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Abstract. In this article we prove several results about the local quasicon-

vexity behavior of small cancellation groups. In addition to strengthening of

our previously obtained positive results, we also describe several families of

negative examples. Also, as the strength of the assumed small cancellation

conditions increases, the gap between our positive results and our counterex-

amples narrows. Finally, as an additional application of these techniques, we

include similar results and counterexamples for Coxeter groups.

It has been known for some time that the class of small cancellation groups
contains groups which are coherent, groups which are incoherent, groups which are
locally quasiconvex and groups which are not locally quasiconvex [2, 12, 13, 15].
However, there remains a large gap between the hypothesis necessary to obtain
positive results and available counterexamples. In this article, we begin closing this
gap by combining perimeter technique we introduced in [13] with the concept of a
fan we developed in [14]. On the positive side we derive a number of new results
based on the following theorem which is a combination of the main theorem of [14]
with one of the main theorems in [13].

Theorem 3.10. Let X be a compact weighted C(p)-T (q) complex, where p, q, and
k satisfy the Euclidean restrictions. If every minimal fan of type k in X is both
spread-out and perimeter reducing, then π1X is locally quasiconvex.

All of the undefined terms (Euclidean restrictions, minimal fan of type k, spread
out, perimeter reducing, etc.) are defined in the course of the article. In order to
obtain theorems which are easier to apply, we show how residual finiteness can be
used to replace the spread-out assumption and we introduce a local and a global ratio
which facilitate verifying whether the fans in a collection are perimeter reducing.
Our main positive results assert that weighted small cancellation 2-complexes whose
ratios are bounded above by a certain constant are coherent and locally quasiconvex.
The constant itself is a function of the strength of the small cancellation condition
satisfied by the complex. For example the following theorems are our strongest
results using local ratios and fans of type 2 and 3.

Theorem 7.6. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 2 are spread out. Then π1X is locally quasiconvex if either p = 3,
q ≥ 6 and Local(X) < q−4

q−3 , or p ≥ 4, q ≥ 4 and Local(X) < q−3
q−2 .
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Theorem 7.7. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 3 are spread out. Then π1X is locally quasiconvex if either p ≥ 6,

q = 3 and Local(X) < p−5
2p−9 , or p ≥ 4, q ≥ 4 and Local(X) < (q−2)(p−3)−1

(q−1)(p−3)−1 .

On the negative side we give examples of incoherent and non-locally quasiconvex
groups whose ratios are as close to these constants as we have been able to achieve.
As the strength of the small cancellation conditions improve, the gap between the
positive results and the ratios of the counterexamples narrows. In one case, at least,
the ratios of the counterexamples converge to the ratios in the theorems showing
that in this direction our positive results are asymptotically sharp.

Finally, in the last two sections we explore the extra benefits to be gained from
using fans of type k where k is large, and we examine the the boundary between
locally quasiconvex Coxeter groups and non-locally quasiconvex Coxeter groups.
For example, we prove the following.

Theorem 12.2. The Coxeter group 〈a1, . . . , ar | a2
i , (aiaj)

mij (i 6= j) 〉 is coherent
provided mij ≥ r for all i 6= j. Similarly, if mij > r for all i 6= j, then the group is
locally quasiconvex.

A pair of counterexamples suggest that the connection between the smallest
exponents and the number of generators may not be arbitrary.

Structure of the article: Sections 1, 2 and 3 review the necessary definitions
and results from [14] and [13]. Section 4 is a slight digression which shows how
the hypothesis that the fans are spread out can be removed when the fundamental
group is residually finite. In Section 5 we define two invariants that compare the
weights and perimeters in a weighted 2-complex which we call its local and global
ratio. All of the positive and negative results in the remainder of the article are
framed in these terms. Section 6 and Section 7 contain our main positive results,
and Sections 8, 9, and 10 contain our families of counterexamples. We present,
in particular, several families of groups which are incoherent and/or not locally
quasiconvex. The counterexamples come quite close to violating the statements
of the theorems, particularly as the strength of the small cancellation conditions
increases. In Section 11 we consider fans of type k where k is large. For comparison,
all of the results up to this point are derived using fans of type 2 and 3. Finally, in
Section 12 our techniques are applied to Coxeter groups.

1. Diagrams and small cancellation theory

In this section we review some basic definitions. For a rigorous development of
these notions (that is consistent with their use here), the interested reader should
consult [14].

Definition 1.1 (Piece). Let X be a combinatorial 2-complex. Intuitively, a piece
of X is a path which is contained in the boundaries of the 2-cells of X in at least
two distinct ways. More precisely, a nontrivial path P → X is a piece of X if
there are 2-cells R1 and R2 such that P → X factors as P → R1 → X and as
P → R2 → X but there does not exist a homeomorphism ∂R1 → ∂R2 such that
there is a commutative diagram

P → ∂R2

↓ ↗ ↓
∂R1 → X
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Notice that the 2-cells R1 and R2 are not necessarily distinct. Excluding commu-
tative diagrams of this form ensures that P occurs in ∂R1 and ∂R2 in essentially
distinct ways.

Definition 1.2 (Disc diagram). A disc diagram is a nonempty, contractible finite
2-complex with a specific planar embedding. Although a disc diagram is a defor-
mation retraction of a topological disc, it need not be homeomorphic to one. The
area of a disc diagram is its number of 2-cells.

One way a disc diagram can fail to be homeomorphic to a topological disc is if
it contains a spur.

Definition 1.3 (Spur). A spur in the disc diagram D is a valence 1 0-cell on a
1-cell in its boundary. Note that spurs correspond with the “backtracks” in its
boundary cycle. The leftmost illustration in Figure 2 (page 5) is a disc diagram
with a spur.

Definition 1.4 (C(p)-T (q)-complex). Roughly speaking, a 2-complex X is a C(p)-
T (q) complex if for every immersed path P → X and for every minimal area disc
diagram D → X which has P as a boundary cycle, the internal 2-cells of D share
edges with at least p other 2-cells and the internal vertices of D have valence at
least q. Although this rough definition is not quite technically correct, it should
give the reader unfamiliar with small cancellation complexes an approximate idea
of their properties. See [14] or [12] for precise definitions. Recall that an arc in a
diagram is a maximal path in which all of its internal vertices have valence 2. If D
has minimal area, then the arcs in the interior of D will be pieces in the sense of
Definition 1.1.

As is usual with arguments about 2-complexes, 2-cells which are proper powers
cause technical difficulties which need to be addressed. In particular, we need to
digress for a moment to discuss exponents, packets, and packed maps.

Definition 1.5 (Exponent of a 2-cell). Let X be a 2-complex, and let R → X be
one of its 2-cells. Let n be the largest number such that the map ∂R → X can
be expressed as a path W n in X, where W is a closed path in X. This number
n, which measures the periodicity of the map of ∂R → X, is the exponent of R,
and a path such as W is a period for ∂R. Notice that any other closed path which
determines the same cycle as W will also be a period of ∂R. If the exponent n is
greater than 1, then the ∂R→ X is called a proper power.

Definition 1.6 (Packet). Let R be a 2-cell in X of exponent n and let W be a
period of ∂R. The attaching map ∂R → X can be expressed as a path W n → X.
Consider a circle subdivided into |W | 1-cells, and attach a copy of R by wrapping
∂R around the circle n times. We call the resulting 2-complex R̄. Note that there is
a map R̄→ X such that R→ X factors as R→ R̄→ X. Observe that π1R̄ ∼= Z/nZ

and that the universal cover of R̄ has a 1-skeleton which is identical to that of R
together with n distinct copies of R attached by embeddings. The universal cover

of R̄ is the packet of R and is denoted by R̃. Technically we should write ˜̄R but we

will use the notation of R̃ since R is its own universal cover and thus there is no
danger of confusion. Notice that if the exponent of R is 1 then the packet R̃ is the

same as R itself. Notice also that the map R̃ → X can be viewed as an extension
of the map R→ X.
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Definition 1.7 (Packed map). Let φ : Y → X be a fixed map. The map φ will be
called packed if whenever there is a lift of a 2-cell R→ X to a 2-cell R→ Y , there

is also a lift of R̃ → X to a map R̃ → Y which extends the map R → Y . Since we

will treat the packets R̃ as the basic building blocks of our 2-complexes, almost all
of the maps under discussion will be packed. Given a map Y → X there is a unique
extension to a packed map where the 1-skeleton of the domain is unchanged. We

will call this extended domain Ỹ on analogy with R̃.

2. Fans and ladders

We are now ready to describe the notion of a fan as introduced in [14].

Definition 2.1 (Fan). A fan F is a 2-complex homeomorphic to a closed disc,
which consists of a linearly ordered sequence of 2-cells such that the 2-cells which
are not adjacent in the ordering intersect in at most a vertex. Figure 1 shows a
typical fan. In addition, a portion of ∂F is designated as its outer path Q and Q
must be a concatenation Q = Q1Q2 . . . Qn where each Qi is a subpath of ∂Ri. The
unique path S such that QS−1 is the boundary cycle of F will be called the inner
path of F , and the portion of the 1-skeleton of F which is not in its outer path will
be the inner portion of its 1-skeleton.

Figure 1. On the left is a fan F whose outer path Q is the bold
path on its boundary. The disc diagram on the right contains the
fan F as a subcomplex. Note that Q is a subpath of the boundary
path of D.

We will primarily be interested in fans equipped with a near-immersion into a
2-complex X. Recall that an immersion is a map which is locally injective and a
near-immersion is a map which is locally injective except at 0-cells in the domain.

Definition 2.2 (Fan in a diagram). If F is a fan and F → F̃ → X is a near
immersion, then this mapped fan is a fan in X. A disc diagram D → X contains
the fan F → X, provided that F → X factors as F → D → X, where the outer
path Q of F maps to ∂D. In this case, we will also regard the outer path Q → F
of F as a path Q→ X.

Three types of fans which deserve special attention are i-shells, pointed fans, and
broad fans.

Definition 2.3 (i-shell). Let D be a diagram. An i-shell of D is a 2-cell R ↪→ D
whose boundary cycle is the concatenation of a maximal arc in ∂D and a path in
the interior of D which is the concatenation of i maximal arcs. More specifically,
the boundary cycle ∂R→ D is the concatenation of subpaths P0, P1, . . . , Pi where
Pj → D is an interior maximal arc of D for all j > 0 and P0 → D is the preimage
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of ∂D in ∂R. An i-shell is a fan in D with the preimage of P0 → D as its outer
path.

Illustrated from left to right in Figure 2 are disc diagrams containing a spur, a
0-shell, a 1-shell, a 2-shell, and a 3-shell. In each case, the 2-cell R is shaded, and
the maximal boundary arc P0 is ∂R ∩ ∂D.

Figure 2. Spurs and i-shells

Definition 2.4 (Pointed fan). A pointed fan F ↪→ D is a fan whose 2-cells are
2-shells. In addition, if F has i distinct 2-cells then F contains i + 1 pieces in D
which have a common initial point and which terminate at various points on the
outer path of F . The inner path S → D is the concatenation of the outer two of
these maximal internal arcs, and the outer path Q → D is the concatenation of
i maximal boundary arcs which are complements of two of these pieces. See the
left side of Figure 3.

Definition 2.5 (Broad fan). A broad fan F ↪→ D is a fan whose 2-cells are 2-shells
and 3-shells. If F contains i+ j 2-cells, where i of them are 2-shells and j of them
are 3-shells, then the outer path of F is the concatenation of i+j maximal boundary
arcs each of which is the complement of two or three interior pieces, and the rest
of the 1-skeleton of F is the union of i + 2j + 1 pieces. The inner path S consists
of j + 2 of these pieces and the remaining i + j − 1 of them are internal maximal
arcs of the diagram F . A broad fan F is k-separated if from left to right, it has at
least k 2-shells at the beginning, at least k 2-shells between every pair of 3-shells,
and at least k 2-shells at the end.

Figure 3. A pointed fan, a 0-separated broad fan, and a 2-
separated broad fan

Pointed fans, broad fans and i-shells can be used to describe fans of type 1, 2,
and 3 in a C(p)-T (q) complex. As might be guessed from the notation, there are
also collections of fans of type k for each k ≥ 1. See [14] for a precise definition.
We will return to fans of type k for k > 3 in Section 11. For now we list the fans
of type 1, 2, and 3 as they were explicitly described in Example 7.10 of [14].
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Example 2.6 (Fans of type 1, 2 and 3.). The fans of type 1 in a C(p)-T (q) complex
are described by the following lists:

p ≥ 4, q ≥ 4: {spurs, 0-shells, 1-shells, 2-shells}
p ≥ 6, q = 3: {spurs, 0-shells, 1-shells, 2-shells, 3-shells}

Fans of type 2 are described by one of the following lists:

p ≥ 4, q ≥ 4: {spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 3}
p = 3, q ≥ 6: {spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 4}

Fans of type 3 are described by the following lists:

p ≥ 4, q ≥ 4:
{spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 2,
(q − 3)-separated broad fans with j ≥ p− 4 and
i ≥ (j + 1)(q − 3)}

p ≥ 6, q = 3:
{spurs, 0-shells, 1-shells, pointed fans with i ≥ q − 2,
broad fans with j ≥ p− 5 and i ≥ 0}

Since the restrictions given above on p and q recur frequently, we establish the
following conventions.

