Exponential Models

Clues in the word problems tell you which formula to use. If there's no mention of compounding, use a growth or decay model. If your interest is compounded, check for the word continuous. That's your clue to use the "Pert" Formula.

Continuously

Simple Interest	Simple Interest
Growth	Decay

Compound Interest

$$
A(t)=a(1+r)^{t} \quad A(t)=a(1-r)^{t}
$$

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

Compounded Interest

$$
A(t)=P e^{r t}
$$

$A(t)$	Amount after time t.	a	Initial amount	r	Rate expressed as a decimal
t	Time	n	Number of interest payments in one year	P	Initial investment

Growth

Example baseball card bought for $\$ 150$ increases in value at a rate of 3% each year. How much is the card worth in 10 years?

$$
A=150(1+.03)^{10}
$$

Decay

You bought a new Ford truck for \$40,000 yesterday. The truck depreciates a rate of 11% each year. How much is your truck worth 8 years from now?

$$
A=40000(1-.11)^{8}
$$

Compound Interest

Your favorite Aunt gives you a quick pick. It's your lucky day! You win $\$ 1500$. You give $\$ 500$ to your Aunt and put the rest in a savings account that pays 3\% interest compounded monthly. How much money will you have in 10 years?

$$
A=1000\left(1+\frac{.03}{12}\right)^{(12)(10)}
$$

Continuous Compounding

Your Aunt decides to deposit the $\$ 500$ you gave her into a savings account at her bank. This account pays 3.5\% interest and compounds continuously. How much money will she have in this account in 8 years?

$$
A=500 e^{(.035)(8)}
$$

1.) The yellow bellied sapsucker has a population growth rate of approximately 4.7% If the population was 8,530 in 2000 and this growth rate continues, about how many yellow bellied sapsuckers will there be in 2006?
2.) Amy Farah Fowler bought a new car for $\$ 25,000$.

Suppose the car depreciates at a rate of 13% per year. How much will the car be worth in 4 years?
3.) If you put $\$ 2400$ in an account that pays 6.2% interest compounded quarterly. How much will you have in eight years?
4.) If you put the same $\$ 2400$ in an account that pays 5.7% interest compounded continuously. How much will you have in eight years?

Properties of Logarithms		
PROPERTIES $\begin{gathered} \log _{b} b=1 \\ \operatorname{lob}_{b} 1=0 \\ \log _{b} m n=\log _{b} m+\operatorname{lob}_{b} n \\ \log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n \\ \log _{b} m^{n}=n \log _{b} m \end{gathered}$ To condense log statements, they must have the same base.	EX 1: Condense the following into one log statement. $3 \log _{4} x+2 \log _{4} y$ Step 1: Move the constants in front of the log statements into the exponent position. $\log _{4} x^{3}+\log _{4} y^{2}$ Step 2: Combine the arguments. Change subtraction to multiplication and addition to multiplication. $\log _{4} x^{3} y^{2}$	EX2: Expand the expression $\log \frac{x}{y z^{2}}$ Step 1: Deal with the division operation first. Split the argument into two logs. $\log x-\log y z^{2}$ Step 2: Split any statements with multiplication into addition operations. Be sure to distribute the negative from the division. $\begin{gathered} \log x-\left(\log y+\log z^{2}\right) \\ \log x-\log y-\log z^{2} \end{gathered}$ Step 3: Move any exponents in front of the log statement. $\log x-\log y-2 \log z$
Condense the following Log Statements		
17.) $\log _{5} 4+\log _{5} 3$	18.) $\frac{1}{3} \log 3 x+\frac{2}{3} \log 3 x$	19.) $\log _{3} 2 x-5 \log _{3} y$
20.) $\log _{5} y-4\left(\log _{5} r+2 \log _{5} t\right)$		
Expand the following Log Statements		
21.) $\log 6 x^{3} y$	22.) $\log _{2} \frac{x}{y z}$	23.) $\log \sqrt{\frac{2 r s t}{5 w}}$

