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N
egative feedback techniques are widely used in analog
and RF design to improve circuit properties such as
variation tolerance, bandwidth, impedance matching,
and output waveform distortion. In practice, un-

wanted local return loops also exist around individual transis-
tors through parasitic capacitance. As the size of transistors
continues to shrink and the bandwidth of transistors continues
to broaden, these local return loops degrade circuit performance
significantly in the high-frequency regime. Stability is always a
serious concern for feedback circuits. Self-oscillations have been
found above and/or beyond the bandwidth in such diversified cir-
cuits as optical fiber system receivers, power amplifiers, and dis-
tributed microwave amplifiers. It is critical to evaluate stability
and stability margin of a feedback circuit. Such information can
be used for optimization in the early design stage and for diagno-
sis in physical realization stage.

Single-loop theory/multiloop reality is the state-of-the-art of
stability analysis [8]. All physical networks in the frequency band
of interest are intrinsically multiloop structures, yet it is still
common practice to assess stability from single-loop theory. In
this article, based on Bode’s definition of return ratio with re-
spect to a single controlled source, the loop-based two-port algo-
rithm and device-based gain-nulling algorithm are proposed for
small-signal stability analysis. These two algorithms are comple-
mentary in terms of applicability, and they produce accurate sta-
bility information for single-loop networks. After a brief primer
on feedback and stability, we review Bode’s feedback theory,
where the return difference and return ratio concepts are appli-
cable to general feedback configurations and avoid the necessity
of identifyingµ andβ. Middlebrook’s null double-injection tech-
nique, which provides a laboratory-based way to measure return

ratio, is then discussed in the modern circuit analysis context.
We then extend the unilateral feedback model used in
Middlebrook’s approach to accommodate both normal- and re-
verse-loop transmission and characterize the return loop using a
general two-port analysis. This loop-based two-port algorithm
determines the stability of a feedback network in which a critical
wire can be located to break all return loops. The device-based
gain-nulling algorithm is then discussed to evaluate the influ-
ence of the local return loops upon network stability. This algo-
rithm determines the stability of a feedback network in which a
controlled source can be nulled to render the network to be pas-
sive. Conditions under which these two algorithms can be ap-
plied are discussed, and numerical results are provided.

The Feedback-Stability Relationship
To illustrate the relation between feedback and stability, the
ideal single-loop feedback network is shown in Fig. 1. Following
the terminology of [6], µ represents the transfer function of the
unilateral forward active path and is usually referred to as an
open-loop transfer function, while β represents the transfer
function of a unilateral feedback path. The presence of the ideal
adder in the diagram indicates there is no loading effect at the in-
put. Under these assumptions, it is easily shown that the overall
transfer function, which is often called a closed-loop transfer
function, is given by
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where1 −µβ is referred to as the feedback factor. Under the con-
dition1 0− =µβ , a feedback network will function like an oscilla-
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tor. This condition is
known as the Barkhausen
criterion [2], which states
that the frequency of a lin-
ear(ized) oscillator is de-
termined by the condition
that the phase shift of µβ is
zero provided that the
magnitude of µβ equals
unity. The linear oscillator design should ensure that this crite-
rion is satisfied, while the amplifier design should ensure that
the circuit operates away from this critical point. Stability mar-
gin is defined as the distance between µβ and unity.

The zeros of the feedback factor are the natural frequencies
(poles) of the network. However, pole-zero analysis is not preferred
for studying stability not only because it has numerical difficulties
with large networks but also because it does not provide stability
margin that is of paramount interest to circuit designers. Since in-
put si and output so can be either current or voltage, feedback net-
works often can be classified into four different configurations [3]:
shunt-shunt, shunt-series, series-shunt, and series-series. The in-
put-output two-port approach [3, 6, 7] models these four configu-
rations using Y, G, H, and Z parameter-based two-port analysis.
Symbolic expressions of loop gainµβ in terms of these parameters
are therefore derived to provide stability information.

