Logs

Apr 5-1:50 PM

Apr 6-7:21 AM

$\log _{D} \mathbb{A}=\mathbb{N} \quad \mathbb{D}^{\mathbb{N}}=\mathbb{A}$

Write each expression in exponential form:
a) $\log _{8} 2=1 / 3$
b) $7=\log _{2} 128$

Write each expression in logarithmic form:
a) $12^{0}=1$
b) $4^{-2}=0.0625$

| $\log _{\mathrm{D}} \mathbb{A} \mathbb{N}$ $\mathbb{D}^{\mathbb{N}}=\mathbb{A}$
 Solve:
 1) $\log _{8} 8=x$ 2) $\log _{5} 625=x$
 3) $\log _{b} 27=3$ 4) $\log _{b} 64=6$
 5) $\log _{25} x=-4$ 6) $\log _{100} x=-1 / 2$ |
| :--- | :--- |

Apr 6-7:27 AM
\qquad Date \qquad
Logs Day 1

Logger DAN cut his finger and showed his DNA

The logarithmic equation:
$\log _{D} A=\mathbb{N}$

The Exponential equation:
$\mathrm{D}^{\mathrm{N}}=\mathbf{A}$

Example:
The logarithmic equation:
$\log _{5} 125=3$

Write in logarithmic form:

1) $8^{2}=64$
2) $3^{4}=81$
3) $2^{2}=4$
4) $4^{-2}=\frac{1}{16}$
5) $12^{-1}=\frac{1}{12}$
6) $9^{\frac{3}{2}}=27$
7) $16^{\frac{1}{2}}=4$
8) $8^{-\frac{2}{3}}=\frac{1}{4}$
9) $y=a^{x}$
10) $y=3^{x}$
11) $5^{x}=6$
12) $y=(\sqrt{5})^{x}$

Write in Exponential form:

1) $\log _{3} x=a$
2) $\log _{a} x=b$
3) $\log _{b} N=x$
4) $\log _{r} s=t$
5) $\log _{2} \frac{1}{4}=-2$
6) $\log _{10} 10=-2$
7) $\log _{x} x^{2}=2$
8) $\log _{x} \pi=8$
9) $\log _{2} 4=6$
10) $\log _{27} 9=\frac{2}{3}$
11) $\log _{\frac{1}{8}} 2=-\frac{1}{3}$
12) $\log _{\frac{1}{9}} 3=-\frac{1}{2}$

Name \qquad
Logs Day 2
$\log _{D} \mathbb{A}=\mathbb{N}$

Date \qquad
$D^{N}=A$

Solve for X :

1) $\log _{2} X=4$
2) $\log _{5} X=2$
3) $\log _{3} X=-2$
4) $\log _{7} X=0$
5) $\log _{81} X=\frac{1}{2}$
6) $\log _{9} X=-\frac{1}{2}$
7) $\log _{6} X=0$
8) $\log _{10} X=7$
9) $\log _{64} X=\frac{2}{3}$

Solve for X:

1) $\log _{x} 9=\frac{1}{2}$
2) $\log _{X} 16=2$
3) $\log _{x} 64=3$
4) $\log _{x} 3=\frac{1}{2}$
5) $\log _{x} \frac{1}{3}=-\frac{1}{3}$
6) $\log _{x} 8=-3$
7) $\log _{x} 27=3$
8) $\log _{x} \frac{1}{2}=-1$
9) $\log _{x} \sqrt{5}=\frac{1}{4}$

$$
\text { 3) } \log _{8} 4=X
$$

Solve for X :
2) $\log _{2} 16=X$

1) $\log _{3} 27=X$

$$
\text { 6) } \log _{27} \frac{1}{9}=X
$$

5) $\log _{2} 8=X$
6) $\log _{8} 32=X$
7) $\log _{\sqrt{2}} 4=X$
8) $\log _{49} \frac{1}{7}=X$
9) $\log _{5} \frac{1}{25}=X$

Name

\qquad Logs Day 3 Class work/ Homework

Date
$\log _{\mathrm{D}} \mathbf{A}=\mathbf{N}$

$$
\mathbf{D}^{\mathbf{N}}=\mathbf{A}
$$

Solve for X :

