
Logix5000™
Controllers
Common
Procedures
1756 ControlLogix®,
1769 CompactLogix™,
1789 SoftLogix™,
1794 FlexLogix™, PowerFlex
700S with DriveLogix

Programming Manual

Important User Information Solid state equipment has operational characteristics differing from those of
electromechanical equipment. Safety Guidelines for the Application,
Installation and Maintenance of Solid State Controls (Publication SGI-1.1
available from your local Rockwell Automation sales office or online at
http://www.ab.com/manuals/gi) describes some important differences
between solid state equipment and hard-wired electromechanical devices.
Because of this difference, and also because of the wide variety of uses for
solid state equipment, all persons responsible for applying this equipment
must satisfy themselves that each intended application of this equipment is
acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for
indirect or consequential damages resulting from the use or application of
this equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with
any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to
use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

WARNING
Identifies information about practices or circumstances
that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property
damage, or economic loss.

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

ATTENTION Identifies information about practices or circumstances
that can lead to personal injury or death, property
damage, or economic loss. Attentions help you:

• identify a hazard

• avoid a hazard

• recognize the consequence

SHOCK HAZARD Labels may be located on or inside the drive to alert
people that dangerous voltage may be present.

BURN HAZARD Labels may be located on or inside the drive to alert
people that surfaces may be dangerous temperatures.

Summary of Changes

Introduction This release of this document contains new and updated information.
To find new and updated information, look for change bars, as shown
next to this paragraph.

Updated Information The document contains the following changes:

Section: Change: Page:

Describe a User-Defined Data Type Use the pass through of descriptions to reduce the time it takes to
document a project.

3-21

Prioritize Periodic and Event Tasks Corrections to the example of how tasks interrupt one another 4-7

Choose the Trigger for an Event Task Addition of consumed tag trigger for CompactLogix, FlexLogix, and
DriveLogix controllers

4-20

Export/Import Ladder Logic Create a file that contains the ladder logic, tags, data types, parameter
values, and documentation for a specific function, operation, or process.

8-14

Develop a Fault Routine • Integration of the Power-Up Handler information into this section.
This was done to clarify when a major fault occurs during
power-up and how to handle it, if required.

• Clarification regarding a fault due to a mode change

15-1

Clear a Major Fault During Prescan Some controllers now automatically clear a fault that is due an array
subscript that is beyond the range of the array (out of range) during
prescan.

15-8

Create a User-Defined Major Fault If you create a user-defined major fault, use a value between 990 to 999
for the fault code. These codes are reserved for user-defined faults.

15-13

Minor Fault Codes Correction to missing fault codes for the GSV/SSV instructions 16-4

Choose a Controller That Has Nonvolatile
Memory

Addition of the following controllers:

• CompactLogix5331

• CompactLogix5332E

• CompactLogix5335CR

• ControlLogix5560M03SE

• DriveLogix5730

17-3

Estimate Memory Information Offline Estimate the free and used memory of a controller while still offline 19-2

View Run Time Memory Information View the free and used memory of a controller while the controller is
running

19-3
1 Publication 1756-PM001G-EN-P - March 2004

Summary of Changes 2
Publication 1756-PM001G-EN-P - March 2004

Preface

Purpose of this Manual This manual guides the development of projects for Logix5000™
controllers. It provides step-by-step procedures on how to perform
the following tasks, which are common to all Logix5000 controllers:

• Organize Tasks, Programs, and Routines

• Organize Tags

• Design a Sequential Function Chart

• Program Routines using ladder logic, function block diagram,
sequential function chart, or structured text programming
languages

• Communicate with Other Controllers

• Communicate and Process ASCII Information

• Handle Faults

The term Logix5000 controller refers to any controller that is based on
the Logix5000 operating system, such as:

• CompactLogix™ controllers

• ControlLogix® controllers

• DriveLogix™ controllers

• FlexLogix™ controllers

• SoftLogix5800™ controllers

This manual works together with user manuals for your specific type
of controller. The user manuals cover tasks such as:

• Place and configure I/O

• Communicate with devices over various networks

• Maintain the battery

Who Should Use this
Manual

This manual is intended for those individuals who program
applications that use Logix5000 controllers, such as:

• software engineers

• control engineers

• application engineers

• instrumentation technicians
1 Publication 1756-PM001G-EN-P - March 2004

Preface 2
When to Use this Manual Use this manual when you perform these actions:

• develop the basic code for your application

• modify an existing application

• perform isolated tests of your application

As you integrate your application with the I/0 devices, controllers, and
networks in your system:

• Refer to the user manual for your specific type of controller.

• Use this manual as a reference, when needed.

How to Use this Manual This manual is divided into the basic tasks that you perform while
programming a Logix5000 controller.

• Each chapter covers a task.

• The tasks are organized in the sequence that you will typically
perform them.

As you use this manual, you will see some terms that are formatted
differently from the rest of the text:

Text that is: Identifies: For example: Means:

Italic the actual name of an item that you
see on your screen or in an example

Right-click User-Defined … Right-click on the item that is named
User-Defined.

bold an entry in the “Glossary” Type a name … If you want additional information, refer
to name in the “Glossary.”

If you are viewing the PDF file of the
manual, click name to jump to the
glossary entry.

courier information that you must supply
based on your application (a
variable)

Right-click
name_of_program …

You must identify the specific program in
your application. Typically, it is a name or
variable that you have defined.

enclosed in brackets a keyboard key Press [Enter]. Press the Enter key.
Publication 1756-PM001G-EN-P - March 2004

Table of Contents

Chapter 1
Getting Started Using This Chapter . 1-1

Create a Project. 1-1
Create a Project . 1-2
Configure a Project . 1-3

Explore a Project. 1-4
Controller Organizer . 1-6

Create Routines. 1-7
Define a Routine for Each Section of Your Machine or Process
1-7
Identify the Programming Languages That Are Installed. 1-7
Choose a Programming Language for Each Section 1-8
Divide Each Routine Into More Meaningful Increments . 1-9
Create a Routine . 1-10
Open a Routine . 1-11

Verify a Project . 1-12
Save a Project . 1-12
Configure a Communication Driver 1-13
Download a Project to the Controller 1-14
Select a Mode for the Controller . 1-16
Manually Clear a Major Fault . 1-17
Configure the Execution of a Task 1-18

Configure a Task . 1-19
Create Multiple Programs . 1-20

Create a Program . 1-20
Configure a Program . 1-21

Access Status Information . 1-22
Monitor Status Flags . 1-22
Get and Set System Data . 1-23

Adjust the System Overhead Time Slice 1-26
Adjust the System Overhead Time Slice 1-28

View Scan Time . 1-29
View Task Scan Time. 1-29
View Program Scan Time . 1-30

Adjust the Watchdog Time . 1-31
Adjust the Watchdog Timer for a Task 1-31

Chapter 2
Communicate with I/O Using This Chapter . 2-1

Configure an I/O Module . 2-1
Requested Packet Interval . 2-2
Communication Format . 2-3
Electronic Keying. 2-6

Address I/O Data . 2-7
Buffer I/O. 2-8

When to Buffer I/O . 2-8
i Publication 1756-PM001G-EN-P - March 2004

Table of Contents ii
Buffer I/O . 2-8

Chapter 3
Organize Tags Using this Chapter. 3-1

Defining Tags . 3-1
Tag Type. 3-2
Data Type . 3-3
Scope . 3-5

Guidelines for Tags . 3-7
Create a Tag . 3-9

Create a Tag Using a Tags Window 3-9
Create Tags Using Microsoft® Excel 3-10

Create an Array. 3-13
Create an Array . 3-16

Create a User-Defined Data Type. 3-17
Guidelines for User-Defined Data Types 3-19
Create a User-Defined Data Type 3-19

Describe a User-Defined Data Type 3-21
Turn Pass-Through and Append Descriptions On or Off 3-22
Paste a Pass-Through Description 3-22

Address Tag Data . 3-23
Assign Alias Tags . 3-24

Display Alias Information . 3-25
Assign an Alias . 3-26

Assign an Indirect Address . 3-27
Expressions . 3-29

Chapter 4
Manage Multiple Tasks Using This Chapter . 4-1

Select the Controller Tasks . 4-2
Use Caution in the Number of Tasks That You Use 4-5

Prioritize Periodic and Event Tasks 4-5
Additional Considerations. 4-6

Leave Enough Time for Unscheduled Communication 4-8
Avoid Overlaps . 4-9

Manually Check for Overlaps . 4-10
Programmatically Check for Overlaps 4-11

Configure Output Processing for a Task 4-13
Manually Configure Output Processing 4-15
Programmatically Configure Output Processing 4-16

Inhibit a Task . 4-17
Manually Inhibit or Uninhibit a Task. 4-17
Programmatically Inhibit or Uninhibit a Task. 4-19

Choose the Trigger for an Event Task 4-20
Using the Module Input Data State Change Trigger. 4-22
Publication 1756-PM001G-EN-P - March 2004

Table of Contents iii
How an I/O Module Triggers an Event Task 4-22
Make Sure Your Module Can Trigger an Event Task . . . 4-25
Checklist for an Input Event Task 4-26
Estimate Throughput . 4-28
Estimate Throughput . 4-30
Additional Considerations. 4-31

Using the Motion Group Trigger . 4-32
Checklist for a Motion Group Task 4-33

Using the Axis Registration Trigger 4-34
Checklist for an Axis Registration Task 4-35

Using the Axis Watch Trigger . 4-38
Checklist for an Axis Watch Task 4-39

Using the Consumed Tag Trigger. 4-42
Maintain the Integrity of Data . 4-44
Synchronize Multiple Controllers 4-45
Checklist for the Producer Controller 4-46
Checklist for the Consumer Controller 4-47
Producer Controller . 4-48
Consumer Controller . 4-49

Using the EVENT Instruction Trigger 4-50
Programmatically Determine if an EVENT Instruction
Triggered a Task . 4-51
Checklist for an EVENT Instruction Task 4-51

Create a Task . 4-53
Create an Event Task . 4-53
Create a Periodic Task . 4-54

Define a Timeout Value for an Event Task 4-55
Assign a Timeout Value to an Event Task 4-55
Programmatically Configure a Timeout 4-56
Programmatically Determine if a Timeout Occurs 4-57

Chapter 5
Design a Sequential Function
Chart

When to Use This Procedure . 5-1
How to Use This Procedure. 5-1
What is a Sequential Function Chart? 5-2
How to Design an SFC: Overview 5-4
Define the Tasks . 5-5
Choose How to Execute the SFC . 5-6
Define the Steps of the Process . 5-6

Follow These Guidelines . 5-7
SFC_STEP Structure . 5-8

Organize the Steps . 5-12
Overview . 5-12
Sequence. 5-14
Selection Branch . 5-15
Simultaneous Branch . 5-16
Publication 1756-PM001G-EN-P - March 2004

Table of Contents iv
Wire to a Previous Step . 5-17
Add Actions for Each Step . 5-18

How Do You Want to Use the Action? 5-18
Use a Non-Boolean Action . 5-18
Use a Boolean Action. 5-20
SFC_ACTION Structure. 5-20

Describe Each Action in Pseudocode 5-21
Choose a Qualifier for an Action . 5-23
Define the Transition Conditions . 5-24

Transition Tag . 5-26
How Do You Want to Program the Transition? 5-26
Use a BOOL Expression . 5-26
Call a Subroutine . 5-27

Transition After a Specified Time . 5-28
Turn Off a Device at the End of a Step 5-32

Choose a Last Scan Option. 5-32
Use the Don’t Scan Option. 5-34
Use the Programmatic Reset Option 5-35
Use the Automatic Reset Option 5-38

Keep Something On From Step-to-Step 5-40
How Do You Want to Control the Device? 5-40
Use a Simultaneous Branch . 5-41
Store and Reset an Action. 5-42
Use One Large Step . 5-44

End the SFC . 5-45
At the End of the SFC, What Do You Want to Do?. 5-45
Use a Stop Element . 5-45
Restart (Reset) the SFC . 5-46
SFC_STOP Structure . 5-47

Nest an SFC . 5-49
Pass Parameters . 5-50

Configure When to Return to the OS/JSR 5-50
Pause or Reset an SFC. 5-51
Execution Diagrams . 5-51

Chapter 6
Program a Sequential Function
Chart

When to Use This Procedure . 6-1
Before You Use This Procedure. 6-1
How to Use This Procedure. 6-2
Add an SFC Element . 6-3

Add and Manually Connect Elements 6-3
Add and Automatically Connect Elements 6-4
Drag and Drop Elements . 6-4

Create a Simultaneous Branch . 6-5
Start a Simultaneous Branch . 6-5
End a Simultaneous Branch . 6-5
Publication 1756-PM001G-EN-P - March 2004

Table of Contents v
Create a Selection Branch . 6-6
Start a Selection Branch . 6-6
End a Selection Branch . 6-7

Set the Priorities of a Selection Branch 6-8
Return to a Previous Step . 6-9

Connect a Wire to the Step. 6-9
Hide a Wire. 6-10
Show a Hidden Wire . 6-10

Rename a Step . 6-11
Configure a Step . 6-11

Assign the Preset Time for a Step 6-11
Configure Alarms for a Step . 6-12
Use an Expression to Calculate a Time 6-12

Rename a Transition . 6-14
Program a Transition. 6-14

Enter a BOOL Expression. 6-14
Call a Subroutine . 6-15

Add an Action. 6-16
Rename an Action. 6-16
Configure an Action . 6-17

Change the Qualifier of an Action. 6-17
Calculate a Preset Time at Runtime 6-18
Mark an Action as a Boolean Action 6-19

Program an Action . 6-19
Enter Structured Text . 6-19
Call a Subroutine . 6-21

Assign the Execution Order of Actions 6-22
Document the SFC . 6-23

Add Structured Text Comments 6-23
Add a Tag Description . 6-24
Add a Text Box . 6-25

Show or Hide Text Boxes or Tag Descriptions 6-26
Show or Hide Text Boxes or Descriptions. 6-26
Hide an Individual Tag Description 6-27

Configure the Execution of the SFC 6-28
Verify the Routine . 6-29

Chapter 7
Program Structured Text When to Use This Chapter. 7-1

Structured Text Syntax. 7-1
Assignments . 7-2

Specify a non-retentive assignment 7-3
Assign an ASCII character to a string. 7-4

Expressions . 7-4
Use arithmetic operators and functions 7-6
Use relational operators . 7-7
Publication 1756-PM001G-EN-P - March 2004

Table of Contents vi
Use logical operators . 7-9
Use bitwise operators. 7-10
Determine the order of execution. 7-10

Instructions. 7-11
Constructs. 7-12
IF...THEN . 7-13
CASE...OF. 7-16
FOR…DO. 7-19
WHILE…DO. 7-22
REPEAT…UNTIL . 7-25
Comments . 7-28

Chapter 8
Program Ladder Logic When to Use This Procedure . 8-1

Before You Use This Procedure. 8-1
How to Use This Procedure. 8-1
Definitions . 8-2

Instruction . 8-2
Branch . 8-2
Rung Condition . 8-4

Write Ladder Logic . 8-5
Choose the Required Instructions 8-5
Arrange the Input Instructions 8-6
Arrange the Output Instructions 8-7
Choose a Tag Name for an Operand. 8-8

Enter Ladder Logic . 8-10
Append an Element to the Cursor Location 8-10
Drag and Drop an Element . 8-11

Assign Operands. 8-11
Create and Assign a New Tag. 8-11
Choose a Name or an Existing Tag 8-13
Drag a Tag From the Tags Window 8-13
Assign an Immediate (Constant) Value 8-13

Export/Import Ladder Logic. 8-14
When You Import Rungs… . 8-14
Export Rungs. 8-15
Import Rungs. 8-16
Check Alias Tags . 8-16

Verify the Routine . 8-17

Chapter 9
Program a Function Block
Diagram

When to Use This Procedure . 9-1
Before You Use This Procedure. 9-1
How to Use This Procedure. 9-1
Identify the Sheets for the Routine 9-2
Publication 1756-PM001G-EN-P - March 2004

Table of Contents vii
Choose the Function Block Elements 9-3
Choose a Tag Name for an Element. 9-4
Define the Order of Execution. 9-5

Data Latching . 9-5
Order of Execution . 9-7
Resolve a Loop . 9-8
Resolve Data Flow Between Two Blocks 9-11
Create a One Scan Delay . 9-12
Summary . 9-12

Identify any Connectors . 9-13
Define Program/Operator Control 9-14
Add a Sheet . 9-18
Add a Function Block Element . 9-18
Connect Elements . 9-20

Show or Hide a Pin . 9-20
Wire Elements Together . 9-21
Mark a Wire with the Assume Data Available Indicator . 9-21

Assign a Tag . 9-22
Create and Assign a New Tag. 9-22
Rename the Tag of a Function Block 9-23
Assign an Existing Tag . 9-23

Assign an Immediate Value (Constant) 9-24
Use an IREF. 9-24
Enter a Value in the Tag of a Block 9-24

Connect Blocks with an OCON and ICON 9-25
Add an OCON. 9-25
Add an ICON. 9-25

Verify the Routine . 9-26

Chapter 10
Communicate with Other Devices Using This Chapter . 10-1

Connections . 10-1
Inhibit a Connection . 10-2
Manage a Connection Failure . 10-5

Produce and Consume a Tag. 10-9
Controllers and Networks that Support Produced/Consumed
Tags . 10-10
Connection Requirements of a Produced or Consumed Tag.
10-10
Organize Tags for Produced or Consumed Data 10-12
Adjust for Bandwidth Limitations 10-13
Produce a Tag . 10-14
Consume Data That Is Produced by Another Controller
10-15
Additional Steps for a PLC-5C Controller 10-17

Execute a Message (MSG) Instruction. 10-19
Publication 1756-PM001G-EN-P - March 2004

Table of Contents viii
Message Queue . 10-21
Cache List . 10-22
Unconnected Buffers . 10-23
Guidelines . 10-24

Get or Set the Number of Unconnected Buffers 10-25
Get the Number of Unconnected Buffers 10-25
Set the Number of Unconnected Buffers 10-26

Convert Between INTs and DINTs 10-28

Chapter 11
Produce a Large Array When to Use this Procedure . 11-1

Produce a Large Array. 11-2

Chapter 12
Communicate with an ASCII
Device

When to Use this Procedure . 12-1
How to Use This Procedure. 12-1
Connect the ASCII Device . 12-2
Configure the Serial Port . 12-3
Configure the User Protocol . 12-5
Create String Data Types . 12-8
Read Characters from the Device . 12-9
Send Characters to the Device . 12-14
Enter ASCII Characters . 12-21

Chapter 13
Process ASCII Characters When to Use this Procedure . 13-1

How to Use this Procedure . 13-1
Extract a Part of a Bar Code. 13-2
Look Up a Bar Code . 13-4

Create the PRODUCT_INFO Data Type. 13-5
Search for the Characters . 13-6
Identify the Lane Number. 13-8
Reject Bad Characters. 13-9
Enter the Product IDs and Lane Numbers 13-9

Check the Bar Code Characters . 13-10
Convert a Value . 13-12
Decode an ASCII Message . 13-14
Build a String . 13-18

Chapter 14
Force Logic Elements When to Use This Procedure . 14-1

How to Use This Procedure. 14-1
Precautions. 14-2

Enable Forces . 14-2
Disable or Remove a Force . 14-3
Publication 1756-PM001G-EN-P - March 2004

Table of Contents ix
Check Force Status . 14-4
Online Toolbar . 14-4
FORCE LED . 14-5
GSV Instruction . 14-5

What to Force . 14-6
When to Use an I/O Force . 14-6

Force an Input Value . 14-7
Force an Output Value. 14-7

Add an I/O Force . 14-8
When to Use Step Through . 14-9
Step Through a Transition or a Force of a Path. 14-9
When to Use an SFC Force . 14-9

Force a Transition . 14-9
Force a Simultaneous Path . 14-11

Add an SFC Force . 14-12
Remove or Disable Forces . 14-13

Remove an Individual Force. 14-13
Disable All I/O Forces . 14-14
Remove All I/O Forces. 14-14
Disable All SFC Forces . 14-14
Remove All SFC Forces . 14-14

Chapter 15
Handle a Major Fault Using this Chapter. 15-1

Develop a Fault Routine . 15-1
Choose Where to Place the Fault Routine 15-2
Create a Fault Routine for a Program 15-2
Create a Routine for the Controller Fault Handler 15-3
Create a Routine for the Power-Up Handler 15-4

Programmatically Clear a Major Fault 15-5
Create a Data Type to Store Fault Information. 15-5
Get the Fault Type and Code . 15-6
Check for a Specific Fault. 15-7
Clear the Fault . 15-7

Clear a Major Fault During Prescan 15-8
Identify When the Controller is in Prescan 15-8
Get the Fault Type and Code . 15-9
Check for a Specific Fault. 15-10
Clear the Fault . 15-11

Test a Fault Routine . 15-12
Create a User-Defined Major Fault 15-13

Create a Fault Routine for the Program 15-13
Configure the Program to Use the Fault Routine 15-14
Jump to the Fault Routine . 15-14

Major Fault Codes . 15-15
Publication 1756-PM001G-EN-P - March 2004

Table of Contents x
Chapter 16
Monitor Minor Faults When to Use This Procedure . 16-1

Monitor Minor Faults . 16-1
Minor Fault Codes. 16-4

Chapter 17
Store and Load a Project Using
Nonvolatile Memory

When to Use This Procedure . 17-1
How to Use This Procedure. 17-2
Before You Use Nonvolatile Memory 17-2

Choose a Controller That Has Nonvolatile Memory 17-3
Prevent a Major Fault During a Load. 17-4
Format a CompactFlash Card . 17-4
Determine How to Handle Firmware Updates 17-6
Choose When to Load an Image. 17-7
Examples. 17-8

Store a Project. 17-9
Configure the Store Operation 17-9
Store the Project . 17-11
Save the Online Project . 17-11

Load a Project . 17-12
Check for a Load . 17-14
Clear Nonvolatile Memory . 17-15

Check the Current Load Image Option 17-15
Change the Load Image Option 17-16
Clear the Project from the Controller. 17-16
Store the Empty Image. 17-16

Use a CompactFlash Reader. 17-18
Manually Change Which Project Loads from the
CompactFlash Card . 17-19
Manually Change the Load Parameters for a Project. . . 17-20

Chapter 18
Secure a Project When to Use This Procedure . 18-1

Use Routine Source Protection. 18-1
Choose the Level of Protection for Each Routine 18-4
Choose the Number of Source Keys 18-4
Define the Source Key or Keys. 18-5
Choose a File Location in Which to Store the Source Keys. .
18-5
Activate the RSLogix 5000 Source Protection Feature . . . 18-6
Create a File for the Source Keys 18-6
Protect a Routine with a Source Key 18-7
Remove Access to a Protected Routine 18-8
Disable Routine Source Protection 18-9
Gain Access to a Protected Routine. 18-11
Publication 1756-PM001G-EN-P - March 2004

Table of Contents xi
Use RSI Security Server to Protect a Project 18-13
Install RSI Security Server Software 18-13
Set Up DCOM . 18-14
Enable Security Server for RSLogix 5000 Software 18-14
Import the RSLogix5000Security.bak File 18-15
Define the Global Actions for Your Users 18-16
Define the Project Actions for Your Users 18-17
Add Users . 18-20
Add User Groups. 18-20
Assign Global Access to RSLogix 5000 Software. 18-21
Assign Project Actions for New RSLogix 5000 Projects . 18-22
Secure an RSLogix 5000 Project 18-23
Assign Access to an RSLogix 5000 Project 18-24
Refresh RSLogix 5000 Software, If Needed 18-25

Chapter 19
Determine Controller Memory
Information

When to Use This Chapter. 19-1
Determine What Memory Information You Want 19-1
Estimate Memory Information Offline. 19-2
View Run Time Memory Information 19-3
Write Logic to Get Memory Information 19-4

Get Memory Information from the Controller 19-4
Choose the Memory Information That You Want. 19-5
Convert INTs to a DINT . 19-6

Appendix A
Manage Multiple Messages Purpose . A-1

When to Use this Appendix. A-1
How to Use this Appendix . A-1
Message Manager Logic. A-2

Initialize the Logic . A-2
Restart the Sequence, If Required A-2
Send the First Group of MSGs A-2
Enable the Next Group of MSGs. A-3
Send the Next Group of MSGs A-3
Enable the Next Group of MSGs. A-4
Send the Next Group of MSGs A-4

Appendix B
Send a Message to Multiple
Controllers

Set Up the I/O Configuration . B-3
Define Your Source and Destination Elements B-4
Create the MESSAGE_CONFIGURATION Data Type . . . B-5
Create the Configuration Array B-6
Get the Size of the Local Array B-8
Load the Message Properties for a Controller. B-9
Publication 1756-PM001G-EN-P - March 2004

Table of Contents xii
Configure the Message . B-10
Step to the Next Controller . B-11
Restart the Sequence . B-11

Appendix C
IEC61131-3 Compliance Using This Appendix. C-1

Introduction . C-1
Operating System . C-2
Data Definitions . C-2
Programming Languages . C-3
Instruction Set. C-4
IEC61131-3 Program Portability . C-4
IEC Compliance Tables . C-5
Publication 1756-PM001G-EN-P - March 2004

Chapter 1

Getting Started

Using This Chapter This chapter provides preliminary information to help you get started
with a project for Logix5000™ controller.

Create a Project To configure and program a Logix5000 controller, you use
RSLogix™ 5000 software to create and manage a project for the
controller.

For this information or procedure See this page:

Create a Project 1-1

Explore a Project 1-4

Create Routines 1-7

Verify a Project 1-12

Save a Project 1-12

Configure a Communication Driver 1-13

Download a Project to the Controller 1-14

Select a Mode for the Controller 1-16

Manually Clear a Major Fault 1-17

Configure the Execution of a Task 1-18

Create Multiple Programs 1-20

Access Status Information 1-22

Adjust the System Overhead Time Slice 1-26

View Scan Time 1-29

Adjust the Watchdog Time 1-31

Term: Definition:

project The file on your workstation (or server) that stores the logic, configuration, data, and
documentation for a controller.

• The project file has an .ACD extension.

• When you create a project file, the file name is the name of the controller.

• The controller name is independent of the project file name. If you save a current
project file as another name, the controller name is unchanged.

• If the name of the controller is different than the name of the project file, the title
bar of the RSLogix 5000 software displays both names.
1 Publication 1756-PM001G-EN-P - March 2004

1-2 Getting Started
Create a Project

1. Start the RSLogix 5000 software.

2. From the File menu, select New.

3. Select the type of controller.

4. Choose the major revision of firmware for this controller.

5. Type a name for the controller.

6. Type a description of the operations that the controller performs
(optional).

7. Select the type of chassis (number of slots) that contains the
controller (not applicable to some controllers).

8. Select or type the slot number where the controller is installed
(not applicable to some controllers).

9. To store the file in a different folder (other than the default
Create In path), click Browse and select a folder.

10. Choose

42194

3.

5.

6.

7.

8.

9.

4.

Names:

• only alphabetic characters (A-Z or
a-z), numeric characters (0-9), and
underscores (_)

• must start with an alphabetic
character or an underscore

• no more than 40 characters

• no consecutive or trailing
underscore characters (_)

• not case sensitive
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-3
Configure a Project

To change the configuration of the controller, such as name, chassis
size, or slot number, use the Controller Properties dialog box.

1. On the Online toolbar, click the controller properties button.

2. Make the required changes.

3. Choose

42627

1.
Publication 1756-PM001G-EN-P - March 2004

1-4 Getting Started
Explore a Project A project includes the following basic components:

power-up handler

controller fault handler

task

task

program

program

program

controller tags
(global data)

task

program

project

other routines

main routine

I/O data

system-shared data

fault routine

program tags
(local data)

default (required) component

optional component

Legend
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-5
The components of a project work together as follows:

Project component: Definition:

Task A task provides scheduling and priority information for a set of one or more programs.

When you create a new project, RSLogix 5000 software automatically creates an initial task that is
configured to run all the time (continuous task). When the task completes a full scan, it restarts
immediately.

Program Each task requires at least one program.

• A task can have as many as 32 separate programs, each with its own program tags, main routine,
other routines, and an optional fault routine.

• Once a task is triggered (activated), all the programs assigned (scheduled) to the task execute in the
order in which they are displayed in the controller organizer.

• You schedule a program in only one task and cannot share a program among multiple tasks.

Routine Routines provide the executable code for the project in a controller (similar to a program file in a PLC or
SLC controller). Each routine uses a specific programming language, such as ladder logic.

Main Routine When a program executes, its main routine executes first. Use the main routine to call (execute) other
routines (subroutines). To call another routine within the program, use a Jump to Subroutine (JSR)
instruction.

Subroutine Any routine other than the main routine or fault routine. To execute a subroutine, use a Jump to Subroutine
(JSR) instruction in another routine, such as the main routine.
Publication 1756-PM001G-EN-P - March 2004

1-6 Getting Started
Controller Organizer

In RSLogix 5000 software, the controller organizer provides a
graphical overview of a project. When you create a project,
RSLogix5000 software automatically creates a default task, program,
and routine.

When you create a project, the name of the
project is the same as the name of the
controller.

If you rename the project or controller, both
names are shown.

default program
default task

default routine

controller organizer

name of the controller

To close a folder and hide its contents (collapse), do
one of the following:

• Double-click the folder.

• Select the folder and press the [←] key.

• Click the – sign.

To open a folder and display its contents (expand), do
one of the following:

• Double-click the folder.

• Select the folder and press the [→] key.

• Click the + sign.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-7
Create Routines Routines provide the executable code for the project in a controller.

Define a Routine for Each Section of Your Machine or Process

To make your project easier to develop, test, and troubleshoot, divide
it into routines (subroutines):

1. Identify each physical section of your machine or process.

2. Assign a routine for each of those sections.

Identify the Programming Languages That Are Installed

To determine which programming languages are installed on your
version of RSLogix 5000 software:

1. Start RSLogix 5000 software.

2. From the Help menu, choose About RSLogix 5000.

To add a programming language, see ControlLogix Selection Guide,
publication 1756-SG001.

Description of Your Machine or Process

Xxxxx xxxxx xxx
Xxxxx xxxxx xxx
Xxxxx xxxxx xxx

Xxxxx xxxxx xxx
Xxxxx xxxxx xxx
Xxxxx xxxxx xxx

Xxxxx xxxxx xxx
Xxxxx xxxxx xxx
Xxxxx xxxxx xxx

first section = routine 1

second section = routine 2

third section = routine 3
Publication 1756-PM001G-EN-P - March 2004

1-8 Getting Started
Choose a Programming Language for Each Section

For each section of your machine or process, choose an appropriate
programming language.

• Logix5000 controllers let you use the following languages:

– ladder logic

– function block diagram

– sequential function chart

– structured text

• Use any combination of the languages in the same project.

In general, if a section of your code represents: Then use this language:

continuous or parallel execution of multiple operations (not sequenced) ladder logic

boolean or bit-based operations

complex logical operations

message and communication processing

machine interlocking

operations that service or maintenance personnel may have to interpret in order
to troubleshoot the machine or process.

continuous process and drive control function block diagram

loop control

calculations in circuit flow

high-level management of multiple operations sequential function chart (SFC)

repetitive sequences of operations

batch process

motion control using structured text

state machine operations

complex mathematical operations structured text

specialized array or table loop processing

ASCII string handling or protocol processing
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-9
Divide Each Routine Into More Meaningful Increments

If a routine uses this
language:

Then: Example:

ladder logic

structured text

Break up large routines into several
smaller routines

To continuously execute several
complex boolean operations…

…create a separate routine for each
operation.

function block diagram
(FBD)

To control 4 valves, where each valve
requires feedback that it is in its
commanded position…

…make a separate sheet for each
valve.

sequential function chart
(SFC)

To perform the following sequence:
1. Fill a tank.
2. Mix the ingredients in the

tank.
3. Empty the tank…

…make each section (fill, mix, empty)
a separate step.

routine

routine

Within the FBD routine, make
a sheet for each functional

loop for a device (motor,
valve, etc.). sheet

routine

step

step

step

Break the SFC into steps.
Publication 1756-PM001G-EN-P - March 2004

1-10 Getting Started
Create a Routine

Each program requires at least one routine. Use a routine to execute
your logic in a specific programming language.

1. In the controller organizer, right-click the program that will
execute the routine and choose New Routine.

2. In the Name text box, type a name for the routine.

3. From the Type list, choose the programming language for the
routine

4. Choose

1.

2.

3.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-11
Open a Routine

This is the protection status.

If: Then:

Source Not Available To open the routine, your computer requires the
source key for the routine.

Source Not Available
(Viewable)

• You can only open and view the routine.
• You cannot make any changes or copy

any of contents of the routine.

Source Available You have full access to the routine.

Source Available
(Viewable)

You have full access to the routine.

To open a folder and show its contents, either:

• Double-click the folder.

• Click the + sign.

To open a routine, double-click the routine. If a routine is grayed-out, you
cannot open the routine.

source protection – The developer of the routine may have assigned a
source key to the routine. The source key limits access to the routine.

If the controller organizer lists source protection for a routine, then a source
key is assigned to the routine.

For this routine…

IMPORTANT If the source of a routine is unavailable, do not export the project.

• An export file (.L5K) contains only routines where the source code is available.

• If you export a project where the source code is not available for all routines, you
will not be able to restore the entire project.

TIP If a routine fails to open, your computer may not have the required programming
language installed.

• To determine which programming languages are installed on your computer, choose
Help ⇒ About RSLogix 5000.

• To add a programming language, see ControlLogix Selection Guide, publication
1756-SG001
Publication 1756-PM001G-EN-P - March 2004

1-12 Getting Started
Verify a Project As you program your project, periodically verify your work:

1. In the top-most toolbar of the RSLogix 5000 window, click

2. If any errors are listed at the bottom of the window:

a. To go to the first error or warning, press [F4].

b. Correct the error according to the description in the Results
window.

c. Go to step 1.

3. To close the Results window, press [Alt] + [1].

Save a Project As you create logic and make configuration changes, save the project.

If you make changes to the project while online, save the project so
that the offline project file matches the online project file:

To: Do this:

save your changes From the File menu, select Save.

make a copy of the open project but keep
the existing name of the controller

1. From the File menu, select Save As.

2. Type a name for the project file. Use underscores [_] in place of
spaces.

3. Click Save.

make a copy of the project and assign a
different name to the controller

1. From the File menu, select Save As.

2. Type a name for the project file. Use underscores [_] in place of
spaces.

3. Click Save.

4. In the controller organizer, right-click
Controller name_of_controller folder and select
Properties.

5. Type a new name for the controller.

6. Click OK.

If you want to: Do this:

save online changes and data values From the File menu, select Save.

save online changes but not online data values 1. From the Communications menu, select
Go Offline.

2. From the File menu, select Save.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-13
Configure a Communication
Driver

The RSLogix 5000 software requires a communication driver to
communicate with a controller. You configure communication drivers

using RSLinx® software:

1. Start RSLinx software.

2. From the Communications menu, select Configure Drivers.

3. From the Available Driver Types drop-down list, select a driver:

4. Choose Add New.

5. If you want to assign a descriptive name to the driver, change
the default name.

6. Choose OK.

7. Configure the driver:

8. Choose OK. and then choose Close.

For this network: And this type of computer: Select this driver:

serial RS-232 DF1 Devices

DH+™ desktop computer 1784-KT/KTX(D)/PKTX(D)

laptop computer 1784-PCMK

ControlNet™ desktop computer 1784-KTC(X)

laptop computer 1784-PCC

EtherNet/IP Ethernet devices

DeviceNet™ DeviceNet Drivers (1784-PCD/PCIDS, 1770-KFD, SDNPT drivers)

For this driver: Do this:

serial A. From the Comm Port drop-down list, select the serial port that the driver will use.

B. From the Device drop-down list, select Logix 5550-Serial Port.

C. Click Auto-Configure.

ControlNet A. In the Station Name box, type a name that will identify the computer in the RSWho window.

B. Select the interrupt value, memory address, and I/O base address.

C. In the Net Address box, type the ControlNet node number that you want to assign to the computer.

DH+ A. From the Value drop-down list, select the type of interface card that the driver will use.

B. In the Property list, select the next item.

C. In the Value box, type or select the appropriate value.

D. Repeat steps B. and C. for the remaining properties.

Ethernet For each Ethernet device on this network with which you want to communicate (e.g., each 1756-ENB module or
PLC-5E controller), add a map entry:

A. In the Host Name column, type the IP address or host name of the Ethernet device.

B. To communicate with another Ethernet device on this network, choose Add New and go to Step A.
Publication 1756-PM001G-EN-P - March 2004

1-14 Getting Started
Download a Project to the
Controller

Use this procedure to download a project to the controller so you can
execute its logic.

• When you download a project, you lose the project and data
that is currently in the controller, if any.

• If the revision of the controller does not match the revision of
the project, you are prompted to update the firmware of the
controller. RSLogix 5000 software lets you update the firmware
of the controller as part of the download sequence.

1. Open the RSLogix 5000 project that you want to download.

2. From the Communications menu, choose Who Active.

3. Expand the network until you see the controller.

4. Select the controller.

5. Choose Download.

ATTENTION

!
When you download a project or update firmware,
all active servo axes are turned off. Before you
download a project or update firmware, make sure
that this will not cause any unexpected movement of
an axis.

IMPORTANT To update the firmware of a controller, first install a
firmware upgrade kit.

• An upgrade kit ships on a supplemental CD
along with RSLogix 5000 software.

• To download an upgrade kit, go to www.ab.com.
Choose Product Support. Choose Firmware
Updates.

To expand a network one level, do
one of the following:

• Double-click the network.

• Select the network and
press the → key.

• Click the + sign.

Workstation

Linx Gateways, Ethernet

driver

communication module

backplane

controller

−

+

−

−

−

+

Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-15
6. Which response did the software give:

7. Choose Download.

The project downloads to the controller and RSLogix 5000
software goes online.

8. Skip the rest of this procedure.

9. Choose Update Firmware.

10. Select the required revision for the controller.

11. Choose Update.

A dialog box asks you to confirm the update.

12. To update the controller, choose Yes.

The following events occur:

• The firmware of the controller is updated.

• The project downloads to the controller.

• RSLogix 5000 software goes online.

If the software indicates: Then:

Download to the controller Go to step 7.

Failed to download to the controller. The revision of the
offline project and controller’s firmware are not
compatible.

Go to step 9.

43056

10.

11.
Publication 1756-PM001G-EN-P - March 2004

1-16 Getting Started
Select a Mode for the
Controller

To change the operating mode of the controller, use the keyswitch on
the front of the controller:

You can also use RSLogix 5000 software to change the mode of the
controller:

1. On the front of the controller, turn the keyswitch to REM.

2. Go online with the controller.

3. On the online toolbar, choose the desired mode.

IMPORTANT • All modes send and receive data in response to a
message from another controller.

• All modes produce and consume tags.

keyswitch

NoDo you want to prevent
RSLogix 5000 software from
changing the mode?

Do you want to execute the
logic in the controller?

Do you want the logic to
control the output devices?

Turn the keyswitch to PROG
and then to REM
(Remote Program mode).

Turn the keyswitch to PROG
(Program mode).

Turn the keyswitch to RUN
and then to REM
(Remote Run mode).

No

Yes
Do you want to prevent
RSLogix 5000 software from:

• changing the mode
• downloading a project
• performing online edits Turn the keyswitch to RUN

(Run mode).

No

Yes

Do you need to schedule a
ControlNet network?

No

Yes

Outputs revert to their configured state for Program mode.A

This includes Message (MSG) instructions.B

No

1. Turn the keyswitch to REM.
2. Go online with

RSLogix 5000 software and
choose Test mode.

Yes
B

A

A

A

Yes

3.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-17
Manually Clear a Major
Fault

If the controller enters the faulted mode, a major fault occurred and
the controller stopped executing the logic.

To correct a major fault:

1. Click the button.

2. Use the information in the Recent faults list to correct the cause
of the fault. Refer to "Major Fault Codes" on page 15-15.

3. Click the Clear Majors button.

43057

The controller is faulted. A major fault
occurred and the controller is no longer
executing its logic.

1.

TIP You can also clear a major fault by using the
keyswitch on the controller. Turn the keyswitch to
Prog, then to Run, and then back to Prog.
Publication 1756-PM001G-EN-P - March 2004

1-18 Getting Started
Configure the Execution of
a Task

When you create a new project, RSLogix 5000 software automatically
creates an initial task that is configured to run all the time (continuous
task). When the task completes a full scan, it restarts immediately.

Figure 1.1 Execution of the Continuous Task

If you are familiar with a DCS application or plan to program your
system using a function block diagram, you can configure the task to
execute at a specific period (periodic task). This lets you update your
function block diagram at a period that you specify.

• Whenever the time period for the task expires, the task executes
one time.

• You configure the period from 1 ms to 2000 s. The default is
10 ms.

• If you use a periodic task in addition to a continuous task, the
periodic task interrupts the execution of the continuous task.
When the periodic task is done, control returns to the
continuous task. For more information on using multiple tasks,
see chapter 4.

Figure 1.2 Example of a Periodic Task That Executes Every 10 ms.

start of the continuous task end of the continuous task

main routine

subroutine
program

task automatically restarts

Legend:

Task executes.

periodic
task

5 10 15 20 25 30 35 40 45 50

elapsed time (ms)
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-19
Configure a Task

To configure the execution of a task, use the properties dialog box for
the task.

1. In the controller organizer, right-click the task that you want to
configure and choose Properties.

2. Click the Configuration tab.

3. From the Type list, choose type of execution for the task. Only
one continuous task is permitted.

4. If you chose Periodic in step 3, then type the rate at which you
want the task to execute.

5. Choose

1.

3.

4.
Publication 1756-PM001G-EN-P - March 2004

1-20 Getting Started
Create Multiple Programs A Logix5000 controller lets you divide your application into multiple
programs, each with its own data. There is no need to manage
conflicting tag names between programs. This makes it easier to
re-use both code and tag names in multiple programs.

Create a Program

Each task requires at least one program. You can create multiple
programs for a task.

1. In the controller organizer, right-click the task that will execute
the program and choose New Program.

controller tags (global data)

Program_A

other routines

main routine Tag_4
Tag_5
Tag_6

program tags
(local data)

Tag_1
Tag_2
Tag_3

Program_B

other routines

main routine Tag_4
Tag_5
Tag_6

program tags
(local data)

Data at the program scope is isolated from other programs:

• Routines cannot access data that is at the program scope of another program.

• You can re-use the tag name of a program-scoped tag in multiple programs.

For example, both Program_A and Program_B can have a program tag named
Tag_4.

data

All programs have access to
data that is at the controller

scope.

1.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-21
2. In the Name text box, type a name for the program.

3. Choose

Configure a Program

Each program requires a main routine. The main routine executes
whenever the program executes.

1. In the controller organizer, right-click the program that you want
to configure and choose Properties.

2. Click the Configuration tab.

3. From the Main list, choose the name of the routine that you
want to execute as the main routine.

4. Choose

2.

1.

3.
Publication 1756-PM001G-EN-P - March 2004

1-22 Getting Started
Access Status Information Logix5000 controllers do not have a status file, as in the PLC-5
controller. To access status information, you use a keyword or access
a specific object.

Monitor Status Flags

The controller supports status keywords you can use in your logic to
monitor specific events:

• The status keywords are not case sensitive.

• Because the status flags can change so quickly, RSLogix 5000
software does not display the status of the flags. (I.e., Even
when a status flag is set, an instruction that references that flag is
not highlighted.)

• You cannot define a tag alias to a keyword.

You can use these key words:

If you want to: See:

use specific key words in your logic to monitor specific events “Monitor Status Flags” on page 1-22

get or set system values “Get and Set System Data” on page 1-23

To determine if: Use:

the value you are storing cannot fit into the destination because it is
either:

• greater than the maximum value for the destination

• less than the minimum value for the destination

Important: Each time S:V goes from cleared to set, it generates a
minor fault (type 4, code 4)

S: V

the instruction’s destination value is 0 S:Z

the instruction’s destination value is negative S:N

an arithmetic operation causes a carry or borrow that tries to use bits
that are outside of the data type

For example:
• adding 3 + 9 causes a carry of 1

• subtracting 25 - 18 causes a borrow of 10

S:C

this is the first, normal scan of the routines in the current program S:FS

at least one minor fault has been generated:
• The controller sets this bit when a minor fault occurs due to

program execution.

• The controller does not set this bit for minor faults that are not
related to program execution, such as battery low.

S:MINOR
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-23
Get and Set System Data

The controller stores system data in objects. There is no status file, as
in the PLC-5 controller. Use the GSV/SSV instructions get and set
controller system data that is stored in objects:

• The GSV instruction retrieves the specified information and
places it in the destination.

• The SSV instruction sets the specified attribute with data from
the source.

To get or set a system value:

1. Open the RSLogix 5000 project.

2. From the Help menu, select Contents.

3. Click the Index tab.

4. Type gsv/ssv objects and click Display.

ATTENTION

!
Use the SSV instruction carefully. Making changes to
objects can cause unexpected controller operation or
injury to personnel.
Publication 1756-PM001G-EN-P - March 2004

1-24 Getting Started
5. Click the required object.

6. In the list of attributes for the object, identify the attribute that
you want to access.

7. Create a tag for the value of the attribute:

8. In your ladder logic routine, enter the appropriate instruction:

To get or set: Click:

axis of a servo module AXIS

system overhead timeslice CONTROLLER

physical hardware of a controller CONTROLLERDEVICE

coordinated system time for the devices in one
chassis

CST

DF1 communication driver for the serial port DF1

fault history for a controller FAULTLOG

attributes of a message instruction MESSAGE

status, faults, and mode of a module MODULE

group of axes MOTIONGROUP

fault information or scan time for a program PROGRAM

instance number of a routine ROUTINE

configuration of the serial port SERIALPORT

properties or elapsed time of a task TASK

wall clock time of a controller WALLCLOCKTIME

If the data type of the attribute
is:

Then:

one element (e.g., DINT) Create a tag for the attribute.

more than one element (e.g.,
DINT[7])

A. Create a user-defined data type that
matches the organization of data
that is used by the attribute.

B. Create a tag for the attribute and
use the data type from Step A..

To: Enter this instruction:

get the value of an attribute GSV

set the value of an attribute SSV
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-25
9. Assign the required operands to the instruction:

The following examples gets the current date and time.

For more information, see the Logix5000 Controllers General
Instruction Set Reference Manual, publication 1756-RM003.

For this operand: Select:

Class name name of the object

Instance name name of the specific object (e.g., name of
the required I/O module, task, message)

• Not all objects require this entry.

• To specify the current task, program,
or routine, select THIS.

Attribute Name name of the attribute

Dest (GSV) tag that will store the retrieved value

• If the tag is a user-defined data type
or an array, select the first member
or element.

Source (SSV) tag that stores the value to be set

• If the tag is a user-defined data type
or an array, select the first member
or element.

EXAMPLE Get a system value

At the first scan, gets the DateTime attribute of the WALLCLOCKTIME object and stores it in the
wall_clock tag, which is based on a user-defined data type.

42370
Publication 1756-PM001G-EN-P - March 2004

1-26 Getting Started
Adjust the System Overhead
Time Slice

A Logix5000 controller communicates with a other devices (I/O
modules, controllers, HMI terminals, etc.) at either a specified rate
(scheduled) or when there is processing time available to service the
communication (unscheduled).

Unscheduled communication is any communication that you do not
configure through the I/O configuration folder of the project.

• The system overhead time slice specifies the percentage of
time (excluding the time for periodic or event tasks) that the
controller devotes to unscheduled communication.

• The controller performs unscheduled communication for up to
1 ms at a time and then resumes the continuous task.

The following table shows the ratio between the continuos task and
unscheduled communication at various system overhead time slices:

This type of communication: Is:

update I/O data (not including block-transfers) Scheduled Communication

produce or consume tags

communicate with programming devices (e.g., RSLogix 5000 software) Unscheduled Communication

communicate with HMI devices

execute Message (MSG) instructions, including block-transfers

respond to messages from other controllers

synchronize the secondary controller of a redundant system

re-establish and monitor I/O connections (such as Removal and Insertion Under
Power conditions); this does not include normal I/O updates that occur during the
execution of logic.

bridge communications from the serial port of the controller to other ControlLogix
devices via the ControlLogix backplane

At this time slice: The continuous tasks runs for: And unscheduled communication
occurs for up to:

10% 9 ms 1 ms

20% 4 ms 1 ms

33% 2 ms 1 ms

50% 1 ms 1 ms
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-27
At a system overhead time slice to 20 %, unscheduled communication
occurs every 4 ms of continuous task time for 1 ms.

If you increase the system overhead time slice to 33 %, unscheduled
communication occurs every 2 ms of continuous task time for 1 ms.

If the controller contains only a periodic task or tasks, the system
overhead time slice value has no effect. Unscheduled communication
occurs whenever a periodic task is not running.

For example, if your task takes 50 ms to execute and you configure its
update rate to 80 ms, the controller has 30 ms out of every 80 ms for
unscheduled communication.

Legend:

Task executes.

Task is interrupted (suspended).

1 ms 1 ms 1 ms 1 ms 1 ms

unscheduled communication

4 ms 4 ms 4 ms 4 ms 4 ms

continuous task

1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms

unscheduled communication

2 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms

continuous task

50 ms 50 ms 50 ms

periodic task

30 ms 30 ms 30 ms

unscheduled communication
Publication 1756-PM001G-EN-P - March 2004

1-28 Getting Started
Adjust the System Overhead Time Slice

1. On the Online toolbar, click controller properties button.

2. Click the Advanced tab.

3. Type or select the system overhead time slice.

4. Choose

1.

2.

3.
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-29
View Scan Time A Logix5000 controller provides two types of scan times. Each serves a
different purpose:

View Task Scan Time

To see the scan time of a task, display the properties for the task.

1. In the controller organizer, right-click the task whose scan time
you want to view and choose Properties.

2. Click the Monitor tab.

3. To close the dialog box, choose

If you want to determine the: Then: Notes:

time that has elapsed from the start of a task
to the end of the task, in milliseconds

View Task Scan Time The scan time of a task includes the time that the
task is interrupted to service communications or
other tasks.

time to execute the logic of a program (its
main routine and any subroutines that the
main routine calls), in microseconds

View Program Scan Time The scan time of a program includes only the
execution time of the logic. It does not include any
interrupts.

1.

maximum scan time of the program

scan time of the last execution of thisscan time of the last execution of this program
Publication 1756-PM001G-EN-P - March 2004

1-30 Getting Started
View Program Scan Time

To see the scan time of a program, display the properties for the
program.

1. In the controller organizer, right-click the program whose scan
time you want to view and choose Properties.

2. Click the Configuration tab.

3. To close the dialog box, choose

1.

maximum scan time of the program

scan time of the last execution of thisscan time of the last execution of this program
Publication 1756-PM001G-EN-P - March 2004

Getting Started 1-31
Adjust the Watchdog Time Each task contains a watchdog timer that specifies how long a task
can run before triggering a major fault.

• A watchdog time can range from 1 ms to 2,000,000 ms (2000
seconds). The default is 500 ms.

• The watchdog timer begins to time when the task is initiated and
stops when all the programs within the task have executed.

• If the task takes longer than the watchdog time, a major fault
occurs. (The time includes interruptions by other tasks.)

• A watchdog time-out fault (major fault) also occurs if a task is
triggered again while it is executing (task overlap). This can
happen if a lower-priority task is interrupted by a higher-priority
task, delaying completion of the lower-priority task.

• You can use the controller fault handler to clear a watchdog
fault. If the same watchdog fault occurs a second time during the
same logic scan, the controller enters faulted mode, regardless
of whether the controller fault handler clears the watchdog fault.

Adjust the Watchdog Timer for a Task

To change the watchdog time of a task, use the properties dialog box
for the task.

1. In the controller organizer, right-click the task and choose
Properties.

2. Click the Configuration tab.

ATTENTION

!
If the watchdog timer reaches a configurable preset,
a major fault occurs. Depending on the controller
fault handler, the controller might shut down.

1.
Publication 1756-PM001G-EN-P - March 2004

1-32 Getting Started
3. Type the watchdog time for the task, in milliseconds.

4. Choose

3.
Publication 1756-PM001G-EN-P - March 2004

Chapter 2

Communicate with I/O

Using This Chapter This chapter provides basic information on how a Logix5000
controller communicates with I/O modules.

Configure an I/O Module To communicate with an I/O module in your system, you add the
module to the I/O Configuration folder of the controller.

When you add the module, you also define a specific configuration
for the module. While the configuration options vary from module to
module, there are some common options that you typically configure:

• Requested Packet Interval

• Communication Format

• Electronic Keying

For this information or procedure See this page:

Configure an I/O Module 2-1

Address I/O Data 2-7

Buffer I/O 2-8

Add I/O modules here.
1 Publication 1756-PM001G-EN-P - March 2004

2-2 Communicate with I/O
Requested Packet Interval

The Logix5000 controller uses connections to transmit I/O data.

In Logix5000 controllers, I/O values update at a period that you
configure via the I/O configuration folder of the project. The values
update asynchronous to the execution of logic. At the specified
interval, the controller updates a value independently from the
execution of logic.

• Programs within a task access input and output data directly
from controller-scoped memory.

• Logic within any task can modify controller-scoped data.

• Data and I/O values are asynchronous and can change during
the course of a task’s execution.

• An input value referenced at the beginning of a task’s execution
can be different when referenced later.

• To prevent an input value from changing during a scan, copy
the value to another tag and use the data from there (buffer the
values). To buffer your I/O values, see page 2-8.

Term: Definition:

Connection A communication link between two devices, such as between a controller and an I/O module, PanelView
terminal, or another controller.

Connections are allocations of resources that provide more reliable communications between devices than
unconnected messages. The number of connections that a single controller can have is limited.

You indirectly determine the number of connections the controller uses by configuring the controller to
communicate with other devices in the system. The following types of communication use connections:

• I/O modules

• produced and consumed tags

• certain types of Message (MSG) instructions (not all types use a connection)

requested packet
interval (RPI)

The RPI specifies the period at which data updates over a connection. For example, an input module sends data
to a controller at the RPI that you assign to the module.

• Typically, you configure an RPI in milliseconds (ms). The range is 0.2 ms (200 microseconds) to 750 ms.

• If a ControlNet network connects the devices, the RPI reserves a slot in the stream of data flowing across
the ControlNet network. The timing of this slot may not coincide with the exact value of the RPI, but the
control system guarantees that the data transfers at least as often as the RPI.

ATTENTION

!
Take care to ensure that data memory contains the
appropriate values throughout a task’s execution.
You can duplicate or buffer data at the beginning of
the scan to provide reference values for your logic.
Publication 1756-PM001G-EN-P - March 2004

Communicate with I/O 2-3
Communication Format

The communication format that you choose determines the data
structure for the tags that are associated with the module. Many I/O
modules support different formats. Each format uses a different
data structure. The communication format that you choose also
determines:

• Direct or Rack-Optimized Connection

• Ownership

Direct or Rack-Optimized Connection

The Logix5000 controller uses connections to transmit I/O data. These
connections can be direct connections or rack-optimized connections.

Term: Definition:

direct connection A direct connection is a real-time, data transfer link between the controller and an I/O
module. The controller maintains and monitors the connection with the I/O module. Any
break in the connection, such as a module fault or the removal of a module while under
power, sets fault bits in the data area associated with the module.

rack-optimized
connection

For digital I/O modules, you can select rack-optimized communication. A rack-optimized
connection consolidates connection usage between the controller and all the digital I/O
modules in the chassis (or DIN rail). Rather than having individual, direct connections for
each I/O module, there is one connection for the entire chassis (or DIN rail).

A direct connection is any connection
that does not use the Rack Optimization

Comm Format.

rack-optimized connection
Publication 1756-PM001G-EN-P - March 2004

2-4 Communicate with I/O
Ownership

In a Logix5000 system, modules multicast data. This means that
multiple devices can receive the same data at the same time from a
single device.

When you choose a communication format, you have to choose
whether to establish an owner or listen-only relationship with the
module.

owner controller The controller that creates the primary configuration and communication connection to a
module. The owner controller writes configuration data and can establish a connection to
the module.

listen-only
connection

An I/O connection where another controller owns/provides the configuration data for the
I/O module. A controller using a listen-only connection only monitors the module. It does
not write configuration data and can only maintain a connection to the I/O module when
the owner controller is actively controlling the I/O module.

An owner connection is any connection
that does not include Listen-Only in its

Comm Format.

listen-only connection
Publication 1756-PM001G-EN-P - March 2004

Communicate with I/O 2-5
Use the following table to choose the type of ownership for a module:

There is a noted difference in controlling input modules versus
controlling output modules.

If the module is
an:

And another controller: And you want to: Then use this type of connection:

input module does not own the module owner (i.e., not listen-only)

owns the module maintain communication with the module
if it loses communication with the other
controller

owner (i.e., not listen-only)

Use the same configuration as the other
owner controller.

stop communication with the module if it
loses communication with the other
controller

listen-only

output module does not own the module owner (i.e., not listen-only)

owns the module listen-only

Controlling: This ownership: Description:

input modules owner An input module is configured by a controller that establishes a connection as an owner.
This configuring controller is the first controller to establish an owner connection.

Once an input module has been configured (and owned by a controller), other controllers
can establish owner connections to that module. This allows additional owners to
continue to receive multicast data if the original owner controller breaks its connection
to the module. All other additional owners must have the identical configuration data
and identical communications format that the original owner controller has, otherwise
the connection attempt is rejected.

listen-only Once an input module has been configured (and owned by a controller), other controllers
can establish a listen-only connection to that module. These controllers can receive
multicast data while another controller owns the module. If all owner controllers break
their connections to the input module, all controllers with listen-only connections no
longer receive multicast data.

output modules owner An output module is configured by a controller that establishes a connection as an
owner. Only one owner connection is allowed for an output module. If another controller
attempts to establish an owner connection, the connection attempt is rejected.

listen-only Once an output module has been configured (and owned by one controller), other
controllers can establish listen-only connections to that module. These controllers can
receive multicast data while another controller owns the module. If the owner controller
breaks its connection to the output module, all controllers with listen-only connections
no longer receive multicast data.
Publication 1756-PM001G-EN-P - March 2004

2-6 Communicate with I/O
Electronic Keying

When you configure a module, you specify the slot number for the
module. However, it is possible to place a different module in that
slot, either on purpose or accidently.

Electronic keying lets you protect your system against the accidental
placement of the wrong module in a slot. The keying option you
choose determines how closely any module in a slot must match the
configuration for that slot.

ATTENTION

!
Be careful when you disable electronic keying. If
used incorrectly, this option can lead to personal
injury or death, property damage, or economic loss.

If: Then select:

all information must match:
• type
• catalog number
• vendor
• major and minor revision number

Exact Match

all information except the minor revision number Compatible Module

no information must match Disable Keying
Publication 1756-PM001G-EN-P - March 2004

Communicate with I/O 2-7
Address I/O Data I/O information is presented as a set of tags.

• Each tag uses a structure of data. The structure depends on the
specific features of the I/O module.

• The name of the tags is based on the location of the I/O module
in the system.

An I/O address follows this format:

When you add a module to the I/O
Configuration folder…

…the software automatically creates
controller-scoped tags for the module.

Location :Slot :Type .Member .SubMember .Bit

= Optional

Where: Is:

Location Network location

LOCAL = same chassis or DIN rail as the controller

ADAPTER_NAME = identifies remote communication adapter or bridge module

Slot Slot number of I/O module in its chassis or DIN rail

Type Type of data

I = input

O = output

C = configuration

S = status

Member Specific data from the I/O module; depends on what type of data the module can store.

• For a digital module, a Data member usually stores the input or output bit values.

• For an analog module, a Channel member (CH#) usually stores the data for a channel.

SubMember Specific data related to a Member.

Bit Specific point on a digital I/O module; depends on the size of the I/O module (0-31 for a 32-point module)
Publication 1756-PM001G-EN-P - March 2004

2-8 Communicate with I/O
Buffer I/O When to Buffer I/O

Buffering is a technique in which logic does not directly reference or
manipulate the tags of real I/O devices. Instead, the logic uses a copy
of the I/O data. Buffer I/O in the following situations:

• To prevent an input or output value from changing during the
execution of a program. (I/O updates asynchronous to the
execution of logic.)

• To copy an input or output tag to a member of a structure or
element of an array.

Buffer I/O

To buffer I/O, perform these actions:

1. On the rung before the logic for the function (s), copy or move
the data from the required input tags to their corresponding
buffer tags.

2. In the logic of the function (s), reference the buffer tags.

3. On the rung after the function (s), copy the data from the buffer
tags to the corresponding output tags.
Publication 1756-PM001G-EN-P - March 2004

Communicate with I/O 2-9
The following example copies inputs and outputs to the tags of a
structure for a drill machine.

EXAMPLE Buffer I/O

The main routine of the program executes the following subroutines in this sequence.

The map_inputs routine copies the values of input devices to their corresponding tags that are used
in the drill routine.

The drill routine executes the logic for the drill machine.

The map_outputs routine copies the values of output tags in the drill routine to their corresponding
output devices.

42369

Jump to Subroutine
Routine name map_inputs

JSR
Jump to Subroutine
Routine name drill

JSR
Jump to Subroutine
Routine name map_outputs

JSR

_1791_8AC:I.Data[0].0 drill[1].depth_limit

_1791_8AC:I.Data[0].4 drill[1].home_limit

/
drill[1].part_advance

ONS
one_shots.0

drill[1].forward

/
drill[1].depth_limit drill[1].forward

drill[1].depth_limit

drill[1].retract

/
drill[1].home_limit drill[1].retract

drill[1].forward _1791_8AC:O.Data[0].0

drill[1].retract _1791_8AC:O.Data[0].1
Publication 1756-PM001G-EN-P - March 2004

2-10 Communicate with I/O
The following example uses the CPS instruction to copy an array of
data that represent the input devices of a DeviceNet network.

EXAMPLE Buffer I/O

Local:0:I.Data stores the input data for the DeviceNet network that is connected to the 1756-DNB
module in slot 0. To synchronize the inputs with the application, the CPS instruction copies the input
data to input_buffer.

• While the CPS instruction copies the data, no I/O updates can change the data.

• As the application executes, it uses for its inputs the input data in input_buffer.

42578

Synchronous Copy File
Source Local:0:I.Data[0]
Dest input_buffer[0]
Length 20

CPS
Publication 1756-PM001G-EN-P - March 2004

Chapter 3

Organize Tags

Using this Chapter Use this chapter to organize the data for your Logix5000 controller.

Defining Tags With a Logix5000 controller, you use a tag (alphanumeric name) to
address data (variables).

The controller uses the tag name internally and doesn’t need to
cross-reference a physical address.

• In conventional PLCs, a physical address identifies each item of
data.

– Addresses follow a fixed, numeric format that depend on the
type of data, such as N7:8, F8:3.

– Symbols are required to make logic easier to interpret.

• In Logix5000 controllers, there is no fixed, numeric format. The
tag name itself identifies the data. This lets you:

– organize your data to mirror your machinery

– document (through tag names) your application as you
develop it

For this information: See page:

Defining Tags 3-1

Guidelines for Tags 3-7

Create a Tag 3-9

Create an Array 3-13

Create a User-Defined Data Type 3-17

Describe a User-Defined Data Type 3-21

Address Tag Data 3-23

Assign Alias Tags 3-24

Assign an Indirect Address 3-27

Term: Definition:

tag A text-based name for an area of the controller’s memory where data is stored.

• Tags are the basic mechanism for allocating memory, referencing data from logic,
and monitoring data.

• The minimum memory allocation for a tag is four bytes.

• When you create a tag that stores data that requires less than four bytes, the
controller allocates four bytes, but the data only fills the part it needs.
1 Publication 1756-PM001G-EN-P - March 2004

3-2 Organize Tags
When you create a tag, you assign the following properties to the tag:

• Tag Type

• Data Type

• Scope

Tag Type

The tag type defines how the tag operates within your project.

