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Locally Bayesian Learning With Applications to Retrospective Revaluation

and Highlighting

John K. Kruschke
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A scheme is described for locally Bayesian parameter updating in models structured as successions of
component functions. The essential idea is to back-propagate the target data to interior modules, such that
an interior component’s target is the input to the next component that maximizes the probability of the
next component’s target. Each layer then does locally Bayesian learning. The approach assumes online
trial-by-trial learning. The resulting parameter updating is not globally Bayesian but can better capture
human behavior. The approach is implemented for an associative learning model that first maps inputs
to attentionally filtered inputs and then maps attentionally filtered inputs to outputs. The Bayesian
updating allows the associative model to exhibit retrospective revaluation effects such as backward
blocking and unovershadowing, which have been challenging for associative learning models. The
back-propagation of target values to attention allows the model to show trial-order effects, including
highlighting and differences in magnitude of forward and backward blocking, which have been chal-

lenging for Bayesian learning models.
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Cognitive systems are often thought of as hierarchies of pro-
cesses. Each process takes an input representation, transforms it,
and generates another representation. That representation in turn is
transformed by a subsequent process until an ultimate representa-
tion corresponds with a response or outcome. For example, Marr
(1982) expounded a representational framework that progressed
from a representation of image intensity to a “primal sketch” to a
“two-and-a-half-D sketch” to a 3-D model representation. Palmer
(1999) outlined four stages of visual processing, from image-based
to surface-based to object-based to category-based. I am specifi-
cally interested in such architectures when applied to trial-by-trial,
online learning. The transformations within levels of the hierarchy
are incrementally tuned by each episodic experience in the world.

Bayesian approaches to cognitive modeling have been espe-
cially attractive because they express optimal performance under
specific assumptions. Bayesian approaches can be useful either to
show that human behavior is nearly optimal or to show specifically
how human performance fails to be optimal. Bayesian approaches
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also stipulate how the model should adjust its distribution of
parameter probabilities when data are supplied. Thus, Bayesian
updating describes optimal learning. Bayesian learning has been
applied to a range of phenomena from low-level perceptual learn-
ing (e.g., Eckstein, Abbey, Pham, & Shimozaki, 2004) to high-
level causal induction and language acquisition (e.g., Regier &
Gabhl, 2004; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

If the Bayesian approach to learning is to be a general principle
for modeling the mind, then it is logical to attempt Bayesian
learning for the entire hierarchy of representations simultaneously.
However, in a system as complex as the mind, replete with myriad
parameters, it is unlikely that every episodic experience catalyzes
a monolithic Bayesian updating of the complete joint parameter
distribution simultaneously. Perhaps it is not being too mystical,
however, to imagine that there is Bayesian updating within mod-
ules. Perhaps for small subspaces of parameters, there is Bayesian
updating within each subspace. The problem is that most modules
in the mental hierarchy are not in direct contact with the stimuli
provided by the outside world, and so they do not know what data
to use for updating their parameters.

There are three main points in this article, addressed in turn.
First, I report a new general scheme for doing online (i.e., trial-
by-trial) locally Bayesian updating in models structured as succes-
sions of component functions. The essential idea is to back-
propagate the target data to interior modules, such that the interior
targets are those that maximize the probability of the target in the
subsequent layer. Second, I implement the approach for an asso-
ciative learning model that first maps inputs to attentionally fil-
tered inputs and then maps attentionally filtered inputs to outputs.
Third, I apply the model to several phenomena exhibited in human
learning that have heretofore been unaddressed by one or the other
of Bayesian learning models and associative learning models. The
Bayesian updating allows the associative model to exhibit retro-
spective revaluation effects such as backward blocking and
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unovershadowing. These effects are challenging for many non-
Bayesian associative learning models. The back-propagation of
target values to attentionally filtered cues allows the model to
show trial-order effects, including highlighting and differences in
the magnitudes of forward and backward blocking. These trial-
order effects are challenging for many extant Bayesian learning
models.

Bayesian Modeling Generally

The benefits of Bayesian approaches to model fitting and model
comparison have been compellingly discussed and demonstrated
(e.g., Lee, 2004; MacKay, 2003; Myung & Pitt, 1997). Here, 1
provide a brief overview of Bayesian modeling as background for
discussing Bayesian models of learning.

Suppose we have data that we are trying to model. Each datum
represents the target response #* on the i trial when the cognizer
is presented with stimulus x®. We denote a model, also called a
hypothesis, by M. The model is a mathematical formula that
generates probabilities (or probability densities) of possible data
values for each input x®. The model, M, has parameters, 0, for
which its values determine the exact numerical behavior of the
model. Thus, the model is a formula that generates p(¢|0, x, M).

An example of such a model is the well-known simple linear
regression model with Gaussian noise, which expresses the prob-
ability density of a value ¢ as a function of the stimulus x and three
parameters: the intercept 3, the slope (3,, and the standard devi-
ation o. The formula for this model, M, is

p(t‘BOs Blv g, X, M)

= (1/(o\2m)) exp(—.5[t — (Byx + By)1/a).

In a Bayesian approach, we think of many values of each
parameter as being possible, with each value having a certain
probability of being correct. Before we have any experimental data
about a situation being modeled, we specify a prior probability
distribution over the parameters, denoted p(9|M), which quantifies
our degree of belief in each value of 6.

One goal we might have is estimation of parameter values from
data. In a Bayesian framework, this goal means that we want to
shift our probabilities for each parameter value when given data.
Bayes’ theorem expresses how to do that:

p(6t, x, M) = p(1]6, x, M)p(8|M)/p(t|x, M) )

The distribution p(8|t, x, M) is called the posterior of 6. Notice that
Bayes’ theorem (Equation 1) expresses the posterior distribution
p(0z, x, M) in terms of the model’s predicted probabilities p(z|0, x,
M) and the prior distribution p(8|M). The denominator p(t|x, M)
will be discussed shortly.

A second goal we might have is generating the response pre-
dicted by a model. As mentioned before, in a Bayesian framework
there is no single value for the parameters; instead, many values of
the parameters are possible, each with a certain probability or
degree of belief. So to generate the probability of a response value
y (which could be the same value as the datum f), we integrate
across all possible values of 6, weighted by the probability of 6:

pOylx, M) = Jdep(y 0, x, M)p(6|M), 2)

where the probability p(6|M) is whatever our current beliefs are,
which might incorporate previously observed data. When y = ¢,
Equation 2 expresses the denominator of Bayes’ formula in Equa-
tion 1.

When we desire a unique value for the predicted output, rather
than a probability distribution over possible values, and when ¢ is
a metric variable, then the predicted output is taken to be the
expected value:

y= fdyyp(yx,M), (3)

when y is continuous or y = 3 y p(y|x, M) when y is discrete.

A third goal we might have is model comparison. We might
have two (or more) different models, M, and M,, each with its own
set of parameters, 6, and 0,. Alternatively, we might have one
model form with two different priors on the parameters, which can
then be thought of as competing models. In either case, we start
with some prior belief about the probability that each model is true.
These prior probabilities of the models are denoted p(M,). Bayes’
formula tells us how to modify those beliefs when we consider the
data:

p(MJt, x) = p(tlx, M)p(M,)/p(t]x) 4)

where the denominator is given by

p(tx) = >, plilx, M)p(M) (5)

i

In some applications, there is a continuum of models rather than a
finite set, and so the summation in Equation 5 becomes an integral.
Notice that the integral from Equation 2 shows up again in Equa-
tion 4, and thus the integral appears in all the three goals of
Bayesian modeling.

Much of the effort in Bayesian modeling goes into evaluating
the integral in Equation 2. For simple models, the integral can be
evaluated analytically, that is, by using clever mathematical deri-
vation. In other cases, the integral can be approximated analyti-
cally, with simpler formulas substituted for the exact model. When
neither of those approaches is feasible, numerical approximation is
used. For very small parameter spaces, the parameter space can be
sampled at regular intervals, like a comb or grid, with the terms of
the integral computed at each interval and summed up. For even
slightly larger parameter spaces, there are far too many grid points
to evaluate in a feasible time, and therefore sophisticated Monte
Carlo sampling schemes have been invented to sample the param-
eter space proportionally to probability density.

Everyday Bayesian Reasoning

“How often have I said to you that when you have eliminated
the impossible, whatever remains, however improbable, must be
the truth?” So said Sherlock Holmes in Arthur Conan Doyle’s
novel, The Sign of Four (1890, Ch. 6). This reasoning is actually
a consequence of Bayesian belief updating, as expressed in Equa-
tions 4 and 5. Let me restate it this way: “How often have I said
to you that when p(t|x, M;) = 0 for i # j, then, no matter how small
the prior p(M;) > 0 is, the posterior p(M|t, x) must equal one.”
Somehow it sounds better the way Holmes said it.
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The Holmesian logic upgrades belief in a hypothesis when
belief in another hypothesis is downgraded. The complement of
that logic downgrades belief in a hypothesis when another (mutu-
ally exclusive) hypothesis is upgraded. For example, when an
object d’art is found fallen from its shelf, the prior may indict the
house cat, but when the visiting toddler is seen dancing next to the
shelf, the cat is exonerated. This downgrading of a hypothesis is
sometimes called explaining away. It also follows from Bayesian
belief updating: When p(tlx, M)) increases but p(z}x, M)) is un-
changed for i # j, then p(M,|t, x) increases while p(M,t, x)
decreases for i # j.

We will later see results from associative learning experiments,
referred to as unovershadowing and backward blocking, respec-
tively, consistent with these forms of reasoning (although people
are not quantitatively accurate with this sort of reasoning, espe-
cially when there are more than two hypotheses; see Van Wallen-
dael & Hastie, 1990).

Bayesian Modeling as Cognizing

When applied to data analysis, Bayesian modeling involves
formal models created by statisticians to describe patterns in data.
But we can also imagine the mind, qua statistical homunculus, as
doing something like Bayesian analysis when it receives data from
the senses. At any moment, the mind has some hypotheses about
the world, with a certain degree of belief in each one. This entails
degrees of belief about hypotheses and degrees of belief about
possible parameter values within each hypothesis. The senses then
provide more data about the world, and the mind updates its
beliefs. If the mind is Bayesian, then Equations 1 and 4 specify the
updating of the belief probabilities. Furthermore, for any particular
state of beliefs, the mind can generate predictions about the world
when presented with stimulus x. If the mind is Bayesian, it will
have beliefs about possible predicted values y as specified by
Equation 2.

