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This article introduces a new type of logistic regression model involving functional predictors of binary responses, and provides an exten-
sion of this approach to generalized linear models. The predictors are trajectories that have certain sample path properties in common with
Brownian motion. Time points are treated as parameters of interest, and confidence intervals are developed under prospective and retro-
spective (case-control) sampling designs. In an application to functional magnetic resonance imaging data, signals from individual subjects
are used to find the portion of the time course that is most predictive of the response. This allows the identification of sensitive time points
specific to a brain region and associated with a certain task, which can be used to distinguish between responses. A second application
concerns gene expression data in a case-control study involving breast cancer, where the aim is to identify genetic loci along a chromosome
that best discriminate between cases and controls.
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1. INTRODUCTION

This article investigates a logistic regression model involv-
ing a binary response, Y , and a predictor given by the value
of the trajectory of a continuous stochastic process, X = {X(t),
t ∈ [0,1]}, at some unknown time point. Specifically, we con-
sider the model

logit[P(Y = 1|X)] = α + βX(θ), (1)

and focus on the time point θ ∈ [0,1] as the target parame-
ter of interest. The intercept, α, and the slope, β , are scalars,
and logit(u) = log(u/(1 − u)). The trajectory of X is assumed
to be observed over a regular grid of time points, with a suffi-
ciently high resolution such that for statistical purposes, we can
assume that it is observed continuously. We call this a point-
impact model, because it involves only the value of X at θ ,
which represents a “sensitive” time point in terms of the rela-
tionship to the response. Generalized linear models (McCullagh
and Nelder 1989) can be treated in a similar manner.

A motivation for using such a model arises from a functional
magnetic resonance imaging (fMRI) experiment designed to
explore differences between individuals based on anxiety lev-
els (see Lindquist, Waugh, and Wager 2007; Lindquist 2008).
Subjects in the experiment were classified as either resilient
(Y = 1) or nonresilient (Y = 0) according to a written test.
Each of the 25 subjects (13 resilient and 12 nonresilient) per-
formed a 7-minute anxiety-provoking speech preparation task
(see Figure 1), during which a series of 215 fMRI images were
acquired. The design was an off-on-off design, with an anxiety-
provoking period occurring between lower-anxiety resting pe-
riods. The fMRI signal, X(t), from the ventromedial prefrontal
cortex (a region known to be related to anxiety) is shown in
Figure 2. It is of interest to furnish a time interval that most
clearly distinguishes between resilient and nonresilient individ-
uals. How can we find such a time interval? We propose the
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model (1) as a natural way of approaching this problem, and in
Section 2 we develop a confidence interval for the time parame-
ter θ .

The key idea behind our approach is to exploit sample path
properties of the trajectories, which from an inspection of Fig-
ure 2 appear to be locally similar to those of Brownian motion.
Our results are developed for trajectories that are “Brownian-
like” in the sense that X(θ0 + t)− X(θ0) is a standard two-sided
Brownian motion as a process in t over some neighborhood
of 0, where θ0 is the true value of θ .

Logistic regression plays an important role in case-control
studies (Prentice and Pyke 1979), in which the sampling is ret-
rospective. Our model involving Brownian-like trajectories is
naturally relevant in that setting as well. A particular example
arises from gene expression data, with the “time” variable cor-
responding to location along a chromosome. Figure 3 shows log
gene expression levels from the breast tissue of 10 breast can-
cer patients (from a sample of 40 cases) and 6 normal subjects
(controls), along a sequence of 776 loci from chromosome 1,
and 518 loci from chromosome 17. The latter chromosome con-
tains the best known breast cancer gene, the tumor suppressor
BRCA1, but loci in this gene are not included; the complete
data set was described by Richardson et al. (2006). Our ap-
proach can provide a framework for determining important ge-
netic loci for discriminating between breast cancer patients and
normal subjects.

A complementary approach to our proposed method is func-
tional regression modeling, which has been extensively devel-
oped in the functional data analysis literature (see, e.g., James
and Silverman 2005; Ramsay and Silverman 2006). Estimates
of the regression function in such models may be difficult to
interpret, however. Variable selection techniques for increasing
interpretability by eliminating “unnatural wiggles” in the esti-
mates have been recently introduced for functional linear mod-
els (James, Wang, and Zhu 2009). In contrast, our approach is
based on finding interpretable time points that influence the re-
sponse. In some applications there are scientific reasons to be-
lieve that there are only a small number of sensitive time points,
which cannot be captured by the integral used in functional
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Figure 1. A schematic of the experimental task design for the fMRI
study of Lindquist, Waugh, and Wager (2007). Subjects were informed
that they were to be given 2 minutes to prepare a 7-minute speech, topic
of which would be revealed to them during scanning. After the start of
fMRI acquisition, there was 2 minutes of resting baseline. At the end of
this period, subjects viewed an instruction slide for 15 seconds that de-
scribed the speech topic. After 2 minutes of silent preparation, another
instruction screen appeared for 15 seconds that informed subjects that
they would not have to give the speech. An additional 2-minute period
of resting baseline followed, completing the functional run. Images
were acquired every 2 seconds throughout the course of the run.

regression. An example of such point-impact causality arises
with fMRI data, in which shifts in the onset time of brain ac-
tivation have been observed across different age cohorts (see
D’Esposito, Deouell, and Gazzaley 2003). In such a situation,
functional regression will be misleading, whereas our approach
will specifically detect such shifts. Our simulation studies and
real data examples given in Sections 3 and 4 confirm this. For
both the fMRI and gene expression examples, our model gives
results that are both sensible and interpretable in the context of
application, whereas the functional estimates are difficult to in-
terpret. There is a clear distinction between the roles of the two
approaches; if the influence of the trajectories is spread over the
time course, or if the aim is prediction (or classification), then
functional logistic regression is suitable, but if the influence is
concentrated at sensitive time points and interpretation is the
overriding concern, then our approach is more suitable.

