Log Gaussian Cox Processes

Chi Group Meeting February 23, 2016

- Typical motivating application
- Introduction to LGCP model
- Brief overview of inference
- Applications in my work

... just getting started with this...

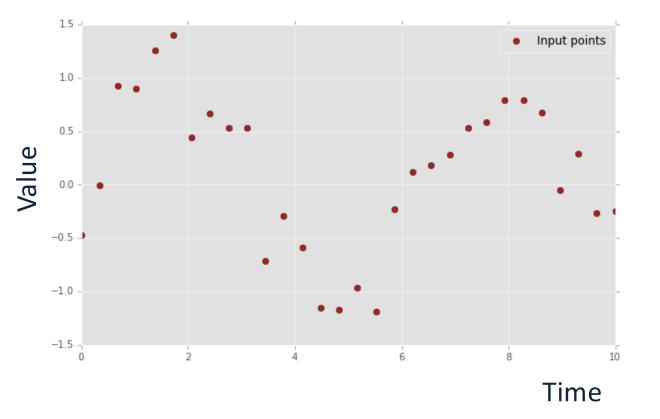
Motivation



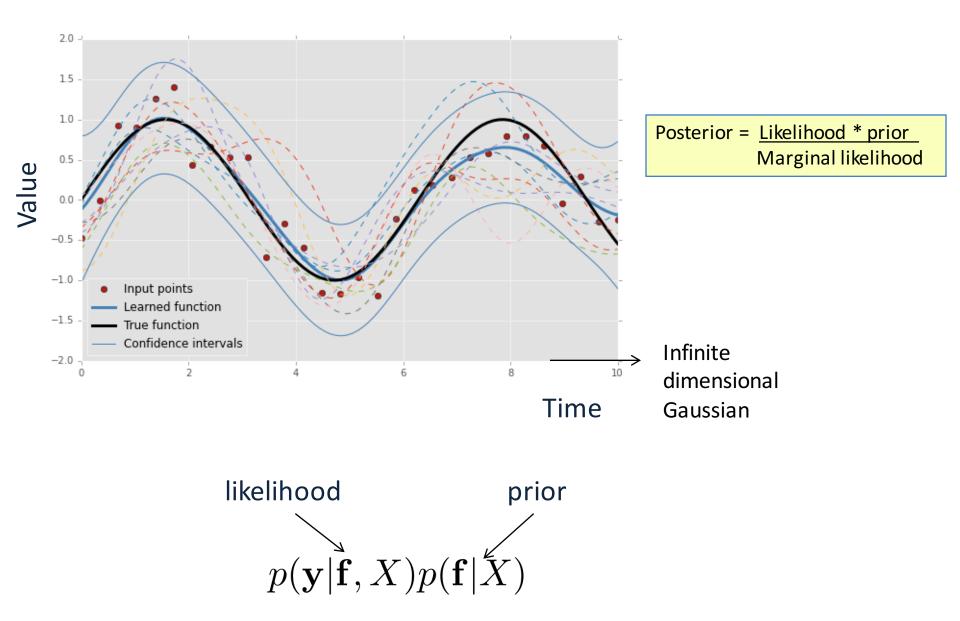
Image: Lloyd, et al. 2015. ICML.

- Typical motivating application
- Introduction to LGCP model
- Brief overview of inference
- Applications in my work

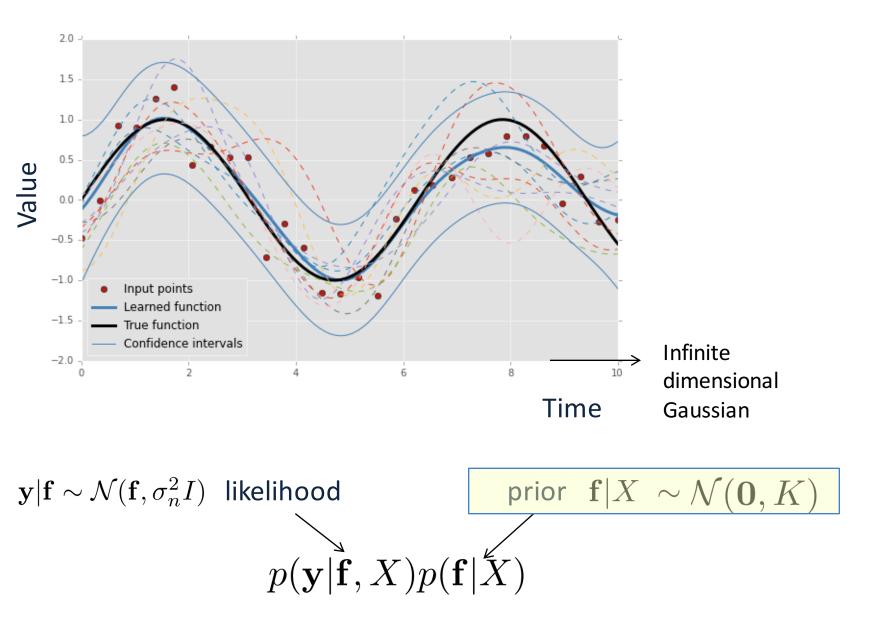
What are Gaussian processes?