If you plan to use produced or consumed tags, you must follow
additional guidelines as you organize your tags. Refer
to "Communicate with Other Devices" on page 10-1.

EXAMPLE Tags

digital I/O device

analog I/O device

integer value

storage bit

counter

timer

If you want the tag to: Then choose this type:

store a value or values for use by logic
within the project

Base

represent another tag. Alias

send data to another controller Produced

receive data from another controller Consumed
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-3
Data Type

The following table outlines the most common data types and when
to use each.

Term: Definition:

data type The data type defines the type of data that a tag stores, such as a bit, integer,
floating-point value, string, etc.

structure A data type that is a combination of other data types.

• A structure is formatted to create a unique data type that matches a specific need.

• Within a structure, each individual data type is called a member.

• Like tags, members have a name and data type.

• A Logix5000 controller contains a set of predefined structures (data types) for use
with specific instructions such as timers, counters, function blocks, etc.

• You can create your own structures, called a user-defined data type.

Table 3.1 Data Types

For: Select:

analog device in floating-point mode REAL

analog device in integer mode (for very fast sample rates) INT

ASCII characters string

bit BOOL

counter COUNTER

digital I/O point BOOL

floating-point number REAL

integer (whole number) DINT

sequencer CONTROL

timer TIMER
Publication 1756-PM001G-EN-P - March 2004

3-4 Organize Tags
The minimum memory allocation for a tag is 4 bytes. When you create
a tag that stores data that requires less than four bytes, the controller
allocates 4 bytes, but the data only fills the part it needs.

The COUNTER and TIMER data types are examples of commonly
used structures.

To copy data to a structure, use the COP instruction. See the
Logix5000 Controllers General Instruction Set Reference Manual,
publication 1756-RM003.

Data type Bits

31 16 15 8 7 1 0

Bool not used 0 or 1

Sint not used -128 to +127

Int not used -32,768 to +32767

Dint -2,147,483,648 to +2,147,483,647

Real -3.40282347E38 to -1.17549435E-38 (negative values)
0

1.17549435E-38 to 3.40282347E38 (positive values)

42365

To expand a structure and
display its members, click
the + sign.

To collapse a structure
and hide its members,
click the – sign.

COUNTER structure

TIMER structure

data types of the
members

members of
running_seconds
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-5
Scope

When you create a tag, you define it as either a controller tag (global
data) or a program tag for a specific program (local data).

A Logix5000 controller lets you divide your application into multiple
programs, each with its own data. There is no need to manage
conflicting tag names between programs. This makes it easier to
re-use both code and tag names in multiple programs.

controller tags
(global data)

task

program

project

other routines

main routine

I/O data

program tags
(local data)

system-shared data

controller tags (global data)

Program_A

other routines

main routine Tag_4
Tag_5
Tag_6

program tags
(local data)

Tag_1
Tag_2
Tag_3

Program_B

other routines

main routine Tag_4
Tag_5
Tag_6

program tags
(local data)

Data at the program scope is isolated from other programs:

• Routines cannot access data that is at the program scope of another program.

• You can re-use the tag name of a program-scoped tag in multiple programs.

For example, both Program_A and Program_B can have a program tag named
Tag_4.

data

All programs have access to
data that is at the controller

scope.
Publication 1756-PM001G-EN-P - March 2004

3-6 Organize Tags
Avoid using the same name for a both controller tag and a program
tag. Within a program, you cannot reference a controller tag if a tag of
the same name exists as a program tag for that program.

Certain tags must be controller scope (controller tag).

If you want to use the tag: Then assign this scope:

in more than one program in the project

controller scope (controller tags)
in a Message (MSG) instruction

to produce or consume data

to communicate with a PanelView terminal

none of the above program scope (program tags)
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-7
Guidelines for Tags Use the following guidelines to create tags for a Logix5000 project:

Guideline: Details:

❑ 1. Create user-defined data types. User-defined data types (structures) let you organize your data to match your machine or
process. A user-defined data type provides these advantages:

• One tag contains all the data related to a specific aspect of your system. This
keeps related data together and easy to locate, regardless of its data type.

• Each individual piece of data (member) gets a descriptive name. This
automatically creates an initial level of documentation for your logic.

• You can use the data type to create multiple tags with the same data lay-out.

For example, use a user-defined data type to store all the parameters for a tank, including
temperatures, pressures, valve positions, and preset values. Then create a tag for each of
your tanks based on that data type.

❑ 2. Use arrays to quickly create a
group of similar tags.

An array creates multiple instances of a data type under a common tag name.

• Arrays let you organize a block of tags that use the same data type and perform a
similar function.

• You organize the data in 1, 2, or 3 dimensions to match what the data represents.

For example, use a 2 dimension array to organize the data for a tank farm. Each element
of the array represents a single tank. The location of the element within the array
represents the geographic location of the tank.

Important: Minimize the use of BOOL arrays. Many array instructions do not operate on
BOOL arrays. This makes it more difficult to initialize and clear an array of BOOL data.

• Typically, use a BOOL array for the bit-level objects of a PanelView screen.

• Otherwise, use the individual bits of a DINT tag or an array of DINTs.

❑ 3. Take advantage of
program-scoped tags.

If you want multiple tags with the same name, define each tag at the program scope
(program tags) for a different program. This lets you re-use both logic and tag names in
multiple programs.

Avoid using the same name for both a controller tag and a program tag. Within a
program, you cannot reference a controller tag if a tag of the same name exists as a
program tag for that program.

Certain tags must be controller scope (controller tag).

If you want to use the tag: Then assign this scope:

in more than one program in the project

controller scope (controller tags)
in a Message (MSG) instruction

to produce or consume data

to communicate with a PanelView terminal

none of the above program scope (program tags)
Publication 1756-PM001G-EN-P - March 2004

3-8 Organize Tags
❑ 4. For integers, use the DINT data
type.

To increase the efficiency of your logic, minimize the use of SINT or INT data types.
Whenever possible, use the DINT data type for integers.

• A Logix5000 controller typically compares or manipulates values as 32-bit values
(DINTs or REALs).

• The controller typically converts a SINT or INT value to a DINT or REAL value
before it uses the value.

• If the destination is a SINT or INT tag, the controller typically converts the value
back to a SINT or INT value.

• The conversion to or from SINTs or INTs occurs automatically with no extra
programming. But it takes extra execution time and memory.

❑ 5. Limit a tag name to 40 characters. Here are the rules for a tag name:

• only alphabetic characters (A-Z or a-z), numeric characters (0-9), and
underscores (_)

• must start with an alphabetic character or an underscore

• no more than 40 characters

• no consecutive or trailing underscore characters (_)

• not case sensitive

❑ 6. Use mixed case. Although tags are not case sensitive (upper case A is the same as lower case a), mixed
case is easier to read.

These tags are easier to read: Than these tags:

Tank_1 TANK_1

Tank1 TANK1

tank_1

tank1

❑ 7. Consider the alphabetical order of
tags.

RSLogix 5000 software displays tags of the same scope in alphabetical order. To make it
easier to monitor related tags, use similar starting characters for tags that you want to
keep together.

Guideline: Details:

Starting each tag for a tank with
Tank keeps the tags together.

Tag Name

Tank_North

Tank_South

…

Otherwise, the tags may end up
separated from each other.

Tag Name

North_Tank

…

…

…

South_Tank

other tags that start
with the letters o, p,
q, etc.
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-9
Create a Tag

To create a tag, you have the following options:

• Create a Tag Using a Tags Window

• Create Tags Using Microsoft® Excel

• Create a Tag as You Enter Your Logic (See the corresponding
chapter for the programming language that you are using.)

Create a Tag Using a Tags Window

The Tags window lets you create and edit tags using a
spreadsheet-style view of the tags.

1. From the Logic menu, select Edit Tags.

2. Select a scope for the tag:

IMPORTANT RSLogix 5000 software automatically creates tags
when you:

• add an element to a sequential function chart
(SFC)

• add a function block instruction to a function
block diagram

42350

2.

3. 5.4.

If you will use the tag: Then select:

in more than one program within the
project

name_of_controller(controller)

as a producer or consumer

in a message

in only one program within the project program that will use the tag
Publication 1756-PM001G-EN-P - March 2004

3-10 Organize Tags
3. Type a name for the tag.

4. Type the data type:

5. Type a description (optional).

Create Tags Using Microsoft® Excel

You can also use spreadsheet software such as Microsoft Excel to
create and edit tags. This lets you take advantage of the editing
features in the spreadsheet software.

Export the Existing Tags

1. Open the RSLogix 5000 project.

2. Create several tags. (This helps to format the Excel spreadsheet.)

42350

3. 5.4.
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-11
3. From the Tools menu, select Export Tags.

4. Note the name of the export file (project_name-Tags).

5. Select the scope of tags to export. If you select Program Tags,
select the program tags to export.

6. Click Export.

42361

The tags are saved in
this folder.

4.

5.
Publication 1756-PM001G-EN-P - March 2004

3-12 Organize Tags
Edit the Export File

1. In Microsoft Excel software, open the export file.

2. Enter TAG

3. Identify the scope of the tag:

4. Enter the name of the tag.

5. Enter the data type of the tag.

6. Repeat steps 2. to 5. for each additional tag.

7. Save and close the file. (Keep it as a .CSV format.)

Import the New Tags

1. In the RSLogix 5000 software, from the Tools menu, select
Import Tags.

2. Select the file that contains the tags and click Import.

The tags import into the project. The lower section of the
RSLogix 5000 window displays the results.

TYPE SCOPE NAME DESCRIPTION DATATYPE

TAG in_cycle DINT

TYPE SCOPE NAME DESCRIPTION DATATYPE

TAG MainProgram conveyor_alarm BOOL

TAG MainProgram conveyor_on BOOL

TAG MainProgram drill_1 DRILL_STATION

TAG MainProgram hole_position REAL[6,6]

TAG MainProgram machine_on BOOL

2. 3. 4. 5.

If the scope is: Then:

controller Leave this cell empty.

program Enter the name of the program
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-13
Create an Array Logix5000 controllers also let you use arrays to organize data.

A subscript (s) identifies each individual element within the array. A
subscript starts at 0 and extends to the number of elements minus 1
(zero based).

Term: Definition:

array A tag that contains a block of multiple pieces of data.

• An array is similar to a file.

• Within an array, each individual piece of data is called an element.

• Each element uses the same data type.

• An array tag occupies a contiguous block of memory in the controller, each element
in sequence.

• You can use array and sequencer instructions to manipulate or index through the
elements of an array

• You organize the data into a block of 1, 2, or 3 dimensions.

42367

To expand an array and
display its elements, click
the + sign.

To collapse an array and
hide its elements, click
the – sign.

This array contains six
elements of the DINT
data type.

six DINTselements of
timer_presets
Publication 1756-PM001G-EN-P - March 2004

3-14 Organize Tags
The following example compares a structure to an array:

This is a tag that uses the Timer structure (data type).

Tag Name Data Type

 Timer_1 TIMER

 Timer_1.PRE DINT

 Timer_1.ACC DINT

 Timer_1.EN BOOL

 Timer_1.TT BOOL

 Timer_1.DN BOOL

−

+

+

This is a tag that uses an array of the Timer data type.

Tag Name Data Type

 Timers TIMER[3]

 Timer[0] TIMER

 Timer[1] TIMER

 Timer[2] TIMER

−

+

+

+

EXAMPLE Single dimension array

In this example, a single timer instruction times the duration of several steps. Each step
requires a different preset value. Because all the values are the same data type (DINTs)
an array is used.

42367

To expand an array and
display its elements, click
the + sign.

To collapse an array and
hide its elements, click
the – sign.

This array contains six
elements of the DINT
data type.

six DINTselements of
timer_presets
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-15
EXAMPLE Two dimension array

A drill machine can drill one to five holes in a book. The machine requires a value for
the position of each hole from the leading edge of the book. To organize the values into
configurations, a two dimension array is used. The first subscript indicates the hole to
which the value corresponds and the second subscript indications how many holes will
be drilled (one to five).

In the Tags window, the elements are in the order depicted below.

subscript of second dimension Description

0 1 2 3 4 5

subscript of
first
dimension

0

1 1.5 2.5 1.25 1.25 1.25 Position of first hole from leading edge of book

2 8.0 5.5 3.5 3.5 Position of second hole from leading edge of book

3 9.75 7.5 5.5 Position of third hole from leading edge of book

4 9.75 7.5 Position of fourth hole from leading edge of book

5 9.75 Position of fifth hole from leading edge of book

42367

The right-most dimension increments to its
maximum value then starts over.

This array contains a
two-dimensional grid
of elements, six
elements by six
elements.

When the right-most dimension starts over, the
dimension to the left increments by one.
Publication 1756-PM001G-EN-P - March 2004

3-16 Organize Tags
Create an Array

To create an array, you create a tag and assign dimensions to the data
type:

1. From the Logic menu, select Edit Tags.

2. Select a scope for the tag:

3. Type a name for the tag.

4. Assign the array dimensions:

42350

2.

3. 4.

If you will use the tag: Then select:

in more than one program within the
project

name_of_controller(controller)

as a producer or consumer

in a message

in only one program within the project program that will use the tag

If the tag is: Then type: Where:

one dimension array data_type[x] data_type is the type of data that the tag stores.

x is the number of elements in the first dimension.

y is the number of elements in the second dimension.

z is the number of elements in the third dimension.

two dimension array data_type[x,y]

three dimension array data_type[x,y,z]
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-17
Create a User-Defined Data
Type

User-defined data types (structures) let you organize your data to
match your machine or process.

EXAMPLE User-defined data type that stores a recipe

In a system of several tanks, each tank can run a variety of recipes. Because the recipe
requires a mix of data types (REAL, DINT, BOOL, etc.) a user-defined data type is used.

An array that is based on this data type would look like this:

Name (of data type): TANK

Member Name Data Type

temp REAL

deadband REAL

step DINT

step_time TIMER

preset DINT[6]

mix BOOL

42368

array of recipes

first recipe
This array contains
three elements of the
TANK data type.

members of the
recipe
Publication 1756-PM001G-EN-P - March 2004

3-18 Organize Tags
EXAMPLE User-defined data type that stores the data that is required to run a machine

Because several drill stations require the following mix of data, a user-defined data type
is created.

An array that is based on this data type would look like this:

Name (of data type): DRILL_STATION

Member Name Data Type

part_advance BOOL

hole_sequence CONTROL

type DINT

hole_position REAL

depth REAL

total_depth REAL

42583

array of drills

first drill
This array contains
four elements of the
DRILL_STATION data
type.

data for the drill
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-19
Guidelines for User-Defined Data Types

When you create a user-defined data type, keep the following in
mind:

• If you include members that represent I/O devices, you must
use logic to copy the data between the members in the structure
and the corresponding I/O tags. Refer to "Buffer I/O" on
page 2-8.

• If you include an array as a member, limit the array to a single
dimension. Multi-dimension arrays are not permitted in a
user-defined data type.

• When you use the BOOL, SINT, or INT data types, place
members that use the same data type in sequence:

Create a User-Defined Data Type

1. Right-click User-Defined and select New Data Type.

more efficient

BOOL

BOOL

BOOL

DINT

DINT

less efficient

BOOL

DINT

BOOL

DINT

BOOL

1.
Publication 1756-PM001G-EN-P - March 2004

3-20 Organize Tags
2. Type a name for the data type.

3. Type a description (optional).

4. Type the name of the first member.

5. Specify the data type for the member.

Limit any arrays to a single dimension.

6. To display the value (s) of the member in a different style
(radix), select the style.

7. Type a description for the member (optional).

8. Click Apply.

9. More members?

42196

2.

3.

4. 5. 6. 7.

If: Then:

Yes Repeat steps 4. to 8.

No Click OK.
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-21
Describe a User-Defined
Data Type

RSLogix 5000 software lets you automatically build descriptions out of
the descriptions in your user-defined data types. This greatly reduces
the amount of time you have to spend documenting your project.

As you organize your user-defined data types, keep in mind the
following features of RSLogix 5000 software:

RSLogix 5000 software uses different colors for descriptions:

RSLogix 5000 software
13.0 or later

pass through of descriptions – When possible, RSLogix 5000
software looks for an available description for a tag, element, or
member:

• Descriptions in user-defined data types ripple through to
the tags that use that data type.

• Description of an array tag ripples through to the elements
and members of the array.

paste pass-through description – Use
the data type and array description as a
basis for more specific descriptions.

In this example, Tank became West Tank.

append description to base tag –
RSLogix 5000 software automatically builds
a description for each member of a tag that
uses a user-defined data type. It starts with
the description of the tag and then adds the
description of the member from the data
type.

A description in this color: Is a:

gray pass-through description

black manually entered description
Publication 1756-PM001G-EN-P - March 2004

3-22 Organize Tags
Turn Pass-Through and Append Descriptions On or Off

Paste a Pass-Through Description

To use a pass-through description as the starting point for a more
specific description:

1. In RSLogix 5000 software, choose Tools ⇒
Options.

2. Select the Application ⇒ Display.

3. Turn on (check) or turn off (uncheck) the desired
options.

1. Right-click the pass-through description and
choose Paste Pass-Through.

2. Edit the description and press {Ctrl] + [Enter].
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-23
Address Tag Data An tag name follows this format:

Name [Element] .Member [Element] .Bit

or

.[Index]

= Optional

Where: Is:

Name Name that identifies this specific tag.

Element Subscript or subscripts that point to a specific element within an array.

• Use the element identifier only if the tag or member is an array.

• Use one subscript for each dimension of the array. For example: [5], [2,8], [3,2,7].

To indirectly (dynamically) reference an element, use a tag or numeric expression that provides the element
number.

• A numeric expression uses a combination of tags, constants, operators, and functions to calculate a
value. For example, Tag_1-Tag_2, Tag_3+4, ABS(Tag_4).

• Keep the value of the tag or numeric expression within the dimensions of the array. For example, if a
dimension of an array contains 10 elements, then the value of the tag or numeric expression must be
0 to 9 (10 elements).

Member Specific member of a structure.

• Use the member identifier only if the tag is a structure.

• If the structure contains another structure as one of its members, use additional levels of the
.Member format to identify the required member.

Bit Specific bit of an integer data type (SINT, INT, or DINT).

Index To indirectly (dynamically) reference a bit of an integer, use a tag or numeric expression that provides the bit
number.

• A numeric expression uses a combination of tags, constants, operators, and functions to calculate a
value. For example, Tag_1-Tag_2, Tag_3+4, ABS(Tag_4).

• Keep the value of the tag or numeric expression within the range of bits of the integer tag. For
example, if the integer tag is a Dint (32-bits), then the value of the index must be 0 to 31 (32-bits).
Publication 1756-PM001G-EN-P - March 2004

3-24 Organize Tags
Assign Alias Tags An alias tag lets you create one tag that represents another tag.

• Both tags share the same value (s).

• When the value (s) of one of the tags changes, the other tag
reflects the change as well.

Use aliases in the following situations:

• program logic in advance of wiring diagrams

• assign a descriptive name to an I/O device

• provide a more simple name for a complex tag

• use a descriptive name for an element of an array

The tags window displays alias information.

A common use of alias tags is to program logic before wiring diagrams
are available:

1. For each I/O device, create a tag with a name that describes the
device, such as conveyor for the conveyor motor.

2. Program your logic using the descriptive tag names. (You can
even test your logic without connecting to the I/O.)

3. Later, when wiring diagrams are available, add the I/O modules
to the I/O configuration of the controller.

4. Finally, convert the descriptive tags to aliases for their respective
I/O points or channels.

drill_1_depth_limit is an alias for
Local:2:I.Data.3 (a digital input
point). When the input turns on,
the alias tag also turns on.

drill_1_on is an alias for
Local:0:O.Data.2 (a digital output
point). When the alias tag turns
on, the output tag also turns on.

north_tank is an alias for
tanks[0,1].

42360

The (C) indicates that the tag is at the
controller scope.
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-25
The following logic was initially programmed using descriptive tag
names, such as stop and conveyor_on. Later, the tags were converted
to aliases for the corresponding I/O devices.

42351

Display Alias Information

To show (in your logic) the tag to which an alias points:

1. From the Tools menu, select Options.

2. Click the Ladder Display tab.

3. Select the Show Tag Alias Information check box.

4. Click OK.

stop
<Local:2:I.Data.1>

start
<Local:2:I.Data.0>

machine_on

machine_on
drill_1_on

<Local:0:O.Data.2> drill_1.part_advance

conveyor_on
<Local:0:O.Data.0>

stop is an alias for Local:2:I.Data.1
(the stop button on the operator
panel)

conveyor_on is an alias for
Local:0:O.Data.0

(the starter contactor for the
Publication 1756-PM001G-EN-P - March 2004

3-26 Organize Tags
Assign an Alias

To assign a tag as an alias tag for another tag:

1. From the Logic menu, select Edit Tags.

2. Select the scope of the tag.

3. To the right of the tag name, click the Alias For cell.

The cell displays a ▼

4. Click the ▼

5. Select the tag that the alias will represent:

6. Press the Enter key or click another cell.

2.

4.

42360

To: Do this:

select a tag Double-click the tag name.

select a bit number A. Click the tag name.

B. To the right of the tag name, click

C. Click the required bit.

▼

Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-27
Assign an Indirect Address If you want an instruction to access different elements in an array, use
a tag in the subscript of the array (an indirect address). By changing
the value of the tag, you change the element of the array that your
logic references.

The following table outlines some common uses for an indirect
address:

When index equals 1, array[index] points here.

array[0] 4500

array[1] 6000

array[2] 3000

array[3] 2500

When index equals 2, array[index] points here.

To: Use a tag in the subscript and:

select a recipe from an array of recipes Enter the number of the recipe in the tag.

load a specific machine setup from an array
of possible setups

Enter the desired setup in the tag.

load parameters or states from an array,
one element at a time

A. Perform the required action on the
first element.

B. Use an ADD instruction to increment
the tag value and point to the next
element in the array.

log error codes

perform several actions on an array element
and then index to the next element
Publication 1756-PM001G-EN-P - March 2004

3-28 Organize Tags
The following example loads a series of preset values into a timer, one
value (array element) at a time.

EXAMPLE Step through an array

The timer_presets array stores a series of preset values for the timer in the next rung. The
north_tank.step tag points to which element of the array to use. For example, when north_tank.step
equals 0, the instruction loads timer_presets[0] into the timer (60,000 ms).

When north_tank.step_time is done, the rung increments north_tank.step to the next number and
that element of the timer_presets array loads into the timer.

When north_tank.step exceeds the size of the array, the rung resets the tag to start at the first element
in the array. (The array contains elements 0 to 3.)

42358

Move
Source timer_presets[north_tank.step]

60000
Dest north_tank.step_time.PRE

60000

MOV

/
north_tank.step_time.DN

EN
DN

Timer On Delay
Timer north_tank.step_time
Preset 60000
Accum 0

TON

north_tank.step_time.DN
Add
Source A 1

Source B north_tank.step
0

Dest north_tank.step
0

ADD

Equal
Source A north_tank.step

0
Source B 4

EQU
Move
Source 0

Dest north_tank.step
0

MOV
Publication 1756-PM001G-EN-P - March 2004

Organize Tags 3-29
Expressions

You can also use an expression to specify the subscript of an array.

• An expression uses operators, such as + or -, to calculate a
value.

• The controller computes the result of the expression and uses it
as the array subscript.

You can use these operators to specify the subscript of an array:

 Format your expressions as follows:

Operator: Description:

+ add

- subtract/negate

* multiply

/ divide

ABS Absolute value

AND AND

FRD BCD to integer

MOD Modulo

NOT complement

OR OR

SQR square root

TOD integer to BCD

TRN Truncate

XOR exclusive OR

Operator: Description:

If the operator requires: Use this format: Examples:

one value (tag or expression) operator(value) ABS(tag_a)

two values (tags, constants, or
expressions)

value_a operator value_b • tag_b + 5

• tag_c AND tag_d

• (tag_e ** 2) MOD (tag_f /
tag_g)
Publication 1756-PM001G-EN-P - March 2004

3-30 Organize Tags
Publication 1756-PM001G-EN-P - March 2004

Chapter 4

Manage Multiple Tasks

Using This Chapter The default RSLogix 5000 project provides a single task for all your
logic. While this is sufficient for many applications, some situations
may require more than one task.

This chapter provides the following information to help you use
multiple tasks in your project:

For this information: See page:

Select the Controller Tasks 4-2

Prioritize Periodic and Event Tasks 4-5

Leave Enough Time for Unscheduled Communication 4-8

Avoid Overlaps 4-9

Configure Output Processing for a Task 4-13

Inhibit a Task 4-17

Choose the Trigger for an Event Task 4-20

Using the Module Input Data State Change Trigger 4-22

Using the Motion Group Trigger 4-32

Using the Axis Registration Trigger 4-34

Using the Axis Watch Trigger 4-38

Using the Consumed Tag Trigger 4-42

Using the EVENT Instruction Trigger 4-50

Create a Task 4-53

Define a Timeout Value for an Event Task 4-55
1 Publication 1756-PM001G-EN-P - March 2004

4-2 Manage Multiple Tasks
Select the Controller Tasks A Logix5000 controller lets you use multiple tasks to schedule and
prioritize the execution of your programs based on specific criteria.
This balances the processing time of the controller among the
different operations in your application.

• The controller executes only one task at one time.

• A different task can interrupt a task that is executing and take
control.

• In any given task, only one program executes at one time.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-3
A Logix5000 controller uses three types of tasks. Use the following
table to choose the appropriate type of task for each section of your
logic.

If you want to execute a
section of your logic:

Then use this type
of task:

Description:

all of the time Continuous Task The continuous task runs in the background. Any CPU time not allocated to
other operations (such as motion, communications, and periodic or event
tasks) is used to execute the programs within the continuous task.

• The continuous task runs all the time. When the continuous task
completes a full scan, it restarts immediately.

• A project does not require a continuous task. If used, there can be
only one continuous task.

• at a constant period
(e.g., every 100 ms)

• multiple times within the
scan of your other logic

Periodic Task A periodic task performs a function at a specific period. Whenever the time
for the periodic task expires, the periodic task:

• interrupts any lower priority tasks

• executes one time

• returns control to where the previous task left off

You can configure the time period from 0.1 ms to 2000 s.

• The default is 10 ms.

• The performance of a periodic task depends on the type of Logix5000
controller and on the logic in the task.

immediately when an event
occurs

Event Task An event task performs a function only when a specific event (trigger) occurs.
Whenever the trigger for the event task occurs, the event task:

• interrupts any lower priority tasks

• executes one time

• returns control to where the previous task left off

The trigger can be:

• change of a digital input

• new sample of analog data

• certain motion operations

• consumed tag

• EVENT instruction

Important: Some Logix5000 controllers do not support all triggers. See
Table 4.1 on page 4-21.
Publication 1756-PM001G-EN-P - March 2004

4-4 Manage Multiple Tasks
Here are some example situations and the type of task that you could
use:

The number of tasks supported depends on the controller:

For this example situation: Use this type of task:

Fill a tank to its maximum level and then open a drain valve continuous task

Collect and process system parameters and send them to a display continuous task

Complete step 3 in a control sequence—reposition the bin diverter continuous task

Your system must check the position of a field arm each 0.1 s and calculate the average rate of
change in its position. This is used to determine braking pressure.

periodic task

Read the thickness of a paper roll every 20 ms. periodic task

A packaging line glues boxes closed. When a box arrives at the gluing position, the controller must
immediately execute the gluing routine.

event task

In a high-speed assembly operation, an optical sensor detects a certain type of reject. When the
sensor detects a reject, the machine must immediately divert the reject.

event task

In an engine test stand, you want to capture and archive each analog data immediately after each
sample of data

event task

Immediately after receiving new production data, load the data into the station event task

In a line that packages candy bars, you have to make sure that the perforation occurs in the correct
location on each bar. Each time the registration sensor detects the registration mark, check the
accuracy of an axis and perform any required adjustment.

event task

A gluing station must adjust the amount of glue it applies to compensate for changes in the speed of
the axis. After the motion planner executes, check the command speed of the axis and vary the
amount of glue, if needed.

event task

In a production line, if any of the programs detect an unsafe condition the entire line must shut down.
The shutdown procedure is the same regardless of the unsafe condition.

event task

This controller: Supports this number
of tasks:

Notes:

ControlLogix 32 Only one task can be continuous.

SoftLogix5800

CompactLogix 8

DriveLogix

FlexLogix
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-5
Use Caution in the Number of Tasks That You Use

Typically, each task takes controller time away from the other tasks. If
you have too many tasks, then:

• The continuous task may take too long to complete.

• Other tasks may experience overlaps. If a task is interrupted too
frequently or too long, it may not complete its execution before
it is triggered again.

For more information, see “Avoid Overlaps” on page 4-9.

Prioritize Periodic and
Event Tasks

Although a project can contain multiple tasks, the controller executes
only one task at a time. If a periodic or event task is triggered while
another task is currently executing, the priority of each task tells the
controller what to do.

The number of priority levels depends on the controller:

To assign a priority to a task, use the following guidelines:

This Logix5000 controller: Has this many priority levels:

CompactLogix 15

ControlLogix 15

DriveLogix 15

FlexLogix 15

SoftLogix5800 3

If you want: Then Notes:

this task to interrupt another task Assign a priority number that is less than
(higher priority) the priority number of the
other task.

• A higher priority task interrupts all
lower priority tasks.

• A higher priority task can interrupt a
lower priority task multiple times.another task to interrupt this task Assign a priority number that is greater than

(lower priority) the priority number of the
other task.

this task to share controller time with
another task

Assign the same priority number to both
tasks.

The controller switches back and forth
between each task and executes each one
for 1 ms.
Publication 1756-PM001G-EN-P - March 2004

4-6 Manage Multiple Tasks
Additional Considerations

As you estimate the execution interrupts for a task, consider the
following:

Consideration; Description:

motion planner The motion planner interrupts all other tasks, regardless of their priority.

• The number of axes and coarse update period for the motion group effect how long
and how often the motion planner executes.

• If the motion planner is executing when a task is triggered, the task waits until the
motion planner is done.

• If the coarse update period occurs while a task is executing, the task pauses to let
the motion planner execute.

I/O task CompactLogix, FlexLogix, and DriveLogix controllers use a dedicated periodic task to
process I/O data. This I/O task:

• Does not show up in the Tasks folder of the controller.

• Does not count toward the task limits for the controller.

• Operates at priority 7.

• Executes at the fastest RPI you have scheduled for the system.

• Executes for as long as it takes to scan the configured I/O modules.

As you assign priorities to your tasks, consider the I/O task:

If you want a task to: Then assign one of these priorities:

interrupt or delay I/O processing 1 to 6

share controller time with I/O processing 7

let I/O processing interrupt or delay the task 8 to 15

system overhead System overhead is the time that the controller spends on unscheduled communication.

• Unscheduled communication is any communication that you do not configure
through the I/O configuration folder of the project, such as Message (MSG)
instructions and communication with HMIs or workstations.

• System overhead interrupts only the continuous task.

• The system overhead time slice specifies the percentage of time (excluding the time
for periodic or event tasks) that the controller devotes to unscheduled
communication.

• The controller performs unscheduled communication for up to 1 ms at a time and
then resumes the continuous task.

continuous task You do not assign a priority to the continuous task. It always runs at the lowest priority. All
other tasks interrupt the continuous task.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-7
EXAMPLE
The following example depicts the execution of a project with three
user tasks.

Task: Priority: Period: Execution time: Duration:

motion planner n/a 8 ms (course update rate) 1 ms 1 ms

event task 1 1 n/a 1 ms 1 to 2 ms

periodic task 1 2 12 ms 2 ms 2 to 4 ms

I/O task—n/a to ControlLogix and
SoftLogix controllers. See page 4-6.

7 5 ms (fastest RPI) 1 ms 1 to 5 ms

system overhead n/a time slice = 20% 1 ms 1 to 6 ms

continuous task n/a n/a 20 ms 48 ms

Legend: Task executes. Task is interrupted (suspended).

motion
planner

event
task 1

periodic
task 1

I/O task

system
overhead

continuous
task 5 10 15 20 25 30 35 40 45 50

Description:

Initially, the controller executes the motion planner and the I/O task (if one exists).

After executing the continuous task for 4 ms, the controller triggers the system overhead.

The period for periodic task 1 expires (12 ms), so the task interrupts the continuous task.

After executing the continuous task again for 4 ms, the controller triggers the system overhead.

The triggers occurs for event task 1.
Event task 1 waits until the motion planner is done.
Lower priority tasks experience longer delays.

The continuous task automatically restarts.

1 2 4 5 63

1

2

3

4

5

6

Publication 1756-PM001G-EN-P - March 2004

4-8 Manage Multiple Tasks
Leave Enough Time for
Unscheduled
Communication

Unscheduled communication occurs only when a periodic or event
task is not running. If you use multiple tasks, make sure that their scan
times and execution intervals leave enough time for unscheduled
communication.

If you have multiple tasks, follow these rules:

1. The execution time of a highest priority task is significantly less
than its update rate.

2. The total execution time of all your tasks is significantly less than
the update rate of the lowest priority tasks.

For example, in this configuration of tasks:

1. The execution time of the highest priority task (Task 1) is
significantly less than its update rate (20 ms is less than 80 ms).

2. The total execution time of all tasks is significantly less than the
update rate of the lowest priority task (50 ms is less than
100 ms).

This generally leaves enough time for unscheduled communication.

• Adjust the update rates of the tasks as needed to get the best
trade-off between executing your logic and servicing
unscheduled communication.

• If your project has a continuous task, unscheduled
communication occurs as a percentage of controller time
(excluding the time for periodic or event tasks). See “system
overhead” on page 4-6.

Task: Priority: Execution time: Rate

1 higher 20 ms 80 ms

2 lower 30 ms 100 ms

total execution time: 50 ms
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-9
Avoid Overlaps An overlap is a condition where a task (periodic or event) is triggered
while the task is still executing from the previous trigger.

Each task requires enough time to finish before it is triggered again.
Make sure that the scan time of the task is significantly less than the
rate at which the trigger occurs. If an overlap occurs, reduce the
frequency at which you trigger the task:

IMPORTANT If an overlap occurs, the controller disregards the
trigger that caused the overlap. In other words, you
might miss an important execution of the task.

task trigger

event task

21 43

Description:

Task trigger occurs.

Task executes.

Task trigger occurs.

Task executes.

Task trigger occurs.

Task executes.

Overlap occurs. Task is triggered while it is still executing.

The trigger does not restart the task. The trigger is ignored.

If the type of task is: Then:

periodic increase the period of the task

event adjust the configuration of your system to trigger the task
less frequently.

1

2

3

4

Publication 1756-PM001G-EN-P - March 2004

4-10 Manage Multiple Tasks
Manually Check for Overlaps

To manually see if overlaps are occurring for a task:

1. In the controller organizer, right-click the task and choose
Properties.

2. Click the Monitor tab.

3. To close the dialog box, choose

1.

number of overlaps since the counter was last reset
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-11
Programmatically Check for Overlaps

When an overlap occurs, the controller:

• logs a minor fault to the FAULTLOG object

• stores overlap information in the TASK object for the task

To write logic to check for an overlap, use a Get System Value (GSV)
instruction to monitor either of the following objects:

If you want to: Then access the following object and attribute:

Object: Attribute: Data Type: Description:

determine if an overlap occurred
for any task

FAULTLOG MinorFaultBits DINT Individual bits that indicate a minor fault:

To determine if: Examine this bit:

An instruction produced a minor
fault.

4

An overlap occurred for a task. 6

The serial port produced a minor
fault.

9

The battery is not present or
needs replacement.

10

determine if an overlap occurred
for a specific task

TASK Status DINT Status information about the task. Once the controller
sets one of these bits, you must manually clear the bit.

To determine if: Examine this bit:

An EVENT instruction triggered
the task (event task only).

0

A timeout triggered the task
(event task only).

1

An overlap occurred for this task. 2

determine the number of times
that an overlap occurred.

TASK OverlapCount DINT Valid for an event or a periodic task.

To clear the count, set the attribute to 0.
Publication 1756-PM001G-EN-P - March 2004

4-12 Manage Multiple Tasks
EXAMPLE Programmatically Check for Overlaps

1. The GSV instruction sets Task_2_Status = Status attribute for Task_2 (DINT value).

2. If Task_2_Status.2 = 1, then an overlap occurred so get the count of overlaps:

The GSV instruction sets Task_2_Overlap_Count (DINT tag) = OverlapCount attribute of Task_2.

3. If Condition_1 = 1, then clear the bits of the Status attribute for Task_2:

The SSV instruction sets the Status attribute of Task_2 = Zero. Zero is a DINT tag with a value of 0.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-13
Configure Output
Processing for a Task

At the end of a task, the controller performs overhead operations
(output processing) for the I/O modules in your system. While not the
same as updating the modules, this output processing may effect the
update of the I/O modules in your system.

As an option, you can turn off this output processing for a specific
task, which reduces the elapsed time of that task.

Enable or disable the processing of
outputs at the end of the task
Publication 1756-PM001G-EN-P - March 2004

4-14 Manage Multiple Tasks
To choose how to configure output processing for a task, use the
following flow chart

Figure 4.1 Choose how to configure output processing for a task.

Disable Automatic Output Processing
To Reduce Task Overhead

Disable Automatic Output Processing
To Reduce Task Overhead

B

C

A

How many output modules does this task effect
(write data to)?

Is this the only task in the Tasks folder of the
project?

Yes Enable automatic output processing.

No

4 or more

0, 1, 2, or 3

Is another task configured to enable automatic
output processing?

No

Yes

No For the task that you are configuring,
enable automatic output processing.

For the task that you are configuring:

1. Disable automatic output
processing.

2. Use an IOT instruction to update
each output module that it
effects.

For the task that is configured for automatic
output processing, does it execute
frequently/continuously?

For this flow chart, a task executes frequently if
its interval time (elapsed time between
triggers) is ≤ the RPI of the I/O modules in your
system.

B

B

C

B

A
Is this the only task in the Tasks folder of the
project?

Yes
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-15
Manually Configure Output Processing

1. In the controller organizer, right-click the task and choose
Properties.

2. Click the Configuration tab.

3. Configure output processing for the task:

4. Choose

1.

3.

If you want to: Then:

enable the processing of outputs at the
end of the task

Clear (uncheck) the Disable Automatic Output Processing To Reduce
Task Overhead check box (default).

disable the processing of outputs at the
end of the task

Select (check) the Disable Automatic Output Processing To Reduce
Task Overhead check box.
Publication 1756-PM001G-EN-P - March 2004

4-16 Manage Multiple Tasks
Programmatically Configure Output Processing

To write logic to configure output processing for a task, use a
Set System Value (SSV) instruction. Access the following attribute of
the TASK object for the task:

If you want to: Then access this
attribute:

Data Type: Instruction: Description:

enable or disable the
processing of outputs at
the end of a task

DisableUpdateOutputs DINT GSV

SSV

To: Set the attribute to:

enable the processing
of outputs at the end
of the task

0

disable the processing
of outputs at the end
of the task

1 (or any non-zero value)

EXAMPLE Programmatically Configure Output Processing

If Condition_1 = 0 then let Task_2 process outputs when it is done.

1. The ONS instruction limits the true execution of the SSV instruction to one scan.

2. The SSV instruction sets the DisableUpdateOutputs attribute of Task_2 = 0. This lets the task automatically process
outputs when it finishes its execution.

If Condition_1 = 1 then do not let Task_2 process outputs when it is done.

1. The ONS instruction limits the true execution of the SSV instruction to one scan.

2. The SSV instruction sets the DisableUpdateOutputs attribute of Task_2 = 1. This prevents the task from automatically
processing outputs when it finishes its execution.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-17
Inhibit a Task By default, each task executes based on its trigger (event, periodic, or
continuous). As an option, you can prevent a task from executing
when its trigger occurs (i.e., inhibit the task). This is useful to test,
diagnose, or start up your project.

If a task is inhibited, the controller still prescans the task when the
controller transitions from program to run or test mode.

Manually Inhibit or Uninhibit a Task

To manually inhibit or uninhibit the execution of a task, use the
properties dialog box for the task.

1. In the controller organizer, right-click the task and choose
Properties.

2. Click the Configuration tab.

If you want to: Then:

let the task execute when its trigger occurs Uninhibit the task (default).

prevent the task from executing when its
trigger occurs

Inhibit the task.

EXAMPLE Inhibit a Task

During the commissioning of a system that uses
several task, you can first test each task individually.

1. Inhibit all the tasks except one, and then test
that task.

2. Once the task meets your requirements, inhibit
it and uninhibit a different task.

3. Continue this process until you have tested all
your tasks.

1.
Publication 1756-PM001G-EN-P - March 2004

4-18 Manage Multiple Tasks
3. Inhibit or uninhibit the task:

4. Choose

3.

If you want to: Then:

let the task execute when its trigger
occurs

Clear (uncheck) the Inhibit Task check
box (default).

prevent the task from executing when
its trigger occurs

Select (check) the Inhibit Task check
box.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-19
Programmatically Inhibit or Uninhibit a Task

To write logic to inhibit or uninhibit a task, use a
Set System Value (SSV) instruction to access the following attribute of
the TASK object for the task:

Attribute: Data Type: Instruction: Description:

InhibitTask DINT GSV

SSV

Prevents the task from executing.

To: Set the attribute to:

enable the task 0 (default)

inhibit (disable) the task 1 (or any non-zero value)

EXAMPLE Programmatically Inhibit or Uninhibit a Task

If Condition_1 = 0 then let Task_2 execute.

1. The ONS instruction limits the true execution of the SSV instruction to one scan.

2. The SSV instruction sets the InhibitTask attribute of Task_2 = 0. This uninhibits the task.

If Condition_1 = 1 then do not let Task_2 execute.

1. The ONS instruction limits the true execution of the SSV instruction to one scan.

2. The SSV instruction sets the InhibitTask attribute of Task_2 = 1. This inhibits the task.
Publication 1756-PM001G-EN-P - March 2004

4-20 Manage Multiple Tasks
Choose the Trigger for an
Event Task

If configured correctly, an event task interrupts all other tasks for the
minimum amount of time required to respond to the event. Each
event task requires a specific trigger that defines when the task is to
execute.

To trigger an event task when: Use this trigger: With these considerations:

digital input turns on or off Module Input Data
State Change

• Only one input module can trigger a specific event task.

• The input module triggers the event task based on the change of state
(COS) configuration for the module. The COS configuration defines
which points prompt the module to produce data if they turn on or off.
This production of data (due to COS) triggers the event task.

• Typically, enable COS for only one point on the module. If you enable
COS for multiple points, a task overlap of the event task may occur.

analog module samples data Module Input Data
State Change

• Only one input module can trigger a specific event task.

• The analog module triggers the event task after each real time sample
(RTS) of the channels.

• All the channels of the module use the same RTS.

controller gets new data via a
consumed tag

Consumed Tag • Only one consumed can trigger a specific event task.

• Typically, use an IOT instruction in the producing controller to signal the
production of new data. The IOT instruction sets an event trigger in the
producing tag. This trigger passes to the consumed tag and triggers the
event task.

• When a consumed tag triggers an event task, the event task waits for
all the data to arrive before the event task executes.

registration input for an axis
turns on (or off)

Axis Registration 1
or 2

• In order for the registration input to trigger the event task, first execute
a Motion Arm Registration (MAR) instruction. This lets the axis detect
the registration input and in turn trigger the event task.

• Once the registration input triggers the event task, execute the MAR
instruction again to re-arm the axis for the next registration input.

• If the scan time of your normal logic is not fast enough to re-arm the
axis for the next registration input, consider placing the MAR
instruction within the event task.

axis reaches the position that is
defined as the watch point

Axis Watch • In order for the registration input to trigger the event task, first execute
a Motion Arm Watch (MAW) instruction. This lets the axis detect the
watch position and in turn trigger the event task.

• Once the watch position triggers the event task, execute the MAW
instruction again to re-arm the axis for the next watch position.

• If the scan time of your normal logic is not fast enough to re-arm the
axis for the next watch position, consider placing the MAW instruction
within the event task

motion planner completes its
execution

Motion Group
Execution

• The coarse update period for the motion group triggers the execution of
both the motion planner and the event task.

• Because the motion planner interrupts all other tasks, it executes first.
If you assign the event task as the highest priority task, it executes
after the motion planner.

specific condition or conditions
occur within the logic of a
program

EVENT instruction Multiple EVENT instructions can trigger the same task. This lets you execute a
task from different programs.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-21
Here are some example situations for event tasks and the
corresponding triggers:

The triggers that you can use for an event task varies depending on
your type of Logix5000 controller.

For this example situation: Use an event task with this trigger:

A packaging line glues boxes closed. When a box arrives at the gluing position, the controller
must immediately execute the gluing routine.

Module Input Data State Change

A production line uses a proximity sensor to detect the presence of a part. Because the
proximity sensor is on for only a very short time (pulse), the continuous task might miss the off
to on transition of the sensor.

Module Input Data State Change

In an engine test stand, you must capture and archive each sample of analog data. Module Input Data State Change

Controller A produces an array of production data for Controller B. You want to make sure that
Controller B doesn’t use the values while Controller A is updating the array:

Consumed Tag

In a line that packages candy bars, you have to make sure that the perforation occurs in the
correct location on each bar. Each time the registration sensor detects the registration mark,
check the accuracy of an axis and perform any required adjustment.

Axis Registration 1 or 2

At the labeling station of a bottling line, you want to check the position of the label on the
bottle. When the axis reaches the position that is defined as the watch point, check the label.

Axis Watch

A gluing station must adjust the amount of glue it applies to compensate for changes in the
speed of the axis. After the motion planner executes, check the command speed of the axis and
vary the amount of glue, if needed.

Motion Group Execution

In a production line, if any of the programs detect an unsafe condition the entire line must shut
down. The shutdown procedure is the same regardless of the unsafe condition.

EVENT instruction

IMPORTANT RSLogix 5000 software may let you configure a trigger for an event
task that your controller does not support. The project will verify and
successfully download, but the event task will not execute.

Table 4.1 Use the following table to determine which Logix5000 controllers support each type of event trigger.

If you have this
controller:

Then you can use these event task triggers:

Module Input
Data State

Change

Consumed Tag Axis Registration
1 or 2

Axis Watch Motion Group
Execution

EVENT
instruction

CompactLogix ✔ ✔

FlexLogix ✔ ✔

ControlLogix ✔ ✔ ✔ ✔ ✔ ✔

DriveLogix ✔ ✔ ✔ ✔ ✔

SoftLogix5800 ✔(1) ✔(2) ✔ ✔ ✔ ✔

(1) Requires a 1756 I/O module or a virtual backplane.

(2) A SoftLogix5800 controller produces and consumes tags only over a ControlNet network.
Publication 1756-PM001G-EN-P - March 2004

4-22 Manage Multiple Tasks
Using the Module Input
Data State Change Trigger

To trigger an event task based on data from an input module, use the
Module Input Data State Change trigger.

How an I/O Module Triggers an Event Task

The following terms apply to the operation of an input module:

Let an event trigger this task.

Let data from an input module trigger the task.

Let this input tag trigger the task.

When the task is done, do not update digital
outputs in the local chassis.

Term: Definition:

multicast A mechanism where a module sends data on a network that is simultaneously received by
more that one listener (device). Describes the feature of the Logix5000 I/O line which
supports multiple controllers receiving input data from the same I/O module at the same
time.

requested packet
interval (RPI)

The RPI specifies the interval at which a module multicasts its data. For example, an input
module sends data to a controller at the RPI that you assign to the module.

• The range is 0.2 ms (200 microseconds) to 750 ms.

• When the specified time frame elapses, the module multicasts its data. This is also
called a cyclic update.

real time sample
(RTS)

The RTS specifies when an analog module scans its channels and multicasts the data
(update the input data buffer then multicast).

• The RPI specifies when the module multicasts the current contents of the input data
buffer without scanning (updating) the channels.

• The module resets the RPI timer each time and RTS transfer occurs.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-23
The following table summarizes when an input module multicasts its
data and triggers an event task within its own chassis.

If the module is in a remote chassis, only the RPI determines when the
controller receives the data and event trigger over the network.

change of state
(COS)

The COS parameter instructs a digital input module to multicast data whenever a specified
input point transitions from On → Off or Off → On.

• You enable COS on a per-point basis.

• When any point that is enabled for COS receives the specified change, the module
multicasts the data for all its points.

• By default, COS is enabled for both On → Off and Off → On changes for all points.

• You must specify an RPI regardless of whether you enable COS. If a change does not
occur within the RPI, the module sends its data at the RPI.

Term: Definition:

If the input module
is:

And: Then it multicasts data: And it triggers an event task:

digital COS is enabled for any
point on the module

• when any point that is enabled for COS
receives the specified change

• at the RPI

when any point that is enabled for
COS receives the specified change

COS is not enabled for
any point on the
module

at the RPI never

analog RTS ≤ RPI at the RTS (newly updated channel data) at the RTS for the module

RTS > RPI • at the RTS (newly updated channel data)

• at the RPI (does not contain updated data
from the channels)

at the RTS for the module

Over this network: The controller receives the data:

EtherNet/IP close to the RPI, on average

ControlNet at the actual packet interval (≤ RPI)
Publication 1756-PM001G-EN-P - March 2004

4-24 Manage Multiple Tasks
Here are some examples that show COS and RTS configurations:

IMPORTANT If you use a digital module to trigger an event task, configure only one
point on the module for COS. If you configure multiple points, a task
overlap could occur.

If you want this: Then configure the input module like this (point 0 is used as an example only):

point 0

event task

change of state
no change of state for

remaining points

point 0

event task

change of state

no change of state for
remaining points

point 0

event task

change of state
no change of state for

remaining points

event task

RTS of analog
inputs

25.0 ms real time sample of inputs
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-25
Make Sure Your Module Can Trigger an Event Task

To use an input module to trigger an event task, the module must
support event task triggering. If the module is in a remote location,
the associated communication modules must also support event
triggering.

The following table lists Rockwell Automation modules that we have

tested for event task triggering. Some 3rd party modules may also

support event task triggering. Before you use a 3rd party module,
check with the supplier to validate the operation of the module.

Category Module Category Module

1756 Discrete 1756-IA16 1756 Analog 1756-IF16

1756-IA16I 1756-IF4FXOF2F/A

1756-IA8D 1756-IF6CIS

1756-IB16 1756-IF6I

1756-IB16D 1756-IF8

1756-IB16I 1756-IR6I

1756-IB32/A 1756-IT6I

1756-IB32/B 1756-IT6I2

1756-IC16 1756 Generic 1756-MODULE

1756-IH16I 1756 Communication 1756-CNB/A

1756-IM16I 1756-CNB/B

1756-IN16 1756-CNB/D

1756-IV16/A 1756-CNBR/A

1756-IV32/A 1756-CNBR/B

1756-CNBR/D

1756-DNB

1756-ENBT/A

1756-SYNCH/A

SoftDNB 1784-PCIDS/A

1789 Generic 1789-MODULE
Publication 1756-PM001G-EN-P - March 2004

4-26 Manage Multiple Tasks
Checklist for an Input Event Task

For this: Make sure you:

❑ 1. Input module type For the fastest response, use the following modules:

• For fastest digital response, use a 1756-IB32/B module.

• For fastest analog response, use a 1756-IF4FXOF2F module.

❑ 2. I/O module location Place the module that triggers the event and the modules that respond to the event (outputs)
in the same chassis as the controller.

Remote modules add network communications to the response time.

❑ 3. Number of local modules Limit the number of modules in the local chassis.

Additional modules increases the potential for backplane delays

❑ 4. Change of state (COS) If a digital device triggers the event, enable COS for only the point that triggers the event
task.

• Enable change of state for the type of transition that triggers the task, either Off →
On, On → Off, or both.

• If you configure COS for both Off → On and On → Off, the point triggers an event task
whenever the point turns on or off. Make sure the duration of the input is longer than
the scan time of the task. Otherwise an overlap could occur.

• Disable (clear) COS for the remaining points on the input module. If you configure
multiple points on a module for COS, each point could trigger the event task. This
could cause an overlap.

❑ 5. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the periodic task
is done.

❑ 6. Motion planner The motion planner interrupts all other tasks, regardless of their priority.

• The number of axes and coarse update period for the motion group effect how long
and how often the motion planner executes.

• If the motion planner is executing when a task is triggered, the task waits until the
motion planner is done.

• If the coarse update period occurs while a task is executing, the task pauses to let the
motion planner execute.

❑ 7. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks. This could
cause an overlap.

❑ 8. Automatic Output Processing For an event task, you can typically disable automatic output processing (default). This
reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.

❑ 9. IOT instruction Use an IOT instruction for each output module that you reference in the event task.

The IOT instruction overrides the RPI for the module and immediately sends the data.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-27
EXAMPLE
As parts move past a diverter location, the controller must decide
whether or not to turn on the diverter. Once the diverter is on, the
controller must also turn it off before the next part is in that position.
Because of the speed of the line, an event task controls the diverter.

The event task uses the following logic to control the diverter.

A photoeye at the diverter position indicates when
a part is in the diverter position. The input is wired

to the module in slot 4 of the local chassis.

The diverter photoeye (point 0) is configured for change of
state for both Off and On. This lets the photoeye trigger

the event task when it turns on and when it turns off.

If Diverter_Photoeye = 1 (part is in the diverter position)

And Divert_Part = 1 (divert this part)

Then Diverter = 1 (turn on the diverter)

Otherwise Diverter = 0 (turn off the diverter)

Immediately send the output values to the output module in slot 5.
Publication 1756-PM001G-EN-P - March 2004

4-28 Manage Multiple Tasks
Estimate Throughput

To estimate the throughput time from input to output (screw to
screw), use the following worksheet:

Consideration: Value:

1. What is the input filter time of the module that triggers the event task?

µsThis is typically shown in milliseconds. Convert it to microseconds (µs).

2. What is the hardware response time for the input module that triggers the event task?

µs
Make sure you use the appropriate type of transition (Off → On or On → Off). See Table 4.2 on
page 4-29.

3. What is the backplane communication time?

µs

If the chassis size is: Use this value (worst case):

4 slot 13 µs

7 slot 22 µs

10 slot 32 µs

13 slot 42 µs

17 slot 54 µs

4. What is the total execution time of the programs of the event task? µs

5. What is the backplane communication time? (Same value as step 3.) µs

6. What is the hardware response time of the output module. µs

7. Add steps 1 through 6. This is the minimum estimated throughput, where execution of the motion planner or
other tasks do not delay or interrupt the event task. µs

8. What is the scan time of the motion group? µs

9. What is the total scan time of the tasks that have a higher priority than this event task (if any)? µs

10. Add steps 7 through 9. This is the nominal estimated throughput, where execution of the motion planner or
other tasks delay or interrupt the event task. µs
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-29
Table 4.2 Use the following table to determine the nominal hardware response
times for selected 1756 I/O modules.

Module: Nominal response time µs:

25° C 60° C

Off → On On → Off Off → On On → Off

1756-IB16 265 582 265 638

1756-IB16D 303 613 305 673

1756-IB32/B 330 359 345 378

1756-IV16 257 435 254 489

1756-IV32 381 476 319 536

1756-OB16D 48 519 51 573

1756-OB16E 60 290 61 324

1756-OB32 38 160 49 179

1756-OV16E 67 260 65 326

1756-OV32E 65 174 66 210
Publication 1756-PM001G-EN-P - March 2004

4-30 Manage Multiple Tasks
EXAMPLE Estimate Throughput

The following example shows the throughput considerations for the
system shown below. In this example, the throughput is the time from
when the input turns on to when the output turns on.

1756-IB32/B digital input
module

1756-OB16D digital
output module

Off → On transition Off → On transition

Consideration: Value:

1. What is the input filter time of the module that triggers the event task?

0 µsThis is typically shown in milliseconds. Convert it to microseconds (µs).

2. What is the hardware response time for the input module that triggers the event task?

330 µs
Make sure you use the appropriate type of transition (Off → On or On → Off). See Table 4.2 on
page 4-29.

3. What is the backplane communication time?

13 µs

If the chassis size is: Use this value (worst case):

4 slot 13 µs

7 slot 22 µs

10 slot 32 µs

13 slot 42 µs

17 slot 54 µs

4. What is the total execution time of the programs of the event task? 400 µs

5. What is the backplane communication time? (Same value as step 3.) 13 µs

6. What is the hardware response time of the output module. 51 µs

7. Add steps 1 through 6. This is the minimum estimated throughput, where execution of the motion planner or
other tasks do not delay or interrupt the event task. 807 µs

8. What is the scan time of the motion group? 1130 µs

9. What is the total scan time of the tasks that have a higher priority than this event task (if any)? 0 µs

10. Add steps 7 through 9. This is the nominal estimated throughput, where execution of the motion planner or
other tasks delay or interrupt the event task. 1937 µs
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-31
Additional Considerations

The following considerations effect the scan time of the event task,
which effects the speed at which it can respond to the input signal.

Consideration: Description:

amount of code in the event task Each logic element (rung, instruction, structured text construct, etc…) adds scan time to
the task.

task priority If the event task is not the highest priority task, a higher priority task may delay or interrupt
the execution of the event task.

CPS and UID instructions If one of these instructions are active, the event task cannot interrupt the currently
executing task. (The task with the CPS or UID.)

communication interrupts The following actions of the controller interrupt a task, regardless of the priority of the task

• communication with I/O modules

Modules that have large data packets have a greater impact, such as the 1756-DNB
module.

• serial port communication
Publication 1756-PM001G-EN-P - March 2004

4-32 Manage Multiple Tasks
Using the Motion Group
Trigger

To couple the execution of an event task with the execution of the
motion planner, use the Motion Group Execution trigger.

The Motion Group Execution trigger works as follows:

• The coarse update period for the motion group triggers the
execution of both the motion planner and the event task.

• Because the motion planner interrupts all other tasks, it executes
first. If you assign the event task as the highest priority task, it
executes immediately after the motion planner.

The following timing diagram shows the relationship between the
motion planner and the event task.

Let an event trigger this task.

Let the motion planner trigger the task.

This is the name of the motion group tag.

When the task is done, do not update digital
outputs in the local chassis.

Interrupt all other tasks.

motion planner

coarse update period

event task

The coarse update period for the motion group
triggers both the motion planner and the event task.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-33
Checklist for a Motion Group Task

For this: Make sure you:

❑ 1. Scan time Make sure the scan time of the event task is significantly less than the course
update period of the motion group. Otherwise, a task overlap could occur.

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.
Publication 1756-PM001G-EN-P - March 2004

4-34 Manage Multiple Tasks
Using the Axis Registration
Trigger

To let the registration input of an axis trigger an event task, use the
Axis Registration (1 or 2) trigger.

When the specified registration input reaches its trigger condition, it
triggers the event task.

• In the configuration of the event task, specify which registration
input you want to trigger the task. Choose either Axis
Registration 1 or Axis Registration 2.

• You must first arm the registration input using a Motion Arm
Registration (MAR) instruction.

• In the MAR instruction, the Trigger Condition operand defines
which transition of the registration input (Off → On or On →
Off) triggers the event task.

• Once the registration input triggers the task, you have to re-arm
the registration input.

The following timing diagram shows the relationship between the
registration input and the event task.

Let an event trigger this task.

Let registration input 1….

…of this axis trigger the task.

When the task is done, do not update digital
outputs in the local chassis.

Interrupt all other tasks.

registration input

axis position

event task
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-35
Checklist for an Axis Registration Task

For this: Make sure you:

❑ 1. Registration input Arm the registration input (MAR instruction). This lets the axis detect the
registration input and trigger the event task.

• Initially, arm the registration input to detect the first trigger condition.

• Re-arm the registration input after each execution of the event task.

• Re-arm the registration input fast enough to detect each trigger condition.

If your normal logic is: Then:

fast enough to re-arm the registration input
between intervals of the trigger condition

E.g., Your normal logic always completes at
least 2 scans between registration inputs.

Arm the registration input within
your normal logic, if desired.

not fast enough to re-arm the registration input Arm the registration input within
the event task.

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.
Publication 1756-PM001G-EN-P - March 2004

4-36 Manage Multiple Tasks
EXAMPLE
In a line that packages candy bars, you have to make sure that the
perforation occurs in the correct location on each bar.

• Each time the registration sensor detects the registration mark,
check the accuracy of an axis and perform any required
adjustment.

• Due to the speed of the line, you have to arm the registration
input within the event task.

The following logic arms and re-arms the registration input.

A registration sensor is wired as registration
input 1…

…for the axis named Axis_1.

This event task interrupts all other tasks.

Continuous task

If Arm_Registration = 1 (system is ready to look for the registration mark) then

The ONS instruction limits the execution of the EVENT instruction to one scan.

The EVENT instruction triggers an execution of Task_1 (event task).

Task_1 (event task)

The GSV instruction sets Task_Status (DINT tag) = Status attribute for the event task. In the Instance Name
attribute, THIS means the TASK object for the task that the instruction is in (i.e., Task_1).

continued on next page
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-37
If Task_Status.0 = 1 then an EVENT instruction triggered the event task. In the continuous task, the EVENT executes
to arm registration for the first time.

The JMP instruction causes the controller to jump its execution to the Arm LBL instruction. This skips all the
logic of the routine except the rung that arms registration for the axis.

The MAR instruction executes each time the task executes and arms Axis_1 for registration.

The OTU instruction sets the EN bit of the MAR instruction = 0.

• The MAR instruction is a transitional instruction.

• To execute the MAR instruction, its rung-condition-in must go from false to true.

• By first clearing the EN bit, the instruction responds as if its rung-condition-in changed from false to
true.

The MAR instruction arms the axis for registration.

The controller does not clear the bits of the Status attribute once they are set. To use a bit for new status
information, you must manually clear the bit.

If Task_Status.0 = 1 then clear that bit.

The OTU instruction sets Task_Status.0 = 0.

The SSV instruction sets the Status attribute of THIS task (Task_1) = Task_Status. This includes the cleared
bit.

Other logic
Publication 1756-PM001G-EN-P - March 2004

4-38 Manage Multiple Tasks
Using the Axis Watch
Trigger

To let the watch position of an axis trigger an event task, use the
Axis Watch trigger.

When the axis reaches the position that is specified as the watch
position, it triggers the event task.

• You must first arm the axis for the watch position using a Motion
Arm Watch (MAW) instruction.

• In the MAW instruction, the Trigger Condition operand defines
the direction in which the axis must be moving to trigger the
event task.

• Once the axis reaches the watch position and triggers the event
task, you have to re-arm the axis for the next watch position.

The following timing diagram shows the relationship between the
watch position and the event task.

Let an event trigger this task.

Let the watch position….

…of this axis trigger the task.

When the task is done, do not update digital
outputs in the local chassis.

Interrupt all other tasks.

watch point

axis position

event task
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-39
Checklist for an Axis Watch Task

For this: Make sure you:

❑ 1. Watch position Use a MAW instruction to set up a watch position. This lets the axis trigger the
event task when it reaches the watch position.

• Initially, arm the axis to detect the first watch position.

• Once the axis reaches the watch position and triggers the event task,
re-arm the axis for the next watch position.

• Re-arm the axis fast enough to detect each watch position.

If your normal logic is: Then:

fast enough to re-arm the axis between
intervals of the watch position

E.g., Your normal logic always completes at
least 2 scans between watch positions.

Arm the axis within your normal
logic, if desired.

not fast enough to re-arm the axis Arm the axis within the event
task.

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.
Publication 1756-PM001G-EN-P - March 2004

4-40 Manage Multiple Tasks
EXAMPLE
At the labeling station of a bottling line, you want to check the
position of the label on the bottle.

• When the axis reaches the position that is defined as the watch
point, check the label.and perform any required adjustment.

• Due to the speed of the line, you have to arm axis for the watch
position within the event task.

The following logic arms and re-arms the axis for the watch position.