Another important area of application arises in genome-wide
studies involving the expression of multiple genes, when more
than one location is expected to influence the response. In such
a case it is of interest to expand the point-impact model (1) to
allow multiple sensitive time points, as in

logit[P(Y = 1|X)] = α +
p∑

j=1

βjX(θj), (2)

where 0 < θ1 < · · · < θp < 1 and p is a (known) upper bound
on the number of locations. When the βj’s correspond to values
of a continuous function restricted to a fine grid, this approxi-
mates the functional logistic regression model discussed earlier.
When the number of nonzero components, βj (i.e., the number
of point-impacts) is known to be small but p is large, a lasso-
type penalty can be used to regularize the problem and provide
a sparse collection of the θj. The confidence interval developed
in Section 2 naturally extends to this setting, but for ease of
presentation here we restrict attention to a single sensitive time
point.

2. ESTIMATION OF SENSITIVE TIME POINTS

In this section we introduce estimators for sensitive time
points and derive the asymptotic distribution for three separate
cases. We begin with logistic regression for both prospective
and retrospective sampling, and then extend the theory to gener-
alized linear models. Finally, we develop confidence intervals.

2.1 Prospective Sampling

In this case the data consist of a random sample of n observa-
tions from the joint distribution of X and Y , and the maximum
likelihood estimator of the parameters in (1) is given by

(θ̂n, α̂n, β̂n) = arg max
θ,α,β

Mn(θ,α,β), (3)

where the log-likelihood function is Mn(θ,α,β) = Pn[mθ,α,β ],
mθ,α,β(X,Y) = Y[α+βX(θ)]− log

[
1+exp(α+βX(θ))

]
, (4)

and Pn is the empirical distribution of the data on (X,Y).
The large-sample distribution of θ̂n is given by the following

result, in which θ0 denotes the true value of θ .

Theorem 2.1. If X(θ0 + t) − X(θ0) is a standard two-sided
Brownian motion (as a process in t for 0 ≤ θ0 + t ≤ 1) that is
independent of X(θ0), 0 < θ0 < 1, and β $= 0, then

n(θ̂n − θ0) →d λ−1 arg max
t∈R

(B(t) − |t|/2),

where B is a standard two-sided Brownian motion and λ =
β2E[Var(Y|X)].

(a) (b)

Figure 2. The fMRI signal over the ventromedial prefrontal cortex in reaction to an anxiety-provoking task for resilient (a) and nonresilient (b)
subjects. The black line at the bottom of each plot indicates a 95% confidence interval for θ .
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Figure 3. Log gene expression levels for 10 breast cancer cases (left column) and 6 normal controls (right column) at 776 loci along chro-
mosome 1 (top row), and 518 loci along chromosome 17 (bottom row). The black line at the bottom of each plot indicates a 95% confidence
interval for θ .

The main assumption of this theorem, that the increment of X
about θ0 is a two-sided Brownian motion, independent of X(θ0),
can be relaxed to the extent that it is needed only locally, in a
neighborhood of θ0. A standard Brownian motion X approxi-
mately satisfies this property in a small neighborhood of θ0, be-
cause the behavior of the increment of X around θ0 is affected
only slightly by the constraint X(0) = 0 when θ0 is sufficiently
far from 0.

Another way in which the conditions of the theorem can
be relaxed is that the infinitesimal variance of the two-sided
Brownian motion does not need to be 1 (as with standard
Brownian motion), but can take an arbitrary value v > 0. The es-
timated quadratic variation, v̂i, of the ith trajectory Xi(t) should
be used to normalize the sample paths before analysis by replac-
ing Xi(t) by Xi(t)/

√
v̂i. In some cases, it also may be suitable to

calibrate the mean of each trajectory, as discussed in connection
with the analysis of the fMRI data in Section 4.

The rate of convergence of θ̂n is controlled by the Hurst ex-
ponent of the trajectories, H, which for Brownian motion is
H = 0.5. The Hurst exponent could be estimated (Beran 1994;
Embrechts and Maejima 2002), and if it were found to deviate
significantly from 0.5, either moving averages or differences

could be applied before fitting the model (to bring the trajec-
tories into accordance with the assumption involving Brownian
increments). If such manipulation of the data is considered un-
appealing, then an alternative could be to extend our approach
to the case where the increments of X are locally two-sided
fractional Brownian motion with 0 < H ≤ 1. The convergence
rate would then become n1/(2H), and, given sufficient resolu-
tion in the data, H could be estimated locally (in the neighbor-
hood of θ̂n), leading to the construction of confidence intervals
for θ0. This extension would greatly relax the relatively restric-
tive assumption of Theorem 2.1, but at the cost of a more com-
plex limiting distribution. Another alternative could be to use
a model-based bootstrap as described in Section 3, which does
not require the assumption of Brownian behavior and could be
applied to the original trajectories without presmoothing. This
approach has been developed by McKeague and Sen (2009) for
point impact linear regression.

A referee raised the question of how to test the adequacy of
the Brownian motion assumption. A simple procedure would be
to consider increments of X over a succession of small time in-
tervals and test whether they are uncorrelated. The multiple test-
ing problem caused by the large number of increments can be
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handled by adapting a bootstrap approach developed for high-
throughput gene expression assays in which it is of interest to
find sets of genes that have correlated expression profiles (see
Dudoit and van der Laan 2008, p. 360).

