

DS776 September 21, 2010

Product Specification

Introduction

In a multiprocessor environment, the processors need to communicate data with each other. The easiest method is to set up inter-processor communication through a mailbox. Mailbox features a bi-directional communication channel between two processors. The Mailbox can be connected to the processor either through a PLB, AXI4-Lite, AXI4-Stream, or FSL interface. The PLB interface option is available for the MicroBlaze[™] processor, PowerPC® processor, or any other PLBv46 master. The AXI4-Lite, AXI4-Stream, and FSL options are available for connection to any IP that supports them, for example MicroBlaze.

Features

- Supports AXI4-Lite, AXI4-Stream, PLB v4.6 and FSL independently on each of the ports
- Configurable depth of mailbox
- Configurable interrupt thresholds and maskable interrupts
- Configurable synchronous or asynchronous operation
- Bi-directional communication

LogiCORE IP Facts Table									
Core Specifics									
Supported Device Family ⁽¹	Spartar	Spartan®-3, Spartan-3E, Spartan-6, Spartan-3A/3AN/3A DSP, Virtex®-4, Virtex-5, Virtex-6							
Supported User Interfaces				,	AXI lite, PLB				
Resources Used	LUTs	LUTs FFs DSP F _{MAX} Block Slices (MHz) RAMS							
		See	Table 27.		0				
	Prov	vided w	ith Cor	е	•				
Documentation				Product S	Specification				
Design Files					VHDL				
Example Design				١	Not Provided				
Test Bench				١	Not Provided				
Constraints File				١	lot Provided				
Simulation Model	Mer	ntor Grap	hics Mod	elSim v6.5	c and above				
	Test	ed Des	ign Too	ls					
Design Entry Tools					XPS 12.3				
Simulation		Ν	lentor Gra	aphics Mod	lelSim v6.5c				
Synthesis Tools					ISE® 12.3				
		Supp	ort						
	Prov	rided by	Xilinx, Inc						
1. For a complete	listing of s	upported	devices, se	e the release	e notes for this				

 For a complete listing of supported devices, see the release notes for this core.

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. AMBA, AMBA Designer, ARM, ARM1176JZ-S, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

www.xilinx.com

Functional Description

The Mailbox is used for bi-directional inter-processor communication. A mailbox is a link between two otherwise separate processor systems. Other multi-port IP blocks, such as a memory controller, may also be shared by the two sub systems.

In addition to sending the actual data between processors, the mailbox can be used to generate interrupts between the processors.

The Mailbox in a typical PLBv46 system is shown in the top-level block diagram in Figure 1. The same system partitioning is also used for AXI4-Lite interface option. FSL and AXI4-Stream options will have the Mailbox interface connected directly to a master with no bus inbetween.



Figure 1: Mailbox in a PLBv46 System

Mailbox I/O Signals

The Mailbox has two interfaces that are used to connect to the rest of the system. Both interfaces can be independently configured to use the PLBv46, AXI4-Lite, AXI4-Stream, or FSL interface. The signal descriptions are included in five tables:

- 1. The PLB signals are described in Table 1.
- 2. The AXI4-Lite signals are described in Table 2.
- 3. The AXI4-Stream signals are described in Table 3.
- 4. The FSL signals are described in Table 4.
- 5. The common signals are described in Table 5.

All signals in Table 1 through Table 4 apply to both interface sides; <x> denotes the interface number, which may be 0 or 1.

Table 1: PLBv46 I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description				
System SignalsP1SPLB<									
P1	SPLB <x>_Clk</x>	System	I	-	PLB clock				
P2	SPLB <x>_Rst</x>	System	Ι	-	PLB reset, active high				
		PLB Inte	erface Sig	nals					
P3	PLB <x>_ABus[0:31]</x>	PLB	Ι	-	PLB address bus				
P4	PLB <x>_PAValid</x>	PLB	Ι	-	PLB primary address valid				
P5	-	PLB	Ι	-	PLB current master identifier				
P6	PLB <x>_RNW</x>	PLB	Ι	-	PLB read not write				
P7		PLB	Ι	-	PLB byte enables				
P8	PLB <x>_size[0:3]</x>	PLB	I	-	PLB size of requested transfer				
P9	PLB <x>_type[0:2]</x>	PLB	Ι	-	PLB transfer type				
P10	PLB <x>_wrDBus[0: C_SPLB<x>_DWIDTH - 1]</x></x>	PLB	I	-	PLB write data bus				
		Unused PLB	Interface	Signals					
P11	PLB <x>_UABus[0:31]</x>	PLB	I	-	PLB upper address bits				
P12	PLB <x>_SAValid</x>	PLB	Ι	-	PLB secondary address valid				
P13	PLB <x>_rdPrim</x>	PLB	I	-	PLB secondary to primary read request indicator				
P14	PLB <x>_wrPrim</x>	PLB	Ι	-	PLB secondary to primary write request indicator				
P15	PLB <x>_abort</x>	PLB	Ι	-	PLB abort bus request				
P16	PLB <x>_busLock</x>	PLB	Ι	-	PLB bus lock				
P17	PLB <x>_MSize[0:1]</x>	PLB	Ι	-	PLB data bus width indicator				
P18	PLB <x>_lockErr</x>	PLB	Ι	-	PLB lock error				
P19	PLB <x>_wrBurst</x>	PLB	I	-	PLB burst write transfer				
P20	PLB <x>_rdBurst</x>	PLB	Ι	-	PLB burst read transfer				
P21	PLB <x>_wrPendReq</x>	PLB	Ι	-	PLB pending bus write request				
P22	PLB <x>_rdPendReq</x>	PLB	Ι	-	PLB pending bus read request				
P23	PLB <x>_wrPendPri[0:1]</x>	PLB	Ι	-	PLB pending write request priority				
P24	PLB <x>_rdPendPri[0:1]</x>	PLB	I	-	PLB pending read request priority				
P25	PLB <x>_reqPri[0:1]</x>	PLB	I	-	PLB current request priority				
P26	PLB <x>_TAttribute[0:15]</x>	PLB	Ι	-	PLB transfer attribute				
	·	PLB Slave	Interface	Signals					
P27	SI <x>_addrAck</x>	PLB	0	0	Slave address acknowledge				
P28	SI <x>_SSize[0:1]</x>	PLB	0	0	Slave data bus size				