Convention 2.7 (Restrictions). Let D be a C(p)-T (q) diagram and let k be a
nonnegative integer. By Euclidean restrictions we mean that p, q, and k satisfy
one of the following sets of conditions:

(1) p ≥ 6, q = 3, and k is odd
(2) p ≥ 4, q ≥ 4, and k is arbitrary
(3) p = 3, q ≥ 6, and k is even

By the hyperbolic restrictions we mean that p, q, and k satisfy one of the following
sets of conditions:

(1) p ≥ 7, q = 3, and k is odd
(2) p ≥ 5, q ≥ 4, and k is odd
(3) p ≥ 4, q ≥ 5, and k is even
(4) p = 3, q ≥ 7, and k is even

The fans of type k were introduced in [14] in order to concisely state the following
generalization of the main theorem of small-cancellation theory [14, Theorem 9.4].

Theorem 2.8. If D is a C(p)-T (q) disc diagram and p, q, and k satisfy the Eu-
clidean restrictions, then one of the following holds:

(1) D contains at least 3 separate fans of type k.
(2) D is a ladder of width ≤ k.
(3) D is a wheel of width ≤ k.

Without going in the details, a ladder is a long thin diagram which looks like a
regular neighborhood of a line segment, and a wheel looks like a regular neighbor-
hood of a single point (Lemma 8.7 and Lemma 8.8 in [14]). The size of the regular
neighborhood roughly correlates to its width k. The precise definitions are stated
in terms of iterated duals of the diagrams involved, but we will only need an easy
corollary which we stated in terms of J-thin diagrams.
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Definition 2.9 (J-thin). A disc diagram D with boundary cycle PQ−1 is J-thin
for some J ∈ N, if every 0-cell in P is contained in a J-neighborhood of Q and
vice-versa.

The following corollary is a consequence of Theorem 2.8, and Lemmas 8.7 and 8.8
in [14]. The rough idea is that ladders of width ≤ k and wheels of width ≤ k are
J-thin. On the other hand, when there exist three separate fans of type k, at least
one of them must avoid the endpoints of P and Q.

Corollary 2.10. Let X be a compact C(p)-T (q) complex and let p, q, and k satisfy
the Euclidean restrictions. There is a constant J which depends on X, p, q, and k,
such that every minimal area disc diagram D over X with boundary cycle PQ−1 is
either J-thin, or there exists a fan of type k in D whose outerpath is a subpath of
either P or Q.

There is one major drawback to the collection of fans of type k as described
above. Even if a small cancellation 2-complex X is compact, there might still exist
an infinite number of distinct fans of type k which occur in diagrams over X. On
the other hand, there are only a finite number of such fans which are minimal in
a certain technical sense. Minimal fans are discussed in Section 12 of [14]. For
our purposes, a minimal fan of type k in X is one that does not contain a proper
subfan of type k, where the technical details are buried in what is meant by the word
“contain”. The three facts about minimal fans that we need are the following. They
correspond to Lemma 12.4, Theorem 12.7, and Theorem 13.8 in [14], respectively.

Lemma 2.11. Let p, q, and k satisfy the Euclidean restrictions. If F is a fan of
type k, then there are only a finite number of subfans of F . Consequently, every
fan of type k has a minimal subfan of type k.

Theorem 2.12. Let X be a compact C(p)-T (q) complex and let p, q, and k satisfy
the Euclidean restrictions. The set of all minimal fans of type k in X is finite.

Theorem 2.13. Let X be a C(p)-T (q) complex, let F → X be a minimal fan of
type k. If p, q, and k satisfy the hyperbolic restrictions, then its outer path Q→ X

lifts to a simple path in X̃.

The first two results (combined with Corollary 2.10) ensure that every disc di-
agram which isn’t J-thin contains a fan from a finite list, and the third is a more
technical result that we will need in Section 4.

3. Perimeter and local quasiconvexity

In this section we recall some definitions and results from [13]. For a more
detailed development, see [13].

Definition 3.1 (Side of a 2-cell). Let x be a 1-cell in a combinatorial 2-complex
X and let p be a point in its interior. A small open neighborhood of p looks like
the spine of a book with several “pages” coming out. Each of these pages will be
referred to as a side of a 2-cell (at x). One way to specify a side is to select a 1-cell
r in a 2-cell R in X. Both of these selection are best done via maps r → R → X.
We denote this side by (R, r). A 2-cell R with characteristic map R → X has
exactly |∂R|-sides, even though some of these may appear along the same 1-cell in
X. Continuing with the book metaphor, the pages along the spine x are called the
sides at x in X, and the set of these sides is denoted SidesX(x).
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Definition 3.2 (Weighted 2-complex). A 2-complex X is a weighted 2-complex if
each of the sides in X has been assigned a nonnegative integer weight, the perimeter
of each 1-cell is finite, and the weight of each 2-cell is positive. The perimeter of a
1-cell x in X, is the sum of the weights assigned to the sides in SidesX(x), and the
weight of a 2-cell R in X is the sum of the weights assigned to its various sides.
Notice that the perimeter of each 1-cell is automatically finite when X is compact,
and the restriction on weights merely requires that every 2-cell have at least one
side with a positive weight. In symbols,

(1) P(x) =
∑

(R,r)∈SidesX(x)

Wt((R, r))

(2) Wt(R) =
∑

r∈Edges(∂R)

Wt((R, r))

If X is a weighted 2-complex, and φ : Y → X is a map, there is an invariant
called the perimeter of Y → X which we defined in [13]. In this article we restrict
ourselves to the case where Y is compact and φ : Y → X is a near-immersion. In
this case, as was shown in [13, Lemma 2.18], the perimeter of Y → X can be defined
as follows:

Definition 3.3 (Perimeter of a map). If X is a weighted 2-complex, Y is compact,
and the map φ : Y → X is a near-immersion, then

(3) P(Y ) = P(φ : Y → X) =
∑

y∈Edges(Y )

P(φ(y)) −
∑

S∈Cells(Y )

Wt(φ(S))

In [13], we used perimeter calculations to prove that various groups were coherent
and locally quasiconvex. Recall that a group is coherent if every finitely generated
subgroup is finitely presented. The best known examples of coherent groups are free
groups, surface groups, polycyclic groups, and 3-manifold groups. The definition of
local quasiconvexity is slightly more involved.

Definition 3.4 (Quasiconvexity). A subspace Y of a geodesic metric space X is
quasiconvex if there is an ε neighborhood of Y which contains all of the geodesics
in X which start and end in Y . In group theory, a subgroup H of a group G
generated by A is quasiconvex if the 0-cells corresponding to H form a quasiconvex
subspace of the Cayley graph Γ(G,A). If every finitely generated subgroup of G is
quasiconvex, then G (generated by A) is locally quasiconvex. In general, specifying
the generating set A is a crucial aspect of the definition, but when G is word-
hyperbolic (as is the case for all of the groups considered in this article) G is locally
quasiconvex with respect to one finite generating set if and only if it is locally
quasiconvex with respect to every finite generating set.

As we noted in [13], the notion of perimeter can be applied to fans in X.

Definition 3.5 (Perimeter-reducing fan). Let X be a weighted 2-complex. A fan

F → X is perimeter-reducing provided that the perimeter of F̃ → X is less than the

perimeter of its outer path Q→ X. In other words, P(F̃ ) < P(Q). If P(F̃ ) ≤ P(Q)
then we call F weakly perimeter-reducing. Rearranging the terms in Definition 3.3,
we see that a fan is (weakly) perimeter-reducing if and only if the perimeter of its

inner portion is less than (or equal to) the sum of the weights of the 2-cells in F̃ .



LOCALLY QUASICONVEX SMALL-CANCELLATION GROUPS 9

Another property of fans which is closely related to perimeter calculations is the
property of being spread-out.

Definition 3.6 (Spread out). A fan F → X is spread out provided that the sides

of 2-cells of F̃ along 1-cells in the outer path Q → F project to distinct sides of
2-cells along 1-cells in X. This condition is certainly satisfied when the outer path

Q → F̃ projects to a path Q → X which does not pass through any 1-cell of X

more than once. For instance, F → X is spread out when F̃ → X is an embedding,
and it is spread out when Q→ X is a simple path.

We are now able to quote the main theorems from [13] which use fans to establish
coherence and local quasiconvexity results. These correspond to Theorems 10.11
and 12.5 in [13], respectively.

Theorem 3.7 (Fan coherence). Let X be a compact weighted 2-complex. Let T be
a collection of spread-out weakly perimeter-reducing fans, and suppose that for each

fan F ∈ T , we have P(F̃ ) < P(∂F ). If every nontrivial minimal area disc diagram
contains a spur or a fan in T then π1X is coherent.

Theorem 3.8 (Fan local quasiconvexity). Let T be a finite collection of perimeter
reducing spread-out fans in the compact weighted 2-complex X, and let J ∈ N.
Suppose that for every minimal area disc diagram D → X with boundary cycle
PQ−1, either D is J-thin or D contains a spur or fan in T whose outer path is a
subpath of either P or Q. Then π1X is a locally quasiconvex word-hyperbolic group.

By combining Theorems 3.7 and 3.8 with Theorem 2.8 and Corollary 2.10 we
obtain the following theorems whose scope is the subject of the remainder of this
paper.

Theorem 3.9 (Small cancellation coherence). Let X be a compact weighted C(p)-
T (q) complex, where p, q, and k satisfy the Euclidean restrictions. If every minimal

fan of type k in X is both spread out, weakly perimeter reducing and satisfies P(F̃ ) <
P(∂F ), then π1X is coherent.

Theorem 3.10 (Small cancellation local quasiconvexity). Let X be a compact
weighted C(p)-T (q) complex, where p, q, and k satisfy the Euclidean restrictions.
If every minimal fan of type k in X is both spread out and perimeter reducing, then
π1X is locally quasiconvex.

Throughout this article we focus on local quasiconvexity more than on coherence
since in almost every instance where we can prove coherence, similar methods,
pushed a bit more, allow us to prove the stronger property of local quasiconvexity.
See, for instance, the discussion in Section 11.

There are two main difficulties in applying Theorem 3.10. While for each k,
there are only finitely many minimal fans of type k in the compact 2-complex X,
it is a tedious task to enumerate them and verify that they are perimeter reducing
and spread out. Furthermore, for large values of k, these fans will not all be spread
out in X. In Section 4 we show that when π1X is residually finite, it is no longer
necessary to assume that all minimal fans of type k are spread out in X since they
are spread out in one of its finite covers. Then, in Section 5, we describe two easily
computed invariants of X which will enable us to readily verify that various fans
are perimeter reducing. The finer invariant will be applied in Section 7 to obtain
rather precise results for k = 2 and k = 3. The courser invariant will be applied in
Section 11 where it will enable us to apply Theorem 3.10 for arbitrarily large k.
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4. Spreading out fans

As mentioned above, one limitation of Theorems 3.7 and 3.8 and hence The-
orem 3.10 is that the requirement that all fans of type T be spread out in X is
often too restrictive for natural applications. In this section we explain how the
assumption that the fans are spread out in X can be replaced with an assumption
that they are spread out in the universal cover of X when π1X is residually finite.

The main idea is to use the residual finiteness of π1X to choose a finite cover X̂
of X in which all of the appropriate fans are spread out. These theorems can then

be applied to the finite cover, and the coherence or local quasiconvexity of π1X̂
will imply the coherence or local quasiconvexity of π1X. We begin by recalling the
definition of a residually finite group.

Definition 4.1 (Residually finite). A group G is residually finite provided that
for each nontrivial element g ∈ G, there is a finite quotient G → G such that ḡ is
nontrivial. By considering quotients G→ G1 ×G2 × · · · ×Gk, it is easy to see that
if G is residually finite, then for any finite set of nontrivial elements g1, g2, . . . , gk

there is a finite quotient G→ G such that each gi is not mapped to the identity.

Lemma 4.2 (Spreading out fans). If X is a complex with a residually finite fun-
damental group and T is a finite collection of fans whose outer paths lift to simple

paths in X̃, then there is a finite cover X̂ of X such that each lift of a fan of type

T to X̂ is spread out.