2.2 Retrospective Sampling

In case-control studies, the predictors are sampled retrospec-
tively for a sample of cases and a sample of controls; that is,
we have a sample from the conditional distribution of X given
Y = 1 and an independent sample from the conditional distrib-
ution of X given Y = 0. This gives a combined sample of size
n = n0 + n1, where n1,n0 are the sizes of the two samples.

Under the logistic regression model, the density of X(θ0)

for cases can be expressed using Bayes formula in the form
exp(ᾱ + βx)h(x), where h(x) is the density of X(θ0) for con-
trols (Prentice and Pyke 1979). Here ᾱ = α + log{(1 − π)/π},
where π = P(Y = 1) is the prevalence of cases in the popula-
tion. Adapting the approach of Qin and Zhang (1997) to the
present setting then leads to estimates [as in (3)] based on the
following semiparametric profile log-likelihood function:

Mn(θ, ᾱ,β) = ρP1
n[ᾱ + βX(θ)]

− (P0
n + ρP1

n) log
[
1 + ρ exp(ᾱ + βX(θ))

]
,

where P0
n and P1

n are the empirical distributions of the control
and case samples, respectively, and ρ = n1/n0 is assumed to
remain fixed as n → ∞. The estimates of (ᾱ,β) for fixed θ

based on this log-likelihood are identical to those of Prentice
and Pyke (1979). The following result gives the large-sample
behavior of θ̂n.

Theorem 2.2. If the assumptions of Theorem 2.1 hold for
both cases and controls, then

n(θ̂n − θ0) →d λ̄−1 arg max
t∈R

(B(t) − |t|/2),

where B is a standard two-sided Brownian motion and λ̄ is as
defined in the proof.

In contrast to the well-known result of Prentice and Pyke
(1979) showing that the limit distribution of the estimator of
(ᾱ,β) is the same as if the data had been obtained via prospec-
tive sampling, the foregoing result shows that θ̂n has a differ-
ent limit distribution. Although it is of the same form as in the
prospective case, the nuisance parameter is different (λ̄ $= λ).
Under both prospective and retrospective sampling, α̂n and β̂n
converge at

√
n-rate, are asymptotically normal (with the same

limit as though θ0 were known), and are asymptotically inde-
pendent of θ̂n.

2.3 Generalized Linear Models

In this section we show how the approach of Section 2.1
can be extended to generalized linear models (McCullagh and
Nelder 1989). We now model the conditional density of a scalar
response Y given X by a canonical exponential family

p(y|X) = exp
([

X(θ)y − b(X(θ))
]
/a(φ) + r(y,φ)

)

for some known functions a(·), b(·), and r(·, ·). Here φ is a dis-
persion parameter and p(·|X) is a density with respect to some
given Borel measure. The cumulant function, b, is assumed to

be twice continuously differentiable, and b′ is assumed to be
strictly increasing. In linear regression, φ is the variance of the
random error, whereas in logistic and Poisson regression, there
is no dispersion parameter. Previously we used the more gen-
eral expression α + βX(θ) in place of X(θ), but because α, β ,
and φ can be estimated separately after estimation of θ , to keep
the notation simple, here we treat θ as the only unknown para-
meter.

The log-likelihood, Mn(θ) = Pn[mθ ], is now based on
mθ (X,Y) = YX(θ) − b(X(θ)). As outlined in the Appendix, the
limiting behavior of the corresponding maximum likelihood es-
timator θ̂n is the same as that in Theorem 2.1, given the same
assumptions on X, except that the nuisance parameter λ is given
by the ratio of the expected curvature of the cumulant function
at X(θ0) and a(φ),

λ = Eb′′(X(θ0))/a(φ) = E[Var(Y|X)]/a(φ)2.

2.4 Confidence Intervals

Based on the foregoing results, a Wald-type confidence in-
terval for θ0 having 100(1 − γ )% nominal coverage is given
by

θ̂n ± (λ̂n)−1Zγ /2, (5)

where Zγ is the upper γ -quantile of arg maxt∈R(B(t) − |t|/2).
Here λ̂ is a consistent estimate of λ for prospective sampling,
or of λ̄ for logistic regression with retrospective sampling. Such
an estimator λ̂ is obtained by putting empirical distributions in
place of expectations and plugging in estimates of the relevant
parameters α, ᾱ, β , and θ into λ or λ̄.

A result of Bhattacharya and Brockwell (1976) shows that
the distribution function F of arg maxt∈R(B(t) − |t|/2) can be
expressed in terms of the standard normal distribution func-
tion ) as

F(x) = 1/2 + √
xe−x/8/

√
2π + 3ex)(−3

√
x/2)/2

− (x + 5))(−√
x/2)/2

for x ≥ 0. This distribution frequently arises in changepoint
problems under “contiguous asymptotics” (Yao 1987; Stryhn
1996; Müller and Song 1997). The foregoing expression allows
for the efficient computation of the upper quantiles of F and
gives Z0.05 = 7.687, Z0.025 = 11.033, and Z0.005 = 19.767.

For logistic regression with prospective sampling, we can
write λ = β2E[A/(A + 1)2], where A = exp[−(α + βX(θ0))].
When α and β are relatively small, λ is approximately β2/4.
Then, using the expression for the variance of F given by Stryhn
(1996), the standard error of θ̂n is roughly 5/(nβ2). Figure 4
shows plots (obtained via Monte Carlo) describing the behav-
ior of λ in the special case where X(θ0) ∼ N(0,σ 2), for varying
values of α, β , and σ 2.

