
Logic Programming and Functional Nets

Preliminary version1

Alan Mycroft2

Computer Laboratory, Cambridge University
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

am@cl.cam.ac.uk

Abstract. In general, programming languages and paradigms have each
been associated with their own underlying calculus. Thus functional pro-
gramming has λ-calculus, logic programming has inference systems and
concurrent programming has various calculi: Petri nets, π-calculus, CCS,
theoretical CSP and the like. Odersky recently showed how a devel-
opment “Functional Nets” of the Join-calculus can express ideas from
Functional, Concurrent and Object-Oriented languages within a single
framework in a manner which allows constructs from these disparate lan-
guages to interact. Here we examine how logic programming concepts fit
into this framework.

1 Introduction

In general, programming languages and paradigms have each been associated
with their own underlying calculus. Thus functional programming has λ-calculus,
logic programming has inference systems and concurrent programming has var-
ious calculi: Petri nets, π-calculus, CCS, theoretical CSP and the like.

Odersky recently showed how a development “Functional Nets” of the Join-
calculus can express ideas from Functional, Concurrent and Object-Oriented
languages within a single framework in a manner which allows constructs from
these disparate languages to interact.

One can also see this paper as an delayed continuation of Jones and My-
croft’s [2] work on semantics of Prolog. In that paper, denotational and small-
step operational semantics for Prolog were given; these are arguably a functional
language implementation and a hardware-implementable machine. Here we give
a semantics (or implementation if one wishes to consider it that way!) of Prolog
via Odersky’s Functional Nets [3].

The use of Functional Nets somewhat generalises Odersky’s in that we will
feel free to use algebraic datatypes such a lists, whereas Odersky’s work on the

1 See http://www.cl.cam.ac.uk/users/am/research/funnel/ for a fuller version of
this paper and sample programs.

2 This work was partly done during sabbatical leave at AT&T Laboratories Cam-
bridge.

basis of Functional Nets quite properly explains how they can be constructed
within the language.

2 Theoretical Background

The abstract syntax of logic programs for our purposes is as follows. Let Var be
a set of variables (ranged over by x), Func be a set of function names (ranged
over by f) and Pred be a set of predicate names (ranged over by p). Predicate
and function names each have a given arity (≥ 0), kp and kf . Terms (t), atoms
(a), goals (g), clauses (c) and programs (p) have syntax:

t ::= x | f(t1, . . . , tkf
)

a ::= p(t1, . . . , tkp
)

g ::= a1, . . . , ar

c ::= a0 :- a1, . . . , am

p ::= c1; . . . ; cn ?- g

The final goal in a program (following ‘?-’ is called the query). The letter b also
used to range over atoms in clauses. This language is a subset of Prolog, and
will be referred to as Prolog for convenience in the following.

Given two atoms a and b, we have the notion of most-general unifier, that is
a substitution θ such that θ(a) = θ(b) which makes minimum identifications or
reports failure when no unifier exists.

A new variant of a clause is the clause renamed (bijective substitution) so as
to have new variables, distinct from those under consideration.

The semantics of Prolog is often defined in terms of SLD-trees. An SLD-tree
is defined as follows. Given a program c1; . . . ; cn ?- g, an SLD-tree has a root
node labelled with g. Suppose a node is labelled with goal a1, . . . , ar. An SLD-
tree identifies a distinguished atom ai (the selected atom) from the goal and
moreover has one child for each new clause variant b0 :- b1, . . . , bm of c1; . . . ; cn
from the program whose head b0 unifies with ai. Such a child is labelled with
(the resolvent) goal

θ(a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , ar)

where θ is the most-general unifier of ai and b0. An SLD tree is determined by
its choice strategy for the selected atom. Nodes labelled with the empty goal
represent success, and the composition of substitutions (restricted to variables
occurring in the root goal) encountered from root to such a node is the answer.

The usual behaviour of Prolog is to consider a particular SLD-tree, the one
in which the selected atom from a1, . . . , ar is always a1. Moreover this SLD-tree
is searched in a depth-first left-right (i.e. textual order of clauses) manner.

Depth-first SLD-tree searching defines an extremely sequential execution
mechanism for Prolog. One alternative dimension is to search a given SLD-tree
in a more breadth-first fashion (this is generally called OR-parallelism). Another

evaluation choice is to arrange that, given a goal a1, . . . , ar, the atom-selection
strategy selects goals a1, . . . , ar in some order (or even concurrently) before se-
lecting goals bj which occur in the resolvent of atom ai and a given clause:

θ(a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , ar).