For theorists who wish to explore Bayesian models of cognition,
there are several challenges. Perhaps foremost among these chal-
lenges is specification of the hypotheses over which the mind does
Bayesian updating of belief probabilities. Once a theorist has
posited particular model functions for the mental hypotheses, then
another challenge is showing that Bayesian updating of belief
probabilities matches human learning. Research in the 1960s and
1970s (e.g., Edwards, 1968; Godden, 1976; Shanteau, 1975) tried
to make the hypotheses utterly simple and explicit. For example,
subjects were told the numbers of red and blue chips sampled so
far from an unknown bag and were asked to judge the probability
that the chips came from either a hypothetical bag with 70% blue
chips and 30% red or from a hypothetical bag with 30% blue chips
and 70% red. People did not adjust their judgments as extremely as
prescribed by Equation 4. More recently, Kitzis, Kelley, Berg,
Massaro, and Friedman (1998) found that a Bayesian updating
model fit their data better than a number of non-Bayesian learning
models but still not very well: Humans showed oversensitivity to
recent trials and overreliance on cues with relatively greater diag-
nosticity. In these studies, the Bayesian models involved hypoth-
eses with fixed (or punctate) parameter values and only Equation
4. Learning did not involve distributions of parameter values and
therefore never the complexity of invoking Equations 1 and 2.

Depending on the particular model form, and especially if the
model involves distributions of parameter values, Bayesian updat-
ing itself can be computationally intensive. In these cases it can be
very difficult to determine accurately the predictions of a Bayesian
model, and it can cause eyebrows to be raised when asserting that
the mind is capable of analogous computations.

Trial-Order Invariance

The learning milieu assumed in this article is trial-by-trial,
item-by-item updating of knowledge. In the terminology of statis-
tical or machine learning theory, I am specifically assuming online
learning, not batch learning. This degree of temporal resolution is
typical in theories of associative learning, such as the classic
Rescorla—Wagner (Rescorla & Wagner, 1972) model. It is possible
to address temporal processes at a finer resolution (e.g., the dura-
tion between stimulus offset and outcome onset within a single
trial), or at a coarser resolution (e.g., temporally extended reason-
ing about a list of many items presented simultaneously), but those
finer or coarser levels are not the focus here.

A characteristic of many recent Bayesian learning models is that
they do not depend on trial order. Given two training items, the
posterior probability distribution does not depend on the order in
which the items are trained. This trial-order invariance is desirable
in cases when all data should be treated as equally relevant,
regardless of order. In human learning, however, this might not be
the way people actually treat training items. We will see that the
new method introduced later does not enjoy, or suffer from,
trial-order invariance.

The standard Bayesian terminology for probability distributions
over parameters, prior and posterior, is misleading insofar as it
connotes the passage of time. There is no time in the Bayesian
formula that relates posterior to prior distributions. More accurate
terminology would refer to the distribution of 8 with particular
data excluded versus the distribution of 6 with those data included.
With that caveat in mind, I will comply with the traditional
terminology.

The reason that trial order has no impact in many Bayesian
models is that the data are assumed to be drawn independently
from a stationary probability model. The model function p(y|0, x)
is typically assumed to be independent of time or trial and inde-
pendent of any data generated previously. Appendix A provides an
elementary mathematical derivation of trial-order independence in
Bayesian updating.

Some specific Bayesian models do explicitly represent time,
with probability distributions that are functions of time, but time is
not inherent in the general Bayesian approach any more than
spatial location. Obviously, if a Bayesian model makes its proba-
bility function an explicit function of time or trial, then the model
will be able to show effects of time, which might or might not
match human behavior. Models involving time can be complex,
however, and therefore many Bayesian models avoid functions of
time merely for convenience, not out of theoretical commitment.

Effects of trial order should not be confused with effects of
number of trials. Even Bayesian models that are not sensitive to
trial order are sensitive to the number of times that a datum has
appeared. This is simply because the prior probability distribution
is gradually overwhelmed by the accretion of data through train-
ing. For example, both Danks, Griffiths, and Tenenbaum (2003)
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and Courville, Daw, Gordon, and Touretzky (2004) described
models that changed their behavior during training because a prior
was gradually overcome by data, but in neither case were the
models sensitive to the ordering of the training items.

Thus, in Bayesian models that have no time dependencies, trial
order has no influence on the ultimate posterior probability. In
particular, this means that any empirical phenomena that depend
on training order, such as those phenomena explored in subsequent
sections, will not be exhibited by such Bayesian models. Existing
models of learning that are trial-order invariant include Bayesian
neural networks (e.g., MacKay, 2003; Neal, 1996), sigmoid belief
networks (Courville et al., 2004), and noisy-OR causal models
(e.g., Sobel, Tenenbaum, & Gopnik, 2004; Tenenbaum & Grif-
fiths, 2003). Trial-order invariance is a deficiency for many exist-
ing Bayesian models that are intended to address human and
animal learning, which can be highly sensitive to trial order.

One notable Bayesian model that is sensitive to trial order is the
Kalman filter model, which was introduced to associative learning
researchers by Sutton (1992) and has been further developed by
Dayan, Kakade, et al. (e.g., Dayan & Kakade, 2001; Dayan,
Kakade, & Montague, 2000; Dayan & Yu, 2003; Kakade &
Dayan, 2002). In a Kalman filter, outcomes are computed as a
weighted sum of input cues. The weighting coefficients are the
values that are being learned. The weights have prior belief dis-
tributions defined as multivariate normal. The Kalman filter uses
Bayesian updating to adjust the probability distribution on the
weights (Meinhold & Singpurwalla, 1983). Because the model is
linear, the posterior distributions on the weights are also multivar-
iate normal, and the Kalman filter equations elegantly express the
posterior mean and covariance as a simple function of the prior
mean and covariance.

The Kalman filter can be sensitive to trial order because it adds
uncertainty to the weight distributions on every trial. Typically this
takes the form of a constant increment in variance on every trial,
which reflects the idea that the true weights could be gradually
changing through time. Because earlier-trained items are overlaid
with more accumulated uncertainty than later-trained items, the
Kalman filter can exhibit some trial-order effects. (When there is
no added noise, then of course the Kalman filter shows no effects
of trial order.) Simulations presented by Dayan, Kakade, et al.
have apparently set the added noise close to zero, and so trial-order
effects are modest. Even with added noise, the Kalman filter fails
to show a key phenomenon, called highlighting, that I will explain
at length later in the article. Simulation results for the Kalman filter
applied to the highlighting procedure are reported elsewhere
(Kruschke, 2006). It may be the case that more sophisticated
models of temporal change (e.g., Dayan & Yu, 2003; Steyvers &
Brown, 2006) could show highlighting, but this prospect awaits
future research.

Summary

Bayesian models of learning posit that the cognizer entertains
many candidate hypotheses, including various hypothetical values
for parameters. The learner begins with a prior distribution of
belief probabilities over the hypotheses. On each trial, the learner
is exposed to one new datum, and his/her beliefs are updated
according to Bayes’ theorem. This Bayesian updating shifts belief
to hypotheses that are consistent with that trial’s datum and shifts

belief away from hypotheses that are inconsistent with that trial’s
datum. Bayesian models capture some aspects of everyday reason-
ing, such as the Holmesian process of elimination or the judicial
logic of exoneration. Many Bayesian models of online trial-by-trial
learning assume, for simplicity, no time dependency and therefore
are trial-order invariant. The Kalman filter, which typically in-
cludes a constant increment in uncertainty across trials, can show
some trial-order effects but not the highlighting effect. With this
general background established, I will next describe the specific
framework for a new approach, called locally Bayesian learning.

The Architecture: Successive Functions

For simplicity, I assume that the model of interest can be
expressed as a succession of component functions. One function
maps the stimulus representation to an internal representation, a
second function maps that representation to another, and so on,
until a final function maps the last internal representation to a
response representation. Usually I will call each function a layer
but occasionally I will refer to a function as a module or a
component in the sequence.

The input vector for the € layer is x,. This is displayed at the
bottom of Figure 1. The probability of output vector y, is specified
by the function for that module and is denoted p(y,|0,, x,), where
0, is the parameter vector for the function. The theorist provides a
distribution of prior probabilities of the parameter values, denoted
p(0,). All these variables are denoted in the lower part of Figure 1.
The next layer up is also shown in Figure 1, with subscripts of
€ + 1. The €"* layer’s output provides the input to the layer € + 1.
The final layer is indexed by € = L, and the first layer is indexed
by € = 1. A stimulus—target pair, on which the sequence of
modules is trained, is denoted (7,, x,). On successive training trials,
a sequence of such input—output pairs are presented.

As mentioned in the introduction, there are many examples of
cognitive models that assume this sort of architecture. I am spe-
cifically interested in such architectures when applied to trial-by-
trial learning.

Globally Bayesian Updating

In the standard approach, all the layers are treated as one
integrated model that maps x, to y,, having parameters 6, . . ., 0,
with prior probability distribution p(8,,...,8,) over the joint
parameter space.

Yer1 ~ P(Yer1|0es1, Tes1)
[915+1 ~ p(011)

Tet+1

Yo ~ p(yelfe, z¢)

‘915 ~ p(0e)

Ty

Figure 1. Architecture of successive functions. Vertical arrows indicate a
mapping from input to output within a layer, parameterized by 6. The
notation 6 ~ p(6) means that 0 is distributed according to the probability
distribution p(0). In the globally Bayesian approach, x,,; = y,. In the
locally Bayesian approach, x,.; = Y.
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Predicting the Output for a Given Input

When provided with a particular value for the input x,, we
would like to know what the model predicts for the final output, y, .
The model functions do not compute a unique value of an output,
instead they specify the probabilities of values of y,. Because
unique values of the parameters are not known, we marginalize
across all the possible parameter values, just as in Equation 2, to
get the probability distribution of output values:

P()’L|x1) :fdeL' e delp(yL‘eL, s 0, x)p(6,, ..., 0)) (6)

The actual computation of the integral in Equation 6 can be
simplified, but my aim here is simply to point out that, conceptu-
ally, the integral is over the high-dimensional joint parameter
space.

When we want a unique predicted value for the output, we use
the expected (i.e., mean) value across possible output values, as
was described for the general case in Equation 3. For layers of
successive functions, the marginal output is expressed as

Ve _fdyL L P(yL|x|) (7

Equation 7 assumes that y, is a metric variable, so it makes sense
to add (i.e., integrate) different values of y,. When y, is instead a
nominal variable, then Equation 7 does not apply, and the predic-
tion for the output is left as Equation 6.

Parameter Estimation and Learning

When provided with a target output 7,, we would like to estimate
parameters that accommodate that target. In the maximal likeli-
hood estimation approach to parameter estimation, we choose the
single vector of values of 6,, ..., 0, that maximizes the likeli-
hood, p(#,]0,, . . ., 8,, x,). In the Bayesian approach, on the other
hand, we begin with a prior probability, p(6,, ..., 0,), over the
parameter space and derive a posterior probability distribution
according to Bayes’ theorem (Equation 1), which becomes

0L x)p(0,, ..., 0))
plt|x))

p(t]6. ..

PO ..., 01, x) =

s

(3)

where the denominator is determined by Equation 6 when y, = t¢,.
This updating of the probability distribution over the parameter
space is referred to as Bayesian learning of the parameters.

Computational Demands

For either goal of predicting or learning, we need to compute the
overall likelihood, p(y,|0,, ..., 8,, x,), which appeared in Equa-
tions 6 and 8. We have, however, only the single-layer expres-
sions, p(v,|0,, x,), specified by the models in each layer. So we
need to reexpress the overall likelihood in terms of the individual
layer functions.

