Graduate Texts in Mathematics

Loring W. Tu

DifferentialGeometry
Connections, Curvature, and Characteristic Classes

Graduate Texts in Mathematics 275

Graduate Texts in Mathematics

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA
Kenneth Ribet
University of California, Berkeley, CA, USA

Advisory Board:

Alejandro Adem, University of British Columbia
David Eisenbud, University of California, Berkeley \& MSRI
Irene M. Gamba, The University of Texas at Austin
J.F. Jardine, University of Western Ontario

Jeffrey C. Lagarias, University of Michigan
Ken Ono, Emory University
Jeremy Quastel, University of Toronto
Fadil Santosa, University of Minnesota
Barry Simon, California Institute of Technology

Graduate Texts in Mathematics bridge the gap between passive study and creative understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooks in graduate courses, they are also suitable for individual study.

More information about this series at http://www.springer.com/series/136

Loring W. Tu

Differential Geometry

Connections, Curvature, and Characteristic Classes

Loring W. Tu
Department of Mathematics
Tufts University
Medford, MA 02155, USA

ISSN 0072-5285
Graduate Texts in Mathematics
ISBN 978-3-319-55082-4
DOI 10.1007/978-3-319-55084-8

Library of Congress Control Number: 2017935362
Mathematics Subject Classification (2010): 53XX; 97U20
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Differential geometry has a long and glorious history. As its name implies, it is the study of geometry using differential calculus, and as such, it dates back to Newton and Leibniz in the seventeenth century. But it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. It has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

The basic objects in differential geometry are manifolds endowed with a metric, which is essentially a way of measuring the length of vectors. A metric gives rise to notions of distance, angle, area, volume, curvature, straightness, and geodesics. It is the presence of a metric that distinguishes geometry from topology. However, another concept that might contest the primacy of a metric in differential geometry is that of a connection. A connection in a vector bundle may be thought of as a way of differentiating sections of the vector bundle. A metric determines a unique connection called a Riemannian connection with certain desirable properties. While a connection is not as intuitive as a metric, it already gives rise to curvature and geodesics. With this, the connection can also lay claim to be a fundamental notion of differential geometry.

Indeed, in 1989, the great geometer S. S. Chern wrote as the editor of a volume on global differential geometry [5], "The Editor is convinced that the notion of a connection in a vector bundle will soon find its way into a class on advanced calculus, as it is a fundamental notion and its applications are wide-spread."

In 1977, the Nobel Prize-winning physicist C. N. Yang wrote in [23], "Gauge fields are deeply related to some profoundly beautiful ideas of contemporary
mathematics, ideas that are the driving forces of part of the mathematics of the last 40 years, ... the theory of fiber bundles." Convinced that gauge fields are related to connections on fiber bundles, he tried to learn the fiber-bundle theory from several mathematical classics on the subject, but "learned nothing. The language of modern mathematics is too cold and abstract for a physicist" [24, p. 73].

While the definition and formal properties of a connection on a principal bundle can be given in a few pages, it is difficult to understand its meaning without knowing how it came into being. The present book is an introduction to differential geometry that follows the historical development of the concepts of connection and curvature, with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. The goal, once fixed, dictates the choice of topics. Starting with directional derivatives in a Euclidean space, we introduce and successively generalize connections and curvature from a tangent bundle to a vector bundle and finally to a principal bundle. Along the way, the narrative provides a panorama of some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem.

Initially, the prerequisites are minimal; a passing acquaintance with manifolds suffices. Starting with Section 11, it becomes necessary to understand and be able to manipulate differential forms. Beyond Section 22, a knowledge of de Rham cohomology is required. All of this is contained in my book An Introduction to Manifolds [21] and can be learned in one semester. It is my fervent hope that the present book will be accessible to physicists as well as mathematicians. For the benefit of the reader and to establish common notations, we recall in Appendix A the basics of manifold theory. In an attempt to make the exposition more self-contained, I have also included sections on algebraic constructions such as the tensor product and the exterior power.

In two decades of teaching from this manuscript, I have generally been able to cover the first twenty-five sections in one semester, assuming a one-semester course on manifolds as the prerequisite. By judiciously leaving some of the sections as independent reading material, for example, Sections 9, 15, and 26, I have been able to cover the first thirty sections in one semester.

Every book reflects the biases and interests of its author. This book is no exception. For a different perspective, the reader may find it profitable to consult other books. After having read this one, it should be easier to read the others. There are many good books on differential geometry, each with its particular emphasis. Some of the ones I have liked include Boothby [1], Conlon [6], do Carmo [7], Kobayashi and Nomizu [12], Lee [14], Millman and Parker [16], Spivak [19], and Taubes [20]. For applications to physics, see Frankel [9].

As a student, I attended many lectures of Phillip A. Griffiths and Raoul Bott on algebraic and differential geometry. It is a pleasure to acknowledge their influence. I want to thank Andreas Arvanitoyeorgos, Jeffrey D. Carlson, Benoit Charbonneau, Hanci Chi, Brendan Foley, George Leger, Shibo Liu, Ishan Mata, Steven Scott, and Huaiyu Zhang for their careful proofreading, useful comments, and errata lists. Jeffrey D. Carlson in particular should be singled out for the many excellent pieces of advice he has given me over the years. I also want to thank Bruce Boghosian for
helping me with Mathematica and for preparing the figure of the Frenet-Serret frame (Figure 2.5). Finally, I am grateful to the Max Planck Institute for Mathematics in Bonn, National Taiwan University, and the National Center for Theoretical Sciences in Taipei for hosting me during the preparation of this manuscript.

Medford, MA, USA
Loring W. Tu
April 2017

Contents

Preface v
Chapter 1 Curvature and Vector Fields 1
§1 Riemannian Manifolds 2
1.1 Inner Products on a Vector Space 2
1.2 Representations of Inner Products by Symmetric Matrices 3
1.3 Riemannian Metrics 4
1.4 Existence of a Riemannian Metric 6
Problems 7
§2 Curves 9
2.1 Regular Curves 9
2.2 Arc Length Parametrization 10
2.3 Signed Curvature of a Plane Curve 11
2.4 Orientation and Curvature 13
Problems 14
§3 Surfaces in Space 17
3.1 Principal, Mean, and Gaussian Curvatures 17
3.2 Gauss's Theorema Egregium 19
3.3 The Gauss-Bonnet Theorem 20
Problems 21
$\S 4$ Directional Derivatives in Euclidean Space 22
4.1 Directional Derivatives in Euclidean Space 22
4.2 Other Properties of the Directional Derivative 24
4.3 Vector Fields Along a Curve 25
4.4 Vector Fields Along a Submanifold 26
4.5 Directional Derivatives on a Submanifold of \mathbb{R}^{n} 27
Problems 28
§5 The Shape Operator 29
5.1 Normal Vector Fields 29
5.2 The Shape Operator 30
5.3 Curvature and the Shape Operator 32
5.4 The First and Second Fundamental Forms 35
5.5 The Catenoid and the Helicoid 36
Problems 39
§6 Affine Connections 43
6.1 Affine Connections 43
6.2 Torsion and Curvature 44
6.3 The Riemannian Connection 45
6.4 Orthogonal Projection on a Surface in \mathbb{R}^{3} 46
6.5 The Riemannian Connection on a Surface in \mathbb{R}^{3} 47
Problems 48
§7 Vector Bundles 49
7.1 Definition of a Vector Bundle 49
7.2 The Vector Space of Sections 51
7.3 Extending a Local Section to a Global Section 52
7.4 Local Operators 53
7.5 Restriction of a Local Operator to an Open Subset 54
7.6 Frames 56
$7.7 \mathcal{F}$-Linearity and Bundle Maps 56
7.8 Multilinear Maps over Smooth Functions 59
Problems 59
§8 Gauss's Theorema Egregium 61
8.1 The Gauss and Codazzi-Mainardi Equations 61
8.2 A Proof of the Theorema Egregium 63
8.3 The Gaussian Curvature in Terms of an Arbitrary Basis 64
Problems 64
$\S 9$ Generalizations to Hypersurfaces in \mathbb{R}^{n+1} 66
9.1 The Shape Operator of a Hypersurface 66
9.2 The Riemannian Connection of a Hypersurface 67
9.3 The Second Fundamental Form 68
9.4 The Gauss Curvature and Codazzi-Mainardi Equations 68
Chapter 2 Curvature and Differential Forms 71
§10 Connections on a Vector Bundle 71
10.1 Connections on a Vector Bundle 72
10.2 Existence of a Connection on a Vector Bundle 73
10.3 Curvature of a Connection on a Vector Bundle 74
10.4 Riemannian Bundles 74
10.5 Metric Connections 75
10.6 Restricting a Connection to an Open Subset 76
10.7 Connections at a Point 77
Problems 78
$\S 11$ Connection, Curvature, and Torsion Forms 79
11.1 Connection and Curvature Forms 79
11.2 Connections on a Framed Open Set 81
11.3 The Gram-Schmidt Process 81
11.4 Metric Connection Relative to an Orthonormal Frame 82
11.5 Connections on the Tangent Bundle 84
Problems 86
$\S 12$ The Theorema Egregium Using Forms 88
12.1 The Gauss Curvature Equation 88
12.2 The Theorema Egregium 90
12.3 Skew-Symmetries of the Curvature Tensor 91
12.4 Sectional Curvature 92
12.5 Poincaré Half-Plane 92
Problems 94
Chapter 3 Geodesics 95
$\S 13$ More on Affine Connections 95
13.1 Covariant Differentiation Along a Curve 95
13.2 Connection-Preserving Diffeomorphisms 98
13.3 Christoffel Symbols 99
Problems 102
§14 Geodesics 103
14.1 The Definition of a Geodesic 103
14.2 Reparametrization of a Geodesic 105
14.3 Existence of Geodesics 106
14.4 Geodesics in the Poincaré Half-Plane 108
14.5 Parallel Translation 110
14.6 Existence of Parallel Translation Along a Curve 111
14.7 Parallel Translation on a Riemannian Manifold 112
Problems 113
$\S 15$ Exponential Maps 115
15.1 The Exponential Map of a Connection 115
15.2 The Differential of the Exponential Map 117
15.3 Normal Coordinates 118
15.4 Left-Invariant Vector Fields on a Lie Group 119
15.5 Exponential Map for a Lie Group 120
15.6 Naturality of the Exponential Map for a Lie Group 122
15.7 Adjoint Representation 123
15.8 Associativity of a Bi-Invariant Metric on a Lie Group 124
Problems 125
15.9 Addendum. The Exponential Map as a Natural Transformation 126
$\S 16$ Distance and Volume 128
16.1 Distance in a Riemannian Manifold 128
16.2 Geodesic Completeness 130
16.3 Dual 1-Forms Under a Change of Frame 131
16.4 Volume Form 132
16.5 The Volume Form in Local Coordinates 134
Problems 135
§17 The Gauss-Bonnet Theorem 138
17.1 Geodesic Curvature 138
17.2 The Angle Function Along a Curve 139
17.3 Signed Geodesic Curvature on an Oriented Surface 139
17.4 Gauss-Bonnet Formula for a Polygon 142
17.5 Triangles on a Riemannian 2-Manifold 144
17.6 Gauss-Bonnet Theorem for a Surface 145
17.7 Gauss-Bonnet Theorem for a Hypersurface in $\mathbb{R}^{2 n+1}$ 147
Problems 147
Chapter 4 Tools from Algebra and Topology 151
$\S 18$ The Tensor Product and the Dual Module 151
18.1 Construction of the Tensor Product 152
18.2 Universal Mapping Property for Bilinear Maps 153
18.3 Characterization of the Tensor Product 154
18.4 A Basis for the Tensor Product 156
18.5 The Dual Module 157
18.6 Identities for the Tensor Product 158
18.7 Functoriality of the Tensor Product 160
18.8 Generalization to Multilinear Maps 161
18.9 Associativity of the Tensor Product 161
18.10 The Tensor Algebra 162
Problems 163
§19 The Exterior Power 164
19.1 The Exterior Algebra 164
19.2 Properties of the Wedge Product 164
19.3 Universal Mapping Property for Alternating k-Linear Maps 166
19.4 A Basis for $\bigwedge^{k} V$ 167
19.5 Nondegenerate Pairings 169
19.6 A Nondegenerate Pairing of $\bigwedge^{k}\left(V^{\vee}\right)$ with $\bigwedge^{k} V$ 170
19.7 A Formula for the Wedge Product 172
Problems 173
§20 Operations on Vector Bundles 174
20.1 Vector Subbundles 174
20.2 Subbundle Criterion 175
20.3 Quotient Bundles 176
20.4 The Pullback Bundle 177
20.5 Examples of the Pullback Bundle 180
20.6 The Direct Sum of Vector Bundles 181
20.7 Other Operations on Vector Bundles 183
Problems 185
§21 Vector-Valued Forms 186
21.1 Vector-Valued Forms as Sections of a Vector Bundle 186
21.2 Products of Vector-Valued Forms 188
21.3 Directional Derivative of a Vector-Valued Function 190
21.4 Exterior Derivative of a Vector-Valued Form 190
21.5 Differential Forms with Values in a Lie Algebra 191
21.6 Pullback of Vector-Valued Forms 193
21.7 Forms with Values in a Vector Bundle 194
21.8 Tensor Fields on a Manifold 195
21.9 The Tensor Criterion 196
21.10 Remark on Signs Concerning Vector-Valued Forms 197
Problems 197
Chapter 5 Vector Bundles and Characteristic Classes 199
§22 Connections and Curvature Again 200
22.1 Connection and Curvature Matrices Under a Change of Frame 201
22.2 Bianchi Identities 203
22.3 The First Bianchi Identity in Vector Form 204
22.4 Symmetry Properties of the Curvature Tensor 205
22.5 Covariant Derivative of Tensor Fields 206
22.6 The Second Bianchi Identity in Vector Form 207
22.7 Ricci Curvature 208
22.8 Scalar Curvature 209
22.9 Defining a Connection Using Connection Matrices 209
22.10 Induced Connection on a Pullback Bundle 210
Problems 210
§23 Characteristic Classes 212
23.1 Invariant Polynomials on $\mathfrak{g l}(r, \mathbb{R})$ 212
23.2 The Chern-Weil Homomorphism 213
23.3 Characteristic Forms Are Closed 215
23.4 Differential Forms Depending on a Real Parameter 216
23.5 Independence of Characteristic Classes of a Connection 218
23.6 Functorial Definition of a Characteristic Class 220
23.7 Naturality 221
Problems 221
§24 Pontrjagin Classes 223
24.1 Vanishing of Characteristic Classes 223
24.2 Pontrjagin Classes 225
24.3 The Whitney Product Formula 226
§25 The Euler Class and Chern Classes 228
25.1 Orientation on a Vector Bundle 228
25.2 Characteristic Classes of an Oriented Vector Bundle 229
25.3 The Pfaffian of a Skew-Symmetric Matrix 230
25.4 The Euler Class 233
25.5 Generalized Gauss-Bonnet Theorem 233
25.6 Hermitian Metrics 234
25.7 Connections and Curvature on a Complex Vector Bundle 234
25.8 Chern Classes 235
Problems 235
§26 Some Applications of Characteristic Classes 236
26.1 The Generalized Gauss-Bonnet Theorem 236
26.2 Characteristic Numbers 236
26.3 The Cobordism Problem 237
26.4 The Embedding Problem 237
26.5 The Hirzebruch Signature Formula 238
26.6 The Riemann-Roch Problem 238
Chapter 6 Principal Bundles and Characteristic Classes 241
§27 Principal Bundles 241
27.1 Principal Bundles 242
27.2 The Frame Bundle of a Vector Bundle 246
27.3 Fundamental Vector Fields of a Right Action 247
27.4 Integral Curves of a Fundamental Vector Field 249
27.5 Vertical Subbundle of the Tangent Bundle TP 250
27.6 Horizontal Distributions on a Principal Bundle 251
Problems 252
§28 Connections on a Principal Bundle 254
28.1 Connections on a Principal Bundle 254
28.2 Vertical and Horizontal Components of a Tangent Vector 256
28.3 The Horizontal Distribution of an Ehresmann Connection 257
28.4 Horizontal Lift of a Vector Field to a Principal Bundle 259
28.5 Lie Bracket of a Fundamental Vector Field 260
Problems 260
§29 Horizontal Distributions on a Frame Bundle 262
29.1 Parallel Translation in a Vector Bundle 262
29.2 Horizontal Vectors on a Frame Bundle 264
29.3 Horizontal Lift of a Vector Field to a Frame Bundle 266
29.4 Pullback of a Connection on a Frame Bundle Under a Section 268
§30 Curvature on a Principal Bundle 270
30.1 Curvature Form on a Principal Bundle 270
30.2 Properties of the Curvature Form 271
Problems 274
§31 Covariant Derivative on a Principal Bundle 275
31.1 The Associated Bundle 275
31.2 The Fiber of the Associated Bundle 276
31.3 Tensorial Forms on a Principal Bundle 277
31.4 Covariant Derivative 280
31.5 A Formula for the Covariant Derivative of a Tensorial Form 282
Problems 286
§32 Characteristic Classes of Principal Bundles 287
32.1 Invariant Polynomials on a Lie Algebra 287
32.2 The Chern-Weil Homomorphism 287
Problems 291
Appendix 293
§A Manifolds 293
A. 1 Manifolds and Smooth Maps 293
A. 2 Tangent Vectors 295
A. 3 Vector Fields 296
A. 4 Differential Forms 297
A. 5 Exterior Differentiation on a Manifold 299
A. 6 Exterior Differentiation on \mathbb{R}^{3} 302
A. 7 Pullback of Differential Forms 303
Problems 304
§B Invariant Polynomials 306
B. 1 Polynomials Versus Polynomial Functions 306
B. 2 Polynomial Identities 307
B. 3 Invariant Polynomials on $\mathfrak{g l}(r, F)$ 308
B. 4 Invariant Complex Polynomials 310
B. 5 L-Polynomials, Todd Polynomials, and the Chern Character 313
B. 6 Invariant Real Polynomials 315
B. 7 Newton's Identities 317
Problems 319
Hints and Solutions to Selected End-of-Section Problems 321
List of Notations 329
References 335
Index 337

A Circle Bundle over a Circle by Lun-Yi Tsai and Zachary Treisman, 2010.
Welded stainless steel and latex sheeting.
Printed with permission of Lun-Yi Tsai.

Chapter 1

Curvature and Vector Fields

By a manifold, we will always mean a smooth manifold. To understand this book, it is helpful to have had some prior exposure to the theory of manifolds. The reference [21] contains all the background needed. For the benefit of the reader, we review in Appendix A, mostly without proofs, some of the definitions and basic properties of manifolds.

Appendix A concerns smooth maps, differentials, vector fields, and differential forms on a manifold. These are part of the differential topology of manifolds. The focus of this book is instead on the differential geometry of manifolds. Now a manifold will be endowed with an additional structure called a Riemannian metric, which gives a way of measuring length. In differential geometry, the notions of length, distance, angles, area, and volume make sense, whereas in differential topology, since a manifold can be stretched and still be diffeomorphic to the original, these concepts obviously do not make sense.

Some of the central problems in differential geometry originate in everyday life. Consider the problem in cartography of representing the surface of the

Bernhard Riemann
(1826-1866) earth on a flat piece of paper. A good map should show accurately distances between any two points. Experience suggests that this is not possible on a large scale. We are all familiar with the Mercator projection which vastly distorts countries near the north and south poles. On a small scale there are fairly good maps, but are they merely approximations or can there be truly accurate maps in a mathematical sense? In other words, is there a distance-preserving bijection from an open subset of the sphere to some open subset of the plane? Such a map is an isometry.

Isometry is also related to a problem in industrial design. Certain shapes such as circular cylinders and cones are easy to manufacture because they can be obtained
from a flat sheet by bending. If we take a sheet of paper and bend it in various ways, we obtain infinitely many surfaces in space, and yet none of them appear to be a portion of a sphere or an ellipsoid. Which shapes can be obtained from one another by bending?

In 1827 Carl Friedrich Gauss laid the foundation for the differential geometry of surfaces in his work Disquisitiones generales circa superficies curvas (General investigation of curved surfaces). One of his great achievements was the proof of the invariance of Gaussian curvature under distance-preserving maps. This result is known as Gauss's Theorema Egregium, which means "remarkable theorem" in Latin. By the Theorema Egregium, one can use the Gaussian curvature to distinguish non-isometric surfaces. In the first eight sections of this book, our goal is to introduce enough basic constructions of differential geometry to prove the Theorema Egregium.

§1 Riemannian Manifolds

A Riemannian metric is essentially a smoothly varying inner product on the tangent space at each point of a manifold. In this section we recall some generalities about an inner product on a vector space and by means of a partition of unity argument, prove the existence of a Riemannian metric on any manifold.

1.1 Inner Products on a Vector Space

A point u in \mathbb{R}^{3} will denote either an ordered triple $\left(u^{1}, u^{2}, u^{3}\right)$ of real numbers or a column vector

$$
\left[\begin{array}{l}
u^{1} \\
u^{2} \\
u^{3}
\end{array}\right] .
$$

The Euclidean inner product, or the dot product, on \mathbb{R}^{3} is defined by

$$
\langle u, v\rangle=\sum_{i=1}^{3} u^{i} v^{i}
$$

In terms of this, one can define the length of a vector

$$
\begin{equation*}
\|v\|=\sqrt{\langle v, v\rangle}, \tag{1.1}
\end{equation*}
$$

the angle θ between two nonzero vectors (Figure 1.1)

$$
\begin{equation*}
\cos \theta=\frac{\langle u, v\rangle}{\|u\|\|v\|}, \quad 0 \leq \theta \leq \pi \tag{1.2}
\end{equation*}
$$

and the arc length of a parametrized curve $c(t)$ in $\mathbb{R}^{3}, a \leq t \leq b$:

$$
s=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

Fig. 1.1. The angle between two vectors.

Definition 1.1. An inner product on a real vector space V is a positive-definite, symmetric, bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{R}$. This means that for $u, v, w \in V$ and $a, b \in \mathbb{R}$,
(i) (positive-definiteness) $\langle v, v\rangle \geq 0$; the equality holds if and only if $v=0$.
(ii) (symmetry) $\langle u, v\rangle=\langle v, u\rangle$.
(iii) (bilinearity) $\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle$.

As stated, condition (iii) is linearity in only the first argument. However, by the symmetry property (ii), condition (iii) implies linearity in the second argument as well.

Proposition 1.2 (Restriction of an inner product to a subspace). Let \langle,$\rangle be an$ inner product on a vector space V. If W is a subspace of V, then the restriction

$$
\langle,\rangle_{W}:=\left.\langle,\rangle\right|_{W \times W}: W \times W \rightarrow \mathbb{R}
$$

is an inner product on W.
Proof. Problem 1.3.
Proposition 1.3 (Nonnegative linear combination of inner products). Let \langle,\rangle_{i}, $i=1, \ldots, r$, be inner products on a vector V and let a_{1}, \ldots, a_{r} be nonnegative real numbers with at least one $a_{i}>0$. Then the linear combination $\langle\rangle:,=\sum a_{i}\langle,\rangle_{i}$ is again an inner product on V.

Proof. Problem 1.4.

1.2 Representations of Inner Products by Symmetric Matrices

Let e_{1}, \ldots, e_{n} be a basis for a vector space V. Relative to this basis we can represent vectors in V as column vectors:

$$
\sum x^{i} e_{i} \longleftrightarrow \mathbf{x}=\left[\begin{array}{c}
x^{1} \\
\vdots \\
x^{n}
\end{array}\right], \quad \sum y^{i} e_{i} \longleftrightarrow \mathbf{y}=\left[\begin{array}{c}
y^{1} \\
\vdots \\
y^{n}
\end{array}\right]
$$

By bilinearity, an inner product on V is determined completely by its values on a set of basis vectors. Let A be the $n \times n$ matrix whose entries are

$$
a_{i j}=\left\langle e_{i}, e_{j}\right\rangle
$$

By the symmetry of the inner product, A is a symmetric matrix. In terms of column vectors,

$$
\left\langle\sum x^{i} e_{i}, \sum y^{j} e_{j}\right\rangle=\sum a_{i j} x^{i} y^{j}=\mathbf{x}^{T} A \mathbf{y} .
$$

Definition 1.4. An $n \times n$ symmetric matrix A is said to be positive-definite if
(i) $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all \mathbf{x} in \mathbb{R}^{n}, and
(ii) equality holds if and only if $\mathbf{x}=\mathbf{0}$.

Thus, once a basis on V is chosen, an inner product on V determines a positivedefinite symmetric matrix.

Conversely, if A is an $n \times n$ positive-definite symmetric matrix and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V, then

$$
\left\langle\sum x^{i} e_{i}, \sum y^{i} e_{i}\right\rangle=\sum a_{i j} x^{i} y^{j}=\mathbf{x}^{T} A \mathbf{y}
$$

defines an inner product on V. (Problem 1.1.)
It follows that there is a one-to-one correspondence

$$
\left\{\begin{array}{l}
\text { inner products on a vector } \\
\text { space } V \text { of dimension } n
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
n \times n \text { positive-definite } \\
\text { symmetric matrices }
\end{array}\right\} .
$$

The dual space V^{\vee} of a vector space V is by definition $\operatorname{Hom}(V, \mathbb{R})$, the space of all linear maps from V to \mathbb{R}. Let $\alpha^{1}, \ldots, \alpha^{n}$ be the basis for V^{\vee} dual to the basis e_{1}, \ldots, e_{n} for V. If $x=\sum x^{i} e_{i} \in V$, then $\alpha^{i}(x)=x^{i}$. Thus, with $x=\sum x^{i} e_{i}, y=\sum y^{j} e_{j}$, and $\left\langle e_{i}, e_{j}\right\rangle=a_{i j}$, one has

$$
\begin{aligned}
\langle x, y\rangle & =\sum a_{i j} x^{i} y^{j}=\sum a_{i j} \alpha^{i}(x) \alpha^{j}(y) \\
& =\sum a_{i j}\left(\alpha^{i} \otimes \alpha^{j}\right)(x, y) .
\end{aligned}
$$

So in terms of the tensor product, an inner product \langle,$\rangle on V$ may be written as

$$
\langle,\rangle=\sum a_{i j} \alpha^{i} \otimes \alpha^{j}
$$

where $\left[a_{i j}\right]$ is an $n \times n$ positive-definite symmetric matrix.

1.3 Riemannian Metrics

Definition 1.5. A Riemannian metric on a manifold M is the assignment to each point p in M of an inner product \langle,\rangle_{p} on the tangent space $T_{p} M$; moreover, the assignment $p \mapsto\langle,\rangle_{p}$ is required to be C^{∞} in the following sense: if X and Y are C^{∞} vector fields on M, then $p \mapsto\left\langle X_{p}, Y_{p}\right\rangle_{p}$ is a C^{∞} function on M. A Riemannian manifold is a pair $(M,\langle\rangle$,$) consisting of a manifold M$ together with a Riemannian metric \langle,$\rangle on M$.

The length of a tangent vector $v \in T_{p} M$ and the angle between two tangent vectors $u, v \in T_{p} M$ on a Riemannian manifold are defined by the same formulas (1.1) and (1.2) as in \mathbb{R}^{3}.

Example 1.6. Since all the tangent spaces $T_{p} \mathbb{R}^{n}$ for points p in \mathbb{R}^{n} are canonically isomorphic to \mathbb{R}^{n}, the Euclidean inner product on \mathbb{R}^{n} gives rise to a Riemannian metric on \mathbb{R}^{n}, called the Euclidean metric on \mathbb{R}^{n}.

Example 1.7. Recall that a submanifold M of a manifold N is said to be regular if locally it is defined by the vanishing of a set of coordinates [21, Section 9]. Thus, locally a regular submanifold looks like a k-plane in \mathbb{R}^{n}. By a surface M in \mathbb{R}^{3} we will mean a 2 -dimensional regular submanifold of \mathbb{R}^{3}. At each point p in M, the tangent space $T_{p} M$ is a vector subspace of $T_{p} \mathbb{R}^{3}$. The Euclidean metric on \mathbb{R}^{3} restricts to a function

$$
\langle,\rangle_{M}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}
$$

which is clearly positive-definite, symmetric, and bilinear. Thus a surface in \mathbb{R}^{3} inherits a Riemannian metric from the Euclidean metric on \mathbb{R}^{3}.