It should be noted that the ideal single-loop feedback net-
work shown in Fig. 1 is not an adequate representation of a prac-
tical feedback network. In practice, the active path may not be
strictly unilateral; the feedback path is usually bilateral, and the
input and output coupling networks are often complicated. A
general feedback configuration containing an input coupling
and an output coupling network is shown in Fig. 2. In addition,
as pointed out in [6], not every single-loop feedback network can
be classified as being in one of these four configurations. It is also
important to know that loop gain (the stability measure of a re-

turn loop) is uniquely de-
termined by the loop pa-
rameters—it should not
vary as the type and loca-
t ion of input source
changes. However, since
network zeros enter the
calculation of loop gainµβ,
input-output two-port

analysis produces inconsistent stability information that does
depend upon the type and location of input source [4]. Thus, a
general and more accurate approach to perform stability analy-
sis is desirable.

Bode’s Feedback Theory
Bode’s original theory was published in [1] and was later ex-
tended in [6]. In a general feedback network, the quantity of cru-
cial effect upon the network stability is the controlled source of
the amplifier. Without loss of generality, we assume this source
is a voltage-controlled current source specified as i xv= . In the
subsequent discussion, x refers to this controlled source. The
definition of return difference is given below.

Definition 1 [6]. The return difference F x( )of a feedback net-
work with respect to a controlled source x is said to be the ratio of
two functional values assumed by network determinant under
(a) the condition that x assumes its nominal value, and (b) the
condition that x assumes the value zero:

F x
x

( ) =
=

∆
∆ 0

.
(2)

Return difference F x( ) is the most important quantity en-
countered in feedback theory for a number of practical reasons.
First, stability of the network depends upon the zeros of F x( ) in
the complex frequency plane, which are natural frequencies of
the network. Second, F x( ) is considered as a generalization of
the feedback factor 1 −µβin the ideal feedback network shown in
Fig. 1. Third, the sensitivity function S x( ) of the amplifier with
respect to the element x is closely related to the return difference
F x( )—and in many practical cases, S x( ) is approximately equal
to the reciprocal of return difference.

Return ratio T x( ) is defined as

T x F x x

x

( ) ( )= − =
− =

=

1 0

0

∆ ∆
∆

.
(3)

In the engineering context, the negative of return ratio T x( ) is
referred to as loop gain, which is also a generalization ofµβin the
ideal single-loop feedback network shown in Fig. 1. Correspond-
ingly, the Barkhausen criterion in terms of return difference and
return ratio is F x( ) = 0 and T x( ) = −1, respectively.

Referring to Fig. 3, return difference and return ratio can be
physically interpreted as follows. First, deactivate all network in-
put i1, �, iN ; second, replace the input of controlled source x
with an external voltage source of 1 V, thus x no longer depends

si soµ

β

1. The ideal single-loop feedback network.
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2. A general feedback network with input and output coupling [6].

All physical networks in the frequency band
of interest are intrinsically multiloop

structures, yet it is still common practice
to assess stability from single-loop theory.
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upon vi . This 1 V input pro-
duces a current of x am-
peres at the output of the
controlled source. The
transmitted voltage to the
original input of the con-
trolled source (vi) is then
the negative of the return
ratio T x( ). Also, the return difference F x( ) is simply the differ-
ence between the excitation of 1 V applied at the input of the con-
trolled source and the transmitted voltage to the original input
of the controlled source. From the proportionality property of a
linear circuit, the return ratio is simply −v vi ext/ in case the ex-
ternal source vext is not 1 V. The physical interpretation of return
ratio T x( )is important because it is upon this interpretation that
Middlebrook based the laboratory-oriented measurement tech-
nique to obtain the return ratio of a feedback network.