Let the watch position…

…for the axis named Axis_1 trigger the event
task.

This event task interrupts all other tasks.

Continuous task

If Arm_Watch = 1 (system is ready to set up a watch position) then

The ONS instruction limits the execution of the EVENT instruction to one scan.

The EVENT instruction triggers an execution of Task_1 (event task).

Task_1 (event task)

The GSV instruction sets Task_Status (DINT tag) = Status attribute for the event task. In the Instance Name
attribute, THIS means the TASK object for the task that the instruction is in (i.e., Task_1).

continued on next page
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-41
If Task_Status.0 = 1 then an EVENT instruction triggered the event task. In the continuous task, the EVENT executes
to set up the watch position for the first time.

The JMP instruction causes the controller to jump its execution to the Arm LBL instruction. This skips all the
logic of the routine except the rung that arms the axis for the watch position (MAW instruction).

The MAW instruction executes each time the task executes and arms Axis_1 for the watch position.

The OTU instruction sets the EN bit of the MAW instruction = 0.

• The MAW instruction is a transitional instruction.

• To execute the MAW instruction, its rung-condition-in must go from false to true.

• By first clearing the EN bit, the instruction responds as if its rung-condition-in changed from false to
true.

The MAW instruction arms the axis for the watch position.

The controller does not clear the bits of the Status attribute once they are set. To use a bit for new status
information, you must manually clear the bit.

If Task_Status.0 = 1 then clear that bit.

The OTU instruction sets Task_Status.0 = 0.

The SSV instruction sets the Status attribute of THIS task (Task_1) = Task_Status. This includes the cleared
bit.

Other logic
Publication 1756-PM001G-EN-P - March 2004

4-42 Manage Multiple Tasks
Using the Consumed Tag
Trigger

To trigger an event task based on data from a consumed tag, use the
Consumed Tag trigger.

A produced/consumed tag relationship can pass an event trigger
along with data to a consumer controller. Typically, you use an
Immediate Output (IOT) instruction to send the event trigger to the
consumer controller.

Let an event trigger this task.

Let a consumed tag trigger the task.

Let this consumed tag trigger the task.

Event Task

Consumed_Tag

6A7844B1

3B221D89

43BB278F

Controller A Controller B

new
data

Produced_Tag

6A7844B1

3B221D89

43BB278F

2 31 4

Description:

In Controller A, logic updates the values of a produced tag.

Once the update is complete, the Controller A executes an IOT instruction to send
the data and an event trigger to Controller B.

Controller B consumes the new data.

After Controller B updates the consumed tag, it executes the event task.

1

2

3

4

Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-43
The type of network between the controllers determines when the
consuming controller receives the new data and event trigger via the
IOT instruction.

The following diagrams compare the receipt of data via an IOT
instruction over EtherNet/IP and ControlNet networks.

With this controller: Over this network: The consuming device receives the
data and event trigger:

ControlLogix backplane immediately

EtherNet/IP network immediately

ControlNet network within the actual packet interval (API) of the
consumed tag (connection)

SoftLogix5800 You can produce and consume tags only over
a ControlNet network.

within the actual packet interval (API) of the
consumed tag (connection)

EtherNet/IP network (ControlLogix controller) ControlNet network

event task in the
consuming controller

values loaded into
produced tag

IOT instruction in the
producing controller

event task in the
consuming controller

values loaded into
produced tag

IOT instruction in the
producing controller

RPI of the produced tag
Publication 1756-PM001G-EN-P - March 2004

4-44 Manage Multiple Tasks
Maintain the Integrity of Data

An event task with a consumed tag trigger provides a simple
mechanism to pass data to a controller and ensure that the controller
doesn’t use the data while the data is changing.

Although the producing controller executes the IOT instruction
immediately after it loads new data, the event task is not triggered (in
the consuming controller) until the consuming controller has received
all the new data. This ensures that the controller operates on a
complete packet of new data.

21 3 4

execution of IOT an
instruction

transmission of the produced
tag

change in values of a
produced tag

event task in the consumer
controller

5

Description:

RPI occurs for the produced tag.

The produced tag transfers old data to the consuming controller.

The producer controller starts to update the values of the produced tag.

RPI occurs again for the produced tag.

The produced tag transfers a mix of old and new data to the consuming controller.

The producer controller finishes updating the values of the produced tag.

The producer controller executes an Immediate Output (IOT) instruction.

The produced tag immediately transfers all the new data to the consuming
controller.

When the consumer controller receives all the data, it executes its event task.

1

2

3

4

5

Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-45
Synchronize Multiple Controllers

You can also use the produced/consumed tag relationship to
synchronize controllers. In this case, the produced/consumed tag
serves only as a triggering mechanism.

event task in the consuming controller A

logic execution in the producing controller

IOT instruction in the producing controller

event task in the consuming controller B

21 3 4

Description:

The first controller executes an action with which other controllers need to stay
synchronized.

When the action is done, the controller executes an IOT instruction. The IOT
instruction uses a produced tag as its target.

When controller A receives the produced tag, it executes its event task.

When controller B receives the produced tag, it executes its event task.

1

2

3

4

Publication 1756-PM001G-EN-P - March 2004

4-46 Manage Multiple Tasks
Checklist for the Producer Controller

For this: Make sure you:

❑ 1. Buffer of data If you want to send a complete image of data at one instance in time, then produce
a copy of the data, as shown below:

❑ 2. Produced tag properties In the Connection properties of the produced tag, select (check) the following
check box:

If you leave this box cleared (unchecked), the producing controller triggers the
event task at the end of any task that automatically updates local outputs. In other
words, the task scan will trigger the event in addition to the IOT instruction.

❑ 3. IOT instruction Use an IOT instruction at the point in your logic where you want to trigger the
event task.

The IOT instruction overrides the RPI for the tag and immediately sends the event
trigger and the data of the tag.

Produced_Tag

6A7844B1

3B221D89

43BB278F

CPS

This tag stores data to which
instructions in the project write

data.

data from
logic

Source_Tag

6A7844B1

3B221D89

43BB278F

Synchronous Copy File

This tag stores a copy of
Source_Tag at 1 instance in

time.

The CPS instruction does not let any
controller operation change the data
during the copy. Tasks that attempt to

interrupt the CPS instruction are delayed
until the copy is done.

Check this check box.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-47
Checklist for the Consumer Controller

For this: Make sure you:

❑ 1. Buffer of data If you want to make sure that the controller does not use data from the consumed
tag while the data is changing, use a copy of the consumed tag. Use the event task
to copy the data, as shown below:

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.

Destination_Tag

6A7844B1

3B221D89

43BB278F

CPS

This tag stores data that the
other controller produces.

data from
other

controller

Consumed_Tag

6A7844B1

3B221D89

43BB278F

Synchronous Copy File

This tag stores a copy of
Consumed_Tag. Instructions in

the project use this data.

The CPS instruction does not let any
other instruction use the data during the
copy. Tasks that attempt to interrupt the

CPS instruction are delayed until the copy
is done.

Event Task
Publication 1756-PM001G-EN-P - March 2004

4-48 Manage Multiple Tasks
EXAMPLE
As parts move along a production line, each station requires
production specifications for the part at its station. To make sure that a
station doesn’t act on old data, an event task signals the arrival of new
data for the next part.

Producer Controller This controller controls station 24 and produces data for the next
station (station 25). To signal the transmission of new data, the
controller uses the following elements:

Produced Tag Properties

Ladder Logic

continued on next page

Produced_Tag is configured to update its event trigger via
an IOT instruction.

If New_Data = on, then the following occurs for one scan:

The CPS instruction sets Produced_Tag_1 = Source_Tag_1.

The IOT instruction updates Produced_Tag_1 and sends this update to the consuming controller (station 25). When
the consuming controller receives this update, it triggers the associated event task in that controller.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-49
Consumer Controller The controller at station 25 uses the data produced by station 24. To
determine when new data has arrived, the controller uses an event
task.

Event Task Properties

Ladder Logic in the Event Task

Let an event trigger this task.

Let a consumed tag trigger the task.

Let this consumed tag trigger the task.

When the event task executes, the CPS instruction sets Destination_Tag_1 = Consumed_Tag_1 (the values from the
producing controller). The remaining logic in this controller uses the values from Destination_Tag_1.
Publication 1756-PM001G-EN-P - March 2004

4-50 Manage Multiple Tasks
Using the EVENT
Instruction Trigger

To trigger an event task based on conditions in your logic, use the
EVENT Instruction Only trigger.

The EVENT Instruction Only trigger requires that you use a Trigger
Event Task (EVENT) instruction to trigger the task. You can use an
EVENT instruction from multiple points in your project. Each time the

instruction executes, it triggers the specified event task.

Let an event trigger this task.

Let an EVENT instruction trigger the task.

No tag is required.

Description:

Program A executes an EVENT instruction.

The event task that is specified by the EVENT instruction executes one time.

Program B executes an EVENT instruction.

The event task that is specified by the EVENT instruction executes one time.

EVENT instruction in program A

EVENT instruction in program B

event task

1 2

1

2

Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-51
Programmatically Determine if an EVENT Instruction Triggered a
Task

To determine if an EVENT instruction triggered an event task, use a
Get System Value (GSV) instruction to monitor the Status attribute of
the task.

The controller does not clear the bits of the Status attribute once they
are set.

• To use a bit for new status information, you must manually clear
the bit.

• Use a Set System Value (SSV) instruction to set the attribute to a
different value.

Checklist for an EVENT Instruction Task

Table 4.3 Status Attribute of the TASK Object

Attribute: Data Type: Instruction: Description:

Status DINT GSV

SSV

Provides status information about the task. Once the controller sets a bit, you
must manually clear the bit to determine if another fault of that type occurred.

To determine if: Examine this bit:

An EVENT instruction triggered the task (event task
only).

0

A timeout triggered the task (event task only). 1

An overlap occurred for this task. 2

For this: Make sure you:

❑ 1. EVENT instruction Use a Trigger Event Task (EVNT) instruction at each point in your logic that you
want to trigger the event task.

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.

To verify this decision, see Figure 4.1 on page 4-14.
Publication 1756-PM001G-EN-P - March 2004

4-52 Manage Multiple Tasks
EXAMPLE
A controller uses multiple programs but a common shut down
procedure. Each program uses a program-scoped tag named
Shut_Down_Line that turns on if the program detects a condition that
requires a shut down.

Event Task Properties

Ladder Logic in Program_A

Ladder Logic in Program_B

Let an event trigger this task.

Let an EVENT instruction trigger the task.

No tag is required.

Interrupt all other tasks.

If Shut_Down_Line = on (conditions require a shut down) then

Execute the Shut_Down task one time

If Shut_Down_Line = on (conditions require a shut down) then

Execute the Shut_Down task one time
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-53
Create a Task Create an Event Task

To create an event task:

1. In the controller organizer, right-click the Tasks folder and
choose New Task.

2. In the Name text box, type a name for the task.

3. From the Type list, choose Event.

4. From the Trigger list, choose the trigger for the task.

5. From the Tag list, choose the tag that contains the triggering
data.

6. In the Priority text box, type the priority for the task.

7. In the Watchdog text box, type the watchdog time for the task.

8. Choose

1.

2.

3.

4.

5.

6.

7.
Publication 1756-PM001G-EN-P - March 2004

4-54 Manage Multiple Tasks
Create a Periodic Task

A periodic task performs a function or functions at a specific rate.

1. In the controller organizer, right-click the Tasks folder and
choose New Task.

2. In the Name text box, type a name for the task.

3. From the Type list, choose Periodic (default).

4. In the Period text box, type the period at which you want the
task to execute.

5. In the Priority text box, type the priority for the task.

6. In the Watchdog text box, type the watchdog time for the task.

7. Choose

IMPORTANT Ensure that the time period is longer than the sum of the execution times of
all the programs assigned to the task.

• If the controller detects that a periodic task trigger occurs for a task that
is already operating, a minor fault occurs (overlap).

• Priorities and execution times of other tasks may also cause an overlap.

1.

2.

3.

4.

5.

6.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-55
Define a Timeout Value for
an Event Task

If you want your event task to automatically execute if the trigger fails
to occur within a certain time, assign a timeout value to the task.
When the event task is done, its timeout timer begins to increment. If
the timer reaches its preset value before the event task is triggered, the
event task automatically executes.

Assign a Timeout Value to an Event Task

To assign a timeout value to an event task:

1. In the controller organizer, right-click the event task and choose
Properties.

Description:

Event task executes.

Timeout time stops incrementing.

Event task is done.

Timeout timer resets and begins incrementing.

Timeout timer reaches the timeout value.

Event task automatically executes.

In the Status attribute of the TASK object, bit 1 turns on.

event task

timeout value for the task

timeout timer

2 31

bit 1 of the status attribute of
the TASK object

1

2

3

1.
Publication 1756-PM001G-EN-P - March 2004

4-56 Manage Multiple Tasks
2. Click the Configuration tab.

3. Check the Execute Task If No Event Occurs Within check box.

4. Type the timeout value, in milliseconds.

5. Choose

Programmatically Configure a Timeout

To programmatically configure a timeout, use a
Get System Value (GSV) instruction to access the following attributes
of the task.

3. 4.

Table 4.4 Status Attribute of the TASK Object

Attribute: Data Type: Instruction: Description:

Rate DINT GSV

SSV

If the task type is: Then the Rate attribute specifies the:

periodic Period for the task. Time is in microseconds.

event The timeout value for the task. Time is in
microseconds.

EnableTimeOut DINT GSV

SSV

Enables or disables the timeout function of an event task.

To: Set the attribute to:

disable the timeout function 0 (default)

enable the timeout function 1 (or any non-zero value)
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-57
Programmatically Determine if a Timeout Occurs

To determine if an event task executed due to a timeout, use a Get
System Value (GSV) instruction to monitor the Status attribute of the
task.

EXAMPLE Programmatically Configure a Timeout

To make sure that a timeout value is always defined and enabled for an event task, the
following logic configures the timeout when the controller enters the run mode.

If S:FS = 1 (first scan) then set the timeout value for Task_2 and enable the timeout function:

1. The first MOV instruction sets Task_2_Timeout = 10000000 µs (DINT value). Then the SSV instruction sets the
Rate attribute for Task_2 = Task_2_Timeout. This configures the timeout value for the task.

2. The second MOV instruction sets One = 1 (DINT value). Then the SSV instruction sets the EnableTimeout
attribute for Task_2 = One. This enables the timeout function for the task.

Table 4.5 Status Attribute of the TASK Object

Attribute: Data Type: Instruction: Description:

Status DINT GSV

SSV

Provides status information about the task. Once the controller sets a bit, you must
manually clear the bit to determine if another fault of that type occurred.

To determine if: Examine this bit:

An EVENT instruction triggered the task (event task only). 0

A timeout triggered the task (event task only). 1

An overlap occurred for this task. 2
Publication 1756-PM001G-EN-P - March 2004

4-58 Manage Multiple Tasks
For more information on shutting down the controller, see “Create a
User-Defined Major Fault“on page 15-13.

EXAMPLE Define a Timeout Value for an Event Task

If a timeout occurs for the event task, communication with the triggering device might
have failed. This requires the process to shut down. To shut down the controller, the
event task calls the fault routine for the program and supplies a user-defined fault code
(999 in this example).

1. The GSV instruction sets Task_2_Status = Status attribute for Task_2 (DINT value).

2. If Task_2_Status.1 = 1, then a timeout occurred so shut down the controller and set the major fault code to 999:

The JSR instruction calls the fault routine for the program. This produces a major fault.

The major fault code = 999 (value of the input parameter of 999).

3. If Condition_1 = 1, then clear the bits of the Status attribute for Task_2:

The SSV instruction sets the Status attribute of Task_2 = Zero. Zero is a DINT tag with a value of 0.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Tasks 4-59
Notes:
Publication 1756-PM001G-EN-P - March 2004

4-60 Manage Multiple Tasks
Publication 1756-PM001G-EN-P - March 2004

Chapter 5

Design a Sequential Function Chart

When to Use This
Procedure

Use this procedure to design a sequential function chart (SFC) for
your process or system. An SFC is similar to a flowchart of your
process. It defines the steps or states through which your system
progresses. Use the SFC to:

• organize the functional specification for your system

• program and control your system as a series of steps and
transitions

By using an SFC to specify your process, you gain these advantages:

• Since an SFC is a graphical representation of your process, it is
easier to organize and read than a textual version. In addition,
RSLogix 5000 software lets you:

– add notes that clarify steps or capture important information
for use later on

– print the SFC to share the information with other individuals

• Since Logix5000 controllers support SFCs, you do not have to
enter the specification a second time. You are programming
your system as you specify it.

By using an SFC to program your process, you gain these advantages:

• graphical division of processes into its major logic pieces (steps)

• faster repeated execution of individual pieces of your logic

• simpler screen display

• reduced time to design and debug your program

• faster and easier troubleshooting

• direct access to the point in the logic where a machine faulted

• easy updates and enhancements

How to Use This Procedure Typically, the development of an SFC is an iterative process. If you
prefer, you can use RSLogix 5000 software to draft and refine your
SFC. For specific procedures on how to enter an SFC, see “Program a
Sequential Function Chart” on page 6-1.
1 Publication 1756-PM001G-EN-P - March 2004

5-2 Design a Sequential Function Chart
What is a Sequential
Function Chart?

A sequential function chart (SFC) is similar to a flowchart. It uses
steps and transitions to perform specific operations or actions.
Figure 5.1 and Figure 5.2 is an example that shows the elements of an
SFC:

Figure 5.1 SFC Example

A step represents a major function of your process. It contains the
actions that occur at a particular time, phase, or station.

An action is one of the functions that a step
performs.

A simultaneous branch executes more than 1 step at
the same time.

A transition is the true or false condition that tells the SFC
when to go to the next step.

(continued on next page)

A qualifier determines when an action starts and stops.

Show or hide an
action.

JSR instruction calls a subroutine.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-3
Figure 5.2 SFC Example (continued from previous page)

A text box lets you add descriptive text or notes to your SFC.

A selection branch chooses between
different execution paths.

A wire connects one element to another element anywhere on the chart. This wire takes you to the
conveyor step on Figure 5.1 on the previous page.

A stop lets you stop and wait for a command to restart.
Publication 1756-PM001G-EN-P - March 2004

5-4 Design a Sequential Function Chart
How to Design an SFC:
Overview

To design an SFC, you perform these tasks:

The remaining sections of this chapter describe in detail how to
perform each task.

Define the Tasks

Choose How to Execute the SFC

Define the Steps of the Process

Organize the Steps

Add Actions for Each Step

Describe Each Action in Pseudocode

Choose a Qualifier for an Action

Define the Transition Conditions

Transition After a Specified Time

Turn Off a Device at the End of a Step

Keep Something On From Step-to-Step

End the SFC

Nest an SFC

Configure When to Return to the OS/JSR

Pause or Reset an SFC
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-5
Define the Tasks The first step in the development of an SFC is to separate the
configuration and regulation of devices from the commands to those
devices. Logix5000 controllers let you divide your project into one
continuous task and multiple periodic tasks and event tasks.

1. Organize your project as follows:

2. For those functions that go in a periodic task, group the
functions according to similar update rates. Create a periodic
task for each update rate.

For example, your 2-state devices may require faster updates
than your PID loops. Use separate periodic tasks for each.

The following example shows a project that uses two periodic tasks to
regulate motors, valves, and temperature loops. The project uses an
SFC to control the process.

These functions: Go here:

configure and regulate devices periodic task

command a device to a specific state SFC in the continuous task

sequence the execution of your process

EXAMPLE Define the Tasks

This task (continuous) executes the sequential function
chart (SFC). The SFC commands the specific state or
temperature for each device or temperature loop.

This task (periodic) uses function block diagrams to turn on or
off motors and open or close valves. The SFC in MainTask
commands the state for each device. The function block
diagrams set and maintain that state.

This task (periodic) uses function block diagrams to configure
and regulate temperature loops. The SFC in MainTask
commands the temperatures. The function block diagrams set
and maintain those temperatures.
Publication 1756-PM001G-EN-P - March 2004

5-6 Design a Sequential Function Chart
Choose How to Execute the
SFC

To execute an SFC, either configure it as the main routine for a
program or call it as a subroutine.

If the SFC uses boolean actions, then other logic must run
independent of the SFC and monitor status bits of the SFC.

Define the Steps of the
Process

A step represents a major function of your process. It contains the
actions that occur at a particular time, phase, or station.

A transition ends a step. The transition defines the physical
conditions that must occur or change in order to go to the next step.

If: Then:

The SFC is the only routine in the program. Configure the SFC as the main routine for
the program.

The SFC calls all the other routines of the
program.

The program requires other routines to
execute independent of the SFC.

1. Configure another routine as the
main routine for the program.

2. Use the main routine to call the SFC
as a subroutine.

The SFC uses boolean actions.

Step

MIX
A step executes continuously until a
transition tells the SFC to go to the
next step.

Transition

• If true, go to the next step.

…and do this

Actions

Do this…
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-7
Follow These Guidelines

As you define the steps of your process, follow these guidelines:

• Start with large steps and refine the steps in several passes.

• When you first open an SFC routine, it contains an initial step
and transition. Use this step to initialize your process.

• To identify a step, look for a physical change in your system,
such as new part that is in position, a temperature that is
reached, a preset time that is reached, or a recipe selection that
occurs. The step is the actions that take place before that
change.

• Stop when your steps are in meaningful increments. For
example:

Clean

Air_Flow Elec_Charg

third pass

Transfer_In

Clean

Transfr_Out

Paint

second pass

Paint

first pass

Paint_Flow

Transfer_In

Transfr_Out

This organization of steps: Is:

produce_solution probably too large

set_mode, close_outlet, set_temperature,
open_inlet_a, close_inlet_a, set_timer,
reset_temperature, open_outlet, reset_mode

probably too small

preset_tank, add_ingredient_a, cook, drain probably about right

initial step

initial transition
Publication 1756-PM001G-EN-P - March 2004

5-8 Design a Sequential Function Chart
SFC_STEP Structure

Each step uses a tag to provide information about the step. Access this
information via either the Step Properties dialog box or the Monitor
Tags tab of the Tags window:

If you want to: Then check or set
this member:

Data type: Details:

determine how long a step has
been active (milliseconds)

T DINT When a step becomes active, the Timer (T) value resets and then
starts to count up in milliseconds. The timer continues to count up
until the step goes inactive, regardless of the Preset (PRE) value.

flag when the step has been
active for a specific length of
time (milliseconds)

PRE DINT Enter the time in the Preset (PRE) member. When the Timer (T)
reaches the Preset value, the Done (DN) bit turns on and stays on
until the step becomes active again.

As an option, enter a numeric expression that calculates the time
at runtime.

DN BOOL When the Timer (T) reaches the Preset (PRE) value, the Done (DN)
bit turns on and stays on until the step becomes active again.

flag if a step did not execute
long enough

LimitLow DINT Enter the time in the LimitLow member (milliseconds).

• If the step goes inactive before the Timer (T) reaches the
LimitLow value, the AlarmLow bit turns on.

• The AlarmLow bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

As an option, enter a numeric expression that calculates the time
at runtime.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn)
bit.

AlarmLow BOOL If the step goes inactive before the Timer (T) reaches the LimitLow
value, the AlarmLow bit turns on.

• The bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-9
flag if a step is executing too
long

LimitHigh DINT Enter the time in the LimitHigh member (milliseconds).

• If the Timer (T) reaches the LimitHigh value, the AlarmHigh
bit turns on.

• The AlarmHigh bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

As an option, enter a numeric expression that calculates the time
at runtime.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn)
bit.

AlarmHigh BOOL If the Timer (T) reaches the LimitHigh value, the AlarmHigh bit
turns on.

• The bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

do something while the step is
active (including first and last
scan)

X BOOL The X bit is on the entire time the step is active (executing).

Typically, we recommend that you use an action with a
N Non-Stored qualifier to accomplish this.

do something one time when the
step becomes active

FS BOOL The FS bit is on during the first scan of the step.

Typically, we recommend that you use an action with a P1 Pulse
(Rising Edge) qualifier to accomplish this.

do something while the step is
active, except on the first and
last scan

SA BOOL The SA bit is on when the step is active except during the first and
last scan of the step.

do something one time on the
last scan of the step

LS BOOL The LS bit is on during the last scan of the step.

Use this bit only if you do the following: On the Controller
Properties dialog box, SFC Execution tab, set the Last Scan of
Active Step to Don’t Scan or Programmatic reset.

Typically, we recommend that you use an action with a P0 Pulse
(Falling Edge) qualifier to accomplish this.

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM001G-EN-P - March 2004

5-10 Design a Sequential Function Chart
The following diagram shows the relationship of the X, FS, SA, and LS
bits.

determine the target of an SFC
Reset (SFR) instruction

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop
that the instruction specifies.

• The Reset bit indicates to which step or stop the SFC will
go to begin executing again.

• Once the SFC executes, the Reset bit clears.

determine the maximum time
that a step has been active
during any of its executions

TMax DINT Use this for diagnostic purposes. The controller clears this value
only when you choose the Restart Position of Restart at initial step
and the controller changes modes or experiences a power cycle.

determine if the Timer (T) value
rolls over to a negative value

OV BOOL Use this for diagnostic purposes.

determine how many times a
step has become active

Count DINT This is not a count of scans of the step.

• The count increments each time the step becomes active.

• It increments again only after the step goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.

use one tag for the various
status bits of this step

Status DINT For this member: Use this bit:

Reset 22

AlarmHigh 23

AlarmLow 24

AlarmEn 25

OV 26

DN 27

LS 28

SA 29

FS 30

X 31

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-11
step_name.FS

step_name.X

step_name.LS

step_name.SA

first scan last scan
Publication 1756-PM001G-EN-P - March 2004

5-12 Design a Sequential Function Chart
Organize the Steps Once you define the steps of your process, organize them into
sequences, simultaneous branches, selection branches, or loops.

Overview

To: Use this structure: With these considerations:

Execute 1 or more steps in sequence:

• One executes repeatedly.

• Then the next executes repeatedly.

Sequence The SFC checks the transition at the end of the
step:

• If true, the SFC goes to the next step.

• If false, the SFC repeats the step.

• Choose between alternative steps
or groups of steps depending on
logic conditions

• Execute a step or steps or skip the
step or steps depending on logic
conditions

Selection Branch • It is OK for a path to have no steps and
only a transition. This lets the SFC skip
the selection branch.

• By default, the SFC checks from left to
right the transitions that start each
path. It takes the first true path.

• If no transitions are true, the SFC
repeats the previous step.

• RSLogix 5000 software lets you change
the order in which the SFC checks the
transitions.

Execute 2 or more steps at the same time.
All paths must finish before continuing the
SFC

Simultaneous Branch • A single transition ends the branch.

• The SFC checks the ending transition
after the last step in each path has
executed at least once. If the transition
is false, the SFC repeats the previous
step.

Loop back to a previous step Wire to a Previous Step • Connect the wire to the step or
simultaneous branch to which you want
to go.

• Do not wire into, out of, or between a
simultaneous branch.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-13
Here are some examples of SFC structures for different situations:

Example situation: Example solution:

Station 45 and 46 of an assembly line work on parts
simultaneously. When both stations are done, the parts move
down 1 station.

Simultaneous Branch

Depending on the build code, a station either drills or polishes. Selection Branch

To simplify my programming, I want to separate communications
and block transfers from other control logic. All occur at the same
time.

Simultaneous Branch

In a heat treating area, the temperature ramps up at a specific
rate, maintains that temperature for a specific duration, and then
cools at a specific rate.

Sequence

At station 12, the machine drills, taps, and bolts a part. The steps
occur one after the other.

Sequence

Step 12 inspects a process for the correct mix of chemicals.

• If OK, then continue with the remaining steps.

• If not OK, go to the top of the SFC and purge the system.

Wire

45 46

PolishDrill

CommsControl BTs

Ramp

Maintain

Cool

Drill

Tap

Bolt

Step 12

OKNot OK

start of SFC
Publication 1756-PM001G-EN-P - March 2004

5-14 Design a Sequential Function Chart
Sequence

A sequence is a group of steps that execute one after the other.

For a detailed diagram of the execution of a sequence of steps, see
Figure 5.5 on page 5-52.

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

do this…

THEN this…

THEN this…
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-15
Selection Branch

A selection branch represents a choice between one path (step or
group of steps) or another path (i.e., an OR structure).

• Only one path executes.

• By default the SFC checks the transitions from left to right.

– The SFC takes the first true path.

– RSLogix 5000 software lets you change the order in which the
SFC checks the transitions. See “Program a Sequential
Function Chart” on page 6-1.

For a detailed diagram of the execution of a selection branch, see
Figure 5.7 on page 5-54.

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

single horizontal
line

This path skips the
structure (does
nothing).

each path has its own
transition

do this… OR this… OR this…

single horizontal
line
Publication 1756-PM001G-EN-P - March 2004

5-16 Design a Sequential Function Chart
Simultaneous Branch

A simultaneous branch represents paths (steps or group of steps) that
occur at the same time (i.e., an AND structure).

• All paths execute.

• All paths must finish before continuing with the SFC.

• The SFC checks the transition after the last step of each path has
executed at least once.

For a detailed diagram of the execution of a simultaneous branch, see
Figure 5.6 on page 5-53.

To override the branch and prevent a path from executing, see “Force
Logic Elements” on page 14-1.

double horizontal
line

one transition for all paths

do this… AND this…

double horizontal
line

AND this…
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-17
Wire to a Previous Step

In addition to connecting steps in sequences, simultaneous branches,
and selection branches, you can connect a step to a previous point in
your SFC. This lets you:

• loop back and repeat steps

• return to the beginning of the SFC and start over

For example:

…go to this
step

If this condition
is true…

simple loop that repeats the
entire SFC

path of a selection branch that returns to a
previous step
Publication 1756-PM001G-EN-P - March 2004

5-18 Design a Sequential Function Chart
Add Actions for Each Step Use actions to divide a step into the different functions that the step
performs, such as commanding a motor, setting the state of a valve, or
placing a group of devices in a specific mode.

How Do You Want to Use the Action?

There are two types of actions:

Use a Non-Boolean Action

A non-boolean action contains the logic for the action. It uses
structured text to execute assignments and instructions or call a
subroutine.

With non-boolean actions, you also have the option to postscan
(automatically reset) the assignments and instructions before leaving a
step:

• During postscan the controller executes the assignments and
instructions as if all conditions are false.

• The controller postscans both embedded structured text and any
subroutine that the action calls.

To automatically reset assignments and instructions, see “Turn Off a
Device at the End of a Step” on page 5-32.

Step

…and do this
MIX

Actions

Do this…

If you want to: Then:

execute structured text directly in the SFC Use a Non-Boolean Action

call a subroutine

use the automatic reset option to reset data upon leaving
a step

only set a bit and program other logic to monitor the bit to
determine when to execute.

Use a Boolean Action
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-19
To program a non-boolean action, you have the following options:

You cannot reuse a non-boolean action within the same SFC except
to reset a stored action. Only one instance of a specific non-boolean
action is permitted per SFC.

If you want to: Then:

• execute your logic without additional
routines

• use structured text assignments,
constructs, and instructions

Embed structured text.

For example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. The
action sets the Outlet.ProgCommand tag equal to 1, which opens the outlet valve.

• re-use logic in multiple steps

• use another language to program the
action, such as ladder logic

• nest an SFC

Call a subroutine.

For example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. The
action calls the Open_Outlet routine.

When the Open_Outlet routine executes, the OTE instruction sets the
Outlet.ProgCommand tag equal to 1, which opens the outlet valve.

Open_Outlet Routine
Publication 1756-PM001G-EN-P - March 2004

5-20 Design a Sequential Function Chart
Use a Boolean Action

A boolean action contains no logic for the action. It simply sets a bit in
its tag (SFC_ACTION structure). To do the action, other logic must
monitor the bit and execute when the bit is on.

With boolean actions, you have to manually reset the assignments and
instructions that are associated with the action. Since there is no link
between the action and the logic that performs the action, the
automatic reset option does not effect boolean actions.

Here is an example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. When
the action is active, its Q bit turns on.

A ladder logic routine monitors the Q bit (S_Open_Outlet.Q). When the Q bit is on, the JSR
instruction executes and opens the outlet valve.

You can reuse a boolean action multiple times within the same SFC.

SFC_ACTION Structure

Each action (non-boolean and boolean) uses a tag to provide
information about the action. Access this information via either the
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-21
Action Properties dialog box or the Monitor Tags tab of the Tags
window:

Describe Each Action in
Pseudocode

To organize the logic for an action, first describe the action in
pseudocode. If you are unfamiliar with pseudocode, follow these
guidelines:

• Use a series of short statements that describe exactly what
should happen.

If you want to: Then check or set
this member:

Data type: Details:

determine when the action is
active

Q BOOL The status of the Q bit depends on whether the action is a boolean
action or non-boolean action:

If the action is: Then the Q bit is:

boolean on (1) the entire time the action is active,
including the last scan of the action

non-boolean on (1) while the action is active but

off (0) at the last scan of the action

To use a bit to determine when an action is active, use the Q bit.

A BOOL The A bit is on the entire time the action is active.

determine how long an action
has been active (milliseconds)

T DINT When an action becomes active, the Timer (T) value resets and
then starts to count up in milliseconds. The timer continues to
count up until the action goes inactive, regardless of the Preset
(PRE) value.

use one of these time-based
qualifiers: L, SL, D, DS, SD

PRE DINT Enter the time limit or delay in the Preset (PRE) member. The
action starts or stops when the Timer (T) reaches the Preset value.

As an option, enter a numeric expression that calculates the time
at runtime.

determine how many times an
action has become active

Count DINT This is not a count of scans of the action.

• The count increments each time the action becomes
active.

• It increments again only after the action goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.

use one tag for the various
status bits of this action

Status DINT For this member: Use this bit:

Q 30

A 31
Publication 1756-PM001G-EN-P - March 2004

5-22 Design a Sequential Function Chart
• Use terms or symbols such as: if, then, otherwise, until, and, or,
=, >, <.

• Sequence the statements in the order that they should execute.

• If necessary, name the conditions to check first (when 1st) and
then the action to take second (what 2nd).

Enter the pseudocode into the body of the action. After you enter the
pseudocode, you can:

• Refine the pseudocode so it executes as structured text.

• Use the pseudocode to design your logic and leave the
pseudocode as comments. Since all structured text comments
download to the controller, your pseudocode is always available
as documentation for the action.

To convert the pseudocode to structured text comments, add the
following comment symbols:

For a comment: Use one of these formats:

on a single line //comment

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-23
Choose a Qualifier for an
Action

Each action (non-boolean and boolean) uses a qualifier to determine
when it starts and stops.

The default qualifier is Non-Stored. The action starts when the step is
activated and stops when the step is deactivated.

To change when an action starts or stops, assign a different qualifier:

Table 5.1 Choose a Qualifier for an Action

If you want the action to: And: Then assign this
qualifier:

Which
means:

start when the step is activated stop when the step is deactivated N Non-Stored

execute only once P1 Pulse (Rising
Edge)

stop before the step is deactivated or when the
step is deactivated

L Time Limited

stay active until a Reset action turns off this action S Stored

stay active until a Reset action turns off this action

or a specific time expires, even if the step is
deactivated

SL Stored and
Time Limited

start a specific time after the step is activated
and the step is still active

stop when the step is deactivated D Time Delayed

stay active until a Reset action turns off this action DS Delayed and
Stored

start a specific time after the step is activated,
even if the step is deactivated before this time

stay active until a Reset action turns off this action SD Stored and
Time Delayed

execute once when the step is activated execute once when the step is deactivated P Pulse

start when the step is deactivated execute only once P0 Pulse (Falling
Edge)

turn off (reset) a stored action:

• S Stored

• SL Stored and Time Limited

• DS Delayed and Stored

• SD Stored and Time Delayed

R Reset
Publication 1756-PM001G-EN-P - March 2004

5-24 Design a Sequential Function Chart
Define the Transition
Conditions

The transition is the physical conditions that must occur or change in
order to go to the next step.

Transitions occur in the following places:

transition If true, go to the next step.

The transition tells the SFC when to go to the
next step.

For this structure: Make sure that:

sequence A transition is between each step.

selection branch Transitions are inside the horizontal lines.

simultaneous branch Transitions are outside the horizontal lines.

steps

transitions

transitions

transitions
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-25
Here are two examples of transitions:

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

EXAMPLE You want to:

a. Turn on 2 compressors. When a compressor is
on, the Device1State bit is on.

b. When both compressors are on, go to the next
step.

Solution:

EXAMPLE You want to:

a. Package the product. When the product is in
the package, the package_done bit turns on.

b. Pack the product either 8 per carton or 16 per
carton.

Solution:

Init_Done compressor_1.Device1State = on (1)

and

Init

carton_16

Package

package_done = on (1) and
carton_size = 16

carton_8

Pack_16Pack_8

package_done = on (1) and
carton_size = 8
Publication 1756-PM001G-EN-P - March 2004

5-26 Design a Sequential Function Chart
Transition Tag

Each transition uses a BOOL tag to represent the true or false state of
the transition.

How Do You Want to Program the Transition?

To program the transition, you have these options:

Use a BOOL Expression

The simplest way to program the transition is to enter the conditions
as a BOOL expression in structured text. A BOOL expression uses
bool tags, relational operators, and logical operators to compare
values or check if conditions are true or false. For example, tag1>65.

Here are some examples of BOOL expressions.

If the transition is: The value is: And:

true 1 The SFC goes to the next step.

false 0 The SFC continues to execute the
current step.

If you want to: Then:

enter the conditions as an expression in
structured text

Use a BOOL Expression

enter the conditions as instructions in
another routine

Call a Subroutine

use the same logic for multiple transitions

bool_tag_a bool_tag_a &
bool_tag_b

dint_tag_a > 8
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-27
Call a Subroutine

To use a subroutine to control a transition, include an
End Of Transition (EOT) instruction in the subroutine. The EOT
instruction returns the state of the conditions to the transition, as
shown below.

1. Call a subroutine.

2. Check for the required conditions. When those conditions are
true, turn on a BOOL tag.

3. Use an EOT instruction to set the state of the transition equal to
the value of the BOOL tag. When the BOOL tag is on (true), the
transition is true.

JSR - or -

If condition_1 & condition_2 &
condition_3 then

BOOL_tag := 1;

Else

BOOL_tag := 0;

End_if;

EOT(BOOL_tag);

1

2

2

3

3

Publication 1756-PM001G-EN-P - March 2004

5-28 Design a Sequential Function Chart
Transition After a Specified
Time

Each step of the SFC includes a millisecond timer that runs whenever
the step is active. Use the timer to:

• signal when the step has run for the required time and the SFC
should go to the next step

• signal when the step has run too long and the SFC should go to
an error step

Figure 5.3 The following diagram shows the action of the timer and associated bits
of a step:

step_name.X

step_name.PRE

step_name.T

step_name.DN

1 2 3 4

Description:

1. Step becomes active.

X bit turns on.

Timer (T) begins to increment.

2. Timer reaches the Preset (PRE) value of the step.

DN bit turns on.

Timer continues to increment.

3. Step becomes inactive.

X bit turns off.

Timer retains its value.

DN remains on.

4. Step becomes active.

X bit turns on.

Timer clears and then begins to increment.

DN bit turns off.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-29
Figure 5.4 The following diagram shows the action of the low and high alarms for a
step:

step_name.X

step_name.AlarmEn

step_name.T

step_name.AlarmLow

step_name.AlarmHigh

1 3 4 5 6

step_name.LimitHigh

2

step_name.LimitLow

Description:

1. AlarmEn is on. To use the low and high alarms turn this bit on. Turn the bit on via
the properties dialog box or the tag for the step.

2. Step becomes active.

X bit turns on.

Timer (T) begins to increment.

3. Step becomes inactive.

X bit turns off.

Timer retains its value.

Since Timer is less than LimitLow, AlarmLow bit turns on.
Publication 1756-PM001G-EN-P - March 2004

5-30 Design a Sequential Function Chart
Here is an example of the use of the Preset time of a step.

4. Step becomes active.

X bit turns on.

Timer clears and then begins to increment.

AlarmLow stays on. (You have to manually turn it off.)

5. Timer reaches the LimitHigh value of the step.

AlarmHigh bit turns on.

Timer continues to increment.

6. Step becomes inactive.

X bit turns off.

Timer retains its value.

AlarmHigh stays on. (You have to manually turn it off.)

EXAMPLE Functional specification says:

a. Cook the ingredients in the tank for
20 seconds.

b. Empty the tank.

Solution:

Description:

Cook_Done

Cook Cook.PRE = 20000 ms

Cook.DN = on (1)

Empty_Tank
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-31
Here is an example of the use of the high alarm of a step.

EXAMPLE Functional specification says:

a. Home 8 devices.

b. If all 8 devices are not home within 20
seconds, then shutdown the system.

Solution:

Init_Not_OK

Init Init.LimitHigh = 20000 ms

Init.AlarmHighInit_OK

ShutdownStep_1
Publication 1756-PM001G-EN-P - March 2004

5-32 Design a Sequential Function Chart
Turn Off a Device at the End
of a Step

When the SFC leaves a step, you have several options on how to turn
off devices that the step turned on.

Each option requires you to make the following choices:

1. Choose a last scan option.

2. Based on the last scan option, develop your logic so that the last
scan returns data to the desired values.

Choose a Last Scan Option

On the last scan of each step, you have the following options. The
option that you choose applies to all steps in all SFCs of this
controller.

let the controller
automatically clear
data

use logic to clear
data

Automatic ResetProgrammatic Reset

If you want to: And on the last scan of a step: Then: See:

control which data to clear Execute only P and P0 actions and use them to
clear the required data.

Use the Don’t Scan Option page 5-34

Execute all actions and use either of these
options to clear the required data:

• status bits of the step or action to
condition logic

• P and P0 actions

Use the Programmatic Reset Option page 5-35

let the controller clear data Use the Automatic Reset Option page 5-38
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-33
Publication 1756-PM001G-EN-P - March 2004

5-34 Design a Sequential Function Chart
The following table compares the different options for handling the
last scan of a step:

Use the Don’t Scan Option

The default option for handling the last scan of a step is Don’t scan.
With this option, all data keeps its current values when the SFC leaves
a step. This requires you to use additional assignments or instructions
to clear any data that you want to turn off at the end of a step.

To turn off a device at the end of a step:

1. Make sure that the Last Scan of Active Steps property is set to the
Don’t scan option (default).

Characteristic: During the last scan of a step, this option does the following:

Don’t scan Programmatic reset Automatic reset

execution actions Only P and P0 actions execute.
They execute according to their
logic.

All actions execute according to
their logic.

• P and P0 actions execute
according to their logic.

• All other actions execute
in postscan mode.

• On the next scan of the
routine, the P and P0
actions execute in
postscan mode.

retention of data values All data keeps its current values. All data keeps its current values. • Data reverts to its values
for postscan.

• Tags to the left of [:=]
assignments clear to zero.

method for clearing data Use P and P0 actions. Use either:

• status bits of the step or
action to condition logic

• P and P0 actions

Use either:

• [:=] assignment
(non-retentive assignment)

• instructions that clear
their data during postscan

reset of a nested SFC A nested SFCs remains at its
current step.

A nested SFCs remains at its
current step.

For the Restart Position property,
if you choose the Restart at initial
step option, then:

• A nested SFC resets to its
initial step.

• The X bit of a stop element
in a nested SFC clears to
zero.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-35
2. Use a P0 Pulse (Falling Edge) action to clear the required data.
Make sure that the P0 action or actions are last in the order of
actions for the step.

During the last scan of the step, the Don’t scan option executes only
P and P0 actions. The assignments and instructions of the actions
execute according to their logic conditions.

• The controller does not execute a postscan of assignments or
instructions.

• When the SFC leaves the step, all data keeps its current values.

The following example uses an action to turn on a conveyor at the
start of a step. A different action turns off the conveyor at the end of
the step.

Use the Programmatic Reset Option

An optional method to programmatically turn off (clear) devices at the
end of a step is to execute all actions on the last scan of the step. This
lets you execute your normal logic as well as turn off (clear) devices
at the end of a step.

1. In the Last Scan of Active Steps property, choose the
Programmatic reset option:

2. Clear the required data using any of the following methods:

• To your normal logic, add logic that clears the required data.
Use the LS bit of the step or the Q bit of the action to
condition the execution of the logic.

• Use a P0 Pulse (Falling Edge) action to clear the required
data. Make sure that the P0 action or actions are last in the
order of actions for the step.

EXAMPLE Use the Don’t Scan Option

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.

Before the SFC leaves the step, the P0 action turns off the
conveyor. On the last scan of the step, conveyor_state turns off.
This turns off the conveyor.
Publication 1756-PM001G-EN-P - March 2004

5-36 Design a Sequential Function Chart
During the last scan of the step, the Programmatic reset option
executes all assignments and instructions according to logic
conditions.

• The controller does not postscan the assignments or
instructions.

• When the SFC leaves the step, all data keeps its current value.

The following example uses a single action to turn on and off a
conveyor. The LS bit of the step conditions the execution of the logic.
See “SFC_STEP Structure” on page 5-8.

For an action that uses one of the stored qualifiers, use the Q bit of
the action to condition your logic. See “SFC_ACTION Structure” on
page 5-20.

You can also use a P0 Pulse (Falling Edge) action to clear data. The
following example uses an action to turn on a conveyor at the start of
a step. A different action turns off the conveyor at the end of the step.

EXAMPLE Use the Programmatic Reset Option and the LS Bit

When the step is not on its last scan (conveyor_fwd.LS = 0), this
statement turns on conveyor_state. When conveyor_state turns
on, the conveyor turns on.

On the last scan of the step (conveyor_fwd.LS =1), this
statement turns off conveyor_state. When conveyor_state turns
off, the conveyor turns off.

EXAMPLE Use the Programmatic Reset Option and the Q Bit

When the action is not on its last scan (conveyor_start.Q =1),
this statement turns on conveyor_state. When conveyor_state
turns on, the conveyor turns on.

On the last scan of the action (conveyor_start.Q =0), this
statement turns off conveyor_state. When conveyor_state turns
off, the conveyor turns off.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-37
EXAMPLE Use the Programmatic Reset Option and a P0 Action

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.

Before the SFC leaves the step, the P0 action turns off the
conveyor. On the last scan of the step, conveyor_state turns off.
This turns off the conveyor.
Publication 1756-PM001G-EN-P - March 2004

5-38 Design a Sequential Function Chart
Use the Automatic Reset Option

To automatically turn off (clear) devices at the end of a step:

1. In the Last Scan of Active Steps property, choose the Automatic
reset option:

2. To turn off a device at the end of the step, control the state of
the device with an assignment or instruction such as:

• [:=] assignment (non-retentive assignment)

• Output Energize (OTE) instruction in a subroutine

During the last scan of each step, the Automatic reset option does the
following:

• execute P and P0 actions according to their logic conditions

• clear tags to the left of [:=] assignments

• execute a postscan of embedded structured text

• execute a postscan of any subroutine that an action calls via a
Jump to Subroutine (JSR) instruction

• reset any nested SFC (SFC that an action calls as a subroutine)

As a general rule, the postscan executes instructions as if all
conditions are false. For example, the Output Energize (OTE)
instruction clears its data during postscan.

Some instructions do not follow the general rule during postscan. For
a description of how a specific instruction executes during postscan,
see the following manuals:

• Logix5000 Controllers General Instructions Reference Manual,
publication 1756-RM003

• Logix5000 Controllers Process and Drives Instructions Reference
Manual, publication 1756-RM006

• Logix5000 Controllers Motion Instruction Set Reference Manual,
publication 1756-RM007

IMPORTANT The postscan of an action actually occurs when the
action goes from active to inactive. Depending on
the qualifier of the action, the postscan could occur
before or after the last scan of the step.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-39
Here is an example that uses a non-retentive assignment to control a
conveyor. It turns on a conveyor at the start of a step and
automatically turns off the conveyor when the step is done.

EXAMPLE Automatically Clear Data

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.
Publication 1756-PM001G-EN-P - March 2004

5-40 Design a Sequential Function Chart
Keep Something On From
Step-to-Step

How Do You Want to Control the Device?

To provide bumpless control of a device during more than one time
or phase (step), do one of the following:

Option: Example:

Use a Simultaneous Branch

Make a separate step that controls the device.

Store and Reset an Action

Note the step that turns on the device and the
step that turns off the device.

Later, define a Stored and Reset Action pair to
control the device.

Use One Large Step

Use one large step that contains all the actions
that occur while the device is on.

Fan

Clean

Paint

Transfer_In

Transfr_Out

turn on the fan

Clean

Paint

turn off the fan

Transfer_In

Transfr_Out

transfer, paint, clean,
transfer, control the fan

Paint
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-41
Use a Simultaneous Branch

A simple way to control a device or devices during one or more steps
is to create a separate step for the devices. Then use a simultaneous
branch to execute the step during the rest of the process.

Here is an example:

EXAMPLE A paint operation does the following:

1. Transfer the product into the paint shop.

2. Paint the product using 3 separate paint guns.

3. Clean the guns.

4. Transfer the product to the paint ovens.

During the entire process, the system must control the shop fans.

Solution:

Fan

Clean

Air_Flow Elec_ChargPaint_Flow

Transfer_In

Transfr_Out
Publication 1756-PM001G-EN-P - March 2004

5-42 Design a Sequential Function Chart
Store and Reset an Action

Typically, an action turns off (stops executing) when the SFC goes to
the next step. To keep a device on from step to step without a bump,
store the action that controls the device:

1. In the step that turns on the device, assign a stored qualifier to
the action that controls the device. For a list of stored qualifiers,
see Table 5.1 on page 5-23.

2. In the step that turns off the device, use a Reset action.

The following figure shows the use of a stored action.

When the SFC leaves the step that stores the action, RSLogix 5000
software continues to show the stored action as active. (By default, a
green border displays around the action.) This lets you know that the
SFC is executing the logic of that action.

Action_Name

step that starts the action

S

action that you want to
execute for more than
one step

more steps

same name as the stored
action

R Action_Name

step that stops the action
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-43
To use a stored action, follow these guidelines:

• The Reset action only turns off the stored action. It does not
automatically turn off the devices of the action. To turn off the
device, follow the Reset action with another action that turns off
the device. Or use the Automatic reset option described on
page 5-38.

• Before the SFC reaches a stop element, reset any stored actions
that you do not want to execute at the stop. An active stored
action remains active even if the SFC reaches a stop.

• Use caution when you jump in between a step that stores an
action and a step that resets the action. Once you reset an
action, it only starts when you execute the step that stores the
action.

In the following example, steps 1 - 4 require a fan to be on. At
the end of step_4, the fan is reset (turned off). When the SFC
jumps back to step_3, the fan remains off.

To turn the fan back on, the SFC has to jump back to step_1.

turn on the fan
(stored)

turn off the fan
(reset)

step_1

step_2

step_3

step_4
Publication 1756-PM001G-EN-P - March 2004

5-44 Design a Sequential Function Chart
Use One Large Step

If you use one large step for multiple functions, then use additional
logic to sequence the functions. One option is to nest an SFC within
the large step.

In the following example, a step turns on a fan and then calls another
SFC. The nested SFC sequences the remaining functions of the step.
The fan stays on throughout the steps of the nested SFC.

For additional information on how to nest an SFC, see “Nest an SFC”
on page 5-49.

EXAMPLE Use a Large Step

This action turns on a fan:

• fan.ProgProgReq lets the SFC command the state
of the fan.

• fan.ProgCommand turns on the fan.

This action calls another SFC. The SFC sequences the
remaining functions of the step.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-45
End the SFC Once an SFC completes its last step, it does not automatically restart at
the first step. You must tell the SFC what to do when it finishes the last
step.

At the End of the SFC, What Do You Want to Do?

Use a Stop Element

The stop element lets you stop the execution of an entire SFC or a
path of a simultaneous branch and wait to restart. When an SFC
reaches a stop element, the following occurs:

• The X bit of the stop element turns on. This signals that the SFC
is at the stop element.

• Stored actions remain active.

• Execution stops for part or all of the SFC:

To: Do this:

automatically loop back to an
earlier step

Wire the last transition to the top of the step to which
you want to go.

See “Wire to a Previous Step“on page 5-17.

stop and wait for a command to
restart

Use a Stop Element.

See “Use a Stop Element” on page 5-45.

If the stop element is at the end of a: Then:

sequence entire SFC stops

selection branch

path within a simultaneous branch only that path stops while the rest of the
SFC continues to execute.
Publication 1756-PM001G-EN-P - March 2004

5-46 Design a Sequential Function Chart
Restart (Reset) the SFC

Once at the stop element, you have several options to restart the SFC:

EXAMPLE Use a Stop Element

When the SFC reaches last_step and
process_done is true, the execution of
the SFC stops.

If the SFC is: And the Last Scan of Active
Steps option is:

Then:

nested (i.e., another SFC calls this
SFC as a subroutine)

Automatic reset At the end of the step that calls the nested SFC, the nested
SFC automatically resets:

• The nested SFC resets to the initial step.

• The X bit of the stop element in the nested SFC clears
to zero.

Programmatic reset 1. Use an SFC Reset (SFR) instruction to restart the SFC
at the required step.

2. Use logic to clear the X bit of the stop element.

Don’t scan

NOT nested (i.e., no SFC calls this
SFC as a subroutine)

1. Use an SFC Reset (SFR) instruction to restart the SFC
at the required step.

2. Use logic to clear the X bit of the stop element.
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-47
The following example shows the use of the SFC Reset (SFR)
instruction to restart the SFC and clear the X bit of the stop element.

SFC_STOP Structure

Each stop uses a tag to provide the following information about the
stop element:

EXAMPLE Restart (Reset) the SFC

If SFC_a_stop.X = on (SFC_a is at the stop) and SFC_a_reset = on (time to reset the SFC)
then for one scan (ons[0] = on):

Reset SFC_a to SFC_a_Step_1

SFC_a_stop.X = 0

If you want to: Then check or set
this member:

Data type: Details:

determine when the SFC is at
the stop

X BOOL • When the SFC reaches the stop, the X bit turns on.

• The X bit clears if you configure the SFCs to restart at the
initial step and the controller changes from program to run
mode.

• In a nested SFC, the X bit also clears if you configure the
SFCs for automatic reset and the SFC leaves the step that
calls the nested SFC.

determine the target of an SFC
Reset (SFR) instruction

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop
that the instruction specifies.

• The Reset bit indicates to which step or stop the SFC will
go to begin executing again.

• Once the SFC executes, the Reset bit clears.

determine how many times a
stop has become active

Count DINT This is not a count of scans of the stop.

• The count increments each time the stop becomes active.

• It increments again only after the stop goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.
Publication 1756-PM001G-EN-P - March 2004

5-48 Design a Sequential Function Chart
use one tag for the various
status bits of this stop

Status DINT For this member: Use this bit:

Reset 22

X 31

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-49
Nest an SFC One method for organizing your project is to create one SFC that
provides a high-level view of your process. Each step of that SFC calls
another SFC that performs the detailed procedures of the step (nested
SFC).

The following figure shows one way to nest an SFC. In this method,
the last scan option of the SFC is configured for either Programmatic
reset or Don’t scan. If you configure the SFC for Automatic reset, then
step 1 is unnecessary.

1. Reset the nested SFC:

• The SFR instruction restarts the SFC_b at SFC_b_Step_1. Each
time the SFC_a leaves this step and then returns, you have to
reset the SFC_b.

• The action also clears the X bit of the stop element.

2. Call the SFC_b.

3. Stop the SFC_b. This sets the X bit of the stop element.

4. Use the X bit of the stop element to signal that the SFC_b is
done and it is time to go to the next step.

1

2

4

3

SFC_b

SFC_a
Publication 1756-PM001G-EN-P - March 2004

5-50 Design a Sequential Function Chart
Pass Parameters

To pass parameters to or from an SFC, place a Subroutine/Return
element in the SFC.

Configure When to Return
to the OS/JSR

By default, an SFC executes a step or group of simultaneous steps and
then returns to the operating system (OS) or the calling routine (JSR).

You have the option of letting the SFC execute until it reaches a false
transition. If several transitions are true at the same time, this option
reduces the time to get to the desired step.

Use the Execute until FALSE transition option only when:

1. You don’t have to update JSR parameters before each step.
Parameters update only when the SFC returns to the JSR. See
“Pass Parameters” on page 5-50.

2. A false transition occurs within the watchdog timer for the task.
If the time that it takes to return to a JSR and complete the rest
of the task is greater than the watchdog timer, a major fault
occurs.

Input Parameters Return Parameters

❇ ❇
SFC_b

default
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-51
For a detailed diagram of the execution of each option, see Figure 5.9
on page 5-55.

Pause or Reset an SFC Two optional instructions are available that give you further control
over the execution of your SFC:

Both instructions are available in the ladder logic and structured text
programming languages.

For more information, use either of the following resources:

• In RSLogix 5000 software, from the Help menu, choose
Instruction Help. Look in the Program Control Instructions
category.

• See Logix5000 Controllers General Instructions Reference
Manual, publication 1756-RM003.

Execution Diagrams The following diagrams show the execution of an SFC with different
organizations of steps or different selections of execution options. Use
the diagrams if you require a more detailed understanding of how
your SFC executes.

If you want to: Then use this instruction:

pause an SFC Pause SFC (SFP)

reset an SFC to a specific step or stop Reset SFC (SFR)

For a diagram of the: See page:

Execution of a Sequence 5-52

Execution of a Simultaneous Branch 5-53

Execution of a Selection Branch 5-54

When parameters enter and exit an SFC 5-54

Options for Execution Control 5-55
Publication 1756-PM001G-EN-P - March 2004

5-52 Design a Sequential Function Chart
Figure 5.5 Execution of a Sequence

step_2 last scan

false return to

return to

true

step_1

return to

true

false return to

step_1

tran_2

step_2

tran_1

This… …executes like this

tran_1

tran_2

last scanstep_1

step_2
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-53
Figure 5.6 Execution of a Simultaneous Branch

step_1

false return to

false return to

return to

true

step_1

true

false

step_3

return to

step_1

tran_2

step_2 step_3

step_2

step_2

return to

true

step_3

step_2

step_3

This… …executes like this

tran_1

tran_1

tran_2

tran_2

last scan

last scan
Publication 1756-PM001G-EN-P - March 2004

5-54 Design a Sequential Function Chart
Figure 5.7 Execution of a Selection Branch

Figure 5.8 When parameters enter and exit an SFC

last scan

last scan

false return to

false

return to

true

step_1

step_1

return to

true

false return to

step_2

tran_2

step_2

return to

true

step_1

step_3

return to

true

step_3

false

step_1

step_2 step_3

tran_4

tran_1

tran_3
return to

This… …executes like this

tran_2

tran_3 tran_4

tran_1

last scan

return to

true

false

step_1

return to

step_1

input parameters

return parameters

return parameters

input parameters

input parameters

input parameters

tran_1
Publication 1756-PM001G-EN-P - March 2004

Design a Sequential Function Chart 5-55
Figure 5.9 Options for Execution Control

last scan

last scan

false return to

return to

true

step_1

step_1

return to

true

false

step_2

return to

step_2

false return to

true

step_1

step_1

true

false

step_2

return to

step_2

Execute current active steps only Execute until FALSE transition

step_1

tran_2

step_2

tran_1

This…

…executes like this

tran_2

false return to
tran_1

tran_2

tran_1
Publication 1756-PM001G-EN-P - March 2004

5-56 Design a Sequential Function Chart
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 6

Program a Sequential Function Chart

When to Use This
Procedure

Use this procedure to enter a sequential function chart (SFC) into
RSLogix 5000 software. Enter the SFC as you design it. Or first design
the SFC and then enter it. To design the SFC, see “Design a Sequential
Function Chart” on page 5-1.

Before You Use This
Procedure

Before you use this procedure, make sure you are able to perform the
following tasks:

For more information on any of those tasks, see “Getting Started” on
page 1-1.

Navigate the Controller Organizer

Identify the Programming Languages That Are Installed

✓

✓

1 Publication 1756-PM001G-EN-P - March 2004

6-2 Program a Sequential Function Chart
How to Use This Procedure To program an SFC:

Add an SFC Element

Create a Simultaneous Branch

Create a Selection Branch

Set the Priorities of a Selection Branch

Return to a Previous Step

Rename a Step

Configure a Step

Rename a Transition

Program a Transition

Add an Action

Rename an Action

Configure an Action

Program an Action

Assign the Execution Order of Actions

Document the SFC

Show or Hide Text Boxes or Tag Descriptions

Configure the Execution of the SFC

Verify the Routine
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-3
Add an SFC Element To add SFC elements, use the SFC toolbar.

To add an element to your SFC, you have these options:

Add and Manually Connect Elements

1. On the SFC toolbar, click the button for the item that you want
to add.

2. Drag the element to the required location on the SFC.

3. To wire (connect) two elements together, click a pin on one of

the elements and then click the pin on the other

element . A green dot shows a valid connection point.

step

transition

start of simultaneous
branch

step and transition

start of selection
branch

subroutine/return

text box

stop

new path

Add and Manually Connect Elements

Add and Automatically Connect Elements

Drag and Drop Elements

green dot

A

B

For example:

A

B

Publication 1756-PM001G-EN-P - March 2004

6-4 Program a Sequential Function Chart
Add and Automatically Connect Elements

1. Select (click) the element to which you want to connect a new
element.

2. With the element still selected, click the toolbar button for the
next element.

Drag and Drop Elements

From the SFC toolbar, drag the button for the required element to the
desired connection point on the SFC. A green dot shows a valid
connection point.

green dot
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-5
Create a Simultaneous
Branch

Start a Simultaneous Branch

1. On the SFC toolbar, click the button. Then drag the new
branch to the desired location.

2. To add a path to the branch, select (click) the first step of the
path that is to the left of where you want to add the new path.

Then click the button.

3. To wire the simultaneous branch to the preceding transition,

click the bottom pin of the transition and then click the

horizontal line of the branch . A green dot shows a valid
connection point.

End a Simultaneous Branch

1. Select the last step of each path in the branch. To select the
steps, you can either:

• Click and drag the pointer around the steps that you want to
select.

• Click the first step. Then press and hold [Shift] and click the
rest of the steps that you want to select.

2. On the SFC toolbar, click the button.

A

B

green dot

A

B

Publication 1756-PM001G-EN-P - March 2004

6-6 Program a Sequential Function Chart
3. Add the transition that follows the simultaneous branch.

4. To wire the simultaneous branch to the transition, click the top

pin of the transition and then click the horizontal line of the

branch . A green dot shows a valid connection point.

Create a Selection Branch Start a Selection Branch

1. On the SFC toolbar, click the button. Then drag the new
branch to the desired location.

2. To add a path to the branch, select (click) the first transition of
the path that is to the left of where you want to add the new

path. Then click the button.

3. To wire the selection branch to the preceding step, click the

bottom pin of the step and then click the horizontal line of

the branch . A green dot shows a valid connection point.

A

B

green dot

A

B

A

B

green dot

A

B

Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-7
End a Selection Branch

1. Select the last transition of each path in the branch. To select the
transitions, you can either:

• Click and drag the pointer around the transitions that you
want to select.

• Click the first transition. Then press and hold [Shift] and click
the rest of the transitions that you want to select.

2. On the SFC toolbar, click the button.

3. Add the step that follows the selection branch.

4. To wire the selection branch to the step, click the top pin of the

step and then click the horizontal line of the branch . A
green dot shows a valid connection point.

A

B

green dot

A B
Publication 1756-PM001G-EN-P - March 2004

6-8 Program a Sequential Function Chart
Set the Priorities of a
Selection Branch

By default, the SFC checks the transitions that start a selection branch
from left to right. If you want to check a different transition first,
assign a priority to each path of the selection branch. For example, it
is a good practice to check for error conditions first. Then check for
normal conditions.