Recall that if $F: N \rightarrow M$ is a C^{∞} map of smooth manifolds and $p \in N$ is a point in N, then the differential $F_{*}: T_{p} N \rightarrow T_{f(p)} M$ is the linear map of tangent spaces given by

$$
\left(F_{*} X_{p}\right) g=X_{p}(g \circ F)
$$

for any $X_{p} \in T_{p} N$ and any C^{∞} function g defined on a neighborhood of $F(p)$ in M.
Definition 1.8. A $C^{\infty} \operatorname{map} F:\left(N,\langle,\rangle^{\prime}\right) \rightarrow(M,\langle\rangle$,$) of Riemannian manifolds is$ said to be metric-preserving if for all $p \in N$ and tangent vectors $u, v \in T_{p} N$,

$$
\begin{equation*}
\langle u, v\rangle_{p}^{\prime}=\left\langle F_{*} u, F_{*} v\right\rangle_{F(p)} . \tag{1.3}
\end{equation*}
$$

An isometry is a metric-preserving diffeomorphism.
Example 1.9. If $F: N \rightarrow M$ is a diffeomorphism and \langle,$\rangle is a Riemannian metric on$ M, then (1.3) defines an induced Riemannian metric \langle,\rangle^{\prime} on N.

Example 1.10. Let N and M be the unit circle in \mathbb{C}. Define $F: N \rightarrow M$, a 2-sheeted covering space map, by $F(z)=z^{2}$. Give M a Riemannian metric \langle,$\rangle , for example,$ the Euclidean metric as a subspace of \mathbb{R}^{2}, and define \langle,\rangle^{\prime} on N by

$$
\langle v, w\rangle^{\prime}=\left\langle F_{*} v, F_{*} w\right\rangle .
$$

Then \langle,\rangle^{\prime} is a Riemannian metric on N. The map $F: N \rightarrow M$ is metric-preserving but not an isometry because F is not a diffeomorphism.

Example 1.11. A torus in \mathbb{R}^{3} inherits the Euclidean metric from \mathbb{R}^{3}. However, a torus is also the quotient space of \mathbb{R}^{2} by the group \mathbb{Z}^{2} acting as translations, or to put it more plainly, the quotient space of a square with the opposite edges identified (see [21, §7] for quotient spaces). In this way, it inherits a Riemannian metric from \mathbb{R}^{2}. With these two Riemannian metrics, the torus becomes two distinct Riemannian manifolds (Figure 1.2). We will show later that there is no isometry between these two Riemannian manifolds with the same underlying torus.

Fig. 1.2. Two Riemannian metrics on the torus.

1.4 Existence of a Riemannian Metric

A smooth manifold M is locally diffeomorphic to an open subset of a Euclidean space. The local diffeomorphism defines a Riemannian metric on a coordinate open set $\left(U, x^{1}, \ldots, x^{n}\right)$ by the same formula as for \mathbb{R}^{n}. We will write ∂_{i} for the coordinate vector field $\partial / \partial x^{i}$. If $X=\sum a^{i} \partial_{i}$ and $Y=\sum b^{j} \partial_{j}$, then the formula

$$
\begin{equation*}
\langle X, Y\rangle=\sum a^{i} b^{i} \tag{1.4}
\end{equation*}
$$

defines a Riemannian metric on U.
To construct a Riemannian metric on M one needs to piece together the Riemannian metrics on the various coordinate open sets of an atlas. The standard tool for this is the partition of unity, whose definition we recall now. A collection $\left\{S_{\alpha}\right\}$ of subsets of a topological space S is said to be locally finite if every point $p \in S$ has a neighborhood U_{p} that intersects only finitely many of the subsets S_{α}. The support of a function $f: S \rightarrow \mathbb{R}$ is the closure of the subset of S on which $f \neq 0$:

$$
\operatorname{supp} f=\operatorname{cl}\{x \in S \mid f(x) \neq 0\}
$$

Suppose $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ is an open cover of a manifold M. A collection of nonnegative C^{∞} functions

$$
\rho_{\alpha}: M \rightarrow \mathbb{R}, \quad \alpha \in \mathrm{~A},
$$

is called a C^{∞} partition of unity subordinate to $\left\{U_{\alpha}\right\}$ if
(i) $\operatorname{supp} \rho_{\alpha} \subset U_{\alpha}$ for all α,
(ii) the collection of supports, $\left\{\operatorname{supp} \rho_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, is locally finite,
(iii) $\sum_{\alpha \in \mathrm{A}} \rho_{\alpha}=1$.

The local finiteness of the supports guarantees that every point p has a neighborhood U_{p} over which the sum in (iii) is a finite sum. (For the existence of a C^{∞} partition of unity, see [21, Appendix C].)

Theorem 1.12. On every manifold M there is a Riemannian metric.
Proof. Let $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ be an atlas on M. Using the coordinates on U_{α}, we define as in (1.4) a Riemannian metric \langle,\rangle_{α} on U_{α}. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$. By the local finiteness of the collection $\left\{\operatorname{supp} \rho_{\alpha}\right\}$, every point
p has a neighborhood U_{p} on which only finitely many of the ρ_{α} 's are nonzero. Thus, $\sum \rho_{\alpha}\langle,\rangle_{\alpha}$ is a finite sum on U_{p}. By Proposition 1.3, at each point p the $\operatorname{sum} \sum \rho_{\alpha}\langle,\rangle_{\alpha}$ is an inner product on $T_{p} M$.

To show that $\sum \rho_{\alpha}\langle,\rangle_{\alpha}$ is C^{∞}, let X and Y be C^{∞} vector fields on M. Since $\sum \rho_{\alpha}\langle X, Y\rangle_{\alpha}$ is a finite sum of C^{∞} functions on U_{p}, it is C^{∞} on U_{p}. Since p was arbitrary, $\sum \rho_{\alpha}\langle X, Y\rangle_{\alpha}$ is C^{∞} on M.

Problems

1.1. Positive-definite symmetric matrix

Show that if A is an $n \times n$ positive-definite symmetric matrix and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V, then

$$
\left\langle\sum x^{i} e_{i}, \sum y^{i} e_{i}\right\rangle=\sum a_{i j} x^{i} y^{j}=\mathbf{x}^{T} A \mathbf{y}
$$

defines an inner product on V.

1.2. Inner product

Let V be an inner product space with inner product \langle,$\rangle . For u, v$ in V, prove that $\langle u, w\rangle=\langle v, w\rangle$ for all w in V if and only if $u=v$.

1.3. Restriction of an inner product to a subspace

Prove Proposition 1.2.

1.4.* Positive linear combination of inner products

Prove Proposition 1.3.

1.5.* Extending a vector to a vector field

Let M be a manifold. Show that for any tangent vector $v \in T_{p} M$, there is a C^{∞} vector field X on M such that $X_{p}=v$.

1.6.* Equality of vector fields

Suppose $(M,\langle\rangle$,$) is a Riemannian manifold. Show that two C^{\infty}$ vector fields $X, Y \in \mathfrak{X}(M)$ are equal if and only if $\langle X, Z\rangle=\langle Y, Z\rangle$ for all C^{∞} vector fields $Z \in \mathfrak{X}(M)$.

1.7* Upper half-plane

Let

$$
\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\} .
$$

At each point $p=(x, y) \in \mathbb{H}^{2}$, define

$$
\langle,\rangle_{\mathbb{H}^{2}}: T_{p} \mathbb{H}^{2} \times T_{p} \mathbb{H}^{2} \rightarrow \mathbb{R}
$$

by

$$
\langle u, v\rangle_{\mathbb{H}^{2}}=\frac{1}{y^{2}}\langle u, v\rangle,
$$

where \langle,$\rangle is the usual Euclidean inner product. Show that \langle,\rangle_{\mathbb{H}^{2}}$ is a Riemannian metric on \mathbb{H}^{2}.

1.8. Product rule in \mathbb{R}^{n}

If $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ are differentiable vector-valued functions, show that $\langle f, g\rangle: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and

$$
\langle f, g\rangle^{\prime}=\left\langle f^{\prime}, g\right\rangle+\left\langle f, g^{\prime}\right\rangle .
$$

(Here f^{\prime} means $d f / d t$.)

1.9. Product rule in an inner product space

An inner product space $(V,\langle\rangle$,$) is automatically a normed vector space, with norm$ $\|v\|=\sqrt{\langle v, v\rangle}$. The derivative of a function $f: \mathbb{R} \rightarrow V$ is defined to be

$$
f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h},
$$

provided that the limit exists, where the limit is taken with respect to the norm $\|\|$. If f, g : $\mathbb{R} \rightarrow V$ are differentiable functions, show that $\langle f, g\rangle: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and

$$
\langle f, g\rangle^{\prime}=\left\langle f^{\prime}, g\right\rangle+\left\langle f, g^{\prime}\right\rangle .
$$

§2 Curves

In common usage a curve in a manifold M can mean two things. Either it is a parametrized curve, i.e., a smooth map $c:[a, b] \rightarrow M$, or it is the set of points in M that is the image of this map. By definition, a smooth map on a closed interval is a smooth map on some open set containing the interval. For us, a curve will always mean a parametrized curve. When the occasion calls for it, we will refer to the image of a parametrized curve as a geometric curve.

A regular curve is a parametrized curve whose velocity is never zero. A regular curve can be reparametrized by arc length. In this section we define the signed curvature of a regular plane curve in terms of the second derivative of its arc length parametrization.

2.1 Regular Curves

Definition 2.1. A parametrized curve $c:[a, b] \rightarrow M$ is regular if its velocity $c^{\prime}(t)$ is never zero for all t in the domain $[a, b]$. In other words, a regular curve in M is an immersion: $[a, b] \rightarrow M$.

Example 2.2. The curve $c:[-1,1] \rightarrow \mathbb{R}^{2}$,

$$
c(t)=\left(t^{3}, t^{2}\right),
$$

is not regular at $t=0$ (Figure 2.1). This example shows that the image of a smooth nonregular curve need not be smooth.

Fig. 2.1. A nonregular curve.

If $t=t(u)$ is a diffeomorphism of one closed interval with another, then $\beta(u):=$ $c(t(u))$ is a reparametrization of the curve $c(t)$. The same geometric curve can have many different parametrizations. Among the various reparametrizations of a regular curve, the most important is the arc length parametrization.

2.2 Arc Length Parametrization

As in calculus, we define the speed of a curve $c:[a, b] \rightarrow M$ in a Riemannian manifold M to be the magnitude $\left\|c^{\prime}(t)\right\|$ of its velocity $c^{\prime}(t)$, and the arc length of the curve to be

$$
\ell=\int_{a}^{b}\left\|c^{\prime}(u)\right\| d u
$$

For each $t \in[a, b]$, let $s(t)$ be the arc length of the curve c restricted to $[a, t]$:

$$
s(t)=\int_{a}^{t}\left\|c^{\prime}(u)\right\| d u
$$

The function $s:[a, b] \rightarrow[0, \ell]$ is the arc length function of the curve c. By the fundamental theorem of calculus, the derivative of s with respect to t is $s^{\prime}(t)=\left\|c^{\prime}(t)\right\|$, the speed of c.

Proposition 2.3. The arc length function $s:[a, b] \rightarrow[0, \ell]$ of a regular curve $c:[a, b] \rightarrow M$ has a C^{∞} inverse.

Proof. Because $c(t)$ is regular, $s^{\prime}(t)=\left\|c^{\prime}(t)\right\|$ is never zero. Then $s^{\prime}(t)>0$ for all t. This implies that $s(t)$ is a monotonically increasing function, and so has an inverse $t(s)$. By the inverse function theorem, t is a C^{∞} function of s.

Thus, given a regular curve $c(t)$, we can write t as a C^{∞} function of the arc length s to get the arc length parametrization $\gamma(s)=c(t(s))$.

Proposition 2.4. A curve is parametrized by arc length if and only if it has unit speed and its parameter starts at 0 .

Proof. As noted above, the speed of a curve $c:[a, b] \rightarrow M$ can be computed as the rate of change of the arc length s with respect to $t \in[a, b]$:

$$
\left\|c^{\prime}(t)\right\|=\frac{d s}{d t}
$$

Let $\gamma(s)$ be the arc length reparametrization of c. Since $s(a)=0$, the parameter s starts at 0 . By the chain rule, the velocity of γ is

$$
\gamma^{\prime}(s)=c^{\prime}(t(s)) t^{\prime}(s)
$$

Hence, the speed of γ is

$$
\left\|\gamma^{\prime}(s)\right\|=\left\|c^{\prime}(t(s))\right\|\left|t^{\prime}(s)\right|=\frac{d s}{d t}\left|\frac{d t}{d s}\right|=\left|\frac{d s}{d t} \frac{d t}{d s}\right|=1
$$

Conversely, if a curve $c(t)$ has unit speed, then its arc length is

$$
s(t)=\int_{a}^{t}\left\|c^{\prime}(u)\right\| d u=\int_{a}^{t} 1 d u=t-a
$$

If $a=0$, then $s=t$. So a unit-speed curve starting at $t=0$ is parametrized by arc length.

Example 2.5. The curve $c:[0,2 \pi] \rightarrow \mathbb{R}^{2}$,

$$
c(t)=(a \cos t, a \sin t), \quad a>0
$$

is regular. Its image is the circle of radius a centered at the origin. Its arc length function is

$$
\begin{aligned}
s & =\int_{0}^{t}\left\|c^{\prime}(u)\right\| d u=\int_{0}^{t}\left\|\left[\begin{array}{r}
-a \sin u \\
a \cos u
\end{array}\right]\right\| d u \\
& =\int_{0}^{t} a d u=a t
\end{aligned}
$$

Hence, $t=s / a$ and the arc length parametrization is

$$
\gamma(s)=\left(a \cos \frac{s}{a}, a \sin \frac{s}{a}\right) .
$$

2.3 Signed Curvature of a Plane Curve

We all have an intuitive idea of what curvature means. For example, a small circle appears to curve more than a large circle. In this section, we will quantify the notion of curvature for a curve in the plane \mathbb{R}^{2}.

Our plane curve $\gamma:[0, \ell] \rightarrow \mathbb{R}^{2}$ will be parametrized by the arc length s. Then the velocity vector $T(s)=\gamma^{\prime}(s)$ has unit length and is tangent to the curve at the point $p=\gamma(s)$. A reasonable measure of curvature at p is the magnitude of the derivative

$$
T^{\prime}(s)=\frac{d T}{d s}(s)=\gamma^{\prime \prime}(s)
$$

since the faster T changes, the more the curve bends. However, in order to distinguish the directions in which the curve can bend, we will define a curvature with a sign.

There are two unit vectors in the plane perpendicular to $T(s)$ at p. We can choose either one to be $\mathbf{n}(s)$, but usually $\mathbf{n}(s)$ is chosen so that the pair $(T(s), \mathbf{n}(s))$ is oriented positively in the plane, i.e., counterclockwise.

Denote by \langle,$\rangle the Euclidean inner product on \mathbb{R}^{2}$. Since T has unit length,

$$
\langle T, T\rangle=1 .
$$

Using the product rule (Problem 1.8) to differentiate this equation with respect to s gives

$$
\left\langle T^{\prime}, T\right\rangle+\left\langle T, T^{\prime}\right\rangle=0
$$

or

$$
2\left\langle T^{\prime}, T\right\rangle=0
$$

Thus, T^{\prime} is perpendicular to T and so it must be a multiple of \mathbf{n}. The scalar κ such that

$$
T^{\prime}=\kappa \mathbf{n}
$$

is called the signed curvature, or simply the curvature, of the plane curve at $p=\gamma(s)$. We can also write

$$
\kappa=\left\langle T^{\prime}, \mathbf{n}\right\rangle=\left\langle\gamma^{\prime \prime}, \mathbf{n}\right\rangle .
$$

The sign of the curvature depends on the choice of \mathbf{n}; it indicates whether the curve is bending towards \mathbf{n} or away from \mathbf{n} (Figure 2.2).

Fig. 2.2. The sign of the curvature κ.

Example 2.6 (The circle). By Example 2.5, the circle of radius a centered at the origin has arc length parametrization

$$
\gamma(s)=\left(a \cos \frac{s}{a}, a \sin \frac{s}{a}\right), \quad 0 \leq s \leq 2 \pi a .
$$

The unit tangent vector to the curve is

$$
T(s)=\gamma^{\prime}(s)=\left[\begin{array}{r}
-\sin \frac{s}{a} \\
\cos \frac{s}{a}
\end{array}\right] .
$$

Its derivative is

$$
T^{\prime}(s)=\gamma^{\prime \prime}(s)=\left[\begin{array}{c}
-\frac{1}{a} \cos \frac{s}{a} \\
-\frac{1}{a} \sin \frac{s}{a}
\end{array}\right] .
$$

We choose the unit normal \mathbf{n} so that the pair (T, \mathbf{n}) is oriented counterclockwise. This means \mathbf{n} is obtained from T by multiplying by the rotation matrix

$$
\operatorname{rot}\left(\frac{\pi}{2}\right)=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Hence,

$$
\mathbf{n}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] T=\left[\begin{array}{c}
-\cos \frac{s}{a} \\
-\sin \frac{s}{a}
\end{array}\right] .
$$

So $T^{\prime}=(1 / a) \mathbf{n}$, which shows that the signed curvature $\kappa(s)$ of a circle of radius a is $1 / a$, independent of s. This accords with the intuition that the larger the radius of a circle, the smaller the curvature.

2.4 Orientation and Curvature

A curve whose endpoints are fixed has two possible arc length parametrizations, depending on how the curve is oriented. If the arc length of the curve is ℓ, then the two parametrizations $\gamma(s), \tilde{\gamma}(s)$ are related by

$$
\tilde{\gamma}(s)=\gamma(\ell-s)
$$

Differentiating with respect to the arc length s gives

$$
\tilde{T}(s):=\tilde{\gamma}(s)=-\gamma^{\prime}(\ell-s)=-T(\ell-s) \quad \text { and } \quad \tilde{\gamma}^{\prime \prime}(s)=\gamma^{\prime \prime}(\ell-s) .
$$

Rotating the tangent vector $\tilde{T}(s)$ by 90° amounts to multiplying $\tilde{T}(s)$ on the left by the rotation matrix $\operatorname{rot}(\pi / 2)$. Thus,

$$
\tilde{\mathbf{n}}(s)=\operatorname{rot}\left(\frac{\pi}{2}\right) \tilde{T}(s)=-\operatorname{rot}\left(\frac{\pi}{2}\right) T(\ell-s)=-\mathbf{n}(\ell-s) .
$$

It follows that the signed curvature of $\tilde{\gamma}$ at $\tilde{\gamma}(s)=\gamma(\ell-s)$ is

$$
\tilde{\kappa}(s)=\left\langle\tilde{\gamma}^{\prime \prime}(s), \tilde{\mathbf{n}}(s)\right\rangle=\left\langle\gamma^{\prime \prime}(\ell-s),-\mathbf{n}(\ell-s)\right\rangle=-\kappa(\ell-s) .
$$

In summary, reversing the orientation of a plane curve reverses the sign of its signed curvature at any point.

Counterclockwise circle

Clockwise circle

Fig. 2.3. Reversing the orientation of a curve changes the sign of the curvature at a point.

Example 2.7. The counterclockwise circle

$$
\gamma(s)=(a \cos s / a, a \sin s / a), \quad 0 \leq s \leq 2 \pi a,
$$

has signed curvature $1 / a$, while the clockwise circle

$$
\tilde{\gamma}(s)=\gamma(-s), \quad 0 \leq s \leq 2 \pi a,
$$

has signed curvature $-1 / a$. Geometrically, the unit tangent vector T of the counterclockwise circle turns towards the normal vector \mathbf{n}, while the unit tangent vector \tilde{T} of the clockwise circle turns away from the normal vector $\tilde{\mathbf{n}}$ (Figure 2.3).

Problems

2.1.* Signed curvature

Let $T(s)$ be the unit tangent vector field on a plane curve $\gamma(s)$ parametrized by arc length. Write

$$
T(s)=\left[\begin{array}{c}
\cos \theta(s) \\
\sin \theta(s)
\end{array}\right]
$$

where $\theta(s)$ is the angle of $T(s)$ with respect to the positive horizontal axis. Show that the signed curvature κ is the derivative $d \theta / d s$.

2.2. Curvature of a unit-speed plane curve

Suppose $\gamma(s)=(x(s), y(s))$ is a unit-speed curve in the plane. Write $x^{\prime}=x^{\prime}(s)=d x / d s$ and $y^{\prime}=y^{\prime}(s)=d y / d s$.
(a) Show that the signed curvature κ of $\gamma(s)$ is $-x^{\prime \prime} / y^{\prime}$ when $y^{\prime} \neq 0$ and $y^{\prime \prime} / x^{\prime}$ when $x^{\prime} \neq 0$.
(b) For a unit-speed curve, $\theta=\tan ^{-1}\left(y^{\prime} / x^{\prime}\right)$. By calculating $d \theta / d s$, show that the signed curvature is $\kappa=x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}$. (If $x^{\prime}=0$, then because the curve is unit speed, $y^{\prime} \neq 0$ and $\left.\theta=\tan ^{-1}(+\infty)=\pi / 2.\right)$

2.3. Curvature of a regular plane curve

In physics literature, it is customary to denote the derivative with respect to time by a dot, e.g., $\dot{x}=d x / d t$, and the derivative with respect to distance by a prime, e.g., $x^{\prime}=d x / d s$. We will sometimes follow this convention. Let $c(t)=(x(t), y(t))$ be a regular plane curve. Using Problem 2.1 and the chain rule $d \theta / d s=(d \theta / d t) /(d s / d t)$, show that the signed curvature of the curve $c(t)$ is

$$
\kappa=\frac{\dot{x} \ddot{y}-\ddot{x} \dot{y}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3 / 2}},
$$

where $\dot{x}=d x / d t$ and $\ddot{x}=d^{2} x / d t^{2}$.

2.4. Curvature of a graph in the plane

The graph of a C^{∞} function $y=f(x)$ is the set

$$
\{(x, f(x)) \mid x \in \mathbb{R}\}
$$

in the plane. Showed that the signed curvature of this graph at $(x, f(x))$ is

$$
\kappa=\frac{f^{\prime \prime}(x)}{\left(1+\left(f^{\prime}(x)\right)\right)^{3 / 2}}
$$

2.5. Curvature of an ellipse

The ellipse with equation $x^{2} / a^{2}+y^{2} / b^{2}=1$ in the (x, y)-plane (Figure 2.4) can be parametrized by

$$
x=a \cos t, \quad y=b \sin t, \quad 0 \leq t \leq 2 \pi .
$$

Find the curvature of the ellipse at an arbitrary point (x, y).

2.6. Arc length of a cuspidal cubic

The cuspidal cubic $x^{2}=y^{3}$ (Figure 2.4) can be parametrized by $\left(t^{3}, t^{2}\right)$. Find its arc length from $t=0$ to $t=a$.

Fig. 2.4. An ellipse and a cuspidal cubic

2.7. Curvature of a space curve

Let I be a closed interval in \mathbb{R}. If $\gamma: I \rightarrow \mathbb{R}^{3}$ is a regular space curve parametrized by arc length, its curvature κ at $\gamma(s)$ is defined to be $\left\|\gamma^{\prime \prime}(s)\right\| .{ }^{1}$ Consider the helix $c(t)=(a \cos t, a \sin t, b t)$ in space.
(a) Reparametrize c by arc length: $\gamma(s)=c(t(s))$.
(b) Compute the curvature of the helix at $\gamma(s)$.

2.8. Curvature of a line in space

Show that the curvature of a line in space is zero at every point.

2.9. The Frenet-Serret formulas

Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular space curve parametrized by arc length. Then $T=\gamma^{\prime}(s)$ is tangent to γ at $\gamma(s)$ and has unit length. Assume that $\gamma^{\prime \prime}(s) \neq 0$.
(a) Prove that $\gamma^{\prime \prime}(s)$ is normal to T.
(b) Let N be the unit vector $\gamma^{\prime \prime}(s) /\left\|\gamma^{\prime \prime}(s)\right\|$. Then $T^{\prime}=\kappa N$, where κ is the curvature of the space curve.
(c) The unit vector $B=T \times N$ is called the binormal of γ at $\gamma(s)$. The three vectors T, N, B form an orthonormal basis for \mathbb{R}^{3} at $\gamma(s)$, called the Frenet-Serret frame (Figure 2.5). Prove that

$$
N^{\prime}=-\kappa T+\tau B
$$

for some real number τ, which is called the torsion of the unit-speed curve γ.
(d) Prove that $B^{\prime}=-\tau N$.

The set of equations

$$
\begin{array}{rlr}
T^{\prime} & = & \kappa N \\
N^{\prime} & =-\kappa T r & +\tau B \\
B^{\prime} & = & -\tau N
\end{array}
$$

[^0]

Fig. 2.5. A Frenet-Serret frame.
is called the Frenet-Serret formulas. In matrix notation,

$$
\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
& \kappa \\
-\kappa & \\
& -\tau
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

Jean Frédéric Frenet (1816-1900) and Joseph Alfred Serret (1819-1885)

§3 Surfaces in Space

There are several ways to generalize the curvature of a plane curve to a surface. One way, following Euler (1760), is to consider the curvature of all the normal sections of the surface at a point. A second way is to study the derivative of a unit normal vector field on the surface. In this section we use Euler's method to define several measurements of curvature at a point on a surface. We then state the two theorems, Gauss's Theorema Egregium and the Gauss-Bonnet theorem, that will serve as guideposts in our study of differential geometry. We will take up the relationship between curvature and the derivative of a normal vector field in Section 5.

3.1 Principal, Mean, and Gaussian Curvatures

Recall that a regular submanifold of a manifold \tilde{M} is a subset of the manifold \tilde{M} locally defined by the vanishing of coordinate functions (see [21, Section 9] for a discussion of regular submanifolds). By a surface in \mathbb{R}^{3}, we mean a 2-dimensional regular submanifold of \mathbb{R}^{3}. Let p be a point on a surface M in \mathbb{R}^{3}. A normal vector to M at p is a vector $N_{p} \in T_{p} \mathbb{R}^{3}$ that is orthogonal to the tangent plane $T_{p} M$. A normal vector field on M is a function N that assigns to each $p \in M$ a normal vector N_{p} at p. If N is a normal vector field on M, then at each point $p \in M$, we can write

$$
N_{p}=\left.\sum_{i=1}^{3} a^{i}(p) \frac{\partial}{\partial x^{i}}\right|_{p}
$$

The normal vector field N on M is said to be C^{∞} if the coefficient functions a^{1}, a^{2}, a^{3} are C^{∞} functions on M.

Fig. 3.1. Normal section at p.

Let N be a C^{∞} unit normal vector field on a neighborhood of p in M. Denote by N_{p} the unit normal vector at p. Under the canonical identification of $T_{p} \mathbb{R}^{3}$ with \mathbb{R}^{3}, every plane P through N_{p} slices the surface M along a plane curve $P \cap M$ through p.

By the transversality theorem from differential topology, the intersection $P \cap M$, being transversal, is smooth (see Problem 3.2). We call such a plane curve a normal section of the surface through p (Figure 3.1). Assuming that the normal sections have C^{∞} parametrizations, which we will show later, we can compute the curvature of a normal section with respect to N_{p}. The collection of the curvatures at p of all the normal sections gives a fairly good picture of how the surface curves at p.