Table	1:	PLBv46 I	I/O Signal	Description	(Cont'd)
-------	----	----------	------------	-------------	----------

Port	Signal Name	Interface	I/O	Initial State	Description
P29	SI <x>_wait</x>	PLB	0	0	Slave wait
P30	SI <x>_rearbitrate</x>	PLB	0	0	Slave bus rearbitrate
P31	SI <x>_wrDAck</x>	PLB	0	0	Slave write data acknowledge
P32	SI <x>_wrComp</x>	PLB	0	0	Slave write transfer complete
P33	SI <x>_rdDBus[0: C_SPLB<x>_DWIDTH - 1]</x></x>	PLB	0	0	Slave read data bus
P34	SI <x>_rdDAck</x>	PLB	0	0	Slave read data acknowledge
P35	SI <x>_rdComp</x>	PLB	0	0	Slave read transfer complete
P36	SI <x>_MBusy[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	PLB	0	0	Slave busy
P37	SI <x>_MWrErr[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	PLB	0	0	Slave write error
P38	SI <x>_MRdErr[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	PLB	0	0	Slave read error
	Un	used PLB SI	ave Interfa	ace Signals	
P39	SI <x>_wrBTerm</x>	PLB	0	0	Slave terminate write burst transfer
P40	SI <x>_rdWdAddr[0:3]</x>	PLB	0	0	Slave read word address
P41	SI <x>_rdBTerm</x>	PLB	0	0	Slave terminate read burst transfer
P42	SI <x>_MIRQ[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	PLB	0	0	Master interrupt request

Table 2: AXI4-Lite I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description						
	System Signals										
P43	S <x>_AXI_ACLK</x>	System	I	-	AXI Clock						
P44	S <x>_AXI_ARESETN</x>	System	I	-	AXI Reset, active low						
	AX	Write Addro	State State System Signals /stem I - AXI Clock /stem I - AXI Reset, active low te Address Channel Signals AXI Write address. The write address bugives the address of the write transaction AXI I - AXI Write address valid. This signal indicate that valid write address is available. AXI I - Write address ready. This signal indicate that the slave is ready to accept an address. I Write Channel Signals Image: Channel Signals Image: Channel Signals								
P45	S <x>_AXI_AWADDR[C_S<x>_AXI_ ADDR_WIDTH-1:0]</x></x>	AXI	I	-	AXI Write address. The write address bus gives the address of the write transaction.						
P46	S <x>_AXI_AWVALID</x>	AXI	I	-	Write address valid. This signal indicates that valid write address is available.						
P47	S <x>_AXI_AWREADY</x>	AXI	Ο	0							
		AXI Write 0	Channel S	ignals							
P48	S <x>_AXI_WDATA[C_S<x>_AXI_ DATA_WIDTH - 1: 0]</x></x>	AXI	I	-	Write data						
P49	S <x>_AXI_WSTB[C_S<x>_AXI_ DATA_WIDTH/8-1:0] ⁽¹⁾</x></x>	AXI	I	-	Write strobes. This signal indicates which byte lanes to update in memory. ⁽¹⁾						