The plots indicate that the parameter β has the greatest im-
pact on the value of λ. For fixed values of α and σ 2, λ increases
with the absolute value of β. For large values of β, the increase
is roughly linear. In the neighborhood of 0, λ is approximately
equal to β2/4. Thus for small values of β , the value of λ ap-
proaches 0, leading to a substantial widening of the confidence
interval for θ0. This is natural, because a value of β close to 0
implies that none of the time points has a major influence on
the response; the widened confidence interval reflects this fact.
Similar comments can be made for the case of retrospective
sampling.
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(a) (b) (c)

Figure 4. Plots of the value of the nuisance parameter λ as a function of the variance of X(θ0) with α = 0 and β = 1 (a), as a function of α

with σ 2 = 0.5 and β = 1 (b), and as a function of β with α = 0 and σ 2 = 0.5 (c).

3. SIMULATION STUDIES

In this section we report the results of five simulation stud-
ies that use standard Brownian motion to define the functional
predictor. We restrict attention to prospective sampling, but the
results are similar for retrospective sampling. The first simula-
tion illustrates the behavior of the estimators of α, β , and θ0
in repeated application of the method. The second simulation
studies the coverage probabilities of the proposed confidence
interval for θ0 and compares it with model-based bootstrap
confidence intervals. The third and fourth simulations are de-
signed to explore the relationships among the point-impact (PI)
model (1), the lasso, and the commonly used functional logistic
regression model

logit[P(Y = 1|X)] = α +
∫ 1

0
X(t)β(t)dt, (6)

where the regression function β(t) is treated nonparametrically;
in the sequel we refer to (6) as the functional-impact (FI)
model. The final simulation example studies the coverage prob-
abilities of the confidence interval for β in the PI model.

To fit the FI model, we use the S-PLUS 7.0 function fGLM
in the functionalData library, with a B-spline basis of order 4
(piecewise cubic). The uniform grid of observation times pro-
vides the knots, and the roughness penalty for β(t) is taken as
the L2-norm of its second derivative, with the smoothing para-
meter selected by leave-one-out cross-validation; no smooth-
ing is used in the initial step of representing the trajectories

in terms of the B-spline basis. For the lasso, we use the fast
and efficient coordinate descent algorithm implemented in the
R package glmnet (Friedman, Hastie, and Tibshirani 2008) to
calculate the lasso path diagram, in which the estimates of βj
in (2) are plotted against the magnitude of the constraint on
their +1-norm.

Simulation I. The data are generated from the PI model
with α = 0, β = 3, θ0 = 0.5, and n = 40. We restrict θ to
a uniform grid of 101 points in the interval [0,1], and the
Brownian predictors were generated over this grid using the
R function fbmSim from the fSeries package. The deviance
(−2 log-likelihood) is calculated along the grid, with α and β
successively replaced by their estimates corresponding to each
value of θ ; the grid point minimizing the deviance is then taken
as the estimate θ̂n. The results, displayed in Figure 5, highlight
the faster rate of convergence for θ̂n compared with α̂n and β̂n.

Simulation II. We next repeated Simulation I using a vari-
ety of choices for α, β , and n, keeping the value of θ0 fixed
at 0.5. For each combination, we calculated 100(1 − γ )% con-
fidence intervals according to (5) and determined the coverage
probability based on 10,000 replications; the results are given in
Table 1. At small sample sizes (e.g., n = 40), the coverage prob-
abilities are somewhat less than their nominal values. Accuracy
naturally improves with larger sample sizes and as β increases.
Table 2 gives corresponding results for the model-based boot-
strap in which the fitted PI model is used to create bootstrap
samples of the response; the coverage probabilities now fall on
the conservative side, but have a similar pattern of accuracy.

(a) (b) (c)

Figure 5. Simulation I: histograms of estimates of θ̂n (a), α̂n (b), and β̂n (c) from 10,000 replications.
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Table 1. Simulation II: Coverage probabilities of the proposed
confidence intervals for θ0 having nominal

coverage of 0.90, 0.95, and 0.99

γ = 0.90 γ = 0.95 γ = 0.99

n α β = 3 β = 6 β = 3 β = 6 β = 3 β = 6

40 0 0.868 0.847 0.920 0.911 0.980 0.969
1 0.858 0.850 0.912 0.914 0.980 0.968

80 0 0.879 0.902 0.928 0.935 0.979 0.982
1 0.884 0.897 0.928 0.954 0.980 0.984

Simulation III. A single sample was generated from the PI
model in Simulation I with n = 40. Figure 6 shows the results
of fitting the PI and FI models along with the lasso path dia-
gram. The 95% confidence interval for θ0 is 0.5 ± 0.071, which
is very accurate, as expected. The deviance plotted at each pos-
sible value of θ on the grid of time points has a remarkably
sharp global minimum at θ0. The estimate of β(t) achieves its
maximum at θ0, but gives the misleading impression that the ef-
fect of the predictor is spread out over much of the time course,
rather than being concentrated at θ0. This is perhaps not sur-
prising, because cross-validation is a prediction error rate crite-
rion, and so the smoothing causes the estimate to use as much
of the information along the time course as possible. The lasso
performs well, immediately picking out θ0, as indicated by the
arrow in the path diagram [Figure 6(c)].

Simulation IV. Consider the FI model for the spike-shaped
regression functions displayed in the first column of Figure 7.
In each case the estimate θ̂n (n = 40) coincides with one of the
initial selections of the lasso, and both are either identical or
close to the point t = 0.5 at which β(t) achieves its maximum.
The 95% confidence intervals based on θ̂n are 0.5 ± 0.034 for
the narrower spikes and on 0.54 ± 0.042 for the wider spikes.
The estimates based on the FI model, even though it is correctly
specified, wrongly suggest that the influence of the predictor is
significant over the whole time course. The estimates of β(t)
have maxima located close to t = 0.5, the location of the spikes,
but have no other features in common with β(t).