In the present scenario, by using layers of independent modules,
we can determine the overall likelihood (in principle) by starting at
the first layer and working through each successive layer. Thus,

beginning with the first layer, we determine the probability at the
next layer as

P()’z|92’ 0, x) :J'dﬁ P()’2|92, )’1)P()’1|91, x) 9)

The result of Equation 9 is to be thought of as a formula for a
function of the variable y, (and of the variables 6, and 6,). We can
then determine the formula for the probability distribution at the
next layer:

P()’s‘ey 05, 01, x,) :JdY2 P(Y3|937 yz)l’(}’2|ez» 0., x) (10)

We proceed up the layers until we get the general formula for the
probability at the last layer, which we then evaluate with y, = ;.

This recursive procedure is tractable when the integral at each
level can be analytically formulated. An example is when each
probability density function is a linear transformation with Gauss-
ian noise (e.g., Neapolitan, 2004, Ch. 4). If instead each integral
must be numerically approximated, the situation becomes very
computationally demanding. It may be the case that the computa-
tions can be significantly economized by using clever algorithms,
but we will see that computational expense is not the only chal-
lenge of globally Bayesian updating.

The computational demands leave us with the following alter-
natives: (a) Restrict our model functions to forms that yield ana-
lytically tractable integrals. (b) Specify model functions however
we desire but approximate them with analytically tractable forms
and demonstrate that the approximations are good under the cir-
cumstances we use. (c) Use sparse combs and grids over the
variables and show that the approximations are good under the
circumstances we use. (d) Use sophisticated Monte Carlo sampling
over the variables and show that the approximations are good
under the circumstances we use. Much previous work has gone
into each of these approaches (see, for example, textbooks by
Gelman, Carlin, Stern, & Rubin, 2004; Gill, 2002; MacKay, 2003).

The New Approach: Locally Bayesian Updating

There is another approach to the problem: Jettison the goal of
being globally Bayesian and instead assume only that each module
is Bayesian by itself. One motivation for this approach is that the
computations for globally Bayesian updating might be prohibitive.
A second motivation is that locally Bayesian learning can, in some
circumstances, be faster than globally Bayesian learning. Exam-
ples are described later in the article. However, even if special
cases of globally Bayesian computations are tractable and fast,
there is a third motivation. In the course of evolutionary design of
the mind, there might be component functions that are used for
various different activities. Each of these components might learn
and develop and evolve somewhat independently of the others to
enhance flexibility and damage resistance. Yet each should be
Bayesian in the context of its own interior environment. Each
component knows only about the information it receives from its
immediately contiguous neighbors, and within its myopic environ-
ment it should be Bayesian. A fourth motivation is that specific
instantiations of locally Bayesian learning may usefully mimic
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aspects of human learning. It is this motivation that ultimately
weighs most heavily in the present article.

Notice that Bayesian learning (Equation 1) requires a specific
input (x) and a specific teacher (f). An interior layer, however,
receives a distribution of inputs (y from the previous layer) and no
explicit teacher at all. To accomplish locally Bayesian learning for
an interior layer, we will specify a particular input and teacher for
that layer. Once we specify those values, then each layer will do
Bayesian learning on its own. These locally Bayesian modules
might or might not yield globally Bayesian behavior, but they can
mimic some aspects of human behavior.

Specific Input for Locally Bayesian Learning

Each module takes as its input the marginal output from the
previous layer. The marginal output is a standard Bayesian ap-
proach to prediction, as was described in Equation 2. For this
purpose, I here assume that y, is on a metric scale and therefore
can be integrated, or summed if it is discrete valued. Formally, the
input to layer €+ 1 is the predicted (i.e., marginalized) value of the
output of module ¢:

Xe+1

=Y
—dee Ye P(yf‘xﬂ)
—fd)’e yffdeé Pl 0¢, x)p(0¢)

=jd9« P(G{)erw ye p(yel 0, x0) (11)

Equation 11 is then applied recursively up the sequence of layers,
so every layer has a specific input. (This use of the mean output for
the input to the next layer assumes that the mean is a valid input
for the next layer; i.e., that the mean lies in the domain of the next
layer’s function.) The form provided in the last line of Equation 11
is useful computationally because it first finds the mean output for
a specific hypothesized value of 6 and then integrates those mean
outputs weighted by the probability of the hypotheses. To recapit-
ulate—in the globally Bayesian approach, the input to a layer is the
output value of the layer that feeds it, but the lower layer output is
probabilistically distributed. In the locally Bayesian approach, the
input to a layer is the mean output value of the layer that feeds it,
and the mean value is determinate.

The final layer variable, y,, does not need to be metrically scaled
because we do not need to marginalize its output for feeding
another layer. When the final layer’s output is nominally scaled,
we cannot sum over values of y,, and the output is

r(y) :fdeL P()’L|9L7 Yi-0)p(0,), (12)

for each value of y,.!

Specific Target for Locally Bayesian Learning

A training item specifies the target vector at the final output
layer, which is useful for global Bayesian updating (as in Equation

8). If, however, we want local updating within each layer, we need
an analogous target vector for every interior layer. Clearly we
should like the teacher ¢, for layer ¢ to be a value that makes the
probability of the final teacher large. Indeed, we should like to find
the value of t, that maximizes p(t, |t,). Unfortunately, only the final
layer has access to the external teacher. Therefore, we start at the
final layer and determine a teacher for the penultimate layer, then
for the previous layer, and so on, down as many layers as needed.

Formally, when the £ layer has a target ¢, but the target ¢,_, for
the layer below is unknown, we choose for the lower layer target
the value that maximizes the probability of ¢”-layer target:

argmax p(1,|xf)

X

€

te—y

argmaxfdef p(tl6,, x1)p(6)) (13)

Equation 13 simply states that the target for the layer below is the
input to the current layer that would maximize the probability of
the target for the current layer. The variable x7 is given a super-
script star to distinguish it from the input value x, = y,_,. Notice
that Equation 13 can be recursively applied down the levels of
modules: The “outside world” provides ¢, for the final layer, and
then Equation 13 is recursively applied from the final layer down
to lower layers.

Whereas it might be desirable to find an x7; value that maximizes
the probability of 7, as defined in Equation 13, in practice it may
suffice to find an x% value that merely increases the probability of
t, relative to x, = y,_;. Maximization, or at least significant in-
crease, might be accomplished economically by a variety of hill-
climbing optimization methods. Computational economy is not,
however, the only motivation for locally Bayesian learning.

Procedure for Locally Bayesian Learning

With targets determined by Equation 13 and inputs determined
by Equation 11, we can do Bayesian updating within layers. Even
so, how should learning be interleaved with target back-
propagation? 1 will let the typical task dynamics motivate my
choice. In standard associative learning tasks, a trial consists of the
following sequence of events. First, a stimulus, that is, x,, appears.
The learner is asked to predict the outcome, that is, the subject
generates y,. Then corrective feedback occurs, that is, 7, is pro-
vided. Presumably, after the feedback is presented, the learner then
does some internal parameter adjustment.

This sequence of events is imitated mathematically as follows.
First, input activation x, propagates up the layers with
X¢ = Y¢—; and y,_, defined by Equation 11. Then, starting with the
final layer (which has an externally specified target), belief prob-
abilities are locally updated, and the updated beliefs are used to
generate a target value for the next layer down. In other words,
when layer ¢ has a target specified from the already-updated

"It may be possible to extend the approach to cases in which a lower
layer’s outputs y, are nominal instead of metric. In this case, we might set
X¢y, to the most probable value of y,. When searching for a value that
maximizes the probability of the target (as explained below), the search
would have to explore the discrete space.
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beliefs of layer € + 1, then the belief probabilities for layer € are
updated according to Bayes’ theorem,

p(O|te. x0) = p(te|0, x) p(0)/p(te|xc)

_ P(le‘ef, x)p(6¢) (14)

f doe p(t,]0¢, x)p(8,)

Then the teacher for the next lower layer is determined by using
Equation 13 with the posterior distribution on 6,:

toy = argmaxj dd, p(te]0¢, xE)p(0]t, x). (15)

This procedure implements the idea that a layer should update its
beliefs as soon as it has a target, and it should generate a target for
lower layers only after it has updated its beliefs on the basis of its
target.”

The updating of the parameters within a layer, on the basis of the
input and target specific to that layer, is what makes this approach
locally Bayesian. This sort of functional localization of Bayesian
updating should not be confused with spatially local, but function-
ally parallel, Bayesian updating in models of pattern recognition
(e.g., Bolle & Cooper, 1986). Notice also that what is being locally
updated in the present scheme is the probability distribution over
possible parameter values within a layer; this process is not local
updating of a single parameter value as done in some analyses
(e.g., Russell, Binder, Koller, & Kanazawa, 1995).

Locally Bayesian learning might be related to the expectation
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977),
which is often applied to situations in which the data have missing
values, analogous to the missing internal targets in the present
scenario. Unlike locally Bayesian updating, however, the typical
goal of the EM algorithm is to assist global analysis of the joint
parameter space. The EM algorithm is neutral with respect to how
many items are in the data set, whereas locally Bayesian updating
is specifically designed for online training in which updating
applies to one datum at a time.

Does Target Probability Always Increase?

It is plausible that the locally Bayesian updating procedure
should cause p(t,|x,) to increase. Certainly within each layer, local
updating does cause p(t,|x,) to increase; this is a general property
of Bayesian updating that is not difficult to prove. Bayesian
updating within the €”* layer places more belief probability on
parameter values that favor f,, and less belief probability on
parameter values that do not favor ¢,. Therefore, y, is closer to 7,
after updating than before. Because 7, was chosen to maximize the
probability p(t,.,,|t,) of the target at the next layer, it is plausible
that p(t;,,[y,) should also be larger (or at least not smaller) after
updating the € layer. By induction across layers, p(,|x,) should
increase.

At this time I do not have a proof that updating the € layer
increases the probability of the target at the next (€ + 1) layer.
Proving the proposition might depend on the particular form of the
function that defines p(y,. |0, . X, ,); the function may need to
be monotonic between preupdate y, and 7., so that no matter where

postupdate y, falls between preupdate y, and ¢, the function value
will increase. In lieu of a proof, I can offer at this time only the
observation that for all the particular models I have simulated, it is
the case that locally Bayesian updating increases p(f,|x,).

Trial-Order Sensitivity

Each layer updates its parameter distribution according to
Bayes’ theorem (Equation 14). If the model function in each layer
has no time dependencies, then each individual layer will show no
sensitivity to mere reorderings of its inputs and targets. The overall
system of time-independent functions can be sensitive to trial
order, however, because the targets themselves (selected by Equa-
tion 15) depend on trial order.

In formal terms, consider the training items (£, x{*) and (#!,
x{?). Those external values do not change if the training order is
changed, and a (time-invariant) globally Bayesian model is not
affected by changes in training order. Even so, the locally Bayes-
ian learner generates internal targets, £ and #, that depend on
previous learning. If the training order is changed, then #* and ¢}’
might also change, and therefore the learned beliefs of the internal
layers can depend on trial order. Examples of these internal targets
will be described for particular applications in the simulations
reported below.