For the subsequent discussion, we consider the special case
that the controlled source of interest is a one-port element.
Instead of relating a voltage and a current at different ports, x re-
lates the voltage and current at the same port. The definition of
return difference and return ratio can still be used. The original
circuit equation is
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where the determinant of circuit matrix is ∆.
Now we replace the one-port element by an independent cur-

rent source of x amperes. Meanwhile, we remove all network ex-
citations, and then the circuit equation becomes
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where the determinant of circuit matrix now is ∆ x= 0, and the re-
sponse ~vj due to the current excitation x is simply

~v xj
jj

x

= −
=

∆
∆ 0

,
(6)

where ∆ jj is the co-factor of the Yjj term.
Since ~vj is the voltage response due to the cur-

rent source x at the same port, then

~v
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(7)

where Y is the admittance of the one-port network
that x faces. Return ratio T x( ) for a one-port ele-
ment x is then given by

T x v
x
Yj( ) ~= − = .

(8)

This equation will be used
in the subsequent sections
for the development of re-
turn-loop models.

Stability margin is de-
fined as the distance between return ratio and −1, or equiva-
lently, the distance between loop gain and unity. Note that the
return ratio is a complex function of frequency. For the com-
pleteness of the feedback theory, the definitions of gain margin
and phase margin are given below.

Definition 2 [6]. The gain margin is defined to be the amount
of magnitude in decibels of the return ratio below the 0 dB level
at the frequency for which the phase is −180 degrees.

Definition 3 [6]. The phase margin is defined to be the phase
difference in degrees of the return ratio above −180 degrees at
the frequency for which the gain is 0 dB.

Null Double-Injection Technique
In his original work [9], Middlebrook proposed the so-called null
double-injection technique to measure return ratio based on its
physical interpretation. In this section, we review this approach
in the modern circuit analysis context.

Recalling the physical interpretation of return ratio in the
last section, it involves deactivating network input and breaking
the controlled source at the input side. This breakpoint concept
can be extended, without loss of accuracy, to break the feedback
loop at any location on either the active path or the feedback
path, as long as the dc impedance characteristics are not dis-
turbed. To demonstrate this concept, the signal flow graph of a
broken feedback loop is illustrated in Fig. 4.

By assuming the feedback loop has unilateral signal flow
from e to f, without loss of generality, we can model the whole
feedback loop with an impedance on the input side and a con-
trolled source with an impedance on the output side in either of
the two configurations (essentially, Norton equivalent and
Thévenin equivalent) shown in Fig. 5. Both configurations
model the same loop, thus constants k1 and k2 must satisfy
k k Y Ye f1 2= − . se and sf must be of the same physical quantities, so
the return ratio is either −v vf e/ or −i if e/ .

If we view the return ratio as the voltage ratio −v vf e/ , we can
substitute the representation of Fig. 5(a) into the feedback loop

i1 Y11
+ +

− −

− −xvi

YNN
iN

v v

3. The physical interpretation of return difference and return ratio.

Null double injection has been widely
applied in both laboratory-based

measurement and circuit analysis.
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in Fig. 4. At the output side of the feedback loop, note that the
network is loaded withYe since the dc bias of the original circuit
is not disturbed, we have

k v
v

Y Ye
f

e f
1 0+

+
= ,

(9)

thus the return ratio is

T
v
v

k
Y Y

f

e e f

= − =
+

1 .
(10)

Going back to the alternative view of the return ratio as a sys-
tem that has currents as its input and output signals, we plug in
the representation of Fig. 5(b) into the feedback loop in Fig. 4
and have the following equation:

k i
Y Y
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f2
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
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(11)

Based on the relation between k1 and k2, we conclude once again
that

T
i
i

k
Y Y

f

e e f

= − =
+

1 .
(12)

We can also make use of Eq. (8). At the normal circuit opera-
tion, node e and f are connected together, thus Fig. 5(a) is equiv-
alent to a one-port element (discussed in the previous section)
with x k= 1 and Y Y Ye f= + . Directly following Eq. (8), we have

T
x
Y

k
Y Ye f

= =
+

1 .
(13)

Figure 5 is the fundamental return-loop model used in
Middlebrook’s approach, and Eq. (13) is the essential formula to
calculate the return ratio under this model.