Attempts at using a higher-order derivative penalty for esti-
mating β(t) produced similar results to those shown in Figure 7.
Features of β(t) conceivably might be captured more accurately

Table 2. Simulation II: Coverage probabilities of (percentile)
bootstrap confidence intervals for θ0 having nominal coverage

of 0.90, 0.95, and 0.99, based on 1000 replications
and 1000 bootstrap samples

γ = 0.90 γ = 0.95 γ = 0.99

n α β = 3 β = 6 β = 3 β = 6 β = 3 β = 6

40 0 0.977 0.923 0.988 0.968 1.000 0.999
1 0.971 0.938 0.994 0.974 0.997 0.993

80 0 0.949 0.942 0.982 0.971 0.998 0.993
1 0.956 0.912 0.984 0.952 1.000 0.996

using wavelet bases and thresholding, but we have restricted at-
tention to the most commonly used approach to functional re-
gression.

Simulation V. Data were generated in the same way as in
Simulation II, except with X(t) = B(t + θ0)− B(θ0), where B is
two-sided Brownian motion; θ0 = 0.5 and X(θ0) ∼ N(0,0.5).
Confidence intervals for β are based on the

√
n-rate asymp-

totic normality of β̂n. The results, reported in Table 3, show
that these confidence intervals have accurate coverage except
when β = 0, in which case there is severe undercoverage. The
case β = 0, while important for testing whether there is any
effect of X, is outside the scope of our results, however. An
implicit simultaneous inference problem caused by minimizing
the deviance over θ appears when β = 0, but not otherwise. The
reason why simultaneous inference is not an issue when β $= 0
is that θ̂n converges at a much faster rate than β̂n, and thus the
inference for β is concentrated in a very small neighborhood
of θ0, and hypothesis testing is not needed over the whole range
of θ .

4. APPLICATIONS

In this section we illustrate our approach by applying it to
two real data sets. The first data set comes from the fMRI
study described in Section 1. Because only the relative change
in signal is important, the individual mean over the first rest-
ing period was removed from the entire time course for cali-
bration purposes. In addition, each trajectory was normalized
by the square root of its estimated quadratic variation. Finally,
each trajectory was smoothed with a moving average window

(a) (b) (c)

Figure 6. Simulation III: Deviance calculated as a function of θ . (a) The 95% confidence interval for θ0 is depicted by the solid line at the
bottom of the plot. (b) The estimated β(t) using the FI model with cross-validated roughness penalty. In each panel the vertical line indicates the
location of θ0. (c) In the lasso path diagram, the arrow indicates the path corresponding to the grid point indicated to its right.
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Figure 7. Simulation IV: The regression function β(t) is taken as two separate Gaussian probability distribution functions centered at t = 0.5
in the first column. The deviance as a function of θ and the 95% confidence interval based on θ̂n is shown in the second column. The esti-
mated β(t) with cross-validated roughness penalty is in the third column; the vertical line indicates the time point at which β(t) achieves its
maximum. The lasso path diagram (fourth column) is labeled as before.

width of 3 time units. This width was chosen to given an esti-
mated Hurst exponent of approximately 0.5 (corresponding to
Brownian motion). The resulting trajectories are displayed in
Figure 2. The trajectories of the 13 resilient subjects remain sta-
ble over the whole time course, but the nonresilient trajectories
show a clear increase around the time of the anxiety-provoking
task.

Figure 8 shows the results. The sensitive time point obtained
using the proposed model corresponds to the 84th time point,
which is 28 seconds into the anxiety-provoking period of the
task. Inspecting the trajectories for subjects in the nonresilient
group shown in Figure 2, it appears that this time point co-
incides with the peak activity in the ventromedial prefrontal
cortex. The 95% confidence interval for θ0 is 84 ± 5.4, as su-
perimposed onto the bottom portion of Figure 8(a). The 95%
confidence interval for the regression parameter β is −14.9 ±
13.5.

The FI model-based estimate of β(t) has a local extremum
just after the start of the anxiety-provoking period, but the in-
fluence of the predictor appears to be spread out over most of
the time course, even though the anxiety-provoking period does
not start immediately. The lasso first selects 87, then quickly

adds 84 (the PI selection), but is slow to add any further points
(and those that are added are widely dispersed over the time
course), suggesting that the PI model provides an adequate fit
to the data.

We next consider the case-control study involving breast
cancer patients, as described in the Introduction. For chromo-
some 1, before analysis, we took the natural logarithm of the
gene expression level and smoothed each of the resulting tra-
jectories with a moving average window of width 17. The top
row of Figure 3 shows the trajectories of a subsample of the
transformed data with breast cancer patients and normal sub-
jects separated. Results of the analysis are shown in the top row
of Figure 9. The 95% confidence interval for θ0 is 260 ± 27.8,
and that for β is 9.0 ± 8.0. The largest peak in the estimate of
β(t) again closely matches the estimate of θ0. The lasso path di-
agram confirms the PI selection of 260 but suggests that several
more loci may be involved as well.

For chromosome 17, the data were handled similarly, but
with a window of width 11 used in the smoothing step. The
results are shown in the bottom row of Figure 9. The 95% con-
fidence interval for θ0 is 76 ± 16.7, and that for β is 10.9 ± 9.6.