Table 2: AXI4-Lite I/O Signal Description (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P50	S <x>_AXI_WVALID</x>	AXI	I	-	Write valid. This signal indicates that valid write data and strobes are available.
P51	S <x>_AXI_WREADY</x>	AXI	0	0	Write ready. This signal indicates that the slave can accept the write data.
	AXI	Write Respo	onse Char	nel Signals	3
P52	S <x>_AXI_BRESP[1:0]</x>	AXI	0	0x0	Write response. This signal indicates the status of the write transaction. "00" - OKAY "10" - SLVERR "11" - DECERR
P53	S <x>_AXI_BVALID</x>	AXI	О	0	Write response valid. This signal indicates that a valid write response is available.
P54	S <x>_AXI_BREADY</x>	AXI	I	-	Response ready. This signal indicates that the master can accept the response information.
	AX	I Read Addr	ess Chanı	nel Signals	
P55	S <x>_AXI_ARADDR[C_S<x>_ AXI_ADDR_WIDTH -1:0]</x></x>	AXI	I	-	Read address. The read address bus gives the address of a read transaction.
P56	S <x>_AXI_ARVALID</x>	AXI	I	-	Read address valid. This signal indicates, when HIGH, that the read address is valid and will remain stable until the address acknowledge signal, S <x>_AXI_ARREADY, is high.</x>
P57	S <x>_AXI_ARREADY</x>	AXI	Ο	1	Read address ready. This signal indicates that the slave is ready to accept an address.
		XI Read Dat	a Channe	l Signals	
P58	S <x>_AXI_RDATA[C_S<x>_AXI_ DATA_WIDTH -1:0]</x></x>	AXI	0	0x0	Read data
P59	S <x>_AXI_RRESP[1:0]</x>	AXI	0	0x0	Read response. This signal indicates the status of the read transfer. "00" - OKAY "10" - SLVERR "11" - DECERR
P60	S <x>_AXI_RVALID</x>	AXI	0	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete
P61	S <x>_AXI_RREADY</x>	AXI	I	-	Read ready. This signal indicates that the master can accept the read data and response information

Notes:

1. This signal is not used. The Mailbox assumes that all byte lanes are active.

Table 3: AXI4-Stream I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description			
			System S	Signals				
P62	S <x>_AXIS_ACLK</x>	System	I	-	AXI Clock			
P63	M <x>_AXIS_ACLK</x>	System	I	-	AXI Clock			
AXI Slave Channel Signals								
P64	S <x>_AXIS_TDATA[C_S<x>_ AXIS_DATA_WIDTH - 1: 0]</x></x>	AXIS	I	-	Data			
P65	S <x>_AXIS_TLAST</x>	AXIS	I	-	Last data flag, indicates that this is the last word.			
P66	S <x>_AXIS_TVALID</x>	AXIS	I	-	Data valid. This signal indicates that valid data and last flag are available.			
P67	S <x>_AXIS_TREADY</x>	AXIS	0	0	Data ready. This signal indicates that the slave can accept the data.			
		AXIN	laster Cha	annel Signa	als			
P68	M <x>_AXIS_TDATA[C_M<x> _AXIS_DATA_WIDTH -1:0]</x></x>	AXIS	0	0x0	Data			
P69	M <x>_AXIS_TLAST</x>	AXIS	0	0	Last data flag, indicates that this is the last word.			
P70	M <x>_AXIS_TVALID</x>	AXIS	0	0	Data valid. This signal indicates that valid data and last flag are available.			
P71	M <x>_AXIS_TREADY</x>	AXIS	I	-	Data ready. This signal indicates that the slave can accept the data.			

Table 4: FSL I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description
			FSL Mas	ster Interfac	e Signals
P72	FSL <x>_M_Clk</x>	MFSL	I	N/A	This port provides the input clock to the FSL master interface of the mailbox when used in the asynchronous FIFO mode (C_ASYNC_CLKS = 1). All transactions on the master interface use this clock when implemented in the asynchronous mode
P73	FSL <x>_M_Data</x>	MFSL	I	0	The data input to the FSL master interface of the mailbox
P74	FSL <x>_M_Control</x>	MFSL	I	0	Unused for mailbox
P75	FSL <x>_M_Write</x>	MFSL	I	0	Input signal that controls the write enable signal of the FSL master interface of the FIFO. When set to 1, the value of FSL <x>_M_Data is pushed into the mailbox FIFO on a rising clock edge.</x>
P76	FSL <x>_M_Full</x>	MFSL	0	N/A	Output signal on the FSL master interface of the FIFO indicating that the FIFO is full.
			FSL Sla	ve Interface	e Signals
P77	FSL <x>_S_Clk</x>	SFSL	I	N/A	This port provides the input clock to the FSL slave interface on the mailbox when used in the asynchronous FIFO mode (C_ASYNC_CLKS = 1). All transactions on the slave interface use this clock when implemented in the asynchronous mode

Table 4: FSL I/O Signal Description (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P78	FSL <x>_S_Data</x>	SFSL	0	N/A	The data output bus onto the FSL slave interface of the mailbox
P79	FSL <x>_S_Control</x>	SFSL	0	N/A	Unused for mailbox
P80	FSL <x>_S_Read</x>	SFSL	I	0	Input signal on the FSL slave interface that controls the read acknowledge signal of the FIFO. When set to 1, the value of FSL <x>_S_Data is popped from the FIFO on a rising clock edge.</x>
P81	FSL <x>_S_Exists</x>	SFSL	0	N/A	Output signal on the FSL slave interface indicating that FIFO contains valid data.

