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Abstract—Although numerous loop optimization techniques
have been designed and deployed in commercial compilers in
the past, virtually no common experimental infrastructure nor
repository exists to help the compiler community evaluate the
effectiveness of these techniques.

This paper describes a repository, LORE, that maintains a
large number of C language £for loop nests extracted from popu-
lar benchmarks, libraries, and real applications. It also describes
the infrastructure that builds and maintains the repository. Each
loop nest in the repository has been compiled, transformed,
executed, and measured independently. These loops cover a
variety of properties that can be used by the compiler community
to evaluate loop optimizations using a broad and representative
collection of loops.

To illustrate the usefulness of the repository, we also present
two example applications. One is assessing the capabilities of
the auto-vectorization features of three widely used compilers.
The other is measuring the performance difference of a compiler
across different versions. These applications prove that the repos-
itory is valuable for identifying the strengths and weaknesses of
a compiler and for quantitatively measuring the evolution of a
compiler.

I. INTRODUCTION

A significant fraction of execution time is consumed by
loops for a large class of programs. For this reason, numerous
loop optimization techniques [1], [2] have been designed and
deployed in all major compilers. These optimizations trans-
form loops into semantically equivalent versions that exhibit
better locality, require less computation, and/or take advantage
of parallelism from vector devices/multicores. Furthermore,
compiler optimizations also enhance programability and en-
able machine independence. The ultimate goal of research in
automatic program optimization is to enable programmers to
focus on the preparations of readable and correct code because
they can rely on compilers to generate highly efficient code
for each target machine. It is well known that we are far from
reaching the ultimate goal and that compilers today are brittle
in that it is impossible to know before hand if they will be
able to generate a highly efficient version of the code or if, on
the contrary, it will be necessary to devote considerable time
to manually transform the code for good performance.

Clearly, there is much room for advances in compiler
technology. An important enabler of these future advances is
data on the effectiveness of compilers on different classes of
codes and target machines, the progress of compilers across

successive versions, and the effectiveness of solo/compound

transformations. While some of such data can be found in the

literature, in many cases compiler studies are confined to a

few codes, which are not always widely available. In addition,

there is little in the area of historical data that shows how much
progress compiler technology has made in terms of delivering
performance.

In this paper, we propose LORE, a repository of program
segments, their semantically equivalent transformed versions,
and performance measurements with various compilers. Our
goal is to create an extensible repository for the compiler
community that can provide a common base for experimen-
tation and comparison of results, allowing compiler writers
to see the effect of transformations on individual loop nests
and to compare execution times of different transformation
sequences. Currently, the repository contains:

e A growing number of C language for loop nests (~2,500
as of the writing of this paper) extracted from multiple
benchmarks, libraries, and real applications by an extractor.
The extractor encapsulates loop nests into standalone exe-
cutables called codelets. Each codelet executes a loop using
data captured during the original benchmark execution,
measures its execution time, and collects readouts from
hardware performance counters for further analysis.

o Multiple semantically equivalent versions of each loop pro-
duced by a source-to-source mutator that applies sequences
of loop transformations constructed by combining tiling,
interchange, distribution, unrolling, and unroll-and-jam into
sets of possibly repeated subsets of these transformations.
We call the result of applying each of the transformation
sequences a mutation. The repository currently contains
~90,000 different mutations (an average of 36 mutations
per original loop), as of the writing of this paper.

o A database that correlates the execution profiling of the
original loop and its mutations with the compilers and target
machines used for each execution. This data is valuable not
only for comparing the effectiveness of different compilers’
optimization passes but also for tracking the evolution of
a compiler’s capability in loop optimization. Currently the
repository contains data on the execution on a single target
machine from 2 versions of the Intel ® C++ Compiler
(ICC), the GNU C Compiler (GCC), and Clang (frontend
of LLVM for C family languages).



We extract the loops from the benchmarks for two reasons.
One is to reduce the time to evaluate each loop. Evaluating
the effect of different compilers with various switches on the
original loop nests and their semantically equivalent mutations
typically requires numerous executions of the loop. Much time
is saved by executing the loop and its mutations in isolation.
The second reason is that it is important to study the execution
of the loops separately so that we could classify loops for
the purposes of applying machine learning techniques for
compilation and, when necessary, alter the context of execution
of each loop.

Both the source code for the original loop and its mutations
and the measurement data are available for download/query
from the LORE website. The web interface also conveniently
allows users to view dynamically generated plots/charts from
selected loops/compilers.

In order to illustrate the usefulness of LORE, we include in
this paper two experiments. One compares the effectiveness of
major compilers’ auto-vectorizers since vectorization plays an
important role in performance improvement and efficient hard-
ware utilization. The other assesses the performance difference
across generations of a compiler. These experiments prove
that LORE is an efficient approach to effectively identify the
strengths and weaknesses of a compiler and to quantitatively
measure the evolution of a compiler.

The remainder of the paper is organized as follows. Sec-
tion II presents the tools contained in the infrastructure for
loop extraction, mutation, and clustering. We explain the
details of the repository in Section III. Section IV gives two
example analysis that users can perform using the data in the
repository. Section V discusses related work and compares
our repository and infrastructure tools with the state-of-the-art
research. Finally, Section VI concludes the paper.