To analyze the stability of the feedback loop, it does not mat-
ter whether the designer views voltage or current as the signal of
interest; both produce the same answer, as long as the dc imped-
ances are not disturbed when the loop is broken. In practice, this
requires careful selection of the break-point location. For the
voltage driving case, the break point should be located where the
impedance Yf looking backward from the break point is suffi-
ciently smaller than the impedanceYe looking forward from the
break point; the opposite condition,Y Yf e<< is necessary for the
current driving case to give a correct result. Generally, for an ac-
tual network, it may not be possible to find a break point that sat-
isfies either of these extreme conditions.

By performing two signal-injection-based return ratio mea-
surements, the influence of break point on dc impedance can be
canceled out such that the location of the break point can be se-
lected anywhere on the loop. This double-injection configura-
tion is shown in Fig. 6. At the normal circuit operation, both iinj

and vinj are set to zero; thus, the loop properties are undisturbed.
For the first signal injection, iinj and vinj are provided simulta-

neously to null if . We have the following equation at the output
side of the feedback loop:

k v Y ve f f1 0+ = , (14)

and the null voltage return ratio Tv
n is defined and calculated as

T
v
v

k
Yv

n f

e f
i f

= − =
=0

1 .
(15)

For the second signal injection, iinj and vinj are provided si-
multaneously to null vf . We have the following equation at the
output side of the feedback loop:

− =i k
i
Yf

e

e
1 ,

(16)

and the null current return ratio Ti
n is defined and calculated as

se sf

Loop Circuitry

4. The signal flow graph of a broken feedback loop.

v e v f

+ +

− −

Ye

Ye

k v1 e

k i2 e
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ie if
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(b)

5. The Norton and Thévenin equivalents of the feedback loop.
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According to Eq. (13) and manipulating the algebra, we have
the return ratio

T
T T
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(18)

and
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v
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Compared with other double-injection techniques, null double
injection is numerically stable even when return ratio T approaches
zero. Today, this technique has been widely applied in both labora-
tory- based measurement and circuit analysis.

Evaluation of True Return Ratio
The return-loop model used in Middlebrook’s approach implic-
itly assumes that signals flow through the feedback loop unilat-
erally. This is a reasonable assumption for most low-frequency
applications. However, as we pointed out before, for most prac-
tical designs, the active path may not be strictly unilateral, and
the feedback path is usually bilateral. Thus, in addition to nor-
mal loop transmission, reverse loop transmission also exists
around the feedback loop. The signal level of reverse transmis-
sion, which is ignored by the null double-injection technique
and most other approaches, can be as large as normal transmis-
sion for microwave applications [8]. To accurately evaluate the
stability of a feedback network, both normal- and reverse-loop
transmission should be considered. In this section, we extend
the unilateral return-loop model shown in Fig. 5 to the bilat-
eral return-loop model, and we calculate the true return ratio,
which is proven to be the sum of normal return ratio and re-
verse return ratio.

Figure 7 shows the bilateral return-loop model configured
for the double-injection technique. Recalling that at the normal
circuit operation ie equals to if and ve equals vf , Ye ,Yf , k1, and k3

are connected in parallel. Compared with the one-port case dis-
cussed above, we know that x k k= +1 3,Y Y Ye f= + ; then, for the
bilateral model, we have

T
x
Y

k k
Y Ye f

= = +
+

1 3 .
(20)

The bilateral return-loop model can be characterized using
a general two-port analysis. Let iinj and vinj be the driving (input)
signals and if and ve be the dependent (output) signals. Since
the feedback network is linear, the only constraint to be placed
upon each dependent signal, by superposition, is the linear
sum of the two values it would have due to each input signal
alone. Thus
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The A, B, C, and D parameters are characterized by a dou-
ble-injection technique that is essentially two small-signal ac
analyses: for the first small-signal ac analysis, we set iinj = 0 and
vinj =1, then

B i D vf
i v

e i v= =
= =

= =
inj inj

inj inj
and

0 1
0 1

,
, ;

(22)

for the second small-signal ac analysis, we set iinj =1 and
vinj = 0, then

A i C vf i v e i v= == = = =inj inj inj inj
and1 0 1 0, , .