1) $\log _{2} X=3$
2) $\log _{2} X=5$
3) $\log _{3} X=4$
4) $\log _{8} X=\frac{2}{3}$
5) $\log _{9} X=\frac{1}{2}$
6) $\log _{9} X=\frac{3}{2}$

Solve for X:

1) $\log _{X} 36=2$
2) $\log _{X} 125=3$
3) $\log _{x} 5=\frac{1}{2}$
4) $\log _{x} 2=\frac{1}{3}$
5) $\log _{x} \frac{1}{4}=-1$
6) $\log _{x} 16=-2$

Solve for X:

1) $\log _{2} 8=X$
2) $\log _{8} 2=X$
3) $\log _{27} 3=X$
4) $\log _{2} \frac{1}{2}=X$
5) $\log _{3} \frac{1}{3}=X$
6) $\log _{\sqrt{3}} \frac{1}{3}=X$

Apr 8-7:28 AM

1. $\log _{8} 4+\log _{8} 6$	2. $\log _{12} 12+\log _{12} 11$
3. $\log _{18} 36-\log _{18} 12$	4. $\log 3-\log 2$
5. $\log 14^{6}$	6. $\log _{20} 10^{18}$
7. $\log _{3} 16+\log _{2} 4$	8. $\log 10+\log 10$

Apr 8-8:38 AM

condense and solve
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
expand: (write as many logs as there variables and numbers)
5. $\log _{4} \frac{x^{6}}{y^{6}}$

Name \qquad
Logs day 4

Laws of logarithms

1) Product rule: $\quad \log _{b} A C=\log _{b} A+\log _{b} C$
2) Quotient Rule:

$$
\log _{b} \frac{A}{C}=\log _{b} A-\log _{b} C
$$

3) Power Rule: $\quad \log _{b} A^{C}=C \log _{b} A$
4) Find the value of: $\log _{6} 12+\log _{6} 3$
5) Solve for b :

$$
\log _{4} b-\log _{4} \frac{1}{4}=\log _{4} 64
$$

3) Solve for n:

$$
\log _{2} 10+\log _{2} 4=\log _{2} n
$$

4) Solve for a:
$2 \log _{3} 9=\log _{3} a$

Practice: Solve for n :

1) $\log _{3} 9+\log _{3} 3=\log _{3} n$
2) $\log _{4} 64-\log _{4} 16=\log _{4} n$
3) $3 \log _{2} 4=\log _{2} n$
4) $\log _{6} 216-\frac{1}{2} \log _{6} 36=\log _{6} n$
5) $\log 1000-2 \log 100=\log n$
6) $\log _{3} n-\log _{3} \frac{1}{3}=\log _{3} 9$
\qquad Date \qquad
Logs day 4
Homework

Laws of logarithms

1) Product rule:

$$
\log _{b} A C=\log _{b} A+\log _{b} C
$$

2) Quotient Rule:

$$
\log _{b} \frac{A}{C}=\log _{b} A-\log _{b} C
$$

3) Power Rule:

$$
\log _{b} A^{C}=C \log _{b} A
$$

1) Find the value of:

$$
\log _{b} 3+\log _{b} X=\log _{b} 12
$$

2) Solve for X :

$$
\log _{2} X+\log _{2} 4=\log _{2} 32
$$

3) Solve for X :

$$
\log _{4} 5+\log _{4}(X-2)=\log _{4} 70
$$

4) Solve for X :
$2 \log _{5} X-\log _{5} 5=\log _{5} 125$
5) $\log _{3} 9+\log _{3} 3=\log _{3} n$
6) $2 \log X-\log (X-1)=\log 4$
7) $\log X+\log (X-3)=\log 10$
8) $3 \log 2-\log X=\log 16$
9) $\log _{2} X+\log _{2}(X+1)=\log _{2} 12$
10) $\log _{2}(X-3)+\log _{2}(X+1)=\log _{2} 32$

Contract the equation and solve for X in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}$