II. MODULES TO CREATE AND ACCESS LORE

Figure 1 shows the different software modules that we have
built to create and access LORE, which include:
« an extractor to create codelets,
« a mutator to create multiple semantically equivalent versions
(mutations) of each codelet,
o a clusterer to classify the codelets,
« a database as the repository to store various measurements
of the codelets/mutations,
« a web interface to give broad access to the repository.
In this section, we describe these modules. The first three
were implemented using the ROSE source-to-source compiler
infrastructure[3] and operate on C programs, one of the most
widely used languages for high-performance computing.

A. Extractor

The extractor separates loops from benchmark programs to
create codelets. There are three steps in the separation process.
First, the extractor traverses the abstract syntax tree (AST) and
identifies the for loops to be extracted. Second, the extractor
copies and makes available to each of the codelets the value
of all data that the codelet’s loop accesses. That is, all the
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Fig. 1: The system framework of the infrastructure.

data items that the loop reads before being modified during
its execution. This is done to guarantee that the execution
of the codelet will follow the same flow of control as the
benchmark. The memory layout is preserved for data accessed
in the loop, however the extractor does not replicate the cache
state when a benchmark executes the target loop since cache
state is invisible to the programmers during coding. Finally,
the extractor copies the loop statements, creates the necessary
declaration, and inserts the instrumentation statements.

Data copying. For each for loop nest to be separated,
the extractor inserts code into the source file to first capture
the data read inside the loop and then save them to a file.
To this end, the loop nest is analyzed statically to identify all
variables that are read-only or read-before-write. Variables that
are guaranteed to be write-only or write-before-read are not
instrumented as their values are generated during the execution
of the loop. Then, for these collected variables the values are
obtained as follows depending on the nature of the variables.
o Non-pointer scalar variables are instrumented simply by

adding code to write their values to a file directly.
 Arrays with known dimensions are treated similarly to scalar

variables. Statements are added before the target loop to
write the values of all array elements to a file in a row-
major way.

o Pointers and arrays of unknown sizes (e.g. int al])
are handled following a two-pass procedure. In the first
pass, all referenced memory locations are captured so that
the memory boundaries in static, heap, and stack sections
accessed by the loop are determined. In the second pass, the
benchmark is executed again, and all the memory contents
between the lower and upper boundaries of each memory
section is saved to a file. To guarantee that the same pointer
would have fixed addresses during the initial extraction and
the later codelet execution, we disable the address space
layout randomization (ASLR).

o The address of a structure variable is logged if it is a pointer.
Otherwise, it is treated as a basic scalar type.

A target loop may be executed many times, i.e. it can
be in a function called by another function and the caller
is in a loop. To reduce the prohibitively high performance



and space overhead caused by instrumentation, our system

currently saves data for only one invocation of the loop

nest by using a sampling technique called reservoir sampling

[4]. The sampling method guarantees that each execution

instance is equally likely to be selected. This approach can be

easily extended to enable the extraction of data for multiple
executions of a loop.

Loop Statement Extraction. The third pass of the extractor
copies the statements of the target for loop (nest) into a sep-
arate file to form a codelet. The codelet can then be compiled,
transformed, executed, and measured as a standalone program.
This pass creates the codelet by inserting into it:

« the executable statements of the target loop,

« the declaration of each variable used by the loop,

« the user-defined types that apply to variables referenced by
the loop nest, e.g. enumerations, structures, and typedef,

« statements to load the data collected from instrumentation
and statements to assign these values to variable in the
program,

o statements to measure execution time and to read perfor-
mance counters.

The first three tasks are relatively easy. Thus, in ROSE,
we traverse the AST to analyze the type of each variable in
the loop. When creating the declaration of a variable, we first
check if it is a C built-in type or a user-defined type. C built-in
types can be ignored, but user-defined types have to be handled
carefully. We recursively extract all the directly and indirectly
used user-defined type declaration chains before creating the
declaration.

After collecting all declarations, we initialize them accord-
ing to their data types as follows.

« Non-pointer scalar variables are initialized using the value
collected from instrumentation directly.

o Each element of an array with known size is assigned with
the value saved in the data file.

o Arrays of unknown sizes are created as pointers, i.e. int
a[] isdeclared as int *a in the extracted loop. We fill the
related regions of global, heap, and stack sections with the
copied data so that the isolated loop has the same memory
mapping as the original loop. Each pointer, including the
one declared from an unknown size array, is assigned the
recorded memory location that is associated with the pointer
in the original program. The current stack is saved and
restored before and after each execution of the loop to
guarantee the correct execution of the isolated loop.

B. Mutator

The mutator applies to a codelet sequences of source-to-
source, semantically-preserving transformations and creates
one codelet for each loop version or mutation. As of the
writing of this paper, the transformation sequences compo-
nents are: interchange, tiling, unrolling, unroll-and-jam, and
distribution. These five are among the most basic and widely
used transformations. Dependence analysis is used to identify
which transformations can be applied. As shown in Table |

all transformations are parameterized except for distribution,
which is applied to maximize the number of resulting loops.