To assign priorities to a selection branch:

1. Right click the horizontal line that starts the branch and choose
Set Sequence Priorities.

2. Clear (uncheck) the Use default priorities check box.

3. Select a transition.

4. Use the Move buttons to raise or lower the priority of the
transition.

5. When all the transitions have the desired priority,

choose

When you clear (uncheck) the Use default priorities check box,
numbers show the priority of each transition.

3.

2.

4.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-9
Return to a Previous Step To jump to a different step in your SFC:

• Connect a Wire to the Step

• Hide a Wire

• Show a Hidden Wire

Connect a Wire to the Step

1. Click the lower pin of the transition that signals the jump. Then
click the top pin of the step to which you want to go. A green
dot shows a valid connection point.

Typically, the resulting connection orients itself along the center
of the flowchart and is hard to see.

2. To make the jump easier to read, drag its horizontal bar above
the step to which the jump goes. You may also have to
reposition some of the SFC elements.

For example, to go to Step_001 from Tran_003:

Drag the horizontal bar here.

Click here.

green dot

Then click here.

1. 2.
Publication 1756-PM001G-EN-P - March 2004

6-10 Program a Sequential Function Chart
Hide a Wire

If a wire gets in the way of other parts of your SFC, hide the wire to
make the SFC easier to read.

To hide a wire, right-click the wire and choose Hide Wire.

To see the SFC element to which the wire goes, click the grid location
on the wire.

Show a Hidden Wire

To show a wire that is hidden, right-click a visible part of the wire and
choose Show Wire.

location to which the wire goes

hidden wire
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-11
Rename a Step Each step uses a tag to store configuration and status information
about the step. To rename the tag of the step:

1. Click the button of the step.

2. Click the Tag tab.

3. Type the new name for the step (tag).

4. Choose

Configure a Step To configure a step, you have these options:

• Assign the Preset Time for a Step

• Configure Alarms for a Step

• Use an Expression to Calculate a Time

Assign the Preset Time for a Step

1. Click the button of the step.

2. Type the time for the step, in milliseconds.

3. Choose

When the step is active for the preset time (Timer = Preset), the
DN bit of the step turns on.

To calculate the preset time for a step at runtime, see “Use an
Expression to Calculate a Time” on page 6-12.

3.
Publication 1756-PM001G-EN-P - March 2004

6-12 Program a Sequential Function Chart
Configure Alarms for a Step

To turn on an alarm if a step executes too long or not long enough:

1. Click the button of the step.

2. Check the AlarmEnable check box.

3. Type the time for the high alarm, in milliseconds.

4. Type the time for the low alarm, in milliseconds.

5. Choose

To calculate the time for an alarm at runtime, see “Use an Expression
to Calculate a Time” on page 6-12.

Use an Expression to Calculate a Time

To calculate a time based on tags in your project, enter the time as a
numeric expression. You can use an expression to calculate the
following times:

• Preset

• LimitHigh

• LimitLow

To enter a time as an expression:

1. Click the button of the step.

2. Select (check) the Use Expression check box.

2.

3.

4.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-13
3. Click the Define button.

4. Type a numeric expression that defines the time.

• Use the buttons alongside the dialog box to help you
complete the expression.

• For information on numeric expressions, see “Expressions” on
page 7-4.

5. Choose

6. To close the Step Properties dialog box, choose

2.

3.

browse for a tag

choose a function

choose an operator

create a tag

4.

5.
Publication 1756-PM001G-EN-P - March 2004

6-14 Program a Sequential Function Chart
Rename a Transition Each transition uses a tag to store the status of the transition. To
rename the tag of the transition:

1. Click the button of the transition.

2. Click the Tag tab.

3. Type the new name for the transition (tag).

4. Choose

Program a Transition To program a transition, you have these options:

• Enter a BOOL Expression

• Call a Subroutine

Enter a BOOL Expression

The simplest way to program the transition is to enter the conditions
as a BOOL expression in structured text. For information on BOOL
expressions, see “Expressions” on page 7-4.

1. Double-click the text area of the transition.

2. Type the BOOL expression that determines when the transition
is true or false.

3. To close the text entry window, press [Ctrl] + [Enter].

3.

BOOL_expression
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-15
The following example shows three transitions that use a
BOOL expression.

Call a Subroutine

1. Right-click the transition and choose Set JSR.

2. Choose the routine that contains the logic for the transition.

3. Choose

EXAMPLE Enter a BOOL Expression

tag name of the
transition

BOOL expression that controls when the
transition is true or false

2.

JSR(routine_name)
Publication 1756-PM001G-EN-P - March 2004

6-16 Program a Sequential Function Chart
Add an Action To add an action to a step:

Right-click the step in which the action executes and choose Add
Action.

Rename an Action To change the name of an action to something that is specific to your
application:

1. Click the button of the action.

2. Click the Tag tab.

3. Type the new name for the action (tag).

4. Choose

3.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-17
Configure an Action To configure an action, you have these options:

• Change the Qualifier of an Action

• Calculate a Preset Time at Runtime

• Mark an Action as a Boolean Action

Change the Qualifier of an Action

A qualifier determines when an action starts and stops. The default
qualifier is N Non-Stored. The action starts when the step is activated
and stops when the step is deactivated. For more information, see
“Choose a Qualifier for an Action” on page 5-23.

1. Click the button of the action.

2. Assign the qualifier for the action.

3. If you chose a timed qualifier, type the time limit or delay for the
action, in milliseconds. Timed qualifiers include:

• L Time Limited

• SL Stored and Time Limited

• D Time Delayed

• DS Delayed and Stored

• SD Stored and Time Delayed

4. Choose

2.

3.
Publication 1756-PM001G-EN-P - March 2004

6-18 Program a Sequential Function Chart
Calculate a Preset Time at Runtime

To calculate a preset value based on tags in your project, enter the
value as a numeric expression.

1. Click the button of the action.

2. Select (check) the Use Expression check box.

3. Click the Define button.

4. Type a numeric expression that defines the preset time.

• Use the buttons alongside the dialog box to help you
complete the expression.

• For information on numeric expressions, see “Expressions” on
page 7-4.

5. Choose

6. To close the Action Properties dialog box, choose

2.

3.

browse for a tag

choose a function

choose an operator

create a tag

4.

5.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-19
Mark an Action as a Boolean Action

Use a boolean action to only set a bit when the action executes. For
more information, see “Use a Boolean Action” on page 5-20.

1. Click the button of the action.

2. Click the Boolean check box.

3. Choose

Program an Action To program an action, you have these options:

• Enter Structured Text

• Call a Subroutine

Enter Structured Text

The easiest way to program an action is to write the logic as structured
text within the body of the action. When the action turns on, the
controller executes the structured text.

1. Double-click the text area of the action.

2. Type the required structured text.

3. To close the text entry window, press [Ctrl] + [Enter].

2.
Publication 1756-PM001G-EN-P - March 2004

6-20 Program a Sequential Function Chart
For information on structured text:

//comment

statement;

For this structured text information: See:

general information about assignments, operators,
functions, instructions, or comments

“Program Structured Text” on page 7-1

information about a specific instruction • Logix5000 Controllers General Instructions Reference
Manual, publication 1756-RM003

• Logix5000 Controllers Process and Drives Instructions
Reference Manual, publication 1756-RM006

• Logix5000 Controllers Motion Instruction Set Reference
Manual, publication 1756-RM007
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-21
Call a Subroutine

Use a Jump to Subroutine (JSR) instruction to execute a subroutine
when the action is active.

1. In the SFC, right-click the text entry area of the action and
choose Set JSR.

2. Choose the routine that you want to call.

3. To pass a parameter to the routine, click the empty Input
Parameters text box. Then use the down arrow to choose the
tag that contains the parameter.

4. To receive a parameter from the routine, click the empty Return
Parameters text box. Then use the down arrow to choose the
tag in which to store the parameter from the routine.

5. Choose

2.

3. 4.
Publication 1756-PM001G-EN-P - March 2004

6-22 Program a Sequential Function Chart
Assign the Execution Order
of Actions

Actions execute in the order in which they appear.

For example:

To change the order in which an action executes, drag the action to
the desired location in the sequence. A green bar shows a valid
placement location.

For example:

When Step_003 is active, its actions
execute in this order:

1. Action_000

2. Action_001

3. Action_002
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-23
Document the SFC To document an SFC, you have the following options:

Add Structured Text Comments

Use the following table to format your comments:

To document this: And you want to: Do this:

general information about the SFC Add a Text Box

step Add a Text Box

-or-

Add a Tag Description

transition download the documentation to the controller Add Structured Text Comments

have the option of showing or hiding the
documentation

Add a Text Box

-or-

Add a Tag Description

position the documentation anywhere in the
SFC

action download the documentation to the controller Add Structured Text Comments

stop Add a Text Box

-or-

Add a Tag Description

other element (e.g., selection branch)

To add a comment: Use one of these formats:

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured
text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/
Publication 1756-PM001G-EN-P - March 2004

6-24 Program a Sequential Function Chart
For more information, see “Comments” on page 7-28.

To enter the comments:

1. Double-click the text area of the action.

2. Type the comments.

3. To close the text entry window, press [Ctrl] + [Enter].

Add a Tag Description

1. Click the button of the element.

2. Click the Tag tab.

3. Type the description for the element (tag).

4. Choose

5. Drag the description box to the desired location on the SFC.

//comment

statement;

3.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-25
Add a Text Box

A text box lets you add notes that clarify the function of an SFC
element (step, transition, stop, etc.). Or use a text box to capture
information that you will use later on. For example:

1. Click

A text box appears.

2. Drag the text box to a location near the element to which it
applies.

3. Double-click the text box and type the note. Then press
[Ctrl] + [Enter].

4. As you move the element on the SFC, what do you want the text
box to do?

5. Click the pin symbol in the text box and then click the SFC
element to which you want to attach the text box. A green dot
shows a valid connection point.

If you the text box to: Then:

stay in the same spot Stop. You are done.

move with the element to which it
applies

Go to step 5.

A

B

green dot
Publication 1756-PM001G-EN-P - March 2004

6-26 Program a Sequential Function Chart
Show or Hide Text Boxes or
Tag Descriptions

You have the option of showing or hiding both text boxes and tag
descriptions. If you choose to show descriptions, the SFC window
only shows the descriptions for steps, transitions, and stops (not
actions).

To show or hide text boxes or descriptions, you have these options:

• Show or Hide Text Boxes or Descriptions

• Hide an Individual Tag Description

Show or Hide Text Boxes or Descriptions

1. From the Tools menu, choose Options.

2. Under SFC Editor, choose the Display category.

3. Choose the desired option.

4. Choose

2.

If you want to: Then:

show text boxes or descriptions check the corresponding check box

hide text boxes or descriptions clear (uncheck) the corresponding check box
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-27
Hide an Individual Tag Description

To hide the description of a specific element while showing other
descriptions:

1. Click the button of the element whose description you want
to hide.

2. Check the Never display description in routine check box.

3. Choose

To show other descriptions, see “Show or Hide Text Boxes or
Descriptions” on page 6-26.
Publication 1756-PM001G-EN-P - March 2004

6-28 Program a Sequential Function Chart
Configure the Execution of
the SFC

The SFC Execution tab of the controller properties lets you configure
the following:

• what to do when a transition is true

• where to start after a transition to the run mode or recovery from
a power loss

• what to do on the last scan of a step

1. On the Online toolbar, click controller properties button.

2. Click the SFC Execution tab.

3. Choose whether or not to return to the OS/JSR if a transition is
true.

4. Choose where to restart the SFC after a transition to run mode or
recovery from a power loss.

5. Choose what to do on the last scan of a step.

6. Choose

1.

2.

3.

4.

5.
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-29
Verify the Routine As you program your routine, periodically verify your work:

1. In the top-most toolbar of the RSLogix 5000 window, click

2. If any errors are listed at the bottom of the window:

a. To go to the first error or warning, press [F4].

b. Correct the error according to the description in the Results
window.

c. Go to step 1.

3. To close the Results window, press [Alt] + [1].
Publication 1756-PM001G-EN-P - March 2004

6-30 Program a Sequential Function Chart
Notes:
Publication 1756-PM001G-EN-P - March 2004

Program a Sequential Function Chart 6-31
Notes:
Publication 1756-PM001G-EN-P - March 2004

6-32 Program a Sequential Function Chart
Publication 1756-PM001G-EN-P - March 2004

Chapter 7

Program Structured Text

When to Use This Chapter Use this chapter to write and enter structured text for a:

• structured text routine

• action of a sequential function chart (SFC)

• transition of sequential function chart (SFC)

Structured Text Syntax Structured text is a textual programming language that uses statements
to define what to execute.

• Structured text is not case sensitive.

• Use tabs and carriage returns (separate lines) to make your
structured text easier to read. They have no effect on the
execution of the structured text.

Structured text can contain these components:

Term: Definition: Examples:

assignment
(see page 7-2)

Use an assignment statement to assign values to tags.
The := operator is the assignment operator.
Terminate the assignment with a semi colon “;”.

tag := expression;

expression
(see page 7-4)

An expression is part of a complete assignment or construct statement.
An expression evaluates to a number (numerical expression) or to a true
or false state (BOOL expression).

An expression contains:

tags A named area of the memory where data is stored
(BOOL, SINT,INT,DINT, REAL, string).

value1

immediates A constant value. 4

operators A symbol or mnemonic that specifies an operation
within an expression.

tag1 + tag2
tag1 >= value1

functions When executed, a function yields one value. Use
parentheses to contain the operand of a function.
Even though their syntax is similar, functions differ
from instructions in that functions can only be used
in expressions. Instructions cannot be used in
expressions.

function(tag1)
1 Publication 1756-PM001G-EN-P - March 2004

7-2 Program Structured Text
Assignments Use an assignment to change the value stored within a tag. An
assignment has this syntax:

tag := expression ;

where:

instruction
(see page 7-11)

An instruction is a standalone statement.
An instruction uses parenthesis to contain its operands.
Depending on the instruction, there can be zero, one, or multiple
operands.
When executed, an instruction yields one or more values that are part of
a data structure.
Terminate the instruction with a semi colon “;”.

Even though their syntax is similar, instructions differ from functions in
that instructions cannot be used in expressions. Functions can only be
used in expressions.

instruction();

instruction(operand);

instruction(operand1,
operand2,operand3);

construct
(see page 7-12)

A conditional statement used to trigger structured text code (i.e, other
statements).
Terminate the construct with a semi colon “;”.

IF...THEN
CASE
FOR...DO
WHILE...DO
REPEAT...UNTIL
EXIT

comment
(see page 7-28)

Text that explains or clarifies what a section of structured text does.
• Use comments to make it easier to interpret the structured text.
• Comments do not affect the execution of the structured text.
• Comments can appear anywhere in structured text.

//comment

(*start of comment . . .
end of comment*)

/*start of comment . . .
end of comment*/

Term: Definition: Examples:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

:= is the assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT
INT
DINT
REAL

numeric expression

; ends the assignment
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-3
The tag retains the assigned value until another assignment changes
the value.

The expression can be simple, such as an immediate value or another
tag name, or the expression can be complex and include several
operators and/or functions. See the next section “Expressions“on page
7-4 for details.

Specify a non-retentive assignment

The non-retentive assignment is different from the regular assignment
described above in that the tag in a non-retentive assignment is reset
to zero each time the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

[:=] is the non-retentive assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT
INT
DINT
REAL

numeric expression

; ends the assignment
Publication 1756-PM001G-EN-P - March 2004

7-4 Program Structured Text
Assign an ASCII character to a string

Use the assignment operator to assign an ASCII character to an
element of the DATA member of a string tag. To assign a character,
specify the value of the character or specify the tag name, DATA
member, and element of the character. For example:

To add or insert a string of characters to a string tag, use either of
these ASCII string instructions:

Expressions An expression is a tag name, equation, or comparison. To write an
expression, use any of the following:

• tag name that stores the value (variable)

• number that you enter directly into the expression
(immediate value)

• functions, such as: ABS, TRUNC

• operators, such as: +, -, <, >, And, Or

As you write expressions, follow these general rules:

• Use any combination of upper-case and lower-case letter. For
example, these three variations of "AND" are acceptable: AND,
And, and.

• For more complex requirements, use parentheses to group
expressions within expressions. This makes the whole
expression easier to read and ensures that the expression
executes in the desired sequence. See “Determine the order of
execution“on page 7-10.

This is OK: This is not OK.

string1.DATA[0]:= 65; string1.DATA[0] := A;

string1.DATA[0]:= string2.DATA[0]; string1 := string2;

To: Use this instruction:

add characters to the end of a string CONCAT

insert characters into a string INSERT
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-5
In structured text, you use two types of expressions:

BOOL expression: An expression that produces either the BOOL
value of 1 (true) or 0 (false).

• A bool expression uses bool tags, relational operators, and
logical operators to compare values or check if conditions are
true or false. For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, you use bool expressions to condition the execution
of other logic.

Numeric expression: An expression that calculates an integer or
floating-point value.

• A numeric expression uses arithmetic operators, arithmetic
functions, and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression.
For example, (tag1+5)>65.

Use the following table to choose operators for your expressions:

If you want to: Then:

Calculate an arithmetic value “Use arithmetic operators and functions“on page 7-6.

Compare two values or strings “Use relational operators“on page 7-7.

Check if conditions are true or false “Use logical operators“on page 7-9.

Compare the bits within values “Use bitwise operators“on page 7-10.
Publication 1756-PM001G-EN-P - March 2004

7-6 Program Structured Text
Use arithmetic operators and functions

You can combine multiple operators and functions in arithmetic
expressions.

Arithmetic operators calculate new values.

Arithmetic functions perform math operations. Specify a constant, a
non-boolean tag, or an expression for the function.

To: Use this operator: Optimal data type:

add + DINT, REAL

subtract/negate - DINT, REAL

multiply * DINT, REAL

exponent (x to the power of y) ** DINT, REAL

divide / DINT, REAL

modulo-divide MOD DINT, REAL

For: Use this function: Optimal data type:

absolute value ABS (numeric_expression) DINT, REAL

arc cosine ACOS (numeric_expression) REAL

arc sine ASIN (numeric_expression) REAL

arc tangent ATAN (numeric_expression) REAL

cosine COS (numeric_expression) REAL

radians to degrees DEG (numeric_expression) DINT, REAL

natural log LN (numeric_expression) REAL

log base 10 LOG (numeric_expression) REAL

degrees to radians RAD (numeric_expression) DINT, REAL

sine SIN (numeric_expression) REAL

square root SQRT (numeric_expression) DINT, REAL

tangent TAN (numeric_expression) REAL

truncate TRUNC (numeric_expression) DINT, REAL
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-7
For example:

Use relational operators

Relational operators compare two values or strings to provide a true
or false result. The result of a relational operation is a BOOL value:

Use the following relational operators:

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If gain_4 and gain_4_adj are DINT tags and your
specification says: "Add 15 to gain_4 and store the
result in gain_4_adj."

gain_4_adj :=
gain_4+15;

operator value1 If alarm and high_alarm are DINT tags and your
specification says: “Negate high_alarm and store
the result in alarm.”

alarm:=
-high_alarm;

function(numeric_expression) If overtravel and overtravel_POS are DINT tags and
your specification says: “Calculate the absolute
value of overtravel and store the result in
overtravel_POS.”

overtravel_POS :=
ABS(overtravel);

value1 operator
(function((value2+value3)/2)

If adjustment and position are DINT tags and
sensor1 and sensor2 are REAL tags and your
specification says: “Find the absolute value of the
average of sensor1 and sensor2, add the
adjustment, and store the result in position.”

position :=
adjustment +
ABS((sensor1 +
sensor2)/2);

If the comparison is: The result is:

true 1

false 0

For this comparison: Use this operator: Optimal Data Type:

equal = DINT, REAL, string

less than < DINT, REAL, string

less than or equal <= DINT, REAL, string

greater than > DINT, REAL, string

greater than or equal >= DINT, REAL, string

not equal <> DINT, REAL, string
Publication 1756-PM001G-EN-P - March 2004

7-8 Program Structured Text
For example:

How Strings Are Evaluated

The hexadecimal values of the ASCII characters determine if one
string is less than or greater than another string.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

• Strings are equal if their characters match.

• Characters are case sensitive. Upper case “A” ($41) is not equal
to lower case “a” ($61).

For the decimal value and hex code of a character, see the back cover
of this manual.

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If temp is a DINT tag and your specification
says: “If temp is less than 100° then…”

IF temp<100 THEN...

stringtag1 operator
stringtag2

If bar_code and dest are string tags and your
specification says: “If bar_code equals dest
then…”

IF bar_code=dest THEN...

char1 operator char2

To enter an ASCII character directly into
the expression, enter the decimal value of
the character.

If bar_code is a string tag and your
specification says: “If bar_code.DATA[0] equals
’A’ then…”

IF bar_code.DATA[0]=65
THEN...

bool_tag :=
bool_expressions

If count and length are DINT tags, done is a
BOOL tag, and your specification says ”If count
is greater than or equal to length, you are done
counting.”

done := (count >= length);

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-9
Use logical operators

Logical operators let you check if multiple conditions are true or false.
The result of a logical operation is a BOOL value:

Use the following logical operators:

For example:

If the comparison is: The result is:

true 1

false 0

For: Use this operator: Data Type:

logical AND &, AND BOOL

logical OR OR BOOL

logical exclusive OR XOR BOOL

logical complement NOT BOOL

Use this format: Example:

For this situation: You’d write:

BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye_1 is on then…”

IF photoeye THEN...

NOT BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye is off then…”

IF NOT photoeye THEN...

expression1 & expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
and temp is less than 100° then…”.

IF photoeye & (temp<100)
THEN...

expression1 OR expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
or temp is less than 100° then…”.

IF photoeye OR (temp<100)
THEN...

expression1 XOR expression2 If photoeye1 and photoeye2 are BOOL tags and
your specification says: “If:

• photoeye1 is on while photoeye2 is off
or

• photoeye1 is off while photoeye2 is on
then…"

IF photoeye1 XOR
photoeye2 THEN...

BOOLtag := expression1 &
expression2

If photoeye1 and photoeye2 are BOOL tags,
open is a BOOL tag, and your specification says:
“If photoeye1 and photoeye2 are both on, set
open to true”.

open := photoeye1 &
photoeye2;
Publication 1756-PM001G-EN-P - March 2004

7-10 Program Structured Text
Use bitwise operators

Bitwise operators manipulate the bits within a value based on
two values.

For example:

Determine the order of execution

The operations you write into an expression are performed in a
prescribed order, not necessarily from left to right.

• Operations of equal order are performed from left to right.

• If an expression contains multiple operators or functions, group
the conditions in parenthesis "()" . This ensures the correct
order of execution and makes it easier to read the expression.

For: Use this operator: Optimal Data Type:

bitwise AND &, AND DINT

bitwise OR OR DINT

bitwise exclusive OR XOR DINT

bitwise complement NOT DINT

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If input1, input2, and result1 are DINT tags and your
specification says: “Calculate the bitwise result of
input1 and input2. Store the result in result1.”

result1 := input1 AND
input2;

Order: Operation:

1. ()

2. function (…)

3. **

4. − (negate)

5. NOT

6. *, /, MOD

7. +, - (subtract)

8. <, <=, >, >=

9. =, <>

10. &, AND

11. XOR

12. OR
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-11
Instructions Structured text statements can also be instructions. See the Locator
Table at the beginning of this manual for a list of the instructions
available in structured text. A structured text instruction executes each
time it is scanned. A structured text instruction within a construct
executes every time the conditions of the construct are true. If the
conditions of the construct are false, the statements within the
construct are not scanned. There is no rung-condition or state
transition that triggers execution.

This differs from function block instructions that use EnableIn to
trigger execution. Structured text instructions execute as if EnableIn is
always set.

This also differs from relay ladder instructions that use
rung-condition-in to trigger execution. Some relay ladder instructions
only execute when rung-condition-in toggles from false to true. These
are transitional relay ladder instructions. In structured text, instructions
will execute each time they are scanned unless you pre-condition the
execution of the structured text instruction.

For example, the ABL instruction is a transitional instruction in relay
ladder. In this example, the ABL instruction only executes on a scan
when tag_xic transitions from cleared to set. The ABL instruction does
not execute when tag_xic stays set or when tag_xic is cleared.

In structured text, if you write this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

the ABL instruction will execute every scan that tag_xic is set, not just
when tag_xic transitions from cleared to set.
Publication 1756-PM001G-EN-P - March 2004

7-12 Program Structured Text
If you want the ABL instruction to execute only when tag_xic
transitions from cleared to set, you have to condition the structured
text instruction. Use a one shot to trigger execution.

Constructs Constructs can be programmed singly or nested within other
constructs.

osri_1.InputBit := tag_xic;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ABL(0,serial_control);

END_IF;

If you want to: Use this construct: Available in these languages: See page:

do something if or when specific
conditions occur

IF...THEN structured text 7-13

select what to do based on a numerical value CASE...OF structured text 7-16

do something a specific number of times before
doing anything else

FOR...DO structured text 7-19

keep doing something as long as certain
conditions are true

WHILE...DO structured text 7-22

keep doing something until a condition is true REPEAT...UNTIL structured text 7-25
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-13
IF...THEN Use IF…THEN to do something if or when specific conditions occur.

Operands:

Structured Text

Description: The syntax is:

To use ELSIF or ELSE, follow these guidelines:

1. To select from several possible groups of statements, add one or
more ELSIF statements.

• Each ELSIF represents an alternative path.

• Specify as many ELSIF paths as you need.

• The controller executes the first true IF or ELSIF and skips the
rest of the ELSIFs and the ELSE.

2. To do something when all of the IF or ELSIF conditions are false,
add an ELSE statement.

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

IF bool_expression THEN

<statement>;

END_IF;

IF bool_expression1 THEN

<statement >; statements to execute when
bool_expression1 is true

.

.

.

optional
ELSIF bool_expression2 THEN

<statement>; statements to execute when
bool_expression2 is true

.

.

.

optional
ELSE

<statement>; statements to execute when
both expressions are false

.

.

.

END_IF;
Publication 1756-PM001G-EN-P - March 2004

7-14 Program Structured Text
The following table summarizes different combinations of IF, THEN,
ELSIF, and ELSE.

Arithmetic Status Flags: not affected

Fault Conditions: none

Example 1: IF…THEN

Example 2: IF…THEN…ELSE

The [:=] tells the controller to clear light whenever the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If you want to: And: Then use this construct

do something if or when conditions
are true

do nothing if conditions are false IF…THEN

do something else if conditions are false IF…THEN…ESLE

choose from alternative statements
(or groups of statements) based on
input conditions

do nothing if conditions are false IF…THEN…ELSIF

assign default statements if all
conditions are false

IF…THEN…ELSIF…ELSE

If you want this: Enter this structured text:

IF rejects > 3 then IF rejects > 3 THEN

conveyor = off (0) conveyor := 0;

alarm = on (1) alarm := 1;

END_IF;

If you want this: Enter this structured text:

If conveyor direction contact = forward (1) then IF conveyor_direction THEN

light = off light := 0;

Otherwise light = on ELSE

light [:=] 1;

END_IF;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-15
Example 3: IF…THEN…ELSIF

The [:=] tells the controller to clear Sugar.Inlet whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

Example 4: IF…THEN…ELSIF…ELSE

If you want this: Enter this structured text:

If sugar low limit switch = low (on) and sugar high limit
switch = not high (on) then

IF Sugar.Low & Sugar.High THEN

inlet valve = open (on) Sugar.Inlet [:=] 1;

Until sugar high limit switch = high (off) ELSIF NOT(Sugar.High) THEN

Sugar.Inlet := 0;

END_IF;

If you want this: Enter this structured text:

If tank temperature > 100 IF tank.temp > 200 THEN

then pump = slow pump.fast :=1; pump.slow :=0; pump.off :=0;

If tank temperature > 200 ELSIF tank.temp > 100 THEN

then pump = fast pump.fast :=0; pump.slow :=1; pump.off :=0;

otherwise pump = off ELSE

pump.fast :=0; pump.slow :=0; pump.off :=1;

END_IF;
Publication 1756-PM001G-EN-P - March 2004

7-16 Program Structured Text
CASE...OF Use CASE to select what to do based on a numerical value.

Operands:

Structured Text

Description: The syntax is:

See the table on the next page for valid selector values.

Operand: Type: Format: Enter:

numeric_
expression

SINT
INT
DINT
REAL

tag
expression

tag or expression that evaluates to a
number (numeric expression)

selector SINT
INT
DINT
REAL

immediate same type as numeric_expression

IMPORTANT If you use REAL values, use a range of values for a
selector because a REAL value is more likely to be
within a range of values than an exact match of one,
specific value.

CASE numeric_expression OF

selector1: statement;

selectorN: statement;

ELSE

statement;

END_CASE;

CASE numeric_expression OF

specify as many
alternative selector

values (paths) as you
need

selector1 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector1

selector2 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector2

selector3 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector3

optional

ELSE

<statement>;
.
.
.

statements to execute when
numeric_expression ≠ any
selector

END_CASE;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-17
The syntax for entering the selector values is:

The CASE construct is similar to a switch statement in the C or C++
programming languages. However, with the CASE construct the
controller executes only the statements that are associated with the
first matching selector value. Execution always breaks after the
statements of that selector and goes to the END_CASE statement.

Arithmetic Status Flags: not affected

Fault Conditions: none

When selector is: Enter:

one value value: statement

multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus a range
of values

valuea, valueb, value1..valueN : <statement>
Publication 1756-PM001G-EN-P - March 2004

7-18 Program Structured Text
Example

The [:=] tells the controller to also clear the outlet tags whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If you want this: Enter this structured text:

If recipe number = 1 then CASE recipe_number OF

Ingredient A outlet 1 = open (1) 1: Ingredient_A.Outlet_1 :=1;

Ingredient B outlet 4 = open (1) Ingredient_B.Outlet_4 :=1;

If recipe number = 2 or 3 then 2,3: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 4, 5, 6, or 7 then 4..7: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 8, 11, 12, or 13 then 8,11..13 Ingredient_A.Outlet_1 :=1;

Ingredient A outlet 1 = open (1) Ingredient_B.Outlet_4 :=1;

Ingredient B outlet 4 = open (1)

Otherwise all outlets = closed (0) ELSE

Ingredient_A.Outlet_1 [:=]0;

Ingredient_A.Outlet_4 [:=]0;

Ingredient_B.Outlet_2 [:=]0;

Ingredient_B.Outlet_4 [:=]0;

END_CASE;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-19
FOR…DO Use the FOR…DO loop to do something a specific number of times
before doing anything else.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Description:

count SINT
INT
DINT

tag tag to store count position as the
FOR…DO executes

initial_
value

SINT
INT
DINT

tag
expression
immediate

must evaluate to a number
specifies initial value for count

final_
value

SINT
INT
DINT

tag
expression
immediate

specifies final value for count, which
determines when to exit the loop

increment SINT
INT
DINT

tag
expression
immediate

(optional) amount to increment count
each time through the loop

If you don’t specify an increment, the
count increments by 1.

FOR count:= initial_value TO
final_value BY increment DO

<statement>;

END_FOR;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

FOR count := initial_value

TO final_value

optional { BY increment If you don’t specify an increment, the loop
increments by 1.

DO

<statement>;

optional

IF bool_expression THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_FOR;
Publication 1756-PM001G-EN-P - March 2004

7-20 Program Structured Text
The following diagrams show how a FOR...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

statement 1
statement 2
statement 3
statement 4
…

Done x number
of times?

no

yes

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ?

Done x number
of times?

no

yes

rest of the routine

yes

no

The FOR…DO loop executes a specific
number of times.

To stop the loop before the count reaches the last
value, use an EXIT statement.

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

Clear bits 0 - 31 in an array of BOOLs:
1. Initialize the subscript tag to 0.
2. Clear array[subscript] . For example, when

subscript = 5, clear array[5].
3. Add 1 to subscript.
4. If subscript is ≤ to 31, repeat 2 and 3.

Otherwise, stop.

For subscript:=0 to 31 by 1 do

array[subscript] := 0;

End_for;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-21
Example 2:

If you want this: Enter this structured text:

A user-defined data type (structure) stores the following
information about an item in your inventory:

• Barcode ID of the item (string data type)
• Quantity in stock of the item (DINT data type)

An array of the above structure contains an element for each
different item in your inventory. You want to search the array
for a specific product (use its bar code) and determine the
quantity that is in stock.

1. Get the size (number of items) of the Inventory array
and store the result in Inventory_Items (DINT tag).

2. Initialize the position tag to 0.
3. If Barcode matches the ID of an item in the array, then:

a. Set the Quantity tag = Inventory[position].Qty. This
produces the quantity in stock of the item.

b. Stop.
Barcode is a string tag that stores the bar code of the
item for which you are searching. For example, when
position = 5, compare Barcode to Inventory[5].ID.

4. Add 1 to position.
5. If position is ≤ to (Inventory_Items -1), repeat 3 and 4.

Since element numbers start at 0, the last element is 1
less than the number of elements in the array.
Otherwise, stop.

SIZE(Inventory,0,Inventory_Items);

For position:=0 to Inventory_Items - 1 do

If Barcode = Inventory[position].ID then

Quantity := Inventory[position].Qty;

Exit;

End_if;

End_for;
Publication 1756-PM001G-EN-P - March 2004

7-22 Program Structured Text
WHILE…DO Use the WHILE…DO loop to keep doing something as long as certain
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value

WHILE bool_expression DO

<statement>;

END_WHILE;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

WHILE bool_expression1 DO

<statement>; statements to execute while
bool_expression1 is true

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_WHILE;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-23
The following diagrams show how a WHILE...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is true, the
controller executes only the statements within
the WHILE…DO loop.

To stop the loop before the conditions are true, use an
EXIT statement.

statement 1
statement 2
statement 3
statement 4
…
Exit ?

BOOL expression

true

false

rest of the routine

yes

no

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

true

false

rest of the routine

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop.

This differs from the REPEAT...UNTIL loop because the
REPEAT...UNTIL loop executes the statements in the construct
and then determines if the conditions are true before
executing the statements again. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := 0;

While ((pos <= 100) & structarray[pos].value
<> targetvalue)) do

pos := pos + 2;

String_tag.DATA[pos] := SINT_array[pos];

end_while;
Publication 1756-PM001G-EN-P - March 2004

7-24 Program Structured Text
Example 2:

If you want this: Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.
2. Count the number of elements in SINT_array (array

that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.

4. Set String_tag[element_number] = the character at
SINT_array[element_number].

5. Add 1 to element_number. This lets the controller
check the next character in SINT_array.

6. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

7. If element_number = SINT_array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

8. Go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

While SINT_array[element_number] <> 13 do

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

end_while;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-25
REPEAT…UNTIL Use the REPEAT…UNTIL loop to keep doing something until
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

REPEAT

<statement>;

UNTIL bool_expression

END_REPEAT;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

REPEAT

<statement>; statements to execute while
bool_expression1 is false

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

UNTIL bool_expression1

END_REPEAT;
Publication 1756-PM001G-EN-P - March 2004

7-26 Program Structured Text
The following diagrams show how a REPEAT...UNTIL loop executes
and how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is false, the
controller executes only the statements within the
REPEAT…UNTIL loop.

To stop the loop before the conditions are false, use
an EXIT statement.

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

false

true

rest of the routine
BOOL expression

false

true

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ?

yes

no

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

The REPEAT...UNTIL loop executes the statements in the
construct and then determines if the conditions are true before
executing the statements again.

This differs from the WHILE...DO loop because the WHILE...DO
The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := -1;

REPEAT

pos := pos + 2;

UNTIL ((pos = 101) OR
(structarray[pos].value = targetvalue))

end_repeat;
Publication 1756-PM001G-EN-P - March 2004

Program Structured Text 7-27
Example 2:

If you want this: Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.
2. Count the number of elements in SINT_array (array

that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. Set String_tag[element_number] = the character at
SINT_array[element_number].

4. Add 1 to element_number. This lets the controller
check the next character in SINT_array.

5. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

6. If element_number = SINT_array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

7. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.
Otherwise, go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

Repeat

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

Until SINT_array[element_number] = 13

end_repeat;
Publication 1756-PM001G-EN-P - March 2004

7-28 Program Structured Text
Comments To make your structured text easier to interpret, add comments to it.

• Comments let you use plain language to describe how your
structured text works.

• Comments do not affect the execution of the structured text.

To add comments to your structured text:

For example:

To add a comment: Use one of these formats:

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured
text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/

Format: Example:

//comment At the beginning of a line
//Check conveyor belt direction
IF conveyor_direction THEN...

At the end of a line
ELSE //If conveyor isn’t moving, set alarm light
light := 1;
END_IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level
LS*)THEN...

(*Controls the speed of the recirculation pump. The
speed depends on the temperature in the tank.*)
IF tank.temp > 200 THEN...

/*comment*/ Sugar.Inlet:=0;/*close the inlet*/

IF bar_code=65 /*A*/ THEN...

/*Gets the number of elements in the Inventory array
and stores the value in the Inventory_Items tag*/
SIZE(Inventory,0,Inventory_Items);
Publication 1756-PM001G-EN-P - March 2004

Chapter 8

Program Ladder Logic

When to Use This
Procedure

Use this procedure to accomplish the following:

• develop the logic for a ladder logic routine

• enter the logic into the routine

Before You Use This
Procedure

Before you use this procedure, make sure you are able to perform the
following tasks:

For more information on any of those tasks, see “Getting Started” on
page 1-1.

How to Use This Procedure To program a ladder logic routine:

Navigate the Controller Organizer

Identify the Programming Languages That Are Installed

✓

✓

For this information: See page:

Definitions 8-2

Write Ladder Logic 8-5

Enter Ladder Logic 8-10

Assign Operands 8-11

Export/Import Ladder Logic 8-14

Verify the Routine 8-17
1 Publication 1756-PM001G-EN-P - March 2004

8-2 Program Ladder Logic
Definitions Before you write or enter ladder logic, review the following terms:

• Instruction

• Branch

• Rung Condition

Instruction

You organize ladder logic as rungs on a ladder and put instructions on
each rung. There are two basic types of instructions:

Input instruction: An instruction that checks, compares, or examines
specific conditions in your machine or process.

Output instruction: An instruction that takes some action, such as
turn on a device, turn off a device, copy data, or calculate a value.

Branch

A branch is two or more instructions in parallel.

input instructions output instructions

branchbranch
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-3
There is no limit to the number of parallel branch levels that you can
enter. The following figure shows a parallel branch with five levels.
The main rung is the first branch level, followed by four additional
branches.

You can nest branches to as many as 6 levels. The following figure
shows a nested branch. The bottom output instruction is on a nested
branch that is three levels deep.

input instruction output instruction

input instruction output instruction
Publication 1756-PM001G-EN-P - March 2004

8-4 Program Ladder Logic
Rung Condition

The controller evaluates ladder instructions based on the rung
condition preceding the instruction (rung-condition-in).

Only input instructions affect the rung-condition-in of subsequent
instructions on the rung:

• If the rung-condition-in to an input instruction is true, the
controller evaluates the instruction and sets the
rung-condition-out to match the results of the evaluation.

– If the instruction evaluates to true, the rung-condition-out is
true.

– If the instruction evaluates to false, the rung-condition-out is
false.

• An output instruction does not change the rung-condition-out.

– If the rung-condition-in to an output instruction is true, the
rung-condition-out is set to true.

– If the rung-condition-in to an output instruction is false, the
rung-condition-out is set to false.

input instruction

rung-condition-in

output instruction

rung-condition-out
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-5
Write Ladder Logic To develop your ladder logic, perform the following actions:

Choose the Required Instructions

1. Separate the conditions to check from the action to take.

2. Choose the appropriate input instruction for each condition and
the appropriate output instruction for each action.

To choose specific instructions, see the following manuals:

• Logix5000 Controllers General Instructions Reference Manual,
publication 1756-RM003

• Logix5000 Controllers Process and Drives Instructions
Reference Manual, publication 1756-RM006

• Logix5000 Controllers Motion Instruction Set Reference
Manual, publication 1756-RM007

The examples in this chapter use two simple instructions to help you
learn how to write ladder logic. The rules that you learn for these
instructions apply to all other instructions.

Choose the Required Instructions

Arrange the Input Instructions

Arrange the Output Instructions

Choose a Tag Name for an Operand

Symbol: Name: Mnemonic: Description:

Examine If Closed XIC An input instruction that looks at one bit of data.

If the bit is: Then the instruction
(rung-condition-out) is:

on (1) true

off (0) false

Output Energize OTE An output instruction that controls one bit of data.

If the instructions to the left
(rung-condition-in) are:

Then the instruction turns
the bit:

true on (1)

false off (0)
Publication 1756-PM001G-EN-P - March 2004

8-6 Program Ladder Logic
Arrange the Input Instructions

Arrange the input instructions on a rung using the following chart:

To check multiple input conditions when: Arrange the input instructions:

all conditions must be met in order to take action

For example, If condition_1 AND condition_2 AND condition_3…

In series:

any one of several conditions must be met in order to take action

For example, If condition_1 OR condition_2 OR condition_3…

In parallel:

there is a combination of the above

For example,

If condition_1 AND condition_2…

OR

If condition_3 AND condition_2…

In combination:

condition_1 condition_2 condition_3

condition_1

condition_2

condition_3

condition_1 condition_2

condition_3
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-7
Arrange the Output Instructions

Place at least one output instruction to the right of the input
instructions. You can enter multiple output instructions per rung of
logic, as follows:

TIP The controller executes all instructions on a rung regardless of their
rung-condition-in. For optimal performance of a series of instructions,
sequence the instructions from most likely to be false on the left to
least likely to be false on the right.

When the controller finds a false instruction, it executes the remaining
instructions in the series with their rung-condition-in set to false.
Typically, an instruction executes faster when its rung-condition-in
(rung) is false rather than true.

instruction most likely
to be FALSE

instruction least likely
to be FALSE

Option: Example:

Place the output instructions in sequence on the rung (serial).

Place the output instructions in branches (parallel).

Place the output instructions between input instructions, as long as
the last instruction on the rung is an output instruction.
Publication 1756-PM001G-EN-P - March 2004

8-8 Program Ladder Logic
Choose a Tag Name for an Operand

Most instructions requires one or more of the following types of
operands:

• tag name (variable)

• immediate value (constant)

• name of a routine, label, etc.

The following table outlines the format for a tag name:

where:

x is the location of the element in the first dimension.

y is the location of the element in the second dimension.

z is the location of the element in the third dimension.

For a structure within a structure, add an additional.member_name .

For a: Specify:

tag tag_name

bit number of a larger data type tag_name.bit_number

member of a structure tag_name.member_name

element of a one dimension array tag_name[x]

element of a two dimension array tag_name[x,y]

element of a three dimension array tag_name[x,y,z]

element of an array within a structure tag_name.member_name[x]

member of an element of an array tag_name[x,y,z].member_name
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-9
EXAMPLE Choose a Tag Name for an Operand

42357

To access: The tag name looks like this:

machine_on tag

bit number 1 of the one_shots tag

DN member (bit) of the running_seconds
timer

mix member of the north_tank tag

element 2 in the recipe array and element
1,1 in the tanks array

element 2 in the preset array within the
north_tank tag

part_advance member of element 1 in the
drill array

machine_on

one_shots.1

running_seconds.DN

north_tank.mix

Copy File
Source recipe[2]
Dest tanks[1,1]
Length 1

COP

Clear
Dest north_tank.preset[2]

0

CLR

drill[1].part_advance
Publication 1756-PM001G-EN-P - March 2004

8-10 Program Ladder Logic
Enter Ladder Logic A new routine contains a rung that is ready for instructions.

Use the Language Element toolbar to add a ladder logic element to
your routine.

To add an element:

Append an Element to the Cursor Location

1. Click (select) the instruction, branch, or rung that is above or to
the left of where you want to add an element.

2. On the Language Element toolbar, click the button for the
element that you want to add.

cursor (blue) When you add an instruction or branch, it appears to the
right of the cursor.

When you add a rung, it appears
below the cursor.

Append an Element to the Cursor Location

Drag and Drop an Element

rung XIC
branch

branch level

other instructions

XIO OTE OTU OTL
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-11
Drag and Drop an Element

Drag the button for the element directly to the desired location. A
green dot shows a valid placement location (drop point).

For example

Assign Operands To assign an operand you have these options:

Create and Assign a New Tag

1. Click the operand area of the instruction.

2. Type a name for the tag and press [Enter].

3. Right-click the tag name and choose New "tag_name".

4. Click the button.

Create and Assign a New Tag

Choose a Name or an Existing Tag

Drag a Tag From the Tags Window

Assign an Immediate (Constant) Value

4.
Publication 1756-PM001G-EN-P - March 2004

8-12 Program Ladder Logic
5. Select the data type for the tag.

6. If you want to define the tag as an array, type the number of
elements in each dimension.

7. Choose

8. Choose the scope for the tag.

9. Choose

5.

6.

8.
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-13
Choose a Name or an Existing Tag

1. Double-click the operand area.

A text entry box opens.

2. Click the ▼

3. Select the name:

4. Press [Enter] or click a different spot on the diagram.

Drag a Tag From the Tags Window

1. Find the tag in the Tags window.

2. Click the tag two or three times until it highlights.

3. Drag the tag to its location on the instruction.

Assign an Immediate (Constant) Value

1. Click the operand area of the instruction.

2. Type the value and press [Enter].

To select a: Do this:

label, routine name, or
similar type of name

Click the name.

tag Double-click the tag name.

bit number A. Click the tag name.

B. To the right of the tag name, click

C. Click the required bit.

▼

Publication 1756-PM001G-EN-P - March 2004

8-14 Program Ladder Logic
Export/Import Ladder Logic If you want to re-use ladder logic from another project, simply export
the logic to an L5X file and import it into the required project. The
L5X file contains all that you need for the logic except I/O modules.

When You Import Rungs…

When you import rungs, RSLogix 5000 software shows a list of the
tags and user-defined data types that go along with the rungs. Use the
list to manage the tags and data types that are created during the
import operation.

RSLogix 5000 software
13.0 or later

L5X file

rungs

tags

data types

comments

Project A

export

import

Project B

If you place the variables for the rungs in a user-defined data
type, you have less tags to manage.

If desired, you can rename a tag.to
make it fit the project better.

If a tag already exists in the project,
you can either:

• Use the existing tag, which
discards the tag in the library file
and binds the logic to the existing
tag.

• Rename the tag, which creates a
new one.

If an I/O tag already exists in the project, the import operation uses this tag for
any aliases to that tag name. Once you import a project, make sure you check
the alias tags for accuracy.

No new I/O tags are created.

The Operation column shows what will happen to each tag and data type during
the import. The software either creates it, uses an existing one in the project, or

discards it (does not import it).
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-15
Export Rungs

1. Select the rungs to export:

If rungs are: Do this:

in sequence Click the first rung and then
[Shift] + click the last rung.

out of sequence Click the first rung and then
[Ctrl] + click each additional rung.

3. Choose a location and name for the file.

4. Create the file.

2. Right-click the selection and choose Export Rung.
Publication 1756-PM001G-EN-P - March 2004

8-16 Program Ladder Logic
Import Rungs

Check Alias Tags

1. Right-click the location for the rungs
and choose Import Rung.

2. Select the file to import.

3. Check for conflicts in names.

4. Import the file.

If you import an alias tag, make sure it points to the correct base tag. When a tag
is an alias for a tag that already exists in the project, the software sets up the
relationship between the alias and base tags.

rungs that you
imported

If the project does not have the base tag, you have to either
create the base tag or point the alias to a different base
tag.
Publication 1756-PM001G-EN-P - March 2004

Program Ladder Logic 8-17
Verify the Routine As you program your routine (s), periodically verify your work:

1. In the top-most toolbar of the RSLogix 5000 window, click

2. If any errors are listed at the bottom of the window:

a. To go to the first error or warning, press [F4].

b. Correct the error according to the description in the Results
window.

c. Go to step 1.

3. To close the Results window, press [Alt] + [1].
Publication 1756-PM001G-EN-P - March 2004

8-18 Program Ladder Logic
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 9

Program a Function Block Diagram

When to Use This
Procedure

Use this procedure to accomplish the following:

• organize a function block routine

• develop one or more function block diagrams for the routine

• enter the function block diagrams into the routine

Before You Use This
Procedure

Before you use this procedure, make sure you are able to perform the
following tasks:

For more information on any of those tasks, see “Getting Started” on
page 1-1.

How to Use This Procedure To program a function block routine, do the following steps:

Navigate the Controller Organizer

Identify the Programming Languages That Are Installed

✓

✓

Identify the Sheets for the Routine

Choose the Function Block Elements

Choose a Tag Name for an Element

Define the Order of Execution

Identify any Connectors

Define Program/Operator Control

Add a Sheet

Add a Function Block Element

Connect Elements

Assign a Tag

Assign an Immediate Value (Constant)

Connect Blocks with an OCON and ICON

Verify the Routine
1 Publication 1756-PM001G-EN-P - March 2004

9-2 Program a Function Block Diagram
Identify the Sheets for the
Routine

To make it easier to navigate through a function block routine, divide
the routine into a series of sheets:

• Sheets help you organize and find your function blocks. They
do not effect the order in which the function blocks execute.

• When the routine executes, all the sheets execute.

• In general, use one sheet for each device (motor, valve, etc.)

The following example shows a function block routine that controls
4 motors.

EXAMPLE Identify the Sheets for the Routine

Sheet 1 of 4 motor 1 Sheet 2 of 4 motor 2

Sheet 3 of 4 motor 3 Sheet 4 of 4 motor 4

Motor Control Routine
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-3
Choose the Function Block
Elements

To control a device, use the following elements:

Use the following table to choose your function block elements:

input reference (IREF) function block

output wire
connector
(OCON)

output reference (OREF)

input wire
connector

(ICON)

If you want to: Then use a:

supply a value from an input device or tag input reference (IREF)

send a value to an output device or tag output reference (OREF)

perform an operation on an input value or values and
produce an output value or values

function block

transfer data between function blocks when they
are:

• far apart on the same sheet

• on different sheets within the same routine

output wire connector (OCON) and an input wire
connector (ICON)

disperse data to several points in the routine single output wire connector (OCON) and multiple
input wire connectors (ICON)
Publication 1756-PM001G-EN-P - March 2004

9-4 Program a Function Block Diagram
Choose a Tag Name for an
Element

Each function block uses a tag to store configuration and status
information about the instruction.

• When you add function block instruction, RSLogix 5000 software
automatically creates a tag for the block. You can use this tag as
is, rename the tag, or assign a different tag.

• For IREFs and OREFs, you have to create a tag or assign an
existing tag.

The following table outlines the format for a tag name:

where:

x is the location of the element in the first dimension.

y is the location of the element in the second dimension.

z is the location of the element in the third dimension.

For a structure within a structure, add an additional.member_name .

For a: Specify:

tag tag_name

bit number of a larger data type tag_name.bit_number

member of a structure tag_name.member_name

element of a one dimension array tag_name[x]

element of a two dimension array tag_name[x,y]

element of a three dimension array tag_name[x,y,z]

element of an array within a structure tag_name.member_name[x]

member of an element of an array tag_name[x,y,z].member_name
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-5
Define the Order of
Execution

You define execution order (flow of data) by wiring elements together
and indicating any input (feedback) wires, if necessary. The location
of a block does not affect the order in which the blocks execute.

Data Latching

If you use an IREF to specify input data for a function block
instruction, the data in that IREF is latched for the scan of the function
block routine. The IREF latches data from program-scoped and
controller-scoped tags. The controller updates all IREF data at the
beginning of each scan.

output pin wire input pin output pin wire input pin

data flows from output pins to input pins

Wire symbols:

SINT, INT, DINT,
or REAL value

BOOL value
(0 or 1)

IREF
Publication 1756-PM001G-EN-P - March 2004

9-6 Program a Function Block Diagram
In this example, the value of tagA is stored at the beginning of the
routine’s execution. The stored value is used when Block_01
executes. The same stored value is also used when Blcock_02
executes. If the value of tagA changes during execution of the routine,
the stored value of tagA in the IREF does not change until the next
execution of the routine.

This example is the same as the one above. The value of tagA is
stored only once at the beginning of the routine’s execution. The
routine uses this stored value throughout the routine.

tagA

Block_01

Block_02

tagA

Block_01

Block_02

tagA
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-7
Starting with RSLogix 5000 software, version 11, you can use the same
tag in multiple IREFs and an OREF in the same routine. Because the
values of tags in IREFs are latched every scan through the routine, all
IREFs will use the same value, even if an OREF obtains a different tag
value during execution of the routine. In this example, if tagA has a
value of 25.4 when the routine starts executing this scan, and
Block_01 changes the value of tagA to 50.9, the second IREF wired
into Block_02 will still use a value of 25.4 when Block_02 executes
this scan. The new tagA value of 50.9 will not be used by any IREFs in
this routine until the start of the next scan.

Order of Execution

The RSLogix 5000 programming software automatically determines the
order of execution for the function blocks in a routine when you:

• verify a function block routine

• verify a project that contains a function block routine

• download a project that contains a function block routine

You define execution order by wiring function blocks together and
indicating the data flow of any feedback wires, if necessary.

If function blocks are not wired together, it does not matter which
block executes first. There is no data flow between the blocks.
Publication 1756-PM001G-EN-P - March 2004

9-8 Program a Function Block Diagram
If you wire the blocks sequentially, the execution order moves from
input to output. The inputs of a block require data to be available
before the controller can execute that block. For example, block 2 has
to execute before block 3 because the outputs of block 2 feed the
inputs of block 3.

Execution order is only relative to the blocks that are wired together.
The following example is fine because the two groups of blocks are
not wired together. The blocks within a specific group execute in the
appropriate order in relation to the blocks in that group.

Resolve a Loop

To create a feedback loop around a block, wire an output pin of the
block to an input pin of the same block. The following example is
OK. The loop contains only a single block, so execution order does
not matter.

1 2 3

1 3 5

2 4 6

This input pin uses an output that
the block produced on the

previous scan.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-9
If a group of blocks are in a loop, the controller cannot determine
which block to execute first. In other words, it cannot resolve the
loop.

To identify which block to execute first, mark the input wire that
creates the loop (the feedback wire) with the Assume Data Available
indicator. In the following example, block 1 uses the output from
block 3 that was produced in the previous execution of the routine.

The Assume Data Available indicator defines the data flow within the
loop. The arrow indicates that the data serves as input to the first
block in the loop.

?? ?

1 2 3

This input pin uses the output
that block 3 produced on the

previous scan.

Assume Data Available indicator
Publication 1756-PM001G-EN-P - March 2004

9-10 Program a Function Block Diagram
Do not mark all the wires of a loop with the Assume Data Available
indicator.

This is OK This is NOT OK

The Assume Data Available indicator defines the data flow within
the loop.

The controller cannot resolve the loop because all the wires use the
Assume Data Available indicator.

Assume Data Available
indicator

21 ??
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-11
Resolve Data Flow Between Two Blocks

If you use two or more wires to connect two blocks, use the same
data flow indicators for all of the wires between the two blocks.

This is OK This is NOT OK

Neither wire uses the Assume Data Available indicator.

Both wires use the Assume Data Available indicator.

One wire uses the Assume Data Available indicator while the other
wire does not.

Assume Data Available
indicator
Publication 1756-PM001G-EN-P - March 2004

9-12 Program a Function Block Diagram
Create a One Scan Delay

To produce a one scan delay between blocks, use the Assume Data
Available indicator. In the following example, block 1 executes first. It
uses the output from block 2 that was produced in the previous scan
of the routine.

Summary

In summary, a function block routine executes in this order:

1. The controller latches all data values in IREFs.

2. The controller executes the other function blocks in the order
determined by how they are wired.

3. The controller writes outputs in OREFs.

2 1

Assume Data Available indicator
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-13
Identify any Connectors Like wires, connectors transfer data from output pins to input pins.
Use connectors when:

• the elements that you want to connect are on different sheets
within the same routine

• a wire is difficult to route around other wires or elements

• you want to disperse data to several points in the routine

To use connectors, follow these rules:

• Each OCON requires a unique name.

• For each OCON, you must have at least one corresponding
ICON (i.e., an ICON with the same name as the OCON).

• Multiple ICONs can reference the same OCON. This lets you
disperse data to several points in your routine.

Connector_A

Connector_A

data
Publication 1756-PM001G-EN-P - March 2004

9-14 Program a Function Block Diagram
Define Program/Operator
Control

Several instructions support the concept of Program/Operator control.
These instructions include:

• Enhanced Select (ESEL)

• Totalizer (TOT)

• Enhanced PID (PIDE)

• Ramp/Soak (RMPS)

• Discrete 2-State Device (D2SD)

• Discrete 3-State Device (D3SD)

Program/Operator control lets you control these instructions
simultaneously from both your user program and from an operator
interface device. When in Program control, the instruction is
controlled by the Program inputs to the instruction; when in Operator
control, the instruction is controlled by the Operator inputs to
the instruction.

Program or Operator control is determined by using these inputs:

To determine whether an instruction is in Program or Control control,
examine the ProgOper output. If ProgOper is set, the instruction is in
Program control; if ProgOper is cleared, the instruction is in
Operator control.

Operator control takes precedence over Program control if both input
request bits are set. For example, if ProgProgReq and ProgOperReq
are both set, the instruction goes to Operator control.

Input: Description:

.ProgProgReq A program request to go to Program control.

.ProgOperReq A program request to go to Operator control.

.OperProgReq An operator request to go to Program control.

.OperOperReq An operator request to go to Operator control.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-15
The Program request inputs take precedence over the Operator
request inputs. This provides the capability to use the ProgProgReq
and ProgOperReq inputs to “lock” an instruction in a desired control.
For example, let’s assume that a Totalizer instruction will always be
used in Operator control, and your user program will never control
the running or stopping of the Totalizer. In this case, you could wire a
literal value of 1 into the ProgOperReq. This would prevent the
operator from ever putting the Totalizer into Program control by
setting the OperProgReq from an operator interface device.

Because the ProgOperReq input is
always set, pressing the “Program”
button on the faceplate (which sets
the OperProgReg input) has no effect.
Normally, setting OperProgReq puts
the TOT in Program control.

Wiring a “1” into ProgOperReq means
the user program always wants the
TOT to be in Operator control
Publication 1756-PM001G-EN-P - March 2004

9-16 Program a Function Block Diagram
Likewise, constantly setting the ProgProgReq can “lock” the instruction
into Program control. This is useful for automatic startup sequences
when you want the program to control the action of the instruction
without worrying about an operator inadvertently taking control of the
instruction. In this example, you have the program set the
ProgProgReq input during the startup, and then clear the ProgProgReq
input once the startup was complete. Once the ProgProgReq input is
cleared, the instruction remains in Program control until it receives a
request to change. For example, the operator could set the
OperOperReq input from a faceplate to take over control of that
instruction. The following example shows how to lock an instruction
into Program control.

Operator request inputs to an instruction are always cleared by the
instruction when it executes. This allows operator interfaces to work
with these instructions by merely setting the desired mode request bit.
You don’t have to program the operator interface to reset the request
bits. For example, if an operator interface sets the OperAutoReq input
to a PIDE instruction, when the PIDE instruction executes, it
determines what the appropriate response should be and clears the
OperAutoReq.

When StartupSequenceActive
is set, the PIDE instruction is
placed in Program control and
Manual mode. The StartupCV
value is used as the loop output.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-17
Program request inputs are not normally cleared by the instruction
because these are normally wired as inputs into the instruction. If the
instruction clears these inputs, the input would just get set again by
the wired input. There might be situations where you want to use
other logic to set the Program requests in such a manner that you
want the Program requests to be cleared by the instruction. In this
case, you can set the ProgValueReset input and the instruction will
always clear the Program mode request inputs when it executes.

In this example, a rung of ladder logic in another routine is used to
one-shot latch a ProgAutoReq to a PIDE instruction when a
pushbutton is pushed. Because the PIDE instruction automatically
clears the Program mode requests, you don’t have to write any ladder
logic to clear the ProgAutoReq after the routine executes, and the
PIDE instruction will receive only one request to go to Auto every
time the pushbutton is pressed.

When the TIC101AutoReq Pushbutton is pressed, one-shot latch ProgAutoReq for the PIDE instruction TIC101.
TIC101 has been configured with the ProgValueReset input set, so when the PIDE instruction executes, it
automatically clears ProgAutoReq.
Publication 1756-PM001G-EN-P - March 2004

9-18 Program a Function Block Diagram
Add a Sheet To add a sheet to a function block routine:

1. Click

2. Type a description of the sheet (up to 50 characters).

Add a Function Block
Element

Use the Language Element toolbar to add a function block element to
your routine.

1. 2.

IREF OCONOREF ICON function blocks

other function blocks
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-19
To add an element:

1. On the Language Element toolbar, click the button for the
element that you want to add.

2. Drag the element to the desired location.

You can also drag the button for the element directly to the desired
location.

For example

For example:
Publication 1756-PM001G-EN-P - March 2004

9-20 Program a Function Block Diagram
Connect Elements To define the flow of data:

Show or Hide a Pin

When you add a function block instruction, a default set of pins for
the parameters are shown. The rest of the pins are hidden. To show or
hide a pin:

1. Click the button of the block.

2. Clear or check the Vis check box of the pin:

3. Choose

Show or Hide a Pin

Wire Elements Together

Mark a Wire with the Assume Data Available Indicator

If you want to: Then;

hide a pin Clear (uncheck) its Vis check box.

show a pin Check its Vis check box.

2.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-21
Wire Elements Together

To wire (connect) two elements together, click the output pin of the
first element and then click the input pin of the other element. A
green dot shows a valid connection point.

For example:

Mark a Wire with the Assume Data Available Indicator

To define a wire as an input, right-click the wire and choose Assume
Data Available.

green dot

A B

1 2 3

input wire
Publication 1756-PM001G-EN-P - March 2004

9-22 Program a Function Block Diagram
Assign a Tag To assign a tag to a function block element, you have these options:

Create and Assign a New Tag

1. Double-click the operand area.

2. Type a name for the tag and press the Enter key.

3. Right-click the tag name and choose New "tag_name".

4. Click the button.

5. Select the data type for the tag.

6. If you want to define the tag as an array, type the number of
elements in each dimension.

7. Choose

Create and Assign a New Tag

Rename the Tag of a Function Block

Assign an Existing Tag

4.

5.

6.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-23
8. Choose the scope for the tag.

9. Choose

Rename the Tag of a Function Block

1. Click the button of the block.

2. Click the Tag tab.

3. Type the new tag name for the block.

4. Choose

Assign an Existing Tag

1. Double-click the operand area.

2. Click the ▼

3. Select the tag:

4. Press [Enter] or click a different spot on the diagram.

8.

3.

To select a: Do this:

tag Double-click the tag name.

bit number A. Click the tag name.

B. To the right of the tag name, click

C. Click the required bit.

Block_01

▼

Publication 1756-PM001G-EN-P - March 2004

9-24 Program a Function Block Diagram
Assign an Immediate Value
(Constant)

To assign a constant value instead of a tag value to an input
parameter, you have these options:

Use an IREF

1. Add an IREF.

2. Wire the IREF to the input pin that gets the value.

3. Double-click the operand area of the IREF.

4. Type the value and press the Enter key.

Enter a Value in the Tag of a Block

To assign a value to a parameter when on wire connects to its pin:

1. Click the button of the block.

2. Type the value.

3. Choose

If you want to: Then:

make the value visible on the diagram and reports Use an IREF

be able to change the value online without editing the
routine

Enter a Value in the Tag of a Block

3.