Proof. Let F → X be a fan in T which is not spread out in X but which is spread

out in X̃. By definition, there are two sides of 2-cells along two 1-cells in Q which
project to the same side in X. In particular, there is a subpath P of the outer path

Q which projects to a closed path in X but which lifts to an open path in X̃. Since
T is finite, there are only finitely many such paths P → Q → F where F is in
T . Each of these closed paths in X represents a nontrivial conjugacy class in π1X.
In order to apply Definition 4.1, we can modify these paths to represent specific
elements in π1X. Let v be a fixed basepoint for X. For each path P , choose a
path Pv from v to the basepoint of P and let P ′ denote the closed path PvPP

−1
v

based at v. This creates a finite list of paths based at v which represent elements
of π1X. Moreover, notice that a lift of P ′ to a cover of X is closed if and only if
the lift of the subpath P is closed. Consider the resulting finite set of paths based
at v. By Definition 4.1, there is a finite quotient of π1X in which the elements they

represent map to nontrivial elements. The corresponding finite regular cover X̂ has

the property that none of the essential closed paths P have closed lifts to X̂. The

cover X̂ has the desired property. Indeed, if there was a fan F → X̂ → X in T
which was not spread out in X̂, then there would exist a subpath P → Q→ F → X̂

which was a closed path in X̂ even though it lifts to an open path in X̃. This is

impossible by the way X̂ was constructed. �

Notice that the argument actually shows that the outer paths of fans in T are

simple paths in X̂. The following lemma allows us to conclude that π1X is coher-

ent (or word hyperbolic and locally quasiconvex) by proving that π1X̂ is coherent
(word-hyperbolic and locally quasiconvex) instead.
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Lemma 4.3 (Commensurability). If K is coherent and K is a finite index sub-
group of G, then G is coherent. Similarly, if K is word-hyperbolic and locally-
quasiconvex and K is a finite index subgroup of G, then G is word-hyperbolic and
locally-quasiconvex.

Proof. It is easy to show that a finite index subgroup of a group is finitely generated
(or finitely presented) if and only if the group itself is finitely generated (finitely
presented) [12, Proposition 4.2]. Let H be a finitely generated subgroup of G.
Since H ∩K is of finite index in H, H ∩K is also finitely generated. But H ∩K
is now a finitely generated subgroup of the coherent group K and therefore it is
finitely presented. Finally H must be finitely presented since H ∩ K is finitely
presented. The second assertion is an easy consequence of the definitions and will
be omitted. �

Using Lemma 4.2 and Lemma 4.3 we have the following version of Theorem 3.8
which eliminates the hypothesis that the minimal fans be spread-out.

Theorem 4.4. Let X be a compact weighted 2-complex with a residually finite
fundamental group and let T be a finite collection of perimeter reducing fans in X

whose outer paths lift to simple paths in X̃. Suppose there is a J ∈ N such that for
every minimal area disc diagram D → X with boundary cycle PQ−1, either D is
J-thin or D contains a perimeter reducing fan in T whose outer path is a subpath
of either P or Q. Then π1X is word-hyperbolic and locally quasiconvex.

Proof. Since each fan in T lifts to a spread out fan in X̃, Lemma 4.2 provides a

finite cover X̂ in which the lift of each of these fans is spread out. Let T̂ denote

the set of fans F → X̂ which are lifts of fans F → X in T . Note that the complex

X̂ inherits a weighting from X, and that each fan in T̂ is perimeter-reducing.

Any minimal area disc diagram D → X̂ projects to a minimal area disc diagram
D → X. By hypothesis, D → X contains a fan F → X from T , and consequently

the lift of D → X to D → X̂ contains the lift of F → X which belongs to T̂ . By

Theorem 3.8, π1X̂ is word-hyperbolic and locally quasiconvex. Since π1X̂ is a finite
index subgroup of π1X, Lemma 4.3 shows that π1X is a locally quasiconvex word
hyperbolic group as well. �

Restricting to the small cancellation context, we have the following result. Notice
that we needed to switch from the Euclidean to the hyperbolic restrictions in order
to be able to use Theorem 2.13.

Theorem 4.5. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group, where p, q, and k satisfy the hyperbolic restrictions. If
every minimal fan of type k in X is perimeter reducing, then π1X is locally quasi-
convex.

Proof. Let T denote the minimal fans of type k in the C(p)-T (q) complex X, and
note that by Theorem 2.12, T is finite. By Theorem 4.4, any disc diagram which
is not J-thin contains a fan of type k, and hence by Lemma 2.11, it contains a fan
in T . Since p, q, k satisfy the hyperbolic restrictions, Theorem 2.13 states that the
outer path of each fan in T lifts to a simple path in X̃. The result now follows from
Theorem 4.4. �

A similar result is clearly possible for coherence with essentially the same proof,
which we omit.
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Theorem 4.6. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group, where p, q, and k satisfy the hyperbolic restrictions. If

every minimal fan of type k is weakly perimeter reducing and satisfies P(F̃ ) <
P(∂F ), then π1X is coherent.

5. Local and global ratios

In this section we define two invariants of a weighted 2-complex which compare
the weights of its 2-cells with the perimeters of its pieces. These “ratio” invariants
will enable us to quickly conclude that entire collections of fans are perimeter-
reducing without performing a case-by-case calculation. These ratios appear to be
the most easily computed invariants of a weighted 2-complex that give a qualitative
idea of the coherence and local-quasiconvexity properties of its fundamental group.
In Sections 8, 9, and 10, we will devote a considerable effort towards construct-
ing examples of weighted 2-complexes with incoherent fundamental groups, whose
ratios are as small as possible.

Definition 5.1 (Local and global ratio). Let X be a weighted 2-complex, let E
denote the maximum perimeter of a piece in X, and let W denote the minimum
value of n · Wt(R) where R is a 2-cell in X and n is its exponent. We define the
global ratio of X, denoted Global(X), to be the fraction E

W
.

Our second invariant is more precise since it pays attention to where the pieces
occur among the boundaries of 2-cells. The local ratio of X, denoted Local(X), is

the supremum of P(P )
n·Wt(R) where P varies over the pieces in ∂R, R varies over the

2-cells of X, and n is the exponent of R. It is possible for these ratio invariants to
equal infinity, but this is not a favorable possibility.

Finally, an even more precise invariant, which we will rarely use, would look at
sequences of two or three consecutive pieces in the boundary of R (since these are
the precise paths which are involved in the perimeter calculations). Let Locali(X)

denote the supremum of P(S)
i·n·Wt(R) where S is the concatenation of i consecutive

pieces in ∂R, R is a 2-cell inX and n is its exponent. Using this notation Local(X) =
Local1(X), and Local(X) ≥ Locali(X) for all i ≥ 1.

Definition 5.2 (Homogeneous). We sayX is homogeneous if n·Wt(R) is a constant
independent of the 2-cell R in X. Notice that Global(X) ≥ Local(X) and that
Global(X) = Local(X) whenever X is homogeneous.

Since fans of type 1 are single i-shells or spurs, they are trivially spread out.
Therefore the case k = 1 of Theorem 3.10 can be stated as follows:

Theorem 5.3 (Local quasiconvexity). Let X be a compact weighted C(p)-T (q)-
complex. If p = 6 and q = 3 [ p = q = 4 ] and for each 2-cell R → X the
perimeter of any three [two] consecutive pieces in the boundary of R is strictly less
than n · Wt(R) where n is its exponent, then π1X is locally quasiconvex.

We can restate Theorem 5.3 using the local ratio notation.

Theorem 5.4. Let X be a weighted C(p)-T (q)-complex. If either p = 6, q = 3, and
Local3(X) < 1

3 , or p = q = 4 and Local2(X) < 1
2 , then π1X is locally quasiconvex.

Sections 6 and 7 are devoted to showing that under stronger small cancellation
assumptions (using k = 2 or 3), even higher local and global ratios suffice to
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guarantee local quasiconvexity. Section 11 will investigate global ratios using larger
values of k.

6. Global ratio results

In order to apply Theorem 3.10 or Theorem 4.5, we must ensure that all of the
minimal fans of type k are perimeter-reducing. In this section we give a simple
inequality involving Global(X) and the number of 2-shells, 3-shells, and 4-shells in
a fan F → X. Whenever this inequality is satisfied the fan F is perimeter-reducing.
We then apply this result to find upper bounds on Global(X) that imply that various
pointed fans and broad fans are perimeter reducing. The same statements will be
proven for Local(X) in Section 7, but the proofs are more delicate.

Lemma 6.1 (Global perimeter calculation). Let X be a weighted 2-complex, let
F → X be a fan in which every 2-cell is either a 2-shell, 3-shell or 4-shell. If b, c,
and d denote the numbers of 2-shells, 3-shells, and 4-shells in F , and Global(X) <

b+c+d
b+2c+3d+1 then F → X is a perimeter-reducing fan.

Proof. The total number of 2-cells in F is b + c + d, it has b + c + d − 1 maximal
internal arcs, and the inner path of F is the concatenation of 2+0b+1c+2d pieces.
Thus the inner portion of F can be decomposed into b + 2c + 3d + 1 pieces. Let
E denote the maximum perimeter of a piece, let W denote the minimum value of
n · Wt(R) and observe that

∑
P(P ) ≤ E(b+ 2c+ 3d+ 1) and W (b+ c+ d) ≤

∑

R∈Cells(F̃ )

Wt(R)

where the first sum is taken over all pieces in the inner portion of F . Therefore if
E(b+ 2c+ 3d+ 1) < W (b+ c+ d) then F → X is perimeter-reducing. Rearranging
the terms we find that Global(X) = E

W
< b+c+d

b+2c+3d+1 is sufficient. �

Notice that when X is homogeneous and the inequality in Lemma 6.1 fails
to hold, then the fan F → X is definitely not perimeter-reducing. To illustrate
Lemma 6.1 we record the special cases of pointed fans and q-separated broad fans
below. The first one is immediate.

Corollary 6.2 (Pointed fans). Let X be a weighted 2-complex and let F → X be a
pointed fan with i 2-shells. If Global(X) < i

i+1 then F → X is a perimeter-reducing
fan.

Corollary 6.3 (Broad fans). Let X be a weighted 2-complex and let F → X be a

k-separated broad fan with j 3-shells. If Global(X) < (k+1)(j+1)−1
(k+2)(j+1)−1 then F → X is

a perimeter-reducing fan.

Proof. Since F is k-separated it contains at least k(j + 1) 2-shells. Thus if b is the
number of 2-shells in F , b = k(j + 1) + ` for some ` ≥ 0. By Lemma 6.1 a global

ratio bounded above by b+j
b+2j+1 is sufficient, and it is easy to check that

b+ j

b+ 2j + 1
=

k(j + 1) + `+ j

k(j + 1) + `+ 2j + 1
≥ k(j + 1) + j

k(j + 1) + 2j + 1
=

(k + 1)(j + 1) − 1

(k + 2)(j + 1) − 1

�

Using these corollaries, it is straightforward to derive perimeter reduction results
for all fans of type 2 and 3.
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Lemma 6.4. Let X be a weighted C(p)-T (q) complex. Every fan F → X of type 2
is perimeter-reducing when either p = 3, q ≥ 6 and Global(X) < q−4

q−3 , or p ≥ 4,

q ≥ 4 and Global(X) < q−3
q−2 .

Proof. This is obvious when F is a spur, 0-shell, or 1-shell, and follows from Corol-
lary 6.2 when F is a pointed fan with i ≥ q − 4 [i ≥ q − 3]. �

Lemma 6.5. Let X be a weighted C(p)-T (q) complex. Every fan F → X of type 3
is perimeter-reducing when either p ≥ 6, q = 3 and Global(X) < p−5

2p−9 , or p ≥ 4,

q ≥ 4 and Global(X) < (q−2)(p−3)−1
(q−1)(p−3)−1 .

Proof. All of the fans of type 3 are either obviously perimeter-reducing given these
restrictions, or they are perimeter-reducing by Corollary 6.2 or Corollary 6.3. �

Combining these with Theorem 3.10 give new results on local quasiconvexity.

Theorem 6.6. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 2 are spread out. Then π1X is locally quasiconvex when either
p = 3, q ≥ 6 and Global(X) < q−4

q−3 , or p ≥ 4, q ≥ 4 and Global(X) < q−3
q−2 .

Proof. The restrictions on p and q are the Euclidean restrictions with k = 2 and by
Lemma 6.4 all fans of type 2 are perimeter reducing. Thus the result follows from
Theorem 3.10. �

Theorem 6.7. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 3 are spread out. Then π1X is locally quasiconvex when either

p ≥ 6, q = 3 and Global(X) < p−5
2p−9 , or p ≥ 4, q ≥ 4 and Global(X) < (q−2)(p−3)−1

(q−1)(p−3)−1 .

