In advanced applications a robot might exhibit an intent of its own, but as this is
not the case here, we will make use of a simple control interface to move the robot.

As you can see in Figure 16, the interface is fairly straightforward. The slider on the bottom
adjusts the speed of the robot, as you can see it allows to adjustments in the range of 0− 100%
of the robots maximum wheel spin velocity. The buttons labeled ‘Forward’ and ‘Back’ spin
the wheels in the respective direction and the ‘Stop’ button stops all movement. The buttons
‘Left’ and ‘Right’ instruct the robot to turn to the indicated direction. Please note that the
buttons ‘Lights’ and ‘Flip’ are non-functional at the moment. This is due to the same fact that
lead to the need for the class NetworkInterface as explained in Section 5.1: the toolbox‘s
inability to send arbitrary messages to USARSim. The toolbox currently offers no way to switch
a robot’s lights on and off or flip the robot to an upright position, which these, currently non-
functional, buttons were intended to do. As I am sure the functionality to send arbitrary messages
will be included in a future version of the toolbox, the unused buttons remain included in the
interface.

The implementation of this interface consists of two files: driveGui.fig and driveGui.m.
The file with extension .fig stores the visual appearance of the GUI including the location
and visual appearance all of the buttons, sliders and other UI elements. The .m file on the
other hand contains all executable code, such as callback functions for buttons and all other UI
elements.

5.3 Localization

Figure 17 shows all components of the software as well as their organizational structure. Remem-
ber that each component is just a simple function, therefore arrows indicate that a certain func-
tion calls another function. For example, it is easy to see that ParticleFilterStartScript
calls DriveGui, the robot control-interface, as well as the function run_particleFilter.

In short, localization works the following way:

1. ParticleFilterStartScript adds a new robot to the simulation, initializes the robot
control-interface DriveGUI and starts the localization process by calling run_particleFilter.

2. run_particleFilter initializes the particle set on first execution. It also executes a
loop, continuously gathering current odometry and measurement data in regular intervals.
This data is then used in the function Particle_Filter which is called each time new
data is available.

3. The function Particle_Filter implements the algorithm illustrated in Table 2 and
calls the functions sample_motion_model_odometry (Table 3) to sample a pose and
weigh_particle (Table 4) to assign an importance factor to the newly sampled pose.
This is done for each particle and in the end a new set is constructed by drawing particles
from the temporary set according to their importance factors.

4. The updated particle set is returned to run_particleFilter where it is visualized, as
illustrated in Figure 10. Finally, we return to step 2 and reiterate.

The following subsections will closely examine the individual localization components. The focus
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Figure 17: Localization implementation overview

will lie on the mode of operation while implementation problems and their respective solutions
will be described as well as certain noteworthy code constructs.

5.3.1 run particleFilter

After the start script ParticleFilterStartScript has initialized the robot on the chosen
start position, it calls the function run_particleFilter. Its main task is to execute an
infinite loop in which the robot’s odometry data is obtained in regular intervals and used to
update the particle set. The interval can be chosen by editing the first line of code (given in
the code snippet below) within the loop and specifying the interval in terms of seconds. The
time that the functions sleeps at the beginning of each loop iteration ensures that 2 consecutive
odometry measurements are always separated by the same amount of time. But before loop
execution can begin, there are other things that need to be taken care of. The detailed method
of operation of this function will be examined in this section.

1 pause(0.2);

The first two instructions we encounter in the file run_particleFilter.m are depicted in the
code section below, but what exactly do they do? The instruction in the first line is necessary
to access the robot variable initialized by the toolbox. This variable can have any name, but
in this project its name will always be ‘rob’. This line searches in the Matlab workspace ‘base’,
which is the standard Matlab workspace, for any variable with the name ‘rob’ and assigns it to
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the functions internal variable rob. This is necessary because without this variable we cannot
communicate with the robot. Another way would have been to pass the variable to the function
as an argument. But as many functions need to communicate with the robot, it was chosen to
store the respective data structure in the standard workspace so that any arbitrary function can
access it when needed.

1 rob = evalin(’base’, ’rob’);
2 psize = 100;

The second line of the code above defines the number of particles in the particle set. Of course, as
this number increases, the more accurate the localization process becomes, but the time necessary
for computation increases as well. Therefore it is crucial to experiment with different values to
find the right balance between accuracy and computational complexity.

After these first preparations have been done, the function needs to initialize the particle set
before its first loop iteration. Different ways to initialize this set have been introduced at the
end of Section 3.2.2. In this implementation we initialize the set with absolute coordinates
reported by the GroundTruth sensor. Alternatively one could also initialize the particles with
start position coordinates, but using the GroundTruth sensor is more accurate. After the particles
have been initialized, the function acquires odometry data from the robot as a starting point for
the odometry motion model.

Please note that odometry data as well as GroundTruth data needs to be processed before it
can be used for calculations. The problem is that the representation of θ differs between the
two sensors. Typically angles in the radians format are defined in the interval [0, 2π] with 0
representing 0◦ and π/2π representing 180◦/360◦. The odometry sensor of our robot adheres to
the USARSim internal representation of angles in the interval [−π, π] complete with USASims
inverted Z-axis. The GroundTruth sensor sticks to the standard angle representation but also
needs adjustment because of USARSims inverted Z-axis. The two lines below take care of the
normalization for odometry- and ground-truth data by executing the respective functions.

1 gtTheta0 = normalizeGroundTruthTheta(gt0.Orientation(3));
2 pose0(3) = normalizeOdometryTheta(pose0(3));

Now that everything has been prepared and the initial odometry data has been gathered, the
function enters its main part which consists of an infinite loop. The first thing that happens
is that the functions sleeps for a certain amount of time. After this waiting period another
odometry data-set as well as measurement data is requested from the robot. The waiting period
makes sure that two consecutive odometry data-sets are always separated by a certain amount of
time. Then the function calls Particle_Filter and passes the particle set and current sensor
measurement as well as current and previous odometry information to this function. After
Particle_Filter returns the updated particle set, it is visualized and the current odometry-
data is marked as the previous before the next iteration of the loop starts.

5.3.2 Particle Filter

The function Particle_Filter implements the particle filter algorithm in Table 2. As the
mode of operation of the particle filter was already examined in Section 3.2.2 it is not neces-
sary to examine it again in this section. Therefore this section focuses on certain interesting
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implementation details.