2.
Publication 1756-PM001G-EN-P - March 2004

Program a Function Block Diagram 9-25
Connect Blocks with an
OCON and ICON

To transfer data between sheets or in complex wiring situations:

Add an OCON

1. Add an output wire connector (OCON) and place it near the
output pin that supplies the value.

2. Wire the OCON to the output pin.

3. Double-click the operand area of the OCON.

4. Type a name that identifies the connector and press [Enter].

Add an ICON

1. Add an input wire connector (ICON) and place it near the input
pin that gets the value from the corresponding OCON.

2. Wire the ICON to the input pin.

3. Double-click the operand area of the ICON.

4. Select the name of the OCON that supplies the value to this
connector and then click a blank spot on the diagram

Add an OCON

Add an ICON

OCONICON
Publication 1756-PM001G-EN-P - March 2004

9-26 Program a Function Block Diagram
Verify the Routine As you program your routine, periodically verify your work:

1. In the top-most toolbar of the RSLogix 5000 window, click

2. If any errors are listed at the bottom of the window:

a. To go to the first error or warning, press [F4].

b. Correct the error according to the description in the Results
window.

c. Go to step 1.

3. To close the Results window, press [Alt] + [1].
Publication 1756-PM001G-EN-P - March 2004

Chapter 10

Communicate with Other Devices

Using This Chapter Use this chapter to plan your communication between the controller
and I/O modules or other controllers.

Connections A Logix5000 controller uses connections for many, but not all, of its
communication with other devices.

For this information: See page:

Connections 10-1

Produce and Consume a Tag 10-9

Execute a Message (MSG) Instruction 10-19

Get or Set the Number of Unconnected Buffers 10-25

Convert Between INTs and DINTs 10-28

Term: Definition:

connection A communication link between two devices, such as between a controller and an I/O
module, PanelView terminal, or another controller.

Connections are allocations of resources that provide more reliable communications
between devices than unconnected messages. The number of connections that a single
controller can have is limited.

You indirectly determine the number of connections the controller uses by configuring the
controller to communicate with other devices in the system. The following types of
communication use connections:

• I/O modules

• produced and consumed tags

• certain types of Message (MSG) instructions (not all types use a connection)
1 Publication 1756-PM001G-EN-P - March 2004

10-2 Communicate with Other Devices
Inhibit a Connection

In some situations, such as when initially commissioning a system, it is
useful to disable portions of a control system and enable them as you
wire up the control system. The controller lets you inhibit individual
modules or groups of modules, which prevents the controller from
trying to communicate with the modules.

requested packet
interval (RPI)

The RPI specifies the period at which data updates over a connection. For example, an
input module sends data to a controller at the RPI that you assign to the module.

• Typically, you configure an RPI in milliseconds (ms). The range is 0.2 ms
(200 microseconds) to 750 ms.

• If a ControlNet network connects the devices, the RPI reserves a slot in the stream
of data flowing across the ControlNet network. The timing of this slot may not
coincide with the exact value of the RPI, but the control system guarantees that the
data transfers at least as often as the RPI.

path The path describes the route that a connection takes to get to the destination.

Typically, you automatically define the path for a connection when you add the devices to
the I/O Configuration folder of the controller.

Term: Definition:

I/O Configuration

[0] 1756-CNB/x Local_CNB

2 [0] 1756-CNB/x chassis_b

[1] 1756-L55/x peer_controller

−

−

−

ATTENTION

!
Inhibiting a module breaks the connection to the
module and prevents communication of I/O data.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-3
When you configure an I/O module, it defaults to being not inhibited.
You can change an individual module’s properties to inhibit a module.

When you inhibit a communication bridge module, such as a
1756-CNB or 1756-DHRIO module, the controller shuts down the
connections to the bridge module and to all the modules that depend
on that bridge module. Inhibiting a communication bridge module lets
you disable an entire branch of the I/O network.

When you select to inhibit the module, the controller organizer

displays a yellow attention symbol over the module.

Inhibit communication with the module.

If you want to: Then:

communicate with the module do not inhibit the module

prevent communication with the module inhibit the module

!

If you are: And you: And: Then:

offline The inhibit status is stored in the project. When you download the
project, the module is still inhibited.

online inhibit a module while you are
connected to the module

The connection to the module is closed. The modules’ outputs go to the
last configured program mode.

inhibit a module but a
connection to the module was
not established (perhaps due to
an error condition or fault)

The module is inhibited. The module status information changes to
indicate that the module is inhibited and not faulted.

uninhibit a module (clear the
check box)

no fault
occurs

A connection is made to the module and the module is dynamically
reconfigured (if the controller is the owner controller) with the
configuration you created for that module. If the controller is configured
for listen-only, it cannot reconfigure the module.

fault occurs A connection is not made to the module. The module status information
changes to indicate the fault condition.
Publication 1756-PM001G-EN-P - March 2004

10-4 Communicate with Other Devices
To inhibit or uninhibit a module from logic:

1. Use a Get System Value (GSV) instruction to read the Mode
attribute for the module.

2. Set or clear bit 2:

3. Use a Set System Value (SSV) instruction to write the Mode
attribute back to the module.

If you want to: Then:

inhibit the module Set bit 2.

uninhibit the module Clear bit 2

EXAMPLE Inhibit a Connection

If Module_1_Inhibit = 1, then inhibit the operation of the I/O module named Module_1:

1. The GSV instruction sets Module_1_Mode = value of the Mode attribute for the module.

2. The OTE instruction sets bit 2 of Module_1_Mode = 1. This means inhibit the connection.

3. The SSV instruction sets the Mode attribute for the module = Module_1_Mode.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-5
Manage a Connection Failure

If the controller loses communication with a module, data from that
device does not update. When this occurs, the logic makes decisions
on data that may or may not be correct.

If communication with a device in the I/O configuration of the
controller does not occur for 100 ms, the communication times out. If
this occurs, you have the following options:

ATTENTION

!
Outputs respond to the last, non-faulted state of the controlling inputs.
To avoid potential injury and damage to machinery, make sure this
does not create unsafe operation. Configure critical I/O modules to
generate a controller major fault when they lose their connections to
the controller. Or, monitor the status of I/O modules.

EXAMPLE Loss of communication

Controller B requires data from controller A. If communication fails
between the controllers, then controller B continues to act on the last
data that it received from controller A.

A

B

communication failure

41031

If you want the controller to: Then:

fault (major fault) Configure a Major Fault to Occur

continue operating Monitor the Health of a Module
Publication 1756-PM001G-EN-P - March 2004

10-6 Communicate with Other Devices
Configure a Major Fault to Occur

You can configure modules to generate a major fault in the controller
if they lose their connection with the controller. This interrupts the
execution of logic and executes the Controller Fault Handler. If the
Controller Fault Handler does not clear the fault, then the controller
shuts down.

Monitor the Health of a Module

If you do not configure the major fault to occur, you should monitor
the module status. If a module loses its connection to the controller,
outputs go to their configured faulted state. The controller and other
I/O modules continue to operate based on old data from the module.

If communication with a module times out, the controller produces
the following warnings:

• The I/O LED on the front of the controller flashes green.

• A shows over the I/O configuration folder and over the
device (s) that has timed out.

• A module fault code is produced, which you can access
through:

– Module Properties window for the module

– GSV instruction

If the connection times out, produce a major
fault in the controller.

If the connection times out, continue operation
without invoking a major fault on the controller.

!

Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-7
To monitor the health of your connections, use a Get System Value
(GSV) instruction to monitor the MODULE object for either the
controller or a specific module:

If you want to: Get this attribute: Data Type: Description:

determine if
communication has
timed out with any
device

LEDStatus INT

For efficiency,
use a DINT as
the destination
data type.

Specifies the current state of the I/O LED on the front of the controller.

Note: You do not enter an instance name with this attribute. This
attribute applies to the entire collection of modules.

Value: Meaning:

0 LED off: No MODULE objects are configured for the
controller (there are no modules in the I/O Configuration
section of the controller organizer).

1 Flashing red: None of the MODULE objects are Running.

2 Flashing green: At least one MODULE object is not
Running.

3 Solid green: All the Module objects are Running.

determine if
communication has
timed out with a
specific device

FaultCode INT

For efficiency,
use a DINT as
the destination
data type.

A number which identifies a module fault, if one occurs.

In the Instance Name, choose the device whose connection you want
to monitor. Make sure to assign a name to the device in the I/O
Configuration folder of the project.
Publication 1756-PM001G-EN-P - March 2004

10-8 Communicate with Other Devices
EXAMPLE Monitor the Health of a Module

The GSV instruction continuously sets I_O_LED_Status (DINT tag) = status of the I/O LED of the controller.

If I_O_LED_Status = 2, then communication has timed out (faulted) with at least one module. The GSV instruction sets
Module_3_Fault_Code = fault code for Module_3.

If Module_3_Fault_Code. is NOT equal to 0, then communication has timed out (faulted) with Module_3. The OTE
instruction sets Module_3_Faulted = 1.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-9
Produce and Consume a
Tag

To transfer data between controllers (send or receive data), you have
the following options:

A Logix5000 controller lets you produce (broadcast) and consume
(receive) system-shared tags.

If the data: Then: See:

needs regular delivery at an interval that you
specify (i.e., deterministic)

Produce and Consume a Tag This
section

is sent when a specific condition occurs in
your application

Execute a Message (MSG) Instruction Page 10-19

controller_2

controller_3

controller_4

consumed tag

consumed tag

consumed tag

controller_1

produced tag

Term: Definition

produced tag A tag that a controller makes available for use by other controllers. Multiple controllers
can simultaneously consume (receive) the data. A produced tag sends its data to one or
more consumed tags (consumers) without using logic. The produced tag sends its data at
the RPI of the consuming tag.

consumed tag A tag that receives the data of a produced tag. The data type of the consumed tag must
match the data type (including any array dimensions) of the produced tag. The RPI of the
consumed tag determines the period at which the data updates.
Publication 1756-PM001G-EN-P - March 2004

10-10 Communicate with Other Devices
Controllers and Networks that Support Produced/Consumed Tags

Use the following table to see the controller and network
combinations that let you produce and consume tags.

For two controllers to share produced or consumed tags, both
controllers must be attached to the same network (such as a
ControlNet or Ethernet/IP network). You cannot bridge produced and
consumed tags over two networks.

Connection Requirements of a Produced or Consumed Tag

Produced and consumed tags each require connections. As you
increase the number of controllers that can consume a produced tag,
you also reduce the number of connections the controller has
available for other operations, like communications and I/O.

This controller: Can produce and consume tags over this network:

Backplane ControlNet EtherNet/IP

SLC 500 ✔

PLC-5 ✔

CompactLogix(1)

(1) Use a CompactLogix5335 controller, catalog number 1769-L35E.

✔

ControlLogix ✔ ✔ ✔

DriveLogix

FlexLogix ✔

SoftLogix5800 ✔

IMPORTANT If a consumed-tag connection fails, all of the other
tags being consumed from that remote controller
stop receiving new data.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-11
Each produced or consumed tag uses the following number of
connections:

This controller: And this type of tag: Uses this many connections

ControlLogix

SoftLogix5800

produced tag number_of_consumers + 1

consumed tag 1

CompactLogix

DriveLogix

FlexLogix

produced tag number_of_consumers

consumed tag 1

EXAMPLE Connection Requirements of a Produced or Consumed Tag

• A FlexLogix controller producing a tag for 5 controllers (consumers) uses
5 connections.

• A ControlLogix controller producing 4 tags for 1 controller uses 8 connections:

– Each tag uses 2 connections (1 consumer + 1 = 2).

– 2 connections per tag x 4 tags = 8 connections

• Consuming 4 tags from a controller uses 4 connections (1 connection per tag x 4 tags
= 4 connections).
Publication 1756-PM001G-EN-P - March 2004

10-12 Communicate with Other Devices
Organize Tags for Produced or Consumed Data

As you organize your tags for produced or consumed data
(shared data), follow these guidelines:

Guideline: Details:

Create the tags at the controller
scope.

You can share only controller-scoped tags.

Use one of these data types:

• DINT

• REAL

• array of DINTs or REALs

• user-defined

• To share other data types, create a user-defined data type that contains the required data.

• Use the same data type for the produced tag and corresponding consumed tag or tags.

To share tags with a PLC-5C
controller, use a user-defined data
type.

To: This: Then:

produce integers Create a user-defined data type that contains an array of INTs with
an even number of elements, such as INT[2]. (When you produce
INTs, you must produce two or more.)

only one REAL
value

Use the REAL data type.

more than one
REAL value

Create a user-defined data type that contains an array of REALs.

consume integers Create a user-defined data type that contains the following
members:

Data type: Description:

DINT Status

INT[x], where x is the output size of the data
from the PLC-5C controller. (If you are
consuming only one INT, omit x.)

Data produced by a
PLC-5C controller

Limit the size of the tag to ≤ 500
bytes.

• If you must transfer more than 500 bytes, create logic to transfer the data in packets. See
chapter 11.

• If you produce the tag over a ControlNet network, the tag may need to be less than 500
bytes. Refer to "Adjust for Bandwidth Limitations" on page 10-13.

Use the highest permissible RPI for
your application.

If the controller consumes the tag over a ControlNet network, use a binary multiple of the
ControlNet network update time (NUT). For example, if the NUT is 5 ms, use an RPI of 5, 10, 20,
40 ms, etc.

Combine data this goes to the same
controller.

If you are producing several tags for the same controller:

• Group the data into one or more user-defined data types. (This uses less connections than
producing each tag separately.)

• Group the data according to similar update intervals. (To conserve network bandwidth, use
a greater RPI for less critical data.)

For example, you could create one tag for data that is critical and another tag for data that is not
as critical.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-13
Adjust for Bandwidth Limitations

When you share a tag over a ControlNet network, the tag must fit
within the bandwidth of the network:

• As the number of connections over a ControlNet network
increases, several connections, including produced or consumed
tags, may need to share a network update time (NUT).

• Since a ControlNet network can only pass 500 bytes in one NUT,
the data of each connection must be less then 500 bytes to fit
into the NUT.

Depending on the size of your system, you may not have enough
bandwidth on your ControlNet network for a tag of 500 bytes. If a tag
is too large for your ControlNet network, make one or more of the
following adjustments:

Adjustment: Description:

Reduce your network update time (NUT). At a faster NUT, less connections have to share an update slot.

Increase the requested packet interval (RPI)
of your connections.

At higher RPIs, connections can take turns sending data during an update slot.

For a ControlNet bridge module (CNB) in a
remote chassis, select the most efficient
communication format for that chassis:

Are most of the modules in the chassis
non-diagnostic, digital I/O modules?

Then select this communication format
for the remote CNB module:

Yes Rack Optimization

No None

The Rack Optimization format uses an additional 8 bytes for each slot in its chassis. Analog
modules or modules that are sending or getting diagnostic, fuse, timestamp, or schedule
data require direct connections and cannot take advantage of the rack optimized form.
Selecting “None” frees up the 8 bytes per slot for other uses, such as produced or
consumed tags.

Separate the tag into two or more smaller
tags.

1. Group the data according to similar update rates. For example, you could create one
tag for data that is critical and another tag for data that is not as critical.

2. Assign a different RPI to each tag.

Create logic to transfer the data in smaller
sections (packets).

Refer to "Produce a Large Array" on
page 11-1.
Publication 1756-PM001G-EN-P - March 2004

10-14 Communicate with Other Devices
Produce a Tag

1. Open the RSLogix 5000 project that contains the tag that you
want to produce.

2. In the controller organizer, right-click the Controller Tags folder
and choose Edit Tags. (You can produce only controller-scoped
tags.)

3. In the Controller Tags window, right-click the tag that you want
to produce and choose Edit Tag Properties.

4. Select the Produced option button.

5. Click the Connection tab.

6. Type or select the number of controllers that will consume
(receive) the tag.

7. Choose

4.

6.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-15
Consume Data That Is Produced by Another Controller

1. Open the RSLogix 5000 project that will consume the data.

2. In the controller organizer, I/O Configuration folder, add the
controller that is producing the data (the other Logix5000
controller or PLC-5C controller).

3. In the controller organizer, right-click the Controller Tags folder
and choose Edit Tags. (Only controller-scoped tags can consume
data.)

4. In the Controller Tags window, right-click the tag that will
consume the data and choose Edit Tag Properties.

5. Select the Consumed option button.

6. Make sure the data type is as follows:

7. Click the Connection tab.

5.

6.

If the producing
controller is:

Then the data type should be:

Logix5000 controller same data type as the produced tag

PLC-5C controller user-defined data type with the following members:

Data type: Description:

DINT Status

INT[x], where x is the output size
of the data from the PLC-5C
controller. (If you are consuming
only one INT, omit x.)

Data produced by a
PLC-5C controller
Publication 1756-PM001G-EN-P - March 2004

10-16 Communicate with Other Devices
8. Select the controller that produces the data.

9. Type the name or instance number of the produced data.

10. Type or select the requested packet interval (RPI) for the
connection.

11. Choose

12. If you consume the tag over a ControlNet network, use
RSNetWorx for ControlNet software to schedule the network.

8.

9.

10.

If the producing
controller is:

Then type or select:

Logix5000 controller tag name of the produced tag

PLC-5C controller message number from the ControlNet configuration of
the PLC-5C controller
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-17
Additional Steps for a PLC-5C Controller

If you are sharing data with a PLC-5C controller, perform the following
additional actions:

Action: Details:

In the ControlNet configuration
of the PLC-5C controller,
scheduled a message.

If the PLC-5C: This: Then in RSNetWorx software:

produces integers In the ControlNet configuration of the PLC-5C controller, insert a
Send Scheduled Message.

consumes integers In the ControlNet configuration of the PLC-5C controller:

A. Insert a Receive Scheduled Message.

B. In the Message size, enter the number of integers in the
produced tag.

REALs In the ControlNet configuration of the PLC-5C controller:

A. Insert a Receive Scheduled Message.

B. In the Message size, enter two times the number of REALs in
the produced tag. For example, if the produced tag contains
10 REALs, enter 20 for the Message size.

If the PLC-5C controller
consumes REALs, reconstruct
the values.

When you produce REALs (32-bit floating-point values) for a PLC-5C controller, the PLC-5C stores the
data in consecutive 16-bit integers:

• The first integer contains the upper (left-most) bits of the value.

• The second integer contains the lower (right-most) bits of the value.

• This pattern continues for each floating-point value.

See the following example on page 10-18.
Publication 1756-PM001G-EN-P - March 2004

10-18 Communicate with Other Devices
The following example shows how to re-construct a REAL (floating
point value) in the PLC-5C controller

EXAMPLE Re-construct a floating point value

The two MOV instructions reverse the order of the integers as the integers move to a new location. Because the destination of the COP
instruction is a floating-point address, it takes two consecutive integers, for a total of 32 bits, and converts them to a single floating-point
value.

42354
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-19
Execute a Message (MSG)
Instruction

To transfer data between controllers (send or receive data), you have
the following options:

If the data: Then: See:

needs regular delivery at a rate that you
specify (i.e., deterministic)

Produce and Consume a Tag Page
10-9

is sent when a specific condition occurs in your
application

Execute a Message (MSG)
Instruction

This
section

EXAMPLE Execute a Message (MSG) Instruction

If count_send = 1 and count_msg.EN = 0 (MSG instruction is not already enabled), then execute a MSG instruction that sends data to
another controller.

count_send

/
count_msg.en

EN
DN
ER

Type - Unconfigured
Message Control count_msg ...

MSG
Publication 1756-PM001G-EN-P - March 2004

10-20 Communicate with Other Devices
The following diagram shows how the controller processes Message
(MSG) instructions.

Description:

The controller scans the MSG instruction and its rung-condition-in goes true.

The MSG instruction enters the message queue.

The MSG instruction comes off the queue and is processed.

If the MSG instruction: Then the MSG instruction:

does not use a connection or the connection was not previously
cached.

uses an unconnected buffer to establish communication
with the destination device

uses a connection and the connection is cached does not use an unconnected buffer

Communication occurs with the destination device.

Message Queue

MSG

Yes

Unconnected
Buffers

No

destination device

Cached?

16
total

1 2 43

Cache List

1

2

3

4

Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-21
Message Queue

The message queue holds up to 16 MSG instructions, including those
that you configure as a block-transfer read or block-transfer write.
When the queue is full, an instruction tries to enter the queue on each
subsequent scan of the instruction, as shown below:

Description:

The controller scans the MSG instruction.

The rung-condition-in for the MSG instruction is true.

The EN bit is set.

The MSG instruction attempts to enter the queue but the queue is full (16 MSG instructions are already enabled).

The EW bit remains cleared.

 & The controller scans the MSG instruction.

The rung-condition-in for the MSG instruction is false.

The EN bit remains set.

The MSG instruction attempts to enter the queue but the queue is full.

The EW bit remains cleared.

The controller scans the MSG instruction.

The MSG instruction attempts to enter the queue. The queue has room so the instruction enters the queue.

The EW bit is set.

rung-condition-in false true false

.EN bit off on

.EW bit off on

1 2 3 4

1

2 3

4

Publication 1756-PM001G-EN-P - March 2004

10-22 Communicate with Other Devices
Cache List

Depending on how you configure a MSG instruction, it may use a
connection to send or receive data.

If a MSG instruction uses a connection, you have the option to leave
the connection open (cache) or close the connection when the
message is done transmitting.

The controller has the following limits on the number of connections
that you can cache:

This type of message: And this communication method: Uses a connection:

CIP data table read or write ✓

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ ✓

CIP generic your option (1)

block-transfer read or write ✓

(1) You can connect CIP generic messages. But for most applications we recommend you leave CIP generic
messages unconnected.

If you: Then:

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.

If you have this software
and firmware revision:

Then you can cache:

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages for up to 16 connections

12.x or later up to 32 connections
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-23
If several messages go to the same device, the messages may be able
to share a connection.

Unconnected Buffers

To establish a connection or process unconnected messages, the
controller uses an unconnected buffer.

If a MSG instruction uses a connection, the instruction uses an
unconnected buffer when it first executes to establish a connection. If
you configure the instruction to cache the connection, it no longer
requires an unconnected buffer once the connection is established.

If the MSG instructions are to: And they are: Then:

different devices Each MSG instruction uses 1 connection.

same device enabled at the same time Each MSG instruction uses 1 connection.

NOT enabled at the same time The MSG instructions share the connection.
(I.e., Together they count as 1 connection.)

EXAMPLE Share a Connection

If the controller alternates between sending a
block-transfer read message and a block-transfer
write message to the same module, then together
both messages count as 1 connection. Caching both
messages counts as 1 on the cache list.

Term: Definition

unconnected buffer An allocation of memory that the controller uses to process unconnected communication.
The controller performs unconnected communication when it:

• establishes a connection with a device, including an I/O module

• executes a MSG instruction that does not use a connection

The controller can have 10 - 40 unconnected buffers.

• The default number is 10.

• To increase the number of unconnected buffers, execute a MSG instruction that
reconfigures the number of unconnected buffers. Refer to Get or Set the Number of
Unconnected Buffers on page 10-25.

• Each unconnected buffers uses 1.1K bytes of memory.

• If all the unconnected buffers are in use when an instruction leaves the message
queue, the instruction errors and data does not transfer.
Publication 1756-PM001G-EN-P - March 2004

10-24 Communicate with Other Devices
Guidelines

As you plan and program your MSG instructions, follow these
guidelines:

Guideline: Details:

1. For each MSG instruction, create a
control tag.

Each MSG instruction requires its own control tag.

• Data type = MESSAGE

• Scope = controller

• The tag cannot be part of an array or a user-defined data type.

2. Keep the source and/or destination data
at the controller scope.

A MSG instruction can access only tags that are in the Controller Tags folder (controller
scope).

3. If your MSG is to a device that uses
16-bit integers, use a buffer of INTs in
the MSG and DINTs throughout the
project.

If your message is to a device that uses 16-bit integers, such as a PLC-5® or SLC 500™
controller, and it transfers integers (not REALs), use a buffer of INTs in the message and
DINTs throughout the project.

This increases the efficiency of your project because Logix5000 controllers execute
more efficiently and use less memory when working with 32-bit integers (DINTs).

Refer to Convert Between INTs and DINTs on page 10-28.

4. Cache the connected MSGs that
execute most frequently.

Cache the connection for those MSG instructions that execute most frequently, up to
the maximum number permissible for your controller revision.

This optimizes execution time because the controller does not have to open a
connection each time the message executes.

5. If you want to enable more than 16
MSGs at one time, use some type of
management strategy.

If you enable more than 16 MSGs at one time, some MSG instructions may experience
delays in entering the queue. To guarantee the execution of each message, use one of
these options:

• Enable each message in sequence.

• Enable the messages in groups.

• Program a message to communicate with multiple devices. For more
information, see Appendix B.

• Program logic to coordinate the execution of messages. For more information,
see Appendix A.

6. Keep the number of unconnected and
uncached MSGs less than the number
of unconnected buffers.

The controller can have 10 - 40 unconnected buffers. The default number is 10.

• If all the unconnected buffers are in use when an instruction leaves the message
queue, the instruction errors and does not transfer the data.

• You can increase the number of unconnected buffers (40 max.), but continue to
follow guideline 5.

• To increase the number of unconnected buffers, see page 10-25.
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-25
Get or Set the Number of
Unconnected Buffers

To determine or change the number of unconnected buffers, use a
MSG instruction.

• The range is 10 - 40 unconnected buffers.

• The default number is 10.

• Each unconnected buffers uses 1.1K bytes of memory.

Get the Number of Unconnected Buffers

To determine the number of unconnected buffers that the controller
currently has available, configure a Message (MSG) instruction as
follows:

On this tab: For this item: Type or select:

Configuration Message Type CIP Generic

Service Type Custom

Service Code 3

Class 304

Instance 1

Attribute 0

Source Element source_array where data type = SINT[4]

In this element: Enter:

source_array[0] 1

source_array[1] 0

source_array[2] 17

source_array[3] 0

Source Length (bytes) 4 (Write 4 SINTs.)

Destination destination_array where data type = SINT[10] (Leave all the values = 0.)

destination_array[6] = current number of unconnected buffers

Communication Path 1, slot_number_of_controller
Publication 1756-PM001G-EN-P - March 2004

10-26 Communicate with Other Devices
Set the Number of Unconnected Buffers

As a starting value, set the number of unconnected buffers equal to
the number of unconnected and uncached messages enabled at one
time plus approximately 5. The additional 5 buffers provides a
cushion in case you underestimate the number of messages that are
enabled at one time.

To change the number of unconnected buffers of the controller,
configure a Message (MSG) instruction as follows:

On this tab: For this item: Type or select:

Configuration Message Type CIP Generic

Service Type Custom

Service Code 4

Class 304

Instance 1

Attribute 0

Source Element source_array where data type = SINT[8]

In this element: Enter:

source_array[0] 1

source_array[1] 0

source_array[2] 17

source_array[3] 0

source_array[4] Number of unconnected buffers that you want.

source_array[5] 0

source_array[6] 0

source_array[7] 0

Source Length (bytes) 8 (Write 8 SINTs.)

Destination destination_array where data type = SINT[6] (Leave all the values = 0.)

Communication Path 1, slot_number_of_controller
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-27
EXAMPLE Set the Number of Unconnected Buffers

where:

If S:FS = 1 (first scan), then set the number of unconnected buffers for the controller:

Source_Array[0] = 1

Source_Array[1] = 0

Source_Array[2] = 17

Source_Array[3] = 0

Source_Array[4] = 12 (The number of unconnected buffers that you want. In this example, we want 12 buffers.)

If UCB_Set.EN = 0 (MSG instruction is not already enabled) then:

MSG instruction sets the number of unconnected buffers = Source_Array[4]

Tag Name Type Description

UCB_Set MESSAGE Control tag for the MSG instruction.

Source_Array SINT[8] Source values for the MSG instruction, including the number of
unconnected buffers that you want.
Publication 1756-PM001G-EN-P - March 2004

10-28 Communicate with Other Devices
Convert Between INTs and
DINTs

In the Logix5000 controller, use the DINT data type for integers
whenever possible. Logix5000 controllers execute more efficiently and
use less memory when working with 32-bit integers (DINTs).

If your message is to a device that uses 16-bit integers, such as a
PLC-5® or SLC 500™ controller, and it transfers integers (not REALs),
use a buffer of INTs in the message and DINTs throughout the project.
This increases the efficiency of your project.

1. The Message (MSG) instruction reads 16-bit integers (INTs) from
the device and stores them in a temporary array of INTs.

2. An File Arith/Logical (FAL) instruction converts the INTs to
DINTs for use by other instructions in your project.

1. An FAL instruction converts the DINTs from the Logix5000
controller to INTs.

2. The MSG instruction writes the INTs from the temporary array to
the device.

Read 16-Bit Integers Data from the
device

Buffer of INTs DINTs for use in
the project

Word 1 INT_Buffer[0] DINT_Array[0]

Word 2 INT_Buffer[1] DINT_Array[1]

Word 3 INT_Buffer[2] DINT_Array[2]

1 2

Write 16-Bit Integers DINTs from the
project

Buffer of INTs Data for the
device

 DINT_Array[0] INT_Buffer[0] Word 1

 DINT_Array[1] INT_Buffer[1] Word 2

 DINT_Array[2] INT_Buffer[2] Word 3

1 2
Publication 1756-PM001G-EN-P - March 2004

Communicate with Other Devices 10-29
EXAMPLE Read integer values from a PLC-5 controller

If Condition_1 = 1 And Msg_1.EN = 0 (MSG instruction is not already enabled) then:

Read 3 integers from the PLC-5 controller and store them in INT_Buffer (3 INTs)

If Msg_1.DN =1 (MSG instruction has read the data.) then

Reset the FAL instruction.

The FAL instruction sets DINT_Array = INT_Buffer. This converts the values to 32-bit integers (DINTs).

EXAMPLE Write integer values to a PLC-5 controller

If Condition_2 = 1 then:

Reset the FAL instruction.

The FAL instruction sets INT_Buffer = DINT_Array. This converts the values to 16-bit integers (INTs).

If Control_2.DN = 1 (FAL instruction has converted the DINTs to INTs)

And Msg_2.EN = 0 (MSG instruction is not already enabled) then:

Write the integers in INT_Buffer (3 INTs) to the PLC-5 controller
Publication 1756-PM001G-EN-P - March 2004

10-30 Communicate with Other Devices
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 11

Produce a Large Array

When to Use this Procedure The Logix5000 controller can send as many as 500 bytes of data over a
single scheduled connection. This corresponds to 125 DINT or REAL
elements of an array. To transfer an array of more than 125 DINTs or
REALs, use a produced/consumed tag of 125 elements to create a
packet of data. You can then use the packet to send the array
piecemeal to another controller.

When you send a large array of data in smaller packets, you must
ensure that the transmission of a packet is complete before the data is
moved into the destination array, for these reasons.

• Produced data over the ControlLogix backplane is sent in 50
byte segments.

• Data transmission occurs asynchronous to program scan.

The logic that this section includes uses an acknowledge word to
make sure that each packet contains new data before the data moves
to the destination array. The logic also uses an offset value to indicate
the starting element of the packet within the array.

Because of the offset and acknowledge elements, each packet carries
123 elements of data from the array, as depicted below:

array

0
packet

offset
acknowledge

array
packet

offset
acknowledge

Producer Consumer
1 Publication 1756-PM001G-EN-P - March 2004

11-2 Produce a Large Array
In addition, the array must contain an extra 122 elements. In other
words, it must be 122 elements greater than the greatest number of
elements that you want to transfer:

• These elements serve as a buffer.

• Since each packet contains the same number of elements, the
buffer prevents the controller from copying beyond the
boundaries of the array.

• Without the buffer, this would occur if the last packet contained
fewer than 123 elements of actual data.

Produce a Large Array 1. Open the RSLogix 5000 project that will produce the array.

2. In the Controller Tags folder, create the following tags:

where:

array is the name for the data that you are sending.

3. Convert array_ack to a consumed tag:

Refer to "Consume Data That Is Produced by Another
Controller" on page 10-15.

P Tag Name Type

array_ack DINT[2]

✓ array_packet DINT[125]

For: Specify:

Controller name of the controller that is receiving the packet

Remote Tag Name array_ack

Both controllers use the same name for this shared
data.
Publication 1756-PM001G-EN-P - March 2004

Produce a Large Array 11-3
4. In either the Controller Tags folder or the tags folder of the
program that will contain the logic for the transfer, create the
following tags:

where:

array is the name for the data that you are sending.

5. In the array_size tag, enter the number of elements of real data.
(The value of x from step 4. minus the 122 elements of buffer.)

6. Create or open a routine for the logic that will create packets of
data.

7. Enter the following logic:

Tag Name Type

array DINT[x] where x equals the number of elements
to transfer plus 122 elements

array_offset DINT

array_size DINT

array_transfer_time DINT

array_transfer_time_max DINT

array_transfer_timer TIMER

Times how long it takes to send the entire array

When the offset value in array_ack[0] is not equal to the current offset value but array_ack[1] equals
-999, the consumer has begun to receive a new packet, so the rung moves -999 into the last element of
the packet. The consumer waits until it receives the value -999 before it copies the packet to the array.
This guarantees that the consumer has new data.

EN
DN

Timer On Delay
Timer array_transfer_timer
Preset 10000000
Accum 0

TON

Not Equal
Source A array_ack[0]

0
Source B array_packet[123]

0

NEQ
Equal
Source A array_ack[1]

0
Source B -999

EQU
Move
Source -999

Dest array_packet[124]
0

MOV
Publication 1756-PM001G-EN-P - March 2004

11-4 Produce a Large Array
When the offset value in array_ack[0] is equal to the current offset value, the consumer has copied the
packet to the array; so the rung checks for more data to transfer. If the offset value plus 123 is less than
the size of the array, there is more data to transfer; so the rung increases the offset by 123. Otherwise,
there is no more data to transfer; so the rung resets the offset value, logs the transfer time, and resets the
timer. In either case, the rung uses the new offset value to create a new packet of data, appends the new
offset value to the packet, and clears the acknowledge element of the packet (packet[124]).

If the current transfer time is greater than the maximum transfer time, updates the maximum transfer
time. This maintains a record of the longest time to transfer data.

42355

Equal
Source A array_ack[0]

0
Source B array_packet[123]

0

EQU

Compare
Expression (array_ack[0] + 123) < array_size

CMP
Add
Source A array_packet[123]

0
Source B 123

Dest array_offset
0

ADD

Compare
Expression (array_ack[0] + 123) >= array_size

CMP
Clear
Dest array_offset

0

CLR

Move
Source array_transfer_timer.ACC

0
Dest array_transfer_time

0

MOV

RES
array_transfer_timer

Copy File
Source array[array_offset]
Dest array_packet[0]
Length 123

COP
Move
Source array_offset

0
Dest array_packet[123]

0

MOV
Clear
Dest array_packet[124]

0

CLR

Greater Than (A>B)
Source A array_transfer_time

0
Source B array_transfer_time_max

0

GRT
Move
Source array_transfer_time

0
Dest array_transfer_time_max

0

MOV
Publication 1756-PM001G-EN-P - March 2004

Produce a Large Array 11-5
8. Open the RSLogix 5000 project that will consume the array.

9. In the Controller Tags folder, create the following tags:

where:

array is the name for the data that you are sending. Use the
same name as in the producing controller (step 2.).

10. Convert array_packet to a consumed tag:

Refer to "Consume Data That Is Produced by Another
Controller" on page 10-15.

11. In either the Controller Tags folder or the tags folder of the
program that will contain the logic for the transfer, create the
following tags:

where:

array is the name for the data that you are sending.

12. Create or open a routine for the logic that will move the data
from the packets to the destination array.

P Tag Name Type

✓ array_ack DINT[2]

array_packet DINT[125]

For: Specify:

Controller name of the controller that is sending the packet

Remote Tag Name array_packet

Both controllers use the same name for this shared
data.

Tag Name Type

array DINT[x] where x equals the number of elements
to transfer plus 122 elements

array_offset DINT
Publication 1756-PM001G-EN-P - March 2004

11-6 Produce a Large Array
13. Enter the following logic:

When the offset value in array_packet[123] is different than the offset value in array_ack[0], the
controller has begun to receive a new packet of data; so the rung checks for the value of -999 in the last
element of the packet.

If the last element of the packet equals -999, the controller has received an entire packet of new data and
begins the copy operation:

• The offset value moves from the packet to array_offset.

• The COP instructions copies the data from the packet to the destination array, starting at the offset
value.

• The offset value moves to array_ack[0], which signals that the copy is complete.

• Array_ack[1] resets to zero and waits to signal the arrival of a new packet.

If the last element of the packet is not equal -999, the transfer of the packet to the controller may not be
complete; so -999 moves to array_ack[1]. This signals the producer to return the value of -999 in the last
element of the packet to verify the transmission of the packet.

42356

Not Equal
Source A array_packet[123]

0
Source B array_ack[0]

0

NEQ

Equal
Source A array_packet[124]

0
Source B -999

EQU
Move
Source array_packet[123]

0
Dest array_offset

0

MOV

Copy File
Source array_packet[0]
Dest array[array_offset]
Length 123

COP

Move
Source array_packet[123]

0
Dest array_ack[0]

0

MOV

Clear
Dest array_ack[1]

0

CLR

Not Equal
Source A array_packet[124]

0
Source B -999

NEQ
Move
Source -999

Dest array_ack[1]
0

MOV
Publication 1756-PM001G-EN-P - March 2004

Produce a Large Array 11-7
Transferring a large array as smaller packets improves system
performance over other methods of transferring the data:

• Fewer connections are used than if you broke the data into
multiple arrays and sent each as a produced tag. For example,
an array with 5000 elements would take 40 connections
(5000/125=40) using individual arrays.

• Faster transmission times are achieved than if you used a
message instruction to send the entire array.

– Messages are unscheduled and are executed only during the
“system overhead” portion of the Logix5550 execution.
Therefore, messages can take a fairly long time to complete
the data transfer.

– You can improve the transfer time by increasing system
overhead time slice, but this diminishes the performance of
the continuous task.
Publication 1756-PM001G-EN-P - March 2004

11-8 Produce a Large Array
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 12

Communicate with an ASCII Device

When to Use this Procedure Use this procedure to exchange ASCII data with a device through the
serial port of the controller. For example, you can use the serial port
to:

• read ASCII characters from a weigh scale module or bar code
reader

• send and receive messages from an ASCII triggered device, such
as a MessageView terminal.

How to Use This Procedure Before you use this procedure:

• Configure the ASCII Device for Your Application

To complete this procedure, do the following tasks:

• Connect the ASCII Device

• Configure the Serial Port

• Configure the User Protocol

• Create String Data Types

• Read Characters from the Device

connection from the serial port of the controller to the ASCII device

42237
1 Publication 1756-PM001G-EN-P - March 2004

12-2 Communicate with an ASCII Device
• Send Characters to the Device

Connect the ASCII Device 1. For the serial port of the ASCII device, determine which pins
send signals and which pins receive signals.

2. Connect sending pins to corresponding receiving pins and
attach jumpers:

3. Attach the cable shield to both connectors.

4. Connect the cable to the controller and the ASCII device.

If the communications: Then wire the connectors as follows:

handshake

do not handshake

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

ASCII Device Controller

42231

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

ASCII Device Controller

42232
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-3
Configure the Serial Port 1. Determine the following communication settings for the ASCII
device:

a. baud rate

b. data bits

c. parity

d. stop bits

2. Open the RSLogix 5000™ project.

3. On the Online toolbar, click the controller button.

4. Click the Serial Port tab.

5. Select User.

6. Select the settings for the ASCII device, from step 1.

42627

5.

42251

6.
Publication 1756-PM001G-EN-P - March 2004

12-4 Communicate with an ASCII Device
7. Select the Control Line option:

8. Type the amount of delay (20 ms units) between the time that
the RTS signal turns on (high) and the time that data is sent. For
example, a value of 4 produces an 80 ms delay.

9. Type the amount of delay (20 ms units) between the time that
the last character is sent and the time that the RTS signal turns
off (low).

10. Click Apply.

42251

7.

8.

9.

If: And: And this is the: Select: Then:

you are not using a
modem

No Handshaking Go to step 10.

you are using a
modem

both modems in a
point-to-point link are
full-duplex

Full Duplex

master modem is
full-duplex while slave
modem is half-duplex

master controller. Full Duplex

slave controller Half Duplex Select the Continuous Carrier
check box.

all modems in the system
are half-duplex

Half Duplex Clear the Continuous Carrier
check box (default).
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-5
Configure the User Protocol 1. Click the User Protocol tab.

2. Select or type a number that is greater than or equal to the
greatest number of characters in a transmission. (Twice the
number of characters is a good guideline.)

3. If you are using ABL or ARL instructions, type the characters that
mark the end of the data. For the ASCII code of a character, refer
to the back cover of this manual.

If the device
sends:

Then: Notes:

one termination
character

A. In the Termination Character 1
text box, type the hexadecimal
ASCII code for the first
character.

B. In the Termination Character 2
text box, type $FF.

For printable
characters, such
as 1 or A, type the
character.

two termination
characters

In the Termination Character 1 and 2
text boxes, type the hexadecimal ASCII
code for each character.

2.

42252

3.
Publication 1756-PM001G-EN-P - March 2004

12-6 Communicate with an ASCII Device
4. If you are using the AWA instruction, type the character(s) to
append to the data. For the ASCII code of a character, refer to
the back cover of this manual.

5. If the ASCII device is configured for XON/XOFF flow control,
select the XON/XOFF check box.

6. If the ASCII device is a CRT or is pre-configured for half duplex
transmission, select the Echo Mode check box.

To append: Then: Notes:

one character A. In the Append Character 1 text
box, type the hexadecimal
ASCII code for the first
character.

B. In the Append Character 2 text
box, type $FF.

For printable
characters, such
as 1 or A, type the
character.

two characters In the Append Character 1 and 2 text
boxes, type the hexadecimal ASCII
code for each character.

42252

7.

4.

5.

6.
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-7
7. Select the Delete Mode:

8. Click OK.

If the ASCII device is: Select: Notes:

CRT CRT • The DEL character ($7F) and the character that precedes the DEL
character are not sent to the destination.

• If echo mode is selected and an ASCII instruction reads the DEL
character, the echo returns three characters: BACKSPACE SPACE
BACKSPACE ($08 $20 $08).

printer Printer • The DEL character ($7F) and the character that precedes the DEL
character are not sent to the destination.

• If echo mode is selected and an ASCII instruction reads the DEL
character, the echo returns two characters: / ($2F) followed by
the character that was deleted.

None of the above Ignore The DEL character ($7F) is treated as any other character.
Publication 1756-PM001G-EN-P - March 2004

12-8 Communicate with an ASCII Device
Create String Data Types You store ASCII characters in tags that use a string data type.

1. Do you want to create a new string data type?

2. In the controller organizer, right-click Strings and choose
New String Type…

3. Type a name for the data type.

4. Type the maximum number characters that this string data type
will store.

5. Choose OK.

42811

42812

orYou can use the default STRING data type.
It stores up to 82 characters.

You can create a new string data type to store the
number of characters that you define.

IMPORTANT Use caution when you create a new string data type.
If you later decide to change the size of the string
data type, you may lose data in any tags that
currently use that data type.

If: Then:

no Go to Read Characters from the Device on page 12-9.

yes Go to step 2.

If you: Then:

make a string data type
smaller

• The data is truncated.

• The LEN is unchanged.

make a string data type
larger

The data and LEN is reset to zero.

42233

3.

4.
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-9
Read Characters from the
Device

As a general rule, before you read the buffer use an ACB or ABL
instruction to verify that the buffer contains the required characters:

• An ARD or ARL instruction continues to read the buffer until the
instruction reads the required characters.

• While an ARD or ARL instruction is reading the buffer, no other
ASCII Serial Port instructions, except the ACL, can execute.

• Verifying that the buffer contains the required characters
prevents the ARD or ARL from holding up the execution of other
ASCII Serial Port instructions while the input device sends its
data.

For additional information on ASCII Serial Port instructions, refer to
Logix5000 Controllers General Instruction Set Reference Manual,
publication 1756-RM003.

1. Which type of device are you reading?

2. Enter the following rung:

42235a

3. Enter 0. (The serial port is channel 0.)

4. Enter a tag name for the ACB instruction and define the data
type as SERIAL_PORT_CONTROL.

5. Enter the EN bit of the ACB tag. (The tag from step 4.)

IMPORTANT If you are not familiar with how to enter ladder logic
in an RSLogix 5000 project, first review “Program
Ladder Logic” on page 8-1.

If the device is a: Then:

bar code reader Go to step 2.

weigh scale that send a fixed number of characters

message or display terminal Go to step 14.

weigh scale that send a varying number of characters

5.

4. 3.
Publication 1756-PM001G-EN-P - March 2004

12-10 Communicate with an ASCII Device
6. Enter the following rung:

42235a

7. Enter the POS member of the ACB tag. (The tag from step 4.)

8. Enter the number of characters in the data.

9. Enter 0.

10. Enter a tag name to store the ASCII characters. Define the data
type as a string.

11. Enter a tag name for the ARD instruction and define the data
type as SERIAL_PORT_CONTROL.

12. Enter the number of characters in the data.

11.

10. 9.

12.7. 8.
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-11
13. Do you want to send data to the device?

EXAMPLE A bar code reader sends bar codes to the serial port (channel 0) of the controller. Each
bar code contains 24 characters. To determine when the controller receives a bar code,
the ACB instruction continuously counts the characters in the buffer.

When the buffer contains at least 24 characters, the controller has received a bar code.
The ARD instruction moves the bar code to the bag_bar_code tag.

/
bar_code_count.EN

EN
DN
ER

ASCII Chars in Buffer
Channel 0
SerialPort Control bar_code_count
Character Count 0

ACB

Grtr Than or Eql (A>=B)
Source A bar_code_count.pos
 0
Source B 24

GEQ
EN

DN

ER

ASCII Read
Channel 0
Destination bag_bar_code
 ''
SerialPort Control bar_code_read
String Length 24
Characters Read 0

ARD

bar_code_read.EM MID

42227

If: Then:

yes Go to Send Characters to the Device on page 12-14.

no Stop. You are done with this procedure. To use the data, go to “Process
ASCII Characters” on page 13-1.
Publication 1756-PM001G-EN-P - March 2004

12-12 Communicate with an ASCII Device
14. Enter the following rung:

42235

15. Enter 0.

16. Enter a tag name for the ABL instruction and define the data
type as SERIAL_PORT_CONTROL.

17. Enter the EN bit of the ABL tag. (The tag from step 16.)

18. Enter the following rung:

42235

19. Enter the FD bit of the ABL tag. (The tag from step 16.)

20. Enter 0.

21. Enter a tag name to store the ASCII characters. Define the data
type as a string.

22. Enter a tag name for the ARL instruction and define the data
type as SERIAL_PORT_CONTROL.

23. Enter 0.

This lets the instruction set the SerialPort Control Length equal to
the size of the Destination.

17.

16. 15.

21. 20.

22. 23.

19.
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-13
24. Do you want to send data to the device?

EXAMPLE Continuously tests the buffer for a message from the MessageView terminal.

• Since each message ends in a carriage return ($0D), the carriage return is configured
as the termination character in the Controller Properties dialog box, User Protocol
tab.

• When the ABL finds a carriage return, its sets the FD bit.

When the ABL instruction finds the carriage return (MV_line.FD is set), the controller
removes the characters from the buffer, up to and including the carriage return, and
places them in the MV_msg tag.

/
MV_line.EN

EN
DN
ER

ASCII Test For Buffer Line
Channel 0
SerialPort Control MV_line
Character Count 0

ABL

MV_line.FD

EN

DN

ER

ASCII Read Line
Channel 0
Destination MV_msg
 ''
SerialPort Control MV_read
String Length 12
Characters Read 0

ARL

42226

If: Then:

yes Go to Send Characters to the Device on page 12-14.

no Stop. You are done with this procedure. To use the data, go to “Process
ASCII Characters” on page 13-1.
Publication 1756-PM001G-EN-P - March 2004

12-14 Communicate with an ASCII Device
Send Characters to the
Device

1. Determine where to start:

2. Enter the following rung:

42236a

3. Enter the input condition (s) that determines when the
characters are to be sent:

• You can use any type of input instruction.

• The instruction must change from false to true each time the
characters are to be sent.

4. Enter 0.

5. Enter the tag name that stores the ASCII characters. Define the
data type as a string.

6. Enter a tag name for the AWA instruction and define the data
type as SERIAL_PORT_CONTROL.

7. Enter the number of characters to send. Omit the characters that
are appended by the instruction.

If you: And you: Then:

always send the same number
of characters

want to automatically append one or two
characters to the end of the data

Go to step 2.

do not want to append characters Go to step 9.

send different numbers of
characters

want to automatically append one or two
characters to the end of the data

Go to step 16.

do not want to append characters Go to step 24.

5. 4.

6. 7.

3.
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-15
8. Go to Enter ASCII Characters on page 12-21.

EXAMPLE When the temperature exceeds the high limit (temp_high is on), the AWA instruction
sends five characters from the string[1] tag to a MessageView terminal.

• The $14 counts as one character. It is the hex code for the Ctrl-T character.

• The instruction also sends (appends) the characters defined in the user protocol. In
this example, the AWA instruction sends a carriage return ($0D), which marks the end
of the message.

temp_high

EN

DN

ER

ASCII Write Append
Channel 0
Source string[1]
 '$1425\1'
SerialPort Control temp_high_write
String Length 5
Characters Sent 6

AWA

42229
Publication 1756-PM001G-EN-P - March 2004

12-16 Communicate with an ASCII Device
9. Enter the following rung:

42236b

10. Enter the input condition (s) that determines when the
characters are to be sent:

• You can use any type of input instruction.

• The instruction must change from false to true each time the
characters are to be sent.

11. Enter 0.

12. Enter the tag name that stores the ASCII characters. Define the
data type as a string.

13. Enter a tag name for the AWT instruction and define the data
type as SERIAL_PORT_CONTROL.

14. Enter the number of characters to send.

15. Go to Enter ASCII Characters on page 12-21.

12. 11.

13. 14.

10.

EXAMPLE When the temperature reaches the low limit (temp_low is on), the AWT instruction sends
nine characters from the string[2] tag to a MessageView terminal. (The $14 counts as one
character. It is the hex code for the Ctrl-T character.)

temp_low

EN

DN

ER

ASCII Write
Channel 0
Source string[2]
 '$142224\01$r'
SerialPort Control temp_low_write
String Length 9
Characters Sent 9

AWT

42229
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-17
16. Enter the following rung:

42236c

17. Enter the input condition (s) that determines when the
characters are to be sent:

• You can use any type of input instruction.

• The instruction must change from false to true each time the
characters are to be sent.

18. Enter 0.

19. Enter the tag name that stores the ASCII characters. Define the
data type as a string.

20. Enter a tag name for the AWA instruction and define the data
type as SERIAL_PORT_CONTROL.

21. Enter the LEN member of the Source tag. (The tag from step 19.)

22. Enter the LEN member of the AWA instruction. (The tag from
step 20.)

19. 18.

20.22.

17.

21.
Publication 1756-PM001G-EN-P - March 2004

12-18 Communicate with an ASCII Device
23. Go to Enter ASCII Characters on page 12-21.

EXAMPLE When alarm is on, the AWA instruction sends the characters in alarm_msg and appends
a termination character.

• Because the number of characters in alarm_msg varies, the rung first moves the
length of alarm_msg (alarm_msg.LEN) to the length of the AWA instruction
(alarm_write.LEN).

• In alarm_msg, the $14 counts as one character. It is the hex code for the Ctrl-T
character.

alarm

Move
Source alarm_msg.LEN
 5
Dest alarm_write.LEN
 5

MOV
EN

DN

ER

ASCII Write Append
Channel 0
Source alarm_msg
 '$1425\1'
SerialPort Control alarm_write
String Length 5
Characters Sent 6

AWA

42229
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-19
24. Enter the following rung:

42236d

25. Enter the input condition (s) that determines when the
characters are to be sent:

• You can use any type of input instruction.

• The instruction must change from false to true each time the
characters are to be sent.

26. Enter 0.

27. Enter the tag name that stores the ASCII characters. Define the
data type as a string.

28. Enter a tag name for the AWT instruction and define the data
type as SERIAL_PORT_CONTROL.

29. Enter the LEN member of the Source tag. (The tag from step 27.)

30. Enter the LEN member of the AWT instruction. (The tag from
step 28.)

27. 26.

28.30.

25.

29.
Publication 1756-PM001G-EN-P - March 2004

12-20 Communicate with an ASCII Device
31. Go to Enter ASCII Characters on page 12-21.

EXAMPLE When MV_update is on, the AWT instruction sends the characters in MV_msg.

• Because the number of characters in MV_msg varies, the rung first moves the length
of MV_msg (MV_msg.LEN) to the length of the AWT instruction (MV_write.LEN).

• In MV_msg, the $16 counts as one character. It is the hex code for the Ctrl-V
character.

MV_update

Move
Source MV_msg.LEN
 10
Dest MV_write.LEN
 10

MOV
EN

DN

ER

ASCII Write
Channel 0
Source MV_msg
 '$161365\8\1$r'
SerialPort Control MV_write
String Length 10
Characters Sent 10

AWT

42229
Publication 1756-PM001G-EN-P - March 2004

Communicate with an ASCII Device 12-21
Enter ASCII Characters Determine if you must complete this step:

1. Double-click the value area of the Source.

2. Type the characters for the string.

3. Choose OK.

If: Then:

You want logic to create the string. Go to “Process ASCII Characters” on page 12-1.

You want to enter the characters. Go to step 1.

IMPORTANT This String Browser window shows the characters up
to the value of the LEN member of the string tag. The
string tag may contain additional data, which the
String Browser window does not show.

42616

1.

42615

line feed ($0A)

2.

new line ($0D$0A)

carriage return ($0D)

The number of characters that you see in the
window. This is the same as the LEN
member of the string tag.

The maximum number of characters that the
string tag can hold.

dollar sign ($24)

single quote ($27)

form feed ($0C)

tab ($09)
Publication 1756-PM001G-EN-P - March 2004

12-22 Communicate with an ASCII Device
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 13

Process ASCII Characters

When to Use this Procedure Use this procedure to:

• interpret a bar code and take action based on the bar code

• use a weight from a weigh scale when the weight is sent as
ASCII characters

• decode a message from an ASCII triggered device, such as an
operator terminal

• build a string for an ASCII triggered device using variables from
your application

How to Use this Procedure

Depending on your application, you may not need to do all the tasks
in this procedure. Use the following table to determine where to start:

For additional information on ASCII-related instructions, refer to
Logix5000 Controllers General Instruction Set Reference Manual,
publication 1756-RM003.

IMPORTANT If you are not familiar with how to enter ladder logic
in an RSLogix 5000 project, first review “Program
Ladder Logic” on page 8-1.

If you want to: Then go to: On page:

isolate specific information from a bar
code

Extract a Part of a Bar Code 13-2

search an array for a specific string of
characters

Look Up a Bar Code 13-4

compare two strings of characters Check the Bar Code
Characters

13-10

use a weight from a weigh scale Convert a Value 13-12

decode a message from an operator
terminal

Decode an ASCII Message 13-14

create a string to send to an operator
terminal

Build a String 13-18
1 Publication 1756-PM001G-EN-P - March 2004

13-2 Process ASCII Characters
Extract a Part of a Bar Code Use the following steps to extract a part of a bar code so you can take
action based on its value.

For example, a bar code may contain information about a bag on a
conveyor at an airport. To check the flight number and destination of
the bag, you extract characters 10 - 18.

Steps:

1. Enter the following rung:

2. Enter the EM bit of the ARD instruction that reads the bar code.

3. Enter the string tag that contains the bar code.

4. Enter the number of characters in the part of the bar code that
you want to check.

5. Enter the position of the first character in the part of the bar
code that you want to check.

6. Enter a tag name to store the part of the bar code that you want
to check. Define the data type as a string.

airline origin flight # destination date

bar code N W A H O P 5 0 5 8 A M S 0 2 2 2 0 1

character number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

5 0 5 8 A M S

9 characters

2.

4.3.

42808

5. 6.
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-3
EXAMPLE In the baggage handling conveyor of an airport, each bag gets a bar code. Characters
10 - 18 of the bar code are the flight number and destination airport of the bag. After the
bar code is read (bag_read.EM is on) the MID instruction copies the flight number and
destination airport to the bag_flt_and_dest tag.

42808
Publication 1756-PM001G-EN-P - March 2004

13-4 Process ASCII Characters
Look Up a Bar Code Use the following steps to return specific information about an item
based on its bar code.

For example, in a sorting operation, an array of a user-defined data
type creates a table that shows the lane number for each type of
product. To determine which lane to route a product, the controller
searches the table for the product ID (characters of the bar code that
identify the product).

To look up a bar code:

• Create the PRODUCT_INFO Data Type

• Search for the Characters

• Identify the Lane Number

• Reject Bad Characters

• Enter the Product IDs and Lane Numbers

Tag Name Value

 sort_table

product_id sort_table[0]

’GHI’ sort_table[0].Product_ID ’ABC’

 sort_table[0].Lane 1

 sort_table[1]

 sort_table[1].Product_ID ’DEF’

 sort_table[1].Lane 2

 sort_table[2]

 sort_table[2].Product_ID ’GHI’ lane

 sort_table[2].Lane 3 3

−

−

+

+

−

+

+

−

+

+

TIP To copy the above components from a sample project, open the
…\RSLogix 5000\Projects\Samples folder.

43039

Open this project.
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-5
Create the PRODUCT_INFO Data Type

Create the following user-defined data type.

Data Type: PRODUCT_INFO

Name PRODUCT_INFO

Description Identifies the destination for an item based on an ASCII string of
characters that identify the item

Members

Name Data Type Style Description

Product_ID STRING ASCII characters that identify the item

Lane DINT Decimal Destination for the item, based on its ID

To create a new data type:

Controller Your_Project

Tasks

Motion Groups

Trends

Data Types

User-Defined

Right-click and choose New Data
Type.

+

+

+

−

+

Publication 1756-PM001G-EN-P - March 2004

13-6 Process ASCII Characters
Search for the Characters

1. The SIZE instruction counts the number of elements in the
sort_table array. This array contains the product ID for each item
and the corresponding lane number for the item.

2. The SIZE instruction counts the number of elements in
Dimension 0 of the array. In this case, that is the only
dimension.

3. The SIZE instruction sets the Length of the subsequent FSC
instruction equal to the size of the sort_table array. This ensures
that the FSC instruction searches the exact size of the array.

1.

43038

2.
3.

Tag Name Type

sort_table PRODUCT_INFO[number_of_items]

where:

number_of_items is the number of items hat you must
sort.

Tag Name Type

sort_table_search CONTROL
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-7
4. The sort_table_search tag controls the FSC instruction, which
looks through the sort_table array for the bar code characters.

5. Although the previous instruction sets the Length of this
instruction, the software requires an initial value to verify the
project.

6. The product_id tag contains the bar code characters that identify
the item. The FSC instruction searches each Product_ID member
in the sort_table array until the instruction finds a match to the
product_id tag.

43038

4.
5.

6.

Tag Name Type

product_id STRING
Publication 1756-PM001G-EN-P - March 2004

13-8 Process ASCII Characters
Identify the Lane Number

1. When the FSC instruction finds the product ID within the
sort_table array, the instruction sets the FD bit.

2. When the FSC finds a match. the POS member indicates the
element number within the sort_table array of the match. The
corresponding LANE member indicates the lane number of the
match.

3. Based on the POS value, the MOV instruction moves the
corresponding lane number into the lane tag. The controller
uses the value of this tag to route the item.

4. After the MOV instruction sets the value of the lane tag, the RES
instruction resets the FSC instruction so it can search for the next
product ID.

1. 4.2. 3.

43038

Tag Name Type

lane DINT
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-9
Reject Bad Characters

1. If the FSC instruction does not find the product ID within the
sort_table array, the instruction sets the DN bit.

2. When no match is found, the MOV instruction moves 999 into
the lane tag. This tells the controller to reject or reroute the item.

3. After the MOV instruction sets the value of the lane tag, the RES
instruction resets the FSC instruction so it can search for the next
product ID.

Enter the Product IDs and Lane Numbers

Into the sort_table array, enter the ASCII characters that identify each
item and the corresponding lane number for the item.

1. 3.2.

43038

Tag Name Value

 sort_table {…}

 sort_table[0] {…}

 sort_table[0].Product_ID ASCII characters that identify the first item

 sort_table[0].Lane lane number for the item

 sort_table[1] {…}

 sort_table[1].Product_ID ASCII characters that identify the next item

 sort_table[1].Lane lane number for the item

−

−

+

+

−

+

+

Publication 1756-PM001G-EN-P - March 2004

13-10 Process ASCII Characters
Check the Bar Code
Characters

In this task, you use a compare instruction (EQU, GEQ, GRT, LEQ,
LES, NEQ) to check for specific characters.

• The hexadecimal values of the characters determine if one string
is less than or greater than another string.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Steps:

1. Enter a rung and a compare instruction:

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

To see if the string is: Enter this instruction:

equal to specific characters EQU

not equal to specific characters NEQ

greater than specific characters GRT

equal to or greater than specific characters GEQ

less than specific characters LES

equal to or less than specific characters LEQ

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-11
2. Enter the tag that stores the part of the bar code that you want to
check. (The Destination from Extract a Part of a Bar Code,
step 6.)

3. Enter a tag name to store the characters that you want to test
against. Define the data type as a string.

4. Double-click value area of Source B.

5. Type the ASCII characters to test against and choose OK.

6. Enter the required output.

7. Do you want to check another part of the bar code?

2. 6.3.

428084.

42615

EXAMPLE When bag_flt_and_dest is equal to gate[1], xfer{1] turns on. This routes the bag to the
required gate.

42808

If: Then:

yes Go to Extract a Part of a Bar Code on page 13-2.

no Stop. You are done with this procedure.
Publication 1756-PM001G-EN-P - March 2004

13-12 Process ASCII Characters
Convert a Value Use the following steps to convert the ASCII representation of a value
to an DINT or REAL value that you can use in your application.

• The STOD and STOR instructions skip any initial control or
non-numeric characters (except the minus sign in front of a
number).

• If the string contains multiple groups of numbers that are
separated by delimiters (e.g., /), the STOD and STOR
instructions convert only the first group of numbers.

Steps:

1. Which type of number is the value?

2. Enter the following rung:

3. Enter the EM bit of the ARD or ARL instruction that read the
value.

4. Enter the string tag that contains the value.

5. Enter a tag name to store the value for use in your application.
Define the data type as REAL.

If: Then:

floating-point Go to step 2.

integer Go to step 7.

3.

5.4.

42810

EXAMPLE After reading the weight from the scale (weight_read.EM is on) the STOR instruction
converts the numeric characters in weight_ascii to a REAL value and stores the result in
weight.

42810
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-13
6. Go to step 11.

7. Enter the following rung:

8. Enter the EM bit of the ARD or ARL instruction that read the
value.

9. Enter the string tag that contains the value.

10. Enter a tag name to store the value for use in your application.
Define the data type as DINT.

11. Does this string have another value that you want to use?

9. 10.

8.

42810

EXAMPLE When MV_read.EM is on, the STOD instruction converts the first set of numeric
characters in MV_msg to an integer value. The instruction skips the initial control
character ($06) and stops at the delimiter (\).

42620

If: Then:

yes Go to Decode an ASCII Message on page 13-14.

no Stop. You are done with this procedure.
Publication 1756-PM001G-EN-P - March 2004

13-14 Process ASCII Characters
Decode an ASCII Message Use the following steps to extract and convert a value from an ASCII
message that contains multiple values.

For example, a message may look like this:

1. Determine where to start:

2. Which type of number is the value?

first value second value third value

[Ctrl-F] message # \ F-key \ F-key action [CR]

control character delimiter delimiter termination character

If the: And: Then:

string has more than one value This is the first value. Go to Convert a Value on page 13-12.

This is not the value. Go to step 2.

string has only one value Go to Convert a Value on page 13-12.

If: Then:

floating-point Enter Rung A: Find and Convert a Floating-Point Value

integer Enter Rung B: Find and Convert an Integer Value

42810

Rung A: Find and
Convert a
Floating-Point Value

42810

Rung B: Find and
Convert an Integer
Value
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-15
3. Enter the EM bit of the ARL instruction that read the value.

