

Longitudinal Data Analysis Using Structural Equation Modeling

Paul D. Allison, Ph.D.

Upcoming Seminar: June 22-23, 2017, Boston, Massachusetts

Longitudinal Data Analysis Using SEM

Paul D. Allison, Ph.D.

Causal Inference

How do you make causal inferences with non-experimental panel data?

What's panel data?

- Data in which variables are measured at multiple points in time for the same individuals.
 - Response variable y_{it} with t = 1, 2, ..., T; i = 1, ..., N
 - Vector of predictor variables x_{it}.
 - Some of the predictors may vary with time, others may not.
- Assume that time points are the same for everyone in the sample.
 - Nice if they are equally spaced, but not essential.
 - We will eventually allow for drop out and other kinds of missing data.

Causal Inference

How do you demonstrate that x causes y?

- Show that *x* is correlated with *y*.
- Show that the correlation is not produced by other variables that affect both x and y.
- Show that y is not causing x.
- Show that the correlation is not due to chance alone.

Randomized experiments are great at all these things.

Panel data make it possible to

- Control for unobserved variables.
- Estimate the effect of x on y, even if y is also affecting x.

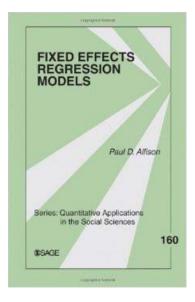
No standard methods can do both of these things simultaneously.

Fixed Effects Methods

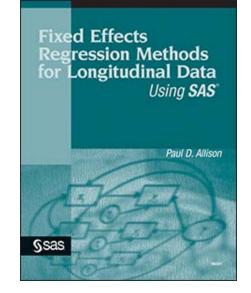
To control for unobservables, we can used *fixed effects* methods

- These control for all unchanging variables whether observed or not.
- For linear models, the most common way to do fixed effects is to express all variables as deviations from individual-specific means. But there are several alternative approaches.
 - Implement FE with xtreg in Stata or PROC GLM in SAS
- Downsides:
 - Standard errors go up (because you're only using within individual variation).
 - Many methods don't produce estimates for time-invariant predictors.

Some References



2009

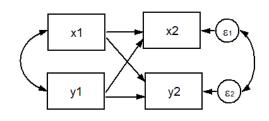


2005

Cross-Lagged Linear Models

To allow for reciprocal causation, estimate 2-wave, 2-variable panel model (<u>OD Duncan 1969</u>) by ordinary least squares:

 $y_{2} = b_{0} + b_{1}y_{1} + b_{2}x_{1} + \varepsilon_{2}$ $x_{2} = a_{0} + a_{1}y_{1} + a_{2}x_{1} + \varepsilon_{1}$

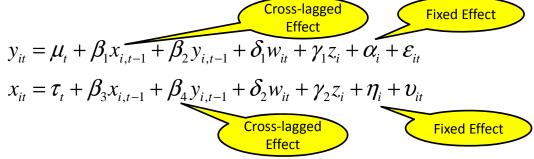


Inclusion of lagged dependent variable is intended to control for past characteristics of the individual.

Among those with the same value of y_1 , b_2 is the effect of x_1 on y_2 .

Our Goal

To be able to estimate models that combine fixed effects with cross-lags using structural equation modeling software. The models look like this:



To get there, we'll

- Review models with cross-lagged effects using SEM.
- Review conventional fixed effects
- See how to do fixed effects with SEM
- Combine the two methods