Proof. The restrictions on p and q are the Euclidean restrictions with k = 3 and by
Lemma 6.5 all fans of type 3 are perimeter reducing. Thus the result follows from
Theorem 3.10. �

As usual, the assumption that various fans are spread out can be replaced with
the assumption that π1X is residually finite. The proofs are the same but with
Theorem 4.5 used in place of Theorem 3.10. Also note that this change requires us
to switch from the Euclidean to the hyperbolic restrictions.

Theorem 6.8. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group. Then π1X is locally quasiconvex when either p = 3, q > 6
and Global(X) < q−4

q−3 , or p ≥ 4, q > 4 and Global(X) < q−3
q−2 .

Theorem 6.9. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group. Then π1X is locally quasiconvex when either p > 6, q = 3

and Global(X) < p−5
2p−9 , or p > 4, q ≥ 4 and Global(X) < (q−2)(p−3)−1

(q−1)(p−3)−1 .

Finally, we conclude this section with a remark about limiting values.

Remark 6.10 (Limiting values). Consider the fractions p−5
2p−9 = 1

2 − 1
4p−18 and

(q−2)(p−3)−1
(q−1)(p−3)−1 = 1 − 1

q−1 − 1
q−1 · 1

(q−1)(p−3)−1 . As p increases, the first fraction

converges to 1
2 and the second to 1 − 1

q−1 . Similarly, as q increases, the first is

unchanged and the second approaches 1. We will return to these limiting values in
Section 11.
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7. Local ratio results

In this section we show how Corollary 6.2 and Corollary 6.3 remain true when
the global ratio of X is replaced by the local ratio of X. Since the weights of the
2-cells and the perimeters of the pieces can vary tremendously, an averaging process
using “coefficients” must be employed to transition from the local estimate given
by the local ratio to the global estimate required by a perimeter reduction. We
begin with a definition.

Definition 7.1 (Sides along arcs). Let D be a weighted disc diagram and let R
be a 2-cell in D. If P is a subpath of ∂R and P → R → D is a maximal arc in
D, then (R,P ) is a side of R along the arc P . The weight of this side is the sum
of the weights of the sides (R, r) where r is a 1-cell in P . Notice that to assign a
particular weight to the side (R,P ), it is sufficient to assign weights to the sides
(R, r) arbitrarily so long as the total is the desired one.

Lemma 7.2 (Pointed fan coefficients). Let F ↪→ D be a pointed fan in a disc
diagram, and suppose that F contains exactly i 2-shells. Then we can assign non-
negative coefficients to the sides of 2-cells of F along arcs in the inner portion of
F such that

(1) There is a coefficient of 1 along each arc in the inner path of F .
(2) The sum of the coefficients on the two sides of each maximal internal arc

is 1
(3) For each 2-cell of F , the sum of its two coefficients is i+1

i

Proof. Assume that the fan F is oriented so that the 2-cells of F are arranged from
left to right with the outer path of F on top. Assign a coefficient of 1 to the sides
along arcs in the inner path of F . Next, the left and right sides of the j-th 2-cell
counting from the left will be assigned coefficients of i+1−j

i
and j

i
, respectively. It

is easy to check that these coefficients satisfy the conditions. On the left of Figure 4
is a pointed fan (outside its diagram) with its corresponding coefficients. �
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Figure 4. Coefficients on pointed and broad fans

Lemma 7.3 (Pointed fan reductions). Let X be a weighted 2-complex and let
F → X be a pointed fan with i 2-cells. If Local(X) < i

i+1 then F is perimeter-
reducing.

Proof. Let P be a maximal internal arc which lies between the 2-cells R1 and R2

of F with exponents n1 and n2, and let c be the constant i+1
i

. By hypothesis,
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n1 ·Wt(R1) > c ·P(P ) and n2 ·Wt(R2) > c ·P(P ). It follows that if a, b ≥ 0 and
a+ b = 1 then

(4) a · n1 · Wt(R1) + b · n2 · Wt(R2) > c · P(P )

For each maximal internal arc we choose the constants a and b to be the coefficients
which satisfy the conclusion of Lemma 7.2. If we add up all of the resulting in-
equalities for each maximal internal arc and the inequality 1 ·n ·Wt(R) > c ·P(P )
for each piece in the inner path, we find that

c ·
∑

R∈Cells(F )

n · Wt(R) > c ·
∑

P(P )

where the second sum is taken over the disjoint pieces P in the inner portion of
the fan F . Note that the second statement in Lemma 7.2 is used to guarantee that
the sum of the two coefficients appearing with each n ·Wt(R) is c. Cancelling the
constant c completes the proof. �

Similar results hold for broad fans.

Lemma 7.4 (Broad fan coefficients). Let F ↪→ D be a k-separated broad fan in a
disc diagram, and suppose that F contains exactly j 3-shells. Then we can assign
nonnegative coefficients to the ‘sides’ of 2-cells of F along arcs in the inner portion
of F so that:

(1) There is a coefficient of 1 along each arc in the inner path of F
(2) The sum of the coefficients on the two sides of each maximal internal arc

is 1
(3) For each 2-shell [3-shell], the sum of its two [three] coefficients is bounded

by (k+2)(j+1)−1
(k+1)(j+1)−1

Proof. We assign a coefficient of 1 along each arc in the inner path of F so Condi-
tion 1 is satisfied. Suppose that F is oriented so that the 2-cells of F are arranged
from left to right with the outer path of F on top. The left and right sides of
the i-th 3-shell in F will be assigned coefficients of j+1−i

(k+1)(j+1)−1 and i
(k+1)(j+1)−1 ,

respectively. Choose coefficients on other sides of the maximal internal arcs so that
the total is 1. Notice that the sum of the coefficients on the 3-shells is exactly the

bound in Condition 3 since 1 + j+1−i
(k+1)(j+1)−1 + i

(k+1)(j+1)−1 = (k+2)(j+1)−1
(k+1)(j+1)−1 .

We will now assign coefficients to the sides of 2-shells along maximal internal arcs
of F . Consider a sequence of k + 1 maximal internal arcs bounding k consecutive
2-shells, and suppose that the right side of the leftmost maximal internal arc has
a coefficient of c and the right side of the rightmost maximal internal arc has
a coefficient of d. Then the coefficients of the sides to the right of each of the
intermediate maximal internal arcs will be chosen so that they are the intermediate
terms of an arithmetic progression from c to d, and the coefficients of the sides to
the left of each maximal internal arc will then be chosen so that the sum of the
two coefficients at each maximal internal arc is 1. Note that using the coefficients
to the left to interpolate would have yielded the same set of coefficients. Since
the interpolation is between positive numbers the coefficients are all positive, and
Condition 2 is true by definition. It is now easy to check that when there are exactly
k 2-shells between adjacent 3-shells, the bound of Condition 3 is exact, and that
additional 2-shells make the bound easier to achieve. Since F is k-separated, the
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sum of the coefficients in each 2-shell stays within the bound of Condition 3. This
completes the proof. �

On the right of Figure 4 is a broad fan (outside its diagram) with its corre-
sponding coefficients. This broad fan is 2-separated and has three 3-shells. We can
use Lemma 7.4 to prove a result similar to Lemma 7.3. Since the proof is nearly
identical, it will be omitted.

Lemma 7.5 (Broad fan reductions). Let X be a weighted 2-complex and let F → X

be a k-separated broad fan with j 3-shells. If Local(X) < (k+1)(j+1)−1
(k+2)(j+1)−1 , then F is

perimeter-reducing.

Now that Lemma 7.3 and Lemma 7.5 have been established. All of the results in
Section 6 which followed from Corollary 6.2 and Corollary 6.3 (namely, Lemma 6.4
through Theorem 7.9) remain true as written when each occurence of Global(X) in
their statements is replaced with Local(X). Thus we have shown the following.

Theorem 7.6. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 2 are spread out. Then π1X is locally quasiconvex when either
p = 3, q ≥ 6 and Local(X) < q−4

q−3 , or p ≥ 4, q ≥ 4 and Local(X) < q−3
q−2 .

Theorem 7.7. Let X be a compact weighted C(p)-T (q) complex in which all min-
imal fans of type 3 are spread out. Then π1X is locally quasiconvex when either

p ≥ 6, q = 3 and Local(X) < p−5
2p−9 , or p ≥ 4, q ≥ 4 and Local(X) < (q−2)(p−3)−1

(q−1)(p−3)−1 .

Theorem 7.8. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group. Then π1X is locally quasiconvex when either p = 3, q > 6
and Local(X) < q−4

q−3 , or p ≥ 4, q > 4 and Local(X) < q−3
q−2 .

Theorem 7.9. Let X be a compact weighted C(p)-T (q) complex with a residually
finite fundamental group. Then π1X is locally quasiconvex when either p > 6, q = 3

and Local(X) < p−5
2p−9 , or p > 4, q ≥ 4 and Local(X) < (q−2)(p−3)−1

(q−1)(p−3)−1 .

8. C(p)-T (3) counterexamples

In the next three sections we present several families of groups which are inco-
herent and/or not locally quasiconvex. The examples presented in this section will
be derived from C(p)-T (3) complexes, those in the next section will be derived from
C(p)-T (4) complexes, and those in Section 10 will be derived from C(4)-T (q) com-
plexes. These examples demonstrate the limits to which results about the behavior
of small cancellation groups can be pushed. We begin with the standard example
of an incoherent finitely presented group. Finally, we note that all of the weighted
2-complexes constructed in these sections are homogeneous (Definition 5.1) and
thus the global ratio is the same as the local ratio throughout.

Example 8.1 (F2×F2). An early example of an incoherent group due to Baumslag,
Boone, and Neumann (see [2]) is the direct product F2 ×F2 of two free groups. Its
usual presentation

〈a, b, x, y | [a, x], [a, y], [b, x], [b, y]〉
is readily seen to satisfy the C(4)-T (4) conditions. If we let φ : F2 ×F2 → Z be the
homomorphism induced by mapping each of the generators of F2 × F2 to 1 ∈ Z,
then kernel(φ) is finitely generated but does not have a finite presentation.
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The unit perimeter on the standard 2-complex X of the presentation above
(i.e. all sides have weight 1) gives a weight of 4 for each 2-cell, and the perimeter of
each 1-cell is 4. Thus Global(X) = Local(X) = Local2(X) = 1 and the hypothesis of
Theorem 5.4 fails. This is because the sum of the unit perimeters of two consecutive
pieces is 8, which is greater than the weight of each 2-cell.

There is another C(4)-T (4) 2-complex whose fundamental group is F2×F2 which
comes closer to satisfying the conditions of the theorem. Let θ be the graph with
two 0-cells and three 1-cells in which each 1-cell connects one 0-cell to the other.
Let Y be the complex θ× θ. Then π1Y ∼= F2 × F2 and and it is easy to check that
Y is a C(4)-T (4)-complex. The unit perimeter on Y assigns a perimeter of 3 to
each 1-cell and a weight of 4 to each 2-cell. Again, since 4 6≥ 6, this 2-complex fails
our hypothesis, even though the weight of each 2-cell is strictly greater than the
perimeter of each piece and Global(Y ) = Local(Y ) = Local2(Y ) = 3/4.

The first examples of incoherent small cancellation groups satisfying stronger
small cancellation conditions were constructed by Rips in [15]. We will not discuss
Rips’s examples here except to note that they fail to satisfy the hypotheses of our
coherence theorems, and that they fail these criteria more severely than the various
families of examples presented below.

Definition 8.2. Let {a1, . . . , an} be a set of distinct letters. We define aij to be

the unique letter ak with k ≡
(

i
2

)
+ j (mod n), and for j = 1, 2, . . . , n we define the

words

(5) Wj = a1ja2j . . . anj W ′
j = a2ja3j . . . anj

The notation of Definition 8.2 will be used in all of our examples without further
comment. The main property of this set of words is that all of the two-letter
subwords are distinct.

Lemma 8.3 (No two-letter pieces). Let W1,W2, . . . ,Wn be the n words of length n
defined in Equation 5. Every two-letter sequence aiaj (with 1 ≤ i, j ≤ n and i 6= j)
occurs in exactly one of these words and in exactly one place in that word.

Proof. Since the sequence of differences between subscripts of consecutive letters in
each word is the sequence 1, 2, . . . , (n − 1), we see that a two-letter subword aiaj

can only occur beginning on the (j−i)th letter of some word. However, the n words
are uniquely determined by their (j − i)th letters, and so aiaj can only occur in
exactly one word and in exactly one place in that word. Conversely, it will occur
at that location. �

Example 8.4 (Not locally quasiconvex). Our first family of examples will be C(p)-
T (3) presentations which are not locally quasiconvex and have a local ratio of 1.
For a fixed n, consider the presentation

G = 〈a1, . . . , an, t | {(a1r)
t = Wr : 1 ≤ r ≤ n}〉

and let X be the standard 2-complex of this presentation. Notice that G is an as-
cending HNN extension of a finitely generated free group. It follows from Lemma 8.3
that all the pieces in this presentation have length 1 and that the presentation there-
fore satisfies C(p)-T (3) where p = n+ 3.