More precisely, each unit tangent vector X_{p} to the surface M at p determines together with N_{p} a plane that slices M along a normal section. Moreover, the unit tangent vector X_{p} determines an orientation of the normal section. Let $\gamma(s)$ be the arc length parametrization of this normal section with initial point $\gamma(0)=p$ and initial vector $\gamma^{\prime}(0)=X_{p}$. Note that $\gamma(s)$ is completely determined by the unit tangent vector X_{p}. Define the normal curvature of the normal section $\gamma(s)$ at p with respect to N_{p} by

$$
\begin{equation*}
\kappa\left(X_{p}\right)=\left\langle\gamma^{\prime \prime}(0), N_{p}\right\rangle . \tag{3.1}
\end{equation*}
$$

Of course, this N_{p} is not always the same as the $\mathbf{n}(0)$ in Section 2, which was obtained by rotating the unit tangent vector 90° counterclockwise in \mathbb{R}^{2}; an arbitrary plane in \mathbb{R}^{3} does not have a preferred orientation.

Since the set of all unit vectors in $T_{p} M$ is a circle, we have a function

Leonhard Euler
(1707-1783)
(Portrait by Jakob Emanuel Handmann, 1753)

$$
\kappa: S^{1} \rightarrow \mathbb{R}
$$

Clearly, $\kappa\left(-X_{p}\right)=\kappa\left(X_{p}\right)$ for $X_{p} \in S^{1}$, because replacing a unit tangent vector by its negative simply reverses the orientation of the normal section, which reverses the sign of the first derivative $\gamma^{\prime}(s)$ but does not change the sign of the second derivative $\gamma^{\prime \prime}(s)$.

The maximum and minimum values κ_{1}, κ_{2} of the function κ are the principal curvatures of the surface at p. Their average $\left(\kappa_{1}+\kappa_{2}\right) / 2$ is the mean curvature H, and their product $\kappa_{1} \kappa_{2}$ the Gaussian curvature K. A unit direction $X_{p} \in T_{p} M$ along which a principal curvature occurs is called a principal direction. Note that if X_{p} is a principal direction, then so is $-X_{p}$, since $\kappa\left(-X_{p}\right)=\kappa\left(X_{p}\right)$. If κ_{1} and κ_{2} are equal, then every unit vector in $T_{p} M$ is a principal direction.
Remark 3.1. Using $-N_{p}$ instead of N_{p} reverses the signs of all the normal curvatures at p, as one sees from (3.1). This will change the sign of the mean curvature, but it leaves invariant the Gaussian curvature. Thus, the Gaussian curvature K is independent of the choice of the unit normal vector field N.

Example 3.2 (Sphere of radius a). Every normal section of a sphere of radius a is a circle of radius a. With respect to the unit inward-pointing unit normal vector field, the principal curvatures are both $1 / a$ (see Example 2.6), the mean curvature is $H=1 / a$ and the Gaussian curvature is $K=1 / a^{2}$.

Example 3.3. For a plane M in \mathbb{R}^{3} the principal curvatures, mean curvature, and Gaussian curvature are all zero.

Example 3.4. For a cylinder of radius a with a unit inward normal, it appears that the principal curvatures are 0 and $1 / a$, corresponding to normal sections that are a line and a circle, respectively (Figure 3.2). We will establish this rigorously in Section 5. Hence, the mean curvature is $1 / 2 a$ and the Gaussian curvature is 0 . If we use the unit outward normal on the cylinder, then the principal curvatures are 0 and $-1 / a$, and the mean curvature is $-1 / 2 a$, but the Gaussian curvature is still 0 .

Fig. 3.2. Principal curvatures of a cylinder.

3.2 Gauss's Theorema Egregium

Since the plane is locally isometric to a cylinder, Examples 3.3 and 3.4 show that the principal curvatures κ_{1}, κ_{2} and the mean curvature H are not isometric invariants. It is an astonishing fact that although neither κ_{1} nor κ_{2} is invariant under isometries, their product, the Gaussian curvature K, is. This is the content of the Theorema Egregium of Gauss.

Another way to appreciate the significance of this theorem is to think in terms of isometric embeddings. We may think of portions of the plane and the cylinder as different isometric embeddings of the same planar region. The examples show that the principal curvatures κ_{1}, κ_{2} and the mean curvature depend on the embedding. The product $\kappa_{1} \kappa_{2}$ would a priori seem to depend on the embedding, but in fact does not. In the next few sections we will develop the machinery to prove the Theorema Egregium.

Carl Friedrich Gauss
(1777-1855)
(Artist: Gottlieb Biermann, 1887)

3.3 The Gauss-Bonnet Theorem

For an oriented surface M in \mathbb{R}^{3} the Gaussian curvature K is a function on the surface. If the surface is compact, we can integrate K to obtain a single number $\int_{M} K d S$. Here the integral is the usual surface integral from vector calculus.

Example 3.5. For the sphere M of radius a (Figure 3.3), the integral of the Gaussian curvature is

$$
\begin{aligned}
\int_{M} K d S & =\int_{M} \frac{1}{a^{2}} d S=\frac{1}{a^{2}} \int_{M} 1 d S \\
& =\frac{1}{a^{2}}(\text { surface area of } M) \\
& =\frac{1}{a^{2}} 4 \pi a^{2}=4 \pi
\end{aligned}
$$

Fig. 3.3. Sphere of radius a.

Notice that although the Gaussian curvature of a sphere depends on the radius, in the integration the radius cancels out and the final answer is independent of the radius.

Example 3.5 is a special case of the Gauss-Bonnet theorem, which for a compact oriented surface M in \mathbb{R}^{3} asserts that

$$
\begin{equation*}
\int_{M} K d S=2 \pi \chi(M) \tag{3.2}
\end{equation*}
$$

where $\chi(M)$ denotes the Euler characteristic. Equation (3.2) is a rather unexpected formula, for on the left-hand side the Gaussian curvature K depends on a notion of distance, but the right-hand side is a topological invariant, independent of any Riemannian metric. Somehow, in the integration process, all the metric information gets canceled out, leaving us with a topological invariant. For the 2 -sphere, the Euler characteristic is 2 and the theorem checks with the computation in Example 3.5.

Pierre Ossian Bonnet

In due course we will study the theory of characteristic classes for vector bundles, a vast generalization of the Gauss-Bonnet theorem.

Problems

3.1. Principal curvatures in terms of K and H

Compute the principal curvatures κ_{1}, κ_{2} at a point of an oriented surface in \mathbb{R}^{3} in terms of its Gaussian curvature K and mean curvature H.

3.2. Normal section at a point

Suppose M is a smooth surface in \mathbb{R}^{3}, p a point in M, and N a smooth unit normal vector field on a neighborhood of p in M. Let P be the plane spanned by a unit tangent vector $X_{p} \in T_{p} M$ and the unit normal vector N_{p}. Denote by $C:=P \cap M$ the normal section of the surface M at p cut out by the plane P.
(a) The plane P is the zero set of some linear function $f(x, y, z)$. Let $\bar{f}: M \rightarrow \mathbb{R}$ be the restriction of f to M. Then the normal section C is precisely the level set $\bar{f}^{-1}(0)$. Show that p is a regular point of \bar{f}, i.e., that the differential $\bar{f}_{*, p}: T_{p} M \rightarrow T_{0} \mathbb{R}$ is surjective. (Hint: Which map is $f_{*, p}: \mathbb{R}^{3}=T_{p} \mathbb{R}^{3} \rightarrow T_{f(p)} \mathbb{R}=\mathbb{R}$? What is its kernel?)
(b) Show that a normal section of M at p is a regular submanifold of dimension one in a neighborhood of p. (Hint: Apply [21, Proposition 11.4] and the regular level set theorem [21, Theorem 9.9].)

3.3. Regular submanifold of dimension one

Show that if a curve C in a smooth surface is a regular submanifold of dimension one in a neighborhood of a point $p \in C$, then C has a C^{∞} parametrization near p. (Hint: Relative to an adapted chart $\left(U, x^{1}, x^{2}\right)$ centered at p, the curve C is the x^{1}-axis. A C^{∞} parametrization of the x^{1}-axis in the $\left(x^{1}, x^{2}\right)$-plane is $\left(x^{1}, x^{2}\right)=(t, 0)$.)

$\S 4$ Directional Derivatives in Euclidean Space

The directional derivative is one way of differentiating vector fields on \mathbb{R}^{n} with respect to a tangent vector. In this section we extend the calculus definition of the directional derivative of a function to the directional derivative of a vector field along a submanifold of \mathbb{R}^{n}.

4.1 Directional Derivatives in Euclidean Space

Suppose $X_{p}=\sum a^{i} \partial /\left.\partial x^{i}\right|_{p}$ is a tangent vector at a point $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} and $f\left(x^{1}, \ldots, x^{n}\right)$ is a C^{∞} function in a neighborhood of p in \mathbb{R}^{n}. To compute the directional derivative of f at p in the direction X_{p}, we first write down a set of parametric equations for the line through p in the direction X_{p} :

$$
x^{i}=p^{i}+t a^{i}, \quad i=1, \ldots, n
$$

Let $a=\left(a^{1}, \ldots, a^{n}\right)$. Then the directional derivative $D_{X_{p}} f$ is

$$
\begin{align*}
D_{X_{p}} f & =\lim _{t \rightarrow 0} \frac{f(p+t a)-f(p)}{t}=\left.\frac{d}{d t}\right|_{t=0} f(p+t a) \tag{4.1}\\
& =\left.\left.\sum \frac{\partial f}{\partial x^{i}}\right|_{p} \cdot \frac{d x^{i}}{d t}\right|_{0}=\left.\sum \frac{\partial f}{\partial x^{i}}\right|_{p} \cdot a^{i} \quad \text { (by the chain rule) } \\
& =\left(\left.\sum a^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right) f=X_{p} f .
\end{align*}
$$

In calculus, X_{p} is required to be a unit vector, but we will allow X_{p} to be an arbitrary vector at p.

As a shorthand, we write ∂_{i} for $\partial / \partial x^{i}$. The directional derivative at p of a C^{∞} vector field $Y=\Sigma b^{i} \partial_{i}=\Sigma b^{i} \partial / \partial x^{i}$ on \mathbb{R}^{n} in the direction X_{p} is defined to be

$$
\begin{equation*}
D_{X_{p}} Y=\left.\sum\left(X_{p} b^{i}\right) \frac{\partial}{\partial x^{i}}\right|_{p} \tag{4.2}
\end{equation*}
$$

This formula shows clearly that $D_{X_{p}} Y$ is \mathbb{R}-linear in X_{p}.
Although (4.1) computes the directional derivative using the values of f along a line through p, we can in fact use any curve $c(t)$ with initial point p and initial vector X_{p} (Figure 4.1), for

$$
D_{X_{p}} f=X_{p} f=c^{\prime}(0) f=c_{*}\left(\left.\frac{d}{d t}\right|_{t=0}\right) f=\left.\frac{d}{d t}\right|_{t=0} f(c(t)) .
$$

Fig. 4.1. Tangent vector at a point

Remark 4.1. Thus, for $D_{X_{p}} f$ to be defined, it is not necessary that f be defined in an open neighborhood of p. As long as f is defined along some curve starting at p with initial velocity X_{p}, the directional derivative $D_{X_{p}} f$ will make sense. A similar remark applies to the directional derivative $D_{X_{p}} Y$ of a vector field Y.

When X is a C^{∞} vector field on \mathbb{R}^{n}, not just a vector at p, we define the vector field $D_{X} Y$ on \mathbb{R}^{n} by

$$
\left(D_{X} Y\right)_{p}=D_{X_{p}} Y \quad \text { for all } p \in \mathbb{R}^{n}
$$

Equation (4.2) shows that if X and Y are C^{∞} vector fields on \mathbb{R}^{n}, then so is $D_{X} Y$. Let $\mathfrak{X}\left(\mathbb{R}^{n}\right)$ be the vector space of all C^{∞} vector fields on \mathbb{R}^{n}. The directional derivative in \mathbb{R}^{n} gives a map

$$
D: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{n}\right),
$$

which we write as $D_{X} Y$ instead of $D(X, Y)$. Let $\mathcal{F}=C^{\infty}\left(\mathbb{R}^{n}\right)$ be the ring of C^{∞} functions on \mathbb{R}^{n}. Then $\mathfrak{X}\left(\mathbb{R}^{n}\right)$ is both a vector space over \mathbb{R} and a module over \mathcal{F}.

Proposition 4.2. For $X, Y \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, the directional derivative $D_{X} Y$ satisfies the following properties:
(i) $D_{X} Y$ is \mathcal{F}-linear in X and \mathbb{R}-linear in Y;
(ii) (Leibniz rule) if f is a C^{∞} function on \mathbb{R}^{n}, then

$$
D_{X}(f Y)=(X f) Y+f D_{X} Y
$$

Proof. (i) Let f be a C^{∞} function on \mathbb{R}^{n} and p an arbitrary point of \mathbb{R}^{n}. Then

$$
\begin{aligned}
\left(D_{f X} Y\right)_{p} & =D_{f(p) X_{p}} Y \\
& =f(p) D_{X_{p}} Y \quad \text { (because } D_{X_{p}} Y \text { is } \mathbb{R} \text {-linear in } X_{p} \text { by (4.2)) } \\
& =\left(f D_{X} Y\right)_{p} .
\end{aligned}
$$

For $Z \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, we have

$$
\left(D_{X+Z} Y\right)_{p}=D_{X_{p}+Z_{p}} Y=D_{X_{p}} Y+D_{Z_{p}} Y=\left(D_{X} Y+D_{Z} Y\right)_{p} .
$$

This proves that $D_{X} Y$ is \mathcal{F}-linear in X. The \mathbb{R}-linearity in Y is clear from (4.2).
(ii) Suppose $Y=\sum b^{i} \partial_{i}$, where $b^{i} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{aligned}
\left(D_{X}(f Y)\right)_{p} & =\left.\sum X_{p}\left(f b^{i}\right) \partial_{i}\right|_{p} \\
& =\left.\sum\left(X_{p} f\right) b^{i}(p) \partial_{i}\right|_{p}+\left.\sum f(p) X_{p} b^{i} \partial_{i}\right|_{p} \\
& =\left(X_{p} f\right) Y_{p}+f(p) D_{X_{p}} Y \\
& =\left((X f) Y+f D_{X} Y\right)_{p}
\end{aligned}
$$

4.2 Other Properties of the Directional Derivative

Since the directional derivative D in \mathbb{R}^{n} is an \mathbb{R}-bilinear map

$$
D: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{n}\right),
$$

one can ask if it is symmetric, that is, for all $X, Y \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, is $D_{X} Y=D_{Y} X$? A simple calculation using the standard frame shows that the answer is no; in fact, if $[X, Y]$ is the Lie bracket defined in (A.2), then

$$
D_{X} Y-D_{Y} X=[X, Y] .
$$

The quantity

$$
T(X, Y)=D_{X} Y-D_{Y} X-[X, Y]
$$

turns out to be fundamental in differential geometry and is called the torsion of the directional derivative D.

For each smooth vector field $X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, the directional derivative $D_{X}: \mathfrak{X}\left(\mathbb{R}^{n}\right) \rightarrow$ $\mathfrak{X}\left(\mathbb{R}^{n}\right)$ is an \mathbb{R}-linear endomorphism. This gives rise to a map

$$
\begin{align*}
\mathfrak{X}\left(\mathbb{R}^{n}\right) & \rightarrow \operatorname{End}_{\mathbb{R}}\left(\mathfrak{X}\left(\mathbb{R}^{n}\right)\right), \tag{4.3}\\
X & \mapsto D_{X} .
\end{align*}
$$

The vector space $\mathfrak{X}\left(\mathbb{R}^{n}\right)$ of C^{∞} vector fields on \mathbb{R}^{n} is a Lie algebra under the Lie bracket of vector fields. For any vector space V, the endomorphism ring $\operatorname{End}_{\mathbb{R}}(V)$ of endomorphisms of V is also a Lie algebra, with Lie bracket

$$
[A, B]=A \circ B-B \circ A, \quad A, B \in \operatorname{End}(V)
$$

So the map in (4.3) is an \mathbb{R}-linear map of Lie algebras. It is natural to ask if it is a Lie algebra homomorphism, i.e., is

$$
\left[D_{X}, D_{Y}\right]=D_{[X, Y]} ?
$$

The answer is yes for the directional derivative in \mathbb{R}^{n}. A measure of the deviation of the linear map $X \mapsto D_{X}$ from being a Lie algebra homomorphism is given by the function

$$
R(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]}=D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]} \in \operatorname{End}_{\mathbb{R}}(\mathfrak{X}(M)),
$$

called the curvature of D.
Finally, one might ask if the product rule holds for the Euclidean inner product:

$$
D_{Z}\langle X, Y\rangle=\left\langle D_{Z} X, Y\right\rangle+\left\langle X, D_{Z} Y\right\rangle .
$$

The answer is again yes. The following proposition summarizes the properties of the directional derivative in \mathbb{R}^{n}.

Proposition 4.3. Let D be the directional derivative in \mathbb{R}^{n} and $X, Y, Z C^{\infty}$ vector fields on \mathbb{R}^{n}. Then
(i) (zero torsion) $D_{X} Y-D_{Y} X-[X, Y]=0$,
(ii) (zero curvature) $D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z=0$,
(iii) (compatibility with the metric) $X\langle Y, Z\rangle=\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle$.

Proof. (i) Problem 4.2.
(ii) Let $Z=\sum c^{i} \partial_{i} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$. Then

$$
D_{X} D_{Y} Z=D_{X}\left(\sum\left(Y c^{i}\right) \partial_{i}\right)=\sum\left(X Y c^{i}\right) \partial_{i}
$$

By symmetry,

$$
D_{Y} D_{X} Z=\sum\left(Y X c^{i}\right) \partial_{i}
$$

So

$$
D_{X} D_{Y} Z-D_{Y} D_{X} Z=\sum(X Y-Y X) c^{i} \partial_{i}=D_{[X, Y]} Z
$$

(iii) Let $Y=\sum b^{i} \partial_{i}$ and $Z=\sum c^{j} \partial_{j} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{aligned}
X\langle Y, Z\rangle & =X\left(\sum b^{i} c^{i}\right)=\sum\left(X b^{i}\right) c^{i}+\sum b^{i}\left(X c^{i}\right) \\
& =\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle
\end{aligned}
$$

If X and Y are smooth vector fields on a manifold M, then the Lie derivative $\mathcal{L}_{X} Y$ is another way of differentiating Y with respect to X (for a discussion of the Lie derivative, see [21, Section 20]). While the directional derivative $D_{X} Y$ in \mathbb{R}^{n} is \mathcal{F}-linear in X, the Lie derivative $\mathcal{L}_{X} Y$ is not, so the two concepts are not the same. Indeed, since $\mathcal{L}_{X} Y=[X, Y]$, by Proposition 4.3(i), for vector fields on \mathbb{R}^{n},

$$
\mathcal{L}_{X} Y=D_{X} Y-D_{Y} X
$$

4.3 Vector Fields Along a Curve

Suppose $c:[a, b] \rightarrow M$ is a parametrized curve in a manifold M.
Definition 4.4. A vector field V along $c:[a, b] \rightarrow M$ is the assignment of a tangent vector $V(t) \in T_{c(t)} M$ to each $t \in[a, b]$. Such a vector field is said to be C^{∞} if for every C^{∞} function f on M, the function $V(t) f$ is C^{∞} as a function of t.

Example 4.5. The velocity vector field $c^{\prime}(t)$ of a parametrized curve c is defined by

$$
c^{\prime}(t)=c_{*, t}\left(\left.\frac{d}{d t}\right|_{t}\right) \in T_{c(t)} M .
$$

It is a vector field along c.
Example 4.6. If \tilde{V} is a vector field on M and $c:[a, b] \rightarrow M$ is a parametrized curve in M, then \tilde{V} induces a vector field V along c by

$$
V(t)=\tilde{V}_{c(t)} .
$$

Now suppose $c:[a, b] \rightarrow \mathbb{R}^{n}$ is a curve in \mathbb{R}^{n} and V is a C^{∞} vector field along c. Then $V(t)$ can be written as a linear combination of the standard basis vectors:

$$
V(t)=\left.\sum v^{i}(t) \partial_{i}\right|_{c(t)}
$$

So it makes sense to differentiate V with respect to t :

$$
\frac{d V}{d t}(t)=\left.\sum \frac{d v^{i}}{d t}(t) \partial_{i}\right|_{c(t)}
$$

which is also a C^{∞} vector field along c.
For a smooth vector field V along a curve c in an arbitrary manifold M, without further hypotheses on M, the derivative $d V / d t$ is in general not defined. This is because an arbitrary manifold does not have a canonical frame of vector fields such as $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ on \mathbb{R}^{n}.

Proposition 4.7. Let $c:[a, b] \rightarrow \mathbb{R}^{n}$ be a curve in \mathbb{R}^{n} and let $V(t), W(t)$ be smooth vector fields along c. Then

$$
\frac{d}{d t}\langle V(t), W(t)\rangle=\left\langle\frac{d V}{d t}, W\right\rangle+\left\langle V, \frac{d W}{d t}\right\rangle
$$

Proof. Write $V(t)$ and $W(t)$ in terms of $\left.\partial_{i}\right|_{c(t)}$ and differentiate.

4.4 Vector Fields Along a Submanifold

Let M be a regular submanifold of a manifold \tilde{M}. At a point p in M, there are two kinds of tangent vectors to \tilde{M}, depending on whether they are tangent to M or not. For example, if M is a surface in \mathbb{R}^{3}, the vectors in a tangent vector field on M are all tangent to M, but the vectors in a normal vector field on M are not tangent to M but to \mathbb{R}^{3}.

Definition 4.8. Let M be a submanifold of a manifold \tilde{M}. A vector field X on M assigns to each $p \in M$ a tangent vector $X_{p} \in T_{p} M$. A vector field X along M in \tilde{M} assigns to each $p \in M$ a tangent vector $X_{p} \in T_{p} \tilde{M}$. A vector field X along M is called C^{∞} if for every C^{∞} function f on \tilde{M}, the function $X f$ is C^{∞} on M.

The distinction between these two concepts is indicated by the prepositions "on" and "along." While it may be dangerous for little prepositions to assume such grave duties, this appears to be common usage in the literature. In this terminology, a normal vector field to a surface M in \mathbb{R}^{3} is a vector field along M in \mathbb{R}^{3}, but not a vector field on M. Of course, a vector field on M is a vector field along M.

As in Section A.3, the set of all C^{∞} vector fields on a manifold M is denoted by $\mathfrak{X}(M)$. The set of all C^{∞} vector fields along a submanifold M in a manifold \tilde{M} will be denoted by $\Gamma\left(\left.T \tilde{M}\right|_{M}\right)$. They are both modules over the ring $\mathcal{F}=C^{\infty}(M)$ of C^{∞} functions on M.

4.5 Directional Derivatives on a Submanifold of \mathbb{R}^{n}

Suppose M is a regular submanifold of \mathbb{R}^{n}. At any point $p \in M$, if $X_{p} \in T_{p} M$ is a tangent vector at p and $Y=\sum b^{i} \partial_{i}$ is a vector field along M in \mathbb{R}^{n}, then the directional derivative $D_{X_{p}} Y$ is defined. In fact,

$$
D_{X_{p}} Y=\left.\sum\left(X_{p} b^{i}\right) \partial_{i}\right|_{p}
$$

As p varies over M, this allows us to associate to a C^{∞} vector field X on M and a C^{∞} vector field Y along M a C^{∞} vector field $D_{X} Y$ along M by

$$
D_{X} Y=\sum\left(X b^{i}\right) \partial_{i} \in \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)
$$

For any $p \in M$, we have $\left(D_{X} Y\right)_{p}=D_{X_{p}} Y$ by definition. It follows that there is an \mathbb{R}-bilinear map

$$
\begin{aligned}
D: \mathfrak{X}(M) \times \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) & \rightarrow \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) \\
D(X, Y) & =D_{X} Y .
\end{aligned}
$$

We call D the directional derivative on M. Because of the asymmetry between X and Y-one is a vector field on M, the other a vector field along M, the torsion $T(X, Y):=D_{X} Y-D_{Y} X-[X, Y]$ no longer makes sense. Otherwise, D satisfies the same properties as the directional derivative D on \mathbb{R}^{n}.

Proposition 4.9. Suppose M is a regular submanifold of \mathbb{R}^{n} and D is the directional derivative on M. For $X \in \mathfrak{X}(M)$ and $Y \in \Gamma\left(T \mathbb{R}^{n}{ }_{M}\right)$,
(i) $D(X, Y)=D_{X} Y$ is \mathcal{F}-linear in X and \mathbb{R}-linear in Y;
(ii) (Leibniz rule) if $f \in C^{\infty}(M)$, then

$$
D(X, f Y)=D_{X}(f Y)=(X f) Y+f D_{X} Y
$$

Proposition 4.10. Suppose M is a regular submanifold of \mathbb{R}^{n} and D is the directional derivative on M.
(i) (zero curvature) If $X, Y \in \mathfrak{X}(M)$ and $Z \in \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)$, then

$$
D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z=0
$$

(ii) (compatibility with the metric) If $X \in \mathfrak{X}(M)$ and $Y, Z \in \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)$, then

$$
X\langle Y, Z\rangle=\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle
$$

Proof. By Remark 4.1, these are proven in exactly the same way as Proposition 4.3.

Suppose \tilde{V} is a C^{∞} vector field along a regular submanifold M in \mathbb{R}^{n} and $c:[a, b] \rightarrow M$ is a C^{∞} curve in M. Then \tilde{V} induces a vector field V along c :

$$
V(t)=\tilde{V}_{c(t)} \in T_{c(t)} \mathbb{R}^{n}
$$

Proposition 4.11. Differentiation with respect to t of a vector field along a curve is the directional derivative in the tangent direction:

$$
\frac{d V}{d t}=D_{c^{\prime}(t)} \tilde{V}
$$

Proof. Let

$$
V(t)=\left.\sum v^{i}(t) \partial_{i}\right|_{c(t)} \quad \text { and } \quad \tilde{V}_{p}=\left.\sum \tilde{v}^{i}(p) \partial_{i}\right|_{p} \text { for } p \in M
$$

Since $V(t)=\tilde{V}_{c(t)}$,

$$
v^{i}=\tilde{v}^{i} \circ c .
$$

By the definition of $c^{\prime}(t)$,

$$
c^{\prime}(t) \tilde{v}^{i}=c_{*}\left(\frac{d}{d t}\right) \tilde{v}^{i}=\frac{d}{d t}\left(\tilde{v}^{i} \circ c\right)=\frac{d}{d t} v^{i} .
$$

Therefore,

$$
\begin{aligned}
D_{c^{\prime}(t)} \tilde{V} & =\left.\sum\left(c^{\prime}(t) \tilde{v}^{i}\right) \partial_{i}\right|_{c(t)} \\
& =\left.\sum \frac{d v^{i}}{d t} \partial_{i}\right|_{c(t)}=\frac{d V}{d t}
\end{aligned}
$$

Problems

4.1. Lie bracket of vector fields

Let f, g be C^{∞} functions and X, Y be C^{∞} vector fields on a manifold M. Show that

$$
[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X .
$$

(Hint: Two smooth vector fields V and W on a manifold M are equal if and only if for every $\left.h \in C^{\infty}(M), V h=W h.\right)$

4.2. Directional derivative in \mathbb{R}^{n}

Prove Proposition 4.3(i).

4.3. Directional derivative on a submanifold

Let M be a regular submanifold of \mathbb{R}^{n} and

$$
D: \mathfrak{X}(M) \times \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) \rightarrow \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)
$$

the directional derivative on M. Since $\mathfrak{X}(M) \subset \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)$, we can restrict D to $\mathfrak{X}(M) \times \mathfrak{X}(M)$ to obtain

$$
D: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) .
$$

(a) Let T be the unit tangent vector field to the circle S^{1}. Prove that $D_{T} T$ is not tangent to S^{1}.

This example shows that $\left.D\right|_{\mathfrak{X}(M) \times \mathfrak{X}(M)}$ does not necessarily map into $\mathfrak{X}(M)$.
(b) If $X, Y \in \mathfrak{X}(M)$, prove that

$$
D_{X} Y-D_{Y} X=[X, Y] .
$$

§5 The Shape Operator

To define the curvature of a plane curve in Section 2, we differentiated its unit tangent vector field with respect to arc length. Extrapolating from this, we can try to describe the curvature of a surface in \mathbb{R}^{3} by differentiating a unit normal vector field along various directions.