Table 5: Mailbox Common I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description				
	FSL Common Interface Signals								
P82	FSL_Clk	System	I	N/A	This is the input clock to the mailbox when used in synchronous FIFO mode (C_ASYNC_CLKS = 0) and both interfaces are FSL based (C_INTERCONNECT_PORT_ <x> = 3). The FSL_Clk is in this case used to clock the core, in all other cases are the internal mailbox clock automatically derived from either SPLB<x>_Clk, S<x>_AXI_ACLK or S<x>_AXIS_ACLK depending on the settings.'</x></x></x></x>				
P83	SYS_Rst	System	I	N/A	External system reset. This signal is only required when both interfaces are configured to be streaming interfaces (FSL or AXI4-Stream). If any PLB or AXI4-Lite interface is available this signal is optional.				
P84	FSL_Rst	System	0	0	Output reset signal generated by the FSL reset logic. Any peripherals connected to the FSL bus may use this reset signal to operate the peripheral reset.				
		<u> </u>		Commo	n Signals				
P85	Interrupt_0	System	0	0	Interrupt signal that data is available at interface 0				
P86	Interrupt_1	System	0	0	Interrupt signal that data is available at interface 1				

Parameters

To allow the user to obtain a Mailbox that is uniquely tailored for the system, certain features can be parameterized in the Mailbox design. This allows the user to configure a design that utilizes the resources required by the system only and that operates with the best possible performance. The features that can be parameterized in the Mailbox design are as shown in Table 6. The interface related generics, G3 through G19, are separately configured for each interface.

Table 6: Mailbox Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
		System P	arameter		
G1	Target FPGA family	C_FAMILY	spartan3, aspartan3, spartan3e, aspartan3e, spartan3a, aspartan3a, spartan3adsp, aspartan3adsp, spartan6, aspartan6, spartan6l, qsspartan6, qsspartan6l, virtex4, qrvirtex4, qvirtex4, virtex5, qrvirtex5, virtex6, virtex6, virtex6l, qrvirtex6	virtex6	string
G2	Level of external reset	C_EXT_RESET_ HIGH	0 or 1	1	integer
		PLB Par	ameters		
G3	PLB Base Address	C_SPLB <x>_ BASEADDR</x>	Valid Address ⁽¹⁾	None ⁽²⁾	std_logic_ vector
G4	PLB High Address	C_SPLB <x>_ HIGHADDR</x>	Valid Address ⁽³⁾	None ⁽²⁾	std_logic_ vector
G5	PLB least significant address bus width	C_SPLB <x>_ AWIDTH</x>	32	32	integer
G6	PLB data width	C_SPLB <x>_ DWIDTH</x>	32, 64, 128	32	integer
G7	Selects point-to-point or shared bus topology	C_SPLB <x>_P2P</x>	0 = Shared Bus Topology 1 = Point-to-Point Bus Topology ⁽⁴⁾	0	integer
G8	PLB Master ID Bus Width	C_SPLB <x>_MID_ WIDTH</x>	log ₂ (C_SPLB_NUM_ MASTERS) with a minimum value of 1	1	integer
G9	Number of PLB Masters	C_SPLB <x>_NUM_ MASTERS</x>	1 - 16	1	integer
G10	Support Bursts	C_SPLB <x>_ SUPPORT_BURSTS</x>	0	0	integer
G11	Width of the Slave Data Bus	C_SPLB_NATIVE_ DWIDTH	32	32	integer
G12	Frequency of PLB interface	C_SPLB <x>_CLK_ FREQ_HZ</x>	integer	100_000 _000	integer
		AXI4-Lite F	Parameters		
G13	AXI Base Address	C_S <x>_AXI_ BASEADDR</x>	Valid Address ⁽¹⁾	None ⁽²⁾	std_logic_ vector
G14	AXI High Address	C_S <x>_AXI_ HIGHADDR</x>	Valid Address ⁽³⁾	None ⁽²⁾	std_logic_ vector

Table 6: Mailbox Design Parameters (Cont'd)