1) $\log \mathrm{X}=\frac{1}{2}(\log a+\log b-\log c)$	2) $\log \mathrm{X}=\frac{1}{2}(\log a-(\log b+\log c))$
3) $\log \mathrm{X}=2 \log a-\frac{1}{2}(\log b+\log c)$	4) $\log \mathrm{X}=\frac{1}{2} \log a-\left(\log b+\frac{1}{2} \log c\right)$
5) $\log \mathrm{X}=2 \log a+\frac{1}{3} \log b$	6) $\log \mathrm{X}=2 \log a-\log b$

7) $\log X=\log a-\frac{1}{2} \log b$
8) $\log X=\frac{1}{2}(\log a+\log b)$

Expand and express $\log \mathrm{N}$ in terms of $\log x, \log y, \log z$:

1) $\mathrm{N}=x y z$	2) $\mathrm{N}=\sqrt{x y z}$
3) $\mathrm{N}=\frac{x y}{z}$	4) $\mathrm{N}=x^{2} y \sqrt{z}$
5) $\mathrm{N}=\frac{x^{2} y}{z^{3}}$	6) $\mathrm{N}=\sqrt{\frac{x y}{z}}$
7) $\mathrm{N}=\frac{x \sqrt{y}}{z^{2}}$	8) $\mathrm{N}=\frac{x^{2}}{y \sqrt{z}}$
9) $\mathrm{N}=x^{2}(\sqrt[3]{y})$	

Apr 9-9:41 AM

Solve and round to the nearest tenth:

1) $6^{x}=239$
2) $3^{2 x}=108$
3) $4.83^{x}=29.1$

Jul 7-11:12 AM
\qquad
\qquad

Class work

1) Solve for X to the nearest tenth:
a) $5^{x}=7$
b) $8^{x}=29$
c) $7^{x}=512$
d) $11.2^{x}=8.8$
e) $12^{\mathrm{x}}=\mathbf{2 3 . 2}$
f) $5 . \mathbf{8}^{\mathrm{x}}=\mathbf{1 0 . 7}$
2) Using logarithms, find X to the nearest tenth.
a) $5^{2 x}=12$
b) $2^{3 x}=7$
c) $1.73^{2 \mathrm{x}}=9$
d) $6^{3 x-1}=74$
e) $5^{x+1}=20$
f) $8^{2 x+2}=1000$
3) Solve for x to the nearest tenth:
a) $5^{x}-2=7$
b) $3^{2 x}-2=8$
c) $5^{x}-18=34$
4) Use logarithms to fins x to the nearest tenth:
a) $X=\log _{5} 29$
b) $X=\log _{2} 9$
c) $X=\log _{2} 32$

Name: \qquad
Day 6
Class work/Homework

1) Solve for x to the nearest tenth: $3 x=16$
2) Solve for x to the nearest tenth: $4^{x}=28$
3) Solve for x to the nearest tenth: $62 x-1=73$
4) Solve for x to the nearest tenth: $2^{x-1}=15$
5) Solve for x to the nearest tenth: $12^{x}=215$
6) Solve for x to the nearest tenth: $4^{x}=32.8$
7) Solve for x to the nearest tenth: $5 x-18=34$
8) Solve for x to the nearest tenth: $1.62^{2 x}=8$
9) Solve for x to the nearest tenth: $20^{x}=53$
10) Solve for x to the nearest tenth: $(41)^{x}=3,000$
11) Solve for x to the nearest tenth: $4 x+1=23$
12) Solve for x to the nearest tenth: $1.3^{x}+.8=5.3$
13) Using logarithms, solve the equation $2^{3 x}=7$ for x to the nearest tenth.
14) Which logarithmic equation is equivalent to $L^{m}=E$?
A) $\log _{E} m=L$
B) $\log _{E} L=m$
C) $\log _{L} E=m$
D) $\log _{m} E=L$
15) The expression $\log 12$ is equivalent to
A) $\log 3 \cdot \log 4$
B) $\log 3-2 \log 2$
C) $\log 3+2 \log 2$
D) $\log 6+\log 6$
16) The expression $\log 4 x$ is equivalent to
A) $(\log 4)(\log x)$
B) $4 \log x$
C) $\log x^{4}$
D) $\log 4+\log x$
17) The expression $\log \frac{x^{2} y^{3}}{\sqrt{z}}$ is equivalent to
A) $2 \log x+3 \log y-\frac{1}{2} \log z$
B) $\log 2 x+\log 3 y-\log \frac{1}{2} z$
C) $\frac{(2 x)(3 y)}{\frac{1}{2} z}$
D) $2 \log x+3 \log y+\frac{1}{2} \log z$
18) The expression $\frac{1}{3} \log (a)-3 \log (b)$ is equivalent to
A) $\log \left(\sqrt[3]{a}-b^{3}\right)$
B) $\log \frac{a}{3 b^{3}}$
C) $\log \frac{\sqrt[3]{a}}{3 b}$
D) $\log \frac{\sqrt[3]{a}}{b^{3}}$
19) The expression $2 \log _{5} m+\log _{5} n$ is equivalent to
A) $\log _{5} m^{2} n$
B) $\log _{5}\left(\frac{2 m}{n}\right)$
C) $\log _{5}\left(\frac{m^{2}}{n}\right)$
D) $\log _{5} \sqrt{m n}$
20) Complete the following sentence:

To take the log of a product,
A) take the difference of the log of the numerator and the denominator
B) take the sum of the logs of the two factors
C) square the product of the two logs
D) take the product of the logs of the two factors
21) Complete the following sentence:

To take the log of a quotient,
A) take the quotient of the logs of the two factors
B) take the quotient of the log of the numerator divided by the log of the denominator
C) take the sum of the logs of the numerator and the denominator
D) take the difference of the log of the numerator and the log of the denominator
22) Express $\log x$ in terms of $\log a, \log b$, and $\log c$: $x=a \cdot b$
23) Express $\log x$ in terms of $\log a, \log b$, and $\log c$:

$$
x=\frac{a}{b c}
$$

24) Express $\log x$ in terms of $\log a, \log b$, and $\log c$:

$$
x=a^{2} b
$$

25) Express $\log x$ in terms of $\log a, \log b$, and $\log c$:

$$
x=\frac{(a b)^{3}}{c}
$$

26) Express $\log x$ in terms of $\log a, \log b$, and $\log c$: $x=\frac{\sqrt{a b}}{c^{2}}$
27) If $\log x=2 \log a+2 \log b-\frac{1}{2} \log c$, then express x in terms of a, b, and c.
28) If $\log x=\frac{1}{3} \log a+2 \log b+\log c$, then express x in terms of a, b, and c.
DAY $7 \quad$ Word Problems
In the following examples use the formula $A=P(1+r / n)^{n t}$
13. How long must $\$ 500$ be left in an account that pays. 7%
interest compounded annually in order for the value of the
account to be $\$ 750$?

Apr 12-1:28 PM

Apr 12-1:34 PM

| $A=P(1+r / n)^{n 1}$ |
| :--- | :--- |
| 15. How long must $\$ 100$ be left at 8% interest compounded |
| quarterly (four times a year) in order to acquire the value |
| $\$ 1,000$? |

16. The thickness of a sheet of paper is .004 inch. If x represents the number of times that this sheet of paper is folder in half over itself, then $y=2^{x}$ determines the number of layers of paper, and $y=.004(2)^{x}$ determines the thickness of all the layers of paper. Calculate the number of folds that would produce a stack of paper closest to a mile high.
(1 mile $=63,360$ inches)
\qquad
\qquad
\qquad
\qquad

Apr 12-1:36 PM
17. When Patty was in kindergarten, her mother gave her 10 cents a week to spend. In the first grade, Patty received 20 cents a weak, double her kindergarten allowance. In the third grade, Patty suggested to her mother that her allowance be doubled every year, but her mother was wise enough to refuse. If Patty's suggestion had been followed, in what grade would her weekly allowance have been more than $\$ 200$?
(Hint: Use the formula $\left.y=.10(2)^{x}\right)$