This is generally called AND-parallelism. Note that in general this is more prob-
lematic than OR-parallelism due to contention during unification—we may find
that two concurrent resolutions are attempting to unify a variable with two
incompatible terms—and a way of dealing with this is required.

In general it is often useful to consider Prolog execution as a search of an
AND-OR tree.

Petri Nets are another formalism whose elaboration also explores AND-OR
graphs. See Fig. 1 for an pictorial example. When playing the “token game”
(defined below), the token on the leftmost s1 place can either fire transition t1
or transition t2 (this is an OR-choice). If transition t1 fires then the original
token on s1 is replaced by two tokens, one each on s2 and s3 (this corresponds
to an AND-choice).

Formally1 a Petri net N is a quadruple (S, T, F,M0) where S is a set of places
(drawn with circles, corresponding to states), T is a set of transitions (drawn
with boxes), F ⊆ S × T ∪ T × S is the flow relation and M0 ⊆ S is the initial
marking. The marking evolves by repeated occurrences of the firing rule. Let
t ∈ T be a transition, we write ·t = {s|sF t} (the pre-set of t) and t· = {s|tFs}
(the post-set of t); then the firing rule says that a marking M can evolve to a
marking M \ ·t ∪ t· whenever ·t ⊆ M . Moreover, if G ⊆ T is a non-empty set
of transitions then the members of G can fire concurrently providing their pre-
sets are disjoint, this is often called a step. Note that Petri nets capture finite
automata as a special case, these are just finite nets with (∀t ∈ T)|·t| = |t·| = 1.

Note that there is no requirement for a Petri net to be finite. Indeed Nielsen,
Plotkin and Winskel defined the notion of occurrence net2 which is a form of
unfolding of a given net which captures all its AND-OR behaviour. Such occur-
rence nets are acyclic (and moreover tree-like in that they allow path merges
only to represent AND-joins and not OR-joins). Of course occurrence nets are
infinite for any net which admits unlimited firing sequences.

There is a link between such unfoldings and SLD-trees, via the notion of
coloured Petri nets. In these tokens carry additional state information rather
than being indistinguishable, similarly transitions can choose whether or not to
fire based on the values carried by their input tokens and moreover can write
new values into their output tokens. Using this model (with token values being
goals) a non-deterministic Prolog interpreter can can be written as in Fig. 2
where there is one transition ti for each clause in the program (transition ti is
enabled when the goal is non-empty and its selected atom unifies with the clause
i) plus one transition taccept which is enabled when the goal is empty. Unfoldings

1 Many presentations allow for multiple tokens to occur at a single place, but I have
rather avoided this here.

2 Beware: there is more than one definition of this term.

of this net are now isomorphic to SLD-trees (there is a family of both determined
by the strategy choosing the selected atom).

s1 mr ���7
S
SSw

t1

t2

�
��7

S
SSw

S
SSw

ms2

ms3

m

-

-

-

-

-

m

m
S
SSw

�
��7

- m-
B
B
B
B
B
B
BBN

�
�
�
�
�
�
���

Fig. 1. A simple Petri Net

In general, mapping OR-choice into non-determinism is not very useful for
programming—we would have to keep executing a program and hope that the
hoped-for answer arises. Thus instead we map OR-choice to search, either se-
quential or concurrent. We now study this in more detail.

3 Implementing Prolog in Functional Nets

The standard implementation of substitution when implementing Prolog is to
implement variables as state-containing objects, as opposed to carrying a substi-
tution as a value and (eagerly or lazily) applying it to a state-less term. Instanti-
ating a variable to a term is implemented as assignment to a private field within
the variable. In such implementations unify returns a boolean merely indicat-
ing whether the unification succeeded or not. Because of the need to undo this
assignment when backtracking to explore an (OR-) alternative, it is common
to record such instantiations in a data-structure called a trail. In the sequential
case the trail can be implemented as a stack: a note of the stack depth is taken
before performing resolution, unification pushes descriptors of variables as they
are instantiated and backtracking pops variable from the stack restoring their
state to “uninstantiated”.