(23)

Here the double-injection technique is performed to character-
ize the return loop. Although a similar technique is used in

ie if

vinj

iinj

Ye k v1 e Yfv e v f

6. The illustration of double-injection technique.

ie if

vinj

iinj

Ye k v3 f k v1 e Yfv e v f

7. Double-injection technique based on the bilateral return loop
model.
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Middlebrook’s approach, the purpose there is to
calculate the voltage and current return ratios.

Once the return loop is characterized, the
relationship between the k1, k3,Ye ,Yf , and A, B,
C, D parameters needs to be derived. Con-
sidering Fig. 7, circuit equations at the input
side and output side of the feedback loop are

− + + − − =Y v i i k v ve e f einj inj3 0( ) , (24)

k v i Y v ve f f e1 0+ + − =( )inj . (25)

Compared with Eq. (21), we have the expres-
sions for A, B, C, and D in terms of k1, k3, Ye ,
and Yf :
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Solving these four equations, we have

k
AD BC A

C1 = − −
,

(26)

k
AD BC D

C3 = − +
,

(27)

Y
AD BC A D

Ce = − + + −1
,

(28)

Y
BC AD

Cf = −
.

(29)

Replacing Eqs. (26), (27), (28), and (29) into Eq. (20), the for-
mula that accurately calculates the true return ratio is

T
AD BC A D

BC AD A D
= − − +

− + − +
2

2 1
( )

( )
.

(30)

Recalling that the only difference between the unilateral model
and the bilateral model is that the unilateral model ignores the
reverse transmission factor k3, by replacing Eqs. (26), (28), and
(29) into Eq. (13), the null double-injection technique calculates
the normal return ratio as

T
AD BC A

BC AD A Dnormal = − −
− + − +2 1( )

.
(31)

Accordingly, by ignoring k1, the reverse return
ratio is calculated as

T
AD BC D

BC AD A Dreverse = − +
− + − +2 1( )

.
(32)

It is obvious that the true return ratio is the sum
of normal return ratio and reverse return ratio.

The evaluation of Eq. (30) is referred to as a
loop-based two-port algorithm in this article.
In summary, this algorithm consists of two
steps. First, deactivate the network input and
perform two small-signal ac analyses to charac-
terize the A, B, C, and D parameters; then the
true return ratio is calculated using Eq. (30).
This loop-based algorithm applies definitely to
a single-loop feedback network and a multiloop
feedback network in which a critical wire can
be located to break all return loops. In the

multiloop case, model parameter k1, k3, Ye , and Yf are lumped
from all return loops.

It should be pointed out the proposed loop-based two-port al-
gorithm differs fundamentally from the input-output two-port
analysis described in [3, 6, 7]. The latter approach models the
whole feedback network using two-port analysis based on the
ideal single-loop feedback network shown in Fig. 1. Both the in-
put and output of the feedback network can be either current or
voltage, thus the specific feedback configuration needs to be
pre-identified to perform input-output two-port analysis. While
our loop-based two-port algorithm only models the feedback
loop and its associated loading effects, all feedback networks fall
into the same loop model; since the driving signal and return
signal are of the same physical quantity, the voltage case and
current case are essentially equivalent. Furthermore, the loop
model in our approach is purely determined from the loop pa-
rameters, which provides a unique stability measure, while in-
put-output two-port analysis produces results dependent upon
the type and location of network input [4]. This is highlighted by
a detailed example in the  Numerical Results section.