Path Analysis of Observed Variables

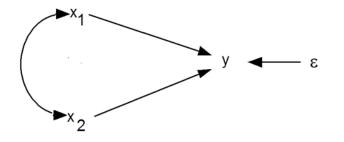
7

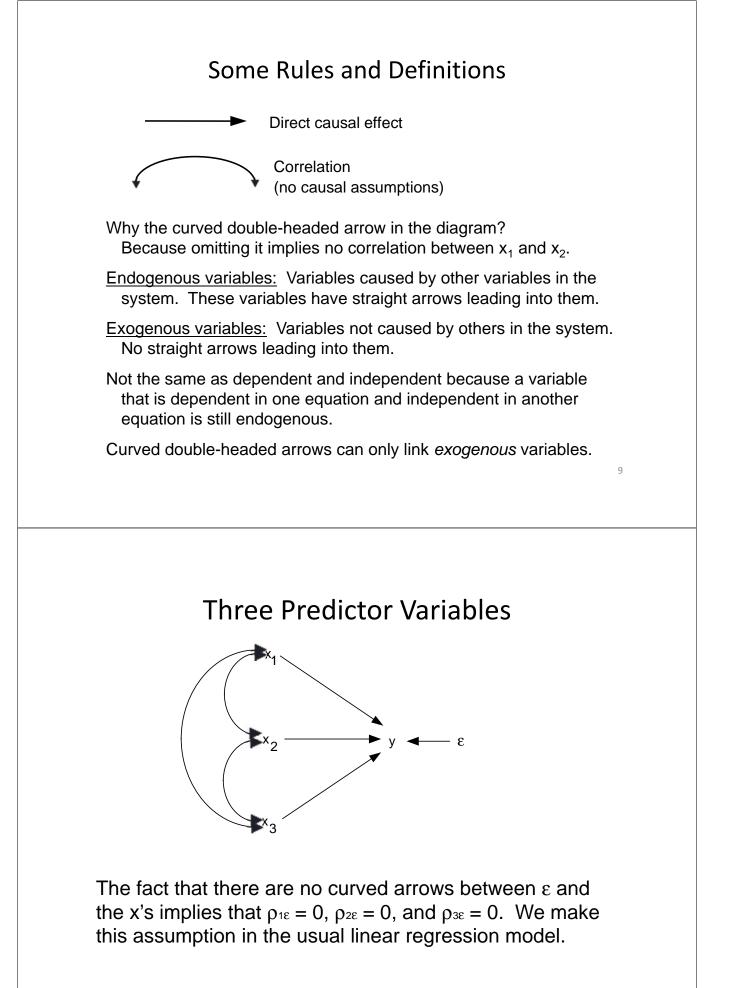
8

In the SEM literature, it's common to represent a linear model by a path diagram.

 A diagrammatic method for representing a system of linear equations. There are precise rules so that you can write down equations from looking at the diagram.

- Single equation: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$





Two-Equation System

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_1$$

$$x_2 = \alpha_0 + \alpha_1 x_1 + \varepsilon_2$$

The diagram is now

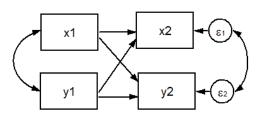
$$x_1 \xrightarrow{\beta_1} y \xrightarrow{\beta_2} \varepsilon_1$$

Note: The diagram goes further than the equations by asserting that

 $\rho_{\epsilon_{1}\epsilon_{2}}=\ 0,\ \rho_{\epsilon_{1}x_{1}}=\ 0,\ \rho_{\epsilon_{1}x_{2}}=\ 0,\ \rho_{x_{1}\epsilon_{2}}=\ 0$

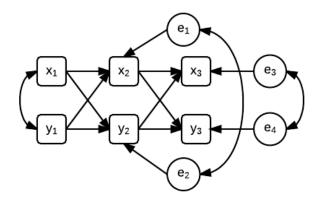
Cross-Lagged Linear Models

$$y_{2} = b_{0} + b_{1}y_{1} + b_{2}x_{1} + \varepsilon_{2}$$
$$x_{2} = a_{0} + a_{1}y_{1} + a_{2}x_{1} + \varepsilon_{1}$$



- This model can be estimated by ordinary least squares for each equation separately.
- Other predictors could also be included in each equation.
- Presumes no simultaneous causation.