Apr 12-1:40 PM
\qquad

Name:
Day 7/8

1) A radioactive material decays according to the formula $A=A_{0} 10^{-k t}$ where A is the final amount, A_{0} is the initial amount, and t is time in years. Find k, if 500 grams of this material decays to 450 grams in 10 years. [Round the answer to 4 decimal places.]
A) 0.0046
B) 1.1065
C) -16.9897
D) -0.9000
2) A radioactive material decays according to the formula $A=A_{0} 10^{-k t}$ where A is the final amount, A_{0} is the initial amount, and t is time in years. Find k, if 700 grams of this material decays to 550 grams in 8 years. [Round the answer to 4 decimal places.]
A) -4.4820
B) 0.1179
C) 0.0131
D) -0.1179
3) The growth of a colony of cells can be determined by the formula $G=I(3.1)^{0.226 t}$, in which G represents the final number in the colony, I is the initial number of cells, and t represents elapsed time in hours. Find how many hours it will take for a colony starting at 25 cells to increase to a size of 25,000 cells. [Round the answer to the nearest whole hour.]
4) The growth of a certain strain of bacteria is given by the equation $C=I(2.4)^{0.621 t}$, where C is the final number of bacteria, I is the initial number of bacteria, and t is the number of hours. If the initial number of bacteria was 7, find the numbers of hours required for the colony to reach 3200 bacteria. [Round the answer to the nearest tenth of an hour.]
5) The value V of a savings account in which interest is compounded annually can be determined by the formula $V=C(1+r)^{t}$, where C represents the amount of the initial deposit, r is the rate of interest, and t is the number of years for which the balance has been accruing interest. If $\$ 1,500$ was deposited in 2001 at an annual interest rate of 5%, what is the first year that the account will be worth $\$ 3,000$? [Assume that only interest is added to the account.]
6) It has been shown that homes in a certain city increase in value at a rate of 7.5% per year. The value V of a home after t years is given by the formula $V=C(1+r)^{t}$ where r is the rate of appreciation. If a home costs $\$ 42,000$ in 2001, by what year will this home have doubled in value?
7) A new boat will decrease in value at a rate of 8% per year according to this formula $V=C(1-r)^{t}$ where V is the value of the boat after t years, C is the original cost, and r is the rate of depreciation. If a boat costs $\$ 40,000$ new, find the number of years until the boat is worth $\$ 18,000$. [Round the answer to the nearest tenth of a year.]
8) During surgery, a patient must have at least 40 mg of an antibiotic in his system. The amount of antibiotic present k hours after administration of 100 mg of this antibiotic is given by $\mathrm{P}(k)=100(.508)^{k}$. After how many hours (to the nearest tenth) will the nurse have to administer another dose of the antibiotic to keep the level of antibiotic high enough?
9) A basketball is dropped from a height of 9 ft . Each time it bounces, it returns to a height of 65% of its previous height. The height h may be determined by the formula $h=9(.65)^{n}$ where n is the number of bounces. Find the number of bounces it will take for the ball to reach a height of no more than 1.5 ft .
10) A super bouncy ball is dropped from a height of 12 ft . Each time it bounces, it rises to a height of 80% of the height from which it fell. The height h can be determined by the equation $h=12(.80)^{x}$, where x is the number of bounces. Determine the number of bounces necessary for the ball to be at most 2 ff from the floor.
11) The Richter Scale measures the magnitude R of an earthquake. It is defined by the formula $R=0.67 \log (0.37 E)+1.46$ where E is the energy (in kilowatt-hours) released by the quake. The 1933 quake in Japan measured 8.9 on the scale. In scientific notation (with 3 significant digits), how much energy was released?
12) The Richter Scale measures the magnitude R of an earthquake. It is defined by the formula $R=0.67 \log (0.37 E)+1.46$ where E is the energy (in kilowatt-hours) released by the quake. The 1960 quake in Morocco measured 5.8 on the scale. In scientific notation (with 3 significant digits), how much energy was released?
13) An exponential model of a population growth is given by $P(t)=P_{0} \cdot 10 k t$ where P_{0} equals the original or initial population and t equals the number of years that have elapsed. If a population of a culture is 2,000 now and is 4,500 in 2 years then what is the value of k ?
14) Suppose the exponential model of a population growth is given by $P(t)=P_{0} \cdot 10 k t$ where P_{0} equals the original or intitial population and t equals the number of years that have elapsed. If a population of a culture is 1,500 now and is 2,400 in 2 years then what is the value of k ?
15) The amount of money A after t years that principle P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n} n t\right.$ where r is expressed as a decimal. To the nearest tenth, how long will it take $\$ 2,500$ to become $\$ 4,500$ if it is invested at 7% and is compounded quarterly?
16) The amount of money A after t years that principal P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$ where r is expressed as a decimal. To the nearest tenth, how long will it take $\$ 5,300$ to become $\$ 7,000$ if it is invested at 9% and is compounded quarterly?
17) The amount of money A after t years that principal P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$ where r is expressed as a decimal. To the nearest tenth, how long will it take $\$ 3,600$ to become $\$ 5,200$ if it is invested at 9% and is compounded semi-annually?
18) The amount of money A after t years that principal P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$ where r is expressed as a decimal. To the nearest tenth, how long will it take $\$ 2,700$ to become $\$ 4,200$ if it is invested at 7% and is compounded semi-annually?
19) The amount of money A after t years that principal P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n}\right) n t$ where r is expressed as a decimal. To the nearest tenth, how long will it take a sum of money to double if it is invested at 12% and compounded annually?
20) The amount of money A after t years that principal P will become if it is invested at rate r compounded n times a year is given by the relationship $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$ where r is expressed as a decimal. To the nearest tenth, how long will it take a sum of money to double if it is invested at 9% and compounded annually?