In order to assign an importance factor to particles as described in Section 3.2.4, a map of the
current environment is required. This means that we need to load a previously generated map
into memory. This and other preparations are handled by the four lines of code below.

1 og = load(’OfficeMap.mat’);
2 map = og.OGmap;
3 cellSize = og.cellSize;
4 weigh = 1;

In Line 1 a Matlab workspace containing a previously generated map is loaded from the hard
drive. Lines 2 and 3 assign the map and the size of a cell in the map to their own variables. The
cell-size is given in meters, so if a cell, which is a square, has a side length of 10 centimeters,
cellSize will be 0.1. Please take care to always load the appropriate map for the current
environment, as the weighing process will not work with a map which does not correspond to
the current environment. Line 4 determines whether the weighing process for particles will be
executed or not, where weigh = 1 leads to execution and weigh = 0 disables this process. After
these preparations have been conducted, the function executes as defined in Table 2.

Another interesting part of function Particle_Filter is the implementation of Line 9 of Table

2: “draw i with probability ∝ w
[i]
t ”. As described in Section 3.2.2, this means that particles are

drawn from the temporary particle set and appended to the final set. They are drawn with
replacement which means that a particle can be drawn more than one time. The probability of a
certain particle to be drawn equals the particle’s importance factor. The code below implements
this functionality.

1 if (weigh)
2 m=1;
3 while (m<=length(Xt0))
4 drawn = 0;
5 while (drawn == 0)
6 randParticle = round(rand * (length(Xt0) -1))+1;
7 randNumber = rand;
8 if (XtTemp{randParticle}{2} > randNumber)
9 Xt{m} = XtTemp{randParticle}{1};

10 drawn = 1;
11 end
12 end
13 m=m+1;
14 end
15 end

As you can see in Line 1, the whole section is only executed if weighing is activated. This is
because of the fact, that when the particles are not assigned any weights, there is no point in
drawing them with probabilities according to their weights. If there are no weights then every
particle has the same probability of being drawn, and this does obviously not improve the final
particle set.

Line 3 defines a loop where the number of iterations is defined by the size of the temporary
particle set. In every iteration of the primary loop the secondary loop defined Line 5 is executed.
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This loop handles the process of drawing with replacement, so let us examine it in detail:

1. In Line 6 a random integer in the interval [1, size of particle set] is generated. This integer,
called randParticle, defines the particle which will be processed in this iteration of the
loop.

2. Line 7 generates a random number between zero and one. This number defines the so-called
‘target probability’.

3. Line 8 checks if the weight of the particle indicated by randParticle is higher than
the target probability. If it is, then the secondary loop is completed and the particle is
appended to the final particle set. If the weight is lower than the target probability, the
loop starts again.

But how does this lead to the desired behavior that the probability of a particle to be drawn
is dependent on the particles weight? The precondition for a particle to be appended to the
final set, is that its weight must be higher than the randomly generated number. The higher
the weight of a particle, the higher the chance that it is indeed higher than the random number.
Therefore particles with high weights will be appended to the final set more often than particles
with low weights. This leads to the desired property that the final set contains more ‘good’
particles, where ‘good’ is defined by a high weight, and therefore less ‘bad’ particles than the
temporary set of the same size.

One disadvantage of this implementation is that it might be inefficient, especially in scenarios
where there are a lot of particles and many of them have low weights. Then the loop might be
executed many times before a particle is being successfully drawn from the set. In the scope of
this thesis, this disadvantage did not manifest itself, even when testing the implementation with
up to 1000 particles. Therefore a change was deemed unnecessary, but a more efficient way will
be outlined in Section 6.4.

5.3.3 sample motion model odometry

This function implements the algorithm sample motion model odometry as given in Table 3.
The implementation is very straightforward and matches the base algorithm almost completely.
As the base algorithm was already examined in Section 3.2.3 it is not necessary to describe it
again in this section.

One part of sample motion model odometry worth mentioning deals with the error param-
eters associated with the robot’s movement. These parameters are defined in the first few lines
of the function, as presented in the code below.

1 alpha1 = 0.05; %rotational
2 alpha4 = 0.05; %rotational
3 alpha2 = 0.1 ; %translational
4 alpha3 = 0.1 ; %translational

Please consult Section 3.2.5 for detailed information about the specification of these error pa-
rameters.
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5.3.4 weigh Particle

This function implements the particle weighing technique as described in Section 3.2.4. Just like
the function sample_motion_model_odometry, the implementation is very straightforward.
weigh_particle is the function which directly implements the particle weighing algorithm
defined in Table 4.

In order to accurately calculate the grid cells corresponding to a measurement value, we have to
perform some preparatory calculations. Keep in mind that the location of the robot, as defined
by a pose, always refers to the center of the robot. Usually sensors are not located at the dead
center of the robot, so if we would calculate the measurement cells with an unprocessed pose,
we might end up with the wrong results. Therefore we must take into account the offset of the
sensor from the robot’s center in order to ensure correct results. This action is performed at the
beginning of the function as illustrated in the code snippet below.

1 sensor_pos_x=0.14399984;
2 sensor_pos_y=0;
3 sensor_pos_z=-0.0919999;
4 sensor_dir_x=0;
5 sensor_dir_y=0;
6 sensor_dir_z=0;
7 LaserX = particle(1)+sqrt(sensor_pos_xˆ2+sensor_pos_yˆ2)*cos(theta);
8 LaserY = particle(2)+sqrt(sensor_pos_xˆ2+sensor_pos_yˆ2)*sin(theta);
9 ocLaserPos(1) = floor(LaserX/cellSize);

10 ocLaserPos(2) = floor(LaserY/cellSize);

Lines 1-3 define the offset of the sensor from the robot’s center. Please note that the z-coordinate
is negative, this is because the Z-axis is inverted in USARSim. Lines 7 and 8 calculate the exact
x- and y- coordinates of the sensor while Lines 9 and 10 calculate the grid cell coordinates
corresponding to the sensors location. The sensor location’s z-coordinate is not considered as
we perform two dimensional mapping and therefore it has no influence on the two dimensional
location of the sensor.

The sensor might also not face to the robot’s front, therefore we might also take the angle-offset
into account. As the laser scanner of the robot P2AT, which is used throughout this thesis, faces
the robot’s front exactly, as illustrated in Lines 4 to 6 of the above code snippet, the angle offset
calculations have not been implemented in this function.