Consider the weight function which assigns a weight of 0 to each side at the 1-cell
labeled t, and assigns a weight of 1 to all of the other sides. The weight of each
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2-cell is n+1, and the perimeter of each piece is n+1 or 0 depending on whether its
label is ai or t. Thus Global(X) = Local(X) = 1. This fails to satisfy the conditions
of Theorem 7.9, since Local(X) would have needed to be at most 1

2 − 1
4p−18 .

We will show that G is not locally quasiconvex by exhibiting a specific subgroup
which is finitely generated but not quasiconvex. Let H be the subgroup generated
by the set A = {a1, . . . , an}. To see that H is not quasiconvex we consider the
set of equalities {atn

1 = φn(a1)} ordered by n where φ is the endomorphism of H
induced by conjugation by t. Note that the length of φn(a1) grows exponentially,
whereas the length of atn

1 grows linearly. Since A is a free group and φn(a1) is
reduced, φn(a1) is a geodesic in H relative to the generating set A. Since this
diverges exponentially from its geodesic length in G relative to the generating set
A ∪ {t}, H cannot be a quasiconvex subgroup of G.

More generally, let φ : F → F be an injective endomorphism of a finitely gener-
ated free group, and let G be the mapping torus of φ. If G is word-hyperbolic, then
it is not difficult to show that A is not a quasiconvex subgroup of G. For instance,
it follows from [9] that F is not quasiconvex because it has infinite height, which
means roughly that F has infinitely many distinct conjugates that intersect. As
mentioned in the introduction, Feighn and Handel have recently shown in [7] that
these groups are indeed coherent.

A slight modification of the presentations given above will produce incoherent
examples. To show that these examples are incoherent, we will need the following
theorem from [16].

Theorem 8.5. Let G = 〈a1, . . . , am, t | at
1 = U1, . . . , a

t
m = Um, V 〉 where Ui and V

are words in a±1
i , and let X be the standard 2-complex of the presentation. If X is

aspherical then the subgroup H = 〈a1, . . . , am〉 is not finitely presented.

Example 8.6 (Incoherent). Our second family of examples are C(p)-T (3) presen-
tations which are incoherent and have a local ratio of 1. Let n be an even number
and consider the presentation

G = 〈a1, . . . , an, t |
{
(a1r)

t = W ′
r : 1 ≤ r ≤ n

}
, a1a

−1
2 a3a

−1
4 · · · a−1

n 〉
Notice that this presentation differs from the presentation in Example 8.4 by the
addition of a single relator. As before, it is easy to check that all the pieces of this
presentation have length 1, and that the presentation satisfies C(p)-T (3) for p = n.
If we assign a weight of 0 to all of the sides of the 1-cell labeled t and a weight of 1
to all of the other sides, then the weight of each 2-cell will be n and the perimeter
of each piece will be either n or 0. Thus the local ratio of this presentation is 1.
The words Wr have been replaced by W ′

r since these words give a slightly lower
ratio between the perimeter of a piece and the weight of a 2-cell. Finally, since this
presentation satisfies the conditions of Theorem 8.5, the subgroup H generated by
the ai is finitely generated but not finitely presented, and thus G is incoherent.

In contrast to the examples given above, our best theorems along these lines are
valid only for residually finite groups whose presentations have local ratios less than
1
2 . Since we have been unable to narrow this gap we pose the following question:

Problem 8.7. Is there a sequence of incoherent groups given by small cancellation
presentations where the (local or global) ratios of the presentations approach the
values given in Theorem 7.8 and Theorem 7.9? For example, is there a sequence
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of examples Xp such that for each p, Xp is a weighted C(p)-T (3) complex, π1Xp

is incoherent, and limp→∞ Local(Xp) = 1
2? The same question can be posed with

respect to local quasiconvexity. Alternatively, can the values in Theorem 7.8 and
Theorem 7.9 be raised in this regard?

9. C(p)-T (4) counterexamples

For C(p)-T (4) complexes we are able to obtain slightly stronger results. The next
family of examples are residually finite but not locally quasiconvex. The residual
finiteness of their fundamental groups will be a consequence of the following theorem
from [17]. Recall that the condition C ′(1/6) means that if P is a piece in ∂R, then
the length of P is less than one-sixth of the length of ∂R.

Theorem 9.1. If 〈a1, . . . |W1, . . . 〉 is a finite C ′(1/6) presentation in which all of
the Wi are positive words with the same length, then the group is residually finite.

The finite generation will be a consequence of the following theorem.

Theorem 9.2. Let X be a cell complex, let X̃ be its universal cover, let φ : π1X →
Z be a epimorphism and let H = kernel(φ). If there is a φ-equivarient Morse

function f : X̃ → R, such that the ascending and descending links of this map are
connected but not simply-connected, then H is a finitely generated but not finitely
presented subgroup of π1X.

For a proof of this theorem, see [6, Theorem 4.7], and for background and defi-
nitions, see [3, Theorem 4.1].

Example 9.3 (Not locally quasiconvex). Our third family of examples are C(p)-
T (4) presentations whose groups are residually finite but not locally quasiconvex
and which have a local ratio of 1 − 1

p
. For a fixed n, consider the presentation

G =
〈
a1, . . . , an, x | {Wr = x : 1 ≤ r ≤ n}

〉

and let X be the 2-complex of this presentation. It follows from Lemma 8.3 that all
of the pieces in this presentation have length 1, and thus the presentation satisfies
C(p) for p = n+ 1. The presentation also satisfies T (4) since substituting x−1 for
x would yield a presentation in which each relator is a positive word. Using the
unit weighting, the weight of each 2-cell is n+ 1 and the perimeter of each 1-cell is
n. Thus Global(X) = Local(X) = 1 − 1

p
. For p > 6, the finitely presented group is

residually finite by Theorem 9.1.
We will now show that G is not locally quasiconvex by exhibiting a specific

subgroup which is finitely generated but not quasiconvex. Let φ : G → Z denote
the surjective homomorphism induced by ai 7→ 1, x 7→ n. By Theorem 9.2 or [4],
kernel(φ) is finitely generated. In order to apply Theorem 9.2, we need to show
that the ascending and descending links of φ (relative to the presentation of G) are
connected. Since the 1-cells in the ascending link correspond to the corners x−1a1r

for 1 ≤ r ≤ n, this shows that the ascending link is connected. Similarly, the 1-cells
in the descending link correspond to the corners anrx

−1 for 1 ≤ r ≤ n. This shows
that the descending link is connected. To see that kernel(φ) is not quasiconvex,
note that it is an infinite normal subgroup of infinite index in a word-hyperbolic
group. By [1] or [9] such subgroups cannot be quasiconvex.

Finally, we note that since the ascending and descending links are trees, Theo-
rem 9.2 allows us to conclude that kernel(φ) is a finitely generated free group F .
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Consequently G ∼= F o Z. This affirmatively answers a question of Gersten’s, who
asked in [8] whether a F o Z group could ever be the fundamental group of a
compact negatively curved 2-complex.

Example 9.4 (Incoherent). A slight modification of the presentations in Exam-
ple 9.3 provides examples of C(p)-T (4) complexes with local ratio 1 whose funda-
mental groups are residually finite but incoherent. Let X be the 2-complex of the
presentation

〈a1, . . . , an, x | {Wr = x : 1 ≤ r ≤ n}〉
from Example 9.3. Similarly, let Y and Z be additional copies of this 2-complex but
with different labels on the 1-cells. In particular, we label the 1-cells of Y and Z
using the letters {b1, . . . , bn, y} and {c1, . . . , cn, z} respectively. We now form a new
complex C which is the union of X, Y , and Z obtained by identifying three pairs
of 1-cells. The three identifications are a1 = b1, b2 = c2, and c3 = a3. To see that
all of the pieces have length 1, note that if a two-letter word occurs in two distinct
relators then they must belong to two of the three subpresentations corresponding
to X, Y , and Z. But any two of the subpresentations have only a single generator
in common. Consequently, the two-letter subword must be of the form uu for some
generator u. This is impossible because each letter appears at most once in each
relator. Thus C is a C(p) complex with p = n+1. The presentation corresponding
to C will be T (4) as before since the 1-cells can be oriented so that each of the
relators are positive words. By Theorem 9.1, the group π1C is residually finite for
p > 6.

If we place a weight of 1 at sides which are incident at any of the 1-cells a1 = b1,
b2 = c2, or c3 = a3, and we place a weight of 2 at all other sides, then it is easy
to check that the weight of each 2-cell is 2n and that the perimeter of each 1-cell
is 2n. Thus Global(X) = Local(X) = 1. We will now show that G is incoherent by
exhibiting a specific subgroup which is finitely generated but not finitely presented.
Consider the homomorphism φ : π1C → Z defined so that its restriction to the
subgroups corresponding to X, Y , and Z are the same homomorphisms as in Ex-
ample 9.3. The ascending and descending links of φ (relative to this presentation)
are connected but not simply-connected, and therefore by Theorem 9.2, kernel(φ)
is finitely generated but not finitely presented.

In contrast to the examples given above, our best theorems along these lines are
valid only for residually finite presentations with a local ratio less than 2

3 . This gap
is smaller than the previous one, but we have not been able to close it either. Thus
Problem 8.7 can also be asked for C(p)-T (4) complexes.

10. C(4)-T (q) counterexamples

With our final family of examples we show that for C(4)-T (q) complexes Theo-
rem 7.6 is asymptotically sharp as q increases. In particular, we will establish that
for every q, there is a compact C(4)-T (q) complex X ′ in which all minimal fans
of type 2 are spread out, a local ratio of 1, and an incoherent fundamental group.
This is in sharp contrast with Theorem 7.6 which shows that a compact C(4)-T (q)
complex in which all minimal fans of type 2 are spread and with a local ratio
less than 1 − 1

q−2 must have a coherent fundamental group. Thus, as q increases,

the gap between the theorem and these counterexamples disappears completely.
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The construction of these complexes begins with a presentation which violates our
assumption that attaching maps are immersions.

Definition 10.1 (X and Γ). LetX be the 2-complex of the presentation 〈a | a2a−2〉
and let R be its unique 2-cell. Inside X we will define a graph Γ, but note that
the vertices and edges of Γ will not be 0-cells or 1-cells in X. The graph Γ has two
vertices: one at the center of R and one at the center of the unique 1-cell of X.
And it has four edges connecting these two vertices, corresponding to the four sides
of R. When the 0-cell of X is removed, the complement deformation-retracts onto
Γ. Figure 5 illustrates what the graph Γ looks like when pulled back to R via its
characteristic map.

PSfrag replacements
a

a a

a

Figure 5. The graph Γ in the 2-cell R before it is attached to the
1-skeleton of X.

The subpath aa−1 is the ascending portion of ∂R and the subpath a−1a is the
descending portion. These will define ascending and descending subgraphs of Γ.
Specifically, let ΓA [respectively ΓD] denote the subgraph of Γ consisting of the
union of the two vertices of Γ and the two edges of Γ which correspond to the sides
of R along the ascending [descending] portion of ∂R.

Each covering map Γ′ → Γ uniquely determines a branched cover X ′ → X such
that X ′ − (X ′)(0) deformation-retracts onto Γ′ and the branching only occurs at
the 0-cell of X. Let v denote the 0-cell of X and observe that ‘pushing out from
v’ yields an immersion Link(v) → Γ′ which sends each edge of Link(v) to a length 2
path in Γ. Similarly, given a 0-cell u in X ′, there is an immersion Link(u) → Γ
which sends each edge of Link(u) to a length 2 path in Γ′.

The next two lemmas relate various properties of Γ′ to properties of the corre-
sponding branched cover X ′. We first need a few definitions from graph theory.

Definition 10.2 (Graphs). Let Γ be a finite graph. It has girth at least g if it does
not contain a cycle of length less than g. It is d-regular if every vertex has valence
exactly d. A Hamiltonian cycle in Γ is a cycle which passes through each vertex
exactly once. A pair of Hamiltonian cycles in Γ which do not contain an edge in
common are called edge-disjoint.

Lemma 10.3. Let Γ′ → Γ be a covering map and let X ′ be the corresponding
branched cover of X. If Γ′ has girth at least 2q, q ≥ 4, then X ′ is a C(4)-T (q)
complex whose attaching maps are immersions and with Global(X ′) = Local(X ′) = 1
using the unit perimeter. In addition, all minimal fans of type 2 are spread out in
X ′.