3 Wave-2 Variable Model



- Can extend to more waves
- Each of the 4 equations could be estimated by OLS
- Can estimate simultaneously via SEM
 - Can constrain coefficients to be the same across waves.
 - Can test the overall fit of the model (OK to omit lag-2 effects?)
 - Can handle missing data by full information maximum likelihood.

NLSY Data Set

581 children interviewed in 1990, 1992, and 1994 as part of the National Longitudinal Survey of Youth (NLSY).

Time-varying variables (measured at each of the three time points):

ANTI	antisocial behavior, measured with a scale from 0 to 6.				
SELF	self-esteem, measured with a scale ranging from 6 to 24.				
POV	poverty status of family, coded 1 for family in poverty, otherwise 0.				
<u>Time-inv</u>	ariant variables:				
BLACK	1 if child is black, otherwise 0				
HISPANI	1 if child is Hispanic, otherwise 0				
CHILDAG	E child's age in 1990				

- MARRIED 1 if mother was currently married in 1990, otherwise 0
- GENDER 1 if female, 0 if male
- MOMAGE mother's age at birth of child
- MOMWORK 1 if mother was employed in 1990, otherwise 0

Data are in the "wide form": one record for each child , with different names for the variables at each time point, e.g., ANTI1, ANTI2 and ANTI3.

Estimating a Cross-Lagged Model

- We'll estimate the 3W-2V panel model with SEM to answer the question, does antisocial behavior affect self-esteem, or does self-esteem affect antisocial behavior?
- Other variables could be included, but we'll leave them out for simplicity.
- Cross-sectionally, these variables are significantly correlated at about -.15.
- Important to allow for correlated errors. Why? Other factors affecting both variables are not included.
- No missing data in this data set.
- We'll see how to do it with Mplus, PROC CALIS in SAS, **sem** in Stata and **lavaan** for R.

Software for SEMs

LISREL – Karl Jöreskog and Dag Sörbom EQS – Peter Bentler PROC CALIS (SAS) – W. Hartmann, Yiu-Fai Yung OpenMX (R) – Michael Neale Amos – James Arbuckle Mplus – Bengt Muthén sem, gsem (Stata) Iavaan (R) – Yves Rosseel

SAS Program PROC CALIS DATA=my.nlsy PSHORT; PATH anti3 <- anti2 self2, This option suppresses some of the voluminous output from CALIS. anti2 <- anti1 self1, self3 <- anti2 self2,</pre> self2 <- anti1 self1,</pre> A correlation between two endogenous variables is a anti3 <-> self3, partial correlation. That is, a anti2 <-> self2; correlation between their error terms. RUN; • My convention: upper case words are part of the SAS language, lower case words are variables or data set names specific to this example. SAS is not case sensitive.

- PATH is one of 7 different "languages" for specifying SEM's.
- <- means "is regressed on". <-> means "is correlated with".

Goodness of Fit Results

Absolute Index	Fit Function	0.0827
	Chi-Square	47.9911
	Chi-Square DF	4
	Pr > Chi-Square	<.0001
	Z-Test of Wilson & Hilferty	5.7057
	Hoelter Critical N	115
	Root Mean Square Residual (RMR)	0.1956
	Standardized RMR (SRMR)	0.0388
	Goodness of Fit Index (GFI)	0.9740
Parsimony Index	Adjusted GFI (AGFI)	0.8637
	Parsimonious GFI	0.2597
	RMSEA Estimate	0.1377
	RMSEA Lower 90% Confidence Limit	0.1044
	RMSEA Upper 90% Confidence Limit	0.1739