4. Enter the string tag that contains the value.

5. Enter a tag name to store the delimiter that marks the beginning
of the value. Define the data type as a string.

6. Double-click the value area of Search.

7. Type the delimiter and choose OK.

8. Enter the position in the string to start the search.

• Initially, you can use 0 to find the first delimiter.

• To decode additional data, increase this value to search for
the next delimiter.

9. Enter a tag name to store the location of the delimiter. Define
the data type as a DINT.

3.

5.4.

42810

6.

8. 9.

42615
Publication 1756-PM001G-EN-P - March 2004

13-16 Process ASCII Characters
10. Enter the string tag that contains the value.

11. Enter the maximum number of characters that this value can
contain.

12. Enter the tag that stores the position of the delimiter. (The tag
from step 9.)

13. Enter a tag name to store this value. Define the data type as a
string.

14. Which type of conversion instruction did you use?

11.10.

42810

12. 13.

If: Then:

STOR Go to step 15.

STOD Go to step 18.
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-17
15. Enter the tag that stores the value. (The tag from step 13.)

16. Enter a tag name to store the value for use in your application.
Define the data type as REAL.

17. Go to step 20.

18. Enter the tag that stores the value. (The tag from step 13.)

19. Enter a tag name to store the value for use in your application.
Define the data type as DINT.

20. Does the string have another value that you want to use?

15. 16.

42809

18. 19.

42809

If: Then:

yes A. Add 1 to the Result of the Find instruction. (The tag from
step 9.)

B. Repeat steps 2 - 19.

no Stop. You are done with this procedure.
Publication 1756-PM001G-EN-P - March 2004

13-18 Process ASCII Characters
Build a String Use the following steps to build a string from variables in your
application. You can then send the string to an ASCII triggered device,
such as a MessageView terminal.

• In this procedure, you build a string that contains two variables.
For example, an operator terminal may require a string that
looks like this:

• If you need to include more variables, use additional INSERT or
CONCAT instructions.

• If you need to send a floating-point value, use a RTOS
instruction in place of the DTOS instruction.

• The final string will not include the termination character. When
you send the string, use an AWA instruction to automatically
append the termination character.

Steps:

1. Enter the following rung:

2. Enter the input condition (s) that determines when to build the
string.

3. Enter the DINT tag that contains the first value for the string.

4. Enter a tag name to stores the ASCII representation of the value.
Define the data type as a string.

[Ctrl-F] message # \ address [CR]

control character delimiter termination character

3. 4.2.

42813
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-19
5. Enter a tag name to store the control and delimiter characters for
the string. Define the data type as a string.

6. Double-click the value area of the Source A.

7. Type the control character and delimiter and choose OK.

For a control character, type the hex code of the character. For a
list of hex codes, see the back cover of this manual.

8. Enter the tag that stores the ASCII representation of the first
value. (The tag from step 4.)

9. Enter 2.

This puts the value after the first character (control character) in
Source A.

10. Enter a tag name to store the partially completed string. Define
the data type as a string.

5. 6. 8.

42813

9. 10.

42615
Publication 1756-PM001G-EN-P - March 2004

13-20 Process ASCII Characters
11. Enter the DINT tag that contains the second value for the string.

12. Enter a tag name to store the ASCII representation of the value.
Define the data type as a string.

13. Enter the tag that stores the partially completed string. (The tag
from step 10.)

14. Enter the tag that stores the ASCII representation of the second
value. (The tag from step 12.)

15. Enter a tag name to store the completed string. Define the data
type as a string.

11. 12. 13. 14.

42813

15.
Publication 1756-PM001G-EN-P - March 2004

Process ASCII Characters 13-21
EXAMPLE To trigger a message in a MessageView terminal, the controller sends the terminal a
message in the following format: [Ctrl-T] message # \ address [CR]

When send_msg is on, the rung does the following:

• The first DTOS instruction converts the message number to ASCII characters.

• The INSERT instruction inserts the message number (in ASCII) after the control
character [Ctrl-T]. (The hex code for Ctrl-T is $14.)

• The second DTOS instruction converts the node number of the terminal to ASCII
characters.

• The CONCAT instruction puts the node number (in ASCII) after the backslash [\]
and stores the final string in msg.

To send the message, an AWA instruction sends the msg tag and appends the carriage
return [CR].

42813
Publication 1756-PM001G-EN-P - March 2004

13-22 Process ASCII Characters
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 14

Force Logic Elements

When to Use This
Procedure

Use a force to override data that your logic either uses or produces.
For example, use forces in the following situations:

• test and debug your logic

• check wiring to an output device

• temporarily keep your process functioning when an input
device has failed

Use forces only as a temporary measure. They are not intended to be
a permanent part of your application.

How to Use This Procedure

If you want to: See:

review the precautions that you should take whenever you add, change, remove, or disable
forces

“Precautions” on page 14-2

determine current state of forces in your project “Check Force Status” on page 14-4

determine which type of element to force in your project “What to Force” on page 14-6

review general information about I/O forces, including which elements you are permitted to
force and how an I/O force effects your project

“When to Use an I/O Force” on page 14-6

force an I/O value “Add an I/O Force” on page 14-8

review general information about stepping through a transition or a simultaneous path “When to Use Step Through” on page 14-9

step through an active transition “Step Through a Transition or a Force of a
Path” on page 14-9

step through a simultaneous path that is forced false

review general information about SFC forces, including which elements you are permitted
to force and how the forces effect the execution of your SFC

“When to Use an SFC Force” on page 14-9

force a transition or simultaneous path within an SFC “Add an SFC Force” on page 14-12

stop the effects of a force “Remove or Disable Forces” on page 14-13
1 Publication 1756-PM001G-EN-P - March 2004

14-2 Force Logic Elements
Precautions When you use forces, take the following precautions:

Enable Forces

For a force to take effect, you enable forces. You can only enable and
disable forces at the controller level.

• You can enable I/O forces and SFC forces separately or at the
same time.

• You cannot enable or disable forces for a specific module, tag
collection, or tag element.

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling I/O forces causes input, output, produced, or consumed
values to change.

• Enabling SFC forces causes your machine or process to go to a
different state or phase.

• Removing forces may still leave forces in the enabled state.

• If forces are enabled and you install a force, the new force
immediately takes effect.

IMPORTANT If you download a project that has forces enabled,
the programming software prompts you to enable or
disable forces after the download completes.
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-3
When forces are in effect (enabled), a appears next to the forced
element.

Disable or Remove a Force

To stop the effect of a force and let your project execute as
programmed, disable or remove the force.

• You can disable or remove I/O and SFC forces at the same time
or separately.

• Removing a force on an alias tag also removes the force on the
base tag.

▼

state to which the element is
forced

forces are in effect (enabled)

ATTENTION

!
Changes to forces can cause unexpected machine motion that could
injure personnel. Before you disable or remove forces, determine how
the change will effect your machine or process and keep personnel
away from the machine area.
Publication 1756-PM001G-EN-P - March 2004

14-4 Force Logic Elements
Check Force Status Before you use a force, determine the status of forces for the
controller. You can check force status in the following ways:

Online Toolbar

The Online toolbar shows the status of forces. It shows the status of
I/O forces and SFC forces separately.

To determine the status of: Use any of the following:

I/O forces • Online Toolbar

• FORCE LED

• GSV Instruction

SFC forces Online Toolbar

Forces tab

This: Means:

Enabled • If the project contains any forces of this type, they are
overriding your logic.

• If you add a force of this type, the new force
immediately takes effect

Disabled Forces of this type are inactive. If the project contains any
forces of this type, they are not overriding your logic.

Installed At least one force of this type exists in the project.

None Installed No forces of this type exist in the project.
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-5
FORCE LED

If your controller has a FORCE LED, use the LED to determine
the status of any I/O forces.

GSV Instruction

The following example shows how to use a GSV instruction to get the
status of forces.

where:

Force_Status is a DINT tag.

IMPORTANT The FORCE LED shows only the status of I/O forces.
It does not show that status of SFC forces.

If the FORCE LED is: Then:

off • No tags contain force values.

• I/O forces are inactive (disabled).

flashing • At least one tag contains a force value.

• I/O forces are inactive (disabled).

solid • I/O forces are active (enabled).

• Force values may or may not exist.

IMPORTANT The ForceStatus attribute shows only the status of
I/O forces. It does not show the status of SFC forces.

To determine if: Examine this bit: For this value:

forces are installed 0 1

no forces are installed 0 0

forces are enabled 1 1

forces are disabled 1 0
Publication 1756-PM001G-EN-P - March 2004

14-6 Force Logic Elements
What to Force You can force the following elements of your project:

When to Use an I/O Force Use an I/O force to accomplish the following:

• override an input value from another controller (i.e., a
consumed tag)

• override an input value from an input device

• override your logic and specify an output value for another
controller (i.e., a produced tag)

• override your logic and specify the state of an output device

When you force an I/O value:

• You can force all I/O data, except for configuration data.

• If the tag is an array or structure, such as an I/O tag, force a
BOOL, SINT, INT, DINT, or REAL element or member.

• If the data value is a SINT, INT, or DINT, you can force the entire
value or you can force individual bits within the value.
Individual bits can have a force status of:

– no force

– force on

– force off

If you want to: Then:

override an input value, output value, produced tag, or consumed tag Add an I/O Force

override the conditions of a transition one time to go from an active step to the next step Step Through a Transition or a Force
of a Path

override one time the force of a simultaneous path and execute the steps of the path

override the conditions of a transition in a sequential function chart Add an SFC Force

execute some but not all the paths of a simultaneous branch of a sequential function chart

IMPORTANT Forcing increases logic execution time. The more
values you force, the longer it takes to execute the
logic.

IMPORTANT I/O forces are held by the controller and not by the
programming workstation. Forces remain even if the
programming workstation is disconnected.
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-7
• You can also force an alias to an I/O structure member,
produced tag, or consumed tag.

– An alias tag shares the same data value as its base tag, so
forcing an alias tag also forces the associated base tag.

– Removing a force from an alias tag removes the force from
the associated base tag.

Force an Input Value

Forcing an input or consumed tag:

• overrides the value regardless of the value of the physical device
or produced tag

• does not affect the value received by other controllers
monitoring that input or produced tag

Force an Output Value

Forcing an output or produced tag overrides the logic for the physical
device or other controller (s). Other controllers monitoring that output
module in a listen-only capacity will also see the forced value.
Publication 1756-PM001G-EN-P - March 2004

14-8 Force Logic Elements
Add an I/O Force To override an input value, output value, produced tag, or consumed
tag, use an I/O force:

1. What is the state of the I/O Forces indicator?

2. Open the routine that contains the tag that you want to force.

3. Right-click the tag and choose Monitor… If necessary, expand
the tag to show the value that you want to force (e.g., BOOL
value of a DINT tag).

4. Install the force value:

5. Are I/O forces enabled? (See step 1.)

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling I/O forces causes input, output, produced, or consumed
values to change.

• If forces are enabled and you install a force, the new force
immediately takes effect.

If: Then note the following:

off No I/O forces currently exist.

flashing No I/O forces are active. But at least one force already exists in your
project. When you enable I/O forces, all existing I/O forces will also
take effect.

solid I/O forces are enabled (active). When you install (add) a force, it
immediately takes effect.

To force a: Do this:

BOOL value Right-click the tag and choose Force ON or Force OFF.

non-BOOL value In the Force Mask column for the tag, type the value to which
you want to force the tag. Then press the Enter key.

If: Then:

no From the Logic menu, choose I/O Forcing ⇒ Enable All I/O Forces. Then
choose Yes to confirm.

yes Stop.
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-9
When to Use Step Through To override a false transition one time and go from an active step to
the next step, use the Step Through option. With the Step Through
option:

• You do not have to add, enable, disable, or remove forces.

• The next time the SFC reaches the transition, it executes
according to the conditions of the transition.

This option also lets you override one time the false force of a
simultaneous path. When you step through the force, the SFC
executes the steps of the path.

Step Through a Transition
or a Force of a Path

To step through the transition of an active step or a force of a
simultaneous path:

1. Open the SFC routine.

2. Right-click the transition or the path that is forced and choose
Step Through.

When to Use an SFC Force To override the logic of an SFC, you have the following options:

Force a Transition

To override the conditions of a transition through repeated executions
of an SFC, force the transition. The force remains until you remove it
or disable forces

If you want to: Then:

override the conditions of a transition each
time the SFC reaches the transition

Force a Transition

prevent the execution of one or more paths
of a simultaneous branch

Force a Simultaneous Path

If you want to: Then:

prevent the SFC from going to the next step force the transition false

cause the SFC go to the next step regardless of transition
conditions

force the transition true
Publication 1756-PM001G-EN-P - March 2004

14-10 Force Logic Elements
If you force a transition within a simultaneous branch to be false, the
SFC stays in the simultaneous branch as long as the force is active
(installed and enabled).

• To leave a simultaneous branch, the last step of each path must
execute at least one time and the transition below the branch
must be true.

• Forcing a transition false prevents the SFC from reaching the last
step of a path.

• When you remove or disable the force, the SFC can execute the
rest of the steps in the path.

For example, to exit this branch, the
SFC must be able to:

• execute Step_011 at least
once

• get past Tran_011 and
execute Step_012 at least
once

• determine that Tran_012 is
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-11
Force a Simultaneous Path

To prevent the execution of a path of a simultaneous branch, force the
path false. When the SFC reaches the branch, it executes only the
un-forced paths.

If you force a path of a simultaneous branch to be false, the SFC stays
in the simultaneous branch as long as the force is active (installed and
enabled).

• To leave a simultaneous branch, the last step of each path must
execute at least one time and the transition below the branch
must be true.

• Forcing a path false prevents the SFC from entering a path and
executing its steps.

• When you remove or disable the force, the SFC can execute the
steps in the path.

This path does not execute. This path executes.
Publication 1756-PM001G-EN-P - March 2004

14-12 Force Logic Elements
Add an SFC Force To override the logic of an SFC, use an SFC force:

1. What is the state of the SFC Forces indicator?

2. Open the SFC routine.

3. Right-click the transition or start of a simultaneous path that you
want to force, and choose either Force TRUE (only for a
transition) or Force FALSE.

4. Are SFC forces enabled? (See step 1.)

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling SFC forces causes your machine or process to go to a
different state or phase.

• If forces are enabled and you install a force, the new force
immediately takes effect.

If: Then note the following:

off No SFC forces currently exist.

flashing No SFC forces are active. But at least one force already exists in your
project. When you enable SFC forces, all existing SFC forces will also
take effect.

solid SFC forces are enabled (active). When you install (add) a force, it
immediately takes effect.

If: Then:

no From the Logic menu, choose SFC Forcing ⇒ Enable All SFC Forces. Then
choose Yes to confirm.

yes Stop.
Publication 1756-PM001G-EN-P - March 2004

Force Logic Elements 14-13
Remove or Disable Forces

Remove an Individual Force

1. Open the routine that contains the force that you want to
remove.

2. What is the language of the routine?

3. Right-click the tag that has the force and choose Monitor…
If necessary, expand the tag to show the value that is forced
(e.g., BOOL value of a DINT tag).

4. Right-click the tag or element that has the force and choose
Remove Force.

ATTENTION

!
Changes to forces can cause unexpected machine motion that could
injure personnel. Before you disable or remove forces, determine how the
change will effect your machine or process and keep personnel away from
the machine area.

If you want to: And: Then:

stop an individual force leave other forces enabled and in effect Remove an Individual Force

stop all I/O forces but leave all SFC forces
active

leave the I/O forces in the project Disable All I/O Forces

remove the I/O forces from the project Remove All I/O Forces

stop all SFC forces but leave all I/O forces
active

leave the SFC forces in the project Disable All SFC Forces

remove the SFC forces from the project Remove All SFC Forces

ATTENTION

!
If you remove an individual force, forces remain in the enabled state
and any new force immediately takes effect.

Before you remove a force, determine how the change will effect your
machine or process and keep personnel away from the machine area.

If: Then:

SFC Go to step 4.

ladder logic Go to step 4.

function block Go to step 3.

structured text Go to step 3.
Publication 1756-PM001G-EN-P - March 2004

14-14 Force Logic Elements
Disable All I/O Forces

From the Logic menu, choose I/O Forcing ⇒ Disable All I/O Forces.
Then choose Yes to confirm.

Remove All I/O Forces

From the Logic menu, choose I/O Forcing ⇒ Remove All I/O Forces.
Then choose Yes to confirm.

Disable All SFC Forces

From the Logic menu, choose SFC Forcing ⇒ Disable All SFC Forces.
Then choose Yes to confirm.

Remove All SFC Forces

From the Logic menu, choose SFC Forcing ⇒ Remove All SFC Forces.
Then choose Yes to confirm.
Publication 1756-PM001G-EN-P - March 2004

Chapter 15

Handle a Major Fault

Using this Chapter Use this chapter to develop logic that handles specific fault conditions.

Develop a Fault Routine If a fault condition occurs that is severe enough for the controller to
shut down, the controller generates a major fault and stops the
execution of logic.

• Depending on your application, you may not want all major
faults to shut down your entire system.

• In those situations, you can use a fault routine to clear a specific
fault and let at least some of your system continue to operate.

For this information: See page:

Develop a Fault Routine 15-1

Programmatically Clear a Major Fault 15-5

Clear a Major Fault During Prescan 15-8

Test a Fault Routine 15-12

Create a User-Defined Major Fault 15-13

Major Fault Codes 15-15

EXAMPLE Use a fault routine

In a system that uses recipe numbers as indirect
addresses, a miss-typed number could produce a
major fault, such as type 4, code 20.

To keep the entire system from shutting down, a
fault routine clears any type 4, code 20, major faults.
1 Publication 1756-PM001G-EN-P - March 2004

15-2 Handle a Major Fault
Choose Where to Place the Fault Routine

A fault routine lets you program logic to take specific action after a
fault, such as clear the fault and resume execution. Where you place
the routine depends on the type of fault that you want to handle:

Create a Fault Routine for a Program

Create the Routine

If you want take specific action/clear the fault when: Do this: See page:

Condition: Fault type:

The execution of an instruction faults 4 Create a Fault Routine for a Program 15-2

Communication with an I/O module fails 3 Create a Routine for the Controller Fault Handler 15-3

Watchdog time for a task expires 6

While a project is downloading to the
controller, the keyswitch is placed in RUN

8

A motion axis faults 11

The controller powers up in run/remote run
mode

1 Create a Routine for the Power-Up Handler 15-4

1. Right-click the program and choose New Routine.

2. Define the routine.
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-3
Assign the Routine as the Fault Routine

Create a Routine for the Controller Fault Handler

1. Right-click the program and choose Properties.

2. Specify the fault routine.

1. Create a program for the Controller Fault Handler.

2. Create a routine for the program.

3. Configure the routine as the main routine for
the program.
Publication 1756-PM001G-EN-P - March 2004

15-4 Handle a Major Fault
Create a Routine for the Power-Up Handler

The power-up handler is an optional task that executes when the
controller powers up in run/remote run mode. Use the power-up
handler when you want to accomplish either of the following after
power is lost and then restored:

To: Do this:

Prevent the controller from returning to
run/remote mode

Leave the routine for the Power-Up Handler
empty. When power is restored, a major fault
(type 1, code 1) occurs and the controller enters
the Faulted mode.

When power is restored, take specific
actions and then resume normal
operation

In the routine for the Power-Up Handler:

1. Clear the major fault (type 1, code 1).

2. Enter the logic for the actions.

1. Create a program for the Power-Up Handler.

2. Create a routine for the program.

3. Configure the routine as the main routine for the
program.
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-5
Programmatically Clear a
Major Fault

To clear a major fault that occurs during the execution of your project,
complete the following actions in the appropriate routine. (See Choose
Where to Place the Fault Routine on page 15-2.)

Create a Data Type to Store Fault Information

Logix5000 controllers store system information in objects. Unlike
PLC-5 or SLC 500 controllers, there is no status file.

• To access system information, you use a Get System Value (GSV)
or Set System Value (SSV) instruction.

• For status information about a program, you access the
PROGRAM object.

• For fault information, you access the following attribute of the
PROGRAM object.

Step Page:

❑ Create a Data Type to Store Fault Information 15-5

❑ Get the Fault Type and Code 15-6

❑ Check for a Specific Fault 15-7

❑ Clear the Fault 15-7

Attribute: Data Type: Instruction: Description:

MajorFaultRecord DINT[11] GSV
SSV

Records major faults for this program

Specify the program name to determine which PROGRAM object
you want. (Or specify THIS to access the PROGRAM object for the
program that contains the GSV or SSV instruction.)
Publication 1756-PM001G-EN-P - March 2004

15-6 Handle a Major Fault
To simplify access to the MajorFaultRecord attribute, create the
following user-defined data type:

Get the Fault Type and Code

1. The GSV instruction accesses the MAJORFAULTRECORD
attribute of this program. This attribute stores information about
the fault.

2. The GSV instruction stores the fault information in the
major_fault_record tag. When you enter a tag that is based on a
structure, enter the first member of the tag.

Data Type: FAULTRECORD

Name FAULTRECORD

Description Stores the MajorFaultRecord attribute or MinorFaultRecord
attribute of the PROGRAM object.

Members

Name Data Type Style Description

Time_Low DINT Decimal lower 32 bits of the fault timestamp value

Time_High DINT Decimal upper 32 bits of the fault timestamp value

Type INT Decimal fault type (program, I/O, etc)

Code INT Decimal unique code for the fault

Info DINT[8] Hex fault specific information

To create a new data type:

Controller Your_Project

Tasks

Motion Groups

Trends

Data Types

User-Defined

Right-click and choose New Data
Type.

+

+

+

−

1.

42372

2.

Tag Name Type

major_fault_record FAULTRECORD
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-7
Check for a Specific Fault

1. This EQU instruction checks for a specific type of fault, such as
program, I/O. In Source B, enter the value for the type of fault
that you want to clear.

2. This EQU instruction checks for a specific fault code. In
Source B, enter the value for the code that you want to clear.

3. This CLR instruction sets to zero the value of the fault type in the
major_fault_record tag.

4. This CLR instruction sets to zero the value of the fault code in
the major_fault_record tag.

Clear the Fault

1. The SSV instruction writes new values to the
MAJORFAULTRECORD attribute of this program.

2. The SSV instruction writes the values contained in the
major_fault_record tag. Since the Type and Code member are
set to zero, the fault clears and the controller resumes execution.

1. 2.

42372

3. 4.

1.

42372

2.
Publication 1756-PM001G-EN-P - March 2004

15-8 Handle a Major Fault
Clear a Major Fault During
Prescan

If the controller faults immediately after you switch it to the Run
mode, then examine the prescan operation for the fault. Depending
on the revision of your controller, an array subscript that is beyond the
range of the array (out of range) during prescan may or may not
produce a fault:

To clear a major fault that occurs during prescan:

Identify When the Controller is in Prescan

In the main routine of your program, enter the following rung:

1. Enter this rung as the first rung in the main routine of the
program.

2. The fault routine of this program uses the status of this bit to
determine if the fault occurred during prescan or normal scan of
the logic:

• During prescan, this bit is off. (During prescan, the controller
resets all bits that are referenced by OTE instructions.)

• Once the controller begins to execute the logic, this bit will
always be on.

If your controller is
revision:

Then:

11.x or earlier During prescan, an array subscript that is beyond the range of the array (out of range)
produces a major fault.

12.x See the release notes for the firmware of your controller.

13.0 or later During prescan, the controller automatically clears any faults due to an array subscript that is
beyond the range of the array (out of range).

Identify When the Controller is in Prescan

Get the Fault Type and Code

Check for a Specific Fault

Clear the Fault

1. 1.

43063

Tag Name Type

CPU_scanning BOOL
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-9
Get the Fault Type and Code

Enter this rung in the fault routine for the program:

1. The GSV instruction accesses the MAJORFAULTRECORD
attribute of this program. This attribute stores information about
the fault.

2. The GSV instruction stores the fault information in the
major_fault_record tag. When you enter a tag that is based on a
structure, enter the first member of the tag.

1.

43064

2.

Tag Name Type

major_fault_record FAULTRECORD
Publication 1756-PM001G-EN-P - March 2004

15-10 Handle a Major Fault
Check for a Specific Fault

Enter this rung in the fault routine for the program:

1. During prescan the bits of all OTE instructions are off and this
instruction is true. Once the controller begins to execute the
logic, this instruction is always false.

2. This EQU instruction checks for a fault of type 4, which means
that an instruction in this program caused the fault.

3. This EQU instruction checks for a fault of code 20, which means
that either an array subscript is too large, or a POS or LEN value
of a CONTROL structure is invalid.

4. This CLR instruction sets to zero the value of the fault type in the
major_fault_record tag.

5. This CLR instruction sets to zero the value of the fault code in
the major_fault_record tag.

1. 3.2.

43064

4. 5.
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-11
Clear the Fault

Enter this rung in the fault routine for the program:

1. During prescan the bits of all OTE instructions are off and this
instruction is true. Once the controller begins to execute the
logic, this instruction is always false.

2. The SSV instruction writes new values to the
MAJORFAULTRECORD attribute of this program.

3. The SSV instruction writes the values contained in the
major_fault_record tag. Since the Type and Code member are
set to zero, the fault clears and the controller resumes execution.

1.

2.

43064

3.
Publication 1756-PM001G-EN-P - March 2004

15-12 Handle a Major Fault
Test a Fault Routine You can use a JSR instruction to test the fault routine of a program
without creating an error (i.e., simulate a fault):

1. Create a BOOL tag that you will use to initiate the fault.

2. In the main routine or a subroutine of the program, enter the
following rung:

3. To simulate a fault, set the input condition.

where: is the:

aaa tag that you will use to initiate the fault (Step 1.)

bbb fault routine of the program

EXAMPLE Test a fault routine

When test_fault_routine is on, a major fault occurs and the controller executes
Fault_Routine.
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-13
Create a User-Defined
Major Fault

If you want to suspend (shut down) the controller based on
conditions in your application, create a user-defined major fault. With
a user-defined major fault:

• The fault type = 4.

• You define a value for the fault code. Choose a value between
990 to 999. These codes are reserved for user-defined faults.

• The controller handles the fault the same as other major faults:

– The controller changes to the faulted mode (major fault) and
stops executing the logic.

– Outputs are set to their configured state or value for faulted
mode.

To create a user-defined major fault:

Create a Fault Routine for the Program

Does a fault routine already exist for the program?

1. In the controller organizer, right-click the program and choose
New Routine.

2. In the name box, type a name for the fault routine
(name_of_fault_routine).

3. From the Type drop-down list, choose Ladder.

4. Choose OK.

EXAMPLE User-defined major fault

When Tag_1.0 = 1, produce a major fault and
generate a fault code of 999.

Create a Fault Routine for the Program

Configure the Program to Use the Fault Routine

Jump to the Fault Routine

If: Then:

Yes Go to “Jump to the Fault Routine“ on page 15-14

No Create a fault routine for the program:
Publication 1756-PM001G-EN-P - March 2004

15-14 Handle a Major Fault
Configure the Program to Use the Fault Routine

1. In the controller organizer, right-click the program and choose
New Routine.

2. Click the Configuration tab.

3. From the Fault drop-down list, choose the fault routine.

4. Choose OK.

Jump to the Fault Routine

In the main routine of the program, enter the following rung:

conditions when the
controller should shut
down

where: is:

Fault_Routine name of the fault routine for the program

x value for the fault code

EXAMPLE Create a User-Defined Major Fault

When Tag_1.0 = 1, execution jumps to name_of_fault_routine. A major fault occurs and the
controller enters the faulted mode. Outputs go to the faulted state. The Controller Properties dialog
box, Major Faults tab, displays the code 999.
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-15
Major Fault Codes Use the following table to determine the cause and corrective action
for a major fault. The type and code correspond to the type and code
displayed in these locations:

• Controller Properties dialog box, Major Faults tab

• PROGRAM object, MAJORFAULTRECORD attribute

Table 15.1 Major Fault Types and Codes

Type: Code: Cause: Recovery Method:

1 1 The controller powered on in Run mode. Execute the power-loss handler.

1 60 For a controller with no CompactFlash card
installed, the controller:

• detected a non-recoverable fault
• cleared the project from memory

1. Clear the fault.
2. Download the project.
3. Change to remote run/run mode.

If the problem persists:
1. Before you cycle power to the controller, record the state of

the OK and RS232 LEDs.
2. Contact Rockwell Automation support. See the back of this

publication.

1 61 For a controller with a CompactFlash card
installed, the controller:

• detected a non-recoverable fault
• wrote diagnostic information to the

CompactFlash card

• cleared the project from memory

1. Clear the fault.
2. Download the project.
3. Change to remote run/run mode.

If the problem persists, contact Rockwell Automation support. See
the back of this publication.

3 16 A required I/O module connection failed. Check that the I/O module is in the chassis. Check electronic
keying requirements.

View the controller properties Major Fault tab and the module
properties Connection tab for more information about the fault.

3 20 Possible problem with the ControlBus chassis. Not recoverable - replace the chassis.

3 23 At least one required connection was not
established before going to Run mode.

Wait for the controller I/O light to turn green before changing to
Run mode.

4 16 Unknown instruction encountered. Remove the unknown instruction. This probably happened due to a
program conversion process.

4 20 Array subscript too big, control structure .POS
or .LEN is invalid.

Adjust the value to be within the valid range. Don’t exceed the
array size or go beyond dimensions defined.

4 21 Control structure .LEN or .POS < 0. Adjust the value so it is > 0.

4 31 The parameters of the JSR instruction do not
match those of the associated SBR or RET
instruction.

Pass the appropriate number of parameters. If too many
parameters are passed, the extra ones are ignored without any
error.

4 34 A timer instruction has a negative preset or
accumulated value.

Fix the program to not load a negative value into timer preset or
accumulated value.

4 42 JMP to a label that did not exist or was
deleted.

Correct the JMP target or add the missing label.
Publication 1756-PM001G-EN-P - March 2004

15-16 Handle a Major Fault
4 82 A sequential function chart (SFC) called a
subroutine and the subroutine tried to jump
back to the calling SFC. Occurs when the SFC
uses either a JSR or FOR instruction to call the
subroutine.

Remove the jump back to the calling SFC.

4 83 The data tested was not inside the
required limits.

Modify value to be within limits.

4 84 Stack overflow. Reduce the subroutine nesting levels or the number of parameters
passed.

4 89 In a SFR instruction, the target routine does not
contain the target step.

Correct the SFR target or add the missing step.

6 1 Task watchdog expired.

User task has not completed in specified period
of time. A program error caused an infinite loop,
or the program is too complex to execute as
quickly as specified, or a higher priority task is
keeping this task from finishing.

Increase the task watchdog, shorten the execution time, make the
priority of this task “higher,” simplify higher priority tasks, or move
some code to another controller.

7 40 Store to nonvolatile memory failed. 1. Try again to store the project to nonvolatile memory.

2. If the project fails to store to nonvolatile memory, replace
the memory board.

7 42 Load from nonvolatile memory failed because
the firmware revision of the project in
nonvolatile memory does not match the
firmware revision of the controller.

Update the controller firmware to the same revision level as the
project that is in nonvolatile memory.

8 1 Attempted to place controller in Run mode with
keyswitch during download.

Wait for the download to complete and clear fault.

11 1 Actual position has exceeded positive
overtravel limit.

Move axis in negative direction until position is within overtravel
limit and then execute Motion Axis Fault Reset.

11 2 Actual position has exceeded negative
overtravel limit.

Move axis in positive direction until position is within overtravel
limit and then execute Motion Axis Fault Reset.

11 3 Actual position has exceeded position error
tolerance.

Move the position within tolerance and then execute Motion Axis
Fault Reset.

11 4 Encoder channel A, B, or Z connection is broken. Reconnect the encoder channel then execute Motion Axis Fault
Reset.

11 5 Encoder noise event detected or the encoder
signals are not in quadrature.

Fix encoder cabling then execute Motion Axis Fault Reset.

11 6 Drive Fault input was activated. Clear Drive Fault then execute Motion Axis Fault Reset.

11 7 Synchronous connection incurred a failure. First execute Motion Axis Fault Reset. If that doesn’t work, pull
servo module out and plug back in. If all else fails replace servo
module.

Table 15.1 Major Fault Types and Codes (Continued)

Type: Code: Cause: Recovery Method:
Publication 1756-PM001G-EN-P - March 2004

Handle a Major Fault 15-17
11 8 Servo module has detected a serious
hardware fault.

Replace the module.

11 9 Asynchronous Connection has incurred a
failure.

First execute Motion Axis Fault Reset. If that doesn’t work, pull
servo module out and plug back in. If all else fails replace servo
module.

11 32 The motion task has experienced an overlap. The group’s course update rate is too high to maintain correct
operation. Clear the group fault tag, raise the group’s update rate,
and then clear the major fault.

Table 15.1 Major Fault Types and Codes (Continued)

Type: Code: Cause: Recovery Method:
Publication 1756-PM001G-EN-P - March 2004

15-18 Handle a Major Fault
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 16

Monitor Minor Faults

When to Use This
Procedure

If a fault condition occurs that is not severe enough for the controller
to shut down, the controller generates a minor fault.

• The controller continues to execute.

• You do not need to clear a minor fault.

• To optimize execution time and ensure program accuracy, you
should monitor and correct minor faults.

Monitor Minor Faults To use ladder logic to capture information about a minor fault:

To check for a: Do this:

periodic task overlap 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.

2. Monitor bit 6.

load from nonvolatile
memory

1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.

2. Monitor bit 7.

problem with the serial port 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.

2. Monitor bit 9.

low battery 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.

2. Monitor bit 10.

problem with an instruction 1. Create a user-defined data type that stores the fault information. Name the data type FaultRecord
and assign the following members:

Name: Data Type: Style:

TimeLow DINT Decimal

TimeHigh DINT Decimal

Type INT Decimal

Code INT Decimal

Info DINT[8] Hex

2. Create a tag that will store the values of the MinorFaultRecord attribute. Select the data type from
step 1.

3. Monitor S:MINOR.

4. If S:MINOR is on, use a GSV instruction to get the values of the MinorFaultRecord attribute.

5. If you want to detect a minor fault that is caused by another instruction, reset S:MINOR. (S:MINOR
remains set until the end of the scan.)
1 Publication 1756-PM001G-EN-P - March 2004

16-2 Monitor Minor Faults
The following example checks for a low battery warning.

EXAMPLE Check for a minor fault

Minor_fault_check times for 1 minute (60000 ms) and then automatically restarts itself.

Every minute, minor_fault_check.DN turns on for one scan. When this occurs, the GSV instruction gets
the value of the FAULTLOG object, MinorFaultBits attribute, and stores it in the minor_fault_bits tag.
Because the GSV instruction only executes once every minute, the scan time of most scans is reduced.

If minor_fault_bits.10 is on, then the battery is low.

42373
Publication 1756-PM001G-EN-P - March 2004

Monitor Minor Faults 16-3
The following example checks for a minor fault that is caused by a
specific instruction.

EXAMPLE Check for a minor fault that is caused by an instruction

Multiplies value_a by 1000000 and checks for a minor fault, such as a math overflow:

• To make sure that a previous instruction did not produce the fault, the rung first clears S:MINOR.

• The rung then executes the multiply instruction.

• If the instruction produces a minor fault, the controller sets S:MINOR.

• If S:MINOR is set, the GSV instruction gets information about the fault and resets S:MINOR.

42373
Publication 1756-PM001G-EN-P - March 2004

16-4 Monitor Minor Faults
Minor Fault Codes Use the following table to determine the cause and corrective action
for a minor fault. The type and code correspond to the type and code
displayed in these locations:

• Controller Properties dialog box, Minor Faults tab

• PROGRAM object, MINORFAULTRECORD attribute

Table 16.1 Minor Fault Types and Codes

Type: Code: Cause: Recovery Method:

4 4 An arithmetic overflow occurred in an instruction. Fix program by examining arithmetic operations (order)
or adjusting values.

4 5 In a GSV/SSV instruction, the specified instance was
not found.

Check the instance name.

4 6 In a GSV/SSV instruction, either:

• specified Class name is not supported

• specified Attribute name is not valid

Check the Class name and Attribute name.

4 7 The GSV/SSV destination tag was too small to hold all
of the data.

Fix the destination so it has enough space.

4 35 PID delta time ≤ 0. Adjust the PID delta time so that it is > 0.

4 36 PID setpoint out of range Adjust the setpoint so that it is within range.

4 51 The LEN value of the string tag is greater than the DATA
size of the string tag.

1. Check that no instruction is writing to the LEN
member of the string tag.

2. In the LEN value, enter the number of characters
that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for
the output string. Use the new string data type as the
data type for the destination.

4 53 The output number is beyond the limits of the
destination data type.

Either:

• Reduce the size of the ASCII value.

• Use a larger data type for the destination.

4 56 The Start or Quantity value is invalid. 1. Check that the Start value is between 1 and the
DATA size of the Source.

2. Check that the Start value plus the Quantity
value is less than or equal to the DATA size of
the Source.

4 57 The AHL instruction failed to execute because the serial
port is set to no handshaking.

Either:

• Change the Control Line setting of the serial
port.

• Delete the AHL instruction.

6 2 Periodic task overlap.

Periodic task has not completed before it is time to
execute again.

Simplify program(s), or lengthen period, or raise relative
priority, etc.

7 49 Project loaded from nonvolatile memory.
Publication 1756-PM001G-EN-P - March 2004

Monitor Minor Faults 16-5
9 0 Unknown error while servicing the serial port. Contact GTS personnel.

9 1 The CTS line is not correct for the current configuration. Disconnect and reconnect the serial port cable to
the controller.

Make sure the cable is wired correctly

9 2 Poll list error.

A problem was detected with the DF1 master’s poll list,
such as specifying more stations than the size of the
file, specifying more then 255 stations, trying to index
past the end of the list, or polling the broadcast address
(STN #255).

Check for the following errors in the poll list:

• total number of stations is greater than the
space in the poll list tag

• total number of stations is greater than 255

• current station pointer is greater than the end of
the poll list tag

• a station number greater than 254 was
encountered

9 5 DF1 slave poll timeout.

The poll watchdog has timed out for slave. The master
has not polled this controller in the specified amount of
time.

Determine and correct delay for polling.

9 9 Modem contact was lost.

DCD and/or DSR control lines are not being received in
proper sequence and/or state.

Correct modem connection to the controller.

10 10 Battery not detected or needs to be replaced. Install new battery.

Table 16.1 Minor Fault Types and Codes (Continued)

Type: Code: Cause: Recovery Method:
Publication 1756-PM001G-EN-P - March 2004

16-6 Monitor Minor Faults
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 17

Store and Load a Project Using Nonvolatile
Memory

When to Use This
Procedure

Use this procedure to store or load a project using the nonvolatile
memory of a controller.

• If the controller loses power and does not have enough battery
capacity, it loses the project in user memory.

• Nonvolatile memory lets you keep a copy of your project on the
controller. The controller does not need power to keep this
copy.

• You can load the copy from nonvolatile memory to the user
memory of the controller:

– on every power-up

– whenever there is no project in the controller and it
powers-up

– anytime through RSLogix 5000 software

IMPORTANT Nonvolatile memory stores the contents of the user
memory at the time that you store the project.

• Changes that you make after you store the project
are not reflected in nonvolatile memory.

• If you make changes to the project but do not
store those changes, you overwrite them when
you load the project from nonvolatile memory. If
this occurs, you have to upload or download the
project to go online.

• If you want to store changes such as online edits,
tag values, or a ControlNet network schedule,
store the project again after you make the
changes.
1 Publication 1756-PM001G-EN-P - March 2004

17-2 Store and Load a Project Using Nonvolatile Memory
How to Use This Procedure

Before You Use Nonvolatile
Memory

A store or load has the following parameters:

If you want to: See:

review preliminary information on how to use nonvolatile memory “Before You Use Nonvolatile Memory” on
page 17-2

store a project in the nonvolatile memory of the controller “Store a Project” on page 17-9

overwrite the current project in the controller with the project that is stored in the
nonvolatile memory of the controller

“Load a Project” on page 17-12

load the project after a power loss cleared the memory because there was no battery

use ladder logic to flag that your project loaded from nonvolatile memory “Check for a Load” on page 17-14

remove a project from the nonvolatile memory of the controller “Clear Nonvolatile Memory” on page 17-15

• assign a different project to load from a CompactFlash card

• change the load parameters for a project on a CompactFlash card

“Use a CompactFlash Reader” on
page 17-18

Parameter: Store: Load:

How much time does a store or load take? If the controller does not use a 1784-CF64 Industrial CompactFlash
card, a store may take up to 3 minutes. If the controller uses a
CompactFlash card, the store is considerably faster (less than a
minute).

several seconds

In what controller mode (s) can I store or load
a project?

program mode

Can I go online with the controller during a
store or load?

no

What is the state of the I/O during a store or
load?

I/O remains in its configured state for program mode.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-3
Choose a Controller That Has Nonvolatile Memory

The following Logix5000 controllers have nonvolatile memory for
project storage.

Controller Type: Catalog #: Firmware Revision: Requires a 1784-CF64 Industrial
CompactFlash memory card:

CompactLogix5320 1769-L20 10.x or later no

CompactLogix5330 1769-L30 10.x or later no

CompactLogix5331 1769-L31 13.x or later yes

CompactLogix5332E 1769-L32E 13.x or later yes

CompactLogix5335CR 1769-L35CR 13.x or later yes

CompactLogix5335E 1769-L35E 12.x or later yes

ControlLogix5555 1756-L55M22 10.x or later no

1756-L55M23 8.x or later no

1756-L55M24 8.x or later no

ControlLogix5560M03SE 1756-L60M03SE 13.x or later yes

ControlLogix5561 1756-L61 12.x or later yes

ControlLogix5562 1756-L62 12.x or later yes

ControlLogix5563 1756-L63 11.x or later yes

DriveLogix5720 various 10.x or later no

DriveLogix5730 various 13.x or later yes

FlexLogix5433 1794-L33 10.x or later no

FlexLogix5434 Series B 1794-L34/B 11.x or later no
Publication 1756-PM001G-EN-P - March 2004

17-4 Store and Load a Project Using Nonvolatile Memory
Prevent a Major Fault During a Load

If the major and minor revision of the project in nonvolatile memory
does not match the major and minor revision of the controller, a major
fault may occur during a load.

Format a CompactFlash Card

When you store a project to a 1784-CF64 Industrial CompactFlash
memory card, the controller formats the card, if required.

If the controller: Then:

does not use a
CompactFlash card

Make sure that the major and minor revision of the project in nonvolatile memory matches
the major and minor revision of the controller.

The nonvolatile memory of the controller stores only the project. It does not store the
firmware for the controller.

uses a CompactFlash
card

The CompactFlash card stores the firmware for projects ≥ 12.0. Depending on the current
revision of the controller, you may be able to use the CompactFlash card to update the
firmware of the controller and load the project.

See “Determine How to Handle Firmware Updates” on page 17-6.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-5
If the revision of your
project is:

Then:

11.x The CompactFlash card uses a special format.

• Use only a Logix5000 controller to store a project on a CompactFlash card. Do not use a
CompactFlash reader to read from or write to the card with a computer.

• Store only a single Logix5000 project and no other data on a CompactFlash card.

• When you store a project on a CompactFlash card, you overwrite the entire contents of the card. In
other words, you lose everything that is currently on the card.

≥ 12.0 The CompactFlash card uses the FAT16 file system.

If the card: Then the controller:

is already formatted for the
FAT16 file system

• Leaves existing data.

• Creates folders and files for the project and firmware.

is not formatted for the FAT16
file system

• Deletes existing data.

• Formats the card for the FAT16 file system.

• Creates folders and files for the project and firmware.

Once the CompactFlash card is formatted for the FAT16 file system:

• The CompactFlash card stores multiple projects and associated firmware.

• If the CompactFlash card already contains a project with same name, a store overwrites the project
on the CompactFlash card.

• The CompactFlash card loads the most recently stored project.

With a revision ≥ 12.0, you can also use a CompactFlash reader to read and manipulate the files on a
CompactFlash card. See “Use a CompactFlash Reader” on page 17-18.
Publication 1756-PM001G-EN-P - March 2004

17-6 Store and Load a Project Using Nonvolatile Memory
Determine How to Handle Firmware Updates

The following table outlines the options and precautions for updating
the firmware of a controller that has nonvolatile memory.

If: Then:

You meet all of the following conditions:

❏ The controller uses a 1784-CF64
Industrial CompactFlash card.

❏ The project on the CompactFlash
card has a revision ≥ 12.0.

❏ The project on the CompactFlash
card has a Load Image option = On
Power Up or On Corrupt Memory.

❏ If the controller is a 1756-L63
controller, its firmware revision is
either:

❏ For a controller just out of its
box, revision ≥ 1.4. (Look for the
F/W REV. on the side of the
controller or its box.)

❏ For a controller already in
service, revision ≥ 12.0.

Update the firmware using either:

• CompactFlash card

• RSLogix 5000 software

• ControlFlash software

To update the firmware and load the project using the CompactFlash card:

1. Install the card in the controller.

2. If the Load Image option = On Corrupt Memory and the controller contains a project,
disconnect the battery from the controller.

3. Turn on or cycle power to the controller.

If you use RSLogix 5000 software or ControlFlash software to update the firmware:

1. During the update, the controller sets the Load Image option of the CompactFlash
card to User Initiated. To prevent this, remove the card from the controller.

2. After you update the firmware, store the project again to nonvolatile memory. This
ensures that the revision of the project in nonvolatile memory matches the revision
of the controller.

You do not meet all of the conditions listed
above:

Update the firmware using either:

• RSLogix 5000 software

• ControlFlash software

Take these precautions:

1. Before you update the firmware:

2. After you update the firmware, store the project again to nonvolatile memory. This
ensures that the revision of the project in nonvolatile memory matches the revision
of the controller.

If the controller: Then:

does not use a
CompactFlash card

Save the project to an offline file. When you update the firmware
of the controller, you erase the contents of the nonvolatile
memory (revision 10.x or later).

uses a CompactFlash
card

Either:

• Remove the CompactFlash card from the controller.

• Check the Load Image option of the CompactFlash card. If
it is set to On Power Up or On Corrupt Memory, first store
the project with the Load Image option set to User
Initiated.

Otherwise, you may get a major fault when you update the
firmware of the controller. This occurs because the On Power Up
or On Corrupt Memory options cause the controller to load the
project from nonvolatile memory. The firmware mismatch after
the load then causes a major fault.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-7
Choose When to Load an Image

You have several options for when (under what conditions) to load
the project back into the user memory (RAM) of the controller:

If you want to load it: Then select: Notes:

whenever you turn on or cycle the chassis
power

On Power Up • During a power cycle, you will lose any online
changes, tag values, and network schedule that
you have not stored in the nonvolatile memory.

• A 1784-CF64 Industrial CompactFlash card may
also change the firmware of the controller.

• This occurs if both the revision of the project
on the CompactFlash card and the revision of
the controller firmware are ≥ 12.0.

• For more information, see “Determine How to
Handle Firmware Updates” on page 17-6.

• You can always use RSLogix 5000 software to
load the project.

whenever there is no project in the controller
and you turn on or cycle the chassis power

On Corrupt Memory • For example, if the battery becomes discharged
and the controller loses power, the project is
cleared from memory. When power is restored,
this load option loads the project back into the
controller.

• A 1784-CF64 Industrial CompactFlash card may
also change the firmware of the controller.

• This occurs if both the revision of the project
on the CompactFlash card and the revision of
the controller firmware are ≥ 12.0.

• For more information, see “Determine How to
Handle Firmware Updates” on page 17-6.

• You can always use RSLogix 5000 software to
load the project.

only through RSLogix 5000 software User Initiated
Publication 1756-PM001G-EN-P - March 2004

17-8 Store and Load a Project Using Nonvolatile Memory
Examples

Here are some example uses for the different load options:

Example: Description:

1. 1. You update the firmware of the controller to the desired revision.

2. You store the project for the controller in nonvolatile memory.

3. When you turn on power to the controller after installation, the
project loads into the controller.

4. The controller remains in program mode.

2. 1. You store the project for the controller in nonvolatile memory. (The
major and minor revision of firmware in the controller match the
major and minor revision of the project in nonvolatile memory.)

2. If the battery of the controller becomes completely discharged and
power to the controller is interrupted, the project is cleared from
controller memory.

3. When power is restored, the project automatically loads into the
controller and the controller returns to the run mode.

3. 1. The controller fails.

2. You remove the CompactFlash card.

3. You replace the failed controller with a new controller.

4. You replace the CompactFlash card.

5. When you turn on the power, both the firmware and project load into
the controller. The controller remains in program mode.

4. 1. You want to load a different project into your controller.

2. A CompactFlash card contains the desired project.

3. With the CompactFlash card installed in the controller, you use
RSLogix 5000 software to load the project into the controller.

Nonvolatile memory

Load Image = On Power Up

Load Mode = Program

Nonvolatile memory

Load Image = On Corrupt Memory

Load Mode = Run

Load Image = On Power Up

Load Mode = Program

Revision ≥ 12.0

Load Image = User Initiated

Load Mode = n/a
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-9
Store a Project In this task, you store a project in the nonvolatile memory of the
controller.

Before you store the project:

• make all the required edits to the logic

• download the project to the controller

• schedule your ControlNet networks

To store a project:

Configure the Store Operation

1. Go online with the controller.

2. Put the controller in Program mode (Rem Program or Program).

3. On the Online toolbar, click the controller properties button.

4. Click the Nonvolatile Memory tab.

ATTENTION

!
During a store, all active servo axes are turned off.
Before you store a project, make sure that this
will not cause any unexpected movement of an axis.

Configure the Store Operation

Store the Project

Save the Online Project

42627

3.
Publication 1756-PM001G-EN-P - March 2004

17-10 Store and Load a Project Using Nonvolatile Memory
5. Choose Load/Store.

6. Choose when (under what conditions) to load the project back
into the user memory (RAM) of the controller.

7. In step 6, which load image option did you select?

8. Type a note that describes the project that you are storing, if
desired.

42865

5.

7.

Project that is currently in the nonvolatile memory of the
controller (if any project is there).

Project that is currently in the user memory (RAM) of the controller.

6.

8.

1.

If: Then:

On Power Up Select the mode that you want the controller to go to after a load:

• remote program

• remote run

To go to this mode after a load, turn the keyswitch of the controller to the REM position.

On Corrupt Memory

User Initiated Go to step 8.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-11
Store the Project

1. Choose <− Store.

A dialog box asks you to confirm the store.

2. To store the project, choose Yes.

During the store, the following events occur:

• On the front of the controller, the OK LED displays the
following sequence:

flashing green ⇒ solid red ⇒ solid green

• RSLogix 5000 software goes offline.

• A dialog box tells you that the store is in progress.

3. Choose OK.

When the store is finished, you remain offline.

Save the Online Project

1. Go online with the controller.

2. Save the project.
Publication 1756-PM001G-EN-P - March 2004

17-12 Store and Load a Project Using Nonvolatile Memory
Load a Project In this task, you use RSLogix 5000 software to load the project from
nonvolatile memory.

Steps:

1. Go online with the controller.

2. Did the following dialog box open?

3. Click the Nonvolatile Memory tab.

ATTENTION

!
During a load, all active servo axes are turned off.
Before you load a project, make sure that this
will not cause any unexpected movement of an axis.

42873

If: Then:

No a. Put the controller in Program mode (Rem Program or
Program).

b. On the Online toolbar, click the controller properties
button.

Yes Put the controller in Program mode (Rem Program or Program).
Use either the:

• General tab of the Connected To Go Online dialog box.

• keyswitch on the front of the controller

b.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-13
4. Choose Load/Store.

5. Choose Load −>.

A dialog box asks you to confirm the load.

6. To load the project from the nonvolatile memory, choose Yes.

42865

4.

Project that is currently in the nonvolatile memory of the controller
(if any project is there).

Project that is currently in the user memory (RAM) of the controller.

5.
Publication 1756-PM001G-EN-P - March 2004

17-14 Store and Load a Project Using Nonvolatile Memory
During the load, the following events occur:

• On the front of the controller, the OK LED displays the following
sequence:

• RSLogix 5000 software goes offline.

When the load is finished, you remain offline. If you want to be
online, you must manually go online.

Check for a Load When the controller loads a project from nonvolatile memory, it
provides the following information:

• logs a minor fault (type 7, code 49)

• sets the FAULTLOG object, MinorFaultBits attribute, bit 7

If you want your project to flag that it loaded from nonvolatile
memory, use the following ladder logic:

If the load: Then the OK LED displays:

does not include firmware solid red ⇒ solid green

includes firmware flashing red ⇒ solid red ⇒ solid green

On the first scan of the project (S:FS is on), the GSV instruction gets the FAULTLOG object,
MinorFaultBits attribute, and stores the value in minor_fault_bits. If bit 7 is on, the controller
loaded the project from its nonvolatile memory.

42867

Where: Is:

minor_fault_bits Tag that stores the FAULTLOG object, MinorFaultBits
attribute. Data type is DINT.

NVM_load Tag that indicates that the controller loaded the project
from its nonvolatile memory.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-15
Clear Nonvolatile Memory To remove a project from nonvolatile memory, complete the following
actions:

Check the Current Load Image Option

1. Go online with the controller.

2. On the Online toolbar, click the controller properties button.

3. Click the Nonvolatile Memory tab.

4. Is the Load Image option set to User Initiated?

Check the Current Load Image Option

Change the Load Image Option

Clear the Project from the Controller

Store the Empty Image

42627

2.

42865

4.

If: Then:

No Go to “Change the Load Image Option” on page 17-16.

Yes Go to “Clear the Project from the Controller” on page 17-16.
Publication 1756-PM001G-EN-P - March 2004

17-16 Store and Load a Project Using Nonvolatile Memory
Change the Load Image Option

1. Choose Load/Store.

2. In the Load Image drop-down list, select User Initiated.

3. Choose <- Store.

A dialog box asks you to confirm the store.

4. To store the project, choose Yes.

A dialog box tells you that the store is in progress.

5. Choose OK.

6. Wait until the OK LED on the front of the controller is steady
green. This indicates that the store is finished.

Clear the Project from the Controller

1. Disconnect the battery from the controller.

2. Cycle the power to the chassis.

3. Re-connect the battery to the controller.

Store the Empty Image

1. Go online with the controller.

The Connected To Go Online dialog box opens.

2. Click the Nonvolatile Memory tab.

3. Choose Load/Store.

42865

3.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-17
4. Choose <− Store.

A dialog box asks you to confirm the store.

5. To store the project, choose Yes.

During the store, the following events occur:

• On the front of the controller, the OK LED displays the
following sequence:

flashing green ⇒ red ⇒ green

• RSLogix 5000 software goes offline.

• A dialog box tells you that the store is in progress.

6. Choose OK.

When the store is finished, you remain offline. If you want to be
online, you must manually go online.

42874

4.
Publication 1756-PM001G-EN-P - March 2004

17-18 Store and Load a Project Using Nonvolatile Memory
Use a CompactFlash
Reader

If the revision of the project or projects on your CompactFlash card
are ≥ 12.0, then the card is formatted using the FAT16 file system.

• Typically, you do not have to manage the files on a
CompactFlash card. The card automatically loads the project that
you most recently stored.

• For additional flexibility, the file system also lets you:

Manually Change Which Project Loads from the
CompactFlash Card

Manually Change the Load Parameters for a Project
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-19
Manually Change Which Project Loads from the CompactFlash
Card

A CompactFlash card stores multiple projects. By default, the
controller loads the project that you most recently stored, according to
the load options of that project.

To assign a different project to load from the CompactFlash card, edit
the Load.xml file on the card.

1. To change which project loads from the card, open Load.xml.
Use a text editor to open the file.

2. Edit the name of the project that you want to load.

• Use the name of an XML file that is in the CurrentApp folder.

• In the CurrentApp folder, a project is comprised of an
XML file and a P5K file.

CompactFlash reader
Logix folder

1.

2.
Publication 1756-PM001G-EN-P - March 2004

17-20 Store and Load a Project Using Nonvolatile Memory
Manually Change the Load Parameters for a Project

When you store a project to nonvolatile memory, you define:

• when the project is to load (On Power Up, On Corrupt Memory,
User Initiated)

• mode to which to set the controller (if the keyswitch is in REM
and the load mode is not User Initiated)

To assign a different project to load from the CompactFlash card, edit
the Load.xml file on the card.

1. To change the load parameters for a project, open the XML file
with the same name as the project. Use a text editor to open the
file.

CompactFlash reader

projects and firmware

1.
Publication 1756-PM001G-EN-P - March 2004

Store and Load a Project Using Nonvolatile Memory 17-21
2. Edit the Load Image option of the project.

3. Edit the Load Mode option of the project (doesn’t apply if the
Load Image option is User Initiated).

2.

3.

If you want to set the Load Image option to: Then enter:

On Power Up ALWAYS

On Corrupt Memory CORRUPT_RAM

User Initiated USER_INITIATED

If you want to set the Load Mode option to: Then enter:

Program (Remote Only) PROGRAM

Run (Remote Only) RUN
Publication 1756-PM001G-EN-P - March 2004

17-22 Store and Load a Project Using Nonvolatile Memory
Publication 1756-PM001G-EN-P - March 2004

Chapter 18

Secure a Project

When to Use This
Procedure

Use this procedure to control who has access to your project. To
secure a project, these options are available:

You may use both options at the same time.

Use Routine Source
Protection

To limit who has access to a routine, use RSLogix 5000 software to
assign a source key to the routine (protect the routine).

• To protect a routine, you have to first activate the feature for
RSLogix 5000 software.

• Once you protect a routine, a computer requires the source key
to edit, copy, or export the routine.

• You have the option of making a routine either viewable or not
viewable without the source key.

• Regardless of whether or not the source key is available, you
can always download the project and execute all the routines.

• You can regain access to a protected routine from a specific
computer using either of the following methods:

– Add the source key file and point RSLogix 5000 software to
the location of the file.

– Create the source key file and manually enter the name for
the source key.

If you want to: Then: See page:

Prevent others from seeing the logic within
one or more routines of a project

Use Routine Source
Protection

18-1

Assign varying levels of access to a project,
such as let:

• engineers have full access

• maintenance personal make limited
changes

• operators only view logic and data

Use RSI Security Server to
Protect a Project

18-13
1 Publication 1756-PM001G-EN-P - March 2004

18-2 Secure a Project
The controller organizer shows the protection status of a routine:

This is the protection status.

For this routine…

If the controller organizer
displays:

Then:

Source Not Available • A source key is assigned to the routine.

• To open the routine, your computer requires the source key for the routine.

Source Not Available (Viewable) • A source key is assigned to the routine.

• You can only open and view the routine.

• You cannot make any changes or copy any of contents of the routine.

Source Available • A source key is assigned to the routine.

• You have full access to the routine.

Source Available (Viewable) • A source key is assigned to the routine.

• You have full access to the routine.

• Those who do not have the source key can still view the routine.

none of the above • No source key is assigned to the routine.

• You have full access to the routine.

IMPORTANT If the source of a routine is unavailable, do not
export the project.

• An export file (.L5K) contains only routines
where the source code is available.

• If you export a project where the source code is
not available for all routines, you will not be able
to restore the entire project.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-3
To assign and manage source keys, perform the following actions:

Choose the Level of Protection for
Each Routine

Choose the Number of Source
Keys

Define the Source Key or Keys

Choose a File Location in Which to
Store the Source Keys

Activate the RSLogix 5000 Source
Protection Feature

Create a File for the Source Keys

Protect a Routine with a Source
Key

Remove Access to a Protected
Routine

Disable Routine Source Protection

Optional – Gain Access to a
Protected Routine (from this

computer)

Limit access to the protected
routines from this computer?

Use this computer to protect other
routines?

Yes

No

Yes

No

Done
Publication 1756-PM001G-EN-P - March 2004

18-4 Secure a Project
Choose the Level of Protection for Each Routine

Source protection protects your project at the routine level. You can
protect some routines of a project while leaving other routines
unprotected (accessible to anyone). You also have the option of
protecting a routine but letting anyone view it.

Choose the Number of Source Keys

To protect a routine, you assign a source key to the routine. You can
reuse a source key as often as you like, as shown below.

Choose the number of source keys that balances your need for
protection verses the level of source key management that you want
to undertake.

Table 18.1 Routine Protection Options

If you want to: And: Then:

Protect the routine? Allow viewing?

prevent someone from doing this:

• edit the routine

• change the properties of the
routine

• export the routine

also prevent someone from doing this:

• open (display) the routine

• search the routine

• go to cross references within the
routine

• print the routine

yes no

no other limitations yes yes

let anyone have full access to the
routine

no

This: Gives you:

one source key for all projects

unique source key for each project

unique source key for each routine in each
project

fewest number of source keys

(easier to manage but less protection)

greatest number of source keys

(more difficult to manage but more protection)
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-5
Define the Source Key or Keys

Source keys follow the same rules for names as other RSLogix 5000
components, such as routines, tags, and modules. Follow these rules
to define the name of a source key:

• must begin with an alphabetic character (A-Z or a-z) or an
underscore (_)

• can contain only alphabetic characters, numeric characters,
and underscores

• can have as many as 40 characters

• must not have consecutive or trailing underscore characters (_)

• are not case sensitive

Choose a File Location in Which to Store the Source Keys

A source key file (sk.dat) stores the source keys. The source key file is
separate from the RSLogix 5000 project files (.acd). You can store the
source key file in any folder that you choose.
Publication 1756-PM001G-EN-P - March 2004

18-6 Secure a Project
Activate the RSLogix 5000 Source Protection Feature

To use the routine source protection feature of RSLogix 5000 software,
you have to make the following registry entry, which activates the
feature:

To make the registry entry:

1. Get your RSLogix 5000 software CD.

2. From the CD, execute the following file:

language \Tools\Source Protection Tool\Enable Protected
Routine Config.reg

where:

language is the language of your software. For example, for
software that is in English, open the ENU folder.

The Enable Protected Routine Config.reg file makes the required
registry entry.

Create a File for the Source Keys

1. Open the RSLogix 5000 project that you want to protect.

2. From the Tools menu, choose Security ⇒ Configure Source
Protection.

3. Does RSLogix 5000 software prompt you to specify the location
for the source key file?

4. Choose Yes.

Key: Value Entry:

Name: Type: Data:

HKEY_CURRENT_USER\Software\Rockwell
Software\RSLogix 5000\ProtectedRoutine

PTCRoutine DWORD 1

If: Then:

No Your computer already has the source key file. Go to “Protect a
Routine with a Source Key“on page 18-7.

Yes Go to step 4.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-7
5. Click

6. Select a folder in which to store the file and choose OK.

7. Choose OK.

A dialog box asks if you want to create the source key file
(sk.dat).

8. Choose Yes.

Protect a Routine with a Source Key

1. Open the RSLogix 5000 project that you want to protect.

2. From the Tools menu, choose Security ⇒ Configure Source
Protection.

7.

5.

location of the source key file
(sk.dat)

3.

4.
Publication 1756-PM001G-EN-P - March 2004

18-8 Secure a Project
3. Select the routine or routines that you want to protect.

4. Click Protect.

5. Type a name that you want to use as the source key. Or select
an existing source key from the drop-down list.

6. If someone does not have the source key, do you want to let
them open and view the routine?

7. Choose OK.

8. When you have assigned the required source keys to the
project, click Close.

9. From the File menu, choose Save.

Remove Access to a Protected Routine

1. Open the RSLogix 5000 project that is protected.

2. From the Tools menu, choose Security ⇒ Configure Source
Protection.

5.
7.

6.

If: Then:

No Clear (uncheck) the Allow viewing of routine check box (default).

Yes Check the Allow viewing of routine check box.

IMPORTANT Before you remove the source key file (sk.dat) from
a computer either write down the source keys or
make a copy of the file and store it in a secure
location.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-9
3. Click Clear.

A dialog box asks if you want to delete the source key file
(sk.dat).