Proof. If X ′ had a 2-cell whose attaching map was not an immersion, then Γ′

would contain a cycle of length 4. Similarly, if X ′ contained a piece of length 2,
then Γ′ would contain a cycle of length 4. Since Γ′ has no cycles of length less
than 2q, q ≥ 4, all pieces in X ′ have length 1, its attaching maps are immersions,
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and X ′ satisfies the C(4) condition. Moreover, since all pieces in X ′ are length
1, the perimeter of a piece in X ′ is 4, the weight of a 2-cell in X ′ is 4, and thus
Global(X ′) = Local(X ′) = 1. Let u be a 0-cell in X ′. Since Γ′ has no cycles of
length ≤ 2q, the graph Link(u) has no cycles of length ≤ q, and consequently X ′

satisfies the T (q) condition.
Finally, every fan of type 2 is either a spur, a 0-shell, a 1-shell, or a pointed fan

with i ≥ q − 3. The first three instances are trivially spread out in X ′ and the
fourth contains a pointed fan with i = q − 3. Let F → X ′ be a pointed fan in X
with i = q − 3. If F is not spread out, then two of the sides along Q are sent to
identical sides in X ′ and in particular, two of the 2-cells in F are sent to identical
2-cells in X ′. Next, consider the preimage of Γ′ in F . The two 2-cells in F which
are sent to identical 2-cells in X ′ will contain preimages of the same vertex v, and
they will be connected in this preimage by a path of length at most 2(q− 4) edges.
Since F has minimal area, this path is sent to a closed immersed path in Γ′. This
shows that Γ′ contains a closed immersed cycle of length less than 2q, contradicting
our assumptions about Γ′. We can thus conclude that all minimal fans of type 2
are spread out in X ′. �

Lemma 10.4. Let Γ′ → Γ be a covering map and let X ′ be the corresponding
branched cover of X. If the preimages in Γ′ of ΓA and ΓD form a pair of edge-
disjoint Hamiltonian cycles in Γ′, then π1X

′ is incoherent.

Proof. From the orientation of the 1-cell of X, there is an induced orientation on
the 1-cells of X ′, and each 2-cell of X ′ is attached by a path of the form wx−1y−1z.
Consequently there is a homomorphism ψ : π1X

′ → Z induced by sending each pos-
itively oriented 1-cell to the positive generator of Z. The ascending and descending
links relative to this morse map are the circles which immerse to A and D. Since
the ascending and descending links are connected but not simply-connected, by
Theorem 9.2, kernel(ψ) is finitely generated but not finitely presented, and this
proves that π1X

′ is incoherent. �

Theorem 10.5. For every q, there exists a compact C(4)-T (q) complex X ′ with
local ratio 1 and an incoherent fundamental group. In addition, every minimal fan
of type 2 in X ′ is spread out in X ′.

Proof. By Lemma 10.3 and Lemma 10.4 it is sufficient to show that for each q, a 4-
regular bipartite graph with girth at least 2q and a pair of edge-disjoint Hamiltonian
cycles exists. To see this, note that given such a graph Γ′, there exists a covering
map Γ′ → Γ such that the preimage of ΓA is one of the Hamiltonian cycles and the
preimage of ΓD is the other.

We are extremely grateful to Nick Wormald [18] for explaining to us that a graph
fitting this description does indeed exist. The techniques involved are standard
within random graph theory and we will merely sketch the line of argument below.
Start with n distinguished blue vertices and n distiguished red vertices, and let
Ω denote the configuration space of all 4-regular bipartite multigraphs with two
distinguished edge-disjoint Hamiltonian cycles. Next make Ω a probability space
by endowing it with the uniform probability distribution. What Wormald can
show is that for a random configuration, the short cycle counts are asymptotically
independent Poisson. From this, it follows that for any fixed g, the probability
that the girth of a random configuration is at least g is asymptotically a (nonzero)
constant. Hence, such a configuration exists. �
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Finally, we note that a similar argument using bipartite p-regular graphs would
yield examples of incoherent C(p)-T (q) complexes with similar properties.

11. Fans of large type

The results up to this point have been derived using fans of type 2 or type 3.
In this section we investigate the behavior of fans of type k for arbitrary k. For
simplicity we consider only global ratios. Arguments using coefficients, such as
those used in Section 7, might be able to convert these results to ones which use
local ratios instead, but we have not pursued that possibility. Our main goal in
this section is to find the greatest upper bound on Global(X) which ensure that all
fans of type k will be perimeter reducing for some value of k using Lemma 6.1,
thus enabling us to apply Theorem 4.5 to conclude its fundamental group is locally
quasiconvex. For each value of k there is a bound which works. In this section
we calculate these values, and their limit. Since the results in this section use fans
of type k for arbitrarily large k, there are no compact 2-complexes in which all of
these fans are spread out. As a consequence, we only prove results for complexes
with residually finite fundamental groups. We begin with a rough description of
fans of type k and we refer the reader to [14] for a thorough development.

Definition 11.1 (Fans of type k). For each choice of p, q, and k satisfying the
Euclidean restrictions there is a collection of fans denoted by Fk

pq which is defined
recursively starting with small values of k. Since p and q are usually understood in
context, we usually call these fans of type k. For k = 1, 2, or 3, the fans of type k
have already been described in Example 2.6. The general procedure for producing
the next list of fans from the previous lists involves what we call determined fans.
Let F → D be a fan in a C(p)-T (q) disc diagram. The fan F is a fan of type Fk

pq

in D provided that either it is a spur, or it is a 0-shell, or it is determined by
a fan F ′ of type Fk−1

qp in the dual E of D. Rather than define determined fans
precisely, we illustrate the process in Figure 6. In this figure the dual diagrams
have been superimposed on the original diagrams. Illustrated from left to right are
a spur determining a 1-shell, a 2-shell determining a pointed fan, and a pointed fan
determining a broad fan.

Figure 6. Determined Fans

There is a close relationship between a F and F ′. In particular, the 2-cells of F
correspond with the 0-cells in the interior of the outer path of F ′ and under this
correspondence, 0-cells of valence j become j-shells. Iterating this relationship, we
can say quite a bit about the types of i-shells which arise in fans of type k. The
following is Lemma 7.12 of [14] and we have included it so that the reader has a
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quantitative feel for the types of 2-cells which arise in fans of type k. In particular,
note that any fan of type k is either a spur, 0-shell, or 1-shell, or else it is formed
entirely as the union of 2-shells, 3-shells and 4-shells.

Lemma 11.2 (Fan valences). Let D be a C(p)-T (q) diagram and let F be a fan of
type k in D where F is not a spur, 0-shell, or 1-shell. Let U be the 0-cells in the
interior of the outer path of F .

(1) If p ≥ 4, q ≥ 4, and k ≥ 0, then F is a 1-separated broad fan. That is, every
2-cell in F is a 2-shell or 3-shell, the first and last 2-cells are 2-shells, and there
do not exist consecutive 3-cells. In addition, every 0-cell in U has valence ≤ 3, the
first and last 0-cells in U have valence 2, and there do not exist consecutive 0-cells
in U with valence 3.

(2) If p = 3, q ≥ 6 and k is odd, then F is a 1-separated broad fan. That
is, every 2-cell in F is a 2-shell or 3-shell, the first two and last two 2-cells are
2-shells, and there do not exist consecutive 3-shells. In addition, every 0-cell in U
has valence ≤ 4, the first and last 0-cells have valence ≤ 3, and there do not exist
consecutive 0-cells in U with valence 4.

(3) If p ≥ 6, q = 3, and k is even, then every 2-cell in F is a 2-shell, 3-shell,
or 4-shell, the first and last 2-cell is a 2-shell or 3-shell, and there do not exist
consecutive 4-shells. In addition, every 0-cell in U has valence ≤ 3, the first two
and last two 0-cells in U have valence 2, and there do not exist consecutive 0-cells
in U with valence 3.

For perimeter calculations it will be useful to distinguish between two different
classes of fans of type k.

Definition 11.3 (Perpetual and transient fans of type k). The fans of type k that
are not spurs naturally split into two categories. The fans that are originally deter-
mined by a 0-shell or 1-shell are perpetual and those that are originally determined
by a 2-shell or 3-shell are transient. To make this precise we need to consider
sequences of fans Fj in diagrams Dj for j = 1, . . . , ` where for each j, Dj is the
dual of Dj+1 and Fj determines Fj+1. A fan of type k either arises from such a
sequence where ` ≤ k and F1 is a 0-shell or 1-shell, or ` = k and F1 is 2-shell or
3-shell. If a fan F` descends from a 0-shell or 1-shell then F` is a fan of type k for
arbitrarily large values of k and is thus called perpetual. On the other hand, if F`

is the descendant of a 2-shell or 3-shell then F` is a fan of type ` and not a fan of
any other type, and we thus call F` a transient fan of type k.

Notation 11.4 (Fj , Dj , and the number of i-shells). For the remainder of the
section we consider sequences of fans Fj in diagrams Dj , j ≥ 1, and suppose that
for each j, the diagram Dj is the dual of Dj+1 and the fan Fj determines the fan
Fj+1. To fix notation, let bj , cj , and dj denote the numbers of 2-shells, 3-shells,
and 4-shells in Fj for each j. Notice that if Dj is a C(p)-T (q) diagram then for
i < j, the diagram Di is either C(p)-T (q) or C(q)-T (p) depending on the parity
of i and j. Since we are interested in fans for fixed p and q our attention will be
focused on every other fan in such a sequence. In other words, we focus on either
the odd values of j, or on the even values.

The information in Lemma 11.2 can be translated into equations and inequalities
governing the numbers of 2-shells, 3-shells and 4-shells in a fan of type k, which we
present using Notation 11.4.
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Lemma 11.5 (Recursive relations). Let Fj be a fan in a C(p)-T (q) diagram that
is determined by the fan Fj−1 in its C(q)-T (p) dual. If p ≥ 4, q ≥ 4 then

bj ≥ (q − 3)bj−1 + (q − 4)cj−1, cj = bj−1 + cj−1 − 1, and dj = 0.

If p = 3 and q ≥ 6 then

bj ≥ (q − 3)bj−1 + (q − 4)cj−1 + (q − 5)dj−1,

cj = bj−1 + cj−1 + dj−1 − 1, and dj = 0.

If p ≥ 6 and q = 3, then

bj ≥ 0, cj + 2dj = bj−1 + cj−1 − 1, and 0 ≤ dj ≤ cj−1.

Proof. All of inequalities follow easily from Lemma 11.2. In the first two cases there
are no 4-shells in Fj since the outer path of E has no valence 4 0-cells in its interior.
The number of 3-shells in Fj is one less than the total number of 2-cells in Fj−1.
The number of 2-shells in Fj equals the number of valence 2 0-cells in the interior
of the outer path of Fj−1 and each i-shell in Fj−1 contributes at least q − (i + 1)
such 0-cells.

In the third case, the number of 2-shells is clearly nonnegative, and each valence 4
0-cell in the outer path of Fj−1 is incident with a unique 3-shell of Fj−1. This
explains the first and last inequality. In the middle equation, the righthand side
is one less than the number of 2-cells in Fj−1 and the lefthand side counts the
high valence 2-cells of Fj . To see the correspondence, identify each 2-cell in Fj−1

with the leftmost vertex of the outer path that is contained in its boundary cycle
and then, if possible, identify this vertex with the corresponding 2-cell in Fj . The
leftmost 2-cell of Fj−1 is the only one for which this identification is not possible.
Moreover, each i-shell of Fj corresponds to a vertex of valence i in Fj−1 and hence
it is identified with exactly (i− 1) 2-cells of Fj−1 as claimed. �

Remark 11.6 (Solutions and fans). We note that if bj−1, cj−1 and dj−1 have
values which can be realized by a fan Fj−1 in a C(q)-T (p)-diagram, then every
possible triple (bj , cj , dj) which satisfy the appropriate system of equations and
inequalities can be realized by a fan Fj in a C(p)-T (q)-diagram. In fact, every
solution can be realized simply by varying the number of sides possessed by the
2-cells in Fj−1. This means that if we are looking for a fan Fk of type k where the

ratio bk+ck+dk

bk+2ck+3dk+1 is as small as possible, we can forget about the fans themselves
and focus on the iterative solutions to these systems.