Transformation Parameters Maximum # of
variation

Interchange Lexicographical permutation | depth!

number
Tiling Loop level, tile size (8, 16, | depth x 3

32)
Unrolling Unroll factor (2, 4, 8) 3
Unroll-and-jam Unroll factor (2, 4) (depth—1) x2
Distribution N/A 1

TABLE I: Transformations and their parameters

To reduce the potentially immense number of mutations, the

current version of the mutator:

« only unrolls the innermost loop.

« tiling is applied to a single loop level in each transformation
sequence.

« only the innermost loop is (fully) distributed.

Unlike unrolling, which is always legal, the application of
the other transformations is controlled by dependence analysis
carried out by PolyOpt/C [5]. The main limitation is that
PolyOpt/C is based on the polyhedral model, which only
accepts loops with affine loop bounds and array subscripts. For
example, loops with array access like A[ix3j] or A[B[i]],
or with loop bound test like § < i * i, are not amenable to
the polyhedral model. Consequently, currently only unrolling
is applied to non-affine loops.

The mutator is currently able to apply interchange, tiling,
and unroll-and-jam only to perfect loop nests. As a result, these
transformations could not be applied after any transformation
that may render a loop nest imperfect (e.g. unroll-and-jam may
produce a residue loop). In addition, to keep the total number
of mutations from thousands of loop nests reasonable, the mu-
tator does not explore the transformation space exhaustively;
instead, it transforms the loop nests in a selection of orders.
Currently, the possible orders are subsets of:

interchange — unroll-and-jam — distribution — unrolling (1)

interchange — tiling — distribution — unrolling 2)

e.g. interchange — distribution is a plausible transformation
sequence, but distribution — interchange is not.

One could argue that modern compilers would be able to
provide the same performance if they could provide accurate
enough dependence analysis and sufficient transformations.
However, we have found that using the mutator as a pre-pass
in many cases improves performance. This means that there
is much room for improvement of modern compilers. Indeed,
application of the mutator reveals the weaknesses of analysis
of today’s compilers and serves as a guide to identify the most
performance critical transformation (sequence).

C. Clusterer

Similar loops that share the same series of optimal transfor-
mations will be be clustered together to reduce the overhead
required to include new programs in our repository. If a
new loop fits into a cluster, the time consuming mutation
generation process required to analyze it could be skipped



altogether. Furthermore, the size of each cluster is an effective
indicator of how common the corresponding loop pattern is.
Compiler developers may use such information to prioritize
the optimization for common loop patterns.

The clusterer will make use of a static analysis process to
identify features of a newly submitted loop and find loops
in the repository with common features. Then, these loops
from the repository will be compared against the test loop
via a semantics test to generate a similarity score. Loops
with a sufficiently high similarity score can then be clustered
together. These tests would be specifically tuned for our
application; for example, we would consider the statements
ali] = 2 % b[i] + 1 and a[i] = 3 + 2 * b[i]
to be similar since their behavior under different transforma-
tion techniques are expected to be identical.

D. Website

A web-based user front-end' is designed for public accesses
and queries, allowing compiler and language researchers to not
only search the repository but also contribute new benchmarks
and measurements. The website provides the following func-
tionalities:

« allows download for source code and compiled assembly of
the codelets and their mutations;
 plots experimental results at different granularity levels

(loop level, application level, benchmark level, etc.);

« presents static/dynamic features of the codelets in search-
able/sortable interactive tables;

« allows users to run read-only SQL queries.

« lets users to submit comment and analysis for each codelet.

New features such as new benchmark submission system are

also being developed.

III. REPOSITORY: LORE

The main objective of the tools described in Section II is
to add data to the LORE repository. The repository contains
the codelets, the mutations created by the mutator, and their
main dynamic and static characteristics. The repository also
contains information about execution times and the context in
which these times were measured including the target machine,
compiler, and compiler switches.

In this section, we discuss the underlying database used for
the repository, the sources from where we have extracted loops
so far, the main characteristics that we measure for each loop,
and the context in which we have carried out measurements.

A. Database

The core of the repository is a MySQL database that holds
specific information such as:

o the source of each loop (benchmark name, benchmark
version application name, file name, function name, line
number, etc.)

« the static/dynamic features of the extracted loops (described
below in Section III-D)

IThe website can be accessed at: http://www.vectorization.computer

« the transformation sequence involved in a mutation and their
parameters

o details of each experimental result entry, including the
environment of the experiment (compiler vendor, compiler
version, CPU model, etc.) and statistics of the result. (min,
max, standard deviation, median, and mean of the clock
cycles spent inside the loop)

« correlation metrics used for clustering loops.

The database is hosted on a dedicated server. The web

server and the machines that run the measurements access the

database via network.

B. Source of Loops

LORE currently contains 2499 C loops extracted from 25
widely used benchmarks, libraries implementing algorithms
such as audio/video codecs and deep learning, and some real-
world applications selected from GitHub. A total number of
88661 mutations have been obtained from these loops. Table II
lists the number of loops obtained from each workload and the
number of mutations that our mutator has successfully derived
from each of them. Most of the libraries and applications were
obtained from open source repositories such as GitHub and
SourceForge. The libraries include daala, flac, libogg, silk,
and libsndfile from Xiph.org Foundation [6], lame codec [7],
twolame codec [8], and libdeep [9]. The real-world applica-
tions are GAP [10] and mozjpeg [ 1]. We expect the number
of loops to continue to grow in size and diversity of origin.