Parameter Estimates

PATH Lis	st						
Path		Parameter	Estimate	Standard Error	t Value	Pr > t	
anti3	<===	anti2	_Parm01	0.66063	0.03659	18.0534	<.0001
anti3	<===	self2	_Parm02	0.02148	0.01617	1.3286	0.1840
anti2	<====	anti1	_Parm03	0.67219	0.03411	19.7081	<.0001
anti2	<===	self1	_Parm04	-0.01604	0.01572	-1.0207	0.3074
self3	<====	anti2	_Parm05	0.01908	0.08200	0.2327	0.8160
self3	<====	self2	_Parm06	0.35218	0.03623	9.7209	<.0001
self2	<===	anti1	_Parm07	-0.12979	0.09474	-1.3701	0.1707
self2	<===	self1	_Parm08	0.35208	0.04366	8.0650	<.0001
anti3	<==>	self3	_Parm09	-0.62324	0.17139	-3.6363	0.0003
anti2	<==>	self2	_Parm10	-0.65746	0.16819	-3.9090	<.0001

These are unstandardized estimates.

19

Stata Program

```
use "C:\data\nlsy.dta", clear
sem (anti94 <- anti92 self92) ///
   (anti92 <- anti90 self90) ///
   (self94 <- anti92 self92) ///
   (self92 <- anti90 self90), ///
   cov(e.anti94*e.self94 e.anti92*e.self92)</pre>
```

- Stata is case sensitive
- <- means "is regressed on"
- e.anti94 refers to the error term for anti94
- The **cov** option allows for covariances (and therefore correlations) between pairs of variables.
- /// goes to a new a line within a single command, in a DO file.

Stata Results

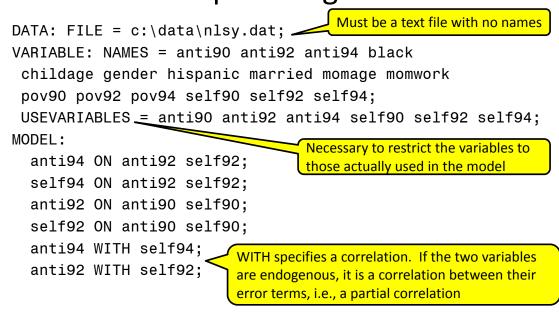
		OIM				
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	+					
anti94 <-	1	0005017	10.07	0 000	5000707	700000
	1				.5889707	
					0101814	
_cons					428961	
anti92 <-						
anti90	.6721907	.0340779	19.73	0.000	.6053992	.7389822
self90	016042	.0157035	-1.02	0.307	0468202	.0147362
—					.2174614	
	•					
self92 <-	1					
anti90	1297929	.0946541	-1.37	0.170	3153115	.0557257
self90	.3520793	.0436176	8.07	0.000	.2665903	.4375682
_cons	1				11.70476	
 self94 <-	+					
		0010040	0 00	0.016	1414001	1706510
anti92	1	.0819248		0.816		
	.3521843		9.73		.2812368	
_cons	13.41623	.7825436	17.14	0.000	11.88247	14.94999
						21

Stata Results (cont.)

+-						
var(e.anti94)	1.81788	.1066577			1.620406	2.039419
var(e.anti92)	1.436514	.0842824			1.280467	1.611577
var(e.self92)	11.08263	.6502342			9.878743	12.43324
var(e.self94)	9.127317	.5355131			8.135831	10.23963
+-						
cov(e.anti94,						
e.self94)	6221672	.1709519	-3.64	0.000	9572267	2871077
cov(e.anti92,						
e.self92)	656332	.167759	-3.91	0.000	9851335	3275305
LR test of model vs. saturated: chi2(4) = 48.07, Prob > chi2 = 0.0000						

The LR (likelihood ratio) test is testing the null hypothesis that all four two-period lagged paths are 0. Clearly, that must be rejected.

Mplus Program



Mplus is not case sensitive. But, for clarity, I capitalize words that are part of the Mplus language.