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
G15	AXI address bus width	C_S <x>_AXI_ ADDR_WIDTH</x>	32	32	integer
G16	AXI data bus width	C_S <x>_AXI_DATA_ WIDTH</x>	32	32	integer
G17	AXI interface type	C_S <x>_AXI_ PROTOCOL</x>	AXI4LITE	AXI4 LITE	string
	1	AXI4-Stream	Parameters		
G18	AXI data bus width	C_S <x>_AXIS_DATA _WIDTH</x>	32	32	integer
G19	AXI data bus width	C_M <x>_AXIS_DATA _WIDTH</x>	32	32	integer
	1	Mailbox P	arameters		
G20	Specify if interfaces are synchronous or asynchronous	C_ASYNC_CLKS	0 - 1	0	Integer
G21	Use BRAMs to implement FIFO	C_IMPL_STYLE	0 - 1	1	Integer
G22	FSL bus width	C_FSL_DWIDTH	32	32	Integer
G23	Select interface type that shall be used on port 0: 1 - PLBv46 2 - AXI4-Lite 3 - FSL 4 - AXI4-Stream	C_INTERCONNECT _PORT_0	1 - 4	0	Integer
G24	Select interface type that shall be used on port 1: 1 - PLBv46 2 - AXI4-Lite 3 - FSL 4 - AXI4-Stream	C_INTERCONNECT _PORT_1	1 - 4	0	Integer
G25	FIFO depth of mailbox	C_MAILBOX_ DEPTH	16 - 8192	16	Integer

Table	6:	Mailbox	Design	Parameters	(Cont'd)
-------	----	---------	--------	------------	----------

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
G26	Read Clock period for interface 0 when asynchronous LUTRAM is used (in ps)	C_READ_CLOCK_ PERIOD_0	> 0 when enabled	0	Integer
G27	Read Clock period for interface 1when asynchronous LUTRAM is used (in ps)	C_READ_CLOCK_ PERIOD_0	> 0 when enabled	0	Integer

Notes:

- 1. The user must set the values. The C_<interface>_BASEADDR must be a multiple of the range, where the range is C_<interface>_HIGHADDR C_<interface>_BASEADDR + 1.
- 2. No default value will be specified to insure that the actual value is set, i.e., if the value is not set, a compiler error will be generated.
- 3. C_<interface>_HIGHADDR C_<interface>_BASEADDR must be a power of 2 greater than equal to C_<interface>_BASEADDR + 0xFF.
- 4. Value of '1' is not supported in this core.

Parameter - Port Dependencies

The dependencies between the Mailbox core design parameters and I/O signals are described in Table 7. In addition, when certain features is deselected, the related logic will no longer be a part of the design. The unused input and output signals are set to a specified value.

Generic or Port	Name	Affects	Depends	Relationship Description					
	Design Parameters								
G6	C_SPLB <x>_DWIDTH</x>	P7, P10, P33	-	Affects the number of bits in data bus					
G8	C_SPLB <x>_MID_WIDTH</x>	P5	G9	This value is calculated as: log ₂ (C_SPLB <x>_NUM_MASTERS) with a minimum value of 1</x>					
G9	C_SPLB <x>_NUM_MASTERS</x>	P36, P37, P38, P42	-	Affects the number of PLB masters					
G15	C_S <x>_AXI_ADDR_WIDTH</x>	P45, P55	-	Defines the width of the ports					
G16	C_S <x>_AXI_DATA_WIDTH</x>	P48, P49, P58	-	Defines the width of the ports					
G18	C_S <x>_AXIS_DATA_WIDTH</x>	P64	-	Defines the width of the ports					
G19	C_M <x>_AXIS_DATA_WIDTH</x>	P68	-	Defines the width of the ports					
G22	C_FSL_DWIDTH	P73, P78	-	Affects the number of bits in data bus					
		I/O Sign	als						
P5	PLB <x>_masterID[0: C_SPLB<x>_MID_WIDTH - 1]</x></x>	-	G8	Width of the PLB <x>_masterID varies according to C_SPLB<x>_MID_WIDTH</x></x>					
P7	PLB <x>_BE[0: (C_SPLB<x>_DWIDTH/8) -1]</x></x>	-	G6	Width of the PLB <x>_BE varies according to C_SPLB<x>_DWIDTH</x></x>					
P10	PLB <x>_wrDBus[0: C_SPLB<x>_DWIDTH - 1]</x></x>	-	G6	Width of the PLB <x>_wrDBus varies according to C_SPLB<x>_DWIDTH</x></x>					