The lasso path diagram, along with the presence of multiple

Table 3. Simulation V: Coverage probabilities of confidence intervals for β having nominal coverage of 0.90, 0.95, and 0.99

γ = 0.90 γ = 0.95 γ = 0.99

n α β = 0 β = 3 β = 6 β = 0 β = 3 β = 6 β = 0 β = 3 β = 6

40 0 0.468 0.860 0.931 0.701 0.920 0.954 0.954 0.958 0.982
1 0.487 0.865 0.943 0.720 0.928 0.967 0.964 0.960 0.980

80 0 0.477 0.879 0.898 0.695 0.935 0.953 0.935 0.974 0.982
1 0.474 0.868 0.900 0.684 0.925 0.951 0.928 0.961 0.987
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(a) (b) (c)

Figure 8. Results for the fMRI data. (a) The deviance as a function of θ ; the 95% confidence interval for θ0 is depicted by a solid line along
the bottom of the plot. (b) The estimate of the regression function β(t) in the functional logistic regression model with cross-validated roughness
penalty; the vertical line indicates the location of θ̂n. (c) The lasso path diagram is labeled as before.

peaks in the estimate of β(t), now suggest that numerous loci
(beyond the PI selection) are involved.

5. DISCUSSION

In this article we have developed a point-impact (PI) logistic
regression model for use with “Brownian-like” predictors. We
expect this model to be useful when there are one or more sen-
sitive time points at which the trajectory has a strong effect on
the response. We have derived the rate of convergence, as well
as the explicit limiting distribution of estimators of such time
parameters in prospective and retrospective (case-control) set-
tings, and used these results to construct Wald-type confidence
intervals.

Our approach is complementary to standard functional lo-
gistic regression, which, although well adapted to classification

(prediction) problems, tends to oversmooth the estimate of the
regression function when there are localized effects, due to the
roughness penalty and the cross-validated choice of smoothing
parameter. In contrast, our approach allows the estimation of
point impact effects that would not be seen otherwise. It also
enhances interpretation of the lasso path diagram by providing
confidence intervals around sensitive time points selected by the
lasso. In contrast to the lasso, however, our approach is not de-
signed to search for a sparse collection of sensitive time points,
because it only applies when X is known to have some effect on
the response, that is, β $= 0. In our approach, the implicit multi-
ple testing problem concerning β is avoided, because of the fast
rate of convergence of θ̂n.

To increase the flexibility of our approach, it would be of
interest to preclude the need to presmooth the trajectories by

Figure 9. Results for the gene expression data. Chromosome 1 is in the top row; chromosome 17 is in the bottom row. The deviance calculated
as a function of θ (first column); 95% confidence intervals for θ0 are depicted by solid horizontal lines along the bottom of each plot. The estimate
of β(t) in functional logistic regression with cross-validated roughness penalty (second column); the vertical lines indicate the location of θ̂n.
The lasso path diagrams (third column) are labeled as before.
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extending our results to fractional Brownian motion locally in
the neighborhood of θ0, as discussed in Section 2.1. Instead of
Wald-type confidence intervals, however, in this case it would
be preferable to pursue a model-based bootstrap approach, be-
cause the rate of convergence of θ̂n depends on the Hurst expo-
nent, which is unlikely to be known in practice; see McKeague
and Sen (2009).

Going beyond the PI model, it also would be interesting to
allow for the estimation of sensitive domains, rather than sensi-
tive time points, in the time course. In this situation, we would
use

logit[P(Y = 1|X)] = α +
p∑

j=1

∫ rj

lj
βj(t)dX(t),

where βj(t) is a nonparametric regression function with sup-
port on [lj, rj], where lj < rj are parameters. If the time intervals
[lj, rj] are small or the βj(t) are relatively constant, then this
model essentially reduces to (2). Otherwise, this model is not
covered by our approach and would require a separate develop-
ment.

APPENDIX: PROOFS

The proofs presented herein are based on the theory of M-estimation
(see van der Vaart and Wellner 1996, chap. 3.2) and involve (a) estab-
lishing the rate of convergence, (b) establishing the weak convergence
of a suitably localized version of the empirical criterion function Mn,
and (c) applying the arg max continuous mapping theorem.

It can be shown that θ̂n is asymptotically independent of α̂n and β̂n,
which converge at

√
n-rate, and that its limiting distribution is the same

as if α and β were known. The proof of this involves mixed rates as-
ymptotics (cf. Radchenko 2008). Similar results arise in changepoint
problems (see, e.g., Koul, Qian, and Surgailis 2003). From now on, we
fix α and β , and treat the log-likelihood function as a function solely
of θ . We start with the proof of Theorem 2.1, and then explain what
modifications are needed in the other two settings.

Rate of Convergence

The first step is to identify a nonnegative function, d(·, θ0), on the
parameter space so that the criterion function M(θ) = E[mθ ] satisfies

M(θ) − M(θ0) ! −d2(θ, θ0) (A.1)

for all θ ∈ [0,1], where ! means “is bounded above up to a universal
constant.”

Recall that in maximum likelihood estimation, the expected log-
likelihood, M, is usually twice-differentiable, M′(θ0) = 0, and the
Fisher information M′′(θ0) > 0. Thus a Taylor expansion shows
that M is approximately parabolic in the neighborhood of θ0, and that
the best choice for d is the usual Euclidean distance. In the present set-
ting, however, the Brownian-like trajectories X are not smooth enough
to ensure that M is differentiable.

Using the model (1) to find the expectation of the first term in mθ ,
we have

M(θ) − M(θ0) = E
(

β[X(θ) − X(θ0)]eα+βX(θ0)

1 + eα+βX(θ0)

)

− E log
(

1 + eα+βX(θ)

1 + eα+βX(θ0)

)
.