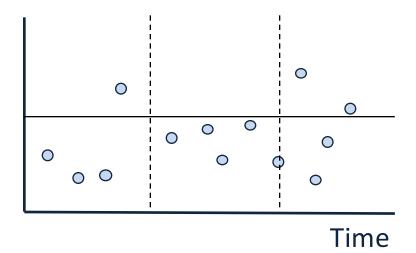
What are Gaussian processes?



What are Gaussian processes?

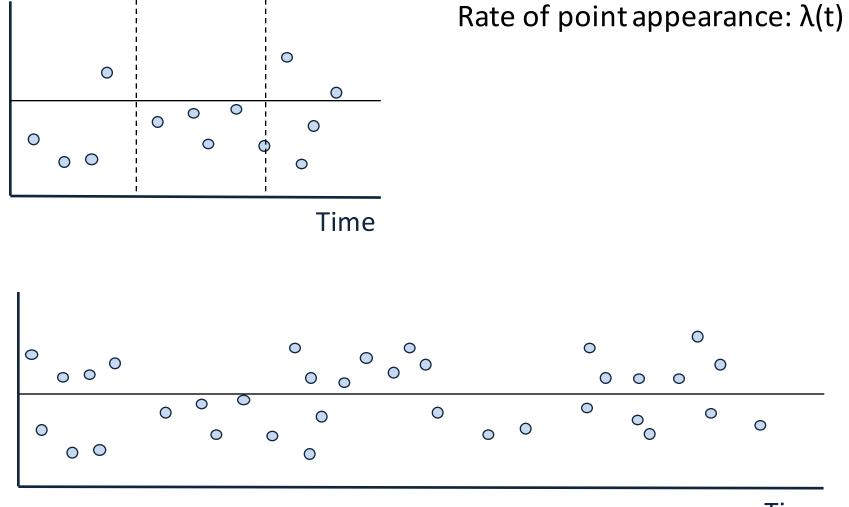


What is a Poisson process?

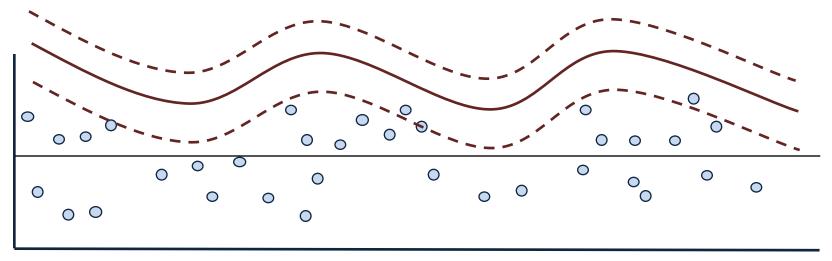


Rate of point appearance: $\lambda(t)$

What is a Poisson process?



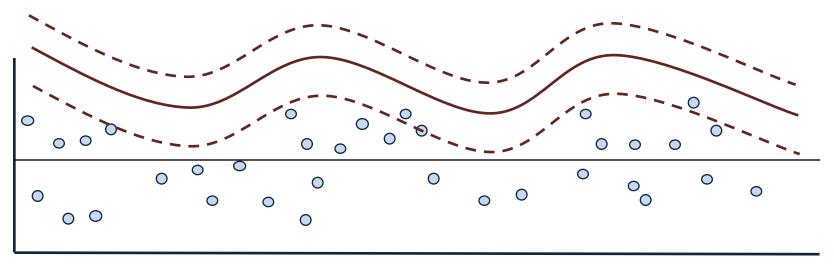
- ... doubly stochastic Poisson process
 - ... Gaussian process modulated Poisson process
 - ... sigmoidal Gaussian Cox process