Generic or Port	Name	Affects	Depends	Relationship Description
P33	SI <x>_rdDBus[0: C_SPLB<x>_DWIDTH - 1]</x></x>	-	G6	Width of the SI <x>_rdDBus varies according to C_SPLB<x>_DWIDTH</x></x>
P36	SI <x>_MBusy[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	-	G9	Width of the SI <x>_MBusy varies according to C_SPLB<x>_NUM_MASTERS</x></x>
P37	SI <x>_MWrErr[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	-	G9	Width of the SI <x>_MWrErr varies according to C_SPLB<x>_NUM_MASTERS</x></x>
P38	SI <x>_MRdErr[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	-	G9	Width of the SI <x>_MRdErr varies according to C_SPLB<x>_NUM_MASTERS</x></x>
P42	SI <x>_MIRQ[0: C_SPLB<x>_NUM_MASTERS - 1]</x></x>	-	G9	Width of the SI <x>_MIRQ varies according to C_SPLB<x>_NUM_MASTERS</x></x>
P45	S <x>_AXI_AWADDR[C_S<x>_AXI _ADDR_WIDTH-1:0]</x></x>	-	G15	Port width depends on the generic C_S <x>_AXI_ADDR_WIDTH</x>
P48	S <x>_AXI_WDATA[C_S<x>_AXI_ DATA_WIDTH-1:0]</x></x>	-	G16	Port width depends on the generic C_S <x>_AXI_DATA_WIDTH</x>
P49	S <x>_AXI_WSTB[C_S<x>_AXI_ DATA_WIDTH/8-1:0]</x></x>	-	G16	Port width depends on the generic C_S <x>_AXI_DATA_WIDTH</x>
P55	S <x>_AXI_ARADDR[C_S<x>_AXI _ADDR_WIDTH -1:0]</x></x>	-	G15	Port width depends on the generic C_S <x>_AXI_ADDR_WIDTH</x>
P58	S <x>_AXI_RDATA[C_S<x>_AXI_ DATA_WIDTH -1:0]</x></x>	-	G16	Port width depends on the generic C_S <x>_AXI_DATA_WIDTH</x>
P64	S <x>_AXIS_TDATA[C_S<x>_AXIS _DATA_WIDTH -1:0]</x></x>	-	G18	Port width depends on the generic C_S <x>_AXIS_DATA_WIDTH</x>
P68	M <x>_AXIS_TDATA[C_M<x>_AXIS _DATA_WIDTH -1:0]</x></x>	-	G19	Port width depends on the generic C_M <x>_AXIS_DATA_WIDTH</x>
P74	FSL <x>_M_Data</x>		G22	Width of the FSL <x>_M_Data varies according to C_FSL_DWIDTH</x>
P79	FSL <x>_S_Data</x>		G22	Width of the FSL <x>_S_Data varies according to C_FSL_DWIDTH</x>

Table	7: Mailbox	Parameter-Port	Dependencies	(Cont'd)
-------	------------	----------------	--------------	----------

Register Descriptions

Each interface of the Mailbox core has the same set of information registers. The information at each interface is not identical but rather localized for that interface since the communication is bi-directional.

Table 8 shows all the Mailbox registers and their addresses for the PLB and AXI4-Lite cases. Much of the information can be acquired for the FSL and AXI4-Stream cases with the use of FSL<x>_M_Full/FSL<x>_S_Exists or S<x>_AXIS_TREADY/M<x>_AXIS_TVALID respectively.

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
BASEADDR + 0x0	WRDATA	Write	N/A	Write Data address. Write only.
BASEADDR + 0x4	Reserved	N/A	N/A	Reserved for future use
BASEADDR + 0x8	RDDATA	Read	N/A	Read Data address. Read only
BASEADDR + 0xC	Reserved	N/A	N/A	Reserved for future use

Table 8: Mailbox Registers

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
BASEADDR + 0x10	STATUS	Read	0x1	Status flags for mailbox. Read only.
BASEADDR + 0x14	ERROR	Read	0x0	Error flags, clear on read. Read only.
BASEADDR + 0x18	SIT	-	-	Send Interrupt Threshold. Read/Write
BASEADDR + 0x1C	RIT	-	-	Receive Interrupt Threshold. Read/Write
BASEADDR + 0x20	IS	-	-	Interrupt Status register. Read/Write
BASEADDR + 0x24	IE	-	-	Interrupt Enable register. Read/Write
BASEADDR + 0x28	IP	-	-	Interrupt Pending register. Read only
BASEADDR + 0x2C	Reserved	-	-	Reserved for future use
BASEADDR + 0x30	Reserved	-	-	Reserved for future use
BASEADDR + 0x34	Reserved	-	-	Reserved for future use
BASEADDR + 0x38	Reserved	-	-	Reserved for future use
BASEADDR + 0x3C	Reserved	-	-	Reserved for future use

Table 8: Mailbox Registers

Write Data Register (WRDATA)

Writing to this register will result in the data transferred to the RDDATA register at the other interface. Trying to write while the full flag is set will result in an error and the FULL_ERROR bit will be set. The register is write only and a read request issued to WRDATA will be ignored. Bit assignment in the WRDATA register is described in Table 10..

Table 9: Write Data Register

WRDATA	
0	C_FSL_DWIDTH-1

Table 10: Mailbox Write Data Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - C_FSL_DWIDTH - 1	WRDATA	Write	-	Write register to send data to the other interface

Mailbox Read Data Register (RDDATA)

Reading from this register will pop one value from the mail FIFO. Trying to read while the empty flag is set will result in an error and the EMPTY_ERROR bit will be set. The register is read only and a write request issued to RDDATA will be ignored. Bit assignment in the RDDATA register is described in Table 12.

