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Abstract: - In this paper, the equations of motion are derived and longitudinal stability equations are found 
and linearized. Following this, it is dedicated to stability derivatives of longitudinal dynamic model of 
Boeing 747-400.  
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1 Introduction 
In this paper longitudinal stability of a 
commercial airplane, Boeing 747-400 is 
analyzed. First of all an approach to the 
stability concept is done. Then by the help of 
Newton’s Second Law, equations of motion are 
derived, subsequently longitudinal stability 
equations are found and linearized. Afterwards 
the equations are used for the stability analysis 
of Boeing 747-400. In this analysis, 
MATHEMATICA programming is also used; 
transfer functions are plotted with MATLAB.  
The objective of Stability and Control is to 
develop fundamental understanding on the 
subject of stability, control and flight 
mechanics. The study of flying and handling 
characteristics is called stability and control 

[1].  
Starting from known forces and moments 
generated on a given wing, fuselage and tail 
configuration, it will be developed static and 
dynamic model of the aircraft to study its 
behavior under different flight regimes.  
Concepts of static stability and dynamic 
stability will be introduced in next parts of the 
paper. General equations of motion for a rigid-
body aircraft are derived. Basic motions of the 
aircraft separated into longitudinal modes are 
discussed in details. Laplace transform 
techniques are used in the analysis and the 
solution of the longitudinal equations.  
 
2 Longitudinal Dynamics 
As an introduction to longitudinal dynamics in 
order to obtain the transfer function of the 
aircraft, it is first necessary to obtain the 
equations of motion for the aircraft. The 
equations of motion are derived by applying 
Newton’s Laws of motion which relate to the 
summation of the external forces and moments 

to the linear and angular accelerations of the 
system or body.  Certain assumptions must be 
made to do this application. By the way, the 
application is done according to [2].  
Furthermore in longitudinal dynamics in order 
to get the linearized and Laplace transformed 
equations of motion, stability derivatives have 
to be also calculated. 
 
Then the related force term and moment term 
are handled, the longitudinal equations of 
motion for the aircraft are written as; 
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(2.1)                      

These equations assume that: 
1. The X and Z axes lie in the plane of 

symmetry and the origin of the axis 
system is at the center of the gravity of 
the aircraft. 

2. The mass of the aircraft is constant. 
3. The aircraft is a rigid body. 
4. The earth is an inertial reference. 
5. The perturbations from equilibrium are 

small. 
6. The flow is quasi-steady. 

In solving the equations of motions it is 
necessary to obtain the transient solution, 
which is obtained from homogenous equations, 
that is, with no external 
inputs 0=== FxaFzam CCC α . Taking the 
Laplace Transform (discussed before) of 
Equation 2.1 with the initial conditions zero 
and neglecting , ,  yields [2]: 
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3 Calculation of the Stability 
Derivatives for the Aircraft 
 
The selected aircraft Boeing 747-400 is flying 
in straight level flight at 20000 ft with a 
velocity of 673 ft/s and the compressibility 
effects are neglected. For this aircraft the 
values [3] are given like in the table below. 
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Table 3.1 Stability Characteristics of the Aircraft 

Aircraft 747-400 

Parameters  

Altitude (ft) 20,000 

Mach 0.650 

True Speed (ft/s) 673 

Dynamic Pressure 

(lb/ft2) 
287.2 

Weight (lb) 636,636 

Wing Area-S-(ft2) 5,500 

Wing Span-b-(ft) 196 

Wing Chord-c-(ft) 27.3 

C.G.(x c) 0.25 

Trim AOA (deg) 2.5 

Ixxs(slugs-ft2) 1.82x107

Iyys(slugs-ft2) 3.31x107

Izzs(slugs-ft2) 4.97x107

Ixzs(slugs-ft2) -4.05x105

Longitudinal Derivatives 

Xu (1/s) -0.0059 

Xα (ft/s2) 15.9787 

Zu (1/s) -0.1104 

Zα (ft/s2) -353.52 

Mu (1/ft.s) 0 

Mα (1/s2) -1.3028 

Mά (1/s) -0.1057 

Mq (1/s) -0.5417 

Xδe (ft/s2) 0.0000 

Zδe (ft/s2) -25.5659 

Mδe (1/s2) -1.6937 

 
Before calculations, some additional 
coefficients must be found; here below table 
contains the coefficients from Roskam J., 
Aircraft Flight Dynamics and Automatic Flight 
Controls [4]. Furthermore they are based on 
computer models rather than wind-tunnel tests 
or other real-word observations, and use 
stability axes. 
 