The Device-Based Gain-Nulling Algorithm
Our loop-based two-port algorithm requires that circuit design-
ers have access to the return loop, such that a break point can be
placed to characterize the loop. There are two categories of appli-
cations that are of much interest to microwave circuit designers.
In the RF regime, the device parasitic effect becomes significant.
Take the MOSFET transistor as an example: the signal flows back
from the internal drain to the internal gate through parasitic ca-
pacitance C gd . Under this scenario, the local return loop exists
around an individual transistor. Self-oscillation is a frequently
encountered phenomenon in high-frequency design, so it is very
important to evaluate the stability of an individual transistor. In
this case, one design objective is to ensure that an individual
transistor is stable with a reasonable stability margin beyond the
operating bandwidth. On the other hand, the objective of linear

Rf

Iin

Q1

Rc

Vcc

8. A simple bipolar feedback circuit.
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oscillator design is to ensure the return ratio goes through the
critical oscillating point (Barkhausen criterion) at the desired
frequency. Some oscillators depend on the internal local loops
alone to start, others require an external loop or sometimes a
trigger is needed. In all cases, return ratio is a useful design and
analysis tool. However, since the feedback loop is hidden inside
the device, our loop-based algorithm can no longer be applied to
these types of applications.

To address this issue, let us go back to the original definition
of return difference and return ratio. There are two factors that
prohibit the direct use of them in practice. First, direct measure-
ment of a network determinant is almost impossible; second, the
original definition is based on a single controlled source, while
the actual return loops are far more complicated. Our loop-
based algorithm lumps the complicated loop structure into the
bilateral return loop model.

In circuit analysis, the calculation of the network determi-
nant is rather simple. Given an N N× matrix A, after LU decom-
position, we have

A L U= × , (33)

where L is the lower triangular with all diagonal ele-
ments equal to one, and U is the upper triangular. The
determinant function of A is simply

∆ =
=
∏Uii
i

N

1

.
(34)

Numerically, the determinant of a large matrix can
be off the limit of the floating-point representation.
One way to handle this problem is to order the diago-
nal elements before the return ratio computation,
that is
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(35)

where
~
Uii and

~
Uii

0 are ordered to be monotonically in-
creasing or monotonically decreasing. This should al-
ways work since the return ratio T x( ) itself has a
reasonable value.

Although the single-controlled-source-based defi-
nition cannot be applied to a general sophisticated
feedback network, the determinant-based return ratio
calculation can be perfectly applied to assess the sta-
bility of an individual transistor with local return
loops. This approach, referred to as a device-based
gain-nulling algorithm, calculates return ratio based
on individual transistors at each frequency: the nor-
mal network determinant and the network determi-
nant with controlled source x nulled are first
calculated, then the return ratio associated with this
specific transistor is determined by Eq. (3). Here, the

controlled source x is assumed to be the dominant controlled
source (gm in most cases) in the transistor under investigation.
Unlike our loop- based algorithm, the gain-nulling algorithm is
device-based, and there is no need to access the return loop.

Applicability of Loop-Based and
Device-Based Algorithms

The loop-based two-port algorithm produces stability informa-
tion for a specific return loop, while the device-based
gain-nulling algorithm produces stability information for a spe-
cific controlled source. Before proceeding further, we should
first investigate the condition under which these two algorithms
produce consistent stability information for a single-loop feed-
back network.

Our loop-based and device-based algorithms produce consis-
tent stability information for a single-loop feedback network as
long as the following condition is satisfied: all controlled sources
of the network appear in the network determinant in a simple
product form [6]. This implies the nulling of any controlled

Rf

Rf

Iprobe

Iprobe

Iin Rx

Rx

Rin

Rin

v i
n

v i
n

Vin

G Vm in

G Vm in

Rout

Rout

v o
ut

v o
ut

(a)

(b)

9. A single-loop feedback circuit, Rx = 200 k, Rf = 100 k, Rin k= 50 ,
R Mout = 1 , g mm = 1 .
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source in the network renders the whole network to be passive.
In other words, the return ratio with respect to any controlled
source is the same.

This condition can be further extended to multiloop cases:
for a feedback network that consists of multiple loops, if a critical
controlled source can be located such that the nulling of this
source renders the whole network passive, return ratio with re-
spect to this controlled source is the accurate stability measure
of the network.