4. Do you want to remove the source key file from the computer
(prevent future access to the file)?

Disable Routine Source Protection

1. Open the RSLogix 5000 project that is protected.

2. From the Tools menu, choose Security ⇒ Configure Source
Protection.

3.

If: Then:

Yes Choose Yes.

No Choose No.

IMPORTANT Before you remove the source key file (sk.dat) from
a computer either write down the source keys or
make a copy of the file and store it in a secure
location.
Publication 1756-PM001G-EN-P - March 2004

18-10 Secure a Project
3. Click Disable Ability To Configure Protected Routines.

A dialog box prompts you to confirm the action.

4. Choose Yes.

A dialog box asks if you want to delete the source key file
(sk.dat).

5. Do you want to remove the source key file from the computer
(prevent future access to the file)?

4.

If: Then:

Yes Choose Yes.

No Choose No.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-11
Gain Access to a Protected Routine

1. Open the RSLogix 5000 project that contains the protected
routines.

2. From the Tools menu, choose Security ⇒ Configure Source
Protection.

3. Does RSLogix 5000 software prompt you to specify the location
for the source key file?

4. Choose Yes.

5. Click

6. Does this computer already have a source key file (sk.dat)?

If: Then:

No Go to step 7.

Yes Go to step 4.

7.

5.

If: Then:

Yes A. Select the folder that contains the file and choose OK.

B. Choose OK.

No A. Select the folder in which to store the new file and
choose OK.

A dialog box asks if you want to create the source key file
(sk.dat).

B. Choose Yes.
Publication 1756-PM001G-EN-P - March 2004

18-12 Secure a Project
7. Click View.

• If you are prompted to select a program with which to open
the file, select a word processing program, such as Notepad.

• The sk.dat file opens.

8. Type the name of the source key. To enter multiple keys, type
each key on a separate line.

9. Save and close the sk.dat file.

7.

sk.dat - Notepad

key1

key2

key3
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-13
Use RSI Security Server to
Protect a Project

RSI Security Server software lets you control the access that
individuals have to RSLogix 5000 projects. With this software, you
customize access to projects based on the:

• user that is currently logged into the workstation

• RSLogix 5000 project that the user is accessing

• workstation from which the user is accessing the RSLogix 5000
project

Before you use Security Server software for RSLogix 5000 projects,
set up the software:

• Install RSI Security Server Software

• Set Up DCOM

• Enable Security Server for RSLogix 5000 Software

• Import the RSLogix5000Security.bak File

• Define the Global Actions for Your Users

• Define the Project Actions for Your Users

• Add Users

• Add User Groups

• Assign Global Access to RSLogix 5000 Software

• Assign Project Actions for New RSLogix 5000 Projects

Once Security Server software is set up for RSLogix 5000 projects,
complete the following actions to protect a project:

• Secure an RSLogix 5000 Project

• Assign Access to an RSLogix 5000 Project

• Refresh RSLogix 5000 Software, If Needed

Install RSI Security Server Software

See Getting Results with Rockwell Software’s Security Server
(Standalone Edition), which ships with the RSI Security Server
software.

IMPORTANT If RSLogix 5000 software is already on your
computer when you install Security Server software,
enable security for RSLogix 5000 software when you
are prompted.
Publication 1756-PM001G-EN-P - March 2004

18-14 Secure a Project
Set Up DCOM

See Getting Results with Rockwell Software’s Security Server
(Standalone Edition), which ships with the RSI Security Server
software.

Enable Security Server for RSLogix 5000 Software

Did you install Security Server before you installed RSLogix 5000
software?

The Locate Project File dialog box opens. By default, the
Keys.ini file should already be selected.

2. Choose Open.

If: Then:

Yes Go to step 1.

No Go to “Import the RSLogix5000Security.bak File“on page 18-15.

Program Files Keys.ini

Rockwell Software SetSecKeys.exe 1. Run this file.

RSLogix 5000

language

version

Security

−

−

−

−

−

+

Where: Is the:

language language of your software. For example, for software that is in English,
open the ENU folder.

version version of your software, such as v10

43073

3. Select the RSLogix 5000 check box
and choose OK.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-15
Import the RSLogix5000Security.bak File

The RSLogix5000Security.bak file provides the configuration that
Security Server requires to operate with RSLogix 5000 software.

1. Start the Security Configuration explorer.

2. From the File menu, choose Import Database.

3. Which revision of Security Server software are you using:

4. Select the RSLogix5000Security.bak file and then choose Open.

If: Then:

2.00 Look in this folder:

Where: Is the:

language language of your software. For example,
for software that is in English, open the
ENU folder.

version version of your software, such as v10

2.01 Look in this folder:

Program Files

Rockwell Software

RSLogix 5000

language

version

Security

−

−

−

−

−

+

Program Files

Rockwell Software

Security Server

System

−

−

−

+

Publication 1756-PM001G-EN-P - March 2004

18-16 Secure a Project
Define the Global Actions for Your Users

Global actions are tasks that are not tied to a particular project, such
as create a new project or update the firmware of a controller. The
following global actions apply to RSLogix 5000 software.

Use the following worksheet to record the global actions that you will
permit each group of users to perform.

Table 18.2 Global Actions

To let a user: Then grant access to the following
actions:

secure any unsecured controller Secure Controller

create a new RSLogix 5000 project New Project

open an .L5K file in RSLogix 5000 software,
which creates a project

translate a PLC or SLC project to an .L5K file

use RSLogix 5000 software to start
ControlFLASH software and update the
firmware of a controller

Update Firmware

Table 18.3 Global actions for each group of users

This group of users: Requires this access:

Secure
Controller

New
Project

Update
Firmware

43077
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-17
Define the Project Actions for Your Users

Project actions let you perform specific tasks on a specific project or
group of projects.

• When you enable security for an RSLogix 5000 project or create
a new project with security turned on, it becomes a member of
the New RSLogix 5000 Resources group.

– Users who work with projects in this group require the
appropriate access.

– We recommend that you grant Full Access to anyone who has
access to create a project.

• To customize the access of a project, move it out of the New
RSLogix 5000 Resources group and assign privileges that are
specific to that project.

43075

43078
Publication 1756-PM001G-EN-P - March 2004

18-18 Secure a Project
The following actions apply to a secured RSLogix 5000 project or
group of projects.

Table 18.4 Project Actions

To let a user: And: And: Grant this action:

• open a project offline

• copy components from a
project

• export the tags of a project

View Project

go online and
monitor a project

Go Online

• save a project

• save a project as a different .ACD file

• open an older revision of a project

• compact a project

• export a project

• download or upload a project

• change the mode of the controller

• change the path to the controller

• print a report

• clear faults

• change the wall clock time

• create, delete, edit, and run a trend

• change the configuration of an I/O
module

• change the configuration of a MSG
instruction

• enter, enable, disable, and remove
forces

• change tag values

• update firmware

Maintain Project

perform all actions available through
RSLogix 5000 software except
unsecure a secured controller

Full Access

unsecure a secured controller Full Access

and

Unsecure Controller

update the firmware of a controller Update Firmware
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-19
Use the worksheet on page 18-19 to record the project actions that
you will permit each user or group of users to perform.

Table 18.5 Project actions for projects that are in the New RSLogix 5000 Resources group and for individual projects

For this project or
group of projects:

This user or group of
users:

Requires this access:

View
Project

Go
Online

Maintain
Project

Full
Access

Unsecure
Controller

Update
Firmware

New RSLogix 5000
Resources

New RSLogix 5000
Resources

New RSLogix 5000
Resources

New RSLogix 5000
Resources
Publication 1756-PM001G-EN-P - March 2004

18-20 Secure a Project
Add Users

2. Type the information for the user and then choose OK.

Add User Groups

A group lets you manage multiple users who require similar
privileges.

1. From the Help menu, choose Quick Start.

43078

1. Right-click and choose New.

43084

43074

2. Follow the steps for this task.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-21
Assign Global Access to RSLogix 5000 Software

To permit users to perform global actions:

2. From the Help menu, choose Quick Start.

43077

1. In the Configuration explorer, select the RSLOGIX 5000
group.

43076

3. Follow the steps for this task. Assign the actions that you
recorded on Table 18.3 on page 18-16.
Publication 1756-PM001G-EN-P - March 2004

18-22 Secure a Project
Assign Project Actions for New RSLogix 5000 Projects

To let users perform actions on projects that are in the New RSLogix
5000 Resources group:

2. From the Help menu, choose Quick Start.

43075

1. In the Configuration explorer, select the New RSLogix
5000 Resources group.

43076

3. Follow the steps for this task. Assign the actions that you
recorded on Table 18.5 on page 18-19.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-23
Secure an RSLogix 5000 Project

For new projects, the security option is available when you create the
project. To let Security Server software protect an existing project,
enable security for the project.

1. Open the RSLogix 5000 Project.

3. Click the Advanced tab.

5. Choose OK and then Yes.

In the Security Server software, the project appears as a member of
the New RSLogix 5000 Resources group. If Security Server software is
already open, then from its View menu, choose Refresh.

42627

2. Click the controller properties button.

43069

4. Select RSI Security
Server.
Publication 1756-PM001G-EN-P - March 2004

18-24 Secure a Project
Assign Access to an RSLogix 5000 Project

While a project is in the New RSLogix 5000 Resources group, the
access control list of that group determines the actions that a user can
perform on a project. To customize the access of a project, move it
out of the group and assign specific actions:

2. Click the Group Members tab.

3. In the Member items list, select the project and click the
<< button.

4. Choose Apply.

6. From the Help menu, choose Quick Start.

43075

1. In the Configuration explorer, select the New RSLogix
5000 Resources group.

43079

3.

43078

5. In the Configuration explorer, select the project.

43076

7. Follow the steps for this task. Assign the actions that you
recorded on Table 18.5 on page 18-19.
Publication 1756-PM001G-EN-P - March 2004

Secure a Project 18-25
Refresh RSLogix 5000 Software, If Needed

If an RSLogix 5000 project is open and changes are made in RSI
Security Server software that effect the project, refresh RSLogix 5000
software:

From the Tools menu, choose Security ⇒ Refresh Privileges.
Publication 1756-PM001G-EN-P - March 2004

18-26 Secure a Project
Notes:
Publication 1756-PM001G-EN-P - March 2004

Chapter 19

Determine Controller Memory Information

When to Use This Chapter Use this chapter to get information about the memory of your
Logix5000 controller.

Determine What Memory
Information You Want

Depending on your type of controller, the memory of the controller
may be divided into several areas:

To: See page:

Determine What Memory Information You Want 19-1

Estimate Memory Information Offline 19-2

View Run Time Memory Information 19-3

Write Logic to Get Memory Information 19-4

If you have this controller: Then it stores this: In this memory:

ControlLogix I/O tags I/O memory

produced tags

consumed tags

communication via Message (MSG) instructions

communication with workstations

communication with polled (OPC/DDE) tags that use RSLinx software(1)

tags other than I/O, produced, or consumed tags data and logic memory(2)

logic routines

communication with polled (OPC/DDE) tags that use RSLinx software(1)

• CompactLogix

• FlexLogix

• DriveLogix

• SoftLogix5800

These controllers do not divide their memory. They store all elements in one common memory area.

(1) To communicate with polled tags, the controller uses both I/O and data and logic memory.

(2) 1756-L55M16 controllers have an additional memory section for logic.
1 Publication 1756-PM001G-EN-P - March 2004

19-2 Determine Controller Memory Information
Estimate Memory
Information Offline

To estimate how much controller memory your project requires, use
the Memory tab of the controller properties dialog box. For each of
the memory areas of your controller, it lets you estimate number of
bytes of:

• free (unused) memory

• used memory

• largest free contiguous block of memory

1. Click the controller properties button.

2. Click the Memory tab.

3. For controllers with different
memory options, choose the memory
size (e.g., M12).

5. Estimate the amount of controller
memory.

4. View the memory information since
the last estimate.
Publication 1756-PM001G-EN-P - March 2004

Determine Controller Memory Information 19-3
View Run Time Memory
Information

When online with a controller, the Memory tab shows the actual
memory usage of the controller. While the controller is running, it
uses additional memory for communication. The amount it needs
varies depending on the state of the communication.

The Memory tab of the controller includes a Max Used entry for each
type of memory. The Max Used values show the peak of memory
usage as communications occur.

1. Click the controller properties button.

2. Click the Memory tab.

3. View the memory information.

4. To reset the Max Used values, click
here.
Publication 1756-PM001G-EN-P - March 2004

19-4 Determine Controller Memory Information
Write Logic to Get Memory
Information

To use logic to get memory information for the controller:

Get Memory Information from the Controller

To get memory information from the controller, execute a Message
(MSG) instruction that is configured as follows:

Get Memory Information from the Controller

Choose the Memory Information That You Want

Convert INTs to a DINT

On this tab: For this item: Type or select: Which means:

Configuration Message Type CIP Generic Execute a Control and Information Protocol command.

Service Type Custom Create a CIP Generic message that is not available in the drop-down list.

Service Code 3 Read specific information about the controller (GetAttributeList service).

Class 72 Get information from the user memory object.

Instance 1 This object contains only 1 instance.

Attribute 0 Null value

Source
Element

source_array of type SINT[12]

In this element: Enter: Which means:

source_array[0] 5 Get 5 attributes

source_array[1] 0 Null value

source_array[2] 1 Get free memory

source_array[3] 0 Null value

source_array[4] 2 Get total memory

source_array[5] 0 Null value

source_array[6] 5 Get largest contiguous block of additional free logic memory

source_array[7] 0 Null value

source_array[8] 6 Get largest contiguous block of free I/O memory

source_array[9] 0 Null value

source_array[10] 7 Get largest contiguous block of free data and logic memory

source_array[11] 0 Null value

Source Length 12 Write 12 bytes (12 SINTs).

Destination INT_array of type INT[29]

Communication Path 1, slot_number_of_controller
Publication 1756-PM001G-EN-P - March 2004

Determine Controller Memory Information 19-5
Choose the Memory Information That You Want

The MSG instruction returns the following information to INT_array
(destination tag of the MSG):

IMPORTANT • The controller returns the values in number of 32-bit words. To see
a value in bytes, multiple it by 4.

• If your controller does not divide its memory, then the values
show up as I/O memory.

• For a 1756-L55M16 controller, the MSG instruction returns two
values for each logic memory category. To determine the free or
total logic memory of a 1756-L55M16 controller, add both values
for the category.

If you want the: Then copy these array elements: Description:

amount of free I/O memory (32-bit words) INT_array[3] lower 16 bits of the 32 bit value

INT_array[4] upper 16 bits of the 32 bit value

amount of free data and logic memory (32-bit words) INT_array[5] lower 16 bits of the 32 bit value

INT_array[6] upper 16 bits of the 32 bit value

1756-L55M16 controllers only—amount of additional free
logic memory (32-bit words)

INT_array[7] lower 16 bits of the 32 bit value

INT_array[8] upper 16 bits of the 32 bit value

total size of I/O memory (32-bit words) INT_array[11] lower 16 bits of the 32 bit value

INT_array[12] upper 16 bits of the 32 bit value

total size of data and logic memory (32-bit words) INT_array[13] lower 16 bits of the 32 bit value

INT_array[14] upper 16 bits of the 32 bit value

1756-L55M16 controllers only—additional logic memory
(32-bit words)

INT_array[15] lower 16 bits of the 32 bit value

INT_array[16] upper 16 bits of the 32 bit value

1756-L55M16 controllers only—largest contiguous block of
additional free logic memory (32-bit words)

INT_array[19] lower 16 bits of the 32 bit value

INT_array[20] upper 16 bits of the 32 bit value

largest contiguous block of free I/O memory (32-bit words) INT_array[23] lower 16 bits of the 32 bit value

INT_array[24] upper 16 bits of the 32 bit value

largest contiguous block of free data and logic memory
(32-bit words)

INT_array[27] lower 16 bits of the 32 bit value

INT_array[28] upper 16 bits of the 32 bit value
Publication 1756-PM001G-EN-P - March 2004

19-6 Determine Controller Memory Information
Convert INTs to a DINT

The MSG instruction returns each memory value as two separate INTs.

• The first INT represents the lower 16 bits of the value.

• The second INT represents the upper 16 bits of the value.

To convert the separate INTs into one usable value, use a
Copy (COP) instruction, where:

In the following example, the COP instruction produces the 32-bit
value that represents the amount of free I/O memory, in 32-bit words.

In this operand: Specify: Which means:

Source first INT of the 2 element pair (lower 16
bits)

Start with the lower 16 bits

Destination DINT tag in which to store the 32-bit value Copy the value to the DINT tag.

Length 1 Copy 1 times the number of bytes in the Destination data type. In this
case, the instruction copies 4 bytes (32 bits), which combines the
lower and upper 16 bits into one 32-bit value.

EXAMPLE Convert INTs to a DINT

• Elements 3 of INT_array is the lower 16 bits of
the amount of free I/O memory. Element 4 is the
upper 16 bits.

• Memory_IO_Free is a DINT tag (32 bits) in which
to store the value for the amount of free I/O
memory.

• To copy all 32 bits, specify a Length of 1. This
tells the instruction to copy 1 times the size of the
Destination (32 bits). This copies both element 3
(16 bits) and element 4 (16 bits) and places the
32-bit result in Memory_IO_Free.
Publication 1756-PM001G-EN-P - March 2004

Appendix A

Manage Multiple Messages

Purpose This appendix describes how to use ladder logic to send groups of
Message (MSG) instructions in sequence. This lets them enter and exit
the message queue in an ordered fashion.

When to Use this Appendix Use this appendix if you need to control the execution of a large
number of MSGs.

• To be processed, each MSG instruction must enter the message
queue.

• The queue holds 16 MSGs.

• If more than 16 MSGs are enabled at one time, there may not be
room on the queue when a MSG is enabled.

• If this occurs, the MSG has to wait until there is room on the
queue before the controller can process the MSG. On each
subsequent scan of the MSG, it checks the queue to see if there
is room.

The message manager logic in this appendix lets you control the
number of MSGs that are enabled at one time and enable subsequent
MSGs in sequence. In this way, MSGs enter and exit the queue in an
ordered fashion and do not have to wait for room on the queue to
become available.

How to Use this Appendix In this appendix, the message manager logic sends three groups of
MSGs.

• To make the example easier to follow, each groups contains
only 2 MSGs.

• In your project, use more MSGs in each group, such as 5.

• Use as many groups as needed to include all your MSGs.

The Msg_Group tag controls the enabling of each MSG.

• The tag uses the DINT data type.

• Each bit of the tag corresponds to a group of MSGs.

• For example, Msg_Group.0 enables and disables the first group
of MSGs (group 0).
1 Publication 1756-PM001G-EN-P - March 2004

A-2 Manage Multiple Messages
Message Manager Logic Initialize the Logic

Restart the Sequence, If Required

Send the First Group of MSGs

If S:FS = 1 (first scan), then initialize the MSGs:

Msg_Group = 0, which disables all the MSGs.

Msg_Group.0 =1, which enables the first group of MSGs.

If the MSGs in group 2 (last group) are currently enabled (Msg_Group.2 = 1)

And Msg_4 is done or errored

And Msg_5 is done or errored

Then restart the sequence of MSGs with the first group:

Msg_Group.2 = 0. This disables the last group of MSGs.

Msg_Group.0 = 1. This enables the first group of MSGs.

If Msg_Group.0 changes from 0 -> 1 then

Send Msg_0.

Send Msg_1.

Because a MSG instruction is a transitional instruction, it executes only when its rung-condition-in changes from false to
true.
Publication 1756-PM001G-EN-P - March 2004

Manage Multiple Messages A-3
Enable the Next Group of MSGs

Send the Next Group of MSGs

If the MSGs in group 0 are currently enabled (Msg_Group.0 = 1)

And Msg_0 is done or errored

And Msg_1 is done or errored

Then

Msg_Group.0 = 0. This disables the current group of MSGs.

Msg_Group.1 = 1. This enables the next group of MSGs.

If Msg_Group.1 changes from 0 -> 1 then

Send Msg_2.

Send Msg_3.
Publication 1756-PM001G-EN-P - March 2004

A-4 Manage Multiple Messages
Enable the Next Group of MSGs

Send the Next Group of MSGs

If the MSGs in group 1 are currently enabled (Msg_Group.1 = 1)

And Msg_2 is done or errored

And Msg_3 is done or errored

Then

Msg_Group.1 = 0. This disables the current group of MSGs.

Msg_Group.2 = 1. This enables the next group of MSGs.

If Msg_Group.1 changes from 0 -> 1 then

Send Msg_2.

Send Msg_3.
Publication 1756-PM001G-EN-P - March 2004

Appendix B

Send a Message to Multiple Controllers

Use the following procedure to program a single message instruction
to communicate with multiple controllers. To reconfigure a MSG
instruction during runtime, write new values to the members of the
MESSAGE data type.

IMPORTANT In the MESSAGE data type, the RemoteElement
member stores the tag name or address of the data in
the controller that receives the message.

If the message: Then the RemoteElement is the:

reads data Source Element

writes data Destination Element

Tag Name

 message

 message.RemoteElement.

 message.RemoteIndex.

 message.LocalIndex.

 message.Channel.

 message.Rack.

 message.Group.

 message.Slot.

 message.Path.

−

+

+

+

+

+

+

+

+

43052

A B
1 Publication 1756-PM001G-EN-P - March 2004

B-2 Send a Message to Multiple Controllers
A. If you use an asterisk [*] to designate the element number of the

array, the value in provides the element number.

B. The Index box is only available when you use an asterisk [*] in
the Source Element or Destination Element. The instruction
subustitutes the value of Index for the asterisk [*].

B

Publication 1756-PM001G-EN-P - March 2004

Send a Message to Multiple Controllers B-3
To send a message to multiple controllers:

• Set Up the I/O Configuration

• Define Your Source and Destination Elements

• Create the MESSAGE_CONFIGURATION Data Type

• Create the Configuration Array

• Get the Size of the Local Array

• Load the Message Properties for a Controller

• Configure the Message

• Step to the Next Controller

• Restart the Sequence

Set Up the I/O Configuration

Although not required, we recommend that you add the
communication modules and remote controllers to the I/O
configuration of the controller. This makes it easier to define the path
to each remote controller.

For example, once you add the local communication module, the
remote communication module, and the destination controller, the
Browse button lets you select the destination.

TIP To copy the above components from a sample project, open the
…\RSLogix 5000\Projects\Samples folder.

43055

Open this project.MSG_to_Multiple_Controllers.ACD

Message Path Browser

Path: peer_controller

peer_controller

I/O Configuration

[0] 1756-CNB/x Local_CNB

2 [0] 1756-CNB/x chassis_b

[1] 1756-L55/x peer_controller

−

−

−

Publication 1756-PM001G-EN-P - March 2004

B-4 Send a Message to Multiple Controllers
Define Your Source and Destination Elements

In this procedure, an array stores the data that is read from or written
to each remote controller. Each element in the array corresponds to a
different remote controller.

1. Use the following worksheet to organize the tag names in the
local and remote controllers:

2. Create the local_array tag, which stores the data in this
controller.

Name of the remote controller: Tag or address of the data in the remote
controller:

Tag in this controller:

local_array[0]

local_array[1]

local_array[2]

local_array[3]

Tag Name Type

local_array data_type [length]

where:

data_type is the data type of the data that the message
sends or receives, such as DINT, REAL, or STRING.

length is the number of elements in the local array.
Publication 1756-PM001G-EN-P - March 2004

Send a Message to Multiple Controllers B-5
Create the MESSAGE_CONFIGURATION Data Type

In this procedure, you create a user-defined data type to store the
configuration variables for the message to each controller.

• Some of the required members of the data type use a string data
type.

• The default STRING data type stores 82 characters.

• If your paths or remote tag names or addresses use less than
82 characters, you have the option of creating a new string type
that stores fewer characters. This lets you conserve memory.

• To create a new string type, choose File ⇒ New Component ⇒
String Type…

• If you create a new string type, use it in place of the STRING
data type in this procedure.

To store the configuration variables for the message to each controller,
create the following user-defined data type.

Data Type: MESSAGE_CONFIGURATION

Name MESSAGE_CONFIGURATION

Description Configuration properties for a message to another controller

Members

Name Data Type Style Description

Path STRING

RemoteElement STRING

To create a new data type:

Controller Your_Project

Tasks

Motion Groups

Trends

Data Types

User-Defined

Right-click and choose New Data
Type.

+

+

+

−

+

+

Publication 1756-PM001G-EN-P - March 2004

B-6 Send a Message to Multiple Controllers
Create the Configuration Array

In this procedure, you store the configuration properties for each
controller in an array. Before each execution of the MSG instruction,
your logic loads new properties into the instruction. This sends the
message to a different controller.

Figure B.1 Load New Configuration Properties Into a MSG Instruction

Steps:

1. To store the configuration properties for the message, create the
following array:

where:

number is the number of controllers to which to send the
message.

Message Properties

 message

 message.Path.

 message.RemoteElement.

−

+

+

Configuration Array

 message_config

 message_config[0]

 message_config[0].Path

 message_config[0].RemoteElement

 message_config[1]

 message_config[1].Path

 message_config[1].RemoteElement

−

−

+

+

−

+

+

first execution of the
message

next execution of the
message

Message Properties

 message

 message.Path.

 message.RemoteElement.

−

+

+

Tag Name Type Scope

message_config MESSAGE_CONFIGURATION[number] any
Publication 1756-PM001G-EN-P - March 2004

Send a Message to Multiple Controllers B-7
2. Into the message_config array, enter the path to the first
controller that receives the message.

3. Into the message_config array, enter the tag name or address of
the data in the first controller to receive the message.

Tag Name Value

 message_config {…}

 message_config[0] {…}

Right-click and choose Go to Message Path Editor. message_config[0].Path

 message_config[0].RemoteElement

−

−

+

+

Type the path to the
remote controller.

Message Path Browser

Path:

or peer_controller

Browse to the remote
controller.

I/O Configuration

Tag Name Value

 message_config {…}

 message_config[0] {…}

 message_config[0].Path

 message_config[0].RemoteElement

 message_config[1] {…}

 message_config[1].Path

 message_config[1].RemoteElement

−

−

+

+ ...

Type the tag name or address of the data in
the other controller.

−

+

+

Publication 1756-PM001G-EN-P - March 2004

B-8 Send a Message to Multiple Controllers
4. Enter the path and remote element for each additional
controller:

Get the Size of the Local Array

1. The SIZE instruction counts the number of elements in
local_array.

2. The SIZE instruction counts the number of elements in
Dimension 0 of the array. In this case, that is the only
dimension.

3. Local_array_length stores the size (number of elements) of
local_array. This value tells a subsequent rung when the
message has been sent to all the controllers and to start with the
first controller again.

Tag Name Value

 message_config {…}

 message_config[0] {…}

 message_config[0].Path

 message_config[0].RemoteElement

 message_config[1] {…}

 message_config[1].Path

 message_config[1].RemoteElement

−

−

+

+

−

+

+

1.

43051

2.
3.

Tag Name Type

local_array_length DINT
Publication 1756-PM001G-EN-P - March 2004

Send a Message to Multiple Controllers B-9
Load the Message Properties for a Controller

1. This XIO instruction conditions the rung to continuously send
the message.

2. The COP instruction loads the path for the message. The value
of index determines which element the instruction loads from
message_config. See Figure B.1 on page B-6.

3. The instruction loads 1 element from message_config.

4. The COP instruction loads the tag name or address of the data in
the controller that receives the message. The value of index
determines which element the instruction loads from
message_config. See Figure B.1 on page B-6.

5. The instruction loads 1 element from message_config.

6. MSG instruction

43051

2.

3.

4.

5.

6.

1.

Tag Name Type Scope

message MESSAGE controller

Tag Name Type Scope

index DINT any
Publication 1756-PM001G-EN-P - March 2004

B-10 Send a Message to Multiple Controllers
Configure the Message

Although your logic controls the remote element and path for the
message, the Message Properties dialog box requires an initial
configuration.

IMPORTANT

On this tab: If you want to: For this item: Type or select:

Configuration read (receive) data from the
other controllers

Message Type the read-type that corresponds to the other controllers

Source Element tag or address that contains the data in the first controller

Number Of Elements 1

Destination Tag local_array[*]

Index 0

write (send) data to the other
controllers

Message Type the write-type that corresponds to other controllers

Source Tag local_array[*]

Index 0

Number Of Elements 1

Destination Element tag or address that contains the data in the first controller

Communication Path path to the first controller

Cache Connections Clear the Cache Connection check box. Since this
procedure continuously changes the path of the message,
it is more efficient to clear this check box.

43054

Clear the Cache Connection check box.
Publication 1756-PM001G-EN-P - March 2004

Send a Message to Multiple Controllers B-11
Step to the Next Controller

1. After the MSG instruction sends the message…

2. This ADD instruction increments index. This lets the logic load
the configuration properties for the next controller into the MSG
instruction.

3. This ADD instruction increments the LocalIndex member of the
MSG instruction. This lets the logic load the value from the next
controller into the next element of local_array..

Restart the Sequence

1. When index equal local_array_length, the controller has sent the
message to all the other controllers.

2. This CLR instruction sets index equal to 0. This lets the logic
load the configuration properties for the first controller into the
MSG instruction and start the sequence of messages again.

3. This CLR instruction sets the LocalIndex member of the MSG
instruction equal to 0. This lets the logic load the value from the
first controller into the first element of local_array..

1. 2. 3.

43051

1. 2. 3.

43051
Publication 1756-PM001G-EN-P - March 2004

B-12 Send a Message to Multiple Controllers
Publication 1756-PM001G-EN-P - March 2004

Appendix C

IEC61131-3 Compliance

Using This Appendix

Introduction The International Electrotechnical Commission (IEC) has developed a
series of specifications for programmable controllers. These
specifications are intended to promote international unification of
equipment and programming languages for use in the controls
industry. These standards provide the foundation for Logix5000
controllers and RSLogix 5000 programming software.

The IEC programmable controller specification is broken down into
five separate parts each focusing on a different aspect of the
control system:

• Part 1: General Information

• Part 2: Equipment and Requirements Test

• Part 3: Programming Languages

• Part 4: User Guidelines

• Part 5: Messaging Service Specification

The controls industry as a whole has focused on part 3 (IEC61131-3),
Programming Languages, because it provides the cornerstone for
implementing the other standards and provides the most significant
end user benefit by reducing training cost. Because of this, only
IEC61131-3 is addressed here.

For information about: See page:

Operating System C-2

Data Definitions C-2

Programming Languages C-3

Instruction Set C-4

IEC61131-3 Program Portability C-4

IEC Compliance Tables C-5
1 Publication 1756-PM001G-EN-P - March 2004

C-2 IEC61131-3 Compliance
The IEC61131-3 programming language specification addresses
numerous aspects of programmable controller including the operating
system execution, data definitions, programming languages, and
instruction set. Components of the IEC61131-3 specification are
categorized as required by the specification, optional or extensions.
By so doing, the IEC61131-3 specification provides a minimum set of
functionality that can be extended to meet end user application needs.
The downside of this approach is that each programmable control
system vendor may implement different components of the
specification or provide different extensions.

Operating System The preemptive, multitasking operating system (OS) of Logix5000
controllers complies with the IEC61131-3 definition. In IEC61131-3,
the programmable controllers OS can contain zero or more tasks, that
can execute one or more programs each containing one or more
functions or routines. According to IEC61131-3, the number of each of
these components is implementation dependent. Logix5000
controllers provide multiple tasks, each containing multiple programs
and an unlimited number of functions or routines.

IEC61131-3 provides an option for creating different task execution
classifications. Tasks may be configured as continuous, periodic, or
event based. A continuous task does not need to be scheduled in that
it will utilize any left over processing time when other tasks are
dormant. Periodic tasks are scheduled to operate based on a
reoccurring time period. The IEC61131-3 specification does not
specify a time base for periodic task configuration. An IEC61131-3
event based task is triggered upon detection of the rising edge of a
configured input. Logix5000 controllers support both continuous and
periodic tasks. Additionally, the period for a periodic task is
configurable starting as low as 1 millisecond (ms).

Data Definitions The IEC61131-3 specification provides access to memory through the
creation of named variables. IEC61131-3 names for variables consist of
a minimum of six characters (RSLogix5000 programming software
supports a minimum of 1 character) starting with an underscore "_" or
an alpha character (A-Z), followed by one or more characters
consisting of an underscore "_", alpha character (A-Z) or a number
(0-9). Optionally, lower case alpha characters (a-z) can be supported
as long as they are case insensitive (A = a, B = b, C = c …). Logix5000
controllers provide full compliance with this definition, support the
lower case option, and extend the name to support up to 40
character names.
Publication 1756-PM001G-EN-P - March 2004

IEC61131-3 Compliance C-3
Data variables in IEC61131-3 may be defined such that they are
accessible to all programs within a resource or controller, or limited
access is provided only to the functions or routines within a single
program. To pass data between multiple resources or controllers,
access paths may be configured to define the location of the data
within a system. Logix5000 controllers provide compliance by
providing program scoped, controller scoped data and permits the
configuration of access paths using produced/consumed data.

The memory interpretation of a variable within IEC61131-3 is defined
through the use of either an elementary data type or an optional
derived data type that is created from a group of multiple data types.
Logix5000 controllers support the use of the BOOL (1 bit), SINT (8 bit
integer), INT (16 bit integer), DINT (32 bit integer) and REAL (IEEE
floating point number) elementary data types. Additionally, the
optional derived data types are supported through the creation of user
defined structures and arrays.

Programming Languages The IEC61131-3 specification defines five (5) different programming
languages and a set of common elements. All languages are defined
as optional but at least one must be supported in order to claim
compliance with the specification. The IEC61131-3 programming
language components are defined as follows:

• Common Language Elements

• Common Graphical Elements

• Instruction List (IL) Language Elements

• Structured Text Language (ST) Elements

• Ladder Diagram (LD) Language Elements

• Sequential Function Chart (SFC) Language Elements

• Function Block Diagram (FBD) Language Elements

Logix5000 controllers and RSLogix5000 provide support for the
common language elements and the Structured Text, Ladder Diagram,
Sequential Function Chart, and Function Block Diagram language
options. Additionally, the environment utilizes an ASCII import/export
format based on the Structured Text language. The instruction set and
program file exchange features are discussed in detail in the sections
that follow.
Publication 1756-PM001G-EN-P - March 2004

C-4 IEC61131-3 Compliance
Instruction Set The instruction set specified by IEC61131-3 is entirely optional. The
specification lists a limited set of instructions that if implemented must
conform to the stated execution and visual representation. IEC61131-3
however, does not limit the instructions set to those listed within the
specification. Each PLC vendor is free to implement additional
functionality in the form of instructions over and above those listed by
the specification. Examples of such extended instructions are those
needed to perform diagnostics, PID loop control, motion control and
data file manipulation. Because extended instructions are not defined
by the IEC61131-3 specification, there is no guarantee that the
implementation between different PLC vendors will be compatible.
Thus utilization of these instructions may preclude the movement of
logic between vendors.

Logix5000 controllers and RSLogix5000 provide a suite of instructions
that execute as defined by the IEC61131-3 specification. The physical
representation of these instructions maintain their look and feel with
existing systems so as to reduce the training cost associated with
working with the environment. In addition to the IEC61131-3
compliant instructions, a full range of instructions from existing
products have been brought forward into the environment so that no
functionality is lost.

IEC61131-3 Program
Portability

One of the goals of end-users creating programs in an IEC61131-3
compliant environment is the movement or portability of programs
between controllers developed by different vendors. This area is a
weakness of IEC61131-3 because no file exchange format is defined
by the specification. This means that if any program created in one
vendor's environment will require manipulation to move it to another
vendor's system.

In order to minimize the effort involved in performing cross-vendor
portability, the RSLogix 5000 programming software for the controllers
includes a full ASCII export and import utility. Additionally, the file
format that is utilized by this tool is based on a hybrid of the
IEC61131-3 Structured Text language definition. Controller operating
system and data definitions follow the appropriate IEC61131-3
formats. Extensions were implemented in order to convert Ladder
Diagram logic into ASCII text since this is not defined by IEC61131-3.

For more information on the ASCII export and import utility of
RSLogix 5000 programming software, see the Logix5000 Controllers
Import/Export Reference Manual, publication 1756-RM084.
Publication 1756-PM001G-EN-P - March 2004

IEC61131-3 Compliance C-5
IEC Compliance Tables Logix5000 controllers and RSLogix5000 comply with the requirements
of IEC61131-3 for the following language features:

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:

1 2 Lower case letters none

1 3a Number sign (#) Used for immediate value data type designation

1 4a Dollar sign ($) Used for description and string control
character

1 6a Subscript delimiters ([]) Array subscripts

2 1 Identifiers using upper case and numbers Task, program, routine, structure and tag names

2 2 Identifiers using upper case, numbers, and
embedded underlines

Task, program, routine, structure and tag names

2 3 Identifiers using upper and lower case,
numbers and embedded underlines

Task, program, routine, structure and tag names

3 1 Comments ST Comments, also support /* Comment */, and
// End of line comments.

4 1 Integer literal 12, 0, -12

4 2 Real literal 12.5, -12.5

4 3 Real literal with exponents -1.34E-12, 1.234E6

4 4 Base 2 literal 2#0101_0101

4 5 Base 8 literal 8#377

4 6 Base 16 literal 16#FFE0

4 7 Boolean zero and one 0, 1

5 1A Empty String '' Descriptions, and String Editor

5 1B String of length one containing a character 'A' Descriptions, and String Editor

5 1C String of length one containing a space ' ' Descriptions, and String Editor

5 1D String of length one containing a single quote
character '$''

Descriptions, and String Editor

5 1E String of length one containing a double quote
character '"'

Descriptions, and String Editor

5 1F String of length two containing CR and LF
characters

Descriptions, and String Editor

5 1G String of length one containing the LF character
'$0A'

Descriptions, and String Editor

5 1H String of length 5 which would print as "$1.00"
using '$$1.00'

Descriptions, and String Editor

5 1I Equivalent strings of length two 'AE', and
'$C4$CB'

Descriptions, and String Editor

6 2 String dollar sign '$$' Descriptions, and String Editor

6 3 String single quote '$'' Descriptions, and String Editor

6 4 String Line Feed '$L' or '$l' Descriptions, and String Editor
Publication 1756-PM001G-EN-P - March 2004

C-6 IEC61131-3 Compliance
6 5 String New-line '$N' or '$n' Descriptions, and String Editor

6 6 String From Feed (page) '$P' or '$p' Descriptions, and String Editor

6 7 String Carriage return '$R' or '$r' Descriptions, and String Editor

6 8 String Tab '$T' or '$t' Descriptions, and String Editor

6 9 String double quote $" Descriptions, and String Editor

10 1 BOOL Data Type Tag variable definition

10 2 SINT Data Type Tag variable definition

10 3 INT Data Type Tag variable definition

10 4 DINT Data Type Tag variable definition

10 10 REAL Data Type Tag variable definition

10 12 Time Tag variable definition, TIMER Structure

10 16 STRING data type 8 Bits

11 1 Data type Hierarchy none

12 1 Direct Derivation from elementary types User Defined data type structures

12 4 Array data types Tag variable definition

12 5 Structured Data types User defined data type structures

13 1 BOOL, SINT, INT, DINT initial value of 0 Tag variable definition

13 4 REAL, LREAL initial value of 0.0 Tag variable definition

13 5 Time initial value of T#0s Tag variable definition, reset (RES) instruction

13 9 Empty String '' Descriptions and Strings

14 1 Initialization of directly derived types Import/export

14 4 Initialization of array data types Import/export

14 5 Initialization of structured type elements Import/export

14 6 Initialization of derived structured data types Import/export

19a 2a Textual invocation, non-formal Available in ST

20 1 Use of EN and ENO Function present in LD but not labeled.
Available in FBD.

20 2 Usage without EN and ENO Available in FBD

20 3 Usage with EN and without ENO Available in FBD

20 4 Usage without EN and with ENO Available in FBD

21 1 Overloaded functions ADD(INT, DINT) or
ADD(DINT, REAL)

All overloaded types that are supported are
documented with each instruction

22 1 _TO_ conversion function RAD, DEG instructions Radians to/from
Decimal. String numeric conversion STOD,
STOR, RTOS, DTOS. Others not needed because
of instruction overloading

22 2 Truncate conversion function TRN instruction in LD and TRUNC function in ST

22 3 BCD to INT Convert FRD instruction in LD

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

IEC61131-3 Compliance C-7
22 4 INT to BCD Convert TOD instruction in LD

23 1 Absolute value ABS instruction

23 2 Square root SQR instruction in LD and FBD and SQRT
function in ST.

23 3 Natural log LN instruction

23 4 Log base 10 LOG instruction

23 6 Sine in radians SIN instruction / function

23 7 Cosine in radians COS instruction / function

23 8 Tangent in radians TAN instruction / function

23 9 Principal arc sine ASN instruction in LD and FBD, and ASIN
function in ST

23 10 Principal arc cosine ACS instruction in LD and FBD, and ACOS
function in ST

23 11 Principal arc tangent ATN instruction in LD and FBD, and ATAN
function in ST

24 12 Arithmetic add ADD instruction in LD and FBD, and + in ST.

24 13 Arithmetic multiplication MUL instruction in LD and FBD, and * in ST.

24 14 Arithmetic subtraction SUB instruction in LD and FBD, and - in ST.

24 15 Arithmetic divide DIV instruction in LD and FBD, and / in ST.

24 16 Modulo MOD instruction LD and ST

24 17 Exponentiation XPY instruction in LD and FBD, and ** in ST.

24 18 Value move MOV instruction in LD, and := in ST.

25 1 Bit shift left Functionality contained in BSL instruction in LD
for shift of 1

25 2 Bit shift right Functionality contained in BSR instruction in LD
for shift of 1

25 3 Bit rotate left Functionality contained in BSL instruction in LD
for shift of 1

25 4 Bit rotate right Functionality contained in BSR instruction in LD
for shift of 1

26 5 AND BAND instruction in FBD, and "&" operator in
ST

26 6 OR BOR instruction in FBD

26 7 XOR BXOR instruction in FBD

26 8 NOT BNOT instruction in FBD

27 1 SELECT SEL instruction in FBD

27 2a Maximum select MAX Functionality contained in ESEL instruction in
FBD and ST

27 2b Minimum select MIN Functionality contained in ESEL instruction in
FBD and ST

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

C-8 IEC61131-3 Compliance
27 3 High/Low limit LIMIT HLL instruction in FBD and ST

27 4 Multiplexer MUX MUX instruction in FBD

28 5 Comparison greater-than GRT instruction in LD and FBD, and > in ST.

28 6 Comparison greater-than or equal GRE instruction in LD and FBD, and >= in ST.

28 7 Comparison equal EQU instruction in LD and FBD, and = in ST.

28 8 Comparison less-than LES instruction in LD and FBD, and < in ST.

28 9 Comparison less-than or equal LEQ instruction in LD and FBD, and <= in ST.

28 10 Comparison not equal NEQ instruction in LD and FBD, and <> in ST.

29 1 String length LEN Contained as parameter of STRING data type

29 4 Middle string MID MID instruction in LD and ST

29 5 String concatenation CONCAT CONCAT instruction in LD and ST

29 6 String insert INSERT INSERT instruction in LD and ST

29 7 String delete DELETE DELETE instruction in LD and ST

29 9 Find string FIND FIND instruction in LD and ST

32 1 Input read FBD and ST

32 2 Input write FBD and ST

32 3 Output read FBD and ST

32 4 Output write FBD and ST

34 1 Bistable set dominant SETD instruction in FBD and ST

34 2 Bistable reset dominant RESD instruction in FBD and ST

35 1 Rising edge detector OSR instruction in LD and OSRI instruction in
FBD and ST

35 2 Falling edge detector OSF instruction in LD and OSFI instruction in
FBD and ST

36 1b Up-counter Functionality contained in CTU and RES
instructions in LD and in CTUD instruction in
FBD and ST

37 2a On-delay timer Functionality contained in TON instruction in LD
and TONR instruction in FBD and ST

37 3a Off-delay timer Functionality contained in TOF instruction in LD
and TOFR instruction in FBD and ST

38 2 On-delay timing Functionality contained in TON instruction in LD
and TONR instruction in FBD and ST

38 3 Off-delay timing Functionality contained in TOF instruction in LD
and TOFR instruction in FBD and ST

40 1a SFC Step

40 1b SFC initial Step

40 2a SFC Step Textual Import/export, step name is specified using the
format "Operand := step_name"

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

IEC61131-3 Compliance C-9
40 2b SFC initial Step textual Import/export, uses "InitialStep" parameter and
step name is specified using the format
"Operand := step_name"

40 3a SFC Step Flag general form Step backing tag

40 4 Step elapsed time general form Step backing tag

41 1 Transition using ST

41 5 Transition textual form Import/export with different formatting

41 7 Transition Name Transition Backing Tag

41 7a Transition Set by LD Transition Backing Tag

41 7b Transition Set by FBD Transition Backing Tag

41 7d Transition Set by ST Transition Backing Tag

42 1 Action Boolean Action Backing tag

42 3s Action textual representation Import/export

43 1 Step Action association

43 2 Step with Concatenated Actions

43 3 Textual Step body Import/export with different formatting

43 4 Action Body Field Embedded ST

44 1 Action Block Qualifier

44 2 Action Block Name

44 3 Action Indicator Tag Extended this to support DINT, INT, SINT, or
REAL in addition to BOOL

44 5 Action using ST Supports both embedded ST and JSR to ST
routine

44 6 Action using LD Using JSR to LD routine

44 7 Action using FBD Using JSR to FBD Routine

45 1 Action Qualifier None Default is N when none is explicitly entered

45 2 Action Qualifier N - Non-stored

45 3 Action Qualifier R - Reset

45 4 Action Qualifier S - Set / Stored

45 5 Action Qualifier L - Time Limited

45 6 Action Qualifier D - Time Delayed

45 7 Action Qualifier P - Pulse

45 8 Action Qualifier SD - Stored and Time Delayed

45 9 Action Qualifier DS - Delayed and Stored

45 10 Action Qualifier SL - Stored and time limited

45 11 Action Qualifier P1 - Pulse Rising Edge

45 12 Action Qualifier P0 - Pulse Falling Edge

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

C-10 IEC61131-3 Compliance
45a 1 Action Control

45a 2 Action Control

46 1 SFC Single Sequence

46 2a SFC Divergence of sequence selection Use of line connections vs. asterisk

46 2b SFC Divergence of sequence selection with
execution order.

46 3 SFC Convergence of sequence selection

46 4a SFC Simultaneous sequence divergence

46 4b SFC Simultaneous sequence convergence

46 5a, b, c SFC Sequence Skip

46 6a, b, c SFC Sequence Loop

46 7 SFC Loop directional arrows When wire is hidden

47 1 SFC Graphical representation

47 4 SFC Graphical representation

48 1 SFC Minimal Step Compliance Requirements Refer to notes on individual tables above.

48 2 SFC Minimal Transition Compliance
Requirements

Refer to notes on individual tables above.

48 3 SFC Minimal Action Compliance Requirements Refer to notes on individual tables above.

48 4 SFC Minimal Action Body Compliance
Requirements

Refer to notes on individual tables above.

48 5 SFC Minimal Action Qualifier Compliance
Requirements

Refer to notes on individual tables above.

48 6 SFC Minimal Branch Compliance Requirements Refer to notes on individual tables above.

48 7 SFC Minimal Block Connection Compliance
Requirements

Refer to notes on individual tables above.

55 1 ST Parenthesization (expression)

55 2 ST Function Evaluation Using non-formal form of invocation for built in
functions. JSR used within ST language to call
user developed code.

55 3 ST Exponentiation **

55 4 ST Negation -

55 5 ST Negation NOT

55 6 ST Multiply *

55 7 ST Divide /

55 8 ST Modulo MOD

55 9 ST Add +

55 10 ST Subtract -

55 11 ST Comparison <, >, <=, >=

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

IEC61131-3 Compliance C-11
55 12 ST Equality =

55 13 ST Inequality <>

55 14 ST Boolean AND as &

55 15 ST Boolean AND

55 16 ST Boolean XOR

55 17 ST Boolean OR

56 1 ST Assignment :=

56 2 ST Function Block invocation

56 3 ST RETURN RET() with multiple parameters

56 4 ST IF / ELSIF / ELSE/ END_IF

56 5 ST CASE OF / ELSE / END_CASE

56 6 ST FOR / END_FOR

56 7 ST WHILE DO / END_WHILE

56 8 ST REPEATE / UNTIL / END_REPEAT

56 9 ST EXIT

56 10 ST Empty Statement ;

57 1, 2 Horizontal line LD editor, FBD editor

57 3, 4 Vertical line LD editor, FBD editor

57 5, 6 Horizontal / Vertical connection LD editor, FBD editor

57 7, 8 Line crossings without connection FBD editor

57 9, 10 Connection and non-connection corners LD editor, FBD editor

57 11, 12 Blocks with connections LD editor, FBD editor

57 13,14 Connectors FBD editor

58 2 Unconditional jump JMP instruction in LD

58 3 Jump target LBL instruction in LD

58 4 Conditional jump JMP instruction in LD

58 5 Conditional return RET instruction in LD

58 8 Unconditional return RET instruction in LD

59 1 Left hand power rail LD editor

59 2 Right hand power rail LD editor

60 1 Horizontal link LD editor

60 2 Vertical link LD editor

61 1, 2 Normally open contact --| |-- XIC instruction in LD

61 3, 4 Normally close contact --| / |-- XIO instruction in LD

61 5, 6 Positive transition sensing contact -| P |- ONS instruction in LD

62 1 Coil --()-- OTE instruction in LD

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

C-12 IEC61131-3 Compliance
62 3 Set (latch) coil Functionality contained in OTL instruction in LD

62 4 Reset (unlatch) coil Functionality contained in OTU instruction in LD

62 8 Positive transition sensing coil OSR instruction in LD

62 9 Negative transition sensing coil OSF instruction in LD

(1) Table associated with languages other than structured text, sequential function chart, ladder diagram and function block diagram have been skipped.

Table
Number:(1)

Feature
Number:

Feature Description: Extensions and Implementation Notes:
Publication 1756-PM001G-EN-P - March 2004

Glossary

A action

In a sequential function chart (SFC), an action represents a functional
division of a step. Several actions make up a step. Each action
performs a specific function, such as controlling a motor, opening a
valve, or placing a group of devices in a specific mode.

Each action includes a qualifer. When a step is active (executing) the
qualifier determines when the action starts and stops.

See sequential function chart, step, qualifier.

alias tag

A tag that references another tag. An alias tag can refer to another
alias tag or a base tag. An alias tag can also refer to a component of
another tag by referencing a member of a structure, an array element,
or a bit within a tag or member. See base tag.

ASCII

A 7-bit code (with an optional parity bit) that is used to represent
alphanumerical characters, punctuation marks, and control-code
characters. For a list of ASCII codes, see the back cover of this manual.

Step

…and do this
MIX

Actions

Do this…
1 Publication 1756-PM001G-EN-P - March 2004

Glossary 2
asynchronous

Actions that occur independent of each other and lack a regular
pattern. In Logix5000 controllers, I/O values update asynchronous to
the execution of logic.:

• Programs within a task access input and output data directly
from controller-scoped memory.

• Logic within any task can modify controller-scoped data.

• Data and I/O values are asynchronous and can change during
the course of a task’s execution.

• An input value referenced at the beginning of a task’s execution
can be different when referenced later.

ATTENTION

!
Take care to ensure that data memory contains the
appropriate values throughout a task’s execution.
You can duplicate or buffer data at the beginning of
the scan to provide reference values for your logic.
Publication 1756-PM001G-EN-P - March 2004

Glossary 3
array

An array lets you group data (of the same data type) under a common
name.

• An array is similar to a file.

• A subscript (s) identifies each individual element within the
array.

• A subscript starts at 0 and extends to the number of elements
minus 1 (zero based).

• An array tag occupies a contiguous block of memory in the
controller, each element in sequence.

• You can use array and sequencer instructions to manipulate or
index through the elements of an array

• An array can have as many as three dimensions. This gives you
the flexibility to identify an element using one, two, or three
subscripts (coordinates).

42367

To expand an array and
display its elements, click
the + sign.

To collapse an array and
hide its elements, click
the – sign.

This array contains six
elements of the DINT
data type.

six DINTselements of
timer_presets
Publication 1756-PM001G-EN-P - March 2004

Glossary 4
• In an array with two or three dimensions, the right-most
dimension increments first in memory.

42367

The right-most dimension
increments to its maximum value
then starts over.

This array contains a
two-dimensional grid
of elements, six
elements by six
elements.

When the right-most dimension
starts over, the dimension to the
left increments by one.
Publication 1756-PM001G-EN-P - March 2004

Glossary 5
• The total number of elements in an array is the product of each
dimension’s size, as depicted in the following examples:

• You can modify array dimensions when programming offline
without loss of tag data. You cannot modify array dimensions
when programming online.

application

The combination of routines, programs, tasks, and I/O configuration
used to define the operation of a single controller. See project.

B base tag

A tag that actually defines the memory where a data element is stored.
See alias tag.

This array: Stores data like: For example:

one dimension Tag name:

one_d_array

Type

DINT[7]

Dimension 0

7

Dimension 1

--

Dimension 2

--

total number of elements = 7

valid subscript range DINT[x] where x=0–6

two dimension Tag name:

two_d_array

Type

DINT[4,5]

Dimension 0

4

Dimension 1

5

Dimension 2

--

total number of elements = 4 ∗ 5 = 20

valid subscript range DINT[x,y] where x=0–3; y=0–4

three dimension Tag name:

three_d_array

Type

DINT[2,3,4]

Dimension 0

2

Dimension 1

3

Dimension 2

4

total number of elements = 2 ∗ 3 ∗ 4 = 24

valid subscript range DINT[x,y,z] where x=0–1; y=0–2, z=0–3
Publication 1756-PM001G-EN-P - March 2004

Glossary 6
bidirectional connection

A connection in which data flows in both directions: from the
originator to the receiver and from the receiver to the originator. See
connection, unidirectional connection.

binary

Integer values displayed and entered in base 2 (each digit represents a
single bit). Prefixed with 2#. Padded out to the length of the boolean
or integer (1, 8, 16, or 32 bits). When displayed, every group of four
digits is separated by an underscore for legibility. See decimal,
hexadecimal, octal.

bit

Binary digit. The smallest unit of memory. Represented by the digits 0
(cleared) and 1 (set).

BOOL

An data type that stores the state of a single bit, where:

• 0 equals off

• 1 equals on

BOOL expression

In structured text, an expression that produces either the BOOL value
of 1 (true) or 0 (false).

• A bool expression uses bool tags, relational operators, and
logical operators to compare values or check if conditions are
true or false. For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, you use bool expressions to condition the execution
of other logic.
Publication 1756-PM001G-EN-P - March 2004

Glossary 7
branch

There is no limit to the number of parallel branch levels that you can
enter. The following figure shows a parallel branch with five levels.
The main rung is the first branch level, followed by four additional
branches.

You can nest branches to as many as 6 levels. The following figure
shows a nested branch. The bottom output instruction is on a nested
branch that is three levels deep.

byte

A unit of memory consisting of 8 bits.

input instruction output instruction

input instruction output instruction
Publication 1756-PM001G-EN-P - March 2004

Glossary 8
C cache

Depending on how you configure a MSG instruction, it may use a
connection to send or receive data.

If a MSG instruction uses a connection, you have the option to leave
the connection open (cache) or close the connection when the
message is done transmitting.

The controller has the following limits on the number of connections
that you can cache:

This type of message: And this communication method: Uses a connection:

CIP data table read or write ✓

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ ✓

CIP generic your option (1)

block-transfer read or write ✓

(1) You can connect CIP generic messages. But for most applications we recommend you leave CIP generic
messages unconnected.

If you: Then:

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.

If you have this software
and firmware revision:

Then you can cache:

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages for up to 16 connections

12.x or later up to 32 connections
Publication 1756-PM001G-EN-P - March 2004

Glossary 9
If several messages go to the same device, the messages may be able
to share a connection.

See connection, uncached connection.

change of state (COS)

Any change in the status of a point or group of points on an
I/O module.

CIP

See Control and Information Protocol.

communication format

Defines how an I/O module communicates with the controller.
Choosing a communication format defines:

• what configuration tabs are available through the
programming software

• the tag structure and configuration method

compatible module

An electronic keying protection mode that requires that the vendor,
catalog number, and major revision attributes of the physical module
and the module configured in the software match in order to establish
a connection to the module. See disable keying, exact match.

If the MSG instructions are to: And they are: Then:

different devices Each MSG instruction uses 1 connection.

same device enabled at the same time Each MSG instruction uses 1 connection.

NOT enabled at the same time The MSG instructions share the connection.
(I.e., Together they count as 1 connection.)

EXAMPLE Share a Connection

If the controller alternates between sending a
block-transfer read message and a block-transfer
write message to the same module, then together
both messages count as 1 connection. Caching both
messages counts as 1 on the cache list.
Publication 1756-PM001G-EN-P - March 2004

Glossary 10
connection

A communication link between two devices, such as between a
controller and an I/O module, PanelView terminal, or another
controller.

• Connections are allocations of resources that provide more
reliable communications between devices than unconnected
messages.

• The number of connections that a single controller can have is
limited.

• You indirectly determine the number of connections the
controller uses by configuring the controller to communicate
with other devices in the system.

consumed tag

A tag that receives the data that is broadcast by a produced tag over a
ControlNet network or ControlLogix backplane. A consumed tag must
be:

• controller scope

• same data type (including any array dimensions) as the remote
tag (produced tag)

See produced tag.

continuous task

The task that runs continuously.

• The continuous task runs in the background. Any CPU time not
allocated to other operations (such as motion, communications,
and periodic tasks) is used to execute the programs within the
continuous task.

• The continuous task restarts itself after the last of its programs
finishes.

• A project does not require a continuous task.

• If used, there can be only one continuous task.

• All periodic tasks interrupt the continuous task.

• When you create a project, the default MainTask is the
continuous task. You can leave this task as it is, or you can
change its properties (name, type, etc.).

See periodic task.
Publication 1756-PM001G-EN-P - March 2004

Glossary 11
Control and Information Protocol

Messaging protocol used by Allen-Bradley’s Logix5000 line of control
equipment. Native communications protocol used on the ControlNet
network.

controller fault handler

The controller fault handler is an optional task that executes when
the:

• major fault is not an instruction-execution fault

• program fault routine:

– could not clear the major fault

– faulted

– does not exist

You can create only one program for the controller fault handler. After
you create that program, you must configure one routine as the main
routine.

• The controller fault program does not execute a fault routine.

• If you specify a fault routine for the controller fault program, the
controller never executes that routine.

• You can create additional routines and call them from the main
routine.

controller scope

Data accessible anywhere in the controller. The controller contains a
collection of tags that can be referenced by the routines and alias tags
in any program, as well as other aliases in the controller scope.
See program scope.

Coordinated System Time (CST)

A 64-bit value that represents the number of microseconds since the
CST master controller started counting.

• The CST value is stored as a DINT[2] array, where:

– first element stores the lower 32 bits

– second element stores the upper 32 bits

• You can use the CST timestamp to compare the relative time
between data samples.
Publication 1756-PM001G-EN-P - March 2004

Glossary 12
COUNTER

Structure data type that contains status and control information for
counter instructions

D data type

A definition of the memory size and layout that will be allocated when
you create a tag of that data type.

decimal

Integer values displayed and entered in base 10. No prefix. Not
padded to the length of the integer. See binary, hexadecimal, octal.

description

Optional text that you can use to further document your application.

• You can use any printable character, including carriage return,
tab, and space.

• Descriptions do not download to the controller. They remain in
the offline project file.

• Descriptions have these length limitations:

– For tags, you can use up to 120 characters.

– For other objects (tasks, programs, modules, etc.), you can
use up to 128 characters.

dimension

Specification of the size of an array. Arrays can have as many as three
dimensions. See array.

DINT

A data type that stores a 32-bit (4-byte) signed integer value
(-2,147,483,648 to +2,147,483,647). In Logix5000 controllers, use
DINTs for integers:

• Logix5000 controllers execute more efficiently and use less
memory when working with 32-bit integers (DINTs) instead of
16-bit integers (INTs) or 8-bit integers (SINTs).

• Typically, instructions convert SINT or INT values to an optimal
data type (usually a DINT or REAL value) during execution.
Because this requires additional time and memory, minimize the
use of the SINT and INT data types.
Publication 1756-PM001G-EN-P - March 2004

Glossary 13
direct connection

A direct connection is a real-time, data transfer link between the
controller and an I/O module. The controller maintains and monitors
the connection with the I/O module. Any break in the connection,
such as a module fault or the removal of a module while under
power, sets fault bits in the data area associated with the module.

See rack-optimized connection.

disable keying

An electronic keying protection mode that requires no attributes of the
physical module and the module configured in the software to match
and still establishes a connection to the module. See compatible
module, exact match.

download

The process of transferring the contents of a project on the
workstation into the controller. See upload.

E elapsed time

The total time required for the execution of all operations configured
within a single task.

• If the controller is configured to run multiple tasks, elapsed time
includes any time used/shared by other tasks performing other
operations.

• While online, you can use the Task Properties dialog box to view
the maximum scan time and the last scan time in ms for the
current task. These values are elapsed time, which includes any
time spent waiting for higher-priority tasks.

A direct connection is any connection
that does not use the Rack Optimization

Comm Format.
Publication 1756-PM001G-EN-P - March 2004

Glossary 14
See execution time.

electronic keying

A feature of the 1756 I/O line where modules can be requested to
perform an electronic check to insure that the physical module is
consistent with what was configured by the software. Enables the user
via the software to prevent incorrect modules or incorrect revisions of
modules from being inadvertently used. See compatible module,
disable keying, exact match.

element

An addressable unit of data that is a sub-unit of a larger unit of data. A
single unit of an array.

• You specify an element in an array by its subscript(s):

See array.

exact match

An electronic keying protection mode that requires that all attributes
(vendor, catalog number, major revision, and minor revision) of the
physical module and the module configured in the software match in
order to establish a connection to the module.

execution time

The total time required for the execution of a single program.

• Execution time includes only the time used by that single
program, and excludes any time shared/used by programs in
other tasks performing other operations.

• When online, use the Program Properties dialog box to view the
maximum scan time and the last scan time (in µs) for the current
program. These values are execution times for the program and
do not include any time spent waiting for other programs or
higher-priority tasks.

See elapsed time.

For this array: Specify:

one dimension array_name[subscript_0]

two dimension array_name[subscript_0,
subscript_1]

three dimension array_name[subscript_0,
subscript_1, subscript_2]
Publication 1756-PM001G-EN-P - March 2004

Glossary 15
exponential

Real values displayed and entered in scientific or exponential format.
The number is always displayed with one digit to the left of the
decimal point, followed by the decimal portion, and then by an
exponent. See style.

F faulted mode

The controller generated a major fault, could not clear the fault, and
has shut down.

See major fault.

float

Real values displayed and entered in floating point format. The
number of digits to the left of the decimal point varies according to
the magnitude of the number. See style.

H hexadecimal

Integer values displayed and entered in base 16 (each digit represents
four bits). Prefixed with 16#. Padded out to length of the boolean or
integer (1, 8, 16, or 32 bits). When displayed, every group of four
digits is separated by an underscore for legibility. See binary, decimal,
octal.

I immediate value

An actual 32-bit signed real or integer value. Not a tag that stores
a value.

index

A reference used to specify an element within an array.
Publication 1756-PM001G-EN-P - March 2004

Glossary 16
instruction

The controller evaluates ladder instructions based on the rung
condition preceding the instruction (rung-condition-in).

Only input instructions affect the rung-condition-in of subsequent
instructions on the rung:

• If the rung-condition-in to an input instruction is true, the
controller evaluates the instruction and sets the
rung-condition-out to match the results of the evaluation.

– If the instruction evaluates to true, the rung-condition-out is
true.

– If the instruction evaluates to false, the rung-condition-out is
false.