Name: \qquad Period: \qquad
Day 9 Test Review

1) Find the value of $\log _{8} 4$.
2) Solve for x to the nearest tenth: $1.3^{x}+.8=5.3$
3) Write the equation in exponential form: $\log _{2} \frac{1}{4}=-2$
4) Solve for x to the nearest tenth: $4 x=28$
5) Simplify: $(-3 n p)\left(4 n^{2} p^{2}\right)$
6) If $\log 9 x=\frac{3}{2}$, what is the value of x ?
A) 8
B) $\frac{27}{2}$
C) $\frac{3}{2}$
D) 27
7) If $\log _{x} 9=\frac{1}{2}$ what is the value of x ?
A) $4 \frac{1}{2}$
B) 27
C) 81
D) 3
8) What is the exponential form for $\log _{a} x=b$?
A) $b=a^{x}$
B) $x=a^{b}$
C) $a=b^{x}$
D) $b=x^{a}$
9) The expression $\log 4 x$ is equivalent to
A) $\log 4+\log x$
B) $(\log 4)(\log x)$
C) $\log x^{4}$
D) $4 \log x$
10) $\log \frac{\sqrt{a}}{\sqrt{b}}$ is equivalent to
A) $\frac{1}{2} \log a+\log b$
B) $\frac{1}{2}(\log a+\log b)$
C) $\frac{1}{2}(\log a-\log b)$
D) $\frac{1}{2} \log a-\log b$
11) The expression $\log \frac{x^{2} y^{3}}{\sqrt{z}}$ is equivalent to
A) $\frac{(2 x)(3 y)}{\frac{1}{2} z}$
B) $\log 2 x+\log 3 y-\log \frac{1}{2} z$
C) $2 \log x+3 \log y-\frac{1}{2} \log z$
D) $2 \log x+3 \log y+\frac{1}{2} \log z$
12) Solve for $x: \log 64=2 \log x$
A) 5
B) 8
C) 4
D) 1
13) Simplify: $\frac{3^{x+4}}{3^{x}}$
A) 81
B) $\frac{1}{81}$
C) -81
D) $-\frac{1}{81}$
14) Write the equation in logarithmic form: $3^{4}=81$
15) Solve: $\log _{4}(3 x+1)=2$
16) It has been shown that homes in a certain city increase in value at a rate of 7.5% per year. The value V of a home after t years is given by the formula $V=C(1+r)^{t}$ where r is the rate of appreciation. If a home costs $\$ 42,000$ in 2001, by what year will this home have doubled in value?
17) An exponential model of a population growth is given by $P(t)=P_{0} \cdot 10 k t$ where P_{0} equals the original or initial population and t equals the number of years that have elapsed. If a population of a culture is 2,000 now and is 4,500 in 2 years then what is the value of k ?