TABLE II: The number of loop nests extracted from each
benchmark and the mutation count applied on each of them.

[ Benchmark [[ # of Toop nests [ # of mutations |
ALPBench[12] 71 384
ASC-1Inl[13] 22 352
Cortexsuite[ 14] 111 1964
Fhourstones[ 1 5] 2 20
FreeBench[16] 71 641
Kernels[17] 164 3736
Livermore[ 1 8] 76 2404
MediaBench[19] 350 3124
Netlib[20] 44 584
NPB[21] 379 59464
Polybench[22] 92 2968
Scimark2[23] 3 24
SPEC[24] 665 8089
TSVC[25] 152 2012
libraries 242 2513
real-world apps 55 382

[ Subtotal [[ 2499 [ 88661

C. Codelets

As described in Section II-A, the extractor identifies for
loops in a program and creates a codelet for each of them.
A codelet consists of two separate files. One is a new source
file which only contains the loop nest copied from the original
application, declaration of all variables used by the loop, and
user defined data types (e.g. typedef, struct, and enum,
etc). The other one is composed of four primary parts: 1)
the loop invocation handler, i.e. we may need to execute
the standalone loop multiple times, 2) operations to fetch


http://www.vectorization.computer

data that is required by the loop nest from the file built by
instrumentation, e.g. initializing variables with either values or
pointer addresses, 3) timers to measure the number of machine
cycles executed by a loop, 4) APIs to access the performance
counter handling module. Other operations such as memory al-
location and deallocation, saving and restoring stack contents,
read/write machine specific registers (MSRs), and statistical
analysis of execution time results are programmed into shared
libraries that can be linked to a codelet without recompilation.

We use the RDTSCP instruction to read the CPU’s times-
tamp counter (TSC) for measuring the number of clock cycles
consumed by running an extracted loop. This instruction
guarantees that all instructions before it have retired from
the pipeline before it reads the TSC; therefore, it is able
to accurately gauge loops with small execution cycles. Each
codelet can be specified to execute multiple times by giving
a parameter. The minimum, maximum, mean, median, and
standard deviation of the cycle counts are calculated at the
completion of all runs.

Although a codelet is independent of the original program, it
still uses the same input data and has the same memory layout
as the original loop. Now one can focus on the isolated code
snippet rather than the full application for analysis and opti-
mization. This facilitates applications that have well-defined
hot loop kernels because compiler-based auto tuning for loop
transformations could be performed offline on the codelet yet
still able to deliver significant performance enhancement for
the whole application.

D. Characteristics

Each codelet possesses a series of source-level static charac-
teristics, and each measurement on a combination of compiler
and machine configurations produces a list of dynamic char-
acteristics. Currently the measured static features include:

« loop nest level,

« lower/upper bounds and stride of the loop,

« number of statements in the loop,

« number of memory operations in the loop,

« number of floating-point/integer operations in the loop,

« number of constant in the loop,

o number of branches (e.g. 1f statements) in the loop,

« number of basic blocks (BB) and edges in the loop’s control
flow graph (CFG),

« number of BB with different characteristics (e.g. BB with

1 predecessor and 2 successors).

When one of the static features such as loop bounds and the
stride size are not available at compile time, the expression that
represents the feature is stored in the repository. Note that the
static-features are obtained at source-level, meaning that they
may be altered by optimization passes during compilation.

Dynamic characteristics contain hardware-related activities
and dynamic instruction mixes. Hardware-related activities are
collected at run-time by reading hardware performance coun-
ters available on most modern microprocessors. A standalone
module is designed to provide simple and high level APIs for
the acquisition of performance counter values. A total of forty

dynamic features have been collected for each loop nest in the

repository. A subset of the performance counters include’:

o memory traffic, such as the number of LID data line
replacements (L1D.REPLACEMENT).

o memory hits, such as the number of retired load uops with
L1/2 cache hits as data sources and misses in the L3 cache
(MEM_LOAD_UOPS_RETIRED.L1/2/3_HIT_PS), etc.

« line fill buffer (LFB) occupancy, such as the number of cy-
cles with L1D outstanding load misses (L1D_PEND_MISS.
PENDING_CYCLES), etc.

e TLB related, such as DTLB_LOAD_MISSES.STLB_HIT,
DTLB_STORE_MISSES.STLB_HIT, etc.

« resource stalls, such as resource-related stall cycles (RE-
SOURCE_STALLS.ANY) and cycles stalled due to re-order
buffer full (RESOURCE_STALLS.ROB), etc.

o prefetcher ralated, such as the number of L2 prefetching
requests that miss the L2 cache (L2_RQSTS.L2_PF_MISS)
and the number of requests from L2 hardware prefetchers
(L2_RQSTS.ALL_PF), etc.

The dynamic instruction mix of each extracted loop is
obtained via a customized Pin [27] tool, which collects the
following statistics/instruction counts during the codelet/mu-
tation execution:

« total number of instructions

« total number of floating point instructions

« number of floating point SSE, AVX, and AVX2 instructions

« number of integer SSE and AVX2 instructions

o number of scalar and vector loads

o number of scalar and vector stores
The static and dynamic characteristics can be used to

understand performance results, determine the type of effect
each mutation has over the performance of the original loops,
and to serve as features in machine learning models to cluster
loops and in the future to predict the best mutations for a given
loop.