The first term above vanishes by the assumption that the increments
of X about θ0 are independent of X(θ0), leading to

M(θ) − M(θ0) = −E log
(

A + eβσZ

A + 1

)
≡ −g(σ )

for σ = √|θ − θ0| ≥ 0, where Z ∼ N(0,1) and A = exp[−(α +
βX(θ0))] are independent. Note that g is twice continuously differ-
entiable with g(0) = 0,

g′(σ ) = E
(

βZeβσZ

A + eβσZ

)
≥ 0,

(A.2)

g′′(σ ) = E
(

Aβ2Z2eβσZ

(A + eβσZ)2

)
> 0

for σ ≥ 0. It follows that g(σ ) " σ 2 for σ ∈ [0,1], and (A.1) holds
with the Hölder metric

d(θ, θ0) =
√

|θ − θ0|. (A.3)

We next apply the following special case of a result of van der Vaart
and Wellner (1996, thm. 3.2.5), giving a lower bound on the rate of
convergence of the M-estimator θ̂n in terms of the continuity modu-
lus wn(δ) = supd(θ,θ0)<δ |Gn(mθ − mθ0)|, where Gn = √

n(Pn − P)

is the empirical process. In this result, outer expectation E∗ and outer
probability P∗ are used to avoid measurability problems.

Proposition A.1. Suppose that (A.1) holds, and that E∗[wn(δ)] !
δα for every δ > 0, where 0 < α < 2. Then n1/(4−2α)d(θ̂n, θ0) =
O∗

p(1).

Note that α = 1 gives the usual n1/2-rate with respect to the met-
ric d. The foregoing moment condition can be checked using an in-
equality from empirical process theory,

E∗[wn(δ)] ! J[](1, Mδ,L2(P)){EM2
δ }1/2, (A.4)

where J[](1, Mδ,L2(P)) is the bracketing entropy integral of the class
of functions Mδ = {mθ − mθ0 : d(θ, θ0) < δ} and Mδ is an envelope
function for Mδ (cf. van der Vaart and Wellner 1996, p. 291).

The following lemma shows that mθ is “Lipschitz in parameter”
and consequently that J[](1, Mδ,L2(P)) < ∞ for all δ > 0 (see van
der Vaart and Wellner 1996, p. 294).

Lemma A.1. Under the conditions of Theorem 2.1, if 0 < α < 1/2,
then there is a random variable L with finite second moment such that

|mθ1 − mθ2 | ≤ L|θ1 − θ2|α (A.5)

for all θ1, θ2 ∈ [0,1] a.s.

Proof. Two-sided Brownian motion B has trajectories that are Lip-
schitz of any order α < 1/2, in the sense that

|B(t) − B(s)| ≤ K|t − s|α ∀t, s ∈ [−1,1] (A.6)

a.s., where K has moments of all orders. This is a consequence of the
proof of Kolmogorov’s continuity theorem, see theorem 2.2 of Revuz
and Yor (2006). With mθ given by (4), and writing B(t) = X(θ0 + t) −
X(θ0), which is a two-sided Brownian motion, by hypothesis,

∣∣mθ1 − mθ2

∣∣ ≤ 2|β||X(θ1) − X(θ2)|
= 2|β||B(θ1 − θ0) − B(θ2 − θ0)|
≤ 2K|β||θ1 − θ2|α, (A.7)

where the first inequality uses the fact that the derivative of x .→
log(1 + ex) is bounded between 0 and 1. We can then take L = 2K|β|.

From the foregoing lemma, Proposition A.1, and (A.4) we can see
that the rate of convergence is controlled solely by the L2-norm of
the envelope function Mδ , which we now evaluate. We first bound the
second moment of the continuity modulus Fδ = sup|θ−θ0|<δ |mθ −
mθ0 |. Using the first inequality in (A.7), we have

EF2
δ ≤ 4|β|E sup

|θ−θ0|<δ
|X(θ) − X(θ0)|2

= 4|β|E sup
|t|<δ

|B(t)|2 ! δ, (A.8)
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where the last step uses Doob’s inequality. In view of (A.3), the enve-
lope function is Mδ = Fδ2 , and we find {EM2

δ }1/2 ! δ2, which trans-
lates to rate rn = n with respect to the usual Euclidean distance. Once
we determine the rates of convergence, the next step is to identify
the limit distribution in each case by localizing the criterion func-
tion.

Localizing the Criterion Function

Given the rate of convergence rn, write rn(θ̂n − θ0) = ĥn =
arg maxh∈R M̃n(h), where

M̃n(h) = sn[Mn(θ0 + h/rn) − Mn(θ0)], h ∈ R. (A.9)

We need to show that there exists an appropriate scaling sn such
that M̃n converges weakly to a nondegenerate limit process M̃ in the
space Bloc(R) of locally bounded functions on R equipped with the
topology of uniform convergence on compacta. Then the argmax con-
tinuous mapping theorem, which is applicable because ĥn = O∗

p(1),

implies that ĥn converges in distribution to the (unique) maximizer
of M̃.

Setting sn = rn = n and centering Mn by its mean gives

M̃n(h) = n(Pn − P)
(
mθ0+h/n − mθ0

)
+ nP

(
mθ0+h/n − mθ0

)

= βGn[YZn(h)] − √
nGn log

[
A + eβZn(h)/

√
n

A + 1

]

− ng(
√

|h|/n), (A.10)

where Zn(h) ≡ √
n[X(θ0 + h/n) − X(θ0)]. Using the hypothesis of the

theorem, Zn(h) =d
√

nB(h/n) =d B(h), as processes, where the last
step follows from the self-similarity property of two-sided Brownian
motion, it follows that the second term in (A.10) (without the minus
sign) can be written as