Thus a traditional Prolog interpreter looks as follows (in Pseudo-C++):

void solve(Goal *g, ClauseList *p, VarToNameMapping *map)

{

����s �
�
�
�7

�
��3
-

S
S
S
Sw

t1

...

tn

taccept

-����

A
A
A
A
AAU

@
@
@
@
@
@@R

Fig. 2. A Coloured Petri Net Prolog Interpreter

if (g == NULL) map->showanswer();

else for (Clause *ci in p)

{ Trail *t = Trail::Note();

Clause *c = ci->copy();

Trail::Undo(t);

if (unify(g->car, c->head))

solve(append(g->cdr, c->body), p, map);

Trail::Undo(t);

}

}

void start(Goal *g, ClauseList *p, VarToNameMapping *map)

{

solve(g, p, map);

printf("No more solutions\n");

}

I.e. if the Goal is empty then print the corresponding substitution and prompt
the user as to whether alternatives are required; otherwise attempt to unify the
left-hand-side of a variant c = ci->copy() with the first member of the goal
g->car. If unification succeeds then append the right-hand-side of the variant
to the remainder g->cdr of the goal. After unification and the recursive call to
solve it is necessary to restore instantiated variables by calling Trail::undo(t).
It is convenient to allow unify to fail untidily (in an way which may leave some
variables instantiated) and to allow the call Trail::undo(t) also to restore
these also. Finally, it is sometimes convenient to allow copy() to temporarily
update variables present in clauses of the original program (e.g. to make copy()

an O(n) process where n is the size of the clause being copied). The first call

to Trail::undo(t) can therefore serve to restore the original program too. Of
course various tricks are used, append is coded as O(1) and the recursive call is
replaced by an explicit stack, but the principle holds.

3.1 Finite Failure

Finite failure (the search of the SLD-tree has been completed, with or without
success solutions) is important in that it indicates that the computation is fin-
ished as opposed to a possible additional answers being produced in the future.
It is also important as a form of negation, but this is rather outwith the scope
of this paper.

Sequentially, finite failure just reflects backtracking to the origin. With OR-
parallelism we have to keep track of which computations are extant, and we now
turn to a Functional Net solution.

4 Compiling Prolog to Functional Nets

The word ‘compile’ in this section represents forms of evaluation mechanism
where the source program structure may be exploited, as opposed to an in-
terpreter. The presentation does not aim at high efficiency, but it is clear that
efficiency-gaining adjustments (at the expense of clarity) would be possible. Con-
sider the following, assuming that the program is cl1; . . . ; cln. (Here we rep-
resent substitutions s explicitly rather than by updating the state of the object
representing a variable.)

def solve(g: List[Atom], ans: List[String*Term], ff: ()->()) =

{

if (g == []) (print ans; ff());

else

{ def f1() & ... & fn() = ff();

(let (head:-body) = copy(cl1)

let s = unify(hd(a), head)

if (s == fail) f1()

else solve(s(tl(g)) @ s(body), s(ans), f1)

&

...

&

(let (head:-body) = copy(cln)

let s = unify(hd(a), head)

if (s == fail) fn()

else solve(s(tl(g)) @ s(body), s(ans), fn)

}

}

def start(g: List[Atom], ans: List[String*Term]) =

{

def finitefail() = print "No more solutions";

solve(g, ans, finitefail);

}

This captures OR-parallel evaluation in a manner which lets us simultaneously
understand the semantics and see possible implementation optimisations more
clearly. As an example of the latter, note that it would be simple to produce one
variant of solve for each predicate symbol p occurring in the program. Then the
Functional Net program would have one procedure for each predicate symbol
containing actions determined solely by the clauses defining p. This reduces
unnecessary tests in a manner characteristic of a compiler, but these actions are
seen as semantically justified rather than based on low-level reasoning.

5 Conclusions and Further Work

This paper confirms that Functional Nets are a promising formalism for de-
scribing Logic Programming in additional to their expressiveness at capturing
functional and object-oriented concepts (and of course in expressing concurrency
from their basis in the Join calculus). The nearness of Functional Nets and Join
calculus means that the descriptions can easily be seen from both underlying
semantic and implementation viewpoints.

Clearly much remains to be done beyond these introductory notes.

Acknowledgments

I am indebted to Martin Odersky for discussions about Functional Nets.

References

1. Jensen, K. Coloured Petri Nets. Basic Concepts. EATCS Monographs of Theoret-
ical Computer Science, Springer-Verlag, 1992.

2. Jones, N.D. and Mycroft, A. Stepwise development of operational and denotational
semantics for Prolog. Proc. IEEE intl. symp. on Logic Programming, Atlantic City,
1984.

3. Odersky, M. Functional Nets. Proc. ESOP’2000 Berlin, Springer-Verlag LNCS
vol. 1782, 2000. See also http://lampwww.epfl.ch/funnel/

4. Shen, K. Studies of AND/OR parallelism in Prolog. PhD thesis, Computer Lab-
oratory, University of Cambridge, 1992.