E. Measurements

Compiler researchers may download the codelets and their
mutations from LORE to carry out measurements, or they may
query the database to get our routinely expanded measure-
ments. We have a number of measurements in the current
version of the repository. Table III lists the compilers and their
versions we have used for our measurements. In the rest of the
paper, when discussing the experimental results, a compiler
refers to the more recent version if we do not specify the
version number, i.e. GCC means GCC 6.2.0.

[ GCC [ ICC [ Clang |
4.8.5 15.0.6 3.6.2
6.2.0 17.0.1 4.0.0

TABLE III: Compilers and their versions measured and
recorded in LORE as of Jun 2017

All experiments to this date were conducted on an Intel
Haswell generation Xeon ES5-1630 v3 processor (equipped

2Please refer to Intel Software Developer’s Manual for the details of each
counter [26].



with 32K L1 cache, 256K L2 cache, and 10MB L3 cache)
and 32GB DDR4 2133 RAM, running Ubuntu 16.04 server
version. We executed all measurements on the same CPU
core with dynamic frequency scaling, Intel’s TurboBoost tech-
nology, Hyper-Threading, and CPU sleep state all disabled.
More experiments will be conducted with different machine
settings (e.g. different cache sizes, architecture generation,
memory interface speed, etc.) in the future to investigate more
architectural behaviours (e.g. cache misses) of the codelets.

Each codelet and its mutations have been
compiled with -03 for all three compilers. To
allow more aggressive optimizations, we  turned
on additional flags for each compiler. For GCC,
—ffast-math, —funsafe-loop-optimizations,
and —-ftree-loop-if-convert-stores are enabled.
—ffast-math is also enabled for Clang. —restrict is
used for ICC compilation to promote pointer aliasing analysis.
We call the executable compiled with the above flags the
reference compilation.

In order to assess compilers’ vectorization capability with
different generations of Intel’s vector extensions, we also com-
piled each codelet/mutation with 4 additional settings besides
the reference: only allow SSE vector extension, allow up to
AVX vector extension, allow up to AVX2 vector extension,
and only allow scalar instructions. To force the compilers
to apply these settings, we disabled compilers’ vectorization
profitability model if possible.

The performance statistic results are collected over 100
runs of each codelet with the above compiler flags. The
original code with the above flags is used as the baseline for
comparisons, and the one among all mutations that produces
best performance on a compiler with the same flags is referred
to as the best mutation.

IV. EXAMPLE ANALYSIS

This section describes two example studies based on the
loop nests in LORE. The first one compares the capability of
three production compilers’ auto-vectorizers. This experiment
reveals how many loops are vectorized by each compiler and
which compiler outperforms the others in vectorization given
a certain loop pattern. The other one quantitatively evaluates
the evolution of a compiler by comparing code performance
produced by two different versions of the compiler.

A. Comparison of vectorizers

Vectorization has grown in prominence with the wide de-
ployment of vector devices in modern processors to improve
single thread performance. In perfect situation, the speedup
gained by vectorization could be close to the number of the
vector lanes potentially used by the target data type. However,
the overhead introduced during the vectorization process, €.g.
pack/unpack operations, may neutralize or even negate the
benefit in some circumstances. We define that a compiler
effectively vectorizes a loop if min(tsséjgil‘j’; v 1.15,
where tscq1ar tssE, tav x, and t 4y xo are the execution time
of a codelet when it is compiled with no vectorization, SSE,

AVX, and AVX2, respectively. This condition specifies that
vectorization is considered effective only when the speedup
obtained from a vectorized codelet is greater than 1.15x.

Vectorized loop count: In order to fairly and accurately
compare the vectorizers of the three compilers, we only count
loops whose baseline execution time exceed 1000 cycles for
every compiler. 959 loops are hence included in this analysis.

The second row in Table IV shows the number and per-
centage of loops that are vectorized effectively by default.
The results indicate that ICC successfully vectorizes far more
loops than GCC and Clang, and GCC outperforms Clang
in vectorization by a relatively small margin. The difference
in vectorization rate across compilers suggests that some
compilers may find vectorization opportunities that the others
do not. The reason that a compiler fails to automatically vec-
torize a vectorizable loop varies. Some typical causes include
conservative dependence analysis, non-unit stride memory
accesses, etc. These obstacles may be overcome by certain
loop transformations, and then a compiler can proceed to
vectorize a loop. We discovered from experiments that even
a sequence of simple transformations can effectively make
more loops vectorized. The third row in Table IV presents the
number and percentage of additional loops that become vec-
torized after certain sequence of transformations are applied
via our mutator. In this case, Clang benefits the most from
the transformations; GCC comes second, and ICC receives
the least benefit. Interestingly, the order is exactly opposite
to that of the second row. This implies that a compiler tends
to better benefit from source level transformations when its
vectorizer is relatively naive, and vice versa. The last row in
Table IV lists the total number and percentage of loops that
are vectorized after going through the mutation process.