An Illustrative Implementation

The remainder of the article illustrates locally Bayesian learning
in a simple model. Computer code for the simulations is available
at my Web site. The model is simple enough that the analogous
globally Bayesian model can also be simulated. The models are
applied to the associative learning paradigms known as highlight-
ing, backward blocking, unovershadowing, et cetera, to be de-
scribed en route. The locally Bayesian learning model can (qual-
itatively) capture the human behaviors arising from these learning
paradigms. The analogous globally Bayesian learning model does
not exhibit highlighting, does not show a difference between
forward and backward blocking, et cetera. Previous Bayesian
learning models in the literature also do not exhibit highlighting.
Previous models in the literature that do exhibit highlighting (e.g.,
the connectionist model EXIT, Kruschke, 2001b) do not show
backward blocking or unovershadowing. Thus, the locally Bayes-
ian learning model captures a set of phenomena that have not been
spanned by previous models. Moreover, in some cases, the locally
Bayesian model learns the training items faster than the analogous
globally Bayesian model.

The model implemented here is intended to be an oversimplified
architecture for illustrative purposes. The simple architecture per-

2 There are, conceivably, other ways of interleaving target propagation
and Bayesian updating. Another option is, for example, to propagate targets
down all the layers before executing any belief updates and then update
beliefs in all layers simultaneously. Another option might make sense if the
target is provided before the input: First, propagate targets down all the
layers, and then, when the input is provided, update beliefs in the lowest
layer, propagate the input through the updated beliefs to the next layer,
update that next layer’s beliefs, propagate the input to the next layer, and
so on up the layers. Yet another option is for target propagation and belief
updating to be done asynchronously. These alternative schemes will not
produce identical behaviors, but they are not further explored in this article.
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mits a complete specification of a global hypothesis space, so that
local- and global-learning versions of the model can be compared.
I have also implemented a local Bayesian learning version of the
EXIT model, which also shows all the same qualitative effects as
the simple model described here. To save space, I will not further
describe the locally Bayesian version of the EXIT model.

The models will be applied to simple associative learning ex-
periments. In such experiments, the learner is shown cues that
indicate outcomes. If the learners are rats, the cues might be tones
or lights, and the outcomes might be foot shocks or food pellets. If
the learners are humans, the cues might be words on a computer
screen, and the outcomes might be different response buttons to
click. On any trial of learning, cues are presented to the learner,
who predicts an outcome and who is then presented with corrective
feedback. In category learning procedures, the feedback indicates
which response would have been correct, not just whether the
response was wrong.

When there are multiple cues presented on a trial, it is reason-
able to suppose that the learner may selectively attend to some
cues and ignore other cues. A major tradition in theories of
learning is that people and animals do, in fact, learn to attend to
cues that are diagnostic for correct responses and learn to ignore
cues that are irrelevant (e.g., Kruschke, 2003a; Mackintosh, 1975;
Trabasso & Bower, 1968). Thus, when learning to associate cues
with (overt) responses, people are also learning to associate cues
with (covert) attentional distributions over those cues.

The model is a simplistic instantiation of the notion that cues are
associated with attentionally filtered versions of the cues, which
are then associated with outcomes. Figure 2 illustrates the model’s
architecture. The model has connectivity like a two-layer connec-
tionist network. Variables involved with feeding the middle, a.k.a.
hidden, layer are denoted by a subscript hid. Variables involved
with feeding the outcome layer are denoted by a subscript out.
Stimuli are represented in the network by corresponding cue
nodes. A cue node has activation x,,, = 1 if the cue is present and
has activation zero otherwise. Cue activations are propagated to
the hidden layer, which represents attentionally filtered cues, also
with zero/one activations. The attended cue activations are then
propagated to the outcome layer, which has nodes that represent
the categorical choice options, again represented with zero/one
activations.

From Cues to Attended Cues

The hidden nodes are intended to represent attentionally filtered
copies of the stimulus cues. Therefore each hidden node corre-

Yout ~ p(ymtt|WWt7 xhid)

I Wour ~ p(Wout)

Lout

Outcomes

Attended Cues
Ynia ™~ PWnialWhia> Thia)

I Whia ~ P(Whiq)

Cues Thid

Figure 2. Architecture for the simple model of associative learning.
When locally Bayesian, the input to the outcome layer is the mean output
of the hidden layer, that is, x,,, = Y-

sponds to an input node, and there are as many hidden nodes as
input nodes. The activation of a hidden node is much like the
standard connectionist network: The net input to a node is com-
puted by summing over the weighted incoming connections, and
then the probability of becoming activated is a squashing function
of the net input.

Formally, let the stimulus cues be denoted by the column vector
Xpi0» With N components corresponding to the N cues. The weights
going to the hidden nodes, from the cues, are denoted by the matrix
W,,..- The j™ row of W,,,,, denoted W,,ia,» contains the weights that
converge on the j* hidden node. The net input to the j”* hidden
node is the weighted sum of the cue activations, which can be
expressed as the matrix product W,;; ;.

The hidden node activations form a column vector, denoted y,,,,
consisting of 1s and Os. A hidden node has activation 1 if the
corresponding cue is being attended to and has activation O if the
corresponding cue is being ignored. The hidden node activations
are discrete values from an underlying continuous metric scale.
The probability that the j* hidden node is activated is defined as

p(yhid,j = ]|Whida Xpia) = Sig(leid,jxhid)Cs (16)

where sig(x) = 1/(1 + exp(—x)) is the well-known sigmoid func-
tion. The sigmoid function is raised to the power ¢ = 6 (an
arbitrary value) in Equation 16 so that the probability of being
activated is nearly zero when the net input is zero. Equation 16 is
assumed to apply to each hidden node independently so that the
probability of any particular vector of hidden node activations is
the product of the probabilities of the individual node activations.

Any particular set of weight values is a hypothesis for the
mapping from cues to attention. The model is provided with a set
of (fixed) weight matrices that define its hypothesis space. Because
the hidden nodes are intended to represent corresponding cues, the
weight to the j hidden node from the j” cue is constrained to be
positive, which causes the hidden node to tend to be activated
when the corresponding cue is present. In the demonstrations
reported below, the connections to the j” hidden node from the j™
cue were allowed to have values of either 4 or 6, because when
net = 6, sig(net)® is nearly a probability of 1. The lateral connec-
tions, to a hidden node from some noncorresponding cue node,
were allowed to be inhibitory or neutral, having values of either —4
or 0. As an example of a hypothesis, a hidden node could have a
weight of 6 from the corresponding cue node, a weight of 0 from
a second cue, and a weight of —4 from a third cue. The inhibitory
weight from the third cue reduces the probability that the hidden
node attends to the first cue when the third cue is present.

The hypothesis space consists of all possible combinations of
the weight values. If, for example, there are three cues, then there
are nine hidden weights and 2° = 512 hypotheses. Notice that the
hypothesis space is symmetric: All combinations of lateral inhibi-
tion are represented in the space, so any cue node has equal
opportunity to inhibit any other hidden node.

The untrained network begins with a prior probability on the
weight matrices, and learning consists of changing those belief
probabilities. In the simulations presented below, the prior distri-
bution is uniform: Every available hypothesis has equal probabil-
ity. Because every hypothesis in the space has its mirror opposite
also in the space, the uniform prior yields hidden node probabil-
ities that merely probabilistically copy the input cues.
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From Attended Cues to Outcomes

When propagating activation up the network for locally Bayes-
ian learning, the input to the outcome layer is the mean hidden
node activation (corresponding to Equation 11):

Xour = yhid
= E P(Wy) E Yhid p(yhid|Whid’ Xnid) a7)
Whia Yhid

where the first sum is over all weight matrices in the hypothesis
space, and the second sum is over all 2" vectors y,,, € {0, 1}" that
make up the hidden activation space.

The outcome nodes represent the possible response categories.
In general, there is one outcome node per response category.
Associative weights, denoted W_,,,, go to the outcome nodes from the
hidden nodes. The k”* outcome node computes its net input by
summing over the weighted hidden activations: net,,,,, = W, X
One and only one outcome node gets an activation of 1 whereas the
other outcome nodes get an activation of 0. The probability that the k™
outcome node is activated is defined as p(y .. = W Xou) =
exp(net,,, )/[2,; exp(net,,, )]. This formula is simply the well-
known softmax function from the connectionist literature (Bridle,
1990) and is also an often-used exponentiated version of Luce’s
choice rule (Luce, 1959).

In the particular applications here, there are only two outcome
categories. In this situation, the second outcome node is redundant
with the first outcome node (because the outcomes are mutually
exclusive), and so the architecture can be simplified such that there
is only one outcome node. When the single outcome node has
value 1, the first outcome is chosen, and when the outcome node
has value 0, the other outcome is chosen. The softmax function on
two nodes is algebraically equivalent to a sigmoid function on a
single node. Thus, in the simulations reported below, the proba-
bility of activating the single outcome node is

p(y(?lll = 1 |W0utv xOMT) = Sig(netout)' (18)

In the simulations reported below, the model was provided with
a set of fixed outcome-weight matrices, W,,,, that collectively
defined its hypothesis space for mapping attended cues to out-
comes. Each individual weight was allowed to be inhibitory,
neutral, or excitatory. For simplicity, I chose values of -5, 0, and
5, because when net = 5, sig(net) is a probability of nearly 1, and
when net = -5, sig(net) is a probability of nearly 0. When there are
N hidden nodes, there are 3" combinations of outcome weights;
that is, there are 3" hypotheses in the hypothesis space for map-
ping attended cues to outcomes.

As is typical in applications of Bayesian connectionist networks
(e.g., MacKay, 1992, 2003; Rumelhart, Durbin, Golden, & Chau-
vin, 1995), I specify a normal (i.e., Gaussian) prior on the
outcome-weight hypothesis space. In situations when the two
categorical outcomes should have no prior bias, the prior proba-
bility of W,,,, is set proportional to II; norm(w;; 0, 5), where w, is
the i component of W, and norm(w; w, o) is the normal
probability density of w for mean p and standard deviation o, with
covariances assumed to be all zero. To be precise, notice that the
normal prior is supported only at the discrete weight values that are
actually used in the simulation; therefore the normal probability
densities at those points are renormalized to be probabilities, not

densities. With this prior, the model begins by favoring hypotheses
that have neutral (zero weight) connections and by symmetrically
doubting hypotheses that contain positive or negative associations.

The model is also applied to situations in which the two out-
comes have unequal initial probability. Consider, for example, the
situation of a rat having to learn an association between a tone and
a foot shock. The outcome categories are presence or absence of
shock. Initially, there should be little expectation of foot shock
when the tone occurs. Therefore, the model should have prior
probabilities that favor hypotheses of no outcome. This is achieved
by setting the prior probabilities proportionally to normal densities
centered on —5 instead of zero, that is, the prior probability of a
hypothesis is II, norm(w;; -5, 5).