5.1 Normal Vector Fields

Recall that a point p of \mathbb{R}^{n} is a regular point of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ if the differential $f_{*, p}: T_{p} \mathbb{R}^{n} \rightarrow T_{f(p)} \mathbb{R}$ is surjective, equivalently, if at least one partial derivative $\partial f / \partial x^{i}(p)$ is nonzero. A point $q \in \mathbb{R}$ is a regular value if its inverse image $f^{-1}(q)$ consists entirely of regular points; otherwise, it is a singular value.

A hypersurface in \mathbb{R}^{n} is the zero set $Z(f)$ of a C^{∞} function f on \mathbb{R}^{n}. Consider a hypersurface M in \mathbb{R}^{3} defined as the zero set of the C^{∞} function $f(x, y, z)$. We assume that the partial derivatives f_{x}, f_{y}, f_{z} do not vanish simultaneously on M. Then 0 is a regular value of f, and $M=f^{-1}(0)$ is a regular level set. By the regular level set theorem, M is a regular submanifold of \mathbb{R}^{3}.

As a submanifold of \mathbb{R}^{3}, M inherits a Riemannian metric from the Euclidean metric on \mathbb{R}^{3}. Let $N=\operatorname{grad} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$ be the gradient vector field of f on M.

Proposition 5.1. If 0 is a regular value of the C^{∞} function f on \mathbb{R}^{3}, then $N=\operatorname{grad} f$ is a nowhere-vanishing normal vector field along the smooth hypersurface $M=Z(f)$.

Proof. Let $p \in M$ and $X_{p} \in T_{p} M$. It suffices to show that $\left\langle N_{p}, X_{p}\right\rangle=0$. Choose a curve $c(t)=(x(t), y(t), z(t))$ in M with $c(0)=p$ and $c^{\prime}(0)=X_{p}$ (such a curve always exists, for example by [21, Proposition 8.16]). Since $c(t)$ lies in $M, f(c(t))=0$ for all t. By the chain rule,

$$
0=\left.\frac{d}{d t}\right|_{t=0} f(c(t))=f_{x}(p) x^{\prime}(0)+f_{y}(p) y^{\prime}(0)+f_{z}(p) z^{\prime}(0)
$$

Hence,

$$
\left\langle N_{p}, X_{p}\right\rangle=\left\langle\operatorname{grad} f(p), c^{\prime}(0)\right\rangle=0
$$

By dividing grad f by its magnitude, we obtain a smooth unit normal vector field along the hypersurface M. Since a smooth surface in \mathbb{R}^{3}, orientable or not, is locally the zero set of a coordinate function, it follows from this proposition that a smooth unit normal vector field exists locally along any smooth surface in \mathbb{R}^{3}.

Fig. 5.1. A normal vector field near p.

5.2 The Shape Operator

Let p be a point on a surface M in \mathbb{R}^{3} and let N be a C^{∞} unit normal vector field on M (Figure 5.1). For any tangent vector $X_{p} \in T_{p} M$, define

$$
L_{p}\left(X_{p}\right)=-D_{X_{p}} N
$$

This directional derivative makes sense, since N is defined along some curve with initial vector X_{p}. We put a negative sign in the definition of L_{p} so that other formulas such as Lemma 5.2 and Proposition 5.5 will be sign-free. Applying the vector X_{p} to $\langle N, N\rangle \equiv 1$ gives

$$
\begin{aligned}
0 & =X_{p}\langle N, N\rangle \\
& =\left\langle D_{X_{p}} N, N_{p}\right\rangle+\left\langle N_{p}, D_{X_{p}} N\right\rangle \quad \text { (compatibility with the metric, Proposition 4.3) } \\
& =2\left\langle D_{X_{p}} N, N_{p}\right\rangle .
\end{aligned}
$$

Thus, $D_{X_{p}} N$ is perpendicular to N_{p} at p and is therefore in the tangent plane $T_{p} M$. So L_{p} is a linear map $T_{p} M \rightarrow T_{p} M$. It is called the shape operator or the Weingarten map of the surface M at p. Note that the shape operator depends on the unit normal vector field N and the point p. With the unit normal vector field N on M fixed, as the point p varies in M, there is a different shape operator L_{p} at each p. To avoid cumbersome notation, we will usually omit the subscript p.

The shape operator, being the directional derivative of a unit normal vector field on a surface, should encode in it information about how the surface bends at p.

Lemma 5.2. Let M be a surface in \mathbb{R}^{3} having a C^{∞} unit normal vector field N. For $X, Y \in \mathfrak{X}(M)$,

$$
\langle L(X), Y\rangle=\left\langle D_{X} Y, N\right\rangle
$$

Proof. Since Y is tangent to M, the inner product $\langle Y, N\rangle$ is identically zero on U. Differentiating the equation $\langle Y, N\rangle \equiv 0$ with respect to X yields

$$
\begin{aligned}
0=X\langle Y, N\rangle & =\left\langle D_{X} Y, N\right\rangle+\left\langle Y, D_{X} N\right\rangle \\
& =\left\langle D_{X} Y, N\right\rangle-\langle Y, L(X)\rangle .
\end{aligned}
$$

Hence,

$$
\langle L(X), Y\rangle=\left\langle D_{X} Y, N\right\rangle
$$

In general, if e_{1}, \ldots, e_{n} is a basis for a vector space V and

$$
\begin{equation*}
v=\sum_{i} v^{i} e_{i} \in V, \text { with } v^{i} \in \mathbb{R} \tag{5.1}
\end{equation*}
$$

then v^{i} is called the component of v in the e_{i}-direction. In case e_{1}, \ldots, e_{n} is an orthonormal basis in an inner product space (V,\langle,$\rangle), by taking the inner product of both$ sides of (5.1) with e_{j}, one obtains

$$
\left\langle v, e_{j}\right\rangle=\sum_{i} v^{i}\left\langle e_{i}, e_{j}\right\rangle=\sum_{i} v^{i} \delta_{i j}=v^{j}
$$

Thus, the component v^{j} of v in the e_{j}-direction is simply the inner product of v with e_{j}. In view of this, the right-hand side of Lemma 5.2 is the normal component of the directional derivative $D_{X_{p}} Y$.

Note that any tangent vector $X_{p} \in T_{p} M$ can be extended to a C^{∞} vector field in a neighborhood of p : if $\left(U, x^{1}, \ldots, x^{n}\right)$ is a chart containing p and $X_{p}=\sum a^{i} \partial /\left.\partial x^{i}\right|_{p}$ for some $a^{i} \in \mathbb{R}$, then $X=\sum a^{i} \partial / \partial x^{i}$ is such a vector field on U.

Proposition 5.3. The shape operator is self-adjoint: for any $X_{p}, Y_{p} \in T_{p} M$,

$$
\left\langle L\left(X_{p}\right), Y_{p}\right\rangle=\left\langle X_{p}, L\left(Y_{p}\right)\right\rangle .
$$

Proof. Suppose the C^{∞} unit normal vector field N is defined on a neighborhood U of p. Let X, Y be vector fields on U that extend the vectors X_{p}, Y_{p} at p. By Lemma 5.2,

$$
\begin{equation*}
\langle L(X), Y\rangle=\left\langle D_{X} Y, N\right\rangle \tag{5.2}
\end{equation*}
$$

Similarly, reversing the roles of X and Y, we have

$$
\begin{equation*}
\langle L(Y), X\rangle=\left\langle D_{Y} X, N\right\rangle \tag{5.3}
\end{equation*}
$$

By Problem 4.3(b),

$$
\begin{equation*}
D_{X} Y-D_{Y} X=[X, Y] . \tag{5.4}
\end{equation*}
$$

Combining the three preceding equations (5.2), (5.3), and (5.4), we get

$$
\left.\begin{array}{rl}
& \langle L(X), Y\rangle-\langle L(Y), X\rangle \\
& \\
= & \left\langle D_{X} Y, N\right\rangle-\left\langle D_{Y} X, N\right\rangle \\
= & \\
& \left\langle D_{X} Y-D_{Y} X, N\right\rangle \\
= & \\
\langle[X, Y], N\rangle & \\
= & 0
\end{array} \quad \text { (by (5.4)) } \quad \text { (since }[X, Y] \text { is a tangent vector field on } M\right) .
$$

Hence,

$$
\langle L(X), Y\rangle=\langle L(Y), X\rangle=\langle X, L(Y)\rangle .
$$

If $T: V \rightarrow W$ is a linear map between two vector spaces V and $W, \mathcal{B}_{V}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V, and $\mathcal{B}_{W}=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for W, then

$$
T\left(v_{j}\right)=\sum_{i=1}^{m} a_{j}^{i} w_{i}, \quad j=1, \ldots, n
$$

for a unique matrix $\left[a_{j}^{i}\right]$, called the matrix of the linear map T with respect to the bases \mathcal{B}_{V} and \mathcal{B}_{W}.

It follows from Proposition 5.3 that the matrix of the shape operator with respect to an orthonormal basis for $T_{p} M$ is symmetric, for if e_{1}, e_{2} is an orthonormal basis for $T_{p} M$ and

$$
\begin{aligned}
& L\left(e_{1}\right)=a e_{1}+b e_{2} \\
& L\left(e_{2}\right)=h e_{1}+c e_{2}
\end{aligned}
$$

then

$$
b=\left\langle L\left(e_{1}\right), e_{2}\right\rangle=\left\langle e_{1}, L\left(e_{2}\right)\right\rangle=h
$$

Since the eigenvalues of a symmetric matrix are real (Problem 5.1), the shape operator has real eigenvalues. We will see shortly the meaning of these eigenvalues.

5.3 Curvature and the Shape Operator

Consider as before a surface M in \mathbb{R}^{3} having a C^{∞} unit normal vector field N. Lemma 5.2 on the shape operator has a counterpart for vector fields along a curve.

Proposition 5.4. Let $c:[a, b] \rightarrow M$ be a curve in M and let V be a vector field in M along c. Then

$$
\left\langle L\left(c^{\prime}(t)\right), V\right\rangle=\left\langle\frac{d V}{d t}, N_{c(t)}\right\rangle
$$

Remark. When we write V or $d V / d t$, we mean $V(t)$ and $d V(t) / d t$, respectively.
Proof. Since $V(t)$ is tangent to M, the inner product $\left\langle V(t), N_{c(t)}\right\rangle$ is identically zero. By Proposition 4.7, differentiating with respect to t yields

$$
\begin{aligned}
0 & =\frac{d}{d t}\left\langle V(t), N_{c(t)}\right\rangle \\
& =\left\langle\frac{d V}{d t}, N_{c(t)}\right\rangle+\left\langle V(t), \frac{d}{d t} N_{c(t)}\right\rangle \\
& =\left\langle\frac{d V}{d t}, N_{c(t)}\right\rangle+\left\langle V(t), D_{c^{\prime}(t)} N\right\rangle \quad \text { (by Proposition 4.11). }
\end{aligned}
$$

Thus,

$$
\left\langle V(t), L\left(c^{\prime}(t)\right)\right\rangle=\left\langle V(t),-D_{c^{\prime}(t)} N\right\rangle=\left\langle\frac{d V}{d t}, N_{c(t)}\right\rangle
$$

Proposition 5.5. Suppose $\gamma(s)$ is a normal section, parametrized by arc length, determined by a unit tangent vector $X_{p} \in T_{p} M$ and the unit normal vector N_{p}. Then the normal curvature of $\gamma(s)$ with respect to N_{p} at p is given by the second fundamental form:

$$
\kappa\left(X_{p}\right)=\left\langle L\left(X_{p}\right), X_{p}\right\rangle=\operatorname{II}\left(X_{p}, X_{p}\right) .
$$

Proof. By definition, $\gamma(0)=p$ and $\gamma^{\prime}(0)=X_{p}$. Let $T(s):=\gamma^{\prime}(s)$ be the unit tangent vector field along $\gamma(s)$. Then the curvature of the normal section $\gamma(s)$ is

$$
\begin{aligned}
\kappa\left(\gamma^{\prime}(s)\right) & =\left\langle\gamma^{\prime \prime}(s), N_{\gamma(s)}\right\rangle \\
& =\left\langle d T / d s, N_{\gamma(s)}\right\rangle \\
& =\left\langle L\left(\gamma^{\prime}(s)\right), T\right\rangle \quad \text { (by Proposition 5.4) } \\
& =\langle L(T), T\rangle .
\end{aligned}
$$

Evaluating at $s=0$ gives

$$
\kappa\left(X_{p}\right)=\left\langle L\left(X_{p}\right), X_{p}\right\rangle=\operatorname{II}\left(X_{p}, X_{p}\right) .
$$

Proposition 5.6. The principal directions of the surface M in \mathbb{R}^{3} at p are the unit eigenvectors of the shape operator L; the principal curvatures are the eigenvalues of L.

Proof. The principal curvatures at p are the maximum and minimum values of the function

$$
\kappa\left(X_{p}\right)=\operatorname{II}\left(X_{p}, X_{p}\right)=\left\langle L\left(X_{p}\right), X_{p}\right\rangle
$$

for $X_{p} \in T_{p} M$ satisfying $\left\langle X_{p}, X_{p}\right\rangle=1$. This type of optimization problem with a constraint lends itself to the method of the Lagrange multiplier from vector calculus.

Choose an orthonormal basis e_{1}, e_{2} for $T_{p} M$ so that

$$
X_{p}=x e_{1}+y e_{2}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

By Proposition 5.3 the matrix of L relative to the basis e_{1}, e_{2} is a symmetric matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

meaning

$$
\begin{aligned}
& L\left(e_{1}\right)=a e_{1}+b e_{2}, \\
& L\left(e_{2}\right)=b e_{1}+c e_{2} .
\end{aligned}
$$

In matrix notation,

$$
\begin{aligned}
L\left(X_{p}\right) & =L\left(x e_{1}+y e_{2}\right)=(a x+b y) e_{1}+(b x+c y) e_{2} \\
& =\left[\begin{array}{l}
a x+b y \\
b x+c y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=A X_{p},
\end{aligned}
$$

and

$$
\begin{aligned}
\kappa\left(X_{p}\right) & =\left\langle L\left(X_{p}\right), X_{p}\right\rangle=\left\langle A X_{p}, X_{p}\right\rangle=X_{p}^{T} A X_{p} \\
& =a x^{2}+2 b x y+c y^{2}
\end{aligned}
$$

The problem of finding the principal curvatures becomes a standard calculus problem: find the maximum and minimum of the function

$$
\kappa\left(X_{p}\right)=a x^{2}+2 b x y+c y^{2}=X_{p}^{T} A X_{p}
$$

subject to the constraint

$$
g\left(X_{p}\right)=\left\langle X_{p}, X_{p}\right\rangle=x^{2}+y^{2}=1
$$

Now

$$
\operatorname{grad} \kappa=\left[\begin{array}{l}
2 a x+2 b y \\
2 b x+2 c y
\end{array}\right]=2 A X_{p}
$$

and

$$
\operatorname{grad} g=2 X_{p}
$$

By the method of the Lagrange multiplier, at the maximum or minimum of κ, there is a scalar λ such that

$$
\operatorname{grad} \kappa=\lambda \operatorname{grad} g, \quad \text { or } A X_{p}=\lambda X_{p}
$$

Thus, the maximum and minimum of κ occur at unit eigenvectors of A. These are the principal directions at p.

Let X_{p} be a principal direction at p. Then the corresponding principal curvature is the normal curvature

$$
\kappa\left(X_{p}\right)=\left\langle L\left(X_{p}\right), X_{p}\right\rangle=\left\langle A X_{p}, X_{p}\right\rangle=\left\langle\lambda X_{p}, X_{p}\right\rangle=\lambda\left\langle X_{p}, X_{p}\right\rangle=\lambda
$$

the eigenvalue associated to the eigenvector X_{p}.
Corollary 5.7. (i) The Gaussian curvature of a surface M in \mathbb{R}^{3} is the determinant of the shape operator.
(ii) If e_{1}, e_{2} is an orthonormal basis for the tangent space $T_{p} M$ of the surface M, then the Gaussian curvature at p is

$$
K=\left\langle L\left(e_{1}\right), e_{1}\right\rangle\left\langle L\left(e_{2}\right), e_{2}\right\rangle-\left\langle L\left(e_{1}\right), e_{2}\right\rangle\left\langle L\left(e_{2}\right), e_{1}\right\rangle
$$

Proof. (i) The determinant of a linear map is the product of its eigenvalues (Problem 5.2). For the shape operator L the eigenvalues are the principal curvatures κ_{1}, κ_{2}. So $\operatorname{det} L=\kappa_{1} \kappa_{2}=K$, the Gaussian curvature.
(ii) If

$$
L\left(e_{1}\right)=a e_{1}+b e_{2} \quad \text { and } \quad L\left(e_{2}\right)=b e_{1}+c e_{2},
$$

then

$$
a=\left\langle L\left(e_{1}\right), e_{1}\right\rangle, \quad b=\left\langle L\left(e_{1}\right), e_{2}\right\rangle=\left\langle L\left(e_{2}\right), e_{1}\right\rangle, c=\left\langle L\left(e_{2}\right), e_{2}\right\rangle .
$$

The matrix of L relative to the orthonormal basis e_{1}, e_{2} is

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

Hence,

$$
\begin{aligned}
\operatorname{det} L & =a c-b^{2} \\
& =\left\langle L\left(e_{1}\right), e_{1}\right\rangle\left\langle L\left(e_{2}\right), e_{2}\right\rangle-\left\langle L\left(e_{1}\right), e_{2}\right\rangle\left\langle L\left(e_{2}\right), e_{1}\right\rangle .
\end{aligned}
$$

5.4 The First and Second Fundamental Forms

A point p of a smooth surface M in \mathbb{R}^{3}, the Euclidean Riemannian metric is a symmetric bilinear form on the tangent space $T_{p} M$. It is called the first fundamental form of M at p. If $L: T_{p} M \rightarrow T_{p} M$ is the shape operator, the symmetric bilinear form on $T_{p} M$

$$
\mathrm{II}\left(X_{p}, Y_{p}\right)=\left\langle L\left(X_{p}\right), Y_{p}\right\rangle
$$

is called the second fundamental form of the surface M at p. The first fundamental form is the metric and the second fundamental form is essentially the shape operator. These two fundamental forms encode in them much of the geometry of the surface M.

Let e_{1}, e_{2} be a basis for the tangent space $T_{p} M$. We set

$$
E:=\left\langle e_{1}, e_{1}\right\rangle, \quad F:=\left\langle e_{1}, e_{2}\right\rangle, \quad G:=\left\langle e_{2}, e_{2}\right\rangle .
$$

If $X_{p}=x^{1} e_{1}+x^{2} e_{2}$ and $Y_{p}=y^{1} e_{1}+y^{2} e_{2}$, then

$$
\begin{aligned}
\left\langle X_{p}, Y_{p}\right\rangle= & \left\langle e_{1}, e_{1}\right\rangle x^{1} y^{1}+\left\langle e_{1}, e_{2}\right\rangle x^{1} y^{2} \\
& +\left\langle e_{2}, e_{1}\right\rangle x^{2} y^{1}+\left\langle e_{2}, e_{2}\right\rangle x^{2} y^{2} \\
= & E x^{1} y^{1}+F x^{1} y^{2}+F x^{2} y^{1}+G x^{2} y^{2} \\
= & {\left[\begin{array}{ll}
x^{1} & x^{2}
\end{array}\right]\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]\left[\begin{array}{l}
y^{1} \\
y^{2}
\end{array}\right] . }
\end{aligned}
$$

Thus, the three numbers E, F, G determine completely the first fundamental form of M at p. They are called the coefficients of the first fundamental form relative to e_{1}, e_{2}.

Similarly, the three numbers

$$
e:=\mathrm{II}\left(e_{1}, e_{1}\right), \quad f:=\mathrm{II}\left(e_{1}, e_{2}\right), \quad g:=\mathrm{II}\left(e_{2}, e_{2}\right)
$$

determine completely the second fundamental form of M at p :

$$
\operatorname{II}\left(X_{p}, Y_{p}\right)=\left[\begin{array}{ll}
x^{1} & x^{2}
\end{array}\right]\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right]\left[\begin{array}{l}
y^{1} \\
y^{2}
\end{array}\right] .
$$

They are called the coefficients of the second fundamental form relative to e_{1}, e_{2}. As p varies in an open set U, if e_{1}, e_{2} remain a basis of $T_{p} M$ at each point, these coefficients are six functions on U. Classically, M is taken to be a coordinate patch (U, u, v) with $e_{1}=\partial / \partial u$ and $e_{2}=\partial / \partial v$, and the differential geometry of M is done in terms of the six functions E, F, G, e, f, g.

Theorem 5.8. Suppose M and M^{\prime} are two smooth Riemannian manifolds of dimension 2 , and $\varphi: M \rightarrow M^{\prime}$ is a diffeomorphism. Let E, F, G be the coefficients of the first fundamental form relative to a frame e_{1}, e_{2} on M, and $E^{\prime}, F^{\prime}, G^{\prime}$ the corresponding coefficients relative to $e_{1}^{\prime}:=\varphi_{*} e_{1}, e_{2}^{\prime}:=\varphi_{*} e_{2}$ on M^{\prime}. Then φ is an isometry if and only if E, F, G at p are equal to $E^{\prime}, F^{\prime}, G^{\prime}$ at $\varphi(p)$, respectively, for all $p \in M$.

Proof. The diffeomorphism φ is an isometry if and only if

$$
\left\langle\varphi_{*} X_{p}, \varphi_{*} Y_{p}\right\rangle_{\varphi(p)}=\left\langle X_{p}, Y_{p}\right\rangle_{p} .
$$

This condition holds if and only if

$$
\left\langle\varphi_{*} e_{i}, \varphi_{*} e_{j}\right\rangle_{\varphi(p)}=\left\langle e_{i}, e_{j}\right\rangle_{p} .
$$

for all $i=1,2$ and $j=1,2$, i.e.,

$$
E^{\prime}(\varphi(p))=E(p), \quad F^{\prime}(\varphi(p))=F(p), \quad G^{\prime}(\varphi(p))=G(p)
$$

5.5 The Catenoid and the Helicoid

The graph of the hyperbolic cosine function

$$
y=\cosh x:=\frac{e^{x}+e^{-x}}{2}
$$

is called a catenary (Figure 5.2).

Fig. 5.2. Catenaries

Fig. 5.3. A hanging chain

Using physics, it can be shown that a hanging chain naturally assumes the shape of a catenary (Figure 5.3).

The surface of revolution obtained by rotating the catenary $r=\cosh z$ about the z-axis is called a catenoid (Figure 5.4). It has parametrization

$$
(r \cos \theta, r \sin \theta, z)=((\cosh u) \cos \theta,(\cosh u) \sin \theta, u)
$$

where we set $z=u$.

Fig. 5.4. A catenoid

The helicoid is the surface with parametrization

$$
(r \cos \theta, r \sin \theta, \theta), \quad-\infty<r, \theta<\infty
$$

it is the surface traced out by a horizontal stick moving upward with constant speed while rotating about a vertical axis through its midpoint (Figure 5.5).

Fig. 5.5. A helicoid

The catenoid shown in Figure 5.4 has

$$
-1 \leq u \leq 1 \quad 0 \leq \theta \leq 2 \pi
$$

If we remove from this catenoid the points with $u=-1,1$ and $\theta=0,2 \pi$, then what is left is a coordinate chart U.

Similarly, the helicoid in Figure 5.5 has

$$
-a \leq r \leq a, \quad 0 \leq \theta \leq 2 \pi
$$

for some positive real number a. We remove from it points with $r=0, a$ and $\theta=0,2 \pi$ to obtain a coordinate chart U^{\prime}.

As coordinate charts, there are diffeomorphisms $U \simeq(-1,1) \times(0,2 \pi)$ and $U^{\prime} \simeq$ $(-a, a) \times(0,2 \pi)$. Since $(-1,1)$ is diffeomorphic to $(-\sinh 1, \sinh 1)$ via the map $u \mapsto \sinh h$, there is a diffeomorphism $\varphi: U \rightarrow U^{\prime}$ given by

$$
((\cosh u) \cos \theta,(\cosh u) \sin \theta, u) \mapsto((\sinh u) \cos \theta,(\sinh u) \sin \theta, \theta)
$$

By computing the three functions E, F, G relative to the frame $e_{1}=\partial / \partial u$, $e_{2}=\partial / \partial \theta$ on the catenoid and the frame $e_{1}^{\prime}=\varphi_{*} e_{1}, e_{2}^{\prime}=\varphi_{*} e_{2}$ on the helicoid, respectively, one can show that $\varphi: U \rightarrow U^{\prime}$ is an isometry (Problem 5.11). Physically, what this means is that if one cuts the catenoid in Figure 5.4 along a meridian, straighten out the meridian, and let the catenoid hang, it will assume the shape of the helicoid in Figure 5.5.

Problems

5.1. Eigenvalues and eigenvectors of a symmetric matrix

Suppose A is an $n \times n$ real symmetric matrix with complex eigenvector X and corresponding complex eigenvalue λ. Think of X as a column vector and consider the complex number $\bar{X}^{\mathrm{T}} A X$, where \bar{X} is the complex conjugate of X and the superscript T means the transpose.
(a) Show that $\bar{X}^{\mathrm{T}} A=\bar{\lambda} \bar{X}^{\mathrm{T}}$.
(b) By computing the complex number $\bar{X}^{\mathrm{T}} A X$ in two ways, as $\left(\bar{X}^{\mathrm{T}} A\right) X$ and as $\bar{X}^{\mathrm{T}}(A X)$, show that $\lambda=\bar{\lambda}$. This proves that the eigenvalues of a real symmetric matrix are always real.
(c) Show that A has n independent real eigenvectors.
(d) Show that eigenvectors of A corresponding to distinct eigenvalues are orthogonal. (Hint: Let X and Y be eigenvectors corresponding to distinct eigenvalues λ and μ, respectively. Note that $\langle X, Y\rangle=X^{\mathrm{T}} Y$. Compute $X^{\mathrm{T}} A Y$ two different ways.)

Part (d) shows that if the principal curvatures at a point of a surface in \mathbb{R}^{3} are distinct, then the principal directions are orthogonal.

5.2. Determinant and eigenvalues

Prove that the determinant of any $n \times n$ matrix, real or complex, is the product of its eigenvalues. (Hint: Triangularize the matrix.)

5.3. The Gauss map

Let M be a smooth oriented surface in \mathbb{R}^{3}, with a smooth unit normal vector field N. The Gauss map of M is the map

$$
v: M \rightarrow S^{2} \subset \mathbb{R}^{3}, \quad v(p)=N_{p}
$$

where N_{p} is considered to be a unit vector starting at the origin. Show that the differential of the Gauss map at p is the negative of the Weingarten map:

$$
v_{*, p}\left(X_{p}\right)=-L\left(X_{p}\right)
$$

for any $X_{p} \in T_{p} M$. (Hint: Compute the differential by using curves. See [21, Section 8.7].)

5.4. Total curvature

The total curvature of a smooth oriented surface M in \mathbb{R}^{3} is defined to be the integral $\int_{M} K$, if it exists, of the Gaussian curvature K. Prove that the total curvature of M is, up to sign, the area of the image of the Gauss map:

$$
\int_{M} K=\text { Area of } v(M)
$$

5.5. Shape operator of a cylinder

Let M be the cylinder of radius a in \mathbb{R}^{3} defined by $x^{2}+y^{2}=a^{2}$. At $p=(x, y, z) \in M$, the vectors

$$
e_{1}=\frac{1}{a}\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right), \quad e_{2}=\frac{\partial}{\partial z}
$$

form an orthonormal basis for the tangent space $T_{p} M$. Let N be the unit normal vector field

$$
N=\frac{1}{a}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

(a) Find the matrix of the shape operator with respect to the basis e_{1}, e_{2} at p. (Compute $L\left(e_{j}\right)=-D_{e_{j}} N$ and find the matrix $\left[a_{j}^{i}\right]$ such that $\left.L\left(e_{j}\right)=\sum a_{j}^{i} e_{i}.\right)$
(b) Compute the mean and Gaussian curvatures of the cylinder M.