GCC ICC Clang
6.2.0 17.0.1 4.0.0
[ # of Toops included i 959 |
# (%) of loops originally having 273 395 216
effective vectorization (28.5%) 41.2%) (22.5%)
# (%) of additional loops vec- 77 63 98
torized effectively and beneficial (8.0%) (6.6%) (10.2%)
against the original baseline after
mutation
Subtotal 350 458 314
(36.5%) | (47.8%) | (32.7%)

TABLE 1V: Effective vectorization statistics

The results become more interesting as we further examine
the distribution of speedup gained by vectorization from the
target compilers (shown in Figure 2). Although the total
number of loops effectively vectorized by GCC is notably
less than that by ICC, GCC actually manages to help more
loops obtain speedup above 4x. Meanwhile, both compilers
have comparable results for speedup between 1.5x and 4x.
But ICC significantly boosts more loops with 1.15x to 1.5x
speedup. Therefore, GCC’s vectorizer is on par with ICC’s.
Clang’s vectorizer, on the other hand, rarely produces vector
speedup that is higher than 4x. As a relatively young compiler,



it seems that Clang has more room to improve its vectorization
capability.
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Fig. 2: Distribution of vector speedup from effectively vector-
ized loops after mutations are applied

Effectiveness in common loop patterns: Thanks to the
Clusterer, we are able to sort loops into categories and
analyze them collectively. We studied a number of common
loop patterns where one compiler’s vectorizer outperforms the
others. For illustrative purpose, two broadly used patterns are
described, namely setting/zeroing a buffer and reduction.

Setting and zeroing buffers. Listing | contains a loop
nest from the 183.equake application in SPEC2000. It stores
a series of 1s into array source_elms. While both ICC and
GCC can vectorize this loop nest easily using vector move
instructions (e.g. vmovdqu or vmovdga) and produce similar
performance, the statically unknown variable ARCHelems in
the loop conditional prevents Clang from optimizing this loop,
leading to nearly 10x slowdown over either ICC or GCC.

As expected, Clang can vectorize the loop perfectly if
ARCHelems is altered to an integer value (e.g. 1001) where
the loop bound becomes known at compile time. But it fails
to vectorize the code again if we make variable i global, e.g.
defining it outside the loop scope. Clang’s vectorization report
prints that it cannot determine the number of loop iterations
in this case. Therefore, GCC and ICC are likely to conduct
more accurate analysis for code with this pattern to enable
vectorization.

ARCHelems, =*source_elms;
i <= ARCHelems - 1;
= 1;

int i,
for (1 = 0;
source_elms[i]

}

Listing 1: Loop nest from 183.equake in SPEC2000
benchmark

i4= 1)

Listing 2 is a codelet, extracted from the LU application
in the NPB benchmark suite, that zeros two 2-D buffers. We
observed that GCC was 1.97 and 1.87 times faster than Clang
and ICC on this simple code, respectively. To understand this
finding, we disassembled the binaries generated by these three
compilers and learned how they generated code for the codelet.
e GCC called the memset function implemented in glibc to

handle an entire row of a 2-D array at a time.

o ICC split the inner loop into two loops where one contained
64 iterations and the other had 2 iterations. It then vectorized
the larger loop by a vector length of 4 and unrolled the
vectorized loop 8 times, which was essentially 32 iterations
in total. That is, this loop was executed only twice. In
addition, ICC directly generated scalar code for the smaller
loop since no loop optimization was considered profitable.

o While Clang also called the memset function to set these
two arrays, it was more aggressive than GCC as it passed
an entire 2-D array not a row to memset at once.

int i, k;
double phil[66][66], phi2[66][66];

for (i = 0; i <= 64 + 1; i++) {
for (k = 0; k <= 64 + 1; k++) {
phil[i][k] = 0.0;
phi2[i][k] = 0.0;

Listing 2: Loop nest froom LU in NPB benchmark

However, after changing 0.0 to 1.0 on the right hand side
of the two statements, all three compilers vectorized the inner
loop using AVX instructions, fully unrolled the loop (with a
unroll factor of 8), and created an epilogue with 2 scalar move
instructions for each statement. With this modification, all the
target compilers produced similar performance effects.

We can thus safely come to the conclusion that the memset
function in glibc probably vectorizes zeroing a buffer. There
is a mutated version for ICC in our database that delivers the
matching performance as GCC. By looking at the transformed
code, we found that our mutator distributed the statements in
the inner loop and then unrolled each distributed loop twice.
As a result, ICC is not only capable of vectorizing the inner
loop by a vector length of 4, but also able to fully unroll



the vectorized loop. Our mutator can also guide Clang to
produce approximately the same performance by distributing
the two statements in the inner loop. With this refinement,
Clang can generate analogous assembly to the one emitted
by GCC. Our repository, hence, is helpful in spotting I) the
effectiveness of vectorization in different compilers and II)
what transformations and in which order they can be applied
to generate more efficient code.

Reduction. Listing 3 contains a representative reduction
example. For this code, ICC has the best performance whereas
GCC has the worst performance with Clang in between, i.e.
ICC has 1.76x and 1.13x speedup over GCC and Clang,
respectively. By inspecting the assembly code, we found that
all three compilers vectorized this codelet, but GCC conserva-
tively skipped unrolling and Clang aggressively unrolled the
vectorized loop 20 times and ICC unrolled it with a unroll
factor of 8.