A simple circuit shown in Fig. 8 can be used to illustrate the
applicability of our loop-based and device-based algorithms. Two
factors affect the applicability of this circuit: the local return
loop inside the transistor and the reverse-loop transmission
around the return loop. There are four cases:

1. If both the local loop and reverse transmission can be ig-
nored, both our loop-based and device-based algorithms produce
accurate and consistent stability information for the network.

2. If the reverse transmission can be ignored, only the de-
vice-based algorithm produces accurate stability information
for the network. If the network is a multiloop network, the
loop-based algorithm can no longer be applied since no wire can
be found to break both global and local loops.

3. If the local return loop can be ignored, only the loop-based
algorithm produces accurate stability information for the net-
work. The loop-based algorithm produces accurate stability in-
formation for a multiloop network as long as a critical wire can
be found to break all loops. Nulling the normal transmission-
controlled source does not render the whole network to be pas-
sive, thus the device-based algorithm cannot be applied

4. If none of these two factors can be ignored, this corre-
sponds to general multiloop networks. Neither our loop-based
nor our device-based algorithms can be applied.

It is obvious that our loop-based and device-based algorithms
are complementary in terms of applicability for single-loop net-
works. When the local return loop is the only feedback loop in
the network, the loop-based algorithm can no longer be applied,
and our device-based algorithm produces accurate stability in-
formation. When the single-loop network consists of multiple
controlled sources, and they are not in the single product form
in network determinant, our loop-based algorithm produces ac-
curate stability information since a wire can always be found un-
der this multiple device situation. Case 2 and Case 3 are the exact
conditions under which our loop-based and device-based algo-
rithms can be applied to multiloop applications.

Numerical Results
The proposed loop-based two-port algorithm and device-based
gain-nulling algorithm have been implemented in a Spectre circuit
simulator. In this section, numerical results are given to illustrate
the accuracy advantage over input-output two-port analysis and
the null double-injection technique. The conditions under which
our loop-based and device-based algorithms can be applied to
multiloop applications are also demonstrated with real circuit de-
signs. Although return ratio has been used through the theoretical
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10. A single MOSFET feedback circuit.
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development in previous
sections, loop gain—the
negative of return ratio and
widely used in the engi-
neering context—has been
produced as the output of
stability analysis.

Single-Loop Feedback Circuit
This example is taken from [4] and is used to demonstrate the
consistency between our loop-based two-port algorithm and the
device-based gain-nulling algorithm. Our loop-based and de-
vice-based algorithms produce consistent loop-gain results for
single-loop circuits and do not depend upon the type and loca-
tion of input sources. In contrast, input-output two-port analy-
sis, which does depend upon the type and location of input
sources, could produce yet another loop-gain result.

The circuit diagram is shown in Fig. 9. Note that the circuits
in Fig. 9(a) and Fig. 9(b) are exactly the same except the type and
location of the input source is different. Figure 9(a) shows a
shunt-shunt feedback configuration, while Fig. 9(b) shows a se-
ries-shunt feedback configuration.

This circuit contains a single return loop and a single con-
trolled source, and it corresponds to Case 1 discussed above.
Current probe Iprobe (equivalent to the zero-valued voltage
source in Spectre) is inserted into the return loop to character-
ize the loop. Iprobe is used to add vinj and iinj on-the-fly for two-port
analysis. As expected, both our loop-based and device-based al-
gorithms produce the same loop-gain result of 35.09 for either
the shunt-shunt or series-shunt configurations.

In contrast, the input-output two-port analysis produces a
loop-gain result of 25.71 for the shunt-shunt configuration and
66.85 for the series-shunt configuration [4]. Note that these two
numbers differ by more than a factor of two. This observation
demonstrates that even for a typical single-loop circuit, in-
put-output two-port analysis produces inconsistent loop-gain
results as the type and location of the  input source changes.