5.6. Shape operator of a sphere

Let M be the sphere of radius a in \mathbb{R}^{3} defined by

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

Parametrize the sphere using spherical coordinates:

$$
\begin{aligned}
& x=a \sin \phi \cos \theta \\
& y=a \sin \phi \sin \theta \\
& z=a \cos \phi, \quad 0 \leq \phi<\pi, \quad 0 \leq \theta<2 \pi
\end{aligned}
$$

Then for each $p \in M, e_{1}=\partial / \partial \phi, e_{2}=\partial / \partial \theta$ is a basis for the tangent space $T_{p} M$ for $p \in M$. Let N_{p} be the unit outward normal vector at p on the sphere.
(a) Find the matrix of the shape operator of the sphere with respect to the basis e_{1}, e_{2} at p.
(b) Compute the mean and Gaussian curvatures of the sphere M at p using (a).

5.7. Surface of revolution in \mathbb{R}^{3}

Let $(f(u), g(u))$ be a unit-speed curve without self-intersection in the (y, z)-plane. Assume $f(u)>0$, so that $(f(u), g(u))$ can be rotated about the z-axis to form a surface of revolution M in \mathbb{R}^{3}. A parametrization of the surface of revolution is

$$
\psi(u, v)=\left[\begin{array}{c}
f(u) \cos v \\
f(u) \sin v \\
g(u)
\end{array}\right], \quad 0<v<2 \pi
$$

Assume that ψ is a diffeomorphism onto its image, so that u, v are coordinates on a chart U in M. Then $e_{1}=\partial / \partial u, e_{2}=\partial / \partial v$ is a basis for the tangent space $T_{p}(M)$ for $p \in U$.
(a) Find the matrix of the shape operator of the surface of revolution with respect to the basis e_{1}, e_{2} at p.
(b) Compute the mean and Gaussian curvature of the surface of revolution M at p.

5.8. The average value of normal curvature

Let M be an oriented surface in \mathbb{R}^{3} with a unit normal vector field N, and let p be a point in M. Each unit tangent vector $X_{p} \in T_{p} M$ determines a normal section with curvature $\kappa\left(X_{p}\right)$ at p. The unit tangent vectors in $T_{p} M$ form a circle S^{1} and the normal curvature κ is a function on this circle. Show that the average value $(1 / 2 \pi) \int_{S^{1}} \kappa$ of the normal curvature at p is the mean curvature at p. (In general, the average value of a function f on the unit circle S^{1} is $(1 / 2 \pi) \int_{S^{1}} f$.)

5.9. The coefficients of the two fundamental forms

Suppose M is an oriented surface in $\mathbb{R}^{3}, p \in M$, and e_{1}, e_{2} is a basis for $T_{p} M$. Let E, F, G, e, f, g be the coefficients of the first and second fundamental forms of M at p relative to e_{1}, e_{2}.
(a) Show that the matrix of the shape operator $L: T_{p} M \rightarrow T_{p} M$ relative to e_{1}, e_{2} is

$$
\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]^{-1}\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right]
$$

(b) Compute the Gaussian curvature K and the mean curvature H of M at p in terms of E, F, G, e, f, g.

5.10. The first and second fundamental forms of a graph

Let M be the graph of a C^{∞} function $z=h(x, y)$ in \mathbb{R}^{3}. Then M can be parametrized by $\sigma(x, y)=(x, y, h(x, y))$. Let $e_{1}=\sigma_{*}(\partial / \partial x)$ and $e_{2}=\sigma_{*}(\partial / \partial y)$.
(a) Show that the coefficients of the first fundamental form relative to e_{1}, e_{2} are

$$
E=1+h_{x}^{2}, \quad F=h_{x} h_{y}, \quad G=1+h_{y}^{2} .
$$

$\left(\right.$ Here $h_{x}=\partial h / \partial x$.)
(b) Compute the coefficients of the second fundamental forms relative to e_{1}, e_{2}.
(c) Show that the Gaussian curvature of the graph $z=h(x, y)$ is

$$
K=\frac{h_{x x} h_{y y}-h_{x y}^{2}}{\left(h_{x}^{2}+h_{y}^{2}+1\right)^{2}}
$$

5.11. Isometry between a catenoid and a helicoid

Let U be the open set in the catenoid with parametrization

$$
(x, y, z)=((\cosh u) \cos \theta,(\cosh u) \sin \theta, u), \quad-1<u<1, \quad 0<\theta<2 \pi
$$

and let U^{\prime} be the open set in the helicoid with parametrization

$$
(x, y, z)=\left(u^{\prime} \cos \theta, u^{\prime} \sin \theta, \theta\right), \quad-\sinh 1<u^{\prime}<\sinh 1, \quad 0<\theta<2 \pi
$$

Define $\varphi: U \rightarrow U^{\prime}$ by

$$
\varphi((\cosh u) \cos \theta,(\cosh u) \sin \theta, u)=((\sinh u) \cos \theta,(\sinh u) \sin \theta, \theta)
$$

As explained in Section 5.5, φ is a diffeomorphism.

Viewing u, θ as coordinate functions on U, we let $e_{1}=\partial / \partial u, e_{2}=\partial / \partial \theta$, which are then tangent vector fields on U.
(a) Compute e_{1}, e_{2} in terms of $\partial / \partial x, \partial / \partial y, \partial / \partial z$.
(b) Compute E, F, G relative to the frame e_{1}, e_{2} at $p \in U$ of the catenoid.
(c) Let $e_{1}^{\prime}=\varphi_{*} e_{1}, e_{2}^{\prime}=\varphi_{*} e_{2}$ on the open set U^{\prime} of the helicoid. Compute $e_{1}^{\prime}, e_{2}^{\prime}$ in terms of $\partial / \partial x, \partial / \partial y, \partial / \partial z$ at $\varphi(p) \in U^{\prime}$.
(d) Compute $E^{\prime}, F^{\prime}, G^{\prime}$ relative to the frame $e_{1}^{\prime}, e_{2}^{\prime}$.
(e) Prove that $\varphi: U \rightarrow U^{\prime}$ is an isometry.

§6 Affine Connections

Consider a smooth vector field Y on a manifold M and a tangent vector $X_{p} \in T_{p} M$ at a point p in M. To define the directional derivative of Y in the direction X_{p}, it is necessary to compare the values of Y in a neighborhood of p. If q is a point near p, in general it is not possible to compare the vectors Y_{q} and Y_{p} by taking the difference $Y_{q}-Y_{p}$, since they are in distinct tangent spaces. For this reason, the directional derivative of a vector field on an arbitrary manifold M cannot be defined in the same way as in Section 4. Instead, we extract from the directional derivative in \mathbb{R}^{n} certain key properties and call any map $D: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ with these properties an affine connection. Intuitively, an affine connection on a manifold is simply a way of differentiating vector fields on the manifold.

Mimicking the directional derivative in \mathbb{R}^{n}, we define the torsion and curvature of an affine connection on a manifold M. Miraculously, both torsion and curvature are linear over C^{∞} functions in every argument.

We will see in a later section that there are infinitely many affine connections on any manifold. On a Riemannian manifold, however, there is a unique torsion-free affine connection compatible with the metric, called the Riemannian or Levi-Civita connection. As an example, we describe the Riemannian connection on a surface in \mathbb{R}^{3}.

6.1 Affine Connections

On an arbitrary manifold M, which is not necessarily embedded in a Euclidean space, we can define the directional derivative of a C^{∞} function f in the direction $X_{p} \in T_{p} M$ in the same way as before:

$$
\nabla_{X_{p}} f=X_{p} f .
$$

However, there is no longer a canonical way to define the directional derivative of a vector field Y. Formula (4.2) fails because unlike in \mathbb{R}^{n}, there is no canonical basis for the tangent space $T_{p} M$.

Whatever definition of directional derivative of a vector field one adopts, it should satisfy the properties in Proposition 4.2. This motivates the following definition.
Definition 6.1. An affine connection on a manifold M is an \mathbb{R}-bilinear map

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M),
$$

written $\nabla_{X} Y$ for $\nabla(X, Y)$, satisfying the two properties below: if \mathcal{F} is the ring $C^{\infty}(M)$ of C^{∞} functions on M, then for all $X, Y \in \mathfrak{X}(M)$,
(i) $\nabla_{X} Y$ is \mathcal{F}-linear in X,
(ii) (Leibniz rule) $\nabla_{X} Y$ satisfies the Leibniz rule in Y : for $f \in \mathcal{F}$,

$$
\nabla_{X}(f Y)=(X f) Y+f \nabla_{X} Y
$$

Example 6.2. The directional derivative D_{X} of a vector field Y on \mathbb{R}^{n} is an affine connection on \mathbb{R}^{n}, sometimes called the Euclidean connection on \mathbb{R}^{n}.

6.2 Torsion and Curvature

Given an affine connection ∇ on a manifold M, one might ask whether it satisfies the same properties as Proposition 4.3 for the Euclidean connection on \mathbb{R}^{n}. For $X, Y \in \mathfrak{X}(M)$, set

$$
\begin{aligned}
T(X, Y) & =\nabla_{X} Y-\nabla_{Y} X-[X, Y] \in \mathfrak{X}(M) \\
R(X, Y) & =\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} \\
& =\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} \in \operatorname{End}(\mathfrak{X}(M)) .
\end{aligned}
$$

We call T the torsion and R the curvature of the connection. There does not seem to be a good reason for calling $T(X, Y)$ the torsion, but as we shall see in Section 8, $R(X, Y)$ is intimately related to the Gaussian curvature of a surface.

An affine connection ∇ on a manifold M gives rise to a linear map

$$
\mathfrak{X}(M) \rightarrow \operatorname{End}_{\mathbb{R}}(\mathfrak{X}(M)), \quad X \mapsto \nabla_{X} .
$$

Here both vector spaces $\mathfrak{X}(M)$ and $\operatorname{End}_{\mathbb{R}}(\mathfrak{X}(M))$ are Lie algebras. The curvature measures the deviation of the map $X \mapsto \nabla_{X}$ from being a Lie algebra homomorphism.

Recall that \mathcal{F} is the ring $C^{\infty}(M)$ of C^{∞} functions on the manifold M. Although $\nabla_{X} Y$ is not \mathcal{F}-linear in Y, it turns out, amazingly, that both torsion and curvature are \mathcal{F}-linear in all their arguments.

Proposition 6.3. Let X, Y, Z be smooth vector fields on a manifold M with affine connection ∇.
(i) The torsion $T(X, Y)$ is \mathcal{F}-linear in X and in Y.
(ii) The curvature $R(X, Y) Z$ is \mathcal{F}-linear in X, Y, and Z.

Proof. We will first check the \mathcal{F}-linearity of $R(X, Y) Z$ in X. For this, it is useful to recall the following formula from the theory of manifolds (Problem 4.1): if $f, g \in$ $\mathcal{F}=C^{\infty}(M)$, then

$$
\begin{equation*}
[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X \tag{6.1}
\end{equation*}
$$

By the definition of curvature,

$$
\begin{equation*}
R(f X, Y) Z=\nabla_{f X} \nabla_{Y} Z-\nabla_{Y} \nabla_{f X} Z-\nabla_{[f X, Y]} Z \tag{6.2}
\end{equation*}
$$

By the \mathcal{F}-linearity of ∇ in X, the first term in (6.2) is $f \nabla_{X} \nabla_{Y} Z$, and by the Leibniz rule, the second term is

$$
\nabla_{Y}\left(f \nabla_{X} Z\right)=(Y f) \nabla_{X} Z+f \nabla_{Y} \nabla_{X} Z .
$$

Applying (6.1), the last term in (6.2) is

$$
\begin{aligned}
\nabla_{[f X, Y]} Z & =\nabla_{f[X, Y]-(Y f) X} Z \\
& =f \nabla_{[X, Y]} Z-(Y f) \nabla_{X} Z,
\end{aligned}
$$

since $X(1)=0$. Combining the three terms gives

$$
\begin{aligned}
R(f X, Y) Z & =f\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z\right) \\
& =f R(X, Y) Z
\end{aligned}
$$

Because $R(X, Y)$ is skew-symmetric in X and Y, \mathcal{F}-linearity in Y follows from \mathcal{F}-linearity in the first argument:

$$
R(X, f Y)=-R(f Y, X)=-f R(Y, X)=f R(X, Y)
$$

We leave the \mathcal{F}-linearity of $T(X, Y)$ as well as that of $R(X, Y) Z$ in Z as exercises (Problems 6.2 and 6.3).

6.3 The Riemannian Connection

To narrow down the number of affine connections on a manifold, we impose additional conditions on a connection. On any manifold, we say that a connection is torsion-free if its torsion is zero. On a Riemannian manifold, we say that a connection is compatible with the metric if for all $X, Y, Z \in \mathfrak{X}(M)$,

$$
Z\langle X, Y\rangle=\left\langle\nabla_{Z} X, Y\right\rangle+\left\langle X, \nabla_{Z} Y\right\rangle .
$$

It turns out that these two additional conditions are enough to determine a connection uniquely on a Riemannian manifold.

Definition 6.4. On a Riemannian manifold a Riemannian connection, sometimes called a Levi-Civita connection, is an affine connection that is torsionfree and compatible with the metric.

Lemma 6.5. A C^{∞} vector field X on a Riemannian

Tullio Levi-Civita
(1873-1941) manifold $(M,\langle\rangle$,$) is uniquely determined by the val-$ ues $\langle X, Z\rangle$ for all $Z \in \mathfrak{X}(M)$.

Proof. We need to show that if $X^{\prime} \in \mathfrak{X}(M)$ and $\langle X, Z\rangle=\left\langle X^{\prime}, Z\right\rangle$ for all $Z \in \mathfrak{X}(M)$, then $X=X^{\prime}$. With $Y=X-X^{\prime}$, this is equivalent to showing that if $\langle Y, Z\rangle=0$ for all $Z \in \mathfrak{X}(M)$, then $Y=0$. Take $Z=Y$. By the positive-definiteness of the inner product at each point $p \in M$,

$$
\begin{aligned}
\langle Y, Y\rangle=0 & \Rightarrow\left\langle Y_{p}, Y_{p}\right\rangle=0 \text { for all } p \in M \\
& \Rightarrow Y_{p}=0 \text { for all } p \in M \\
& \Rightarrow Y=0 .
\end{aligned}
$$

Theorem 6.6. On a Riemannian manifold there is a unique Riemannian connection.

Proof. Suppose ∇ is a Riemannian connection on M. By Lemma 6.5, to specify $\nabla_{X} Y$, it suffices to know $\left\langle\nabla_{X} Y, Z\right\rangle$ for every vector field $Z \in \mathfrak{X}(M)$. So we will try to find a formula for $\left\langle\nabla_{X} Y, Z\right\rangle$ involving only the Riemannian metric and canonical operations on vector fields such as the Lie bracket.

A Riemannian connection satisfies the two formulas

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0 \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle \tag{6.4}
\end{equation*}
$$

Cyclically permuting X, Y, Z in (6.4) gives two other formulas:

$$
\begin{align*}
& Y\langle Z, X\rangle=\left\langle\nabla_{Y} Z, X\right\rangle+\left\langle Z, \nabla_{Y} X\right\rangle, \tag{6.5}\\
& Z\langle X, Y\rangle=\left\langle\nabla_{Z} X, Y\right\rangle+\left\langle X, \nabla_{Z} Y\right\rangle . \tag{6.6}
\end{align*}
$$

Using (6.3) we can rewrite $\nabla_{Y} X$ in (6.5) in terms of $\nabla_{X} Y$:

$$
\begin{equation*}
Y\langle Z, X\rangle=\left\langle\nabla_{Y} Z, X\right\rangle+\left\langle Z, \nabla_{X} Y\right\rangle-\langle Z,[X, Y]\rangle . \tag{6.7}
\end{equation*}
$$

Subtracting (6.6) from (6.4) and then adding (6.7) to it will create terms involving $\nabla_{X} Z-\nabla_{Z} X$ and $\nabla_{Y} Z-\nabla_{Z} Y$, which are equal to $[X, Z]$ and $[Y, Z]$ by torsion-freeness:

$$
\begin{aligned}
X\langle Y, Z\rangle & +Y\langle Z, X\rangle-Z\langle X, Y\rangle \\
& =2\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z-\nabla_{Z} X\right\rangle+\left\langle X, \nabla_{Y} Z-\nabla_{Z} Y\right\rangle-\langle Z,[X, Y]\rangle \\
& =2\left\langle\nabla_{X} Y, Z\right\rangle+\langle Y,[X, Z]\rangle+\langle X,[Y, Z]\rangle-\langle Z,[X, Y]\rangle .
\end{aligned}
$$

Solving for $\left\langle\nabla_{X} Y, Z\right\rangle$, we get

$$
\begin{align*}
2\left\langle\nabla_{X} Y, Z\right\rangle= & X\langle Y, Z\rangle+Y\langle Z, X\rangle-Z\langle X, Y\rangle \\
& -\langle X,[Y, Z]\rangle+\langle Y,[Z, X]\rangle+\langle Z,[X, Y]\rangle . \tag{6.8}
\end{align*}
$$

This formula proves that a Riemannian connection, if it exists, is unique.
Define $\nabla_{X} Y$ by the formula (6.8). It is a straightforward exercise to check that so defined, ∇ is a torsion-free affine connection compatible with the metric (Problem 6.4). This proves the existence of a Riemannian connection on a Riemannian manifold.

Example 6.7. By Proposition 4.3, the Riemannian connection on \mathbb{R}^{n} with its usual Euclidean metric is the directional derivative $D_{X} Y$ on \mathbb{R}^{n}.

6.4 Orthogonal Projection on a Surface in \mathbb{R}^{3}

Suppose M is a smooth surface in \mathbb{R}^{3}, which we do not assume to be orientable. At each point $p \in M$, let v_{p} be the normal line through p. It is perpendicular to the tangent space $T_{p} M$, so there is an orthogonal decomposition

$$
T_{p} \mathbb{R}^{3} \simeq T_{p} M \oplus v_{p}
$$

Let $\mathrm{pr}_{p}: T_{p} \mathbb{R}^{3} \rightarrow T_{p} M$ be the projection to the tangent space of M at p.

If X is a C^{∞} vector field along M, then $X_{p} \in T_{p} \mathbb{R}^{3}$. Define a vector field $\operatorname{pr}(X)$ on M by

$$
\operatorname{pr}(X)_{p}=\operatorname{pr}_{p}\left(X_{p}\right) \in T_{p} M
$$

Proposition 6.8. If X is a C^{∞} vector field along M in \mathbb{R}^{3}, then the vector field $\operatorname{pr}(X)$ on M defined above is C^{∞}.

Proof. For each $p \in M$, there is a neighborhood U of p in M on which there is a C^{∞} unit normal vector field N (by Section 5.1). For $q \in U$,

$$
\operatorname{pr}_{q}\left(X_{q}\right)=X_{q}-\left\langle X_{q}, N_{q}\right\rangle N_{q}
$$

Note that pr_{q} does not depend on the choice of the unit normal vector field; $-N_{q}$ would have given the same answer. As q varies in U,

$$
\operatorname{pr}(X)=X-\langle X, N\rangle N
$$

which shows that $\operatorname{pr}(X)$ is C^{∞} on U. Hence, $\operatorname{pr}(X)$ is C^{∞} at p. Since p is an arbitrary point of M, the vector field $\operatorname{pr}(X)$ is C^{∞} on M.

According to this proposition, the projection operator is a map

$$
\operatorname{pr}: \Gamma\left(\left.T \mathbb{R}^{3}\right|_{M}\right) \rightarrow \mathfrak{X}(M) .
$$

6.5 The Riemannian Connection on a Surface in \mathbb{R}^{3}

We continue to consider a smooth, not necessarily orientable surface M in \mathbb{R}^{3}. Given two C^{∞} vector fields X and Y on M and a point $p \in M$, the directional derivative $D_{X_{p}} Y$ is not in general tangent to M. Define

$$
\begin{equation*}
\left(\nabla_{X} Y\right)_{p}:=\nabla_{X_{p}} Y=\operatorname{pr}_{p}\left(D_{X_{p}} Y\right) \in T_{p} M \tag{6.9}
\end{equation*}
$$

where $\mathrm{pr}_{p}: T_{p} \mathbb{R}^{3} \rightarrow T_{p} M$ is the orthogonal projection defined in Section 6.4. As p varies over M,

$$
\nabla_{X} Y=\operatorname{pr}\left(D_{X} Y\right)
$$

which, by Proposition 6.8, shows that $\nabla_{X} Y$ is a C^{∞} vector field on M. So we have a map

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

Proposition 6.9. The Riemannian connection on a smooth, not necessarily orientable surface M in \mathbb{R}^{3} is given by $\nabla_{X} Y=\operatorname{pr}\left(D_{X} Y\right)$.

Proof. Problem 6.6.

Problems

6.1. Convex linear combination of connections

Show that if ∇ and ∇^{\prime} are connections on a manifold, then their sum $\nabla+\nabla^{\prime}$ is not a connection. However, a convex linear combination $t \nabla+(1-t) \nabla^{\prime}$ for any $t \in \mathbb{R}$ is a connection. More generally, show that if $\nabla^{1}, \ldots, \nabla^{n}$ are connections on a manifold, then the linear combination $\sum_{i=1}^{n} a_{i} \nabla^{i}$ is a connection provided $\sum_{i=1}^{n} a_{i}=1$.

6.2. \mathcal{F}-linearity of the torsion

Prove that the torsion $T(X, Y)$ is \mathcal{F}-linear in X and in Y.

6.3. F-linearity of the curvature

Prove that the curvature $R(X, Y) Z$ is \mathcal{F}-linear in Z.

6.4. Existence of a Riemannian connection

Prove that formula (6.8) defines a torsion-free affine connection ∇ that is compatible with the metric.

6.5. Orthogonal projection

Let M be a smooth surface in \mathbb{R}^{3}. Show that the orthogonal projection pr: $\Gamma\left(T \mathbb{R}^{3}{ }_{M}\right) \rightarrow \mathfrak{X}(M)$ is \mathcal{F}-linear.

6.6. Riemannian connection on a surface in \mathbb{R}^{3}

Prove Proposition 6.9.

6.7. Lie derivative

On any manifold M, let $\mathcal{L}: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), \mathcal{L}(X, Y)=\mathcal{L}_{X} Y$, be the Lie derivative. Show that $\mathcal{L}_{X} Y$ satisfies the Leibniz rule in Y, but is not \mathcal{F}-linear in X. (Hint: $\mathcal{L}_{X} Y=[X, Y]$.)

6.8. Riemannian connection of a submanifold

Let $S \subset M$ be an immersed submanifold of a Riemannian manifold M and let ∇ be the Riemannian connection on M. Show that the Riemannian connection ∇^{\prime} on S is given by

$$
\nabla_{X}^{\prime} Y=\left(\nabla_{X} Y\right)_{\tan } .
$$

§7 Vector Bundles

The set $\mathfrak{X}(M)$ of all C^{∞} vector fields on a manifold M has the structure of a real vector space, which is the same as a module over the field \mathbb{R} of real numbers. Let $\mathcal{F}=C^{\infty}(M)$ again be the ring of C^{∞} functions on M. Since we can multiply a vector field by a C^{∞} function, the vector space $\mathfrak{X}(M)$ is also a module over \mathcal{F}. Thus the set $\mathfrak{X}(M)$ has two module structures, over \mathbb{R} and over \mathcal{F}. In speaking of a linear map: $\mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ one should be careful to specify whether it is \mathbb{R}-linear or \mathcal{F}-linear. An \mathcal{F}-linear map is of course \mathbb{R}-linear, but the converse is not true.

The \mathcal{F}-linearity of the torsion $T(X, Y)$ and the curvature $R(X, Y) Z$ from the preceding section has an important consequence, namely that these two constructions make sense pointwise. For example, if X_{p}, Y_{p}, and Z_{p} are tangent vectors to a manifold M at p, then one can define $R\left(X_{p}, Y_{p}\right) Z_{p}$ to be $(R(X, Y) Z)_{p} \in T_{p} M$ for any vector fields X, Y, and Z on M that extend X_{p}, Y_{p}, and Z_{p}, respectively. While it is possible to explain this fact strictly within the framework of vector fields, it is most natural to study it in the context of vector bundles. For this reason, we make a digression on vector bundles in this section.

We will try to understand \mathcal{F}-linear maps from the point of view of vector bundles. The main result (Theorem 7.26) asserts the existence of a one-to-one correspondence between \mathcal{F}-linear maps $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ of sections of vector bundles and bundle maps $\varphi: E \rightarrow F$.

7.1 Definition of a Vector Bundle

Given an open subset U of a manifold M, one can think of $U \times \mathbb{R}^{r}$ as a family of vector spaces \mathbb{R}^{r} parametrized by the points in U. A vector bundle, intuitively speaking, is a family of vector spaces that locally "looks" like $U \times \mathbb{R}^{r}$.

Definition 7.1. A C^{∞} surjection $\pi: E \rightarrow M$ is a C^{∞} vector bundle of rank r if
(i) For every $p \in M$, the set $E_{p}:=\pi^{-1}(p)$ is a real vector space of dimension r;
(ii) every point $p \in M$ has an open neighborhood U such that there is a fiberpreserving diffeomorphism

$$
\phi_{U}: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}
$$

that restricts to a linear isomorphism $E_{p} \rightarrow\{p\} \times \mathbb{R}^{r}$ on each fiber.

The space E is called the total space, the space M the base space, and the space E_{p} the fiber above p of the vector bundle. We often say that E is a vector bundle over M. A vector bundle of rank 1 is also called a line bundle.

Condition (i) says that $\pi: E \rightarrow M$ is a family of vector spaces, while condition (ii) formalizes the fact that this family is locally looks like \mathbb{R}^{n}. We call the open set U in (ii) a trivializing open subset for the vector bundle, and ϕ_{U} a trivialization of
$\pi^{-1}(U)$. A trivializing open cover for the vector bundle is an open cover $\left\{U_{\alpha}\right\}$ of M consisting of trivializing open sets U_{α} together with trivializations $\phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow$ $U_{\alpha} \times \mathbb{R}^{r}$.

Example 7.2 (Product bundle). If V is a vector space of dimension r, then the projection $\pi: M \times V \rightarrow M$ is a vector bundle of rank r, called a product bundle. Via the projection $\pi: S^{1} \times \mathbb{R} \rightarrow S^{1}$, the cylinder $S^{1} \times \mathbb{R}$ is a product bundle over the circle S^{1}.

Example 7.3 (Möbius strip). The open Möbius strip is the quotient of $[0,1] \times \mathbb{R}$ by the identification

$$
(0, t) \sim(1,-t)
$$

It is a vector bundle of rank 1 over the circle (Figure 7.1).

Fig. 7.1. A Möbius strip

Example 7.4 (Restriction of a vector bundle). Let S be a submanifold of a manifold M, and $\pi: E \rightarrow M$ a C^{∞} vector bundle. Then $\pi_{S}: \pi^{-1}(S) \rightarrow S$ is also a vector bundle, called the restriction of E to S, written $\left.E\right|_{S}:=\pi^{-1}(S)$ (Figure 7.2).

Fig. 7.2. A vector bundle on M restricted to S

Definition 7.5. Let $\pi_{E}: E \rightarrow M$ and $\pi_{F}: F \rightarrow N$ be C^{∞} vector bundles. A C^{∞} bundle map from E to F is a pair of C^{∞} maps $(\varphi: E \rightarrow F, \underline{\varphi}: M \rightarrow N$) such that
(i) the diagram

commutes,
(ii) φ restricts to a linear map $\varphi_{p}: E_{p} \rightarrow F_{\underline{\varphi}(p)}$ of fibers for each $p \in M$.

Abusing language, we often call the $\operatorname{map} \varphi: E \rightarrow F$ alone the bundle map.
An important special case of a bundle map occurs when E and F are vector bundles over the same manifold M and the base map φ is the identity map $\mathbb{1}_{M}$. In this case we call the bundle map $\left(\varphi: E \rightarrow F, \mathbb{1}_{M}\right)$ a bundle map over M.