We begin by analyzing the case where p and q are both at least 4 since dj

is always 0 in this case, and we start with a change of variables to simplify the
system further. Continuing with the notation of Lemma 11.5, let Fj be a fan in
a C(p)-T (q) diagram which is part of a sequence of fans and diagrams and define
Bj = bj − 1 and Cj = cj +1. When we rewrite our recursion in these new variables
the constant terms disappear. Thus we find that Bj ≥ (q − 3)Bj−1 + (q − 4)Cj−1,
that Cj = Bj−1 + Cj−1 and that the fraction we are trying to minimize is

(6)
Bj + Cj

Bj + 2Cj

=

Bj

Cj
+ 1

Bj

Cj
+ 2

=
1 +

Cj

Bj

1 + 2
Cj

Bj
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so long as Bj , Cj > 0. It is therefore sufficient to minimize the ratio Bj/Cj , or
equivalently, to maximize the ratio Cj/Bj . Define matrices

Mp =

[
(p− 3) (p− 4)

1 1

]
Mq =

[
(q − 3) (q − 4)

1 1

]

We can now view this as a geometric problem in the Euclidean plane. Plot the
points (Bi, Ci) for i = 1, . . . , j, and think of them as column vectors. We wish to
maximize the slope of the line from the origin to the final point (Bj , Cj). For each
i ≤ j, the point (Bi, Ci) is related to the previous point as follows. First apply a
linear transformation to the point (Bi−1, Ci−1) (i.e. left multiply the column vector[
Bi−1

Ci−1

]
by the matrix Mq or Mp) and then increase the x-coordinate if we wish.

The result is a point (Bi, Ci). Recall that p and q switch roles in the dual dia-
gram which is why both matrices arise. Moreover, which matrix is used alternates
depending on the parity of i. Since Mp and Mq are both matrices with nonnega-
tive entries and positive determinant, the first quadrant is mapped into itself in an
orientation-preserving way. Thus increasing the x-coordinate at any point in the
process will result in a lower value for the final slope. In particular, the maximum
slope achieved by a fan Fj is found by applying MqMp to the point (Bj−2, Cj−2)
arising from the fan Fj−2 that achieves the maximum slope for j−2. Because of the
dynamincs of the linear transformation MqMp on the plane (in particular, because
it has two distinct real eigenvalues and maps the first quadrant properly into itself),
the maximal slope of a fan Fj when j is large will closely approximate the slope of
the eigenvector corresponding to the largest positive eigenvalue of MqMp. Because
it simplifies later equations, we will calculate the reciprocal of this slope which we
call zpq. It is now routine to calculate zpq by solving

MqMp

[
zpq

1

]
=

[
((q − 3)(p− 2) − 1)zpq + (q − 3)(p− 3) − 1

(p− 2)zpq + (p− 3)

]
= λ

[
zpq

1

]

Eliminating λ and simplifying we find that zpq satisfies the equation

(p− 2)z2
pq − (p− 2)(q − 4)zpq −

(
(p− 3)(q − 3) − 1

)
= 0

One explicit form for the positive solution is

(7) zpq =
1

2

[
(q − 4) + (q − 2)

√
1 − 4

(p− 2)(q − 2)

]

In other words, zpq is the average of (q − 4) and a number less than (q − 2). This
proves the following lemma. Keep in mind that ζ and zpq represent the reciprocals
of slopes so that slopes larger but arbitrarily close to the asymptotic slope result in
reciprocals which are less than but arbitrarily close to zpq.

Lemma 11.7. Given p, q ≥ 4 and a real number ζ < zpq as defined in Equation 7,
there exists a number k such that for every transient fan F of type k in a C(p)-T (q)
diagram, the inequality ζC < B holds, where (B + 1) is the number of 2-shells and
(C − 1) is the number of 3-shells in F .

Notice that the lemma is decidedly false for ζ = zpq since a 2-shell leads to
coordinates (B1, C1) = (0, 1) which is clearly above the line through the origin with
slope 1/zpq. As a consequence, the fans derived from it which have the largest
possible slope also lie above this line (since the matrix MqMp is an orientation
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preserving linear transformation which fixes this line). We next prove a similar
result for fans which are ultimately derived from 0-shells and 1-shells.

Lemma 11.8. Fix p, q ≥ 4 and define zpq as in Equation 7. For every perpetual
fan Fj in a C(p)-T (q) diagram with j ≥ 2, the inequality zpqC < B holds, where
(B + 1) is the number of 2-shells and (C − 1) is the number of 3-shells in Fj.

Proof. We continue with the notation established above. Because MpMq is an
orientation preserving linear transformation which fixes the line through the origin
with slope 1/zpq, it is sufficient to show that some earlier point (Bi, Ci) lies below
this line. This is because once one of these points is below the line, all of the later
points must also lie below the line. There are two cases depending on whether j is
even or odd.

If j is even, then consider the fan F2. Since F1 is either a 0-shell or a 1-shell, F2

is a pointed fan with i ≥ q − 2. Thus b2 ≥ q − 2 and c2 = 0, and the largest slope
occurs when b2 = q − 2. This corresponds to the point (B2, C2) = (q − 3, 1). From
the description of zpq as an average of (q − 4) and a number less than (q − 2), it is
clear that B2/C2 = q − 3 > zpq, which completes the proof when j is even.

When j is odd, we consider the fan F3 and the inequalities are slightly more
delicate. Since F1 is a 0-shell or a 1-shell, F2 is a pointed fan in a C(q)-T (p)
diagram with i ≥ p − 2. We cannot directly use this information since F2 is a
fan in a C(q)-T (p) diagram. As we argued above, the fan F3 will have the largest
possible slope when F2 has the largest possible slope. This F2 has coordinates
(B2, C2) = (p− 3, 1) and multiplying by Mq yields the best coordinates for the fan
F3. Thus (B3, C3) =

(
(q− 3)(p− 3) + (q− 4), (p− 3) + 1

)
. It only remains to show

that this point lies below the fixed line. Since 1− 4x < 1− 4x+ x2 when x > 0, we
know that

√
1 − 4x < 1 − 2x. Thus

zpq <
1

2

[
(q − 4) + (q − 2)

(
1 − 2

(p− 2)(q − 2)

)]
= (q − 3) − 1

p− 2
=
B3

C3

and this completes the proof when j is odd. �

The following is our main result for the case p, q ≥ 4. Note that the case
p = q = 4 is excluded since the hyperbolic restrictions are necessary in order to
appeal to Theorem 4.5.

Theorem 11.9. Let X be a compact weighted C(p)-T (q)-complex with a residu-
ally finite fundamental group and p ≥ 4, q > 4 or p > 4, q ≥ 4. Then π1X is

locally quasiconvex whenever Global(X) <
zpq+1
zpq+2 where zpq is the value defined in

Equation 7.

Proof. First note that the function f(x) = x+1
x+2 is monotonically increasing for

x > 0. Thus, if Global(X) <
zpq+1
zpq+2 then it is also less than ζ+1

ζ+2 for some ζ < zpq.

It then follows from Lemma 11.7 that we can choose k large enough so that all
transient fans F of type k satisfy ζC < B, where b = B + 1 is the number of
2-shells in F and c = C − 1 is the number of 3-shells. In particular,

b+ c

b+ 2c+ 1
=

B + C

B + 2C
>
ζ + 1

ζ + 2
> Global(X)

so that by Lemma 6.1 these fans are perimeter-reducing. Next, 0-shells and 1-shells
are perimeter reducing since Global(X) < 1. The only other fans of type k are
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perpetual fans and these satisfy zpqC < B by Lemma 11.8 and the same sequence
of inequalities (with ζ replaced by zpq) show that these are also perimeter-reducing.
Therefore every fan of type k is perimeter-reducing and the result follows from
Theorem 4.5. �

We now shift our attention to fans in C(p)-T (3) and C(3)-T (q) diagrams. Since
both types of diagrams are involved in the inductive definition of fans of type k,
it makes sense to eliminate q and to discuss C(3)-T (p) diagrams instead. As men-
tioned above, the recursion here is slightly more complicated. We begin by estab-
lishing some notation along with a change of variables in order to eliminate the
constants from the inequalities. We will need the following matrices:

Np =

[
(p− 4) (p− 5)

1 1

]
N ′ =

[
1 −1
0 1

]

Following the notation of Lemma 11.5, let Fj be a fan in a diagram Dj which
satisfies C(p)-T (3) when j is odd and C(3)-T (p) when j is even. Moreover, suppose
that we have sequence of such fans and diagrams in which each fan determines the
next fan and the dual of each diagram is the previous one. As usual, let bj , cj ,
and dj denote the numbers of 2-shells, 3-shells, and 4-shells in Fj , respectively. By
Lemma 11.5, we already know that dj is 0 when j is even. When j is even we define
Bj = bj − 1 and Cj = cj +1 (and Dj = dj = 0) as before, and when j is odd we set
Bj = bj , Cj = cj − 1 and Dj = dj + 1. (We apologize for using Dj to denote both
the disc diagram containing Fj and a variant of the number of 4-shells in Fj .)

When j is even (and Fj is a fan in a C(3)-T (p) diagram), the ratio we wish to

minimize is
bj+cj

bj+2cj+1 =
Bj+Cj

Bj+2Cj
. As in Equation 6, minimizing this is equivalent to

minimizing Bj/Cj or maximizing Cj/Bj . In particular, it is clear that the rewritten
relation Bj ≥ (p−3)Bj−1 +(p−4)Cj−1 +(p−5)Dj−1 should be an equality for this
to be achieved. Thus, when trying to find the fan Fj with j odd that minimizes
this ratio we can assume that

Bj

Cj

=
(p− 3)Bj−1 + (p− 4)Cj−1 + (p− 5)Dj−1

Bj−1 + Cj−1 +Dj−1

Notice that we can view Bj/Cj as a weighted average of (p− 3), (p− 4) and (p− 5)
with Bj−1, Cj−1 and Dj−1 over their sum providing the nonnegative weights. The
values of Bj−1, Cj−1 and Dj−1 are in turn dependent on Bj−2 and Cj−2 with some
choices involved, namely Bj−1 ≥ 0 and 0 ≤ Dj−1 ≤ Cj−2. If we are trying to
minimize Bj/Cj then we should clearly choose Bj−1 = 0 since this minimizes the
weight given to the largest number. Similarly, Dj−1 should be as large as possible
since this maximizes the weight given the smallest number. Thus, when minimizing
Bj/Cj , we have Bj−1 = 0, Cj−1 = Bj−2 − Cj−2 and Dj−1 = Cj−2. In particular,
we have [

Bj

Cj

]
= Np

[
Cj−1

Dj−1

]
= NpN

′

[
Bj−2

Cj−2

]

The analysis now proceeds as before. The matrix NpN
′ is an orientation preserving

linear transformation with two distinct real eigenvalues. Under iteration, the slope
of the line from the origin through the point (Bj , Cj) will closely approximate the
slope of the eigenvector corresponding to the largest eigenvalue of NpN

′. Because it
makes later equations simpler, we again calculate the reciprocal of this slope which
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we call z3p. We calculate z3p by solving

NpN
′

[
z3p

1

]
=

[
(p− 4)z3p − 1

z3p

]
= λ

[
z3p

1

]

Eliminating λ we find that z3p satisfies the equation z2
3p − (p − 4)z3p + 1 = 0. Of

the two possible solutions, the one corresponding to the largest eigenvalue is

(8) z3p =
1

2

[
(p− 4) +

√
(p− 4)2 − 4

]
.

This proves the following lemma.

Lemma 11.10. Given p ≥ 6 and a real number ζ < z3p as defined in Equation 8,
there exists an even number k such that for every transient fan F of type k in a
C(3)-T (p) diagram, the inequality ζC < B holds, where (B + 1) is the number of
2-shells and (C − 1) is the number of 3-shells in F .

Notice that the lemma is false for ζ = z3p since a pointed fan with i = p − 4
leads to coordinates (B2, C2) = (p−5, 1) which is above the line through the origin
with slope 1/z3p. To see this, note that (p − 6)2 < (p − 6)(p − 2) = (p − 4)2 − 4,

so (p − 6) <
√

(p− 4)2 − 4, 2p − 10 < p − 4 +
√

(p− 4)2 − 4, and p − 5 < z3p.
Consequencely, the fans derived from this which have the largest possible slope
also lie above this line (since the matrix NpN

′ is an orientation preserving linear
transformation which fixes the line). Conversely, we now show that the points
corresponding to perpetual fans lie below this line.

Lemma 11.11. Fix p ≥ 6 and define z3p as in Equation 8. For every fan Fj in a
C(3)-T (p) diagram, j ≥ 2 and even, which is ultimately derived from a 0-shell or
a 1-shell, the inequality z3pC < B holds, where b = B + 1 is the number of 2-shells
and c = C − 1 is the number of 3-shells in Fj.

Proof. Because NpN
′ is an orientation preserving linear transformation which fixes

the line through the origin with slope 1/z3p, it is sufficient to show that some
earlier point (Bi, Ci) lies below this line. Consider the fan F2. Since F1 is either
a 0-shell or a 1-shell, F2 is a pointed fan with i ≥ q − 2. Thus b2 ≥ q − 2 and
c2 = 0, and the largest slope occurs when b2 = q − 2. This corresponds to the
point (B2, C2) = (q− 3, 1). On the other hand, by Equation 8, z3p is the average of
(p− 4) and a number less than (p− 4), and thus less than (p− 3). In other words,
B2/C2 = q − 3 > z3p which completes the proof. �

The proof of our main theorem for C(3)-T (p) complexes is identical to the proof
of Theorem 11.9, except for the obvious substitutions, and will be omitted. Notice
that p must be strictly greater than 6 in order to satisfy the hyperbolic restrictions.