The difference of loop-
gain results between our
algorithms and input-out-
put two-port analysis can
be explained as that the in-
put-output two-port analy-
sis is purely based on the
simplified unidirectional

feedback model. For this circuit, the active path is strictly unidi-
rectional, while the feedback path is not.

Single MOSFET Feedback Circuit
Figure 10 shows a single MOSFET feedback circuit that is

used to illustrate the stability analysis of a feedback circuit oper-
ating at such a high frequency that the local return loops cannot
be neglected.

For a MOSFET transistor, local return loops exist between
the drain and gate through parasitic capacitances. As frequency
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Our loop-based and device-based algorithms
are complementary in terms of applicability

for single-loop networks.



■ 40 CIRCUITS & DEVICES ■ JANUARY 2001

moves higher, the effect of these local loops upon circuit perfor-
mance cannot be neglected. To conduct the experiment, we first
turn off the local return loops by setting the following bsim3v3
model parameters: xpart =1, capmod = 0, cgdo = 0, cgdl = 0, and
cf = 0. This circuit contains two return loops through Rf and Cf ,
respectively; however, current probe Iprobe can be placed as shown
in Fig. 10 to break both loops. In addition, there is only one con-
trolled source (gm of M1) that exists in the network; thus both our
loop-based and device-based algorithms produce consistent and
accurate loop-gain results as plotted by the solid line in Fig. 11.

Next, we turn back the local return loops by setting the
bsim3v3 model parameters as follows: xpart = 0, capmod = 2,
and resetting parameters cgdo, cgdl, and cf to default such that
they are not forced to zero. Due to the existence of local loops, no
break point can be found to break all loops; however, there is still
only one controlled source (gm of M1) that exists in the network,
and nulling this controlled source actually renders the network
to be passive. This corresponds to Case 2 discussed above. Thus,

our device-based algorithm still produces accurate loop-gain re-
sults as plotted in the dashed line in Fig. 11. Our loop-based algo-
rithm produces results that are inaccurate in high frequencies,
(plotted as the dotted line for comparison).

Bipolar Operational Amplifier
Figure 12 shows a bipolar operational amplifier circuit with dif-
ferential input stage and single feedback loop. This circuit is
used to demonstrate the difference between our loop-based algo-
rithm that calculates the true loop gain and Middlebrook’s null
double-injection technique that calculates the normal loop gain.

Figure 13 plots the loop-gain waveforms produced by our
loop-based algorithm and null double-injection technique. It is
obvious that the loop-gain waveforms overlapped very well ex-
cept at high frequency. This difference increases as the fre-
quency goes higher. The reason behind this is that the null
double-injection technique only models the normal loop trans-
mission in the return loop, while our loop-based algorithm mod-
els both normal and reverse transmission, and the reverse
transmission increases as frequency goes higher.

The stability margins can be easily obtained from the loop-gain
waveform, and our loop-based algorithm produces gain margin of
13.99 dB at 314.88 MHz and phase margin of 54.04 degree at 62.7
MHz. For a stable circuit or transistor, both gain margin and phase
margin should be positive, or the phase plot stays positive within the
operating bandwidth. This circuit corresponds to Case 3 discussed
above. Nulling the gm in either Q2 or Q5 does not render the whole
network to be passive, and our device-based gain-nulling algorithm
does not produce accurate loop-gain results for this circuit.

Linear Oscillator Circuit
Figure 14 shows a linear oscillator circuit referenced from [7].
This circuit is designed to oscillate at a frequency of 10 MHz.

Figure 15 plots both the dB plot and phase plot of loop gain on
one graph. The application of stability analysis on the linear oscilla-

tor design is to ensure that both the dB plot and
phase plot of loop gain are close enough to zero at the
desired oscillating frequency and that the phase of
loop gain changes rapidly in the neighborhood of the
oscillation frequency for good frequency stability.

It is easy to verify from Figure 15 that at 10.6
MHz, the loop gain is 0.04 dB and 1.3 degrees
and that the phase of loop gain changes rapidly
from 90 degrees to −90 degrees around the os-
cillating frequency.
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