• An output instruction does not change the rung-condition-out.

– If the rung-condition-in to an output instruction is true, the
rung-condition-out is set to true.

– If the rung-condition-in to an output instruction is false, the
rung-condition-out is set to false.

In Logix5000 controllers, you can enter multiple output instructions
per rung of logic. You can enter the output instructions:

• in sequence on the rung (serial)

• between input instructions, as long as the last instruction on the
rung is an output instruction

input instruction

rung-condition-in

output instruction

rung-condition-out
Publication 1756-PM001G-EN-P - March 2004

Glossary 17
The following example uses more than one output on a rung.

INT

A data type that stores a 16-bit (2-byte) integer value
(-32,768 to +32,767). Minimize your use of this data type:

• Typically, instructions convert SINT or INT values to an optimal
data type (usually a DINT or REAL value) during execution.
Because this requires additional time and memory, minimize the
use of the SINT and INT data types.

interface module (IFM)

A pre-wired I/O field wiring arm.

L listen-only connection

An I/O connection where another controller owns/provides the
configuration data for the I/O module. A controller using a listen-only
connection does not write configuration data and can only maintain a
connection to the I/O module when the owner controller is actively
controlling the I/O module. See owner controller.

EXAMPLE Place multiple outputs on a rung

When running_seconds.DN turns on, running_hours counts up by one and running_seconds resets.

When machine_on turns on, turns on drill_1_on. When both machine_on and drill[1].part_advance
are on, turns on conveyor_on.

42362

running_seconds.DN
CU
DN

Count Up
Counter running_hours
Preset 500
Accum 0

CTU
RES

running_seconds

machine_on drill_1_on drill[1].part_advance conveyor_on
Publication 1756-PM001G-EN-P - March 2004

Glossary 18
load

To copy a project from nonvolatile memory to the user memory
(RAM) of the controller. This overwrites any project that is currently in
the controller. See nonvolatile memory, store.

M main routine

The first routine to execute when a program executes. Use the main
routine to call (execute) other routines (subroutines).
Publication 1756-PM001G-EN-P - March 2004

Glossary 19
major fault

A fault condition that is severe enough for the controller to shut
down, unless the condition is cleared. When a major fault occurs, the
controller:

1. Sets a major fault bit

2. Runs user-supplied fault logic, if it exists

3. If the user-supplied fault logic cannot clear the fault, the
controller goes to faulted mode

4. Sets outputs according to their output state during program
mode

5. OK LED flashes red

The controller supports two levels for handling major faults:

• program fault routine:

– Each program can have its own fault routine.

– The controller executes the program’s fault routine when an
instruction fault occurs.

– If the program’s fault routine does not clear the fault or a
program fault routine does not exist, the controller proceeds
to execute the controller fault handler (if defined).

• controller fault handler:

– If the controller fault handler does not exist or cannot clear
the major fault, the controller enters faulted mode and shuts
down. At this point, the FAULTLOG is updated. (See the next
page.)

– All non-instruction faults (I/O, task watchdog, etc.) execute
the controller fault handler directly. (No program fault routine
is called.)

The fault that was not cleared, and up to two additional faults that
have not been cleared, are logged in the controller fault log.
Publication 1756-PM001G-EN-P - March 2004

Glossary 20
execute current
program’s

fault cleared?

execute controller

continue logic
execution

yes

no

fault cleared?
yes

no

enter faulted mode
record FAULTLOG

shut down

program fault
routine exists?

yes

no

major fault occurs

instruction fault?
yes

no

continue logic
execution

controller logs major
fault to current

PROGRAM
MajorFaultRecord

controller logs major
fault to controller fault

handler PROGRAM
MajorFaultRecord

controller fault
handler exists

yes

no
Publication 1756-PM001G-EN-P - March 2004

Glossary 21
See faulted state, minor fault.

major revision

The 1756 line of modules have major and minor revision indicators.
The major revision is updated any time there is a functional change to
the module. See electronic keying, minor revision.

master (CST)

Within a single chassis, one and only one, controller must be
designated as the Coordinated System Time (CST) master. All other
modules in the chassis synchronize their CST values to the
CST master.

member

An element of a structure that has its own data type and name.

• Members can be structures as well, creating nested structure
data types.

• Each member within a structure can be a different data type.

• To reference a member in a structure, use this format:

tag_name.member_name

For example:

• If the structure is embedded in another structure, use the tag
name of the structure at the highest level followed by a
substructure tag name and member name:

tag_name.substructure_name.member_name

For example:

This address: References the:

timer_1.pre PRE value of the timer_1 structure.

input_load as data type load_info

input_load.height

height member of the user-defined
input_load structure

This address: References the:

input_location as data type location

input_location.load_info.height

height member of the load_info
structure in the input_location
structure.
Publication 1756-PM001G-EN-P - March 2004

Glossary 22
• If the structure defines an array, use the array tag, followed by
the position in the array and any substructure and member
names.

array_tag[position].member

or

array_tag[position].substructure_name.member
_name

For example:

See structure.

memory

Electronic storage media built into a controller, used to hold programs
and data.

minor fault

A fault condition that is not severe enough for the controller to shut
down:

This address: References the:

conveyor[10].source source member of the 11th element in the
conveyor array (array elements are zero based).

conveyor[10].info.height height member of the info structure in the 11th
element of the conveyor array (array elements are
zero based).

If this occurs: The controller:

problem with an instruction 1. sets S:MINOR
2. logs information about the fault to the

PROGRAM object, MinorFaultRecord
attribute

3. sets bit 4 of the FAULTLOG object,
MinorFaultBits attribute

periodic task overlap sets bit 6 of the FAULTLOG object, MinorFaultBits
attribute

problem with the serial port sets bit 9 of the FAULTLOG object, MinorFaultBits
attribute

low battery sets bit 10 of the FAULTLOG object, MinorFaultBits
attribute
Publication 1756-PM001G-EN-P - March 2004

Glossary 23
To clear minor faults:

1. In the controller organizer, right-click the Controller
name_of_controller folder and select Properties.

2. Click the Minor Faults tab.

3. Use the information in the Recent Faults list to correct the cause
of the fault. Refer to "Minor Fault Codes" on page 16-4.

4. Click the Clear Minors button.

See major fault.

minor revision

The 1756 line of modules have major and minor revision indicators.
The minor revision is updated any time there is a change to a module
that does not affect its function or interface. See electronic keying,
major revision.

multicast

A mechanism where a module can send data on a network that is
simultaneously received by more that one listener. Describes the
feature of the ControlLogix I/O line which supports multiple
controllers receiving input data from the same I/O module at the
same time.

multiple owners

A configuration setup where more than one controller has exactly the
same configuration information to simultaneously own the same
input module.
Publication 1756-PM001G-EN-P - March 2004

Glossary 24
N name

Names identify controllers, tasks, programs, tags, modules, etc. Names
follow IEC-1131-3 identifier rules and:

• must begin with an alphabetic character (A-Z or a-z) or an
underscore (_)

• can contain only alphabetic characters, numeric characters,
and underscores

• can have as many as 40 characters

• must not have consecutive or trailing underscore characters (_)

• are not case sensitive

• download to the controller

network update time (NUT)

The repetitive time interval in which data can be sent on a
ControlNet network. The network update time ranges from
2ms-100ms.

nonvolatile memory

Memory of the controller that retains its contents while the controller
is without power or a battery. See load, store.

numeric expression

In structured text, an expression that calculates an integer or
floating-point value.

• A numeric expression uses arithmetic operators, arithmetic
functions, and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression.
For example, (tag1+5)>65.

O object

A structure of data that stores status information. When you enter a
GSV/SSV instruction, you specify the object and its attribute that you
want to access. In some cases, there are more than one instance of the
same type of object, so you might also have to specify the object
name. For example, there can be several tasks in your application.
Each task has its own TASK object that you access by the task name.
Publication 1756-PM001G-EN-P - March 2004

Glossary 25
octal

Integer values displayed and entered in base 8 (each digit represents
three bits). Prefixed with 8#. Padded out to the length of the boolean
or integer (1, 8, 16, or 32 bits). When displayed, every group of three
digits is separated by an underscore for legibility. See binary, decimal,
hexadecimal.

offline

Viewing and editing a project that is on the hard disk of a workstation.
See online.

online

Viewing and editing the project in a controller. See offline.

optimal data type

A data type that a Logix5000 instruction actually uses (typically the
DINT and REAL data types).

• In the instruction set reference manuals, a bold data type indicates
an optimal data type.

• Instructions execute faster and require less memory if all the
operands of the instruction use:

– the same data type

– an optimal data type

• If you mix data types and use tags that are not the optimal data
type, the controller converts the data according to these rules

– Are any of the operands a REAL value?

– After instruction execution, the result (a DINT or REAL value)
converts to the destination data type, if necessary.

If: Then input operands (e.g., source, tag in an expression,
limit) convert to:

Yes REALs

No DINTs
Publication 1756-PM001G-EN-P - March 2004

Glossary 26
• Because the conversion of data takes additional time and memory,
you can increase the efficiency of your programs by:

– using the same data type throughout the instruction

– minimizing the use of the SINT or INT data types

In other words, use all DINT tags or all REAL tags, along with
immediate values, in your instructions.

• The following table summarizes how the controller converts data
between data types:

Conversion: Result:

larger integer to smaller integer The controller truncates the upper portion of the larger integer and generates an overflow.

For example:

Decimal Binary

DINT 65,665 0000_0000_0000_0001_0000_0000_1000_0001

INT 129 0000_0000_1000_0001

SINT -127 1000_0001

SINT or INT to REAL No data precision is lost

DINT to REAL Data precision could be lost. Both data types store data in 32 bits, but the REAL type uses some
of its 32 bits to store the exponent value. If precision is lost, the controller takes it from the
least-significant portion of the DINT.

REAL to integer The controller rounds the fractional part and truncates the upper portion of the non-fractional
part. If data is lost, the controller sets the overflow status flag.

Numbers round as follows:
• Numbers other than x.5 round to the nearest number.
• X.5 rounds to the nearest even number.

For example:

REAL (source) DINT
(result)

-2.5 -2

-1.6 -2

-1.5 -2

-1.4 -1

1.4 1

1.5 2

1.6 2

2.5 2
Publication 1756-PM001G-EN-P - March 2004

Glossary 27
overlap

A condition where a task (perioidic or event) is triggered while the
task is still executing from the preivious trigger.

owner controller

The controller that creates the primary configuration and
communication connection to a module. The owner controller writes
configuration data and can establish a connection to the module. See
listen-only connection.

P path

The path describes the route that a message takes to get to the
destination. If the I/O configuration of the controller contains the
destination device, use the Browse button to select the device. This
automatically defines the path.

Message Path Browser

Path: peer_controller

peer_controller

I/O Configuration

[0] 1756-CNB/x Local_CNB

2 [0] 1756-CNB/x chassis_b

[1] 1756-L55/x peer_controller

−

−

−

peer_controller
Publication 1756-PM001G-EN-P - March 2004

Glossary 28
If the I/O configuration does not contain the destination device, then
type the path to the destination using the following format:

port,address,port,address

See connection.

Where: For this: Is:

port backplane from any 1756 controller or module 1

DF1 port from a Logix5000 controller 2

ControlNet port from a 1756-CNB module

Ethernet port from a 1756-ENBx or -ENET module

DH+ port over channel A from a 1756-DHRIO module

DH+ port over channel B from a 1756-DHRIO module 3

address ControlLogix backplane slot number

DF1 network station address (0-254)

ControlNet network node number (1-99 decimal)

DH+ network 8# followed by the node number (1-77 octal)
For example, to specify the octal node address of 37, type
8#37.

EtherNet/IP network You can specify a module on an EtherNet/IP network using
any of these formats:

IP address (e.g., 130.130.130.5)
IP address:Port (e.g., 130.130.130.5:24)
DNS name (e.g., tanks)
DNS name:Port (e.g., tanks:24)
Publication 1756-PM001G-EN-P - March 2004

Glossary 29
periodic task

A task that is triggered by the operating system at a repetitive period
of time.

• Use a periodic task for functions that require accurate or
deterministic execution.

• Whenever the time expires, the task is triggered and its
programs are executed.

• Data and outputs established by the programs in the task retain
their values until the next execution of the task or they are
manipulated by another task.

• You can configure the time period from 1 ms to 2000 s. The
default is 10 ms.

• Periodic tasks always interrupt the continuous task.

• Depending on the priority level, a periodic task may interrupt
other periodic tasks in the controller.

See continuous task.

periodic task overlap

A condition that occurs when a task is executing and the same task is
triggered again. The execution time of the task is greater than the
periodic rate configured for the task. See periodic task.

predefined structure

A structure data type that stores related information for a specific
instruction, such as the TIMER structure for timer instructions.
Predefined structures are always available, regardless of the system
hardware configuration. See product defined structure.

ATTENTION

!
Ensure that the time period is longer than the sum of
the execution times of all the programs assigned to
the task. If the controller detects that a periodic task
trigger occurs for a task that is already operating, a
minor fault occurs.
Publication 1756-PM001G-EN-P - March 2004

Glossary 30
prescan

Prescan is an intermediate scan during the transition to Run mode.

• The controller performs prescan when you change from
Program mode to Run mode.

• The prescan examines all programs and instructions and
initializes data based on the results.

• Some instructions execute differently during prescan than they
do during the normal scan.

priority

Specifies which task to execute first if two tasks are triggered at the
same time.

• The task with the higher priority executes first.

• Priorities range from 1-15, with 1 being the highest priority.

• A higher priority task will interrupt any lower priority task.

• If two tasks with the same priority are triggered at the same
time, the controller switches between the tasks every
millisecond.

postscan

A function of the controller where the logic within a program is
examined before disabling the program in order to reset instructions
and data.

power-up handler

An optional task that executes when the controller powers up in the
Run mode. To use the Power-Up Handler, you must create a
power-up program and associated main routine.

42195
Publication 1756-PM001G-EN-P - March 2004

Glossary 31
The Power-Up Handler executes as follows:

produced tag

A tag that a controller is making available for use by other controllers.
Produced tags are always at controller scope. See consumed tag.

product defined structure

A structure data type that is automatically defined by the software and
controller. By configuring an I/O module you add the product defined
structure for that module.

Did the controller power up
in Run mode?

Yes

No Controller stays in the
current mode.

Power-Up Handler program
executes.

Yes

No Controller stays in Run
mode and executes its
logic.

Major fault, type 1, code 1,
occurs.

Does the Power-Up Handler
contain a program?

Is the major fault cleared? Yes

No

Controller enters the
faulted mode.

Controller stays in Run
mode and executes its
logic.
Publication 1756-PM001G-EN-P - March 2004

Glossary 32
program

A set of related routines and tags.

• Each program contains program tags, a main executable routine,
other routines, and an optional fault routine.

• To execute the routines in a program, you assign (schedule) the
program to a task:

– When a task is triggered, the scheduled programs within the
task execute to completion from first to last.

– When a task executes a program, the main routine of the
program executes first.

– The main routine can, in turn, execute subroutines using the
JSR instruction.

• The Unscheduled Programs folder contains programs that aren’t
assigned to a task.

• If the logic in the program produces a major fault, execution
jumps to a configured fault routine for the program.

• The routines within a program can access the following tags:

– program tags of the program

– controller tags

• Routines cannot access the program tags of other programs.

See routine, task.

program scope

Data accessible only within the current program. Each program
contains a collection of tags that can only be referenced by the
routines and alias tags in that program. See controller scope.

project

The file on your workstation (or server) that stores the logic,
configuration, data, and documentation for a controller.

• The project file has an .ACD extension.

• When you create a project file, the file name is the name of the
controller.

• The controller name is independent of the project file name. If
you save a current project file as another name, the controller
name is unchanged.

• If the name of the controller is different than the name of the
project file, the title bar of the RSLogix 5000 software displays
both names.

See application.
Publication 1756-PM001G-EN-P - March 2004

Glossary 33
Q qualifier
In the action of a sequential function chart (SFC), a qualifier defines
when an action starts and stops.

See action, sequential function chart, step.

R rack-optimized connection

For digital I/O modules, you can select rack-optimized
communication. A rack-optimized connection consolidates connection
usage between the controller and all the digital I/O modules in the
chassis (or DIN rail). Rather than having individual, direct connections
for each I/O module, there is one connection for the entire chassis (or
DIN rail).

See direct connection.

rate

For a periodic task, the rate at which the controller executes the task,
from 1 ms to 2,000,000 ms (2000 seconds). The default is 10 ms.

REAL

A data type that stores a 32-bit (4-byte) IEEE floating-point value, with
the following range:

• -3.40282347E38 to -1.17549435E-38 (negative values)

• 0

• 1.17549435E-38 to 3.40282347E38 (positive values)

The REAL data type also stores ±infinity, ±NAN, and -IND, but the
software display differs based on the display format.

The software also stores and displays the IEEE subnormal range:

Display Format: Equivalent:

Real +infinite
- infinite
+NAN
-NAN
-indefinite

1.$
-1.$
1.#QNAN
-1.#QNAN
-1.#IND

Exponential +infinite
- infinite
+NAN
-NAN
-indefinite

1.#INF000e+000
-1.#INF000e+000
1.#QNAN00e+000
-1.#QNAN00e+000
-1.#IND0000e+000
Publication 1756-PM001G-EN-P - March 2004

Glossary 34
• -1.17549421E-38 to -1.40129846E-45 (negative values)

• 1.40129846E-45 to 1.17549421E-38 (positive values)

removal and insertion under power (RIUP)

A ControlLogix feature that allows a user to install or remove a
module while chassis power is applied.

requested packet interval (RPI)

When communicating over a the network, this is the maximum
amount of time between subsequent production of input data.

• Typically, this interval is configured in microseconds.

• The actual production of data is constrained to the largest
multiple of the network update time that is smaller than the
selected RPI.

• Use a power of two times the ControlNet network update time
(NUT).

For example, if the NUT is 5 ms, type a rate of 5, 10, 20, 40 ms,
etc.

See network update time (NUT).

routine

A set of logic instructions in a single programming language, such as a
ladder diagram.

• Routines provide the executable code for the project in a
controller (similar to a program file in a PLC or SLC controller).

• Each program has a main routine:

– When the controller triggers the associated task and executes
the associated program, the main routine is the first routine to
execute.

– To call another routine within the program, enter a JSR
instruction in the main routine.

• You can also specify an optional program fault routine.

– If any of the routines in the associated program produce a
major fault, the controller executes program fault routine

See program, task.
Publication 1756-PM001G-EN-P - March 2004

Glossary 35
S scan time

See elapsed time, execution time.

scope

Defines where you can access a particular set of tags. When you
create a tag, you assign (scope) it as either a controller tag or a
program tag for a specific program, as depicted below.

You can have multiple tags with the same name:

• Each tag must have a different scope. For example, one of the
tags can be a controller tag and the other tags can be program
tags for different programs. Or, each tag can be a program tag
for a different program.

• Within a program, you cannot reference a controller tag if a tag
of the same name exists as a program tag for that program.

See controller scope, program scope.

sequential function chart

A sequential function chart (SFC) is similar to a flowchart. It uses steps
and transitions to control a machine or process.

See action, step, transition.

42195

tags that all routines and external
devices (e.g., other controllers) can
access

tags that only the routines in
MainProgram can access
Publication 1756-PM001G-EN-P - March 2004

Glossary 36
SINT

A data type that stores an 8-bit (1-byte) signed integer value
(-128 to +127). Minimize your use of this data type:

• Typically, instructions convert SINT or INT values to an optimal
data type (usually a DINT or REAL value) during execution.
Because this requires additional time and memory, minimize the
use of the SINT and INT data types.

source key

A mechanism that limits who can view a routine.

• You assign a source key to one or more routines.

• Source keys follow the same rules for names as other RSLogix
5000 components, such as routines, tags, and modules.

• To assign a source key to a routine (protect the routine), use
RSLogix 5000 software. (You have to first activate the tool.).

• A source key file (sk.dat) stores the source keys. The source key
file is separate from the RSLogix 5000 project files (.acd).

• To view a routine that is protected by a source key, you must
have the source key.

• Without the source key, you cannot open a routine. RSLogix
5000 software displays “Source Not Available.”

• Regardless of whether or not the source key is available, you
can always download the project and execute all the routines.

See name.

step

In a sequential function chart (SFC), a step represents a major function
of a process. It contains the events that occur at a particular time,
phase, or station.

Step

…and do this
MIX

Actions

Do this…A step executes continuously until a logic
condition tells the controller to go to the
next step.

A step is organized into one or more actions. Each action
performs a specific function, such as controlling a motor, opening
a valve, or placing a group of devices in a specific mode.
Publication 1756-PM001G-EN-P - March 2004

Glossary 37
See action, sequential function chart, transition.

store

To copy a project to the nonvolatile memory of the controller. This
overwrites any project that is currently in the nonvolatile memory.
See load, nonvolatile memory.
Publication 1756-PM001G-EN-P - March 2004

Glossary 38
string

A group of data types that store ASCII characters.

Each string data type contains the following members:

New string data types are useful in the following situations:

• If you have a large number of strings with a fixed size that is less
than 82 characters, you can conserve memory by creating a new
string data type.

• If you must handle strings that have more than 82 characters,
you can create a new string data type to fit the required number
of characters.

42811

42812

orYou can use the default STRING data type.
It stores up to 82 characters.

You can create a new string data type to store the
number of characters that you define.

Name: Data Type: Description: Notes:

LEN DINT number of characters
in the string

The LEN automatically updates to the new count of characters whenever you:
• use the String Browser dialog box to enter characters
• use instructions that read, convert, or manipulate a string

The LEN shows the length of the current string. The DATA member may contain
additional, old characters, which are not included in the LEN count.

DATA SINT array ASCII characters of the
string

• To access the characters of the string, address the name of the tag.
For example, to access the characters of the string_1 tag, enter
string_1.

• Each element of the DATA array contains one character.

• You can create new string data types that store less or more characters.
Publication 1756-PM001G-EN-P - March 2004

Glossary 39
The following example shows the STRING data type and a new string
data type.

IMPORTANT Use caution when you create a new string data type.
If you later decide to change the size of the string
data type, you may lose data in any tags that
currently use that data type.

If you: Then:

make a string data type
smaller

• The data is truncated.
• The LEN is unchanged.

make a string data type
larger

The data and LEN is reset to zero.

42234

This tag is an 20 element array of the default
STRING data type.

This tag uses the default STRING
data type.

This tag uses a new string data type.

• The user named the string data
type STRING_24.

• The new string data type stores
Publication 1756-PM001G-EN-P - March 2004

Glossary 40
structure

Some data types are a structure.

• A structure stores a group of data, each of which can be a
different data type.

• Within a structure, each individual data type is called a
member.

• Like tags, members have a name and data type.

• You create your own structures, called a user-defined data
type, using any combination of individual tags and most other
structures.

• To copy data to a structure, use the COP instruction. See the
Logix5000 Controllers General Instruction Set Reference Manual,
publication 1756-RM003.

The COUNTER and TIMER data types are examples of commonly
used structures.

See member, user-defined data type.

style

The format that numeric values are displayed in. See ASCII, binary,
decimal, exponential, float, hexadecimal, octal.

42365

To expand a structure and
display its members, click
the + sign.

To collapse a structure
and hide its members,
click the – sign.

COUNTER structure

TIMER structure

data types of the
members

members of
running_seconds
Publication 1756-PM001G-EN-P - March 2004

Glossary 41
system overhead time slice

Specifies the percentage of controller time (excluding the time for
periodic tasks) that is devoted to communication and background
functions (system overhead):

• The controller performs system overhead functions for up to
1 ms at a time.

• If the controller completes the overhead functions in less than
1 ms, it resumes the continuous task.

• Communication and background functions include the
following:

– communicate with programming and HMI devices (such as
RSLogix 5000 software)

– respond to messages

– send messages, including block-transfers

– re-establish and monitor I/O connections (such as RIUP
conditions); this does not include normal I/O communications
that occur during program execution

– bridge communications from the serial port of the controller
to other ControlLogix devices via the ControlLogix backplane

• If communications are not completing fast enough, increase the
system overhead timeslice.

The following table shows the ratio between the continuos task and
the system overhead functions:

At this time slice: The continuous tasks runs for: And then overhead occurs for up
to:

10% 9 ms 1 ms

20% 4 ms 1 ms

33% 2 ms 1 ms

50% 1 ms 1 ms
Publication 1756-PM001G-EN-P - March 2004

Glossary 42
At the default time slice of 10 %, system overhead interrupts the
continuous task every 9 ms (of continuous task time).

The interruption of a periodic task increases the elapsed time (clock
time) between the execution of system overhead.

If you increase the time slice to 20 %, the system overhead interrupts
the continuous task every 4 ms (of continuous task time).

Legend:

Task executes.

Task is interrupted (suspended).

1 ms 1 ms

system overhead

9 ms 9 ms

continuous task

5 10 15 20 25

elapsed time (ms)

1 ms 1 ms 1 ms 1 ms

periodic task

1 ms 1 ms

system overhead

9 ms of continuous task time 9 ms of continuous task time

continuous task

5 10 15 20 25

elapsed time (ms)

1 ms 1 ms 1 ms 1 ms 1 ms

system overhead

4 ms 4 ms 4 ms 4 ms 4 ms

continuous task

5 10 15 20 25

elapsed time (ms)
Publication 1756-PM001G-EN-P - March 2004

Glossary 43
If you increase the time slice to 50 %, the system overhead interrupts
the continuous task every 1 ms (of continuous task time).

If the controller only contains a periodic task (s), the system overhead
timeslice value has no effect. System overhead runs whenever a
periodic task is not running.

To change the system overhead time slice:

1. Open the RSLogix 5000 project.

2. In the controller organizer, right-click the Controller
name_of_controller folder and select Properties.

3. Click the Advanced tab.

4. In the System Overhead Time Slice text box, type or select the
percentage of overhead time (10 -90%).

5. Click OK.

1 ms

system overhead

1 ms

continuous task

5 10 15 20 25

elapsed time (ms)

periodic task

system overhead

5 10 15 20 25

elapsed time (ms)
Publication 1756-PM001G-EN-P - March 2004

Glossary 44
T tag

A named area of the controller’s memory where data is stored.

• Tags are the basic mechanism for allocating memory,
referencing data from logic, and monitoring data.

• The minimum memory allocation for a tag is four bytes.

– When you create a tag that stores a BOOL, SINT, or INT
(which are smaller than four bytes), the controller allocates
four bytes, but the data only fills the part it needs.

– User-defined data types and arrays store data in contiguous
memory and pack smaller data types into 32-bit words.

The following examples show memory allocation for various
tags:

– start, which uses the BOOL data type:

– station_status, which uses the DINT data type:

– mixer, which uses a user-defined data type:

Memory
allocation

Bits

31 1 0

allocation not used start

Memory
allocation:

Bits

31 0

allocation station_status

Memory
allocation

Bits

31 24 23 16 15 8 7 0

allocation 1 mixer.pressure

allocation 2 mixer.temp

allocation 3 mixer.agitate_time

allocation 4 unused unused unused bit 0 mixer.inlet
bit 1 mixer.drain
bit 2 mixer.agitate
Publication 1756-PM001G-EN-P - March 2004

Glossary 45
– temp_buffer, which is an array of four INTS (INT[4]):

See alias tag, base tag, consumed tag.

task

A scheduling mechanism for executing a program.

• By default, each new project file contains a pre-configured
continuous task.

• You configure additional, periodic tasks, as needed.

• A task provides scheduling and priority information for a set of
one or more programs that execute based on specific criteria.

• Once a task is triggered (activated), all the programs assigned
(scheduled) to the task execute in the order in which they are
displayed in the controller organizer.

• You can only assign a program to one task at a time.

See continuous task, periodic task.

timestamp

A ControlLogix process that records a change in input data with a
relative time reference of when that change occurred.

transition

In a sequential function chart (SFC), a transition is the true or false
condition or conditions that determine when to go to the next step.

U uncached connection

With the MSG instruction, an uncached connection instructs the
controller to close the connection upon completion of the mSG
instruction. Clearing the connection leaves it available for other
controller uses. See connection, cached connection.

Memory
allocation:

Bits

31 16 0

allocation 1 temp_buffer[1] temp_buffer[0]

allocation 2 temp_buffer[3] temp_buffer[2]
Publication 1756-PM001G-EN-P - March 2004

Glossary 46
unidirectional connection

A connection in which data flows in only one direction: from the
originator to the receiver. See connection, bidirectional connection.

upload

The process of transferring the contents of the controller into a project
file on the workstation.

If you do not have the project file for a controller, you can upload
from the controller and create a project file. However, not everything
that is stored in a project file is available from the controller. If you
upload from a controller, the new project file will not contain:

• rung comments

• descriptions for tags, tasks, programs, routines, modules, or
user-defined structures

• chains of aliases (aliases pointing to other aliases)

Alias chains are not completely reconstructed from the
controller. If there are several possible names for a data item, the
firmware and software choose a best-fit alias that may not reflect
how the alias was specified in the original project.

See download.

user-defined data type

You can also create your own structures, called a user-defined data
type (also commonly referred to as a user-defined structure). A
user-defined data type groups different types of data into a single
named entity.

• Within a user-defined data type, you define the members.

• Like tags, members have a name and data type.

• You can include arrays and structures.

• Once you create a user-defined data type, you can create one or
more tags using that data type.

• Minimize your use of the following data type because they
typically increase the memory requirements and execution time
of your logic:

– INT

– SINT
Publication 1756-PM001G-EN-P - March 2004

Glossary 47
For example, some system values use the SINT or INT data type.
If you create a user-defined data type to store those values, then
use the corresponding SINT or INT data type.

• If you include members that represent I/O devices, you must
use ladder logic to copy the data between the members in the
structure and the corresponding I/O tags. See "Buffer I/O" on
page 2-8.

• When you use the BOOL, SINT, or INT data types, place
members that use the same data type in sequence:

• You can use single dimension arrays.

• You can create, edit, and delete user-defined data types only
when programming offline.

• If you modify a user-defined data type and change its size, the
existing values of any tags that use the data type are set to
zero (0).

• To copy data to a structure, use the COP instruction. See the
Logix5000 Controllers General Instruction Set Reference Manual,
publication 1756-RM003.

See structure.

more efficient

BOOL

BOOL

BOOL

DINT

DINT

less efficient

BOOL

DINT

BOOL

DINT

BOOL
Publication 1756-PM001G-EN-P - March 2004

Glossary 48
W watchdog

Specifies how long a task can run before triggering a major fault.

• Each task has a watchdog timer that monitors the execution of
the task.

• A watchdog time can range from 1 ms to 2,000,000 ms (2000
seconds). The default is 500 ms.

• The watchdog timer begins to time when the task is initiated and
stops when all the programs within the task have executed.

• If the task takes longer than the watchdog time, a major fault
occurs: (The time includes interruptions by other tasks.)

• A watchdog time-out fault (major fault) also occurs if a task
triggered again while it is executing (periodic task overlap). This
can happen if a lower-priority task is interrupted by a
higher-priority task, delaying completion of the lower-priority
task.

• You can use the controller fault handler to clear a watchdog
fault. If the same watchdog fault occurs a second time during the
same logic scan, the controller enters faulted mode, regardless
of whether the controller fault handler clears the watchdog fault.

To change the watchdog time of a task:

1. Open the RSLogix 5000 project.

2. In the controller organizer, right-click name_of_task and
select Properties.

3. Click the Configuration tab.

4. In the Watchdog text box, type a watchdog time.

5. Click OK.

ATTENTION

!
If the watchdog timer reaches a configurable preset,
a major fault occurs. Depending on the controller
fault handler, the controller might shut down.
Publication 1756-PM001G-EN-P - March 2004

Index

Numerics
1784-CF64 Industrial CompactFlash card

format 17-4
stroage of firmware 17-6
use of CompactFlash reader 17-18

A
action 6-19

add 6-16
assign order 6-22
assign qualifier 6-17
boolean 5-20
choose between boolean and

non-boolean 5-18
configure 6-17
data type 5-20
non-boolean 5-18
program 5-18, 6-19
qualifier 5-23
rename 6-16
reset 5-42
store 5-42
use expression 6-18
use of structured text 6-19

address
assign indirect 3-27
tag 3-23

function block diagram 9-4
I/O module 2-7
ladder logic 8-8, 8-11

alarm
sequential function chart 5-28, 6-12

alias
create 3-26
show/hide 3-25
use of 3-24

arithmetic operators
structured text 7-6

array
calculate subscript 3-29
create 3-16
index through 3-27
organize 3-7
overview 3-13
produce large array 11-1

ASCII
build string 13-18
compare characters 13-4, 13-10
configure serial port 12-3
configure user protocol 12-5
connect device 12-2
convert characters 13-12

decode message 13-14
enter characters 12-21
extract characters 13-2
look up characters 13-4
manipulate characters 13-1
organize data 12-8
read characters 12-9
structured text assignment 7-4
write characters 12-14

assignment
ASCII character 7-4
non-retentive 7-3
retentive 7-2

assume data available 9-8, 9-11, 9-12,
9-21

automatic reset
sequential function chart 5-38

B
bar code

extract characters 13-2
search for a match 13-4
test characters 13-4, 13-10

bitwise operators
structured text 7-10

block transfer
guidelines 10-24

block. See array
BOOL expression

sequential function chart 5-26, 6-14
structured text 7-4

boolean action 5-20, 6-19
program 5-20

branch
ladder logic 8-2
sequential function chart 5-12, 6-5,

6-6
buffer

for unconnected message 10-23,
10-25

I/O 2-8

C
cache

connection 10-22
CASE 7-16
change of state

configure for I/O module 4-22
chassis size 1-3
clear

major fault 1-17, 15-1
Publication 1756-PM001G-EN-P - March 2004

2 Index
minor fault 16-1
nonvolatile memory 17-15

codes
major fault 15-15
minor fault 16-4

comments
structured text 7-28

communicate
other controllers 10-1
with multiple controllers B-1

communication
execution 1-26
guidelines for unscheduled

communication 4-8
I/O module 2-2
impact on execution 4-6
Message instruction 10-19
system overhead time slice 1-26

CompactFlach card
use of reader 17-18

compare
ASCII characters 13-4, 13-10

compliance tables C-5
configure

action 6-17
alarm 6-12
controller 1-3
driver 1-13
electronic keying 2-6
execution of sequential function chart

5-50, 6-28
I/O module 2-1, 10-2
load from nonvolatile memory 17-7,

17-12
main routine 1-21
output processing for a task 4-13
project 1-3
serial port for ASCII 12-3
step 6-11
system overhead time slice 1-26
task 1-19
user protocol for ASCII 12-5

connection
cache 10-22
direct 2-3
failure 10-5
I/O fault 10-5
inhibit 10-2
listen-only 2-4
monitor 10-6
overview 2-2
produced or consumed tag 10-10
rack-optimized 2-3

reduce the number of 2-3
construct

structured text 7-12
consume

tag 10-9
consumed tag

connection requirements 10-10
create 10-15
maintain data integrity 4-44
organize 10-12
overview 10-9
synchronize controllers 4-45

continuous task
execution 1-18
overview 4-2
use of 4-2

controller
change properties 1-3
download 1-14
memory information 19-1
mode 1-16
nonvolatile memory 17-1, 17-3
number of tasks 4-4
shut down 15-13
suspend 15-13
synchronize 4-45
tags 3-5
triggers supported 4-21
update firmware

during load from nonvolatile memory
17-6

controller organizer
navigate 1-4
open routine 1-11

controller tags
use of 3-5

ControlNet
bandwidth limits 10-13
configure driver 1-13
produce and consume data 10-9

convert
ASCII characters 13-12

COS. See change of state
create

alias 3-26
consumed tag 10-15
driver 1-13
event task 4-53
periodic task 4-54
produced tag 10-14
program 1-20
project 1-1
routine 1-10
Publication 1756-PM001G-EN-P - March 2004

Index 3
string 13-18
string data type 12-8
tag 3-9, 8-11

function block diagram 9-22
tag using Excel 3-10
user-defined data type 3-19

D
data

ASCII 12-8
block. See array
definitions C-2
enter ASCII characters 12-21
force 14-6, 14-8
I/O 2-7
produce and consume 10-9

data table. See tag
data type

choose 3-3
convert data 10-28
overview 3-3
structure 3-3

data. See also tag
description

structured text 7-28
tag 3-21
user-defined data type 3-21

disable
force 14-3, 14-13

document
sequential function chart 6-23
structured text 7-28
tag 3-21
user-defined data type 3-21

documentation
show or hide in sequential function chart

6-26
don"t scan

sequential function chart 5-34
download 1-14
driver

configure 1-13

E
electronic keying 2-6
enable

force 14-2
enter

action 6-16
address 8-11
ASCII characters 12-21

function block element 9-18
ICON 9-25
ladder logic 8-10
OCON 9-25
selection branch 6-6
sequential function chart 6-3
simultaneous branch 6-5

EOT instruction 5-27
Ethernet

configure driver 1-13
produce and consume tags 10-9

event task
axis registration trigger 4-34
axis watch trigger 4-38
checklist for consumed tag event 4-46,

4-47
checklist for input event 4-26
checklist for motion group event 4-33
checklist for registration event 4-35
checklist for watch position event 4-39
choose trigger 4-20
consumed tag trigger 4-42
create 4-53
estimate throughput 4-28
EVENT trigger 4-50
input data trigger 4-22
motion group trigger 4-32
overview 4-2
timeout 4-55
use of 4-2

execute
event task 4-20

execution
sequential function chart 5-51, 6-28
task 1-18

execution order
function block diagram 9-5

export
ladder logic 8-14

expression
BOOL expression

sequential function chart 5-26,
6-14

structured text 7-4
calculate array subscript 3-29
numeric expression

sequential function chart 6-12,
6-18

structured text 7-4
order of execution

structured text 7-10
structured text

arithmetic operators 7-6
Publication 1756-PM001G-EN-P - March 2004

4 Index
bitwise operators 7-10
functions 7-6
logical operators 7-9
overview 7-4
relational operators 7-7

extract
ASCII characters 13-2

F
fault

clear 1-17, 15-1
communication loss 10-5
create user-defined 15-13
develop routine to clear fault 15-1
during load from nonvolatile memory

17-4
during prescan 15-8
I/O connection 10-5
indirect address 15-8
major fault codes 15-15
minor fault codes 16-4
monitor minor 16-1
test a fault routine 15-12

feedback loop
function block diagram 9-8

file. See array
firmware

update during load from nonvolatile
memory 17-6

first scan bit 1-22
FOR…DO 7-19
force

disable 14-3, 14-13
enable 14-2
LED 14-4
monitor 14-4
options 14-6
remove 14-3, 14-13
safety precautions 14-2
sequential function chart 14-9, 14-12
tag 14-6, 14-8

function block diagram
add an element 9-18
add sheet 9-18
assign immediate value 9-24
choose elements 9-3
connect elements 9-21
create a scan delay 9-12
force a value 14-1
hide a pin 9-20
latching data 9-5
order of execution 9-5

organize sheets 9-2
rename a block 9-23
resolve a loop 9-8
resolve data flow between blocks 9-11
resolve loop 9-21
show a pin 9-20

function blockdiagram
applications for 1-8

functions
structured text 7-6

G
global data. See scope

I
I/O

buffer 2-8
document. See alias
impact on execution 4-6
output processing 4-13
synchronize with logic 2-8
throughput for event task 4-28
update period 2-2

I/O module
choose for event task 4-25
communication format 2-3
communication loss 10-5
configure 2-1
configure change of state 4-22
connection fault 10-5
electronic keying 2-6
inhibit 10-2
ownership 2-4
tag address 2-7
trigger event task 4-22
update period 2-2

ICON
add 9-25
choosing 9-3
enter 9-18

IEC61131-3 compliance
data definitions C-2
instruction set C-4
introduction C-1
operating system C-2
program portability C-4
programming language C-3
tables C-5

IF...THEN 7-13
immediate value

function block diagram 9-24
Publication 1756-PM001G-EN-P - March 2004

Index 5
ladder logic 8-13
import

ladder logic 8-14
index. See indirect address
indirect address 3-27

clear a major fault 15-8
format 3-23
use of expression 3-29

inhibit
connetion 10-2
I/O module 10-2
task 4-17

instruction set C-4
IREF

choosing 9-3
enter 9-18
latching data 9-5
to assign immediate value 9-24

J
jump

sequential function chart 5-17

K
keying

electronic 2-6

L
ladder logic

applications for 1-8
arrange input instructions 8-6
arrange output instructions 8-7
assign immediate value 8-13
branch 8-2
develop 8-5
enter 8-10
export 8-14
force a value 14-1
import 8-14
manage messages A-1
override a value 14-1
rung condition 8-4

last scan
sequential function chart 5-32

latching data
function block diagram 9-5

LED
force 14-4

library of logic
create and use 8-14

load a project 17-12
local data. See scope
logical operators

structured text 7-9
look up a bar code 13-4

M
main routine

use of sequential function chart 5-6
major fault

codes 15-15
create user-defined 15-13
develop fault routine 15-1

manipulate string 13-1
mark as boolean 6-19
math operators

structured text 7-6
memory

allocation for tags 3-3
determine amount of free 19-1
types 19-1

message
cache connecton 10-22
convert between 16 and 32-bit data

10-28
decode string 13-14
guidelines 10-24
limits 10-21
manage multiple messages A-1
processing 10-20
queue 10-21
to a single controller 10-19
to multiple controllers B-1
unconnected buffer 10-23, 10-25

Microsoft Excel
export/import tags 3-10

minor fault
clear 16-1
codes 16-4
logic 16-1

mode
controller 1-16

monitor
forces 14-4
I/O connection 10-6
task 4-10

motion planner
impact on execution 4-6
trigger event task 4-32

N

Publication 1756-PM001G-EN-P - March 2004

6 Index
name
guidelines for tag 3-7
reuse of tag name 3-5
tag name 8-8, 9-4

nonvolatile memory
check for a load 17-14
clear 17-15
fault during load 17-4
load a project 17-12
load image options 17-7
overview 17-1
store a project 17-9
supported controllers 17-3

numeric expression 6-12, 6-18, 7-4

O
OCON

add 9-25
choosing 9-3
enter 9-18

open
routine 1-11

operating system C-2
operators

order of execution
structured text 7-10

order of execution
function block diagram 9-5
structured text expression 7-10

OREF
choosing 9-3
enter 9-18

organize 1-7
strings 12-8

output processing
manually configure 4-15
overview 4-13
programmatically configure 4-16

overlap
manually check for 4-10
overview 4-9
programmaticlly check for 4-11

overrun. See overlap
ownership

I/O module 2-4

P
pass-through description 3-21
pause an SFC 5-51
period

define for a task 1-19
periodic task

application for 5-5
create 4-54
execution 1-18
overview 4-2
use of 4-2

PLC-5C
share data 10-17

postscan
sequential function chart 5-32
structured text 7-3

prescan
clear a major fault 15-8

prgoram tags
use of 3-5

priority
assign 4-5
selection branch 6-8

produce
large array 11-1
tag 10-9

produced tag
connection requirements 10-10
create 10-14
organize 10-12
overview 10-9

program
action 5-18, 6-19
boolean action 5-20
configure 1-21
create 1-20
main routine 1-21
overview 1-4
portability C-4
scan time 1-29
tags 3-5
transition 6-14

program mode 1-16
program/operator control

overview 9-14
programmatic reset option 5-35
programming language

choose 1-8
IEC61131-3 compliance C-3
RSLogix 5000 software 1-7

project
components 1-4
configure 1-3
controller organizer 1-4
create 1-1
download 1-14
Publication 1756-PM001G-EN-P - March 2004

Index 7
load from nonvolatile memory 17-7,
17-12

nonvolatile memory 17-1
number of tasks 4-4
organize routines 1-7
organize tasks 4-2
protect 18-1, 18-13
restrict access 18-13
store in nonvolatile memory 17-9
upload 1-12
verify 1-12

protect
project 18-1, 18-13
routine 18-1

Q
qualifier

assign 6-17
choose 5-23

R
read

ASCII characters 12-9
registration

trigger event task 4-34
relational operators

structured text 7-7
remove

force 14-3, 14-13
rename

action 6-16
functin block 9-23
step 6-11
transition 6-14

REPEAT…UNTIL 7-25
requested packet interval 2-2
reset

action 5-42
SFC 5-46

reset an SFC 5-49, 5-51
restart

sequential function chart 5-46
routine

as transition 5-27
choose programming language 1-8
configure as main routine 1-21
create 1-10
import ladder logic 8-14
nest within sequential function chart

5-49
open 1-11

organize 1-7
overview 1-4
protect 18-1
restrict access 18-1
verify 6-29, 8-17, 9-26

routine source protection 18-1
RPI. See requested packet interval
RSI Security Server software 18-13
RSLinx

configure 1-13
RSLogix 5000 Source Protection tool

18-1
run mode 1-16
rung condition 8-4

S
save 1-12

 see also store a project
save as 1-12
scan delay

function block diagram 9-12
scan time 1-29
scope

guidelines 3-7
tag 3-5

security
protect a project 18-13
protect a routine 18-1

Security Server software 18-13
selection branch

assign priorities 6-8
create 6-6
overview 5-15

send
ASCII characters 12-14

sequential function chart
action

assign order 6-22
call a subroutine 6-21
configure 6-17
enter 6-16
overview 5-18
program 6-19
rename 6-16
use of boolean action 5-20

applications for 1-8
automatic reset option 5-38
boolean action 5-20
call a subroutine 6-21
configure execution 6-28
define tasks 5-5
Publication 1756-PM001G-EN-P - March 2004

8 Index
document 6-23
don"t scan option 5-34
enter a new element 6-3
execution

configure 5-50
diagrams 5-51
pause 5-51

force element 14-1, 14-9, 14-12
last scan 5-32
nest 5-49
numeric expression 6-12, 6-18
organize a project 5-6
organize steps 5-12
pause an SFC 5-51
programmatic reset option 5-35
qualifier 5-23
reset

data 5-32
SFC 5-46, 5-49, 5-51

restart 5-46
return to previous step 6-9
selection branch

assign priorities 6-8
create 6-6
overview 5-15

sequence 5-14
show or hide documentation 6-26
simultaneous branch

create 6-5
overview 5-16

step
configure 6-11
define 5-6
organize 5-12
overview 5-6
rename 6-11

step through
simultaneous branch 14-9
transition 14-9

step through simultaneous branch 14-9
step through transition 14-9
stop 5-45
text box 6-25
transition

overview 5-24
program 6-14
rename 6-14

wire 5-17
serial

cable wiring 12-2
configure port for ASCII 12-3
connect an ASCII device 12-2

SFC_ACTION structure 5-20

SFC_STEP structure 5-8
SFC_STOP structure 5-47
SFP instruction 5-51
SFR instruction 5-46, 5-49, 5-51
sheet

add 9-18
connect 9-25
function block diagram 9-2

shut down the controller 15-13
simultaneous branch 5-16

enter 6-5
force 14-9, 14-12
step through 14-9

slot number 1-3
source key 18-1
status

force 14-4
memory 19-1
monitor 1-22, 1-23

status flags 1-22
step

add action 6-16
alarm 5-28
assign preset time 6-11
configure 6-11
configure alarm 6-12
data type 5-8
define 5-6
organize in sequential function chart

5-12
rename 6-11
selection branch 5-15
sequence 5-14
simultaneous branch 5-16
timer 5-28

step through
simultaneous branch 14-9
transition 14-9

stop
data type 5-47
sequential function chart 5-45

store
action 5-42
project 17-9

string
compare characters 13-4, 13-10
convert characters 13-12
create 13-18
data type 12-8
enter characters 12-21
evaluation in structured text 7-8
extract characters 13-2
Publication 1756-PM001G-EN-P - March 2004

Index 9
manipulate 13-1
organize data 12-8
read characters 12-9
search an array of characters 13-4
write characters 12-14

string data type
create 12-8

structure
create 3-19
organize 3-7
overview 3-3
SFC_ACTION 5-20
SFC_STEP 5-8
SFC_STOP 5-47
user-defined 3-17

structured text
applications for 1-8
arithmetic operators 7-6
assign ASCII character 7-4
assignment 7-2
bitwise operators 7-10
CASE 7-16
comments 6-23, 7-28
components 7-1
contructs 7-12
evaluation of strings 7-8
expression 7-4
FOR…DO 7-19
force a value 14-1
functions 7-6
IF...THEN 7-13
in action 6-19
logical operators 7-9
non-retentive assignment 7-3
numeric expression 7-4
relational operators 7-7
REPEAT…UNTIL 7-25
WHILE…DO 7-22

subroutine 1-7
overview 1-4

suspend
controller 15-13

symbol. See alias.
synchronize

controllers 4-45
system data

access 1-23
system overhead time slice 1-26

guidelines for multiple tasks 4-8
impact on executon 4-6

T

tag
address 3-23
alias 3-24
array 3-13
assign 8-11

function block diagram 9-22
assign dimensions 3-16
choose name 8-8, 9-4
consume 10-15
create 3-9, 8-11
create alias 3-26
create using Excel 3-10
data type 3-3
description 3-21
enter 8-11
force 14-6, 14-8
guidelines 3-7
guidelines for messages 10-24
I/O 2-7
memory allocation 3-3
name 3-5
organize 3-7
organize for message 10-19
organize produced and consumed tags

10-12
overview 3-1
produce 10-14
produce and consume 10-9
produce large array 11-1
reuse of name 3-5
scope 3-5
string 12-8
trigger event task 4-42
type 3-2

task
assign priority 4-5
avoid overlap 4-9
choose event trigger 4-20
choose type 4-2
configure 1-19
create event 4-53
create periodic 4-54
define 5-5
define timeout 4-55
execution 1-18
impact of multiple tasks on

communication 4-8
inhibit 4-17
manually check for overlap 4-10
manually configure output processing

4-15
monitor 4-10, 4-11
number supported 4-4
Publication 1756-PM001G-EN-P - March 2004

10 Index
output processing 4-13
overlap 4-9
overview 1-4
priority 4-5
programmatically check for overlap 4-11
programmatically configure output

processing 4-16
scan time 1-29
trigger via EVENT instruction 4-50
watchdog time 1-31

test a fault routine 15-12
test mode 1-16
text box

sequential function chart 6-25
show or hide in sequential function chart

6-26
throughput

estimate for event task 4-28
timeout

define for event task 4-55
transition

BOOL expression 5-26
call subroution 6-15
choose program method 5-26
define 5-24
EOT instruction 5-27
force 14-9, 14-12
program 6-14
rename 6-14
step through 14-9
use of a subroutine 5-27

trigger
axis registration 4-34
axis watch 4-38
choose for event task 4-20
consumed tag 4-42

EVENT instruction 4-50
module input data 4-22
motion group 4-32
supported by controller 4-21

U
unresolved loop

function block diagram 9-8
upload 1-12
user protocol

configure for ASCII 12-5
user-defined data type

create 3-19
guidelines 3-19
overview 3-17

V
verify

project 1-12
routine 6-29, 8-17, 9-26

W
watch point

trigger event task 4-38
watchdog time 1-31
weight

convert 13-12
WHILE…DO 7-22
wire

function block diagram 9-5, 9-8, 9-20
sequential function chart 5-17, 6-9

write
ASCII characters 12-14
Publication 1756-PM001G-EN-P - March 2004

How Are We Doing?
Your comments on our technical publications will help us serve you better in the future.
Thank you for taking the time to provide us feedback.

You can complete this form and mail it back to us, visit us online at www.ab.com/manuals, or

email us at RADocumentComments@ra.rockwell.com

vr

Please complete the sections below. Where applicable, rank the feature (1=needs improvement, 2=satisfactory, and 3=outstanding).

Pub. Title/Type Logix5000™ Controllers Common Procedures

Cat. No. 1756 ControlLogix®,
1769 CompactLogix™,
1789 SoftLogix™,
1794 FlexLogix™, PowerFlex
700S with DriveLogix

Pub. No. 1756-PM001G-EN-P Pub. Date March 2004 Part No. 957867-41

Overall Usefulness 1 2 3 How can we make this publication more useful for you?

Completeness
(all necessary information

is provided)

1 2 3 Can we add more information to help you?

procedure/step illustration feature

example guideline other

explanation definition

Technical Accuracy
(all provided information

is correct)

1 2 3 Can we be more accurate?

text illustration

Clarity
(all provided information is

easy to understand)

1 2 3 How can we make things clearer?

Other Comments You can add additional comments on the back of this form.

Your Name Location/Phone

Your Title/Function Would you like us to contact you regarding your comments?

___No, there is no need to contact me

___Yes, please call me

___Yes, please email me at __________________________

___Yes, please contact me via ________________________

Return this form to: Allen-Bradley Marketing Communications, 1 Allen-Bradley Dr., Mayfield Hts., OH 44124-9705

Phone: 440-646-3176 Fax: 440-646-3525 Email: RADocumentComments@ra.rockwell.com
Publication ICCG-5.21- January 2001 PN 955107-82

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN-BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PLEASE FASTEN HERE (DO NOT STAPLE)

PL
EA

SE
 R

EM
OV

E

ASCII Character Codes
Character Dec Hex

[ctrl-@] NUL 0 $00

[ctrl-A] SOH 1 $01

[ctrl-B] STX 2 $02

[ctrl-C] ETX 3 $03

[ctrl-D] EOT 4 $04

[ctrl-E] ENQ 5 $05

[ctrl-F] ACK 6 $06

[ctrl-G] BEL 7 $07

[ctrl-H] BS 8 $08

[ctrl-I] HT 9 $09

[ctrl-J] LF 10 $l ($0A)

[ctrl-K] VT 11 $0B

[ctrl-L] FF 12 $0C

[ctrl-M] CR 13 $r ($0D)

[ctrl-N] SO 14 $0E

[ctrl-O] SI 15 $0F

[ctrl-P] DLE 16 $10

[ctrl-Q] DC1 17 $11

[ctrl-R] DC2 18 $12

[ctrl-S] DC3 19 $13

[ctrl-T] DC4 20 $14

[ctrl-U] NAK 21 $15

[ctrl-V] SYN 22 $16

[ctrl-W] ETB 23 $17

[ctrl-X] CAN 24 $18

[ctrl-Y] EM 25 $19

[ctrl-Z] SUB 26 $1A

ctrl-[ESC 27 $1B

[ctrl-\] FS 28 $1C

ctrl-] GS 29 $1D

[ctrl-^] RS 30 $1E

[ctrl-_] US 31 $1F

SPACE 32 $20

! 33 $21

“ 34 $22

35 $23

$ 36 $24

% 37 $25

& 38 $26

‘ 39 $27

(40 $28

) 41 $29

* 42 $2A

+ 43 $2B

, 44 $2C

- 45 $2D

. 46 $2E

/ 47 $2F

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

: 58 $3A

; 59 $3B

< 60 $3C

= 61 $3D

> 62 $3E

? 63 $3F

Character Dec Hex

@ 64 $40

A 65 $41

B 66 $42

C 67 $43

D 68 $44

E 69 $45

F 70 $46

G 71 $47

H 72 $48

I 73 $49

J 74 $4A

K 75 $4B

L 76 $4C

M 77 $4D

N 78 $4E

O 79 $4F

P 80 $50

Q 81 $51

R 82 $52

S 83 $53

T 84 $54

U 85 $55

V 86 $56

W 87 $57

X 88 $58

Y 89 $59

Z 90 $5A

[91 $5B

\ 92 $5C

] 93 $5D

^ 94 $5E

_ 95 $5F

Character Dec Hex

‘ 96 $60

a 97 $61

b 98 $62

c 99 $63

d 100 $64

e 101 $65

f 102 $66

g 103 $67

h 104 $68

i 105 $69

j 106 $6A

k 107 $6B

l 108 $6C

m 109 $6D

n 110 $6E

o 111 $6F

p 112 $70

q 113 $71

r 114 $72

s 115 $73

t 116 $74

u 117 $75

v 118 $76

w 119 $77

x 120 $78

y 121 $79

z 122 $7A

{ 123 $7B

| 124 $7C

} 125 $7D

~ 126 $7E

DEL 127 $7F

Character Dec Hex

Publication 1756-PM001G-EN-P - March 2004 1 PN 957867-41
Supersedes Publication 1756-PM001F-EN-P - June 2003 Copyright © 2004 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Rockwell Automation
Support

Rockwell Automation provides technical information on the web to assist you
in using our products. At http://support.rockwellautomation.com, you can
find technical manuals, a knowledge base of FAQs, technical and application
notes, sample code and links to software service packs, and a MySupport
feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation,
configuration and troubleshooting, we offer TechConnect Support programs.
For more information, contact your local distributor or Rockwell Automation
representative, or visit http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem with a hardware module within the first 24
hours of installation, please review the information that's contained in this
manual. You can also contact a special Customer Support number for initial
help in getting your module up and running:

New Product Satisfaction Return

Rockwell tests all of our products to ensure that they are fully operational
when shipped from the manufacturing facility. However, if your product is
not functioning and needs to be returned:

ControlNet is a trademark of ControlNet International, Ltd.

DeviceNet is a trademark of the Open DeviceNet Vendor Association.

United States 1.440.646.3223
Monday – Friday, 8am – 5pm EST

Outside United
States

Please contact your local Rockwell Automation representative for any
technical support issues.

United States Contact your distributor. You must provide a Customer Support case
number (see phone number above to obtain one) to your distributor in
order to complete the return process.

Outside United
States

Please contact your local Rockwell Automation representative for
return procedure.

Logix5000™
 Controllers Com

m
on Procedures

Program
m

ing M
anual

	1756-PM001G-EN-P, Logix5000™ Controllers Common Procedures Programming Manual
	Important User Information
	Summary of Changes
	Introduction
	Updated Information

	Preface
	Purpose of this Manual
	Who Should Use this Manual
	When to Use this Manual
	How to Use this Manual

	Table of Contents
	1 - Getting Started
	Using This Chapter
	Create a Project
	Explore a Project
	Create Routines
	Verify a Project
	Save a Project
	Configure a Communication Driver
	Download a Project to the Controller
	Select a Mode for the Controller
	Manually Clear a Major Fault
	Configure the Execution of a Task
	Create Multiple Programs
	Access Status Information
	Adjust the System Overhead Time Slice
	View Scan Time
	Adjust the Watchdog Time

	2 - Communicate with I/O
	Using This Chapter
	Configure an I/O Module
	Address I/O Data
	Buffer I/O

	3 - Organize Tags
	Using this Chapter
	Defining Tags
	Guidelines for Tags
	Create a Tag
	Create an Array
	Create a User-Defined Data Type
	Describe a User-Defined Data Type
	Address Tag Data
	Assign Alias Tags
	Assign an Indirect Address

	4 - Manage Multiple Tasks
	Using This Chapter
	Select the Controller Tasks
	Prioritize Periodic and Event Tasks
	Leave Enough Time for Unscheduled Communication
	Avoid Overlaps
	Configure Output Processing for a Task
	Inhibit a Task
	Choose the Trigger for an Event Task
	Using the Module Input Data State Change Trigger
	Using the Motion Group Trigger
	Using the Axis Registration Trigger
	Using the Axis Watch Trigger
	Using the Consumed Tag Trigger
	Using the EVENT Instruction Trigger
	Create a Task
	Define a Timeout Value for an Event Task

	5 - Design a Sequential Function Chart
	When to Use This Procedure
	How to Use This Procedure
	What is a Sequential Function Chart?
	How to Design an SFC: Overview
	Define the Tasks
	Choose How to Execute the SFC
	Define the Steps of the Process
	Organize the Steps
	Add Actions for Each Step
	Describe Each Action in Pseudocode
	Choose a Qualifier for an Action
	Define the Transition Conditions
	Transition After a Specified Time
	Turn Off a Device at the End of a Step
	Keep Something On From Step-to-Step
	End the SFC
	Nest an SFC
	Configure When to Return to the OS/JSR
	Pause or Reset an SFC
	Execution Diagrams

	6 - Program a Sequential Function Chart
	When to Use This Procedure
	Before You Use This Procedure
	How to Use This Procedure
	Add an SFC Element
	Create a Simultaneous Branch
	Create a Selection Branch
	Set the Priorities of a Selection Branch
	Return to a Previous Step
	Rename a Step
	Configure a Step
	Rename a Transition
	Program a Transition
	Add an Action
	Rename an Action
	Configure an Action
	Program an Action
	Assign the Execution Order of Actions
	Document the SFC
	Show or Hide Text Boxes or Tag Descriptions
	Configure the Execution of the SFC
	Verify the Routine

	7 - Program Structured Text
	When to Use This Chapter
	Structured Text Syntax
	Assignments
	Expressions
	Instructions
	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	WHILE…DO
	REPEAT…UNTIL
	Comments

	8 - Program Ladder Logic
	When to Use This Procedure
	Before You Use This Procedure
	How to Use This Procedure
	Definitions
	Write Ladder Logic
	Enter Ladder Logic
	Assign Operands
	Export/Import Ladder Logic
	Verify the Routine

	9 - Program a Function Block Diagram
	When to Use This Procedure
	Before You Use This Procedure
	How to Use This Procedure
	Identify the Sheets for the Routine
	Choose the Function Block Elements
	Choose a Tag Name for an Element
	Define the Order of Execution
	Identify any Connectors
	Define Program/Operator Control
	Add a Sheet
	Add a Function Block Element
	Connect Elements
	Assign a Tag
	Assign an Immediate Value (Constant)
	Connect Blocks with an OCON and ICON
	Verify the Routine

	10 - Communicate with Other Devices
	Using This Chapter
	Connections
	Produce and Consume a Tag
	Execute a Message (MSG) Instruction
	Get or Set the Number of Unconnected Buffers
	Convert Between INTs and DINTs

	11 - Produce a Large Array
	When to Use this Procedure
	Produce a Large Array

	12 - Communicate with an ASCII Device
	When to Use this Procedure
	How to Use This Procedure
	Connect the ASCII Device
	Configure the Serial Port
	Configure the User Protocol
	Create String Data Types
	Read Characters from the Device
	Send Characters to the Device
	Enter ASCII Characters

	13 - Process ASCII Characters
	When to Use this Procedure
	How to Use this Procedure
	Extract a Part of a Bar Code
	Look Up a Bar Code
	Check the Bar Code Characters
	Convert a Value
	Decode an ASCII Message
	Build a String

	14 - Force Logic Elements
	When to Use This Procedure
	How to Use This Procedure
	Precautions
	Check Force Status
	What to Force
	When to Use an I/O Force
	Add an I/O Force
	When to Use Step Through
	Step Through a Transition or a Force of a Path
	When to Use an SFC Force
	Add an SFC Force
	Remove or Disable Forces

	15 - Handle a Major Fault
	Using this Chapter
	Develop a Fault Routine
	Programmatically Clear a Major Fault
	Clear a Major Fault During Prescan
	Test a Fault Routine
	Create a User-Defined Major Fault
	Major Fault Codes

	16 - Monitor Minor Faults
	When to Use This Procedure
	Monitor Minor Faults
	Minor Fault Codes

	17 - Store and Load a Project Using Nonvolatile Memory
	When to Use This Procedure
	How to Use This Procedure
	Before You Use Nonvolatile Memory
	Store a Project
	Load a Project
	Check for a Load
	Clear Nonvolatile Memory
	Use a CompactFlash Reader

	18 - Secure a Project
	When to Use This Procedure
	Use Routine Source Protection
	Use RSI Security Server to Protect a Project

	19 - Determine Controller Memory Information
	When to Use This Chapter
	Determine What Memory Information You Want
	Estimate Memory Information Offline
	View Run Time Memory Information
	Write Logic to Get Memory Information

	A - Manage Multiple Messages
	Purpose
	When to Use this Appendix
	How to Use this Appendix
	Message Manager Logic

	B - Send a Message to Multiple Controllers
	IEC61131-3 Compliance
	Using This Appendix
	Introduction
	Operating System
	Data Definitions
	Programming Languages
	Instruction Set
	IEC61131-3 Program Portability
	IEC Compliance Tables

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back Cover