23

Mplus – Goodness of Fit

Chi-Square Test of Model Fit

Value	48.074
Degrees of Freedom	4
P-Value	0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.138	
90 Percent C.I.	0.104	0.174
Probability RMSEA <= .05	0.000	

CFI/TLI

CFI	0.944
TLI	0.804

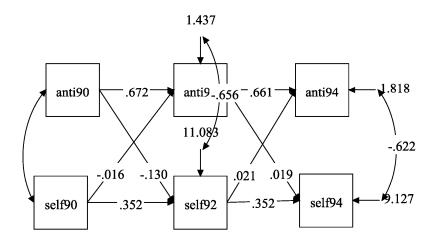
We want the RMSEA to be <.05, definitely not above .10. We want the CFI and TLI to be close to 1, definitely not below .90.

Mplus – Parameter Estimates

				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
ANTI94 ON				
ANTI92	0.661	0.037	18.069	0.000
SELF92	0.021	0.016	1.330	0.184
SELF94 ON				
ANTI92	0.019	0.082	0.233	0.816
SELF92	0.352	0.036	9.729	0.000
ANTI92 ON				
ANTI90	0.672	0.034	19.725	0.000
SELF90	-0.016	0.016	-1.022	0.307
SELF92 ON				
ANTI90	-0.130	0.095	-1.371	0.170
SELF90	0.352	0.044	8.072	0.000
ANTI94 WITH				
SELF94	-0.622	0.171	-3.640	0.000
ANTI92 WITH				
SELF92	-0.656	0.168	-3.912	0.000

25

Mplus - Path Diagram



lavaan Program

nlsy<-read.table("C:/data/nlsy-names.txt",header=T)</pre> nlsymod<-' Slashes must be forward. This anti94 ~ anti92 + self92 file has variables names as the self94 ~ anti92 + self92 first record. anti92 ~ anti90 + self90 self92 ~ anti90 + self90 Note single quotes. anti94 ~~ self94 anti92 ~~ self92 nlsyfit<-sem(nlsymod,data=nlsy)</pre> summary(nlsyfit) ~ means "is regressed on" ~~ means "is correlated with"

27

lavaan Results

Minimum Function T Degrees of freed	48.074 4			
P-value (Chi-squ	iare)			0.000
Regressions:				
	Estimate	Std.err	Z-value	P(> z)
anti94 ~				
anti92	0.661	0.037	18.069	0.000
self92	0.021	0.016	1.330	0.184
self94 ~				
anti92	0.019	0.082	0.233	0.816
self92	0.352	0.036	9.729	0.000
anti92 ~				
anti90	0.672	0.034	19.725	0.000
self90	-0.016	0.016	-1.022	0.307
self92 ~				
anti90	-0.130	0.095	-1.371	0.170
self90	0.352	0.044	8.072	0.000
Covariances:				
anti94 ~~				
self94	-0.622	0.171	-3.639	0.000
anti92 ~~				
self92	-0.656	0.168	-3.912	0.000

Estimation & Assumptions

By default, all of these SEM packages do maximum likelihood (ML) estimation:

- Choose parameter estimates so that the probability of observing what has actually been observed is as large as possible.
- Under most conditions, ML estimators are consistent, asymptotically efficient, and asymptotically normal (if all the assumptions are met).

Assumptions:

- The specified relationships are correct.
- The endogenous variables have a multivariate normal distribution, which implies
 - All variables are normally distributed.
 - All conditional expectation functions are linear.
 - All conditional variance functions are homoscedastic.

Parameter estimates are robust to violations of multivariate normality, but chi-squares may be too large and standard errors too small.

Chi-Square Test

- If the specified model is correct, the chi-square statistic has approximately a chi-square distribution. The df is equal to the number of overidentifying restrictions (number of sample moments minus the number of parameters in the model).
- This statistic is a likelihood ratio chi-square comparing the fitted model with a saturated (just-identified) model that perfectly fits the data. If the chi-square is large and the *p*-value is small, it's an indication that the model should be rejected.
- Although this statistic is properly regarded as a test of the model, note that it is only testing the overidentifying restrictions.
- This test is sensitive to sample size. With a large sample, it may be difficult to find any parsimonious model that passes this test.