LoRa's Jambalaya

Fernando Kuipers Delft University of Technology May 20th, 2019 <u>https://fernandokuipers.nl</u>

Wireless Sensor Networks

• WSNs:

- Multiple hops to sink
- Many challenges due to energy constraints

- Long-range communication:
 - Direct link to sink/gateway

Low-Power Wide Area Networks

TUDelft

LoRa vs LoRaWAN

- Communication protocol (MAC) and architecture for LoRa/FSK
- Specified by the LoRa Alliance
- LoRaWAN version
 - Common: 1.0.2 (July 2016)
 - Recent: 1.1 (October 11, 2017)
- Semtech's proprietary wireless modulation technology
- Physical layer (PHY) for long range communications
- Based on Chirp Spread Spectrum (CSS)
- Robust against multipath, Doppler shift

Chirp Spread Spectrum (CSS)

- One chirp = 1 symbol
- One chirp covers entire BW
- Frequency offset (+ wraparound) determines symbol

LoRa parameters

- Data Rate (DR)
 - Spreading Factor (SF)
 1 symbol = SF bits
 - Bandwidth (BW)
- Carrier Frequency (CF)
- Coding Rate (CR)
- Transmission Power (TP)

1st large-scale evaluation [1]

[1] N. Blenn and F.A. Kuipers, "LoRaWAN in the Wild: Measurements from The Things Network," arXiv:1706.03086.

Results from the wild

Link quality

Data Income & The Manager | Man You by Dagmer Co.

It depends!

Typical gateway coverage

Measuring coverage is costly: we need an automated approach!

Remote sensing

Land-cover classes

Link quality per class

Okumura-Hata model

Dominant land-cover class

Complete tool

Estimation error

	PATH		INTERSECTION		Free		Bor	
G_{id}	avg	stdd	avg	stdd	avg	stdd	avg	stdd
all	8.73	6.67	8.71	6.62	32.24	10.61	33.53	10.71
1	9.73	8.01	9.64	7.69	25.66	9.93	40.58	10.59
7	7.11	5.73	6.53	5.25	32.18	6.58	33.91	6.63
8	7.90	5.36	8.03	5.56	35.68	8.36	29.92	8.31
11	10.14	5.55	9.67	5.25	42.58	8.43	22.97	8.46
13	12.28	7.22	13.63	7.69	43.22	8.28	21.97	8.17

Collisions & the capture effect

TUDEIft [3] A. Rahmadhani and F.A. Kuipers, "When LoRaWAN Frames Collide," Proc. of ACM WINTECH 2018.

LoRaWAN architecture

Collisions are bound to happen

Single GW experiment setup

Parameters	Device 1 (N1)	Device 2 (N2)	
Equal received power (TP)	2 dBm		
Different transmission powers (TP)	2 dBm	8 dBm	
Time offset	0 ms	++ 1 ms (delayed)	
Packets per time offset	20		
Frequency (CF)	869.7 MHz (SF11 plotted)		
Payload size	26 bytes		
Network	Private		
Distance to gateway (LOS)	5 m		
Distance to gateway (NLOS)	30 m		

Data Extraction Rate (DER)

DER: Ratio of received frames (at application layer) to transmitted frames

Frame loss conditions

- Both frames get destroyed (preamble lock)
- Weaker frame gets destroyed, stronger frame survives (LoRa header of the weaker frame gets destroyed, receiver immediately starts reading new frame)
- Both frames get destroyed (LoRa header of the weaker frame OK, keeps lock)
- Both frames get destroyed (MIC/Payload CRC error)

Multiple GWs experiment setup

Parameters	Device 1 (N1)	Device 2 (N2)	
Same network scenario	TTN		
Different networks	TTN	KPN	
Transmission power (TP)	8 dBm	14 dBm	
Time offset	0 ms	++ 1 symbol (delayed)	
Frequency (CF)	868.1 MHz		
Data Rate	SF9BW125		

DER multiple GWs

Different networks (TTN & KPN):

- KPN device as interferer
- KPN device received 2 new frequency channels (867.7 and 867.9 MHz) due to ADR

Insigths

- Conditions for the capture effect to occur:
 - The stronger frame overlaps with the LoRa header of the weaker frame
 - Both frames might still be decoded whenever the stronger frame only slightly overlaps with the payload CRC of the weaker frame
- Adding more gateways improves DER:
 - Stronger signals are received by more distant gateways than weaker signals

LoRaWAN security vulnerabilities

Do not try this at home ;)

[4] X. Wang, E. Karampatzakis, C. Doerr, and F.A. Kuipers, "Security Vulnerabilities in LoRaWAN," Proc. of ACM/IEEE IoTDI 2018.

Mirai botnet, a DDoS nightmare turning Internet of Things into Botnet of things

nest

25

Security features of LoRaWAN

- Channel confidentiality
 - Network and application keys
 - End-to-end encryption
- Enrollment protocol
 - Activation by Personalization (ABP)
 - Over-the-Air Activation (OTAA)
- Integrity and authenticity validation
 - Message Integrity Code (MIC)

Channel confidentiality

Encryption by AppSKey

Enrollment protocol

- OTAA:
 - End-device sends Join Request
 - Network server sends Join Accept with AppNonce
 - AppNonce to generate NwkSKey and AppSKey

- ABP:
 - No exchange of join messages
 - NwkSKey and AppSKey pre-assigned

Integrity and Authenticity validation

LoRaWAN implementation

elft

ŤUDelft

Bit flipping

Counter-measure

More info? Contact me at

Fernando Kuipers Delft University of Technology <u>F.A.Kuipers@tudelft.nl</u> <u>https://fernandokuipers.nl/</u>