After these preparations are complete, the calculations can be executed as defined by the algo-
rithm in Table 4.

5.4 Mapping

Figure 18 illustrates the components and their organizational structure as they are facilitated in
the mapping implementation. The illustration follows the same principles as Figure 17 shown in
Section 5.3.

The basic way the mapping process is performed is outlined below:
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Figure 18: Mapping implementation overview

1. OGmappingStartScript adds a new robot to the simulation, initializes the robot control-
interface DriveGUI and starts the mapping process by calling run_OGmapping.

2. On first execution run_OGmapping initializes the occupancy grid map as well as a second
two-dimensional data structure used to store the log-odds representation of occupancy
(lt,i) for each cell. The current true pose (through GroundTruth sensor) and current
measurements are gathered in regular intervals. updateOGlaser is called every time
there is new data.

3. updateOGlaser implements the inverse sensor model described in Table 6 and updates
the occupational likelihood of any cell affected by the measurement. Which cells are affected
by a single measurement value is calculated by the function Bresenham as described in
Section 4.2.2.

4. The updated map is returned to run_OGmapping where it is visualized. After that we
continue with step 2 and reiterate.

The following subsections will closely examine the individual mapping components, focusing
mainly on the mode of operation while describing implementation problems and challenges as
well as their respective solutions.
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5.4.1 run OGmapping

Similar to the function run_particleFilter, the function run_OGmapping is responsible
for executing an infinite loop in which data is gathered in regular intervalls and used to update
the occupancy grid map of the environment.

In order to execute the before mentioned tasks, some preparatory steps have to be taken. More
precisely, these steps deal with the initialization of the occupancy grid map and the accompanying
log-odds data structure. The specific instructions can be found in the source code snippet
below.

1 cellSize = 0.4;
2 OGmap = zeros(600);
3 OGmap(:) = 0.5;
4 logoddsmap = OGmap;
5 logoddsmap(:) = 0;

The instruction in Line 1 defines the lateral length of a cell in the occupancy grid map. The unit
of measurement is meters, so 0.4 means that every cell represents an area of the environment
equal to a square with a side length of 40 centimeters. In Line 2 the number of cells is defined.
To be more precise, the map is initialized as a two dimensional array with 600 cells in each
dimension. So together with the cell-size of 40 centimeters, this map can represent a square area
of 240 by 240 meters. Please note that the map has to be big enough to represent the whole
environment the robot can explore. Line 3 initializes the occupational likelihood of the whole
map with 0.5 which means that there is a 50 : 50 chance that the area represented by a cell
is occupied by an obstacle. The value 0.5 was chosen because at this time we do not have any
knowledge of the environment and therefore we cannot make any assumption if a cell is occupied
or not.

Lines 4 and 5 deal with the initialization of the two dimensional data structure which will store the
log-odds representation of the occupational likelihood of each grid cell. Naturally the dimensions
of this data structure need to be equal to the used occupancy grid map which is why this is
basically a copy of this map. Line 5 initializes the occupational likelihood values for all cells
with 0. The reason this value was chosen is the same as in the initialization of the occupancy
grid map. The difference in the chosen initialization value is down to the fact that the log-odds
representation of 50 : 50 is 0, as illustrated in Equation (18).

log

(
0.5

1− 0.5

)
= 0 (18)

After these preparations have been completed, the function enters a loop which continuously
updates the occupancy grid map. At first, the current laser sensor measurements are are obtained,
as well as the current ‘true’ pose as reported by USARSim’s GroundTruth sensor. Then the
function updateOGlaser is called and all necessary data is passed to it. This function returns
the updated occupancy grid map as well as the accompanying log-odds map. Then the occupancy
grid map is visualized and the function pauses for a certain amount of time before it enters the
next iteration of the loop.
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5.4.2 updateOGlaser

This function updates the occupancy grid map and the accompanying log-odds map with the
information obtained from the most recent laser sensor measurements, based on the assumption
that the given pose is correct. The correctness of the pose is ensured by obtaining it from the
GroundTruth sensor present in USARSim. This happens in the function run_OGmapping as
described in Section 5.4.1. The map is updated according to the inverse sensor model described
in Section 4.2.2, which means that this function is an implementation of the algorithm given in
Table 6.

Similar to the function weigh_Particle, described in Section 5.3.4, the first few lines of the
function updateOGlaser calculate the exact position of the laser sensor which is the point of
origin of all laser measurements. Afterwards the grid cell corresponding to the sensor’s position
is calculated.

After these preparations have been completed, the functions loops over all available measure-
ments. A regular laser scanner returns 181 measurements, which amount to a field of view of
180◦. For each measurement the following main steps are executed:

1. Check if the measurement is smaller or equal to the sensors maximum range. If it is not,
it is disregarded, as it is definitely not a correct measurement.

2. Calculate the grid cell in which represents the location of the measurement.

3. Call the function Bresenham which implements Bresenham’s line algorithm, as depicted
in Figure 14, to calculate the cells which represent the line, as traveled by the laser beam,
from the sensor’s location to the measurement location.

4. Update the occupational likelihood of all cells calculated in the previous step. The cell of
the measurement is marked as occupied while the rest is marked as unoccupied.

5.4.3 Bresenham

This function implements Bresenham’s line algorithm as described in [Bresenham 65] and illus-
trated in Figure 14. It takes the x− and y−coordinates of two cells and calculates the cells
which represent a straight line between the two input cells. It returns an array which contains
all calculated cells including the source- and destination-cell.

Please note that this function does not strictly implement the advanced version of this algorithm.
The big advantage of the advanced version is that complex computational operations, such as
multiplication, division and floating point operations, are not used and therefore the execution
completes faster. The implementation in this function makes use of a single division, but the
speed decrease will not be noticeable in the scope of this thesis. Noticeable slowdown could only
occur in areas where occupancy grid maps of great size and unreasonably high resolution are
used and the computational power of the executing machine is very low.
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6 Discussion

Now that the theoretical and technical parts of this thesis have been attended to, it is time to
take a step back and look at what has been achieved, what is still missing and where there is
potential for improvements. The following sections will also relate the contents of this thesis to
established as well as recent scientific publications. Section 6.1 will examine how much closer the
described localization and mapping techniques bring us to the goal of a truly autonomous and
seemingly intelligent robot. Sections 6.2 and 6.3 will deal with achievements and failures in the
areas of localization and mapping while taking into account scientific concepts and discoveries
within those areas. Finally, Section 6.4 will highlight the advantages/disadvantages of the chosen
implementation of the respective techniques.