... doubly stochastic Poisson process

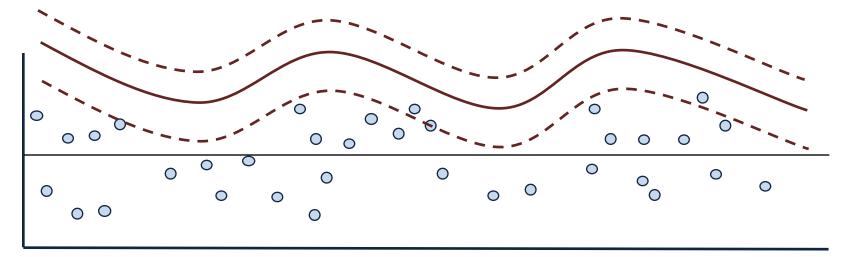
- ... Gaussian process modulated Poisson process
 - ... sigmoidal Gaussian Cox process

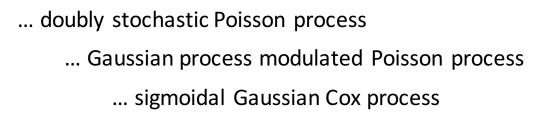
Cox process = inhomogeneous Poisson process with stochastic intensity



... doubly stochastic Poisson process ... Gaussian process modulated Poisson process ... sigmoidal Gaussian Cox process Cox process = inhomogeneous Poisson process with stochastic intensity

 $\begin{aligned} \mathbf{y} &| \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma_n^2 I) \\ \mathbf{y}_i &| f(s_i) \sim \text{Poisson}\left(\exp[f(s_i)] \right) \end{aligned}$



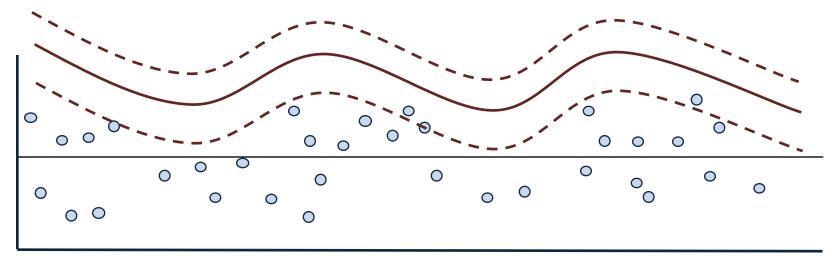


 $\begin{aligned} \mathbf{y} &| \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma_n^2 I) \\ \mathbf{y}_i &| f(s_i) \sim \text{Poisson}\left(\exp[f(s_i)] \right) \end{aligned}$

Cox process = inhomogeneous Poisson process with stochastic intensity

Always need a positive intensity, so ...

- Take exponential
- Sigmoid
- Square

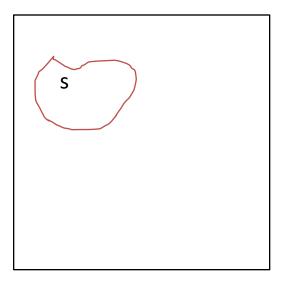


- Typical motivating application
- Introduction to LGCP model
- Brief overview of inference
- Applications in my work

More model specifications...

Number of points inside a given spacetime region:

$$y_S|\lambda(s) \sim \text{Poisson}\left(\int_{s \in S} \lambda(s) \ ds\right)$$



Number of points inside a given spacetime region:

$$y_S|\lambda(s) \sim \text{Poisson}\left(\int_{s \in S} \lambda(s) \ ds\right)$$

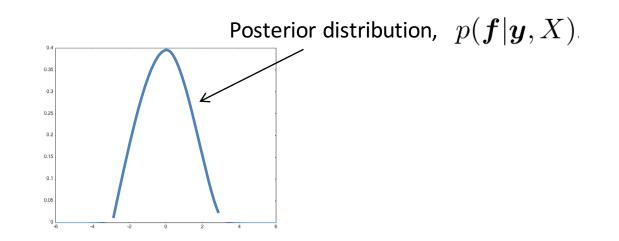
Simplify by introducing a spatial grid,

 y_i = count of points inside grid cell i $y_i | f(s_i) \sim \text{Poisson} \left(\exp[f(s_i)] \right)$