Locally Bayesian Learning

When a stimulus is presented, activation propagates up the
network according to Equations 16, 17, and 18. When the correct
outcome, 7, is presented, the outcome layer does Bayesian up-

dating of its hypothesis space. Formally, the updated probability of
a particular hypothesis W, , is

out

p(tom‘| Wr’nm -xom‘)p( W;ut)
E Wour p(toul| Wmm xnut)p( Wnut) ’

p(W/oufltoun Xou) = (19)
where the sum in the denominator is over all outcome-weight
matrices in the hypothesis space. This is simply Equation 14
rewritten in the notation of this specific model architecture.

After beliefs in the outcome hypotheses are updated, they are
used to propagate a target to the hidden space. Rewriting Equation
15 in the notation of the specific model architecture yields

lhid = argmax 2 p(lout| Wout’ xi’:m)p( Wvut|tuxm xom)' (20)

X
out Wour

The target for the hidden layer, ¢,,, is going to be used for
Bayesian updating of the hidden layer, and therefore ¢,,, must be
in the range of values for which p(t,.Wyis» Xnia) is defined.
Therefore t,,;,, must be in {0, 1}", and the maximization in Equa-
tion 20 explores all x*,, € {0, 1}".

Once the hidden target is found, the hidden-layer hypothesis
space is updated, with Bayes’ formula analogous to Equation 19

with all the out subscripts replaced by hid subscripts.

The Analogous Globally Bayesian Model

One of the motivations for illustrating the locally Bayesian
approach with such a simple model is that the corresponding
globally Bayesian model is small enough to be easily simulated.
Therefore the behaviors of the locally and globally Bayesian
models can be directly contrasted.

In the analogous globally Bayesian model, each hypothesis
consists of a specific combination of hidden-weight matrix and
outcome-weight matrix. The global hypothesis space was con-
structed by crossing every hidden-weight matrix in the locally
Bayesian model with every outcome-weight matrix. When there
are N cues, the globally Bayesian model has 2V X 3" hypotheses,
whereas the locally Bayesian model has a total of 2™ + 3V
hypotheses. For example, when N = 3, the globally Bayesian
model has 13,824 hypotheses, whereas the locally Bayesian model
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has 539 hypotheses. The prior probability on a hypothesis in the
global model was set to the product of the prior probabilities of
each corresponding hypothesis in the local model: p,,u. (W,
Whia) = Piocal Wour) Piocal Whiq)- This assignment makes the mar-
ginal priors of each hidden-weight value identical for the local and
global models.

The probability of each specific outcome, for a specific hypoth-
esis, is generated according to Equation 9, which can be rewritten
in the specific model’s notation as

P(}’om| Wvut’ Whid’ xhid) = E p(yout| Wuur! yhid)p(yhi(l‘ Whids xhid) ) (21)

Yhid

where the sum is over y,,;, € {0, 1}"¥ and where the component
probabilities were defined in Equations 16 and 18. To compute the
marginal probability of each specific outcome, we marginalize
across all possible hypotheses as in Equation 6, where the integral
over parameter values becomes a sum over discrete hypothesized
weight matrices. To compute the expected value of the outcome,
we then marginalize across possible outcome values as in Equation
7. When a teacher ¢, is supplied for the outcome, then Equation
21 provides the likelihood of each hypothesis, p(t,,|W, ..o Wi
Xp:)- Those likelihoods are used in Bayes’ theorem to update the
global hypothesis space as expressed earlier in Equation 8, where
the denominator is computed from Equation 6 as a sum over
discrete hypothesized weight matrices instead of an integral over
continuous parameter values.

Application to Highlighting

In this and the following sections, the model will be applied to
various phenomena in associative learning that are challenging for
either time-independent Bayesian models or error-driven models
in the Rescorla—Wagner and connectionist traditions. Trial-order
effects are difficult for many Bayesian models to address but
natural for error-driven models, whereas retrospective revaluation
of absent cues is difficult for error-driven models to address but
natural for Bayesian models.

Table 1 shows a canonical highlighting design. The learner first
sees trials of cues I and PE indicating outcome E, denoted LPE—E
in Table 1. In the second and third phases of training, trials of
[.LPL—L are intermixed. Notice that cue I is an Imperfect predictor
because both outcomes E and L can occur when I occurs. Cue PE
is a Perfect predictor of the Earlier-trained outcome E, and cue PL
is a Perfect predictor of the Later-trained outcome L. If people
learn the simple underlying symmetry of the cue-outcome corre-
spondences, then when they are tested with cue I by itself, they

Table 1
Canonical Highlighting Design

Phase # blocks Items X Frequency
First N, LPE—E X 2
Second N, ILPE—E X 3 ILPL—L X 1
Third N; =N, + N, LPE—E X 1 LPL—L X 3
Test PE.PL—? (L)

1-2%E)

Note. An item is shown in the format Cues— Correct Response. In the
test phase, typical response tendencies are shown in parentheses.

should choose outcomes E and L equally often. In fact, there is a
strong tendency to choose outcome E (shown in the bottom row of
Table 1). This response bias is not a general primacy effect,
however, because when people are tested with the pair of cues PE
and PL, they prefer outcome L. Apparently, cue PL has been
highlighted during learning .PL—L, so that cue I is not associated
strongly with L, but PL is.

The canonical highlighting design equalizes the long-run base
rates of the early and late outcomes. Notice in the table that when
N5 = N, + Ny, the total number of LPE—E trials is 3N, + 4N,,
which equals the total number of .PL—L trials. Thus, the base
rates of E and L trials are equal. This equality of base rates
distinguishes highlighting from the inverse base rate effect re-
ported by Medin and Edelson (1988), which uses only the second
phase of Table 1, that is, N, = 0 and N5 = 0. The equality of base
rates emphasizes that highlighting is an order-of-learning effect,
not a base rate effect. It is only by virtue of the fact that the I.PE
cases are learned before the I.PL cases that asymmetric test re-
sponding occurs at all. If the I.PE and I.PL cases were intermixed
equally throughout training, they would be structurally equivalent
and no such highlighting effect could be meaningfully assayed
(except for differences in acquisition order within individual sub-
jects).

Highlighting or the inverse base rate effect has been obtained in
many different experiments using different stimuli, procedures,
and cover stories, such as fictitious disease diagnosis (Kruschke,
1996; Medin & Edelson, 1988), random word association (Dennis
& Kruschke, 1998), and geometric figure association (Fagot, Krus-
chke, Dépy, & Vauclair, 1998). Many other published experiments
have obtained the inverse base rate effect for different relative
frequencies and numbers of training blocks (e.g., Juslin, Wenner-
holm, & Winman, 2001; Medin & Bettger, 1991; Shanks, 1992). 1
have run several (unpublished) experiments in my lab in which
N, = 0 and N, = N5, and in all of these experiments robust
highlighting has been obtained. Highlighting has not yet been
observed in animal learning, though to my knowledge it has been
sought in only one study (Fagot et al., 1998), and one study has
shown that highlighting is reduced or absent in children (Winman,
Wennerholm, Juslin, & Shanks, 2005).

Highlighting challenges time-invariant Bayesian models. The
canonical design is a critically difficult case for time-independent
Bayesian approaches because highlighting is a trial-order effect.
Any Bayesian model that treats the training items exchangeably
will, by definition, fail to show highlighting. Appendix B provides
a Bayesian derivation that p(E|l) = p(E) for any values of N,, N,,
and N;. With additional assumptions about unobserved contingen-
cies, another derivation in Appendix B shows that p(E|PE.PL) =
p(E) for any values of N;, N,, and N;.

Highlighting and attention shifting. Highlighting has been ex-
plained by rapid shifts of attention during learning and the learning
(i.e., retention) of those shifts. The theory has been implemented in
error-driven connectionist models called ADIT and EXIT (e.g.,
Kruschke, 1996, 2001b, 2005; Kruschke, Kappenman, & Hetrick,
2005). The present model captures some of the same ideas as the
EXIT model but with associative weight changes driven by Bayes-
ian updating and with attentional shifts driven by maximization of
outcome probability. As mentioned earlier, I have also simulated a
locally Bayesian version of EXIT with results similar to those of
the simpler model reported here.
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Previous work has suggested that there are individual differ-
ences in magnitude of attention shifting (Kruschke et al., 2005).
The magnitude of attention shift can be captured in the locally
Bayesian framework by the degree to which 7,,, moves away from
Viia toward the maximum expressed in Equation 20. All the sim-
ulations results that are presented below assume complete attention
shifting.

Simulation results. Figure 3 shows graphically the results of
training in the highlighting procedure. The upper row shows re-
sults from the locally Bayesian model, and the lower row shows
results from the globally Bayesian model.

I simulated a simple case in which seven trials of .PE—E were
followed by seven trials of .PL—L. The exact number of trials
and their exact relative order is not important to the qualitative
outcome as long as some trials of LPE—E occur first. Therefore I
front loaded all the .LPE—E trials so that the training lists would
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be easy to read in the left panels of Figure 3. Locally Bayesian
learning was executed for every item individually, in the order
listed.

The right panels of Figure 3 show the behavior of the models at
the end of training. Notice that accuracy is good on the training
items: There is a very high probability of responding E to I.PE and
a very low probability of responding E to I.PL. The locally
Bayesian model shows robust highlighting, with p(E) > 50% for
cue I alone, and p(E) < 50% for cue pair PE.PL. The globally
Bayesian model shows no highlighting, however, with p(E) =
50% for both I and PE.PL. This lack of highlighting by the
globally Bayesian model is exactly what we should expect, on the
basis of the Bayesian analyses of the highlighting paradigm dis-
cussed earlier.

Figure 3 also shows aspects of the posterior probabilities on the
hypothetical weights. The graphs denote the three cue nodes as PE,
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I, and PL. The corresponding hidden nodes are denoted hidPE, hidl
and hidPL. The outcome node is denoted E, but it also represents
outcome L when the node’s value is zero. A connection to the
outcome node from the hidden node hidPE is denoted E<-hidPE.
A connection to the hidden node hidPE from the cue node I is
denoted hidPE<L.

The panels labeled Outcome Weights in Figure 3 show the
marginal belief probabilities for values of the outcome weights.
For example, the marginal probability of value —5 on weight
E<-hidPL is the sum of the posterior probabilities of all hypoth-
eses that have a value of -5 on weight E<~hidPL. For locally
Bayesian learning, we see that the posterior probabilities on the
output weights are asymmetric for hidPE and hidPL. There is high
probability that E<~hidPL is —5, but not as high a probability that
E<-hidPE is +5. The output weights are also asymmetric from
hidl: There is higher probability that E<~hidl is +5 than —5. For
globally Bayesian learning, however, no such asymmetry occurs.
Globally Bayesian learning accurately reflects the underlying sym-
metry of the training cases.

The panels labeled Hidden Weights in Figure 3 show the mar-
ginal belief probabilities for values of the hidden weights. For
locally Bayesian learning, the distributions are asymmetric. In
particular, the weight hidl<—PL has very high probability on value
—5, which means that PL inhibits hidl, whereas the weight
hidI<—PE has very high probability on value 0, which means that
PE does not inhibit hidl. For globally Bayesian learning, no such
asymmetry exists. To reiterate, globally Bayesian learning accu-
rately reflects the symmetry of the training cases.