If there is a bundle map $\psi: F \rightarrow E$ over M such that $\psi \circ \varphi=\mathbb{1}_{E}$ and $\varphi \circ \psi=\mathbb{1}_{F}$, then φ is called a bundle isomorphism over M, and the vector bundles E and F are said to be isomorphic over M.

Definition 7.6. A vector bundle $\pi: E \rightarrow M$ is said to be trivial if it is isomorphic to a product bundle $M \times \mathbb{R}^{r} \rightarrow M$ over M.

Example 7.7 (Tangent bundle). For any manifold M, define $T M$ to be the set of all tangent vectors of M :

$$
T M=\left\{(p, v) \mid p \in M, v \in T_{p} M\right\} .
$$

If U is a coordinate open subset of M, then $T U$ is bijective with the product bundle $U \times \mathbb{R}^{n}$. We give $T M$ the topology generated by $T U$ as U runs over all coordinate open subsets of M. In this way $T M$ can be given a manifold structure so that $T M \rightarrow$ M becomes a vector bundle. It is called the tangent bundle of M (for details, see [21, Section 12]).

Example 7.8. If $f: M \rightarrow N$ is a C^{∞} map of manifolds, then its differential gives rise to a bundle map $f_{*}: T M \rightarrow T N$ defined by

$$
f_{*}(p, v)=\left(f(p), f_{*, p}(v)\right)
$$

7.2 The Vector Space of Sections

A section of a vector bundle $\pi: E \rightarrow M$ over an open set U is a function $s: U \rightarrow E$ such that $\pi \circ s=\mathbb{1}_{U}$, the identity map on U. For each $p \in U$, the section s picks out one element of the fiber E_{p}. The set of all C^{∞} sections of E over U is denoted by $\Gamma(U, E)$. If U is the manifold M, we also write $\Gamma(E)$ instead of $\Gamma(M, E)$.

The set $\Gamma(U, E)$ of C^{∞} sections of E over U is clearly a vector space over \mathbb{R}. It is in fact a module over the ring $C^{\infty}(U)$ of C^{∞} functions, for if f is a C^{∞} function over U and s is a C^{∞} section of E over U, then the definition

$$
(f s)(p):=f(p) s(p) \in E_{p}, \quad p \in U
$$

makes $f s$ into a C^{∞} section of E over U.
Example 7.9 (Sections of a product line bundle). A section s of the product bundle $M \times \mathbb{R} \rightarrow M$ is a map $s(p)=(p, f(p))$. So there is a one-to-one correspondence

$$
\{\text { sections of } M \times \mathbb{R} \rightarrow M\} \longleftrightarrow\{\text { functions } f: M \rightarrow \mathbb{R}\}
$$

In particular, the space of C^{∞} sections of the product line bundle $M \times \mathbb{R} \rightarrow M$ may be identified with $C^{\infty}(M)$.

Example 7.10 (Sections of the tangent bundle). A vector field on a manifold M assigns to each point $p \in M$ a tangent vector $X_{p} \in T_{p} M$. Therefore, it is precisely a section of the tangent bundle $T M$. Thus, $\mathfrak{X}(M)=\Gamma(T M)$.

Example 7.11 (Vector fields along a submanifold). If M is a regular submanifold of \mathbb{R}^{n}, then a C^{∞} vector field along M is precisely a section of the restriction $\left.T \mathbb{R}^{n}\right|_{M}$ of $T \mathbb{R}^{n}$ to M. This explains our earlier notation $\Gamma\left(\left.T \mathbb{R}^{3}\right|_{M}\right)$ for the space of C^{∞} vector fields along M in \mathbb{R}^{3}.

Definition 7.12. A bundle map $\varphi: E \rightarrow F$ over a manifold M (meaning that the base map is the identity $\mathbb{1}_{M}$) induces a map on the space of sections:

$$
\begin{gathered}
\varphi_{\#}: \Gamma(E) \rightarrow \Gamma(F), \\
\varphi_{\#}(s)=\varphi \circ s .
\end{gathered}
$$

This induced map $\varphi_{\#}$ is \mathcal{F}-linear because if $f \in \mathcal{F}$, then

$$
\begin{aligned}
\left(\varphi_{\#}(f s)\right)(p) & =(\varphi \circ(f s))(p)=\varphi(f(p) s(p)) \\
& =f(p) \varphi(s(p)) \quad \text { (because } \varphi \text { is } \mathbb{R} \text {-linear on each fiber) } \\
& =\left(f \varphi_{\#}(s)\right)(p) .
\end{aligned}
$$

Our goal in the rest of this chapter is to prove that conversely, every \mathcal{F}-linear map $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ comes from a bundle map $\varphi: E \rightarrow F$, i.e., $\alpha=\varphi_{\#}$.

7.3 Extending a Local Section to a Global Section

Consider the interval $(-\pi / 2, \pi / 2)$ as an open subset of the real line \mathbb{R}. The example of the tangent function $\tan :(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}$ shows that it may not be possible to extend the domain of a C^{∞} function $f: U \rightarrow \mathbb{R}$ from an open subset $U \subset M$ to the manifold M. However, given a point $p \in U$, it is always possible to find a C^{∞} global function $\bar{f}: M \rightarrow \mathbb{R}$ that agrees with f on some neighborhood of p. More generally, this is also true for sections of a vector bundle.

Fig. 7.3. A bump function supported in U

Proposition 7.13. Let $E \rightarrow M$ be a C^{∞} vector bundle, s a C^{∞} section of E over some open set U in M, and p a point in U. Then there exists a C^{∞} global section $\bar{s} \in$ $\Gamma(M, E)$ that agrees with s over some neighborhood of p.

Proof. Choose a C^{∞} bump function f on M such that $f \equiv 1$ on a neighborhood W of p contained in U and $\operatorname{supp} f \subset U$ (Figure 7.3). Define $\bar{s}: M \rightarrow E$ by

$$
\bar{s}(q)= \begin{cases}f(q) s(q) & \text { for } q \in U \\ 0 & \text { for } q \notin U\end{cases}
$$

On U the section \bar{s} is clearly C^{∞} for it is the product of a C^{∞} function f and a C^{∞} section s.

If $p \notin U$, then $p \notin \operatorname{supp} f$. Since $\operatorname{supp} f$ is a closed set, there is a neighborhood V of p contained in its complement $M \backslash \operatorname{supp} f$. On V the section \bar{s} is identically zero. Hence, \bar{s} is C^{∞} at p. This proves that \bar{s} is C^{∞} on M.

On W, since $f \equiv 1$, the section \bar{s} agrees with s.

7.4 Local Operators

In this section, E and F are C^{∞} vector bundles over a manifold M, and \mathcal{F} is the ring $C^{\infty}(M)$ of C^{∞} functions on M.

Definition 7.14. Let E and F be vector bundles over a manifold M. An \mathbb{R}-linear map $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is a local operator if whenever a section $s \in \Gamma(E)$ vanishes on an open set U in M, then $\alpha(s) \in \Gamma(F)$ also vanishes on U. It is a point operator if whenever a section $s \in \Gamma(E)$ vanishes at a point p in M, then $\alpha(s) \in \Gamma(F)$ also vanishes at p.

Example 7.15. By Example 7.9, the vector space $C^{\infty}(\mathbb{R})$ of C^{∞} functions on \mathbb{R} may be identified with the vector space $\Gamma(\mathbb{R} \times \mathbb{R})$ of C^{∞} sections of the product line bundle over \mathbb{R}. The derivative

$$
\frac{d}{d t}: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})
$$

is a local operator since if $f(t) \equiv 0$ on U, then $f^{\prime}(t) \equiv 0$ on U. However, $d / d t$ is not a point operator.

Fig. 7.4. The product $f s$ of a bump function f and a section s is zero.

Example 7.16. Let $\Omega^{k}(M)$ denote the vector space of $C^{\infty} k$-forms on a manifold M. Then the exterior derivative $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is a local operator.

Proposition 7.17. Let E and F be C^{∞} vector bundles over a manifold M, and $\mathcal{F}=C^{\infty}(M)$. If a map $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is \mathcal{F}-linear, then it is a local operator.

Proof. Suppose the section $s \in \Gamma(E)$ vanishes on the open set U. Let $p \in U$ and let f be a C^{∞} bump function such that $f(p)=1$ and $\operatorname{supp} f \subset U$ (Figure 7.3). Then $f s \in \Gamma(E)$ and $f s \equiv 0$ on M (Figure 7.4). So $\alpha(f s) \equiv 0$. By FF-linearity,

$$
0=\alpha(f s)=f \alpha(s)
$$

Evaluating at p gives $\alpha(s)(p)=0$. Since p is an arbitrary point of $U, \alpha(s) \equiv 0$ on U.

Example 7.18. On a C^{∞} manifold M, a derivation $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is \mathbb{R}-linear, but not \mathcal{F}-linear since by the Leibniz rule,

$$
D(f g)=(D f) g+f D g, \quad \text { for } f, g \in \mathcal{F}
$$

However, by Problem 7.1, D is a local operator.
Example 7.19. Fix a C^{∞} vector field $X \in \mathfrak{X}(M)$. Then a connection ∇ on M induces a map

$$
\nabla_{X}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

that satisfies the Leibniz rule. By Problem 7.2, ∇_{X} is a local operator.

7.5 Restriction of a Local Operator to an Open Subset

A continuous global section of a vector bundle can always be restricted to an open subset, but in general a section over an open subset cannot be extended to a continuous global section. For example, the tangent function defined on the open interval $(-\pi / 2, \pi / 2)$ cannot be extended to a continuous function on the real line. Nonetheless, a local operator, which is defined on global sections of a vector bundle, can always be restricted to an open subset.

Theorem 7.20. Let E and F be vector bundles over a manifold M. If $\alpha: \Gamma(E) \rightarrow$ $\Gamma(F)$ is a local operator, then for each open subset U of M there is a unique linear map, called the restriction of α to U,

$$
\alpha_{U}: \Gamma(U, E) \rightarrow \Gamma(U, F)
$$

such that for any global section $t \in \Gamma(E)$,

$$
\begin{equation*}
\alpha_{U}\left(\left.t\right|_{U}\right)=\left.\alpha(t)\right|_{U} \tag{7.1}
\end{equation*}
$$

Proof. Let $s \in \Gamma(U, E)$ and $p \in U$. By Proposition 7.13, there exists a global section \bar{s} of E that agrees with s in some neighborhood W of p in U. We define $\alpha_{U}(s)(p)$ using (7.1):

$$
\alpha_{U}(s)(p)=\alpha(\bar{s})(p)
$$

Suppose $\tilde{s} \in \Gamma(E)$ is another global section that agrees with s in the neighborhood W of p. Then $\bar{s}=\tilde{s}$ in W. Since α is a local operator, $\alpha(\bar{s})=\alpha(\tilde{s})$ on W. Hence, $\alpha(\bar{s})(p)=\alpha(\tilde{s})(p)$. This shows that $\alpha_{U}(s)(p)$ is independent of the choice of \bar{s}, so α_{U} is well defined and unique. Fix $p \in U$. If $s \in \Gamma(U, E)$ and $\bar{s} \in \Gamma(M, E)$ agree on a neighborhood W of p, then $\alpha_{U}(s)=\alpha(\bar{s})$ on W. Hence, $\alpha_{U}(s)$ is C^{∞} as a section of F.

If $t \in \Gamma(M, E)$ is a global section, then it is a global extension of its restriction $\left.t\right|_{U}$. Hence,

$$
\alpha_{U}\left(\left.t\right|_{U}\right)(p)=\alpha(t)(p)
$$

for all $p \in U$. This proves that $\alpha_{U}\left(\left.t\right|_{U}\right)=\left.\alpha(t)\right|_{U}$.
Proposition 7.21. Let E and F be C^{∞} vector bundles over a manifold M, let U be an open subset of M, and let $\mathcal{F}(U)=C^{\infty}(U)$, the ring of C^{∞} functions on U. If $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is \mathcal{F}-linear, then the restriction $\alpha_{U}: \Gamma(U, E) \rightarrow \Gamma(U, F)$ is $\mathcal{F}(U)$ linear.

Proof. Let $s \in \Gamma(U, E)$ and $f \in \mathcal{F}(U)$. Fix $p \in U$ and let \bar{s} and \bar{f} be global extensions of s and f that agree with s and f, respectively, on a neighborhood of p (Proposition 7.13). Then

$$
\begin{aligned}
\alpha_{U}(f s)(p) & =\alpha(\bar{f} \bar{s})(p) & & \left(\text { definition of } \alpha_{U}\right) \\
& =\bar{f}(p) \alpha(\bar{s})(p) & & (\mathcal{F} \text {-linearity of } \alpha) \\
& =f(p) \alpha_{U}(s)(p) & &
\end{aligned}
$$

Since p is an arbitrary point of U,

$$
\alpha_{U}(f s)=f \alpha_{U}(s)
$$

proving that α_{U} is $\mathcal{F}(U)$-linear.

7.6 Frames

A frame for a vector bundle E of rank r over an open set U is a collection of sections e_{1}, \ldots, e_{r} of E over U such that at each point $p \in U$, the elements $e_{1}(p), \ldots, e_{r}(p)$ form a basis for the fiber E_{p}.

Proposition 7.22. A C^{∞} vector bundle $\pi: E \rightarrow M$ is trivial if and only if it has a C^{∞} frame.

Proof. Suppose E is trivial, with C^{∞} trivialization

$$
\phi: E \rightarrow M \times \mathbb{R}^{r} .
$$

Let v_{1}, \ldots, v_{r} be the standard basis for \mathbb{R}^{r}. Then the elements $\left(p, v_{i}\right), i=1, \ldots, r$, form a basis for $\{p\} \times \mathbb{R}^{r}$ for each $p \in M$, and so the sections of E

$$
e_{i}(p)=\phi^{-1}\left(p, v_{i}\right), \quad i=1, \ldots, r
$$

provide a basis for E_{p} at each point $p \in M$.
Conversely, suppose e_{1}, \ldots, e_{r} is a frame for $E \rightarrow M$. Then every point $e \in E$ is a linear combination $e=\sum a^{i} e_{i}$. The map

$$
\phi(e)=\left(\pi(e), a^{1}, \ldots, a^{r}\right): E \rightarrow M \times \mathbb{R}^{r}
$$

is a bundle map with inverse

$$
\begin{aligned}
\psi: M \times \mathbb{R}^{r} & \rightarrow E, \\
\psi\left(p, a^{1}, \ldots, a^{r}\right) & =\sum a^{i}(p) e_{i}(p)
\end{aligned}
$$

It follows from this proposition that over any trivializing open set U of a vector bundle E, there is always a frame.

7.7 \mathcal{F}-Linearity and Bundle Maps

Throughout this subsection, E and F are C^{∞} vector bundles over a manifold M, and $\mathcal{F}=C^{\infty}(M)$ is the ring of C^{∞} real-valued functions on M. We will show that an \mathcal{F}-linear map $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ can be defined pointwise and therefore corresponds uniquely to a bundle map $E \rightarrow F$.

Lemma 7.23. An \mathcal{F}-linear map $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is a point operator.
Proof. We need to show that if $s \in \Gamma(E)$ vanishes at a point p in M, then $\alpha(s) \in \Gamma(F)$ also vanishes at p. Let U be an open neighborhood of p over which E is trivial. Thus, over U it is possible to find a frame e_{1}, \ldots, e_{r} for E. We write

$$
\left.s\right|_{U}=\sum a^{i} e_{i}, \quad a^{i} \in C^{\infty}(U)=\mathcal{F}(U)
$$

Because s vanishes at p, all $a^{i}(p)=0$. Since α is \mathcal{F}-linear, it is a local operator (Proposition 7.17) and by Theorem 7.20 its restriction $\alpha_{U}: \Gamma(U, E) \rightarrow \Gamma(U, F)$ is defined. Then

$$
\begin{array}{rlrl}
\alpha(s)(p) & =\alpha_{U}\left(\left.s\right|_{U}\right)(p) & & \text { (Theorem 7.20) } \tag{Theorem7.20}\\
& =\alpha_{U}\left(\sum a^{i} e_{i}\right)(p) & & \\
& =\left(\sum a^{i} \alpha_{U}\left(e_{i}\right)\right)(p) & \left(\alpha_{U} \text { is } \mathcal{F}(U)\right. \text {-linear (Proposition 7.21)) } \\
& =\sum a^{i}(p) \alpha_{U}\left(e_{i}\right)(p)=0 . &
\end{array}
$$

Lemma 7.24. Let E and F be C^{∞} vector bundles over a manifold M. A fiberpreserving map $\varphi: E \rightarrow F$ that is linear on each fiber is C^{∞} if and only if $\varphi_{\#}$ takes C^{∞} sections of E to C^{∞} sections of F.

Proof. (\Rightarrow) If φ is C^{∞}, then $\varphi_{\#}(s)=\varphi \circ s$ clearly takes a C^{∞} section s of E to a C^{∞} section of F.
(\Leftarrow) Fix $p \in M$ and let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a chart about p over which E and F are both trivial. Let $e_{1}, \ldots, e_{r} \in \Gamma(E)$ be a frame for E over U. Likewise, let $f_{1}, \ldots, f_{m} \in \Gamma(F)$ be a frame for F over U. A point of $\left.E\right|_{U}$ can be written as a unique linear combination $\sum a^{j} e_{j}$. Suppose

$$
\varphi \circ e_{j}=\sum_{i} b_{j}^{i} f_{i}
$$

In this expression the b_{j}^{i} 's are C^{∞} functions on U, because by hypothesis $\varphi \circ e_{j}=$ $\varphi_{\#}\left(e_{j}\right)$ is a C^{∞} section of F. Then

$$
\varphi \circ\left(\sum_{j} a^{j} e_{j}\right)=\sum_{i, j} a^{j} b_{j}^{i} f_{i} .
$$

One can take local coordinates on $\left.E\right|_{U}$ to be $\left(x^{1}, \ldots, x^{n}, a^{1}, \ldots, a^{r}\right)$. In terms of these local coordinates,

$$
\varphi\left(x^{1}, \ldots, x^{n}, a^{1}, \ldots, a^{r}\right)=\left(x^{1}, \ldots, x^{n}, \sum_{j} a^{j} b_{j}^{1}, \ldots, \sum_{j} a^{j} b_{j}^{m}\right)
$$

which is a C^{∞} map.
Proposition 7.25. If $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is \mathcal{F}-linear, then for each $p \in M$, there is a unique linear map $\varphi_{p}: E_{p} \rightarrow F_{p}$ such that for all $s \in \Gamma(E)$,

$$
\varphi_{p}(s(p))=\alpha(s)(p)
$$

Proof. Given $e \in E_{p}$, to define $\varphi_{p}(e)$, choose any section $s \in \Gamma(E)$ such that $s(p)=e$ (Problem 7.4) and define

$$
\varphi_{p}(e)=\alpha(s)(p) \in F_{p}
$$

This definition is independent of the choice of the section s, because if s^{\prime} is another section of E with $s^{\prime}(p)=e$, then $\left(s-s^{\prime}\right)(p)=0$ and so by Lemma 7.23, we have $\alpha\left(s-s^{\prime}\right)(p)=0$, i.e.,

$$
\alpha(s)(p)=\alpha\left(s^{\prime}\right)(p)
$$

Let us show that $\varphi_{p}: E_{p} \rightarrow F_{p}$ is linear. Suppose $e_{1}, e_{2} \in E_{p}$ and $a_{1}, a_{2} \in \mathbb{R}$. Let s_{1}, s_{2} be global sections of E such that $s_{i}(p)=e_{i}$. Then $\left(a_{1} s_{1}+a_{2} s_{2}\right)(p)=$ $a_{1} e_{1}+a_{2} e_{2}$, so

$$
\begin{aligned}
\varphi_{p}\left(a_{1} e_{1}+a_{2} e_{2}\right) & =\alpha\left(a_{1} s_{1}+a_{2} s_{2}\right)(p) \\
& =a_{1} \alpha\left(s_{1}\right)(p)+a_{2} \alpha\left(s_{2}\right)(p) \\
& =a_{1} \varphi_{p}\left(e_{1}\right)+a_{2} \varphi_{p}\left(e_{2}\right)
\end{aligned}
$$

Theorem 7.26. There is a one-to-one correspondence

$$
\{\text { bundle maps } \varphi: E \rightarrow F\} \longleftrightarrow\{\mathcal{F} \text {-linear maps } \alpha: \Gamma(E) \rightarrow \Gamma(F)\},
$$

$$
\varphi \longmapsto \varphi_{\#} .
$$

Proof. We first show surjectivity. Suppose $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is \mathcal{F}-linear. By the preceding proposition, for each $p \in M$ there is a linear map $\varphi_{p}: E_{p} \rightarrow F_{p}$ such that for any $s \in \Gamma(E)$,

$$
\varphi_{p}(s(p))=\alpha(s)(p)
$$

Define $\varphi: E \rightarrow F$ by $\varphi(e)=\varphi_{p}(e)$ if $e \in E_{p}$.
For any $s \in \Gamma(E)$ and for every $p \in M$,

$$
\left(\varphi_{\#}(s)\right)(p)=\varphi(s(p))=\alpha(s)(p),
$$

which shows that $\alpha=\varphi_{\#}$. Since $\varphi_{\#}$ takes C^{∞} sections of E to C^{∞} sections of F, by Lemma 7.24 the map $\varphi: E \rightarrow F$ is C^{∞}. Thus, φ is a bundle map.

Next we prove the injectivity of the correspondence. Suppose $\varphi, \psi: E \rightarrow F$ are two bundle maps such that $\varphi_{\#}=\psi_{\#}: \Gamma(E) \rightarrow \Gamma(F)$. For any $e \in E_{p}$, choose a section $s \in \Gamma(E)$ such that $s(p)=e$. Then

$$
\begin{aligned}
\varphi(e) & =\varphi(s(p))=\left(\varphi_{\#}(s)\right)(p)=\left(\psi_{\#}(s)\right)(p) \\
& =(\psi \circ s)(p)=\psi(e) .
\end{aligned}
$$

Hence, $\varphi=\psi$.
Corollary 7.27. An \mathcal{F}-linear map $\omega: \mathfrak{X}(M) \rightarrow C^{\infty}(M)$ is a C^{∞} 1-form on M.
Proof. By Proposition 7.25, one can define for each $p \in M$, a linear map $\omega_{p}: T_{p} M \rightarrow$ \mathbb{R} such that for all $X \in \mathfrak{X}(M)$,

$$
\omega_{p}\left(X_{p}\right)=\omega(X)(p)
$$

This shows that ω is a 1 -form on M.
For every C^{∞} vector field X on $M, \omega(X)$ is a C^{∞} function on M. This shows that as a 1 -form, ω is C^{∞}.

7.8 Multilinear Maps over Smooth Functions

By Proposition 7.25, if $\alpha: \Gamma(E) \rightarrow \Gamma(F)$ is an \mathcal{F}-linear map of sections of vector bundles over M, then at each $p \in M$, it is possible to define a linear map $\varphi_{p}: E_{p} \rightarrow F_{p}$ such that for any $s \in \Gamma(E)$,

$$
\varphi_{p}(s(p))=\alpha(s)(p)
$$

This can be generalized to \mathcal{F}-multilinear maps.
Proposition 7.28. Let E, E^{\prime}, F be vector bundles over a manifold M. If

$$
\alpha: \Gamma(E) \times \Gamma\left(E^{\prime}\right) \rightarrow \Gamma(F)
$$

is \mathcal{F}-bilinear, then for each $p \in M$ there is a unique \mathbb{R}-bilinear map

$$
\varphi_{p}: E_{p} \times E_{p}^{\prime} \rightarrow F_{p}
$$

such that for all $s \in \Gamma(E)$ and $s^{\prime} \in \Gamma\left(E^{\prime}\right)$,

$$
\varphi_{p}\left(s(p), s^{\prime}(p)\right)=\left(\alpha\left(s, s^{\prime}\right)\right)(p)
$$

Since the proof is similar to that of Proposition 7.25, we leave it as an exercise.
Of course, Proposition 7.28 generalizes to \mathcal{F}-linear maps with k arguments. Just as in Corollary 7.27, we conclude that if an alternating map

$$
\omega: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)(k \text { times }) \rightarrow C^{\infty}(M)
$$

is \mathcal{F}-linear in each argument, then ω induces a k-form $\tilde{\omega}$ on M such that for $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$,

$$
\tilde{\omega}_{p}\left(X_{1, p}, \ldots, X_{k, p}\right)=\left(\omega\left(X_{1}, \ldots, X_{k}\right)\right)(p) .
$$

It is customary to write the k-form $\tilde{\omega}$ as ω.

Problems

7.1. Derivations are local operators

Let M be a smooth manifold. Show that a derivation $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a local operator.

7.2. The Leibniz rule and local operators

Let $\pi: E \rightarrow M$ be a vector bundle and let $X \in \mathfrak{X}(M)$. A map $\alpha_{X}: \Gamma(E) \rightarrow \Gamma(E)$ satisfies the Leibniz rule if for any $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$,

$$
\alpha_{X}(f s)=(X f) s+f \alpha_{X}(s)
$$

Such a map α_{X} is of course not \mathcal{F}-linear, but show that it is a local operator.

7.3. The Lie bracket and the Leibniz rule

Let X be a smooth vector field on a smooth manifold M. Define a linear map $\alpha_{X}: \mathfrak{X}(M) \rightarrow$ $\mathfrak{X}(M)$ by $\alpha_{X}(Y)=[X, Y]$. Show that α_{X} satisfies the Leibniz rule.

7.4. Section with a prescribed value

Suppose $\pi: E \rightarrow M$ is a C^{∞} vector bundle. Let $p \in M$ and $e \in E_{p}$. Show that E has a C^{∞} section s with $s(p)=e$.

7.5. Coefficients relative to a frame

Suppose the vector bundle $\pi: E \rightarrow M$ has a C^{∞} global frame e_{1}, \ldots, e_{k}. Then every point v in E can be written uniquely in the form $\sum a^{j}(v) e_{j}$. Prove that the functions $a^{j}: E \rightarrow \mathbb{R}$ are C^{∞}.

7.6. F-bilinear maps

Prove Proposition 7.28.

§8 Gauss's Theorema Egregium

For a surface in \mathbb{R}^{3} we defined its Gaussian curvature K at a point p by taking normal sections of the surface, finding the maximum κ_{1} and the minimum κ_{2} of the curvature of the normal sections, and setting K to be the product of κ_{1} and κ_{2}. So defined, the Gaussian curvature evidently depends on how the surface is isometrically embedded in \mathbb{R}^{3}.

On the other hand, an abstract Riemannian manifold has a unique Riemannian connection. The curvature tensor $R(X, Y)$ of the Riemannian connection is then completely determined by the Riemannian metric and so is an intrinsic invariant of the Riemannian manifold, independent of any embedding. We think of a surface in \mathbb{R}^{3} as a particular isometric embedding of an abstract Riemannian manifold of dimension 2. For example, both a plane and a cylinder are locally isometric embeddings of the same abstract surface, as one sees by simply bending a piece of paper. We will show in this chapter that the Gaussian curvature of a surface in \mathbb{R}^{3} is expressible in terms of the curvature tensor $R(X, Y)$ and the metric. Hence, it too depends only on the metric, not on the particular embedding into \mathbb{R}^{3}.

8.1 The Gauss and Codazzi-Mainardi Equations

Suppose M is a regular submanifold of \mathbb{R}^{n}. For X a tangent vector field on M and Z a vector field along M in \mathbb{R}^{n}, we defined in Section 4.5 the directional derivative $D_{X} Z$. It is a vector field along M in \mathbb{R}^{n}.