Table 11: Read Data Register

	RDDATA
0	C_FSL_DWIDTH-1

Table 12: Mailbox Read Data Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - C_FSL_DWIDTH - 1	RDDATA	Read	-	Read register to get data word sent from the other interface

Mailbox Status Register (STATUS)

The Mailbox Status Register contains the current status of the mailbox. The register is read only and a write request issued to STATUS will be ignored. Bit assignment in the STATUS register is described in Table 14

Table 13: Status Register

Reserved		RTA	STA	Full	Empty
0	27	28	29	30	31

Table 14: Mailbox Status Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - 27	Reserved			Reserved for future use
28	RTA	Read	0	Receive Threshold Active indicates the current FIFO status of this interface in the receive direction '0' = The receive FIFO level is less than or equal to the RIT threshold '1' = The receive FIFO level is greater than the RIT threshold
29	STA	Read	0	Send Threshold Active indicates the current FIFO status of this interface in the send direction '0' = The send FIFO level is greater than the SIT threshold '1' = The send FIFO level is less than or equal to the SIT threshold
30	Full	Read	,0,	Indicates the current status of this interface in the send direction '0' = There is room for more data '1' = The FIFO is full, any attempts to write data will be ignored and generate an error
31	Empty	Read	'1'	Indicates the current status of this interface in the receive direction '0' = There is data available '1' = The FIFO is empty, any attempts to read data will be ignored and generate an error

Mailbox Error Register (ERROR)

The Mailbox Error Register contains the error flags for PLB and AXI4-Lite accesses from this interface. The error register will be cleared at read, this means that all bits are sticky and that they indicate any errors that occurred since last time the error register was read. The register is read only and a write request issued to ERROR will be ignored. Bit assignment in the ERROR register is described in Table 16.

Table 15: Error Register

Re	served	Full Error	Empty Error
0	29	30	31

Table	16:	Mailbox	Error	Register	Bit	Definitions
-------	-----	---------	-------	----------	-----	-------------

Bit(s)	Name	Core Access	Reset Value	Description
0 - 29	Reserved			Reserved for future use
30	Full Error	Read	,0,	Indicates if there has been any attempts to write to the WRDATA register while the Full flag was asserted since the error register was last read '0' = No error has occurred '1' = One or more attempts to write while FSL link was full
31	Empty Error	Read	,0,	Indicates if there has been any attempts to read from the RDDATA register while the Empty flag was asserted since the error register was last read '0' = No error has occurred '1' = One or more attempts to read while FSL link was empty

Mailbox Send Interrupt Threshold Register (SIT)

The Mailbox Send Interrupt Threshold Register contains the interrupt threshold for this interface in the send direction. Depending on the send FIFO data level writing a new SIT can cause a rising edge on STA that can generate a STI interrupt if it is enabled in the IE register. Bit assignment in the SIT register is described in Table 18.

Table 17: SIT Register

	SIT	
0	32-Log2(C_MAILBOX_DEPTH) 31	

Table 18: Mailbox SIT Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
Log2(C_MAILBO X_DEPTH)	SIT	Read/Write	0	Lower Log2(C_MAILBOX_DEPTH) bits used, right justified to bit 31

Mailbox Receive Interrupt Threshold Register (RIT)

The Mailbox Receive Interrupt Threshold Register contains the interrupt threshold for this interface in the receive direction. Depending on the receive FIFO data level writing a new RIT can cause a rising edge on RTA that can generate a RTI interrupt if it is enabled in the IE register. Bit assignment in the RIT register is described in Table 20.

Table 19: RIT Register

	RIT	
0	32-Log2(C_MAILBOX_DEPTH) 33	31

Table 20: Mailbox RIT Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
Log2(C_MAILBOX _DEPTH)	RIT	Read/Write	0	Lower Log2(C_MAILBOX_DEPTH) bits used, right justified to bit 31

Mailbox Interrupt Status Register (IS)

The Mailbox Interrupt Status Register contains the current interrupt status for this interface. There are three types of interrupts that can be generated. Mailbox Error interrupt are generated when any of the bits in the ERROR register is set. The other two interrupts are FIFO related: RTI is generated for a rising edge on the RTA bit in the STATUS register and STI that is generated for a rising edge on the STA STATUS register bit. RTI and STI are used to indicate that it is time to read from or write to the FIFOs to avoid any stalls in the data flow. Bit assignment in the IS register is described in Table 22.

Table 21: IS Register

Reserved	ERR	RTI	STI
0 28	29	30	31

Bit(s)	Name	Core Access	Reset Value	Description
0 - 28	Reserved			Reserved for future use
29	ERR	Read/Write	,0,	Mailbox Error Interrupt Status for this interface. Values for read: '0' = No interrupt event has occurred. '1' = A Mailbox error has occurred. Values for write: '0' = No change '1' = Acknowledge and clear the interrupt if it is active
30	RTI	Read/Write	,0,	Mailbox Receive Threshold Interrupt pending status for this interface. Values for read: '0' = No interrupt event has occurred. '1' = Data level in the receive FIFO has caused a RTI. Values for write: '0' = No change '1' = Acknowledge and clear the interrupt if it is active
31	STI	Read/Write	,0,	 Mailbox Send Threshold Interrupt penging status for this interface. Values for read: '0' = No interrupt event has occurred. '1' = Data level in the send FIFO has caused a STI. Values for write: '0' = No change '1' = Acknowledge and clear the interrupt if it is active

Table 22: Mailbox IS Register Bit Definitions

Mailbox Interrupt Enable Register (IE)

The Mailbox Interrupt Enable Register contains the mask for the allowed interrupts on this interface. Bit assignment in the IE register is described in Table 24.