Theorem 11.12. Let X be a compact weighted C(3)-T (p)-complex with a residually
finite fundamental group and p > 6. Then π1X is locally quasiconvex whenever

Global(X) <
z3p+1
z3p+2 where z3p is the value defined in Equation 8.

Finally, we consider the situation of a fan Fj in a C(p)-T (3) diagram with j

odd. Because we are trying to minimize the ratio
bj+cj+dj

bj+2cj+3dj+1 , we can assume that

bj = 0. Thus, the ratio we are focusing on is

cj + dj

2cj + 3dj + 1
=

Cj +Dj

2Cj + 3Dj

=
1 +

Dj

Cj

2 + 3
Dj

Cj

=

Cj

Dj
+ 1

2
Cj

Dj
+ 3
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so long as Cj , Dj > 0. It is therefore sufficient to minimize the ratio Cj/Dj or,
equivalently, maximize the ratio Dj/Cj . In particular, this means that Dj should
be as large as possible, i.e. Dj = Cj−1. Based on the recurrence relations we have:

Cj

Dj

=
Bj−1 − Cj−1

Cj−1
=
Bj−1

Cj−1
− 1.

Thus Cj/Dj is minimized exactly when Bj−1/Cj−1 is minimized. As discussed
above this occurs when Bj−2 = 0 and the matrix Np is used to convert Cj−2 and
Dj−2 into Bj−1 and Cj−1. Putting this altogether we find that

[
Cj

Dj

]
= N ′Np

[
Cj−2

Dj−2

]
.

If we view (Cj , Dj) as a point in the plane, then the analysis is as before. The
matrix N ′Np is an orientation preserving linear transformation with distinct real
eigenvalues. Under iteration, the slope of the line from the origin through the point
(Cj , Dj) will closely approximate the slope of the eigenvector corresponding to the
largest eigenvalue of N ′Np. We calculate the reciprocal of this slope, which we call
zp3, by solving

N ′Np

[
zp3

1

]
=

[
(p− 5)zp3 + (p− 6)

zp3 + 1

]
= λ

[
zp3

1

]

Eliminating λ we find that zp3 satisfies the equation z2
p3 − (p− 6)zp3 − (p− 6) = 0.

The positive solution is

(9) zp3 =
1

2

[
(p− 6) +

√
(p− 6)2 + 4(p− 6)

]

This proves the following lemma:

Lemma 11.13. Given p ≥ 6 and a real number ζ < zp3 as defined in Equation 9,
there exists an odd number k such that for every transient fan F of type k in a
C(p)-T (3) diagram, the inequality ζD < C holds, where c = C +1 is the number of
3-shells and d = D − 1 is the number of 4-shells in F .

As expected, this lemma is false for ζ = zp3 since a 3-shell leads to coordinates
(C1, D1) = (0, 1) which is clearly above the line through the origin with slope
1/zp3. Consequently, the fans derived from this 3-shell with the largest possible
slope also lie above this line (since the matrix N ′Np is an orientation preserving
linear transformation which fixes the line). Conversely, we now show that the points
corresponding to perpetual fans lie below this line.

Lemma 11.14. Fix p ≥ 6 and define zp3 as in Equation 9. For every perpetual
fan Fj in a C(p)-T (3) diagram with j ≥ 1 and odd, which the inequality zp3D < C
holds, where c = C + 1 is the number of 3-shells and d = D − 1 is the number of
4-shells in F .

Proof. Because N ′Np is an orientation preserving linear transformation which fixes
the line through the origin with slope 1/zp3, it is sufficient to show that some earlier
point (Ci, Di) lies below this line. Consider the fan F3. Since F1 is either a 0-shell
or a 1-shell, the fan F2 is a pointed fan with i ≥ p − 2. As we argued above, the
fan F3 will have the largest possible slope when F2 has the largest possible slope.
This F2 has coordinates (p−3, 1) and multiplying by N ′ yields the best coordinates
for the F3. Thus (C3, D3) = (p − 4, 1). It only remains to show that this point
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lies below the fixed line, but this is clear since (p − 2) >
√

(p− 6)(p− 2) so that

2p− 8 > (p− 6) +
√

(p− 6)(p− 2) and p− 4 > zp3. �

The following is our main theorem for C(p)-T (3) complexes.

Theorem 11.15. Let X be a compact weighted C(p)-T (3)-complex with a residually
finite fundamental group and p > 6. Then π1X is locally quasiconvex whenever

Global(X) <
zp3+1
2zpq+3 where zp3 is the value defined in Equation 9.

Proof. First note that the function f(x) = x+1
2x+3 is monotonically increasing for

x > 0. Thus, if Global(X) <
zp3+1
2zp3+3 then it is also less than ζ+1

2ζ+3 for some ζ < zp3.

It then follows from Lemma 11.13 that we can choose k large enough so that all
transient fans F of type k satisfy ζD < C, where c = C+1 is the number of 3-shells
in F and d = D − 1 is the number of 4-shells. In particular,

b+ c+ d

b+ 2c+ 3d+ 1
≥ C +D

2C + 3D
>

ζ + 1

2ζ + 3
> Global(X)

so that by Lemma 6.1 these fans are perimeter-reducing. Next, 0-shells and 1-shells
are perimeter reducing since Global(X) < 1. The only other fans of type k are
perpetual and thus satisfy zpqD < C by Lemma 11.14 and the same sequence of
inequalities (with ζ replaced by zp3) show that these are also perimeter-reducing.
Therefore every fan of type k is perimeter-reducing and the result follows from
Theorem 4.5. �

Finally, we conclude the section by summarizing the bounds from Theorems 11.9,
11.12 and 11.15 in a table for small values of p and q and we then compare these
results with the earlier results using only fans of type 2 or 3. Note that the decimals
in Table 1 have been truncated rather than rounded so if X is a C(p)-T (q) complex
with π1X residually finite, and Global(X) < r where r is the entry in the p-th row
and q-th column, then π1X is locally quasiconvex.

3 4 5 6 7 8 9 ∞
3 - - - .666 .783 .825 .852 1
4 - .500 .702 .773 .816 .844 .865 1
5 - .612 .723 .784 .822 .849 .869 1
6 .333 .630 .731 .788 .825 .851 .870 1
7 .419 .639 .735 .791 .827 .852 .871 1
8 .440 .644 .738 .792 .828 .853 .872 1
9 .452 .648 .740 .793 .829 .854 .872 1
∞ 1/2 2/3 3/4 4/5 5/6 6/7 7/8 1

Table 1. Bounds on Global(X) which imply local quasiconvexity
for small values of p and q.

For p = q = 5, Theorem 11.9 provides local quasiconvexity when Global(X) <
.723, whereas Theorem 7.9 gives local quasiconvexity only when Global(X) <
5/11 ∼ .454. For p = 3, q = 7, Theorem 11.12 provides local quasiconvexity
when Global(X) < .783, whereas Theorem 7.8 gives local quasiconvexity only when
Global(X) < .75 For p = 7, q = 3, Theorem 11.15 provides local quasiconvexity
when Global(X) < .419 whereas Theorem 7.9 gives local quasiconvexity only when
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Global(X) < .40. In each case, the theorems in this section are improvements, but
the improvement is not always large. The main benefits arise when both p and q
are large.

12. Coxeter groups

In this final section we give simple criteria for the coherence and local quasicon-
vexity of Coxeter groups which depend only on the exponents and the number of
generators. Although these results will use only the easier versions of the previous
results, they illustrate that a similar type of behavior is present in the realm of
Coxeter groups. Recall that a Coxeter group is a group with a presentation of the
form

〈a1, . . . , ar | a2
i , (aiaj)

mij (i 6= j) 〉
where the mij are integers greater than 1. In the proof we will need the following
basic facts about Coxeter presentations. See [5] and [10] for details.

Lemma 12.1. Let 〈a1, . . . , ar | a2
i , (aiaj)

mij (i 6= j)〉 be a Coxeter group. In this
group the element ai has order 2 for all i, the element aiaj has order mij for all
i 6= j, and the group itself is virtually torsion-free and residually finite.

Our main result on Coxeter groups is the following.

Theorem 12.2. The Coxeter group 〈a1, . . . , ar | a2
i , (aiaj)

mij (i 6= j)〉 is coherent
provided mij ≥ r for all i 6= j. Similarly, if mij > r for all i 6= j, then the group is
locally quasiconvex.

Proof. Let X be the standard 2-complex of the presentation. By Lemma 12.1 there
is a finite group G and a map π1X → G such that for each i, the image of ai has

order 2, and for each i, j, the image of aiaj has order mij . Let X̂ denote the cover

of X corresponding to the kernel of this quotient. We now form a 2-complex X

which is a quotient X̂ as follows. For each i, j and for each lift to X̂ of the path
(aiaj)

mij we identify the mij 2-cells attached along this path. Then, for each i and

for each lift of the path a2
i to X̂, we identify the two 2-cells attached along this

path, and then retract the resulting bigon to one of its 1-cells. Finally, notice that

neither of these operations changes the fundamental group, so that π1X̂ ∼= π1X.
Let m be the minimum of the mij . When 2 ≥ m ≥ r, the theorem is trivial,

so assume that m ≥ 3. Since all pieces in X are of length 1, X satisfies C(2m)-
T (3). It will be sufficient to use the unit perimeter. Since each generator ai of π1X
occurs in at most r − 1 relators (other than a2

i = 1), every 1-cell e in X satisfies
P(e) ≤ r − 1 ≤ m − 1. Since, in addition, the weight of each 2-cell is 2mij ≥ 2m,
the global ratio of X is at most m−1

2m
. For m = 3, the global ratio is bounded

above by 1
3 and π1X is coherent by Theorem 5.3, so assume m > 3. In this case

we will use Theorem 7.9, which is applicable since p ≥ 8, q = 3, and k = 3 satisfy
the hyperbolic restrictions, and since π1X is residually finite by Lemma 12.1. In
particular, it would be sufficient to show that

Global(X) ≤ m− 1

2m
<

(2m) − 5

2(2m) − 9
.

The first inequality was established above, and the second inequality is true if and
only if m > 3 as is easy to verify. Finally, local quasiconvexity is trivial for m ≤ 3,
and it follows by the exact same argument (using Theorem 7.9) for m > 3. �
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The theorem proves that the group 〈a, b, c | a2, b2, c2, (ab)x, (ac)y, (bc)z〉 will be
coherent whenever x, y, z ≥ 2 and locally quasiconvex whenever x, y, z > 2. A 4-
generator Coxeter group will be coherent provided that all exponents in the defining
relations are at least 3. On the other hand, not every Coxeter group is coherent.
The group F2 is an index 2 subgroup of the Coxeter group G = 〈a, b, c | a2, b2, c2〉,
so F2 × F2 is a subgroup of G×G (which is also a Coxeter group). Since F2 × F2

is incoherent, the group G×G is incoherent as well.
Misha Kapovich [11] has proposed the following example where all exponents are

≥ 3: Let Q be the orbihedron whose underlying space is a 3-dimensional hyperbolic
cube whose dihedral angles are π

3 , and all of whose faces are reflectors. Then π1Q
is a Coxeter group all of whose exponents are 3 or ∞. The defining graph of the
presentation for π1Q corresponds to an octahedron, where each 0-cell corresponds
to a generator of order 2 and the product of two generators has exponent 3 provided
they are connected by a 1-cell.

This Q has a finite cover which fibers as a surface S bundled over the circle,
where π1S is finitely generated. The reason that the orbifold Q virtually fibers is
because it has a finite cover that covers the figure-8 knot complement, which is
well-known to fiber. To see this, observe that Q can be subdivided into five ideal

tetrahedrons with dihedral angles π
3 . Thus, Q̃ is tessellated in the same way as

the universal cover of the figure-8 knot complement with its usual subdivision by
ideal tetrahedrons. Consequently, π1Q and the fundamental group of the figure-8
knot complement are finite index subgroups of the automorphism group of this
tessellation and so their intersection is a finite index subgroup in both. We are
grateful to Nathan Dunfield for this explanation.

Let C denote the suborbihedron consisting of a square which cutsQ in half. Since
Q virtually fibers, π1S ∩ π1Q is infinitely generated. Now if we form the double
D = Q ∪C=C′ Q′ then π1D is still a Coxeter group all of whose exponents are 3
or ∞. However, since its second homology is infinitely generated, the subgroup
〈π1S, π1S

′〉 is not finitely presented and so the group π1D is incoherent.
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