The locally Bayesian model exhibits highlighting because of the
hidden targets it generates. When presented with a case of LPL—L
(after earlier training on LPE—E), the best target for the hidden
layer sets hidl at zero. Thus, the hidden layer learns to map [.PL to
hidPL (not to hidl.hidPL). In the language of attentional learning
theory (Kruschke, 2003a), the model has rapidly shifted attention
to PL away from I and then has learned to reproduce that shift in
response to the stimulus I.PL. In more Bayesian terms, the model
has generated an internal target that is maximally consistent (or
least inconsistent) with its current beliefs and then has performed
Bayesian learning with that internal target. The locally Bayesian
model first shifts the data (i.e., its internal targets) to best fit its
beliefs and only then changes its beliefs to accommodate the
(shifted) data.

Figure 3 also reveals that the locally Bayesian model learns the
training items faster than the globally Bayesian model. Accuracy
on the LLPE and L.PL training items is better for the locally
Bayesian model than for the globally Bayesian model. This ad-
vantage for the locally Bayesian model appears to be only slight in
Figure 3 because the response proportions are compressed against
the limits of the possible range, but the accuracy advantage for the
locally Bayesian model is quite large on the initial trials of both
phases. The locally Bayesian model improves its accuracy faster
than the globally Bayesian model on every training trial.

This faster learning by the locally Bayesian model might seem
unexpected because globally Bayesian models are supposed to be
optimal learners. The locally and globally Bayesian models have
exactly analogous hypothesis spaces, exactly analogous priors, and
the same training items. So how can the globally Bayesian model,
which accurately learns the underlying symmetry of the items,
learn more slowly than the locally Bayesian model?

At least part of the answer is that the globally Bayesian model
retains some belief in hypotheses that are eliminated by the inter-
nal targets in the locally Bayesian model, and the lingering uncer-
tainty of the global model leaves it less accurate. Specifically,
during the early training phase (LPE—E), the globally Bayesian
model retains some belief in the joint hypothesis that (a) hidl is
inhibited by PE and (b) hidPE is inhibited by I and (c) hidl and
hidPE both inhibit outcome E. In other words, the globally Bayes-
ian model retains some belief in the joint hypothesis that cues I and
PE prevent each other from inhibiting outcome E. This hypothesis
(among others) dilutes the marginal accuracy when tested with
LPE. The locally Bayesian model, on the other hand, quickly
squelches any beliefs in inhibition among I and PE. This is
because, in early training, the hidden target specifies full activation
of both hidl and hidPE, which is inconsistent with any inhibition
to hidI from PE or to hidPE from I. The robust average activation
of hidI and hidPE also quickly squelches belief in inhibitory links
to outcome E from hidl or hidPE.

In the late phase of training (.LPL—L), the locally Bayesian
model retains and enhances its early lead by specifying a hidden
target that is maximally consistent with its earlier learning. For
[LPL—L, the hidden target puts zero activation on hidl because the
currently believed hypotheses assert that hidl indicates outcome E,
not outcome L. This shift of activation away from hidl allows the
model to retain high accuracy on I.PE while quickly learning I.PL
without interference from cue I. This acceleration of learning the
later cases, caused by the shift of activation away from hidl, is
directly analogous to the acceleration of learning in the EXIT
model emphasized by Kruschke (2003b). The EXIT model learns
faster when there are learned shifts of attention than when there are
not shifts of attention, because interference between training items
is reduced by the attentional shifts.

The slower learning by the globally Bayesian architecture can-
not be dismissed by arguing that it was given a poor prior. The
prior was selected to yield marginal distributions that exactly
match those of the locally Bayesian prior. Moreover, any prior for
the global model that is symmetric on PE and PL will fail to show
highlighting. The point is that the locally Bayesian processing not
only shows highlighting but also happens to accelerate learning in
this case.

Application to Blocking and Backward Blocking

Blocking (Kamin, 1968) occurs when the early phase of learning
has trials of A— X and the later phase has trials of A.B—X. Notice
that in the second phase, the same outcome is indicated by an
additional cue. In subsequent tests, B elicits a weaker X response
than it would have if only the A.B—X trials had been trained.
Thus, the previous training of A—X seems to have mitigated, or
blocked, learning about B in the subsequent A.B— X trials. Block-
ing is a crucial phenomenon for all models of learning to address
because it is observed in a wide variety of procedures and species,
and it appears to disconfirm any model that merely counts co-
occurrences of cues and outcomes (but cf. Miller & Matzel, 1988).

Backward blocking is an analogous phenomenon that occurs
when the phases of training are reversed. The first phase involves
A.B—X trials and the later phase involves A—X trials. Despite
the fact that B is absent in the second phase, it loses strength.
Typically, however, the amount of reduction in backward blocking
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is weaker than the amount of reduction in forward blocking (see
e.g., Beckers, De Houwer, Pinefio, & Miller, 2005; Kruschke &
Blair, 2000; Lovibond, Been, Mitchell, Bouton, & Frohardt, 2003;
Pinefo, Urushihara, & Miller, 2005; Shanks, 1985). This asym-
metry in strengths of forward and backward blocking is a trial-
order effect that is challenging for extant time-independent Bayes-
ian approaches.

There have been several previous theories of blocking and
backward blocking (for reviews, see De Houwer & Beckers,
2002a; Dickinson, 2001). One type of theory involves error-driven
associative learning, whereas another type of theory involves
Bayesian learning. The error-driven associative learning models
descend from the Rescorla—Wagner (Rescorla & Wagner, 1972)
model. The Rescorla—Wagner model handily accounts for block-
ing, but because it assumes absent cues have zero influence on
learning, it cannot account for backward blocking. Extensions of
the model, that assume absent cues have a negative impact on
learning, can account for backward blocking or other effects
(Dickinson & Burke, 1996; Ghirlanda, 2005; Markman, 1989;
Tassoni, 1995; Van Hamme & Wasserman, 1994). The models
assert that only absent cues that are expected to be present should
have negative impact, but the exact computations regarding which
cues are expected, and their magnitude of negativity, have been
left unspecified.

The Bayesian models of backward blocking (e.g., Dayan &
Kakade, 2001; Gopnik et al., 2004; Sobel et al., 2004; Tenenbaum
& Griffiths, 2003) show the effects by shifting belief probability
over hypotheses about cue-outcome correspondences. For exam-
ple, suppose the model has three hypotheses: A = X (and B 25 X),
B> X (andA 2 X),and A \/ B = X. There is a belief probability
for each of the three hypotheses, and, crucially, the sum of the
belief probabilities must always be 1.0 because the hypotheses are
mutually exclusive and exhaustive. Therefore, if belief in any one
hypothesis increases, belief in the other hypotheses must decrease.
The model accounts for backward blocking because in the second
phase, as belief in A = X increases, belief in B = X decreases, so
that subsequent testing with B alone shows reduced strength of X
responding. This is the everyday logic of exoneration, mentioned
in the Introduction: If A is responsible, then B is exonerated.

Unfortunately, for Bayesian models that are trial-order invariant
(e.g., Gopnik et al., 2004; Sobel et al., 2004; Tenenbaum &
Griffiths, 2003), there is no difference in strength between forward
blocking and backward blocking. Admittedly, these models have
been applied to situations in which human learning occurs in just
a few trials, unlike the error-driven associative models that origi-
nally focused on animal learning that occurs across many trials.
The extension of the Bayesian approach, to phenomena of high-
lighting and relative magnitudes of forward and backward block-
ing, is a different goal than that of some previous Bayesian
modelers. Of previous Bayesian models applied to blocking and
backward blocking, only the Kalman filter model of Dayan and
Kakade (2001) is sensitive to trial order. As described briefly in the
introduction, the Kalman filter adds uncertainty to beliefs on every
trial, so that items trained earlier suffer more accumulated uncer-
tainty than items trained later. The Kalman filter can show stronger
forward than backward blocking, and the degree of difference
depends on the amount of uncertainty injected on each trial.

The locally Bayesian model introduced here is also sensitive to
trial order, but for a rather different reason. The Bayesian updating

of beliefs generates backward blocking just as in other Bayesian
approaches. In the locally Bayesian model, however, the selection
of asymmetric targets in the hidden layer generates stronger for-
ward blocking than backward blocking.

Figure 4 shows the results of the locally Bayesian model for
backward and forward blocking. The top row shows the state of the
model after a few trials of training on A.B—X. Notice in the right
panel the percentage of X responses given to B alone: p(X|B) ~
[77. This level of responding is the baseline against which forward
and backward blocking are to be judged.

The middle row of Figure 4 shows the locally Bayesian model
after backward blocking, that is, after training continued with
A—X. Notice in the right panel that p(X|B) has dropped to about
.61 despite the fact that B never occurred in the second phase of
training. Notice also that the weight to X from hidB (denoted
X<-hidB) has its average belief probability shifted down dramat-
ically: In the top row the modal X<—hidB value is 5, whereas in the
middle row the modal value is 0. This backward blocking is the
result of Bayesian belief updating, analogous to that reported by
previous researchers.

The bottom row of Figure 4 shows results for forward blocking in
the locally Bayesian model. The left panel shows that the same items
were trained as in backward blocking (cf. the middle row); merely
their order was reversed so that all the A—X items came first instead
of last. The right panel shows that p(X|B) ~ .35, which is clearly
lower than that observed after backward blocking. In other words,
blocking is stronger in forward blocking than in backward blocking.

The locally Bayesian model shows stronger forward blocking
because the hidden targets suppress hidB during A.B training. This
suppression can be observed in the bottom row’s third panel,
which graphs the hidden weights. The modal value for hidB<A is
—4, which means that A is inhibiting hidB. The suppression of
hidB is beneficial because after A—X training, there is significant
belief in all outcome-weight hypotheses that have positive values
for X<-hidA, including the specific hypothesis that X<-hidA is
positive (+5) and X<-hidB is negative (—5). If hidB is allowed to
be active when cues A.B appear, outcome X is inhibited by the
currently believed hypothesis that X<-hidB is negative (—5).
Therefore, it is maximally consistent with current beliefs to sup-
press hidB in the hidden-layer target.

Figure 5 shows behavior of the analogous globally Bayesian
model. The top row shows the state of the model after the first
phase of backward blocking. The degree of responding to B alone
is the baseline against which forward and backward blocking are to
be judged. The middle row shows results from backward blocking,
and the bottom row shows results from forward blocking. There is
no difference in overt behavior, or marginal weights, between
forward and backward blocking. This lack of difference is ex-
pected, of course, because the globally Bayesian model should be
invariant under changes in trial order, and indeed it is. This
insensitivity is undesirable as a model of human performance,
which, as described earlier, can show greater forward blocking
than backward blocking.

A comparison of Figures 5 and 4 reveals that the locally Bayes-
ian model learns its training items faster than the globally Bayesian
model. Notice the accuracy of the models on the training item,
A.B. The locally Bayesian model shows higher accuracy than the
globally Bayesian model. This advantage for the locally Bayesian

(text continues on page 692)
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model is quite strong in the early trials and persists throughout
training. Thus, despite the fact that the globally Bayesian model
learns optimally over the joint hypothesis space, the locally Bayes-
ian model learns the training items faster.