This example indicates 1) the overhead of other loop opti-
mizations, e.g. unrolling, might negate the benefit of vectoriza-
tion when they are not applied cautiously, 2) the performance
gain from unrolling varies significantly for different unroll
factors. Hence, an accurate model for intelligent selection of
proper transformations and their parameters is of significance.
LORE is a tool that can be used to develop such accurate
models.

int i;

float sum, a[32000];

for (i = 0; i < 32000; i++) {
sum += al[il;

}

Listing 3: Loop S311 from TSVC benchmark

B. Comparison of GCC 6.2.0 against GCC 4.8.5

The second example analysis of our repository explores
the performance difference of the loops over two compiler
generations. We picked GCC 6.2.0 (later referred to as 6.2),
released on August 2016, and GCC 4.8.5 (later called 4.8),
released on June 2015, to measure the progress.

Effectiveness of mutations: Table V shows, on both com-
piler versions, the number of loops that are amenable to our
mutator, the number of loops that are benefiting from our
mutations (e.g. having at least 1.15x speedup), and the number
of loops that are unfavorable to any possible mutations (e.g.
having at least 1.15x slowdown). To minimize the affect of
timing noise, we excluded loops with execution time less than
1000 cycles. As a result, only 1148 and 1118 out of 2499
loops remain in the results for GCC 4.8 and 6.2, respectively.

Table V exhibits that 46.3% and 43.2% loops in the repos-
itory are beneficial from our mutator for GCC 4.8 and 6.2,
respectively. The percent of loops that are unfavorable to
any mutations performed is 4.6% for GCC 4.8 and 5.5% for
GCC 6.2. At least two possible reasons lead to the notable
slowdown regardless whatever mutation is applied. First, the
compilers can optimize the loop in the most appropriate way to
achieve peak performance by themselves. Second, the number
of transformations applied by our mutator is inadequate, i.e.

other transformation techniques might be beneficial but not yet
applied.

[GCC

# of loops included

# (%) of loops having beneficial muta-
tion(s)

# (%) of loops having all mutations
unfavorable

[ 6:2.0

1118
483 (43.2%)

[[4385 ]

1148
530 (46.3%)

61 (5.5%) 53 (4.6%)

TABLE V: Number of loops with mutation speedup above/-
below thresholds
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Fig. 3: Distribution of speedup from beneficial mutations for
GCC 6.2.0 and 4.8.5
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Fig. 4: Distribution of speedup from unfavorable mutations for
GCC 6.2.0 and 4.8.5

Figure 3 and Figure 4 plot the distribution of speedup by
the best mutation from loops containing beneficial mutation(s)
or possessing only unfavorable mutations, respectively. The
speedup values in the plots are calculated by %ﬁ
Table V and the plots together reflect that mutations not Onfy
help more loops for GCC 4.8 than for 6.2, but also produce
higher speedup for the former than for the latter. On the
other hand, the number of loops that have only unfavorable
mutations is higher with GCC 6.2 than with GCC 4.8, and
the corresponding average slowdown is higher with the newer
GCC version as well. These results imply that as GCC evolves,
its optimization passes become more effective, which leaves
less room for mutations to further optimize. Meanwhile, the
improved optimizations can be disabled by mutations which



alter common loop patterns, and this may negatively impact
performance, therefore causing higher numbers in Figure 4.

Performance improvement: We analyzed the performance
discrepancy of loops compiled by GCC 4.8 and 6.2, respec-
tively. This analysis only focuses on the 1113 loops that
are shared by both versions. Table VI lists the numbers
and percentages of loops receive either notable speedup or
slowdown as GCC upgrades. The first column compares the
baseline of the loops compiled by these two GCC versions.
The speedup is calculated by %, and the slowdown
is reciprocal. The second column compares the best mutations
of a loop compiled by the two GCC versions. The speedup is
calculated by %, and the slowdown is recipro-
cal. Note that here mutations also include the baseline, and the
transformation sequences of the best mutations on the same
loop for two GCC versions can be different. The speedups
discussed above are also plotted in Figure 5. From the table
and the plot, we can see that 20.0% ~ 22.0% of the loops
run significantly faster with the more recent GCC. Although
most of the speedup values are below 2x, some loops received
performance boost up to 14x. By inspecting the assembly, we
noticed that high speedups often came from loops that were
not vectorized by GCC 4.8 but vectorized by GCC 6.2. On the
other hand, 1.8% ~ 3.1% of the loops surprisingly executes
much slower when compiled by the newer GCC version.
In the worst case, the performance drop can be as severe
as 4x. We observed that vectorization, or more specifically,
vectorization profitability analysis also partially contributed to
the performance loss.