Solve Exponential and Logarithmic Equations

To solve an exponential equation, take the log of both sides, and solve for the variable. To solve a logarithmic equation, rewrite the equation in exponential form and solve for the variable. Other helpful properties: $\begin{gathered} \log _{b} b^{x}=x \\ b^{\log _{b} x}=x \end{gathered}$	Solve the equation $3^{x-2}+5=74$. $\begin{array}{cl} 3^{x-2}=69 . & \begin{array}{l} \text { Subtract } 5 \\ \text { from both } \\ \text { sides. } \end{array} \\ \log \left(3^{x-2}\right)=\log 69 & \begin{array}{l} \text { Take the } \\ \text { log of both } \\ \text { sides } \end{array} \\ (x-2) \log 3=\log 69 & \begin{array}{l} \text { Simplify } \\ \text { the left } \\ \text { sidel } \end{array} \\ x-2=\frac{\log 69}{\log 3} & \begin{array}{l} \text { Evaluate } \\ \text { logs } \end{array} \\ x-2=3.85 & \text { Solve for } x \\ x=5.85 & \end{array}$	Solve the equation $\log _{2} 4 x=5$
Solve the following equations		
24.) $8^{n+1}=3$	25.) $10^{3 y}=5$	26.) $4^{x}-5=12$
27.) $\log (2 x+5)=3$	28.) $\log 4 x=2$	29). $2 \log (2 x+5)=4$
Sequences and Series (see last page for complete list of formulas)		

Determine if each sequence is arithmetic or geometric. Then find the $13^{\text {st }}$ term in each sequence.
30). 9, 14, 19, 24...
31). $-1,6,-36,216, \ldots$

Evaluate the following series.
32.) $13,15, \ldots, 23$
33.) $\sum_{n=1}^{35}(5 n-2)$
32.) A board is made up of 9 squares. A certain number of pennies is placed in each square following a geometric sequence. The first square has 1 penny, the second has 2 pennies, the third has 4 pennies, etc. When every square is filled, how many pennies will be used in total?

Sequences

ARITHMETIC

Sequences happen when you add numbers. The number added is called the common difference.

$$
d=a_{n}-a_{n-1}
$$

Explicit Formula of a basic arithmetic sequence

$$
a_{n}=a_{1}+(n-1) d
$$

Where n is the number of the term in the sequence and d is the common difference.
Recursive Formula of an arithmetic sequence

$$
a_{n}=a_{n-1}+d
$$

Where n is the number of the term in the sequence and d is the common difference.

GEOMETRIC

Sequences happen when you multiply numbers. The number multiplied is called the common ratio.

$$
r=\frac{a_{n}}{a_{n-1}}
$$

Explicit Formula of a basic geometric sequence

$$
a_{n}=a_{1} \times\left(r^{n-1}\right)
$$

Where n is the number of the term in the sequence and r is the common ratio.
Recursive Formula of an geometric sequence

$$
a_{n}=r \times\left(a_{n-1}\right)
$$

Where n is the number of the term in the sequence and d is the common ratio.

Series

A series is the sum of the terms in a sequence.

Explicit Formula for the partial sum of an arithmetic sequence

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

To find the number of terms in a finite series

$$
n=\frac{a_{n}-a_{1}}{d}+1
$$

Explicit Formula for the partial sum of a geometric sequence

$$
\begin{aligned}
& S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right) \\
& S_{n}=\frac{a_{1}-a_{n}\left(r^{n}\right)}{1-r}
\end{aligned}
$$

To find the number of terms in a finite series

$$
n=\frac{\log \left(\frac{a_{n}}{a_{1}}\right)}{\log (r)}+1
$$

Sigma Notation

The Greek letter sigma means to sum up. The example below is a simple summation.

$$
\sum_{n=1}^{4} n=1+2+3+4
$$

When a series is expressed in sigma notation, we translate it into the explicit formula to calculate the sum.

$$
\sum_{n=1}^{k} a_{n}=S_{k}=\frac{k}{2}\left(a_{1}+a_{k}\right) \quad \sum_{n=1}^{k} a_{n}=S_{k}=a_{1}\left(\frac{1-r^{k}}{1-r}\right)
$$

TI-84 Graphing Calculator

[2 ${ }^{\text {nd }}$][STAT] Math [5] [STAT] Ops [5] Expression [,] Variable[,] start[,] end
Or for newer operating systems
[MATH] [0]