Now let us take a look at the general goal of this thesis: The particle filter as well as occupancy
grid maps are well established techniques in the field of robotics and have been used, adapted and
improved for some time. Even though these techniques are commonly used, obtaining detailed
and in depth instructions for implementation is very hard. This is because the basic concepts
can be implemented in a multitude of ways, dependent on the used hardware, field of application
and many other factors. This was the motivation for this thesis, therefore the goal was the
compilation of an easy to follow, in-depth instruction manual on the theoretical foundations and
the direct implementation of localization and mapping algorithms. Furthermore this manual
should be as abstract as possible so that it is applicable for many different robots in many areas
of activity.

In retrospect I can conclude that the goal of the thesis has been achieved. Localization with
particle filters and occupancy grid mapping were both discussed in detail, theoretically as well
as implementation wise. Although only a single simulated robot model was used (P2AT) the
instructions should be abstract enough to be applied to any robot which is equipped with an
odometry- and laser-sensor. The detailed description of the implementation combined with the
corresponding source code should make it easy enough to adapt it to any kind of robot. The use of
Matlab as the development environment made sure that the implementation could be performed
quite straightforward without having to take into account quirks and special requirements of
specific programming languages and/or target platforms.

6.1 The autonomous robot

In the introduction, Section 1, it was established that when regular people think of robots,
they think of very advanced, and mostly fictional, models like C3PO, R2D2 (Star Wars) and
Commander Data (Star Trek), shown in Figure 19. Obviously Commander Data and C3PO
exhibit more humanoid physical attributes than R2D2. Even so, people regularly characterize
this little three legged fellow as cute and lovable, which indicates that they also see him as an
autonomous, seemingly intelligent, living entity. What is the reason for this characterization?
It certainly is not R2D2’s physical appearance, as he looks more like a trashcan than a human
being. R2D2’s design does not even feature considerably more physical human attributes than
a contemporary robot, for example the P2AT (Figure 19c10) whose simulated counterpart was
used in this thesis. As the visual appearance of R2D2 is most likely not the reason for people
to think of him as ‘cute’, the obvious explanation is that R2D2’s ‘cuteness’ originates from his

10http://patrickshinzato.blogspot.com/ - 30.04.2011
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(a) Commander Data (b) C3PO and R2D2 (c) P2AT10

Figure 19: Fictional (a,b) and non-fictional (c) robots

behavior.

Which specific behavioral attributes of R2D2 contribute to people seeing him more as a living
being than a lifeless machine? There is the fact that this little robot moves around in a goal
oriented, but somewhat erratic, manner. He is also able to relate his actions to the current
environment, as he can anticipate reactions of the environment to his actions. Furthermore the
little fellow can communicate through sound. Although not directly understandable by human
beings, the intent of his messages is quite evident and his emotional status is clearly transported
by the emitted beeping sound. Suppose one could change R2D2 so that he can not move and
is completely stationary, or alternatively that he can move, but crashes into obstacles all the
time. Would people still consider him ‘cute’ and therefore at least a little ‘alive’? Maybe, but I
suppose not as much as before. This indicates that intent-full and controlled movement plays a
big role, but not the only one, in peoples conception of intent-full, goal oriented and seemingly
intelligent behavior.

The concepts introduced in this thesis form the basis for achieving intent-full and controlled
movement with an autonomous robot. After successfully implementing localization and mapping
abilities on a robot platform, the robot in question possesses the most basic skills to sense and
remember its environment and relates its position and movements to its surroundings. A robot
which possesses these skills is still a far cry from being as lifelike as R2D2, but without localization
and mapping one could not even dream of ever constructing a robot in his likeness.

Let us return to the coffee machine which was introduced in Section 1. If we would supply it with
localization and mapping abilities, would people think of it as a fully fledged robot? Probably
not, and there is a simple reason for that: localization and mapping do not cause intent-full
behavior, but they constitute a foundation for it. These two basic techniques enable a developer
to build on top of them. In order to construct a ‘real’ robot, a next step would be to extend, in a
sense consolidate, localization and mapping so that they are not dependent on a predefined map
or accurate and reliable pose information. This technique is called Simultaneous Localization and
Mapping (SLAM) and can overcome the chicken and egg problem introduced in Section 1.1. This
technique enables a robot to construct a map of its environment as well as locate itself within
this map, all without a-priori knowledge about either the map of its location. SLAM enables a
robot to navigate any known and unknown environment without the need for prior mapping or
reliable position information such as the Global Positioning System (GPS). This makes a robot
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suitable for many more applications than robots that rely on predefined maps or remote controls.
The SLAM technique has been in use for some time, with the works of Smith and Cheeseman,
[Smith, Cheeseman 86-1] and [Smith, Cheeseman 86-2], being important early contributions in
this field.

But SLAM alone does not make our coffee machine have intent. To achieve something similar
to intent, one has to go a step further and deal with path planning and control. This ability is
essential if one does not want to remotely control every single action of the robot. Path planning
and control enables the robot to navigate from its current position to a given destination. As
the name suggests, path planning is used to plan a path, dependent on the current map of the
environment, from the source to the destination. Path control is responsible to check if the
robot stays on the defined path while executing the movement. If the robot deviates from the
precomputed path, path control software can either bring it back to the path or compute a new
one based on the robots current pose. Such a path is basically a long list of discrete motion
instructions which, if executed one after another, should transport the robot to its destination
along the planned path. Planning and control can not only be applied to a robot’s transport
system, but to any movable system on the robot, for example grappling arms. In general this
is called motion planning and control, as it is applicable to any moveable part of the machine.
According to Jean-Claude Latombe, motion planning and control are essential to enable truly
autonomous robots. In [Latombe 91] he defines an autonomous robot as follows:

“One of the ultimate goals in Robotics is to create autonomous robots. Such robots
will accept high-level descriptions of tasks and will execute them without further
human intervention. The input descriptions will specify what the user wants done
rather than how to do it. The robots will be any kind of versatile mechanical device
equipped with actuators and sensors under the control of a computing system.”