For $X, Y \in \mathfrak{X}(M)$ and $Z \in \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)$, we verified in Proposition 4.10 the equation

$$
\begin{equation*}
R(X, Y) Z:=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z=0 . \tag{8.1}
\end{equation*}
$$

Note that this is not the same curvature operator as the curvature operator of the directional derivative on \mathbb{R}^{n}. The earlier curvature operator was a map

$$
R: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{n}\right) ;
$$

the current curvature operator is a map

$$
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}\left(T \mathbb{R}^{n} \mid M\right) \rightarrow \mathfrak{X}\left(T \mathbb{R}^{n} \mid M\right) .
$$

Since the Riemannian connection ∇ of a surface M in \mathbb{R}^{3} is defined in terms of the directional derivative D on M, it is easy to compare the curvature tensors of ∇ and D. This will lead to a formula for the curvature R of ∇, called the Gauss curvature equation.

A vector field $Y \in \mathfrak{X}(M)$ is also a vector field along M in \mathbb{R}^{3}. Hence, if $X, Y \in$ $\mathfrak{X}(M)$, the directional derivative $D_{X} Y$ makes sense. Assume that M is oriented with a unit normal vector field N. At any point $p \in M$, the normal component of the vector $D_{X_{p}} Y$ is $\left\langle D_{X_{p}} Y, N_{p}\right\rangle N_{p}$, and therefore the tangent component is

$$
\operatorname{pr}\left(D_{X_{p}} Y\right)=D_{X_{p}} Y-\left\langle D_{X_{p}} Y, N_{p}\right\rangle N_{p} .
$$

By (6.9), this is the definition of the Riemannian connection $\nabla_{X_{p}} Y$ on M. Hence,

$$
\begin{align*}
D_{X_{p}} Y & =\nabla_{X_{p}} Y+\left\langle D_{X_{p}} Y, N_{p}\right\rangle N_{p} \\
& =\nabla_{X_{p}} Y+\left\langle L_{p}\left(X_{p}\right), Y_{p}\right\rangle N_{p} \quad(\text { by Lemma } 5.2) . \tag{8.2}
\end{align*}
$$

Globalizing this equation, we have, for $X, Y \in \mathfrak{X}(M)$,

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y+\langle L(X), Y\rangle N, \tag{8.3}
\end{equation*}
$$

which decomposes the vector field $D_{X} Y$ into its tangential and normal components.
Theorem 8.1. Let M be an oriented surface in \mathbb{R}^{3}, ∇ its Riemannian connection, R the curvature operator of ∇, and L the shape operator on M. For $X, Y, Z \in \mathfrak{X}(M)$,
(i) (Gauss curvature equation)

$$
R(X, Y) Z=\langle L(Y), Z\rangle L(X)-\langle L(X), Z\rangle L(Y)
$$

(ii) (Codazzi-Mainardi equation)

$$
\nabla_{X} L(Y)-\nabla_{Y} L(X)-L([X, Y])=0
$$

Proof. (i) Decomposing $D_{Y} Z$ into its tangential and normal components, one has

$$
\begin{align*}
D_{Y} Z & =\left(D_{Y} Z\right)_{\tan }+\left(D_{Y} Z\right)_{\text {nor }} \\
& =\nabla_{Y} Z+\langle L(Y), Z\rangle N . \tag{8.4}
\end{align*}
$$

Hence,

$$
\begin{align*}
D_{X} D_{Y} Z= & D_{X} \nabla_{Y} Z+D_{X}(\langle L(Y), Z\rangle N) \\
= & \nabla_{X} \nabla_{Y} Z+\left\langle L(X), \nabla_{Y} Z\right) N+X\langle L(Y), Z\rangle N+\langle L(Y), Z\rangle D_{X} N . \\
& \quad \quad \quad \text { by (8.4) and Leibniz rule) } \\
= & \nabla_{X} \nabla_{Y} Z-\langle L(X), Z\rangle L(X)+\left\langle L(X), \nabla_{Y} Z\right\rangle N+X\langle L(Y), Z\rangle N . \tag{8.5}
\end{align*}
$$

Interchanging X and Y gives

$$
\begin{equation*}
D_{Y} D_{x} Z=\nabla_{Y} \nabla_{X} Z-\langle L(X), Z\rangle L(Y)+\left\langle L(Y), \nabla_{X} Z\right\rangle N+Y\langle L(X), Z\rangle N . \tag{8.6}
\end{equation*}
$$

By (8.4),

$$
\begin{equation*}
D_{[X, Y]} Z=\nabla_{[X, Y]} Z+\langle L([X, Y]), Z\rangle N . \tag{8.7}
\end{equation*}
$$

Subtracting (8.6) and (8.7) from (8.5) gives

$$
\begin{align*}
0=R_{D}(X, Y) Z= & R(X, Y) Z-\langle L(Y), Z\rangle L(X)+\langle L(X), Z\rangle L(Y) \\
& + \text { normal component. } \tag{8.8}
\end{align*}
$$

The tangential component of (8.8) gives

$$
R(X, Y)=\langle L(Y), Z\rangle L(X)-\langle L(X), Z\rangle L(Y)
$$

which is the Gauss curvature equation.
(ii) The normal component of (8.8) is

$$
\begin{aligned}
& \left(\left\langle L(X), \nabla_{Y} Z\right\rangle+X\langle L(Y), Z\rangle\right. \\
- & \left.\left\langle L(Y), \nabla_{X} Z\right\rangle-Y\langle L(X), Z\rangle-\langle L([X, Y]), Z\rangle\right) N=0 .
\end{aligned}
$$

By the compatibility of ∇ with the metric, this simplifies to

$$
\left\langle\nabla_{X} L(Y), Z\right\rangle-\left\langle\nabla_{Y} L(X), Z\right\rangle-\langle L([X, Y]), Z\rangle=0 .
$$

Since the equation above is true for all Z, by the nondegeneracy of the inner product,

$$
\nabla_{X} L(Y)-\nabla_{Y} L(X)-L([X, Y])=0
$$

Remark 8.2. By the generalization of Proposition 7.28 to \mathcal{F}-trilinear maps, because $R(X, Y) Z$ is \mathcal{F}-trilinear in X, Y, and Z, for each $p \in M$, there is a unique \mathbb{R}-trilinear map

$$
R_{p}: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M
$$

such that $R_{p}\left(X_{p}, Y_{p}\right) Z_{p}=(R(X, Y) Z)_{p}$. Thus, although we have stated the Gauss curvature equation for vector fields, it is also true for vectors $X_{p}, Y_{p}, Z_{p} \in T_{p} M$ at a point p.

8.2 A Proof of the Theorema Egregium

Suppose for every Riemannian manifold M, there is defined a function $f_{M}: M \rightarrow \mathbb{R}$. The function f_{M} is said to be an isometric invariant if for every isometry $\varphi: M \rightarrow \tilde{M}$ of Riemannian manifolds, we have $f_{M}(p)=f_{\tilde{M}}(\varphi(p))$ for all $p \in M$.
Theorem 8.3 (Theorema Egregium). Let M be a surface in \mathbb{R}^{3} and p a point in M.
(i) If e_{1}, e_{2} is an orthonormal basis for the tangent plane $T_{p} M$, then the Gaussian curvature K_{p} of M at p is

$$
\begin{equation*}
K_{p}=\left\langle R_{p}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle . \tag{8.9}
\end{equation*}
$$

(ii) The Gaussian curvature is an isometric invariant of smooth surfaces in \mathbb{R}^{3}.

Proof. (i) In Corollary 5.7 we found a formula for the Gaussian curvature K_{p} in terms of the shape operator L and an orthonormal basis e_{1}, e_{2} for $T_{p} M$:

$$
K_{p}=\left\langle L\left(e_{1}\right), e_{1}\right\rangle\left\langle L\left(e_{2}\right), e_{2}\right\rangle-\left\langle L\left(e_{1}\right), e_{2}\right\rangle\left\langle L\left(e_{2}\right), e_{1}\right\rangle
$$

By the Gauss curvature equation,

$$
R_{p}\left(e_{1}, e_{2}\right) e_{2}=\left\langle L\left(e_{2}\right), e_{2}\right\rangle L\left(e_{1}\right)-\left\langle L\left(e_{1}\right), e_{2}\right\rangle L\left(e_{2}\right)
$$

Taking the inner product with e_{1} gives

$$
\begin{aligned}
\left\langle R_{p}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle & =\left\langle L\left(e_{2}\right), e_{2}\right\rangle\left\langle L\left(e_{1}\right), e_{1}\right\rangle-\left\langle L\left(e_{1}\right), e_{2}\right\rangle\left\langle L\left(e_{2}\right), e_{1}\right\rangle \\
& =K_{p} .
\end{aligned}
$$

(ii) Since $R_{p}\left(e_{1}, e_{2}\right)$ is determined completely by the metric, by Formula (8.9) the same can be said of K_{p}. A detailed proof is left to Problem 8.3.

Gauss's Theorema Egregium has some practical implications. For example, since a sphere and a plane have different Gaussian curvatures, it is not possible to map any open subset of the sphere isometrically to an open subset of the plane. Since the earth is spherical, this proves the impossibility of making a truly accurate map of any region of the earth, no matter how small.

8.3 The Gaussian Curvature in Terms of an Arbitrary Basis

The Theorema Egregium gives a formula for the Gaussian curvature of a surface in terms of an orthonormal basis for the tangent plane at a point. From it, one can derive a formula for the Gaussian curvature in terms of an arbitrary basis.

Proposition 8.4. Let M be a smooth surface in \mathbb{R}^{3} and $p \in M$. If u, v is any basis for the tangent plane $T_{p} M$, then the Gaussian curvature at p is

$$
K_{p}=\frac{\left\langle R_{p}(u, v) v, u\right\rangle}{\langle u, u\rangle\langle v, v\rangle-\langle u, v\rangle^{2}} .
$$

Proof. Let e_{1}, e_{2} be an orthonormal basis for $T_{p} M$ and suppose

$$
\begin{aligned}
& u=a e_{1}+b e_{2}, \\
& v=c e_{1}+d e_{2} .
\end{aligned}
$$

By the skew-symmetry of the curvature tensor,

$$
R_{p}(u, v)=(a d-b c) R_{p}\left(e_{1}, e_{2}\right)
$$

so that

$$
\left\langle R_{p}(u, v) v, u\right\rangle=(a d-b c)^{2}\left\langle R_{p}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle
$$

On the other hand,

$$
\begin{aligned}
& \langle u, u\rangle\langle v, v\rangle-\langle u, v\rangle^{2} \\
& \quad=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2}=(a d-b c)^{2}
\end{aligned}
$$

Hence,

$$
K_{p}=\left\langle R_{p}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle=\frac{\left\langle R_{p}(u, v) v, u\right\rangle}{\langle u, u\rangle\langle v, v\rangle-\langle u, v\rangle^{2}} .
$$

Problems

8.1. Affine connection under a diffeomorphism

A diffeomorphism $\varphi: M \rightarrow \tilde{M}$ of smooth manifolds induces an isomorphism

$$
\varphi_{*}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(\tilde{M})
$$

of their Lie algebras of vector fields. (In particular, $\varphi_{*}([X, Y])=\left[\varphi_{*} X, \varphi_{*} Y\right]$.) Suppose \tilde{M} has an affine connection $\tilde{\nabla}$. For $X, Y \in \mathfrak{X}(M)$, define the vector field $\nabla_{X} Y \in \mathfrak{X}(M)$ by

$$
\varphi_{*}\left(\nabla_{X} Y\right)=\tilde{\nabla}_{\varphi_{*} X}\left(\varphi_{*} Y\right) .
$$

(a) Show that for all $f \in C^{\infty}(M), \varphi_{*}(f X)=\left(f \circ \varphi^{-1}\right) \varphi_{*} X$.
(b) Show that $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is an affine connection on M.

8.2. Riemannian connection and curvature under an isometry

(a) Now suppose that $\varphi: M \rightarrow \tilde{M}$ is an isometry of Riemannian manifolds. Show that if $\tilde{\nabla}$ is the Riemannian connection on \tilde{M}, then the connection defined in Problem 8.1 is the Riemannian connection on M.
(b) Let R and \tilde{R} be the curvature tensors of ∇ and $\tilde{\nabla}$, respectively. Show that for all X, Y, $Z \in \mathfrak{X}(M)$,

$$
\varphi_{*}(R(X, Y) Z)=\tilde{R}\left(\varphi_{*} X, \varphi_{*} Y\right) \varphi_{*} Z
$$

8.3. Gaussian curvature is an isometric invariant

Suppose $\varphi: M \rightarrow \tilde{M}$ is an isometry of smooth surfaces in \mathbb{R}^{3}. Show that the Gaussian curvature of M at a point $p \in M$ is equal to the Gaussian curvature \tilde{K} of \tilde{M} at $\varphi(p): K_{p}=\tilde{K}_{\varphi(p)}$.

$\oint 9$ Generalizations to Hypersurfaces in \mathbb{R}^{n+1}

Much of what we have done for surfaces in \mathbb{R}^{3} in the preceding sections generalizes readily to higher dimensions. We now carry this out.

9.1 The Shape Operator of a Hypersurface

A hypersurface M in \mathbb{R}^{n+1} is a submanifold of codimension 1. Although all of our hypersurfaces are by definition smooth, sometimes for emphasis we adopt the redundant locution "smooth hypersurface." Assume that there is a smooth unit normal vector field N on M; note that this is always possible locally on any hypersurface. By Proposition 4.3 we know that the directional derivative D on \mathbb{R}^{n+1} is the Riemannian connection of \mathbb{R}^{n+1}.

For any point $p \in M$ and tangent vector $X_{p} \in T_{p} M$, since $\langle N, N\rangle \equiv 1$,

$$
0=X_{p}\langle N, N\rangle=2\left\langle D_{X_{p}} N, N\right\rangle .
$$

Therefore, $D_{X_{p}} N$ is tangent to M. The shape operator $L_{p}: T_{p} M \rightarrow T_{p} M$ is defined to be

$$
L_{p}\left(X_{p}\right)=-D_{X_{p}} N \quad \text { for } X_{p} \in T_{p} M
$$

Recall that $\mathfrak{X}(M)$ is the vector space of C^{∞} vector fields and $\mathcal{F}=C^{\infty}(M)$ the ring of C^{∞} functions on M. As the point p varies over M, the shape operator globalizes to an \mathcal{F}-linear map $L: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ given by $L(X)_{p}=L_{p}\left(X_{p}\right)$.
Proposition 9.1. Let $X, Y \in \mathfrak{X}(M)$ be C^{∞} vector fields on an oriented hypersurface M in \mathbb{R}^{n+1}. Then
(i) $\langle L(X), Y\rangle=\left\langle D_{X} Y, N\right\rangle$.
(ii) the shape operator is self-adjoint with respect to the Euclidean metric inherited from \mathbb{R}^{n+1} :

$$
\langle L(X), Y\rangle=\langle X, L(Y)\rangle
$$

Proof. Since $\langle Y, N\rangle=0$, by the compatibility of D with the metric,

$$
0=X\langle Y, N\rangle=\left\langle D_{X} Y, N\right\rangle+\left\langle Y, D_{X} N\right\rangle .
$$

Hence,

$$
\begin{equation*}
\left\langle D_{X} Y, N\right\rangle=\left\langle Y,-D_{X} N\right\rangle=\langle Y, L(X)\rangle . \tag{9.1}
\end{equation*}
$$

Reversing the roles of X and Y gives

$$
\begin{equation*}
\left\langle D_{Y} X, N\right\rangle=\langle X, L(Y)\rangle . \tag{9.2}
\end{equation*}
$$

Since $[X, Y]$ is tangent to M,

$$
\begin{equation*}
\langle[X, Y], N\rangle=0 \tag{9.3}
\end{equation*}
$$

By torsion-freeness, subtracting (9.2) and (9.3) from (9.1) gives

$$
0=\left\langle D_{X} Y-D_{Y} X-[X, Y], N\right\rangle=\langle Y, L(X)\rangle-\langle X, L(Y)\rangle .
$$

Since the shape operator $L_{p}: T_{p} M \rightarrow T_{p} M$ is self-adjoint, all of its eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are real. These are the principal curvatures of the hypersurface M at p. We define the mean curvature of M at p to be the average of the principal curvatures:

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}=\frac{1}{n} \operatorname{tr}\left(L_{p}\right),
$$

and the Gaussian curvature at p to be the determinant of the shape operator:

$$
K(p)=\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}\left(L_{p}\right) .
$$

9.2 The Riemannian Connection of a Hypersurface

We learned earlier that the unique Riemannian connection of \mathbb{R}^{n+1} is the directional derivative D.

Theorem 9.2. Let M be a smooth hypersurface in \mathbb{R}^{n+1} and D the directional derivative on \mathbb{R}^{n+1}. For $X, Y \in \mathfrak{X}(M)$, the tangential component of $D_{X} Y$ defines the Riemannian connection ∇ of M :

$$
\nabla_{X} Y=\left(D_{X} Y\right)_{\tan } .
$$

Proof. Since it is evident that ∇ satisfies the two defining properties of a connection, it suffices to check that $\nabla_{X} Y$ is torsion-free and compatible with the metric.

1) Torsion-freeness: Let T_{D} and T_{∇} be the torsions of D and ∇, respectively. By definition, for $X, Y \in \mathfrak{X}(M)$,

$$
\begin{align*}
& D_{X} Y=\nabla_{X} Y+\left(D_{X} Y\right)_{\mathrm{nor}}, \tag{9.4}\\
& D_{Y} X=\nabla_{Y} X+\left(D_{Y} X\right)_{\mathrm{nor}} . \tag{9.5}
\end{align*}
$$

Since D is torsion-free,

$$
D_{X} Y-D_{Y} X=[X, Y] .
$$

Equating the normal components of both sides, we get $\left(D_{X} Y\right)_{\text {nor }}-\left(D_{Y} X\right)_{\text {nor }}=0$. Therefore, by (9.4) and (9.5),

$$
\begin{aligned}
0=T_{D}(X, Y) & =D_{X} Y-D_{Y} X-[X, Y] \\
& =\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)+\left(D_{X} Y\right)_{\text {nor }}-\left(D_{Y} X\right)_{\text {nor }} \\
& =\nabla_{X} Y-\nabla_{Y} X-[X, Y]=T_{\nabla}(X, Y) .
\end{aligned}
$$

2) Compatibility with the metric: For $X, Y, Z \in \mathfrak{X}(M)$,

$$
\begin{aligned}
X\langle Y, Z\rangle & =\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle \\
& =\left\langle\nabla_{X} Y+\left(D_{X} Y\right)_{\mathrm{nor}} Z\right\rangle+\left\langle Y, \nabla_{X} Z+\left(\nabla_{X} Y\right)_{\mathrm{nor}}\right\rangle \\
& =\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle .
\end{aligned}
$$

Therefore, $\nabla_{X} Y$ is the Riemannian connection on E.

9.3 The Second Fundamental Form

At each point p of an oriented hypersurface $M \subset \mathbb{R}^{n+1}$, there is a sequence of symmetric bilinear maps on $T_{p} M$, called the first, second, and third fundamental forms, and so on:

$$
\begin{aligned}
\mathrm{I}\left(X_{p}, Y_{p}\right) & =\left\langle X_{p}, Y_{p}\right\rangle, \\
\mathrm{II}\left(X_{p}, Y_{p}\right) & =\left\langle L\left(X_{p}\right), Y_{p}\right\rangle=\left\langle X_{p}, L\left(Y_{p}\right)\right\rangle, \\
\operatorname{III}\left(X_{p}, Y_{p}\right) & =\left\langle L^{2}\left(X_{p}\right), Y_{p}\right\rangle=\left\langle L\left(X_{p}\right), L\left(Y_{p}\right)\right\rangle=\left\langle X_{p}, L^{2}\left(Y_{p}\right)\right\rangle, \ldots .
\end{aligned}
$$

For $X, Y \in \mathfrak{X}(M)$, the directional derivative $D_{X} Y$ decomposes into the sum of a tangential component and a normal component. The tangential component $\left(D_{X} Y\right)_{\mathrm{tan}}$ is the Riemannian connection on M; the normal component $\left(D_{X} Y\right)_{\text {nor }}$ is essentially the second fundamental form.

Proposition 9.3. If N is a smooth unit normal vector field on the hypersurface M in \mathbb{R}^{n+1} and $X, Y \in \mathfrak{X}(M)$ are smooth vector fields on M, then

$$
\left(D_{X} Y\right)_{\text {nor }}=\mathrm{II}(X, Y) N
$$

Proof. The normal component $\left(D_{X} Y\right)_{\text {nor }}$ is a multiple of N, so

$$
\begin{aligned}
D_{X} Y & =\left(D_{X} Y\right)_{\tan }+\left(D_{X} Y\right)_{\text {nor }} \\
& =\nabla_{X} Y+\lambda N
\end{aligned}
$$

for some $\lambda \in \mathbb{R}$. Taking the inner product of both sides with N gives

$$
\left\langle D_{X} Y, N\right\rangle=\lambda\langle N, N\rangle=\lambda
$$

Hence,

$$
\begin{aligned}
\left(D_{X} Y\right)_{\text {nor }} & =\left\langle D_{X} Y, N\right\rangle N \\
& =\langle L(X), Y\rangle N \\
& =\operatorname{II}(\mathrm{X}, \mathrm{Y}) \mathrm{N} .
\end{aligned}
$$

9.4 The Gauss Curvature and Codazzi-Mainardi Equations

Let M be an oriented, smooth hypersurface in \mathbb{R}^{n+1}, with a smooth unit normal vector field N. The relation between the Riemannian connection D on \mathbb{R}^{n+1} and the Riemannian connection on M implies a relation between the curvature $R_{D}(X, Y) Z=0$ on \mathbb{R}^{n+1} and the curvature $R(X, Y) Z$ on M. The tangential component of this relation gives the Gauss curvature equation, and the normal component gives the CodazziMainardi equation.

Theorem 9.4. If M is an oriented, smooth hypersurface in \mathbb{R}^{n+1} and $X, Y, Z \in \mathfrak{X}(M)$, then
(i) (the Gauss curvature equation)

$$
R(X, Y)=\langle L(Y), Z\rangle L(X)-\langle L(X), Z\rangle L(Y)
$$

(ii) (the Codazzi-Mainardi equation)

$$
\nabla_{X} L(Y)-\nabla_{Y} L(X)-L([X, Y])=0
$$

Proof. The proof is identical to that of Theorem 8.1.
Corollary 9.5. If M is a smooth oriented hypersurface in \mathbb{R}^{n+1} with curvature R and $X, Y \in \mathfrak{X}(M)$, then

$$
\langle R(X, Y) Y, X\rangle=\mathrm{II}(X, X) \operatorname{II}(Y, Y)-\mathrm{II}(X, Y)^{2} .
$$

Proof. By the Gauss curvature equation,

$$
\begin{aligned}
\langle R(X, Y) Y, X\rangle & =\langle L(Y), Y\rangle\langle L(X), X\rangle-\langle L(X), Y\rangle\langle L(Y), X\rangle \\
& =\mathrm{II}(X, X) \operatorname{II}(Y, Y)-\mathrm{II}(X, Y)^{2}
\end{aligned}
$$

When M is a surface in \mathbb{R}^{3} and X_{p} and Y_{p} form an orthonormal basis for $T_{p} M$, the quantity on the right of the corollary is the Gaussian curvature of the surface at p (see Corollary 5.7(ii) and Theorem 8.3(i)).

Chapter 2

Curvature and Differential Forms

In Chapter 1 we developed, in terms of vector fields, the classical theory of curvature for curves and surfaces in \mathbb{R}^{3}. There is a dual approach using differential forms. Differential forms arise naturally even if one is interested only in vector fields. For example, the coefficients of tangent vectors relative to a frame on an open set are differential 1 -forms on the open set. Differential forms are more supple than vector fields: they can be differentiated and multiplied, and they behave functorially under the pullback by a smooth map. In the 1920s and 30s Élie Cartan pioneered the use of differential forms in differential geometry [4], and these have proven to be tools of great power and versatility.

In this chapter, we redevelop the theory of connections and curvature in terms of differential forms. First, in Section 10 we generalize the notion of a connection from the tangent bundle to an arbitrary vector bundle. Then in Section 11 we show how to represent connections, curvature, and torsion by differential forms. Finally, in a demonstration of their utility, in Section 12 we use differential forms to reprove Gauss's Theorema Egregium.

$\S 10$ Connections on a Vector Bundle

The affine connection generalizes the directional derivative from \mathbb{R}^{n} to an arbitrary manifold, but does not include the case of the directional derivative of a vector field along a submanifold of \mathbb{R}^{n}. For that, we need the notion of a connection on a vector bundle. An affine connection on a manifold is simply a connection on the tangent bundle. Because of the asymmetry of the two arguments in a connection $\nabla_{X} s$ on a vector bundle, the torsion is no longer defined, but the curvature still makes sense.

We define a Riemannian metric on a vector bundle, so that a Riemannian metric on a manifold becomes a Riemannian metric on the tangent bundle. Compatibility of a connection with the metric again makes sense. However, the lack of a concept
of torsion means that it is no longer possible to single out a unique connection on a vector bundle such as the Riemannian connection on a Riemannian manifold.

A connection on a vector bundle turns out to be a local operator, and like all local operators, it restricts to any open subset (Theorem 7.20).

10.1 Connections on a Vector Bundle

Definition 10.1. Let $E \rightarrow M$ be a C^{∞} vector bundle over M. A connection on E is a map

$$
\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)
$$

such that for $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$,
(i) $\nabla_{X} s$ is \mathcal{F}-linear in X and \mathbb{R}-linear in s;
(ii) (Leibniz rule) if f is a C^{∞} function on M, then

$$
\nabla_{X}(f s)=(X f) s+f \nabla_{X} s
$$

Since $X f=(d f)(X)$, the Leibniz rule may be written as

$$
\nabla_{X}(f s)=(d f)(X) s+f \nabla_{X} s
$$

or, suppressing X,

$$
\nabla(f s)=d f \cdot s+f \nabla s
$$

Example. An affine connection on a manifold M is a connection on the tangent bundle $T M \rightarrow M$.

Example 10.2. Let M be a submanifold of \mathbb{R}^{n} and $E=\left.T \mathbb{R}^{n}\right|_{M}$ the restriction of the tangent bundle of \mathbb{R}^{n} to M. In Section 4.5, we defined the directional derivative

$$
D: \mathfrak{X}(M) \times \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) \rightarrow \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)
$$

By Proposition 4.9, it is a connection on the vector bundle $\left.T \mathbb{R}^{n}\right|_{M}$.
We say that a section $s \in \Gamma(E)$ is flat if $\nabla_{X} s=0$ for all $X \in \mathfrak{X}(M)$.
Example 10.3 (Induced connection on a trivial bundle). Let E be a trivial bundle of rank r over a manifold M. Thus, there is a bundle isomorphism $\phi: E \rightarrow M \times \mathbb{R}^{r}$, called a trivialization for E over M. The trivialization $\phi: E \xrightarrow{\sim} M \times \mathbb{R}^{r}$ induces a connection on E as follows. If v_{1}, \ldots, v_{r} is a basis for \mathbb{R}^{r}, then $s_{i}: p \mapsto\left(p, v_{i}\right)$, $i=1, \ldots, r$, define a global frame for the product bundle $M \times \mathbb{R}^{r}$ over M, and $e_{i}=\phi^{-1} \circ s_{i}, i=1, \ldots, r$, define a global frame for E over M :

So every section $s \in \Gamma(E)$ can be written uniquely as a linear combination

$$
s=\sum h^{i} e_{i}, \quad h^{i} \in \mathcal{F} .
$$

We can define a connection ∇ on E by declaring the sections e_{i} to be flat and applying the Leibniz rule and \mathbb{R}-linearity to define $\nabla_{X} s$:

$$
\begin{equation*}
\nabla_{X} s=\nabla_{X}\left(\sum h^{i} e_{i}\right)=\sum\left(X h^{i}\right) e_{i} . \tag{10.1}
\end{equation*}
$$

Exercise 10.4. Check that (10.1) defines a connection on the trivial bundle E.
The connection ∇ on a trivial bundle induced by a trivialization depends on the trivialization, for the flat sections for ∇ are precisely the sections of E corresponding to the constant sections of $M \times \mathbb{R}^{r}$ under the trivialization.