Table 23: IE Register

Reserved	ERR	RTI	STI
0 28	29	30	31

Bit(s)	Name	Core Access	Reset Value	Description	
0 - 28	Reserved			Reserved for future use	
29	ERR	Read/Write	'O'	Mailbox Error Interrupt Enable for this interface '0' = ERR interrupt is disabled '1' = ERR interrupt is enabled	
30	RTI	Read/Write	'0'	Mailbox Receive Threshold Interrupt Enable for this interface '0' = RTI interrupt is disabled '1' = RTI interrupt is enabled	
31	STI	Read/Write	'0'	Mailbox Send Threshold Interrupt Enable for this interface '0' = STI interrupt is disabled '1' = STI interrupt is enabled	

Table 24: Mailbox IE Register Bit Definitions

Mailbox Interrupt Pending Register (IP)

The Mailbox Interrupt Pending Register contains the currently pending interrupts from this interface. It is a read only register generated by performing bit-wise AND between the IS and IE registers. A write request issued to IP will be ignored. Bit assignment in the IP register is described in Table 26. All the bits in this register are ORed together to generate the interrupt output signal for this interface. When an interrupt has been serviced it is acknowledge by writing the corresponding bit to the IS Register.

Table 25: IP Register

Reserved	ERR	RTI	STI
0 28	29	30	31

Table 26: Mailbox IP Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description	
0 - 28	Reserved			Reserved for future use	
29	ERR	Read	'0'	Mailbox Error Interrupt Pending status for this interface '0' = No pending interrupt '1' = Pending interrupt for Mailbox errors	
30	RTI	Read	'0'	Mailbox Receive Threshold Interrupt Pending status for this interface '0' = No pending interrupt '1' = Pending interrupt for data level in receive FIFO	
31	STI	Read	'0'	Mailbox Send Threshold Interrupt Pending status for this interface '0' = No pending interrupt '1' = Pending interrupt for data level in send FIFO	

Design Implementation

Target Technology

The target technology is an FPGA listed in the Supported Device Family field of the LogiCORE IP Facts Table.

Device Utilization and Performance Benchmarks

Core Performance

Since the Mailbox core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the Mailbox core is combined with other designs in the system, the utilization of FPGA resources and timing of the Mailbox design will vary from the results reported here. These values are generated from a minimal dual MicroBlaze system, each with a UART Lite and a shared Mailbox as the only peripherals.

The Mailbox resource utilization for various parameter combinations measured with Virtex-6 as the target device are detailed in Table 27.

Parameter Va	alues (other pa	Device Resources				Performan ce		
C_ASYNC_CLKS	C_INTERCONNECT_PORT_0	C_INTERCONNECT_PORT_1	C_MAILBOX_DEPTH	Slices	Slice Flip-Flops	LUTs	BRAMs	F _{MAX} (MHz)
0	1	1	16	122	194	324	0	326
0	1	1	64	158	225	440	0	323
0	1	1	2048	143	304	358	4	291
0	1	2	16	149	218	328	0	322
0	1	3	16	92	132	233	0	324
0	1	4	16	77	132	236	0	314
1	1	1	16	161	307	394	0	309
1	1	1	64	180	387	501	0	320
1	1	1	2048	200	450	566	4	314
1	1	2	16	135	307	368	0	311
1	1	3	16	98	213	259	0	321
1	1	4	16	86	213	256	0	320

Table 27: Performance and Resource Utilization Benchmarks on Virtex-6 (xc6vlx240t-ff1156-3)
Table 27. I cholinance and nesource of inzation benchmarks on vintex of	

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx ISE Design Suite Embedded Edition software under the terms of the <u>Xilinx End User License</u>. The core is generated using the Xilinx ISE Embedded Edition software (EDK).

Information about this and other Xilinx LogiCORE IP modules is available at the <u>Xilinx Intellectual Property</u> page. For information on pricing and availability of other Xilinx LogiCORE modules and software, please contact your <u>local Xilinx sales representative</u>.

Reference Documents

- 1. IBM CoreConnect128-Bit Processor Local Bus, Architectural Specification (v4.6)
- 2. AMBA® AXI Protocol Version: 2.0 Specification (ARM IHI 0022C)
- 3. AMBA® 4 AXI4-Stream Protocol Version: 1.0 Specification (ARM IHI 0051A)

Revision History

The following table shows the revision history for this document:

Date	Version	Description of Revisions
9/21/10	1.0	Initial release.

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.