So path planning and control enables us to construct an autonomous robot, but does this robot
also have intent? It certainly possesses the intent to reach the defined destination point, but this
destination was supplied by the user. Applied to our coffee maker, this would enable it to drive
to a users position and make coffee for the user. So it is autonomous on two levels, moving to
the destination and making coffee. The regular person would certainly describe the coffee maker
as a robot, even if its intent-full behavior is based on someone else’s instructions.

Giving robots their own intent has been the topic of artificial intelligence researchers all over
the world. Where do we draw the line between intent supplied from outside and real internal
intent? If we let a robot choose a random position as destination for its path, is the destination
the robot’s choice or not, as the instructions to do so were supplied from the outside? Answering
this and other related questions seems to be more of a job for philosophers and psychologists than
a computer scientist, therefore I will not speculate on this subject. The further developments in
artificial intelligence improve, the closer mankind seems to get to its goal of being a creator of
intelligence, but there is still a long way to go. The more we learn about artificial intelligence, the
more the way we look at our own intelligence changes. Some have even speculated that the brain
might be a computer and our mind is simply a program running on this computer. While some
reject this notion, such as John R. Searle in [Searle 90] and [Searle 04], I myself have indicated,
in [Mader 10-2], that it is theoretically possible to write a program that has the same abilities as
the mind. This of course leads to a question with which I would like to conclude the discussion
about artificial ‘intelligence’. The question is, if such a program can be genuinely intelligent or
if it simply mimics intelligence, as established in [Marr 77]:
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“The problem is that studies–particularly of natural language understanding, problem-
solving, or the structure of memory–can easily degenerate into the writing of programs
that do no more than mimic in an unenlightening way some small aspect of human
performance.”

If we look at the subjects discussed in this thesis, we can conclude that localization and mapping
are very important foundations for any further work involving moving robots. The two tech-
niques, by themselves, do not constitute an autonomous robot, but without these foundations
the construction of an autonomous robot is almost impossible.

6.2 Localization

The first concept examined in this thesis is called localization. It deals with the problem of
keeping track of one’s position in an arbitrary environment. This activity relies on a robot’s
pose information x1:t as well as sensor data z1:t to estimate the ‘real’ pose of the robot. The
pose can only be estimated and cannot be discretely computed as the uncertainty, which is
inherent in every sensor and actuator, needs to be taken into account. Section 3 introduced
a basic way to deal with this uncertainty through probability density functions (PDFs) while
Section 3.1 introduced basic concepts which are vital before one can further examine the field of
robot localization. In Section 3.2 the so-called particle filter was presented after examining the
underlying Bayes filter.

The localization technique examined in this thesis can best be described as position tracking, as
it initializes all particles at the known start position of the robot and then uses them to track
the robots position. In our case, the start position is known as the robot is initialized on one of
the recommended start positions provided by USARSim. If no such facility is available, (0, 0, 0)
can be assumed to be the start pose of the robot.

The described technique is not limited to position tracking but can also be used to solve the global
localization problem, illustrated in Figure 20. This problem arises when one has no knowledge
of where the robot’s start position is located in relation to an environment. Then the particles
would be initialized as a uniform distribution over all possible poses within the environment. The
particle filter algorithm would then remove the unlikely particles in the course of time through
resampling. After some time one would end up with most particles, in the optimal case all of
them, distributed around the robot’s real location.

The examined technique yields good results in a multitude of test environments. There is one
environment type in which localization might not work satisfactory. These are big open planes
in which no obstacles are present. This means that there is no sensor data which could show the
distance to obstacles. This means that the particles can not be assigned an importance factor
and the resampling step could not resample based on the weights of the particles. In case of
such an environment global localization can not be performed reliably. Location tracking will
still work but the particle filter will behave as if resampling was disabled and the localization
would become increasingly inaccurate during time. This is not only a problem for the examined
localization technique but for every such technique. Localization takes the uncertainty of robots
into account and tries to counteract it by using sensor measurements. If no useful information
can be extracted from said measurements, then the algorithm can not counteract the increasing
uncertainty.
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(a) Global localization: Initialization (b) Ambiguity due to symetry (c) Successfull localization

Figure 20: The global localization problem solved by Monte-Carlo-Localization,
[Thrun, Burgard, Fox, Dellaert 99]

The localization technique described in this thesis, although it works sufficiently in most environ-
ments, is still a simplistic approach with lots of potential for optimization. [Thrun, Burgard, Fox, Dellaert 99]
introduces an advanced localization technique called Monte Carlo Localization (MCL). Monte
Carlo localization, through revised mathematical concepts, provides significantly increased accu-
racy for localization while dynamically adjusting the number of samples to the current situation
and therefore reducing the computational complexity if possible. These two theoretical advan-
tages were confirmed during real world testing in [Thrun, Burgard, Fox, Dellaert 99] and the
results evaluated as follows:

1. MCL yields significantly more accurate localization results than the most accu-
rate previous Markov localization algorithm, while consuming an order of mag-
nitude less memory and computational resources. In some cases, MCL reliably
localizes the robot whereas previous methods fail.

2. By and large, adaptive sampling performs equally well as MCL with fixed sample
sets. In scenarios involving a large range of different uncertainties (global vs.
local), however, adaptive sampling is superior to fixed sample sizes.

The dynamic adjustment of the sample size, or in other words the number of particles, depends
on the weights of all particles. If the average weight is very high, then one can conclude that
the localization process is currently very accurate and therefore one can reduce the number of
particles. If the average weight of the particles drops, then one can conclude that the current
accuracy is lower and therefore more particles will be used in order to compensate. This behavior
reduces unnecessary computations while being as accurate as using a fixed sample size.

Figure 21 shows the result of a comparison between grid-based localization techniques and MCL
in terms of accuracy. The localization technique used in this thesis is grid based as it uses
an occupancy grid map to assign weights to particles and eventually resample the particle set.
The illustrations show that the minimal error of MCL is not significantly lower than the one of
grid-based techniques. However, to achieve a very low error with grid-based localization, one
has to reduce the size of individual cells to unreasonably small values (< 5 cm as illustrated in
Figure 21a). MCL exhibits a very different behavior. It’s accuracy stays very much constant
with varying numbers of samples (particles) once a sample size threshold has been exceeded.
Figure 21b shows that the error of sonar-based MCL stays constant from sample sizes of 100 up
to 100000 while laser-based MCL exhibits lower errors than sonar-based and achieves constant
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Fig. 5: Four of the robots used for testing: Rhino, Minerva, Robin,
and Marian.

in the case of Minerva, shown in Figure 5, a B/W camera
pointed at the ceiling. Even though all experimental results
discussed here use pre-recorded data sets (to facilitate the
analysis), all evaluations have been performed strictly un-
der run-time conditions (unless explicitly noted). In fact, we
have routinely ran cooperative teams of mobile robots using
MCL for localization (Fox et al. 1999).