[ From GCC 4.8.5 to 6.2.0

# of loops shared

# (%) of loops having over
1.15x speedup

# (%) of loops having over
1.15x slowdown

[| Baseline [ Best mutation |

1113
223 (20.0%)

245 (22.0%)

34 (3.1%) 20 (1.8%)

TABLE VI: Number of loops that have notable performance
boost or lose as GCC evolves from 4.8.5 to 6.2.0

baseline

best mutation
Speedup = 3x
Speedup = 2x
Speedup = 1.15x
Speedup = 0.85x
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Speedup from GCC 4.810 6.2
Sl
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Fig. 5: Speedup from GCC 4.8.5 to 6.2.0 of all significant
loops in the repository
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The results also demonstrate that after applying various
transformation sequences to a loop and selecting the best

mutation, the performance disparity of the said mutation
compiled by the two GCC versions tends to be less than the
performance gap between the baseline. In Figure 5, it is clear
that when speedup is greater than 1x, the line representing
the performance gap between the best mutations is almost
always under the line representing that between the baseline,
and when speedup is less than 1x, the situation is completely
opposite.

This observation indicates that some disadvantages of older
optimization techniques can be mitigated by exploring the
space of transformation sequences.

V. RELATED WORK

While this is the first work that builds a systematic in-
frastructure to extract loops for optimization, analysis, and
query, there are a few techniques proposed to implement the
related functionality of some components in our framework.
We classify them into 3 categories.

Repository. Fursin et al. [28] developed an open source
knowledge management framework and repository, cTuning
infrastructure, for automate performance tuning and optimiza-
tion. It is able to do statistical analysis and modeling of
empirical results for various benchmarks in their repository.
cTuning offers compiler optimizations at the program level,
e.g. using different algorithm parameters and compiler flags.
However, our repository provides the community a large
amount of loop nests with numerous mutations to achieve peak
performance.

Extractors. To avoid tuning an entire large application,
several previous papers [29], [30], [31] proposed to extract
hot spots. Optimizations are then performed only on these
small kernels to make the tuning process more manageable.
The extractor in [29] outlined a code segment from a function
and built a separate function for it. However, our extractor
actually copies the whole target loop to a standalone file and
creates declarations for all involved variables. The extracted
codelet in our approach uses the sampled input data from
the original program, which is compilable, executable, and
measurable independently. Code Isolator [31] can statically
analyze the data structures to be extracted but cannot handle
pointers. On the other hand, our two-pass approach solves the
pointer aliasing problem by capturing memory accessed by
a loop nest and restoring the execution environment before
launching the extracted loop.

Castro et al. [32] proposed a close approach, CERE, to
extract and replay codelets from benchmarks for optimization.
Although CERE also managed to extract hot loops and capture
the machine states in the original program, our extractor differs
from it in two aspects. First, CERE captures codelets at the
LLVM Intermediate Representation (IR) level, thus losing the
ability to explore source-level transformations. In contrast,
our extractor is implemented at the source level. It not only
preserves the exact behaviors of the original loop nest, but also
makes the source-level optimizations viable. Second, CERE is
tied to LLVM, which limits the portability of the codelets, but
our extracted codelets can be directly fed to various compilers.



Mutators. Wolfe proposed Tiny [33] for loop restructuring
using a number of loop transformation techniques. The main
focus of Tiny was to check what transformations could be
applied to a loop nest. However, the purpose of our mutator
is to explore the search space and generate numerous valid
mutations in the hope of enhancing performance. The LeTSeE
project by Pouchet et al. [34] shares the same goal with our
mutator. It explores the polyhedral transformation space of
loops. The nature of polyhedral transformation makes it hard
to derive the equivalent transformation sequence programmat-
ically, therefore preventing us from using it to study the effect
of transformation sequences on a more comprehensive set of
loops in the repository.

VI. CONCLUSION AND FUTURE WORK

This paper described a repository, LORE, which maintains
a large amount of C language for loop nests extracted
from benchmarks, libraries, and real-world applications. This
repository, built by an array of tools, stores various information
about each codelet, including execution time and performance
counters. It not only provides abundant data to evaluate the
pros and cons of a compiler on some optimizations, but also
allows convenient measurement of the evolution of a compiler.

Two example experiments were described to demonstrate
the value of the repository. One experiment measured the per-
formance difference of auto-vectorizer from three production-
quality compilers (ICC, GCC, and Clang). In this experiment,
we found that compilers may be either too conservative or
too aggressive in vectorization and other transformations, such
as unrolling, for code with certain patterns. Our repository is
able to provide more efficient transformations in some cases
when commercial compilers fail. The other experiment gauged
the evolution of GCC from version 4.8.5 to 6.2.0 where we
found that the upgraded version sometimes emitted even less
efficient code due to a number of reasons including lack
of accurate profitability models and excessively aggressive
instruction scheduling. We conclude that there is still a plenty
of room to improve loop transformation techniques in the
current compilers. We developed LORE as a tool that can be
used by the community for this purpose.

The future directions of our research are 1) to integrate
more loop transformation techniques, such as loop fusion,
skewing, unswitching, etc., 2) to further improve the extractor
to support loops with more complicated expressions, e.g.
structure of arrays/structures, 3) to measure the importance
(hotness) of a loop during extraction and record it in the
database, 4) to evaluate the effectiveness of more compilers
on more platforms, 5) to incorporate more applications in hot
areas, e.g. big data, deep learning, etc. 6) to utilize machine
learning to predict the best transformation sequence, compiler
selection, and compiler flags for a given loop nest based on
its features and the measurement data from the repository.
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