

Long-Term Energy Outlook

Trends, Challenges, and Opportunities in a Rapidly Evolving System

Adam Sieminski

September 29th, 2017

Key Takeaways

The Global Energy System

No major near-term transformation likely owing to the momentum advantage of existing energy networks

Behavioral Economics

Uncertainty in consumer behavior is a key component of deployment in renewables and mobility developments

Cost Structure Uncertainties

Forecasts for renewable energy have been hampered by rapid improvements in technology and materials

The Climate Challenge

Emission reduction targets agreed at Paris are not sufficient to meet the 450ppm goal

Economic activity and population growth drive energy demand relative fuel cost, government policies, and behavior set mix

GDP and population growth drive energy

Global GDP rising 3.7% 2015-2030; population up 1.1 billion (90% in non-OECD)

Efficiency & consumer behavior

Improving efficiency & shifts in consumer behaviors reducing the energy intensity of the world economy

Electricity demand

Fastest-growing form of end-use energy consumption, rising 1.5% per year

田 Policy can shape fuel mix

Efforts to diversify fuel mix favor non-fossil penetration in most key markets

2 Disruptive technology could upset the consensus

Reference case projections are not meant to be forecasts

Although population and per capita output continue to rise, energy and carbon intensity are projected to continue to fall in the EIA Reference Case

Source: EIA, International Energy Outlook 2017

World primary energy consumption: non-OECD growth dominates

Quadrillion Btu

World energy consumption: Coal not growing and could fall faster; renewables growing the fastest; electricity is the largest energy user

World energy consumption by fuel (with electricity separated) Quadrillion Btu

World energy consumption by fuel source

Oil Markets

Current global oil price cycle not over yet: Lower prices to prevail for longer

*1960-83 prices – Arabian Light; 1984-2017 Dated Brent

Sectoral shares of world liquids use hold relatively constant in the EIA Reference Case even as total consumption increases

Note: Percentages express a sector's liquids consumption compared to total use of these fuels across all end uses.

Peak demand depends on GDP growth, efficiency trends, climate policy and a host of other factors

Uncertainty for future oil demand

Million barrels per day

Electricity Markets and Renewable Energy

Net electricity generation in non-OECD countries increases twice as fast as in the OECD with building use being a major contributor to growth in the EIA Reference Case

World electricity use by sector

Quadrillion Btu

OECD and non-OECD net electricity generation

Trillion kilowatt-hours

CSIS CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

In the EIA Reference Case, renewables and natural gas provide much of the growth in electricity generation with their combined share of the total rising to 57% in 2040

World electricity generation by fuel

Trillion kilowatt-hours

Share of net electricity generation

Percent

Wind and solar dominate growth in renewables and represent two-thirds of related capacity additions by 2040

World net electricity generation from renewable power

Trillion kilowatt-hours

Share of renewable energy

Percent

Disruptions

Key innovations/assumptions that could change the consensus energy outlook

- Economic / population growth trends
- Innovations in Buildings / Industry / Transportation efficiency
- Electric vehicles / Autonomous vehicles
- Wind / Solar cost reductions
- Utility and grid-scale batteries / super-grids / distributed power
- Shale enhanced recovery rates
- Automated drilling /smarter completions and tie-ins
- Carbon tax, fee / Carbon capture, use, and sequestration (CCUS)
- Nuclear: Small Modular Reactors (SMRs) / Fusion

Mobility revolution scenarios: Impact on oil demand in cars in 2035

Shale revolution is not necessarily over – technology advancements continue

Bcf/d

Paris & Policy

Global greenhouse gas emissions: not just fossil fuels

Energy-related carbon dioxide emissions by fuel

Billion metric tons

CSIS CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

The 450 Scenario: How might that look?

Faster transition pathways

Carbon emissions

Billion tonnes CO₂ 40

CENTER FOR STRATEGIC &

INTERNATIONAL STUDIES

Reductions in emissions versus base case

Billion tonnes CO₂ in 2035

Perversity, futility, and jeopardy: Why change is resisted

Perversity thesis

Any purposeful action to improve some feature of the political, social, or economic order will make it (or something else) worse

Futility thesis

Attempts at transformation will be futile - they will simply fail to "make a dent" in the problem

Jeopardy thesis

Argues that the cost of the proposed change or reform is too high as it endangers some existing order

Snapshot of key energy issues by region/country

	U.S.	EU	China	Japan
Environment	NIMBY Opposition to development	Paris Climate Agreement	Air and water pollution	Under control
Security	Using energy abundance as a geopolitical tool	Russia & The Middle East	Managing growing import dependence	Diversity and efficiency
Economy	Market driven	German model - Energiewende	Dominate manufacturing & exports of new energy technology	Affordability
Safety	Oil and gas operations	Nuclear concerns	Quality control	Nuclear accident

For more information on CSIS...

The CSIS Energy and National Security Program is a recognized and respected leader in understanding the shifting global and domestic energy landscape

- Analyzing and explaining the intersection of policy, market, and technological developments
- Collaborating with government, industry, academia and nonprofits leaders
- Assisting decision makers to craft smart energy policies that balance economic, environmental, and security priorities

www.csis.org/energy

Adam Sieminski asieminski@csis.org +1 202-775-3288

James R. Schlesinger Chair for Energy & Geopolitics Center for Strategic and International Studies 1616 Rhode Island Avenue NW Washington, DC 20036