Table 3.2 Additional Coefficients for the Aircraft 

S 5500 ft2 CDu 0 

c  27.3 ft CDα 0.2 

b 196 ft CTXu -0.055 

h 20000 ft CLo 0.21 

M 0.65 CLu 0.13 

U1 673 fps CLα 4.4 

q  287.2 lb/ft2 CLά 7 

CG 0.25 % c  CLq 6.6 

α1 2.5 deg Cmo 0 

W 636636 lb/ft2 Cmu 0.013 

Ixx
18200000 Slug 

ft2 Cmα -1 

Iyy
33100000 Slug 

ft2 Cmά -4 

Izz
49700000 Slug 

ft2 Cmq -20.5 

Ixz 970000 Slug ft2 CmTu 0 

CL1 0.4 CmTα 0 
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CD1 0.025 CDDe 0 

CTX1 0.025 CLDe 0.32 

Cm1 0 CmDe -1.3 

CMT1 0 CDih 0 

CDo 0.0164 Clih 0.7 

Cmih -2.7  

 
For low cruise condition, stability derivatives 
are calculated by the help of MATHEMATICA 
and solved for transfer functions, damping 
ratio and natural frequency for nonzero 
solution also both for short period and phugoid 
approximation. Calculations are shown; 
To obtain nonzero solution, the values in 
coefficients matrix A are calculated as in the 
below table; 
 

Table 3.3 The Values in Coefficients Matrix A

uX
 

0.0059308-
 e

Zδ  25.5453-  

uTX
 

0.0059308-
 

uM
 

580.00002516
 

αX
 

15.9658 uTM
 

0  

e
Xδ

 
0  αM

 
1.30281-  

uZ  0.110314-
 

αTM
 

0  

αZ  355.239-  α&M
 

0.105696-  

α&Z  11.3338-  qM
 

0.541693-  

qZ  10.6862-  e
Mδ

 
1.69366-  

 
 
4 The Nonzero Solution of the 
Longitudinal Equations 
 

q HsL
de sL

=
-1.68971H0.0119211+sLH0.486136+sL

H H0.00465356+0.00453985s+s2LH1.5423+1.16507s+s2L  
 
The nonzero solution of longitudinal equations 
of motion in matrix form is: 
 
iH
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The nonzero solution of longitudinal equations 
of motion is: 
 
i

k

jjjjjj

0.00652392+s -15.96582 32.174
0.110314 355.2394+684.334s -662.314s

-0.0000251658 1.302818+0.105696196s 0.541693s+s2

y

{

zzzzzz 
i

k

jjjjjjj

'u HsLy

{
'a HsL
de HsL

zzzzzzz
=
i

k

yjjjjj
0

-25.5453
-1.69366{

zzzzz
 

The lonely nonzero solution of these 
simultaneous equations requires that the 
determinant of the coefficients be zero;  
 

A=
i

k

jjjjjj

0.00652392+s -15.96582 32.174
0.110314 355.2394+684.334s -662.314s

-0.0000251658 1.302818+0.105696196s 0.541693s +s2

y

{

zzzzzz
 

Expanding this determinant of the following 
quadratic equation is obtained; 
684.334 0.00465358+0.00453985s+s2 1.54231+1.16507s+sH LH 2L
=0 

A common way to write these kinds of 
quadratic equations is to indicate to natural 
frequency and the damping ratio as; 

 
0)2)(2( 2222 =++++ nsnssnpnpp ssss ωωξωωξ

According to the equation () Short period 
oscillations’ natural frequency and damping 
ratio are found as; 
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Furthermore for short period and phugoid 
mode one half amplitudes are: 
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5 Transfer Functions for the Elevator 
Displacement 
 
Taking the Laplace Transform of the 
longitudinal linearized equations with nonzero 
initial conditions yields: 
♦ The calculation of transfer function of ;