Comparison to Grid-Based Localization
The first series of experiments illustrates different capabil-
ities of MCL and compares it to grid-based Markov local-
ization, which presumably is the most accurate Markov lo-
calization technique to date (Burgard et al. 1996; 1998b;
Fox 1998).
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Fig. 6: Accuracy of (a) grid-based Markov localization using
different spatial resolutions and (b) MCL for different numbers of

samples (log scale).

Figure 6 (a) plots the localization accuracy for grid-based
localization as a function of the grid resolution. These
results were obtained using data recorded in the environ-
ment shown in Figure 2. They are nicely suited for our
experiments because the exact same data has already been
used to compare different localization approaches, includ-
ing grid-based Markov localization (which was the only one
that solved the global localization problem) (Gutmann et
al. 1998). Notice that the results for grid-based localiza-
tion shown in Figure 6 were not generated in real-time. As
shown there, the accuracy increases with the resolution of
the grid, both for sonar (solid line) and for laser data (dashed
line). However, grid sizes below 8 cm do not permit updat-
ing in real-time, even when highly efficient, selective up-
date schemes are used (Fox, Burgard, & Thrun 1999). Re-
sults for MCL with fixed sample set sizes are shown in Fig-
ure 6 (b). These results have been generated using real-

time conditions. Here very small sample sets are disadvan-
tageous, since they infer too large an error in the approxima-
tion. Large sample sets are also disadvantageous, since pro-
cessing them requires too much time and fewer sensor items
can be processed in real-time. The “optimal” sample set size,
according to Figure 6 (b), is somewhere between 1,000 and
5,000 samples. Grid-based localization, to reach the same
level of accuracy, has to use grids with 4cm resolution—
which is infeasible given even our best computers.
In comparison, the grid-based approach, with a resolu-

tion of 20 cm, requires almost exactly ten times as much
memory when compared to MCL with 5,000 samples. Dur-
ing global localization, integrating a single sensor scan re-
quires up to 120 seconds using the grid-based approach,
whereas MCL consumes consistently less than 3 seconds
under otherwise equal conditions. Once the robot has been
localized globally, however, grid-based localization updates
grid-cells selectively as described in (Burgard et al. 1998b;
Fox 1998), and both approaches are about equally fast.

Vision-based Localization

To test MCL in extreme situations,we evaluated it in a popu-
lated public place. During a two-week exhibition, our robot
Minerva was employed as a tour-guide in the Smithsonian’s
Museum of Natural History (Thrun et al. 1999). To aid
localization, Minerva is equipped with a camera pointed to-
wards the ceiling. Figure 7 shows a mosaic of the museum’s
ceiling, constructed using a method described in (Thrun et
al. 1999). The data used here is the most difficult data set
in our possession, as the robot traveled with speeds of up to
163 cm/sec. Whenever it entered or left the carpeted area in
the center of the museum, it crossed a 2cm bump which in-
troduced significant errors in the robot’s odometry. Figure 8
shows the path measured by Minerva’s odometry.
When only using vision information, grid-based local-

ization fails to track the robot accurately. This is because
the computational overhead makes it impossible to incorpo-
rate sufficiently many images. MCL, however, succeeded in
globally localizing the robot, and tracking the robot’s posi-
tion (see also (Dellaert et al. 1999a)). Figure 9 shows the
path estimated by our MCL technique. Although the local-
ization error is sometimes above 1 meter, the system is able
to keep track of multiplehypotheses and thus to recover from
localization errors. The grid-based Markov localization sys-
tem, however, was not able to track the whole 700m long
path of the trajectory. In all our experiments, which were
carried out under real-time conditions, the grid-based tech-
nique quickly lost track of the robot’s position (which, as
was verified, would not be the case if the grid-based ap-
proach was given unlimited computational power). These
results document that MCL is clearly superior to our previ-
ous grid-based approach.

(a)
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and Marian.
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Fig. 6: Accuracy of (a) grid-based Markov localization using
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Figure 6 (a) plots the localization accuracy for grid-based
localization as a function of the grid resolution. These
results were obtained using data recorded in the environ-
ment shown in Figure 2. They are nicely suited for our
experiments because the exact same data has already been
used to compare different localization approaches, includ-
ing grid-based Markov localization (which was the only one
that solved the global localization problem) (Gutmann et
al. 1998). Notice that the results for grid-based localiza-
tion shown in Figure 6 were not generated in real-time. As
shown there, the accuracy increases with the resolution of
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line). However, grid sizes below 8 cm do not permit updat-
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date schemes are used (Fox, Burgard, & Thrun 1999). Re-
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ure 6 (b). These results have been generated using real-
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tageous, since they infer too large an error in the approxima-
tion. Large sample sets are also disadvantageous, since pro-
cessing them requires too much time and fewer sensor items
can be processed in real-time. The “optimal” sample set size,
according to Figure 6 (b), is somewhere between 1,000 and
5,000 samples. Grid-based localization, to reach the same
level of accuracy, has to use grids with 4cm resolution—
which is infeasible given even our best computers.
In comparison, the grid-based approach, with a resolu-

tion of 20 cm, requires almost exactly ten times as much
memory when compared to MCL with 5,000 samples. Dur-
ing global localization, integrating a single sensor scan re-
quires up to 120 seconds using the grid-based approach,
whereas MCL consumes consistently less than 3 seconds
under otherwise equal conditions. Once the robot has been
localized globally, however, grid-based localization updates
grid-cells selectively as described in (Burgard et al. 1998b;
Fox 1998), and both approaches are about equally fast.