In summary, the locally Bayesian model shows backward block-
ing that is difficult for error-driven associative models, and the
locally Bayesian model shows sensitivity to trial order that is
difficult for some globally Bayesian models. The locally Bayesian
model also learns faster than the analogous globally Bayesian
model.

There is no claim here that this model comprehensively explains
the myriad results surrounding blocking and backward blocking.
Despite the strong attentional learning in forward blocking, there is
no account here of learned attention in backward blocking
(Kruschke & Blair, 2000). There is no account of the dependence
of backward blocking on within-compound associations (Dickin-
son & Burke, 1996; Wasserman & Berglan, 1998). There is no
account of second-order blocking (De Houwer & Beckers, 2002b),
or of the influence of additive targets (Lovibond et al., 2003), or of
spontaneous recovery from blocking (Pinefio et al., 2005). Thus,
the claims here are modest: What has been shown is one way to
combine Bayesian and attentional approaches to ameliorate some
of their individual inadequacies. The general discussion explores
potential expansions of the Bayesian framework to address some
of the more elaborate phenomena. Blocking, as a behavioral effect,
is probably generated by many different underlying mechanisms.
Any model of all the effects cited above will probably involve a
combination of several mechanisms.

Application to Unovershadowing and Backward
Conditioned Inhibition

Overshadowing is the phenomenon that after training with
A.B—X, responses to B alone are weaker than if B were trained by
itself, without being accompanied by A. Apparently the presence
of A has overshadowed B. In unovershadowing, or recovery/
release from overshadowing, after the A.B—X training there are
trials of A— —X, that is, cue A alone leading to the absence of
outcome X. When B is then tested alone, it elicits outcome X more
strongly, despite the fact that it never occurred in the later phase of
training (Beckers et al., 2005; Kaufman & Bolles, 1981; Larkin,
Aitken, & Dickinson, 1998; Lovibond et al., 2003; Matzel,
Schachtman, & Miller, 1985; Melchers, Lachnit, & Shanks, 2004;
Wasserman & Berglan, 1998). Unovershadowing is the Holmesian
logic of eliminating the impossible, mentioned in the Introduction:
When cue A is not responsible, then cue B must be.

Figure 6 shows the results of the local Bayesian model applied
to unovershadowing. Notice that the strength of responding to B
alone (rightmost panel) is higher than after the first phase of
training, which can be reviewed in the top row of Figure 4. In other
words, there is robust unovershadowing. Notice also in the middle-
left panel that the probability mass for weights to X from hidB
(X<—hidB) has shifted to the right (compared with Figure 4), that
is, the mean weight has increased, despite the fact that B did not
appear in later training.

Unlike some other extant Bayesian models, the locally Bayesian
attention model predicts different behaviors when the phases of
training are reversed. In reversed unovershadowing, A— =X is
followed by A.B—X. In the locally Bayesian model, final re-

sponses to A.B are enhanced, and responses to A are even lower,
than for unovershadowing. This is because on A.B—X trials, the
hidden target sets hidA to zero, and so the model learns to believe
a negative weight on hidA<-B. Essentially, when cues A.B are
presented, the hidden layer attends only to hidB, and so the
response to A.B is virtually as strong as the response to B alone.
In regular unovershadowing, however, the model (in its present
form) cannot retrospectively learn a negative weight on hidA<-B,
and so the impact of A continues to have influence during later
A.B tests. Thus, this particular simplistic model predicts that
responding to A.B should be strong after reversed unovershadow-
ing but weaker after unovershadowing. I am not aware of any
published data that directly addressed this prediction because the
A.B combination typically is not tested at the end of unovershad-
owing. The main point here is to illustrate again the fact that the
locally Bayesian model is sensitive to trial order. The particular
predictions of this simplistic implementation are not essential to
the success or failure of the general framework.

The globally Bayesian model also exhibits robust unovershad-
owing, of course, as can be seen in the lower row of Figure 6. The
test performance on Cue B alone is stronger than after the first
phase, shown in the top row of Figure 5. Unlike the locally
Bayesian model, the globally Bayesian model predicts equal per-
formance for unovershadowing and reversed unovershadowing
because the globally Bayesian model is not sensitive to trial order.

It is interesting to note that the globally Bayesian model shows
selectively faster learning during the second phase of unovershad-
owing than the locally Bayesian model. Accuracy on the second-
phase item, A— —X, grows faster for the globally Bayesian model
than for the locally Bayesian model. This result can be seen in the
right panels of Figure 6, where p(X|A) is smaller for the global
model than for the local model. The reason the global model learns
this case faster is that it has a hypothesis in its joint hypothesis
space that is well tuned to the training case but which is not
available to the locally Bayesian model with its separate hypoth-
esis spaces. The global joint space has hypotheses in which the
weight to X from hidA (X<-hidA) is negative and the weight to
hidA from B (hidA<-B) is negative. These hypotheses retain some
belief during the first phase of training in the global model (be-
cause the presence of B in early training inhibits hidA, so the
negative weight to X from hidA is not felt). That combination of
weights is then perfect to accommodate the training item in the
second phase, which needs an inhibitory weight from hidA to X.
So the global model, with its joint hypotheses, is poised to learn
the second phase quickly. The marginal weights in the lower row
of Figure 6 do indeed show large probabilities loaded onto nega-
tive values of X<—hidA and hidA<—B. The locally Bayesian model,
on the other hand, does not allow the double negative combination
(i.e., negative X<—hidA and negative hidA<-B) to survive the first
phase of training because the layers operate separately. During the
first phase, the locally Bayesian model shifts belief away from
negative weights in the outcome layer and in the hidden layer, and
therefore the model is at a disadvantage when confronting the
second phase of learning.

In summary, the locally Bayesian model shows robust unover-
shadowing, which is difficult for error-driven connectionist models
(including the Rescorla—Wagner model) to address. The locally
Bayesian model predicts differences between unovershadowing
and reversed unovershadowing because of trial-order sensitivity.
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The unovershadowing paradigm is one in which the analogous
globally Bayesian model learns faster than the locally Bayesian
model.

In conditioned inhibition, the first phase of training involves
trials of A—X. The second phase of training has trials of A.B—
—X. The result is that B becomes an inhibitor of response X. In
backward conditioned inhibition, the phases of training are re-
versed. B becomes an inhibitor in this case too (Chapman, 1991;
Larkin et al., 1998; Melchers et al., 2004).

Backward conditioned inhibition is the same structure as
unovershadowing but with the roles of the outcomes reversed:
What was a present outcome is now an absent outcome and vice
versa. Conditioned inhibition is trickier to assess behaviorally,
however, than unovershadowing. Whereas unovershadowing re-
sults in an increase in a response, which can be directly observed,
backward conditioned inhibition results in a lack of response,
which can only be indirectly observed. Traditional indirect tests of

conditioned inhibition include the summation and retardation tests
(Rescorla, 1969). Fortunately, when assessing the model, we do
not need to rely merely on overt responses to infer hidden inhib-
itory links because we can peer inside the model and see the actual
associative strengths.

Results of the model applied to backward conditioned inhibition
are shown in Figure 7. Cue E is an excitor and cue I is an inhibitor
(not to be confused with the imperfectly predictive cue in high-
lighting). As expected, robust backward conditioned inhibition is
obtained, for both locally and globally Bayesian models. Cue I
becomes a strong inhibitor despite its absence in the later phase of
training. The right panel shows that the response to cue I has
dropped well below its prior baseline level. The panel labeled
Outcome Weights shows that the probability mass on the weight to
X from hidl (X<-hidl) has shifted to extreme negative values
relative to its prior distribution, despite the fact that cue I was
absent during later training.
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Figure 7. Results from backward conditioned inhibition for the locally Bayesian model (top row) and the

globally Bayesian model (bottom row).

The lower row of Figure 7 shows results from the globally
Bayesian model. The globally Bayesian model learns the second
phase of backward conditioned inhibition faster than the locally
Bayesian model. The explanation for the advantage is analogous to
the case of unovershadowing. In the joint hypothesis space of the
global model, hypotheses with negative hidE<I weights and pos-
itive X<—hidE weights survive the first phase of training. These
hypotheses are then poised to accommodate the demands of the
second phase. No analogous combination exists in the local model
that can survive the first phase of training. In the local model, all
positive weights to X from hidE are squelched in the first phase,
and so the local model begins the second phase at a disadvantage.

In summary, the cases of unovershadowing and backward con-
ditioned inhibition have reiterated points made for highlighting and
blocking while also revealing more about the relation of local and
global models. The reiterated points are that the Bayesian models
exhibit retrospective revaluation effects that error-driven connection-
ist models find difficult, and the locally Bayesian model shows

trial-order effects that some globally Bayesian models cannot. The
newly revealed point is that the globally Bayesian model can some-
times learn later items faster than the locally Bayesian model, when
the global model retains joint hypotheses that the local model is not
able to sustain because its layers operate separately. Thus, the local
model can learn faster than the global model when the hidden targets
reduce interference between new and old items, but the global model
can learn faster when it has a joint hypothesis that fits the items well
but which the local model cannot sustain.

Discussion

Attention Is Crucial

Elsewhere (e.g., Kruschke, 2003a), I have argued that an essen-
tial mechanism in human associative learning is rapid shifting of
attention across cues and the learning (retention) of those shifts.
For a given stimulus, the cognizer learns associations from the



LOCALLY BAYESIAN LEARNING 695

stimulus to an allocation of attention across the stimulus cues, and
the cognizer learns associations from the attentionally filtered cues
to the overt responses or outcomes. An illustration of these two
layers of associations appeared in Figure 2. A key part of the
learning process is the allocation of attention, for which there is no
external teacher. Instead, the learner must infer an attentional
allocation. What has been offered in the present article is a locally
Bayesian approach to learning the associations in the two layers,
along with a way of generating an allocation of attention.

The simplistic locally Bayesian model illustrated above can only
make probabilistic copies of the input cues at its hidden layer. Its
hidden layer cannot represent cue combinations. Therefore, the
model cannot learn nonlinear mappings from cues to outcomes,
such as the exclusive-or (XOR). In principle, the model could be
expanded such that its hidden layer includes higher order cue
combinations. One variation of that approach is for the hidden
node hypothesis space to include a random smattering of weighted
cue combinations, much like the typical random starting weights of
traditional or Bayesian back-propagation networks (MacKay,
2003; Neal, 1996; Rumelhart et al., 1995; Rumelhart, Hinton, &
Williams, 1986) or the random covering map in the original
ALCOVE model (Kruschke, 1992). To qualitatively reproduce the
simulation results reported above, I believe that the hypothesis
space must contain hypotheses that implement the notion of se-
lective attention, whereby cues can be selectively ignored or at-
tended. To exhibit a highlighting effect, the model should be able
to suppress its internal representation of Cue I when presented with
LLPL and to enhance its internal representation of PL. To exhibit
strong forward blocking, the model should be able to enhance its
internal representation of A when presented with A.B and to
suppress its internal representation of B.