)(
)(`

s
su

eδ
 

'u HsL
de HsL =

-0.595983 H-47.7053 + sL H0.93987356 + sL
H0.00465356 + 0.00453985 s + s2L H1.5423 + 1.16507 s + s2L  

♦ The calculation of transfer function of ;
)(
)(`

s
s

eδ
α  

'a HsL
de HsL =

-0.0373287 H44.4533 + sL H0.0053117 + 0.00640441` s + s2L
H0.00465356` + 0.00453985 s + s2L H1.5423 + 1.16507 s + s2L  

♦ The calculation of transfer function of ;
)(
)(
s
s

eδ
θ  

q HsL
de HsL =

-1.68971 H0.0119211 + sL H0.486136+ sL
H0.00465356 + 0.00453985s+ s2L H1.5423 + 1.16507s+ s2L  

 Figure 5.1 Magnitude plot for 
)(
)(`

s
su

eδ
transfer function versus       

ω for s=j ω 

 

Figure 5.2 Magnitude plot for 
)(
)(`

s
s

eδ
α

transfer function versus 

ω for s=j ω 

 Figure 5.3 Magnitude plot for 
)(
)(
s
s

eδ
θ

transfer function versus 

ω for s=j ω 

 
6 Short Period Approximation 
The short period oscillation occurs at almost 
constant forward speed; therefore let 0` =u  in 
the equations of motion. By neglecting 

and and inserting and . 
α&zC

qzC
ezC
δ emC

δ

♦ For the short period approximation, the 

transfer function of 
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♦ For the short period approximation, the 

transfer function of 
)(
)(
s
s

eδ
θ

is; 

)175235.158874.1(
68964,1844535,0

)(
)(
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♦ The natural frequency for the short period 
approximation; 

wnSP = $%%%%%%%%%%%%%%%%%%%%%%%Za Mq

U
- Ma

 

sec/26045,1 radnSP =ω  

♦ The damping ratio for the short period 

approximation; 

zSP =
-IMq +

Za

U
+ Ma° M

2 wnSP  

466195,0=SPζ  
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Figure 6.1 Magnitude plot for 
)(
)(`

s
s

eδ
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transfer function versus 

ω for s=j ω 

 

Figure 6.2Magnitude plot for 
)(
)(
s
s

eδ
θ

transfer function versus 

ω for s=j ω 

 
7 Phugoid Approximation 
The phugoid oscillation takes place at almost 
constant angle of attack, thus ὰ can be set to 
zero. Furthermore as phugoid oscillation is of 
long period, θ is varying quite slowly; 
additionally the inertia forces can be neglected. 
 
♦ For the phugoid approximation, the transfer 

function of 
)(
)(`

s
su

eδ
is; 

'  u HsL
de H
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s
=

821.894
L -3.54923 - 4.32088 s - 662.314 s2  

♦ For the phugoid approximation, the transfer 

function of 
)(
)(
s
s

eδ
θ

is; 

q HsL
de s

=
-0.166655- 25.5453 s

H L -3.54923 -4.32088 s - 662.314 s2
 

 

♦ The natural frequency for the phugoid 
approximation; 

sec/0726205,0 radnSP =ω  

♦ The damping ratio for the phugoid 
  approximation; 
 

036751,0=SPζ  

 

 Figure 7.1 Magnitude plot for 
)(
)(`

s
su

eδ
transfer function 

versus ω for s=j ω 

 

Figure 7.2 Magnitude plot for 
)(
)(
s
s

eδ
θ

transfer function versus 

ω for s=j ω 

 
8 Transient Response of the Aircraft  

 
Figure 8.1 Transient response of the aircraft for  ù
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Figure 8.2 Transient response of the aircraft for ὰ  

 
Figure 8.3 Transient response of the aircraft for θ  

 

 
Figure 8.4 Transient response of the aircraft for  θ&

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
9 Conclusion 
 
The equations of motion are derived and 
longitudinal stability equations are found and 
linearized. It is dedicated to stability derivatives 
of longitudinal dynamic model of Boeing 747-
400. Then, transfer functions of elevator 
displacement are calculated and Bode diagrams 
are drawn. 
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