√
nGn log

[
1 + eβZn(h)/

√
n − 1

A + 1

]
= βGn[Zn(h)/(A + 1)] + op(1),

where we have used log(1 + x) = x + O(x2) and ex = 1 + x + O(x2) as
x → 0. The difference between the first term in (A.10) and first term in
the foregoing display is

βGnZn(h)[Y − 1/(A + 1)] =d βB(h)

(
1
n

n∑

i=1

[Yi − 1/(Ai + 1)]2
)1/2

→d βcB(h),

where c2 = E[Var(Y|X)] and we have used the fact that (A,Y) is inde-
pendent of Zn. The third term in (A.10) (without the minus sign) tends
to g′′(0)|h|/2. Noting that

E[Var(Y|X)] = E
[

1
(A + 1)

(
1 − 1

(A + 1)

)]

= E
[

A

(A + 1)2

]
= g′′(0)/β2,

with the last step following from (A.2), we conclude that M̃n converges
weakly to M̃ in the space Bloc(R), where M̃(h) = βcB(h)−β2c2|h|/2.
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2

The rate of convergence is again n, which can be seen using essen-
tially the same argument as before. Putting sn = rn = n1 in the case-
control version of the localized criterion function (A.9) gives, along

the lines of (A.10),

M̃n(h) = βρG1
n
[
Zn1 (h)

]
− ρ

√
n1G1

n log
[

A + ρeβZn1 (h)/
√

n1

A + ρ

]

− n1√
n0

G0
n log

[
A + ρeβZn1 (h)/

√
n1

A + ρ

]

− n1ρg1(
√

|h|/n1) − n1g0(
√

|h|/n1), (A.11)

where Gj
n = √nj(P

j
n −Pj), j = 0,1, are the empirical processes for the

two samples (n0 controls, n1 cases), and

gj(σ ) = Pj log
(

A + ρeβσZ

A + ρ

)
.

Here Z ∼ N(0,1) and A = exp[−[ᾱ + βX(θ0))] are independent un-
der Pj by the hypothesis of the theorem. Note the slightly different
definition of A in the case-control setting. Using similar steps as in the
previous proof, we see that the combined first three terms in (A.11) are
asymptotically equivalent to

βρG1
nZn1 (h)[1 − ρ/(A + ρ)] − β

√
ρG0

nZn1(h)[ρ/(A + ρ)]

=d βρB1(h)
{
P1

n[1 − ρ/(A + ρ)]2
}1/2

− β
√

ρB0(h)
{
P0

n[ρ/(A + ρ)]2
}1/2

→d β
√

ρc1B(h),

where B0 and B1 are independent two-sided Brownian motions and

c2
1 = ρP1[1 − ρ/(A + ρ)]2 + P0[ρ/(A + ρ)]2.

Note that

n1gj(
√

|h|/n1) → g′′
j (0)|h|/2 = β2ρPj[A/(A + ρ)2]|h|/2,

giving the limits of the last two terms in (A.11), so

M̃n(h) →d β
√

ρc1B(h) − β2ρc2|h|/2,

where

c2 = (P0 + ρP1)[A/(A + ρ)2].
We conclude that

n(θ̂n − θ0) = (1 + 1/ρ)n1(θ̂n − θ0)

→d λ̄−1 arg max
t∈R

(B(t) − |t|/2),

where λ̄ = β2ρ2c2
2/[(1 + ρ)c2

1]. This completes the proof of Theo-
rem 2.2.

Generalized Linear Models

To extend Theorem 2.1 to the GLM setting, we make use of two
well-known formulas from the theory of canonical exponential fami-
lies: E(Y|X) = b′(X(θ)) and var(Y|X) = a(φ)b′′(X(θ)). From the first
of these formulas, the criterion function M(θ) = E[mθ ] satisfies

M(θ) − M(θ0) = E
[
(X(θ) − X(θ0))b′(X(θ0))

]

− E
[
b(X(θ)) − b(X(θ0))

]
.

The first expectation above vanishes using the hypothesis about X in
the statement of the theorem. The second expectation requires an extra
argument beyond that needed for the proof of Theorem 2.1. From Itô’s
formula,

b(X(θ)) − b(X(θ0)) =
∫ θ

θ0

b′(X(u))dX(u) + 1
2

∫ θ

θ0

b′′(X(u))du,

and because the Itô integral above has zero expectation (under mild
conditions to ensure that it exists), we obtain

M(θ) − M(θ0) = −1
2

∫ σ 2

0
Eb′′(

√
uZ + X(θ0))du ≡ −g(σ ),
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where σ = √|θ − θ0| ≥ 0 and Z ∼ N(0,1). Note that g(0) = g′(0) = 0
and g′′(0) = Eb′′(X(θ0)) = c2/a(φ), where c2 = E[Var(Y|X)]. The re-
maining steps to obtain the rate of convergence are similar to those in
the logistic regression case, except that Lemma A.1 and (A.8) must
be extended. This can be done under mild conditions using Itô’s for-
mula, applying theorem 2.1 of Revuz and Yor (2006), and bounding
the higher-order moments of the Itô integral using the Burkholder–
Davis–Gundy inequality.

For the last part of the proof, the localized criterion function (A.10)
now decomposes as

M̃n(h) = Gn[YZn(h)] − √
nGn

[
b(X(θ0) + Zn(h)/

√
n) − b(X(θ0))

]

− ng(
√

|h|/n)

= Gn
[
Zn(h)(Y − b′(X(θ0)))

]
− g′′(0)|h|/2 + op(1)

→d cB(h) − c2|h|/(2a(φ)),

where the second line is based on a first-order Taylor expansion of b
around X(θ0) and a second-order expansion of g around 0, and the last
line uses the independence of Zn and (b′(X(θ0)),Y).

[Received September 2008. Revised April 2009.]
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