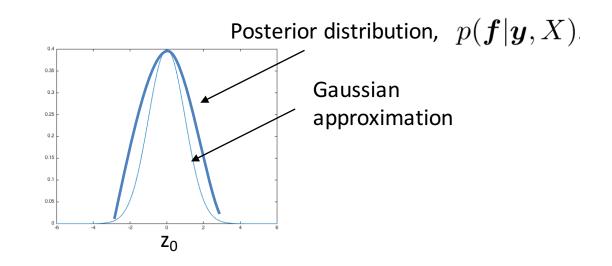
 $f(s) \sim \mathcal{GP}(\mu(s), k_{\theta}(\cdot, \cdot))$

i		

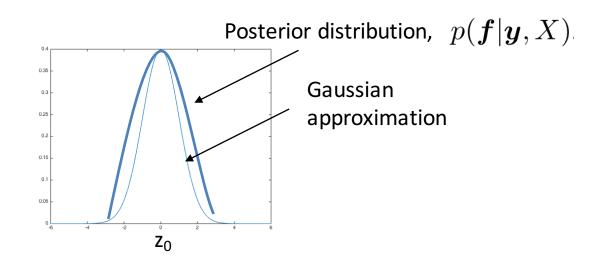
Laplace approximation



Laplace approximation



Laplace approximation



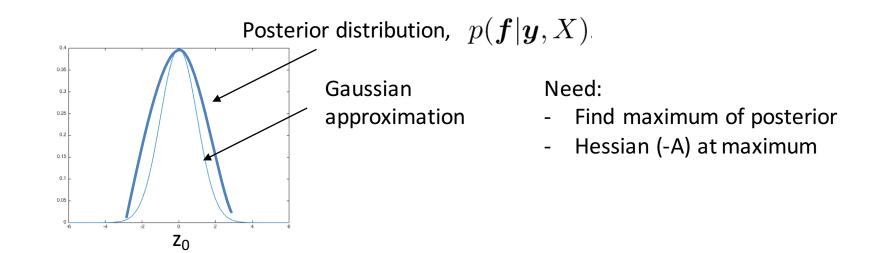
If assume a Normal centered at x_{0} ,

and take Taylor series expansion around x_0 ,

math works out to show that Gaussian approximation of distribution is:

posterior = $\mathcal{N}(\mathbf{z}|\mathbf{z}_0, \mathbf{A}^{-1})$

Laplace approximation



If assume a Normal centered at $x_{0,}$

and take Taylor series expansion around x_0 ,

math works out to show that Gaussian approximation of distribution is:

posterior = $\mathcal{N}(\mathbf{z}|\mathbf{z}_0, \mathbf{A}^{-1})$

Laplace approximation + Kronecker methods

Can decompose GP kernel as a product of covariance matrices (because on grid)

$$K = \tilde{K}_1 \otimes \cdots \otimes K_D.$$

Need to do lots of inversions and logdeterminants when doing GP regression ↓ Kronecker methods can speed this up quite a bit

Variational Bayes

No grid required, but do need inducing points (...which can best be set on a rectangular grid)

[Lloyd, et al. 2015. "Variational inference for Gaussian process modulated Poisson processes" ICML.]

Sampling

Metropolis Hastings x 2 Hamiltonian Monte Carlo x 2

[Adams, et al. 2009. "Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities." ICML.]

- Typical motivating applications
- Introduction to LGCP model
- Brief overview of inference
- Applications in my work

References of interest

	Transformation	Inference	Notes
Adams, et al. 2009. "Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities." ICML.	Sigmoid function	Multiple sampling schemes	
Flaxman, et al. 2015. "Fast Kronecker inference in Gaussian processes with non-Gaussian likelihoods." ICML.	Exponential	Laplace approximation	Implemented in GPML: http://www.cs.cmu.e du/~andrewgw/patte rn/
Gunter, et al. 2014. "Efficient Bayesian nonarametric modelling of structured point processes." UAI.	Sigmoid function	Many sampling schemes	Multiple realizations from latent LCGP
Lloyd, et al. 2015. "Variational inference for Gaussian process modulated Poisson processes" ICML.	Square	Variational Bayes	

That's all...