Vision-based Localization

To test MCL in extreme situations,we evaluated it in a popu-
lated public place. During a two-week exhibition, our robot
Minerva was employed as a tour-guide in the Smithsonian’s
Museum of Natural History (Thrun et al. 1999). To aid
localization, Minerva is equipped with a camera pointed to-
wards the ceiling. Figure 7 shows a mosaic of the museum’s
ceiling, constructed using a method described in (Thrun et
al. 1999). The data used here is the most difficult data set
in our possession, as the robot traveled with speeds of up to
163 cm/sec. Whenever it entered or left the carpeted area in
the center of the museum, it crossed a 2cm bump which in-
troduced significant errors in the robot’s odometry. Figure 8
shows the path measured by Minerva’s odometry.
When only using vision information, grid-based local-
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the computational overhead makes it impossible to incorpo-
rate sufficiently many images. MCL, however, succeeded in
globally localizing the robot, and tracking the robot’s posi-
tion (see also (Dellaert et al. 1999a)). Figure 9 shows the
path estimated by our MCL technique. Although the local-
ization error is sometimes above 1 meter, the system is able
to keep track of multiplehypotheses and thus to recover from
localization errors. The grid-based Markov localization sys-
tem, however, was not able to track the whole 700m long
path of the trajectory. In all our experiments, which were
carried out under real-time conditions, the grid-based tech-
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was verified, would not be the case if the grid-based ap-
proach was given unlimited computational power). These
results document that MCL is clearly superior to our previ-
ous grid-based approach.

(b)

Figure 21: Accuracy of grid-based localization using different resolutions (a) and MCL (b) for different
sample numbers (logarithmic scale), [Thrun, Burgard, Fox, Dellaert 99]

accuracy between 1000 and 10000 samples.

In the end one must admit that, when compared to Section 3, there are more accurate and com-
putational less intensive localizations techniques in existence. These techniques usually facilitate
some of the same concepts that were introduced in Section 3, as for example MCL also uses a par-
ticle filter. The localization technique examined in this thesis introduces fundamental concepts
on which later localization algorithms improvements were built, therefore the understanding of
those basic concepts is essential for anyone feeling the urge to dive deeper into the field of robot
localization.

6.3 Mapping

The second concept which has been examined in this thesis is mapping, occupancy grid mapping
to be precise. This mapping technique was developed at the end of the 1980s, with Alberto
Elfes, [Elfes 87], being one of the pioneers. Occupancy grid mapping breaks down the problem
of estimating the posterior probability over maps p(m|z1:t, x1:t) into smaller problems which are
easier to solve. Basically the technique partitions the environment into a finite number of square
cells and computes the probability of occupation p(mi|z1:t, x1:t) for each cell. As you can see,
in both cases the resulting probability is dependent on z1:t, which represents all of the robot’s
sensor measurements up to the current time, and x1:t, which represents all of the robot’s poses
up to the current time.

How successful is the mapping technique described in Section 4.2 in constructing a map of the
environment? If one re-examines Figure 11 and compares the floor plan of the area with the
constructed map, then one will realize that the implemented technique, see Section 5.4, is able
to construct a quite accurate map of the environment. Its accuracy becomes even more evident
when the constructed map is used to assign weights to particles, as defined in Section 3.2.4. The
assignment of a weight, or an importance factor, to a particle is based on a comparison of current
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(a) (b)

Figure 22: The occupancy grid map (a) describes unreachable space as free (right and bottom), compare
the corresponding ground plan (b)

measurements to a given map. If we suppose that there are no calculation and/or sensor errors,
then the success of the weighing process is dependent on the accuracy of the used map. In the
performed tests, bad particles were consistently assigned low weights while good particles were
consistently assigned high weights. This is a further argument for the accuracy of the technique
in question.

As accurate as it is, the used technique is still quite simplistic when compared with advanced
versions which have emerged in the past. Let us take a short look at the advanced occupancy
grid mapping technique described in [Thrun 03], concentrating on highlighting the advantages it
has over the one used in this thesis.

A well known problem of the mapping algorithm described in Section 4.2, as well as of simplistic
approaches, is that they often produce maps which deviate from the present environment, as can
be seen in Figure 22. This happens predominantly in environments which are very cluttered. A
common example for a problematic situation is a moving robot passing by an open doorway. In
such environments the inadequateness of the algorithm can manifest itself in the final map as
such: open doorways appear as occupied space and therefore impassable although they are in
fact not. The problem is that multiple measurements can interfere with one another and produce
wrong results after being transcribed into the grid map. The basic problem lies not so much with
the measurements as with the inverse sensor model, Section 4.2.2, used by the algorithm. It does
not recognize dependencies between individual neighboring cells, which leads to the undesired
behavior. The solution proposed in [Thrun 03] is to use a forward sensor model instead. This
model takes cell dependencies into account and can therefore produce a more accurate map. See
Figure 23 for a comparison between the simplistic and improved technique. Please note that the
measurements were obtained from a sonar sensor which explains the measurements cones instead
of the straight lines produced by a laser sensor. [Thrun 03] also mentions that laser sensors are
less prone to suffer from the described problem of measurement interference due to the focused
nature of the laser beam.

Comparing the resulting maps of the algorithm introduced in this thesis to those generated
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Figure 5: (a) The RWI B21 robot used in our experiments. This robot is equipped with a cyclic array of 24
Polaroid sonar sensors. (b) Comparison of conventional occupancy grid mapping with (c) our approach using
forward models. The open doors are only visible in (c). However, several small obstacles are shown in (c) that stem
from a person walking by the robot during data collection. Each grid consists of 114 by 120 grid with 10 centimeter
resolution.

which for example is the case when the walls are smooth. In these environments, the increased
existence of conflicts induces a degradation of the standard approach that is not found in our
approach. However, our approach does not filter our dynamics (e.g., walking people) as nicely
as the conventional approach using inverse models.

4.1 Simulation Results

Our first experiment relied on simulated data. Simulation was chosen because it enables us to
carefully vary certain parameters. In our particular case, we were interested in the minimum
number of sensor readings required to detect a narrow open door. Figure 4a shows an example
data set, gathered in a simulated corridor while driving by an open door. This robot is equipped
with a circular array of 24 sonar sensors. While driving by the door, the robot receives n readings
of the open door—all other readings reflect the much shorter distance to the door posts. With
n = 1, the standard occupancy grid map algorithm generates the map shown in Figure 4b.
Our approach is a well-optimized one that uses various smoothing operations to yield good
occupancy grid maps. Two things are worth noting with respect to Figure 4b. First, the open door
is mapped wrongly due to the independence assumption in occupancy grid mapping. Second,
there are several stripes in the map that are almost perpendicular to the wall. These stripes result
from measurements that hit the wall at steep angles.