Relations to Some Other Models

The idea of attentionally filtered cues was implemented by the
hidden layer in the simplistic model above. Another way to im-
plement attentional filtering is to represent attention as multipli-
cative gates on cue activations and have the model learn about
hypothetical weights from cue configurations (i.e., exemplars) to
attention gates. There is one layer of weights from exemplars to
attention gates and a second layer of weights from attentionally
gated cues to outcomes. The two layers of weights are supplied
with spaces of hypothetically possible sets of weights, and the
degree of belief in each hypothesis is updated trial by trial. This
amounts to a locally Bayesian implementation of the EXIT model
(Kruschke, 2001a, 2001b). I have simulated the locally Bayesian
EXIT model and found it to produce behaviors very much like the
behaviors of the simple model above.

The top layer of the simplistic locally Bayesian model is much
like a Kalman filter (which was mentioned in the Introduction) but
without uncertainty added on each trial. The locally Bayesian
model extends the Kalman filter approach by prepending an atten-
tional learning layer. Whereas the Kalman filter learns about the
cues in their totality, the upper layer of the locally Bayesian model
learns only about attentionally filtered cues at the hidden layer.
The attentional filtration depends on the temporal order of training
items. The temporal dependencies of the two models are not
incompatible; future extensions of the models could incorporate

both the noise accumulation of the Kalman filter model with the
attentional selection of the locally Bayesian model.

The present model’s notion of attention is quite different than
what Dayan et al. (Dayan & Kakade, 2001; Dayan et al., 2000;
Dayan & Yu, 2003) referred to as attention in the Kalman filter. In
their approach, the posterior variance on a cue’s weight is the
attention paid to that cue. Higher variance on a cue’s weight
denotes higher uncertainty about the cue’s impact on the outcome,
and uncertainty is supposed to elicit attention in learning. Posterior
variances on associative weights can be seen, roughly, in the
graphs of outcome-weight probabilities. In Figure 4, for example,
the bottom row shows the state of the locally Bayesian model after
(forward) blocking. The graph of outcome weights shows the
weight to X from hidA (X<-hidA) has virtually all of its proba-
bility mass loaded over a value of +5. This distribution has small
variance, hence small uncertainty and small atfention in the sense
used by Dayan et al. The weight to X from hidB (X<-hidB),
however, has its probability mass distributed over all three values
of —5, 0, and +5. This distribution has higher variance, hence
higher uncertainty and higher attention in the usage of Dayan et al.
My use of the term attention is rather different. In the locally
Bayesian model, attention is the activation of the cues in the
hidden layer. During the prediction phase of a trial, before an
external teacher is supplied, attention is the mean activation of the
hidden layer. During the learning phase, after corrective feedback
is supplied, attention is the target at the hidden layer. In the bottom
row of Figure 4, the graph of the hidden-weight distribution shows
that hidB is strongly inhibited by A (i.e., hidB<—A has most of its
probability mass on a value of —4). The self connection to hidB
from B also has most of its probability mass on its smallest
allowed value. These weights imply that cue B is largely ignored,
not attended to. Cue A, on the other hand, is attended to. Thus,
attention as internal cue activation in the locally Bayesian model is
quite distinct from attention as weight uncertainty in the Kalman
filter model.

In the locally Bayesian model, cues are thought of as inputs, and
outcomes are outputs to be predicted. Courville and colleagues
(Courville et al., 2004; Courville, Daw, & Touretzky, 2005) in-
stead conceptualized both the cues and outcomes as effects to be
predicted by latent causes. In their approach, a hypothesis is a set
of weights from latent causes to cues and outcomes, with the
probability of each effect being determined by a sigmoidal func-
tion of the summed weights from activated latent causes. The
hypothesis space consists of many weight combinations, and
Bayesian learning shifts belief probability among the hypotheses.
Courville et al. (2004) showed that the approach can account for
the dependency of conditioned inhibition on the number of trials of
training, by virtue of the prior probabilities being gradually over-
whelmed by training data. Estimating the Bayesian probabilities is
computationally intensive, and their approach involves no tempo-
ral encoding, so it suffers from trial-order invariance and can show
none of the trial-order dependencies discussed above.

In principle, the latent-cause approach might be applied to each
layer in a two-layer architecture with locally Bayesian learning.
One set of latent causes would generate the cues and the atten-
tionally filtered cues, whereas another set of latent causes would
generate attentionally filtered cues and outcomes. Targets for the
attentionally filtered cues would be selected as in the locally
Bayesian scheme explicated above. Presumably such an architec-
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ture would generate trial-order phenomena comparable with the
simplistic model reported above.

Dynamic Creation of Hypotheses

The simple model simulated above is not able to exhibit some
phenomena related to blocking procedures, such as the dependency
of backward blocking on memory for cue combinations (Aitken,
Larkin, & Dickinson, 2001; Dickinson & Burke, 1996; Wasserman
& Berglan, 1998). This inability in the model is a limitation
imposed by the use of simplistic nonconfigural associative hypoth-
eses. Future versions of the model might include representations of
cue combinations, selectively recruited as needed. In other words,
the model must have the right kind of hypotheses, generated on the
fly.

Two existing approaches to dynamic hypothesis recruitment
include the rational model of categorization by Anderson (1991),
and the Distributed Adaptive Control 5 (DACS5) model by Ver-
schure and Althaus (2003). Rigorous predictions for the DACS5
model rely on full-scale robotic simulations far beyond the scope
of this article. Because DACS5 lacks selective attention to cues,
however, it probably fails to show highlighting in the canonical
design. Anderson (1990, pp. 117-120) applied the rational model
to the inverse base rate effect reported by Medin and Edelson
(1988), which emerges when using only the second phase of the
canonical design in Table 1, where LPE—E is three times as
frequent as .PL—L throughout the training. The rational model
can capture the ordinal trends of the inverse base rate effect but
relies on the categories having different base rates: “[feature]
mismatches will be weighed more seriously for high-frequency
diseases” (Anderson, 1990, p. 119). Specifically, for probe PE.PL,
the missing feature I mismatches both categories but is weighed
more heavily for the high-frequency E category. This difference
will not occur in the canonical highlighting design, wherein cate-
gories have equal frequencies. Simulations reported elsewhere
(Kruschke, 2006) verify that the rational model shows no high-
lighting effect in the canonical design.

The framework I am expounding here suggests an extension of
the rational model that might accommodate highlighting and other
attentional effects. Layers of rational models could be used in
succession, the first rational model learning to map cues to atten-
tional allocations and the second rational model learning to map
attentionally filtered cues to outcomes. This approach is an espe-
cially intriguing prospect for future research because of its ability
to recruit hypotheses in each layer on the fly. Implementing the
approach would require some additional assumptions, however,
regarding the representation and processing of absent or unat-
tended cues.

Conclusion

Locally Bayesian learning achieves trial-order effects by gener-
ating internal targets that depend on trial order, without necessarily
having any time-dependent functions in its individual layers. The
internal targets are selected to be maximally consistent with beliefs
learned up to that moment. When learning any new cue-outcome
datum, the model first generates internal representations that are
least inconsistent with its current beliefs before updating its be-
liefs. In other words, the locally Bayesian model changes the data

to fit its beliefs before changing its beliefs to fit the data. Alas,
people seem to behave that way too.
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Appendix A

Trial-Order Invariance

The insensitivity of Bayesian updating to the ordering of data is
an elementary result. I provide a proof here, however, in the
interest of explicitness. The result follows from Equation 1 and the
assumed time independence of data. To reduce clutter in this
derivation, I will suppress the variables x and M from Equation 1.
When Equation 1 is applied successively to data /" and #®, in that
order, we get

p(0]1") = p(1V[6)p(6)/p(1") (22)

p(8]12, 1V) = p(¢ Nip(i®|1h), (23)

where, in Equation 23, p(8]¢®, #") denotes the probability of 0
after receiving /" followed by . Tackling each term of the
right-hand side of Equation 23 in turn, we note first that p(#®|6,
D) = p(1®]0) because #* does not depend on #". The next term
on the right-hand side of Equation 23 is p(6]#*"), which we note is
given by Equation 22. Finally, for the last term on the right-hand

side of Equation 23, we note that p(®|t"’) = p(t®) because p(t®)
is assumed to be independent of p(s'"). Plugging those back into
Equation 23 yields

p(8]1®, 1) = p

p(1"6)p(6)
p(")

_ p®]6) p(i"]6) ©)
Ty py P

_ p(]6) p(1*]6)
= @) PO

= p(0]r", 1%), (24)

= p(t°]9) pt?)

where the last equality comes from simply going backwards
through the previous equalities with the order of " and ®
reversed.
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Appendix B

Highlighting Challenges Time-Invariant Bayesian Models

A typical Bayesian analysis of the highlighting situation, in
which all trials are treated exchangeably, suggests that what the
learner should do, when tested with cue I by itself or cues PE.PL,
is respond with the overall base rates of the outcomes. In the
canonical design, p(E) = p(L), and so the Bayesian analysis
predicts no preference for E over L, unlike human responding. A
formal derivation follows.

By Bayes’s theorem, the probability of outcome E given cue I
is

p(E|D) = pU|E)p(E)/p(I)
= pU|E)p(E)/[p(|E)p(E) + p(I|L)p(L)]
= p(E)/[p(E) + p(L)]
= p(E) (25)

Thus, as claimed, a Bayesian responder, who is not sensitive to
trial order, would not prefer E over L in the canonical design.

When cues PE.PL are presented, we proceed as follows. First,
by Bayes’s theorem,

p(E|PE.PL) = p(PE.PL|E)p(E)/p(PE.PL)

_ p(PE.PL|E)p(E)
p(PE.PLIE)p(E) + p(PE.PLIL)p(L)

(26)
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Because the combination PE.PL is never seen in training, we must
make assumptions about its probability of occurrence. One rea-
sonable assumption is that p(PE.PLIE) = p(PE.PL|L) = § > 0,
where & is a small, perhaps infinitesimal, value. Alternatively, we
could assume that cues occur independently for each outcome, that
is, p(PE.PLIE) = p(PEIE)p(PLIE) and p(PE.PLIL) =
P(PE|L)p(PL|L), and that p(PL|E) = p(PE|L) = & > 0. Under
either assumption, Equation 26 becomes

p(PE.PLIE)p(E)
p(PE.PLIE)p(E) + p(PE.PLIL)p(L)

= p(E)/[p(E) + p(L)]

= p(E) (27)

Again, as claimed, a Bayesian responder who is not sensitive to
trial order would not prefer E over L in the canonical design.

This analysis suggests that no time-invariant Bayesian model
could account for highlighting. The derivation of Equation 27 did
require some extra assumptions, however, that a defender of the
Bayesian approach might discover reasons to reject. The derivation
of Equation 25 required no such extra assumptions. In any case,
highlighting in the canonical training procedure is inherently a
trial-order effect.

p(E|PE.PL) =
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