A maximum likelihood map, found using EM with forward models, is shown Figure 4c.
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Figure 23: Comparison of regular occupancy grid mapping (a) and the advanced technique (b) intro-
duced in [Thrun 03]. Both figures are taken from [Thrun 03]

by other simplistic approaches, one can conclude that the described technique offers accurate
enough mapping capabilities for many applications. In case additional accuracy is needed for
specific applications, I suggest to use a more advanced technique such as the one described in
[Thrun 03].

6.4 Implementation

The implementation of the before mentioned localization- and mapping techniques was already
discussed in Section 5, therefore this section will focus not on implementation details, but on
possible improvements instead.

As discussed in Section 5, the implementation was very straightforward, implementing the algo-
rithms introduced in the preceding sections. The first shortcoming of the current implementation
comes to mind when one executes one of the start scripts. The following dialog boxes include a
list of robots to choose from, but there is only one robot present in the list. This is the USARSim
robot P2AT and the reason for him being the only robot in the list is that its properties are
hard coded within the program where needed. For example, the calculation of the sensor position
based on the current pose depends on hard coded dimensions which correspond to P2AT . A
welcome improvement would be to dynamically load these values depending on the chosen robot.
The values for different robots could be stored in an XML file, a format for such an XML file was
introduced in [Mader 10-1]. This would make it possible to easily provide the user with several
robots to choose from while making it easy to add new robots.

The second potential improvement that comes to mind concerns the resampling step of the
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particle filter. As discussed in Section 5.3.2, when the average weight of particles is very low the
current implementation could execute a loop very often before a particle would be drawn from
the temporary particle set in order to be added to the final set. This could be avoided through
a change in the sampling process. Instead of drawing a target weight and then drawing particles
until a particle’s weight is higher than the target, one could add up the weights of all particles
and draw a random number from the interval [0, n], where n = sum of weights. As this interval
is based on the sum of all particle weights, if one adds the weights in a specific order, one can
assign a sub-interval to each particle. By looking up in which particle’s sub-interval the randomly
drawn value lies, one can determine which particle to add to the final set. The drawing process
is dependent on the weight of a particle as the weight defines the size of the sub-interval. So the
bigger a particle’s weight is, the bigger it’s sub-interval becomes and therefore the chance of being
drawn is increased. The great advantage over the current implementation is, that a particle gets
selected every time, therefore eliminating the problem in the current implementation.

Besides the before mentioned potential improvements, one can conclude that the implementation
of the discussed localization- and mapping techniques runs stably and is computationally not
too expensive. Although the implementation is simplistic, it shows an easily understandable
way to implement localization and mapping in a basic form. If one wants to further investigate
robot localization and mapping, then knowledge of the concepts introduced in this thesis is
crucial.
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A USARSim Installation

A.1 Unreal Tournament 2004 Installation

Installing UT2004 on Windows or Mac OSX is as simple as running the setup program and
specifying the desired location of the program folder. Installation under Linux requires some
additional steps which are detailed below:

Requirements:

• Unreal Tournament 2004 6CD Version with included Linux installer

• Activated and up to date 3D drivers for the graphics card

• libstdc++5

Start a Terminal and type sudo bash and type in your password when requested. Next type
export SETUP_CDROM=/media/cdrom (you have to replace /media/cdrom with the ap-
propriate path to your optical drive that contains the UT2004 Install CD).
Next you have to run the linux installer on the cd, type in the absolute path to the installer while
you are in a directory not located on the optical drive, otherwise you will not be able to change
the CDs when the installer requests it. So type /media/cdrom/linux-installer.sh and
follow the instructions to install the game.
To simplify upcoming steps in case you have not installed UT2004 in your home folder we will
change the owner of the UT2004 directory and all files in it. Type chown -R PATH/ut2004
(change PATH to the path of your UT2004 installation). Download the latest UT2004 linux Patch
(3369.2) and install it by copying the files to their respective locations in your UT2004 directory.
You can now start the game by executing PATH/ut2004/ut2004

Potential Problems:
There is the possibility that your monitor does not support the standard resolution that UT2004
uses. To change the resolution from outside the game you have to open the file
˜/.ut2004/System/ut2004.ini, there you can specify your desired resolution under the
section [SDLDrv.SDLClient].

A.2 USARSim Installation

A.2.1 Windows

After installing UT2004 the installation of USARSim under Windows requires only 2 simple
steps:

• Download the .msi installer version of USARSim

• Run the setup program

To run USARSim simply execute it from the start menu.
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A.2.2 Linux

Download the newest USARSim version from the USARSim page on www.sourceforge.com
and copy all the files to their specified locations in your UT2004 directory (from now on referred
to as $UT2004).
Some files (*.uc) will need to be compiled before USARSim can be started, currently the compile
process is only supported under Windows, therefore you will need to install UT2004 and USAR-
Sim on a Windows system as detailed in Section A.2.1. Then compile USARSim by executing
the script $UT2004/System/make.bat, afterwards locate the compiled files (*.u) and copy
them to the $UT2004/System/ folder of your Linux installation of USARSim. Please note that
the /System/ directory with the customizable .ini files is stored at ˜/.ut2004/System/.
Download the maps you want to use from sourceforge.net and install them in $UT2004/Maps/
and elevate their permissions to allow write- and execute-access..
To start USARSim execute the following command (map_name has to be changed to the name
of the desired map and $UT2004 to your UT2004 directory):

start $UT2004/ut2004 map_name?game=USARBot.USARDeathMatch?spectatoronly=1?
TimeLimit=0?quickstart=true -ini=usarsim.ini

A.2.3 Mac OS X

Installation and execution of USARSim is almost the same as on Linux. One difference is that
the UT2004 root directory is the application package which is usually located in the applications
folder. Unless you move it to another directory $UT2004 should be:
/Applications/Unreal Tournament 2004.app/

Please note that additional maps you might want to add to USARSim have to be stored in
/Applications/Unreal Tournament 2004.app/Maps and their permissions need to be
changed to allow write- and execute-access. User-dependent configurations and files are located
in a different directory than on Linux systems. OS X keeps this directory stored at the following
location:
˜/Library/Application Support/Unreal Tournament 2004/System/
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