10.2 Existence of a Connection on a Vector Bundle

In Section 10.1 we defined a connection on a vector bundle and exhibited a connection on a trivial bundle. We will now show the existence of a connection on an arbitrary vector bundle.

Let ∇^{0} and ∇^{1} be two connections on a vector bundle E over M. By the Leibniz rule, for any vector field $X \in \mathfrak{X}(M)$, section $s \in \Gamma(E)$, and function $f \in C^{\infty}(M)$,

$$
\begin{align*}
\nabla_{X}^{0}(f s) & =(X f) s+f \nabla_{X}^{0} s \tag{10.2}\\
\nabla_{X}^{1}(f s) & =(X f) s+f \nabla_{X}^{1} s . \tag{10.3}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left(\nabla_{X}^{0}+\nabla_{X}^{1}\right)(f s)=2(X f) s+f\left(\nabla_{X}^{0}+\nabla_{X}^{1}\right) s \tag{10.4}
\end{equation*}
$$

Because of the extra factor of 2 in (10.4) the sum of two connections does not satisfy the Leibniz rule and so is not a connection. However, if we multiply (10.2) by $1-t$ and (10.3) by t, then $(1-t) \nabla_{X}^{0}+t \nabla_{X}^{1}$ satisfies the Leibniz rule. More generally, the same idea can be used to prove the following proposition.

Proposition 10.5. Any finite linear combination $\sum_{i} \nabla^{i}$ of connections ∇^{i} is a connection provided the coefficients add up to 1 , that is, $\sum t_{i}=1$.

A finite linear combination whose coefficients add up to 1 is called a convex linear combination. Using Proposition 10.5, we now prove the existence of a connection.

Theorem 10.6. Every C^{∞} vector bundle E over a manifold M has a connection.
Proof. Fix a trivializing open cover $\left\{U_{\alpha}\right\}$ for E and a partition of unity $\left\{\rho_{\alpha}\right\}$ subordinate to $\left\{U_{\alpha}\right\}$. On each U_{α}, the vector bundle $\left.E\right|_{U_{\alpha}}$ is trivial and so has a connection ∇^{α} by Example 10.3. For $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$, denote by s_{α} the restriction of s to U_{α} and define

$$
\nabla_{X} s=\sum \rho_{\alpha} \nabla_{X}^{\alpha} s_{\alpha}
$$

Although this looks like an infinite sum, it is in fact a finite sum in a neighborhood of each point p in M, for by the local finiteness of $\left\{\operatorname{supp} \rho_{\alpha}\right\}$, there is an open neighborhood U of p that intersects only finitely many of the sets $\operatorname{supp} \rho_{\alpha}$. This means that on U all except finitely many of the ρ_{α} 's are zero and so $\sum \rho_{\alpha} \nabla_{X}^{\alpha} s_{\alpha}$ is a finite sum on U with $\sum \rho_{\alpha}=1$.

By checking on the open set U, it is easy to show that $\nabla_{X} s$ is \mathcal{F}-linear in X, is \mathbb{R}-linear in s, and satisfies the Leibniz rule. Hence, ∇ is a connection on E.

Note the similarity of this proof to the proof for the existence of a Riemannian metric on a vector bundle (Theorem 10.8). For a linear combination of connections to be a connection, we require the coefficients to sum to 1 . On the other hand, for a linear combination of Riemannian metrics to be a Riemannian metric, the requirement is that all the coefficients be nonnegative with at least one coefficient positive.

10.3 Curvature of a Connection on a Vector Bundle

The concept of torsion does not make sense for a connection on an arbitrary vector bundle, but curvature still does. It is defined by the same formula as for an affine connection: for $X, Y \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$,

$$
R(X, Y) s=\nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} \in \Gamma(E)
$$

So R is an \mathbb{R}-multilinear map

$$
\mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E) .
$$

As before, $R(X, Y) s$ is \mathcal{F}-linear in all three arguments and so it is actually defined pointwise. Moreover, because $R_{p}\left(X_{p}, Y_{p}\right)$ is skew-symmetric in X_{p} and Y_{p}, at every point p there is an alternating bilinear map

$$
R_{p}: T_{p} M \times T_{p} M \rightarrow \operatorname{Hom}\left(E_{p}, E_{p}\right)=: \operatorname{End}\left(E_{p}\right)
$$

into the endomorphism ring of E_{p}. We call this map the curvature tensor of the connection ∇.

10.4 Riemannian Bundles

We can also generalize the notion of a Riemannian metric to vector bundles. Let $E \rightarrow M$ be a C^{∞} vector bundle over a manifold M. A Riemannian metric on E assigns to each $p \in M$ an inner product \langle,\rangle_{p} on the fiber E_{p}; the assignment is required to be C^{∞} in the following sense: if s and t are C^{∞} sections of E, then $\langle s, t\rangle$ is a C^{∞} function on M.

Thus, a Riemannian metric on a manifold M is simply a Riemannian metric on the tangent bundle $T M$. A vector bundle together with a Riemannian metric is called a Riemannian bundle .

Example 10.7. Let E be a trivial vector bundle of rank r over a manifold M, with trivialization $\phi: E \xrightarrow{\sim} M \times \mathbb{R}^{r}$. The Euclidean inner product $\langle,\rangle_{\mathbb{R}^{r}}$ on \mathbb{R}^{r} induces a Riemannian metric on E via the trivialization $\phi:$ if $u, v \in E_{p}$, then the fiber map $\phi_{p}: E_{p} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism and we define

$$
\langle u, v\rangle=\left\langle\phi_{p}(u), \phi_{p}(v)\right\rangle_{\mathbb{R}^{r}}
$$

It is easy to check that \langle,$\rangle is a Riemannian metric on E$.
The proof of Theorem 1.12 generalizes to prove the existence of a Riemannian metric on a vector bundle.

Theorem 10.8. On any C^{∞} vector bundle $\pi: E \rightarrow M$, there is a Riemannian metric.
Proof. Let $\left\{U_{\alpha}, \varphi_{\alpha}:\left.E\right|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{k}\right\}$ be a trivializing open cover for E. On $\left.E\right|_{U_{\alpha}}$ there is a Riemannian metric \langle,\rangle_{α} induced from the trivial bundle $U_{\alpha} \times \mathbb{R}^{k}$. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity on M subordinate to the open cover $\left\{U_{\alpha}\right\}$. By the same reasoning as in Theorem 1.12, the sum

$$
\langle,\rangle:=\sum \rho_{\alpha}\langle,\rangle_{\alpha}
$$

is a finite sum in a neighborhood of each point of M and is a Riemannian metric on E.

10.5 Metric Connections

We say that a connection ∇ on a Riemannian bundle E is compatible with the metric if for all $X \in \mathfrak{X}(M)$ and $s, t \in \Gamma(E)$,

$$
X\langle s, t\rangle=\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle .
$$

A connection compatible with the metric on a Riemannian bundle is also called a metric connection.

Example. Let E be a trivial vector bundle of rank r over a manifold M, with trivialization $\phi: E \xrightarrow{\sim} M \times \mathbb{R}^{r}$. We showed in Example 10.3 that the trivialization induces a connection ∇ on E and in Example 10.7 that the trivialization induces a Riemannian metric \langle,$\rangle on E$.

Proposition 10.9. On a trivial vector bundle E over a manifold M with trivialization $\phi: E \xrightarrow{\sim} M \times \mathbb{R}^{r}$, the connection ∇ on E induced by the trivialization ϕ is compatible with the Riemannian metric \langle,$\rangle on E$ induced by the trivialization.

Proof. Let v_{1}, \ldots, v_{r} be an orthonormal basis for \mathbb{R}^{r} and e_{1}, \ldots, e_{r} the corresponding global frame for E, where $e_{i}(p)=\phi^{-1}\left(p, v_{i}\right)$. Then e_{1}, \ldots, e_{r} is an orthonormal flat frame for E with respect to the Riemannian metric and the connection on E induced by ϕ. If $s=\sum a^{i} e_{i}$ and $t=\sum b^{j} e_{j}$ are C^{∞} sections of E, then

$$
\begin{array}{rlrl}
X\langle s, t\rangle & =X\left(\sum a^{i} b^{i}\right) \quad & \text { (because } e_{1}, \ldots, e_{r} \text { are orthonormal) } \\
& =\sum\left(X a^{i}\right) b^{i}+\sum a^{i} X b^{i} & \\
& =\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle \quad(\text { see }(10.1)) .
\end{array}
$$

Example 10.10 (Connection on $\left.T \mathbb{R}^{n}\right|_{M}$). If M is a submanifold of \mathbb{R}^{n}, the Euclidean metric on \mathbb{R}^{n} restricts to a Riemannian metric on the vector bundle $\left.T \mathbb{R}^{n}\right|_{M}$. Sections of the vector bundle $\left.T \mathbb{R}^{n}\right|_{M}$ are vector fields along M in \mathbb{R}^{n}. As noted in Example 10.2 , the directional derivative in \mathbb{R}^{n} induces a connection

$$
D: \mathfrak{X}(M) \times \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right) \rightarrow \Gamma\left(\left.T \mathbb{R}^{n}\right|_{M}\right)
$$

Proposition 4.10 asserts that the connection D on $\left.T \mathbb{R}^{n}\right|_{M}$ has zero curvature and is compatible with the metric.

The Gauss curvature equation for a surface M in \mathbb{R}^{3}, a key ingredient of the proof of Gauss's Theorema Egregium, is a consequence of the vanishing of the curvature tensor of the connection D on the bundle $\left.T \mathbb{R}^{3}\right|_{M}$ (Theorem 8.1).

Lemma 10.11. Let $E \rightarrow M$ be a Riemannian bundle. Suppose $\nabla^{1}, \ldots, \nabla^{m}$ are connections on E compatible with the metric and a_{1}, \ldots, a_{m} are C^{∞} functions on M that add up to 1 . Then $\nabla=\sum_{i} a_{i} \nabla^{i}$ is a connection on E compatible with the metric.

Proof. By Proposition $10.5, \nabla$ is a connection on E. It remains to check that ∇ is compatible with the metric. If $X \in \mathfrak{X}(M)$ and $s, t \in \Gamma(E)$, then

$$
\begin{equation*}
X\langle s, t\rangle=\left\langle\nabla_{X}^{i} s, t\right\rangle+\left\langle s, \nabla_{X}^{i} t\right\rangle \tag{10.5}
\end{equation*}
$$

for all i because ∇^{i} is compatible with the metric. Now multiply (10.5) by a_{i} and sum:

$$
\begin{aligned}
X\langle s, t\rangle & =\sum a_{i} X\langle s, t\rangle \\
& =\left\langle\sum a_{i} \nabla_{X}^{i} s, t\right\rangle+\left\langle s, \sum a_{i} \nabla_{X}^{i} t\right\rangle \\
& =\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle .
\end{aligned}
$$

Proposition 10.12. On any Riemannian bundle $E \rightarrow M$, there is a connection compatible with the metric.

Proof. Choose a trivializing open cover $\left\{U_{\alpha}\right\}$ for E. By Proposition 10.9, for each trivializing open set U_{α} of the cover, we can find a connection ∇^{α} on $\left.E\right|_{U_{\alpha}}$ compatible with the metric. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinate to the open cover $\left\{U_{\alpha}\right\}$. Because the collection $\left\{\operatorname{supp} \rho_{\alpha}\right\}$ is locally finite, the sum $\nabla=\sum \rho_{\alpha} \nabla^{\alpha}$ is a finite sum in a neighborhood of each point. Since $\sum \rho_{\alpha} \equiv 1$, by Lemma $10.11, \nabla$ is a connection on E compatible with the metric.

10.6 Restricting a Connection to an Open Subset

A connection ∇ on a vector bundle E over M,

$$
\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)
$$

is \mathcal{F}-linear in the first argument, but not \mathcal{F}-linear in the second argument. However, it turns out that the \mathcal{F}-linearity in the first argument and the Leibniz rule in the second argument are enough to imply that ∇ is a local operator.

Proposition 10.13. Let ∇ be a connection on a vector bundle E over a manifold M, X be a smooth vector field on M, and s a smooth section of E. If either X or s vanishes identically on an open subset U, then $\nabla_{X} s$ vanishes identically on U. (see Problem 7.2.)

Proof. Suppose X vanishes identically on U. Since $\nabla_{X} s$ is \mathcal{F}-linear in X, by Proposition 7.17, for any $s \in \Gamma(E), \nabla_{X} s$ vanishes identically on U.

Next, suppose $s \equiv 0$ on U and $p \in U$. Choose a C^{∞} bump function f such that $f \equiv 1$ in a neighborhood of p and $\operatorname{supp} f \subset U$. By our choice of f, the derivative $X_{p} f$ is zero. Since s vanishes on the support of f, we have $f s \equiv 0$ on M and so $\nabla_{X}(f s) \equiv 0$. Evaluating at p gives

$$
0=\left(\nabla_{X}(f s)\right)_{p}=(X f)_{p} s_{p}+f(p)\left(\nabla_{X} s\right)_{p}=\left(\nabla_{X} s\right)_{p}
$$

Because p is an arbitrary point of U, we conclude that $\nabla_{X} s$ vanishes identically on U.

In the same way that a local operator: $\Gamma(E) \rightarrow \Gamma(F)$ can be restricted to any open subset (Theorem 7.20), a connection on a vector bundle can be restricted to any open subset. More precisely, given a connection ∇ on a vector bundle E, for every open set U there is a connection

$$
\nabla^{U}: \mathfrak{X}(U) \times \Gamma(U, E) \rightarrow \Gamma(U, E)
$$

such that for any global vector field $\bar{X} \in \mathfrak{X}(M)$ and global section $\bar{s} \in \Gamma(E)$,

$$
\nabla_{\left.\bar{X}\right|_{U}}^{U}\left(\left.\bar{s}\right|_{U}\right)=\left.\left(\nabla_{\bar{X}} \bar{s}\right)\right|_{U}
$$

Suppose $X \in \mathfrak{X}(U)$ and $s \in \Gamma(U, E)$. For any $p \in U$, to define $\nabla_{X}^{U} s \in \Gamma(U, E)$ first pick a global vector field \bar{X} and a global section $\bar{s} \in \Gamma(E)$ that agree with X and s in a neighborhood of p. Then define

$$
\begin{equation*}
\left(\nabla_{X}^{U} s\right)(p)=\left(\nabla_{\bar{X}} \bar{s}\right)(p) \tag{10.6}
\end{equation*}
$$

Because $\nabla_{\bar{X}} \bar{s}$ is a local operator in \bar{X} and in \bar{s}, this definition is independent of the choice of \bar{X} and \bar{s}. It is a routine matter to show that ∇^{U} satisfies all the properties of a connection on $\left.E\right|_{U}$ (Problem 10.1).

10.7 Connections at a Point

Suppose ∇ is a connection on a vector bundle E over a manifold M. For $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$, since $\nabla_{X} s$ is \mathcal{F}-linear in X, it is a point operator in X and Proposition 7.25 assures us that it can be defined pointwise in X : there is a unique map, also denoted by ∇,

$$
\nabla: T_{p} M \times \Gamma(E) \rightarrow E_{p}
$$

such that if $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$, then

$$
\nabla_{X_{p}} s=\left(\nabla_{X} s\right)_{p}
$$

It is easy to check that $\nabla_{X_{p}} s$ has the following properties: for $X_{p} \in T_{p} M$ and $s \in \Gamma(E)$,
(i) $\nabla_{X_{p}} s$ is \mathbb{R}-linear in X_{p} and in s;
(ii) if f is a C^{∞} function on M, then

$$
\nabla_{X_{p}}(f s)=\left(X_{p} f\right) s(p)+f(p) \nabla_{X_{p}} s
$$

Problems

10.1. Restriction of a connection to an open subset

Show that the restriction of a connection to an open subset U given by (10.6) defines a connection on $\left.E\right|_{U}$.

10.2. Restriction of a Riemannian connection

Let U be an open subset of a Riemannian manifold M. Prove that if ∇ is the Riemannian connection on M, then the restriction ∇^{U} is the Riemannian connection on U.

10.3. Agreement on a curve

Given a connection ∇ on a vector bundle $E \rightarrow M$, a point p in M, and a tangent vector X_{p} in $T_{p} M$, show that if two sections s and t of E agree on a curve through p in M with initial vector X_{p}, then $\nabla_{X_{p}} s=\nabla_{X_{p}} t$.

$\S 11$ Connection, Curvature, and Torsion Forms

According to Gauss's Theorema Egregium, if R_{p} is the curvature tensor at a point p of a surface M in \mathbb{R}^{3} and u, v is any orthonormal frame for the tangent plane $T_{p} M$, then the Gaussian curvature of the surface at p is

$$
\begin{equation*}
K_{p}=\left\langle R_{p}(u, v) v, u\right\rangle . \tag{11.1}
\end{equation*}
$$

Since this formula does not depend on the embedding of the surface in \mathbb{R}^{3}, but only on the Riemannian structure of the surface, it makes sense for an abstract Riemannian 2-manifold and can be taken as the definition of the Gaussian curvature at a point of such a surface, for example, the hyperbolic upper half-plane \mathbb{H}^{2} (Problem 1.7). To compute the Gaussian curvature from (11.1), one would need to compute first the Riemannian connection ∇ using the six-term formula (6.8) and then compute the curvature tensor $R_{p}(u, v) v$-a clearly nontrivial task.

One of the great advantages of differential forms is its computability, and so in this section we shall recast connections, curvature, and torsion in terms of differential forms. This will lead to a simple computation of the Gaussian curvature of the hyperbolic upper half-plane in the next section.

Relative to a frame for a vector bundle, a connection on the bundle can be represented by a matrix of 1 -forms, and the curvature by a matrix of 2-forms. The relation between these two matrices is the structural equation of the connection.

The Gram-Schmidt process in linear algebra turns any C^{∞} frame of a Riemannian bundle into an orthonormal frame. Relative to an orthonormal frame, the connection matrix of a metric connection is skew-symmetric. By the structural equation, the curvature matrix is also skew-symmetric. The skew-symmetry of the curvature matrix of a metric connection will have important consequences in a later chapter.

On a tangent bundle, the torsion of a connection can also be represented by a vector of 2-forms called the torsion forms. There is a structural equation relating the torsion forms to the dual forms and the connection forms.

11.1 Connection and Curvature Forms

Let ∇ be a connection on a C^{∞} rank r vector bundle $\pi: E \rightarrow M$. We are interested in describing ∇ locally. Section 10.6 shows how on every open subset U of M, ∇ restricts to a connection on $\left.E\right|_{U} \rightarrow U$:

$$
\nabla^{U}: \mathfrak{X}(U) \times \Gamma(U, E) \rightarrow \Gamma(U, E) .
$$

We will usually omit the superscript U and write ∇^{U} as ∇.
Suppose U is a trivializing open set for E and e_{1}, \ldots, e_{r} is a frame for E over U (Proposition 7.22), and let $X \in \mathfrak{X}(U)$ be a C^{∞} vector field on U. On U, since any section $s \in \Gamma(U, E)$ is a linear combination $s=\sum a^{j} e_{j}$, the section $\nabla_{X} s$ can be
computed from $\nabla_{X} e_{j}$ by linearity and the Leibniz rule. As a section of E over U, $\nabla_{X} e_{j}$ is a linear combination of the e_{i} 's with coefficients ω_{j}^{i} depending on X :

$$
\nabla_{X} e_{j}=\sum \omega_{j}^{i}(X) e_{i} .
$$

The \mathcal{F}-linearity of $\nabla_{X} e_{j}$ in X implies that ω_{j}^{i} is \mathcal{F}-linear in X and so ω_{j}^{i} is a 1-form on U (Corollary 7.27). The 1 -forms ω_{j}^{i} on U are called the connection forms, and the matrix $\omega=\left[\omega_{j}^{i}\right]$ is called the connection matrix, of the connection ∇ relative to the frame e_{1}, \ldots, e_{r} on U.

Similarly, for $X, Y \in \mathfrak{X}(U)$, the section $R(X, Y) e_{j}$ is a linear combination of e_{1}, \ldots, e_{r} :

$$
R(X, Y) e_{j}=\sum \Omega_{j}^{i}(X, Y) e_{i} .
$$

Since

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

is alternating and is \mathcal{F}-bilinear, so is Ω_{j}^{i}. By Section 7.8, Ω_{j}^{i} is a 2 -form on U. The 2-forms Ω_{j}^{i} are called the curvature forms, and the matrix $\Omega=\left[\Omega_{j}^{i}\right]$ is called the curvature matrix, of the connection ∇ relative to the frame e_{1}, \ldots, e_{r} on U.

Recall that if α and β are $C^{\infty} 1$-forms and X and Y are C^{∞} vector fields on a manifold, then

$$
\begin{equation*}
(\alpha \wedge \beta)(X, Y)=\alpha(X) \beta(Y)-\alpha(Y) \beta(X) \tag{11.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(d \alpha)(X, Y)=X \alpha(Y)-Y \alpha(X)-\alpha([X, Y]) \tag{11.3}
\end{equation*}
$$

([21, Section 3.7] and [21, Prop. 20.13]).
Theorem 11.1. Let ∇ be a connection on a vector bundle $E \rightarrow M$ of rank r. Relative to a frame e_{1}, \ldots, e_{r} for E over a trivializing open set U, the curvature forms Ω_{j}^{i} are related to the connection forms ω_{j}^{i} by the second structural equation:

$$
\Omega_{j}^{i}=d \omega_{j}^{i}+\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}
$$

Remark 11.2 (The Einstein summation convention). In classical differential geometry, it is customary to omit the summation sign \sum whenever there is a pair of repeating indices, one a superscript and the other a subscript. This is called the Einstein summation convention. For example, in the Einstein summation convention, $a^{i} e_{i}$ means $\sum_{i} a^{i} e_{i}$. We will sometimes adopt this convention if it simplifies the appearance of a proof without creating confusion.

Proof (of Theorem 11.1). Let X and Y be smooth vector fields on U. Then

$$
\begin{aligned}
\nabla_{X} \nabla_{Y} e_{j} & =\nabla_{X} \sum_{k}\left(\omega_{j}^{k}(Y) e_{k}\right) \quad \text { (definition of connection forms) } \\
& =\sum_{k} X \omega_{j}^{k}(Y) e_{k}+\sum_{k} \omega_{j}^{k}(Y) \nabla_{X} e_{k} \quad \text { (Leibniz rule) } \\
& =\sum_{i} X \omega_{j}^{i}(Y) e_{i}+\sum_{i, k} \omega_{j}^{k}(Y) \omega_{k}^{i}(X) e_{i} .
\end{aligned}
$$

Interchanging X and Y gives

$$
\nabla_{Y} \nabla_{X} e_{j}=\sum_{i} Y \omega_{j}^{i}(X) e_{i}+\sum_{i, k} \omega_{j}^{k}(X) \omega_{k}^{i}(Y) e_{i}
$$

Furthermore,

$$
\nabla_{[X, Y]} e_{j}=\sum_{i} \omega_{j}^{i}([X, Y]) e_{i}
$$

Hence, in Einstein notation,

$$
\begin{aligned}
R(X, Y) e_{j}= & \nabla_{X} \nabla_{Y} e_{j}-\nabla_{Y} \nabla_{X} e_{j}-\nabla_{[X, Y]} e_{j} \\
= & \left(X \omega_{j}^{i}(Y)-Y \omega_{j}^{i}(X)-\omega_{j}^{i}([X, Y])\right) e_{i} \\
& +\left(\omega_{k}^{i}(X) \omega_{j}^{k}(Y)-\omega_{k}^{i}(Y) \omega_{j}^{k}(X)\right) e_{i} \\
= & d \omega_{j}^{i}(X, Y) e_{i}+\omega_{k}^{i} \wedge \omega_{j}^{k}(X, Y) e_{i} \quad \quad \text { (by (11.3) and (11.2)) } \\
= & \left(d \omega_{j}^{i}+\omega_{k}^{i} \wedge \omega_{j}^{k}\right)(X, Y) e_{i} .
\end{aligned}
$$

Comparing this with the definition of the curvature form Ω_{j}^{i} gives

$$
\Omega_{j}^{i}=d \omega_{j}^{i}+\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}
$$

11.2 Connections on a Framed Open Set

Suppose E is a C^{∞} vector bundle over a manifold M and U is an open set on which there is a C^{∞} frame e_{1}, \ldots, e_{r} for E. We call U a framed open set for E for short. A connection ∇ on $\left.E\right|_{U}$ determines a unique connection matrix $\left[\omega_{j}^{i}\right]$ relative to the frame e_{1}, \ldots, e_{r}. Conversely, any matrix of 1-forms $\left[\omega_{j}^{i}\right]$ on U determines a connection on $\left.E\right|_{U}$ as follows.

Given a matrix $\left[\omega_{j}^{i}\right]$ of 1-forms on U, and $X, Y \in \mathfrak{X}(U)$, we set

$$
\nabla_{X} e_{j}=\sum \omega_{j}^{i}(X) e_{i},
$$

and define $\nabla_{X} Y$ by applying the Leibniz rule to $Y=\sum h^{j} e_{j}$:

$$
\begin{align*}
\nabla_{X} Y & =\nabla_{X}\left(h^{j} e_{j}\right)=\left(X h^{j}\right) e_{j}+h^{j} \omega_{j}^{i}(X) e_{i} \\
& =\left(\left(X h^{i}\right)+h^{j} \omega_{j}^{i}(X)\right) e_{i} . \tag{11.4}
\end{align*}
$$

With this definition, ∇ is a connection on $\left.E\right|_{U}$ (Problem 11.2).

11.3 The Gram-Schmidt Process

The Gram-Schmidt process in linear algebra turns any linearly independent set of vectors v_{1}, \ldots, v_{n} in an inner product space V into an orthonormal set with the same span. Denote by $\operatorname{proj}_{a} b$ the orthogonal projection of b to the linear span of a. Then

$$
\operatorname{proj}_{a} b=\frac{\langle b, a\rangle}{\langle a, a\rangle} a .
$$

To carry out the Gram-Schmidt process, we first create an orthogonal set w_{1}, \ldots, w_{n} :

$$
\begin{align*}
w_{1} & =v_{1} \\
w_{2} & =v_{2}-\operatorname{proj}_{w_{1}} v_{2} \\
& =v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1} \\
w_{3} & =v_{3}-\operatorname{proj}_{w_{1}} v_{3}-\operatorname{proj}_{w_{2}} v_{3} \tag{11.5}\\
& =v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2},
\end{align*}
$$

and so on.
Proposition 11.3. In the Gram-Schmidt process (11.5), for each k, the set w_{1}, \ldots, w_{k} span the same linear subspace of V as v_{1}, \ldots, v_{k}.

Proof. Let $\left\langle w_{1}, \ldots, w_{k}\right\rangle$ be the linear subspace of V spanned by w_{1}, \ldots, w_{k}. From (11.5), it is clear that each v_{i} is a linear combination of w_{1}, \ldots, w_{i}. Hence, we have $\left\langle v_{1}, \ldots, v_{k}\right\rangle \subset\left\langle w_{1}, \ldots, w_{k}\right\rangle$.

We prove the reverse inequality by induction. The base case $\left\langle w_{1}\right\rangle \subset\left\langle v_{1}\right\rangle$ is trivially true. Suppose $\left\langle w_{1}, \ldots, w_{k-1}\right\rangle \subset\left\langle v_{1}, \ldots, v_{k-1}\right\rangle$. Then (11.5) shows that

$$
w_{k}=v_{k}-\sum_{i=1}^{k-1} \frac{\left\langle v_{k}, w_{i}\right\rangle}{\left\langle w_{i}, w_{i}\right\rangle} w_{i} \in\left\langle v_{1}, \ldots, v_{k}\right\rangle .
$$

Hence, $\left\langle w_{1}, \ldots, w_{k}\right\rangle \subset\left\langle v_{1}, \ldots, v_{k}\right\rangle$.
Since v_{1}, \ldots, v_{k} are linearly independent, the subspace $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ has dimension k. Thus, w_{1}, \ldots, w_{k} is a basis for $\left\langle v_{1}, \ldots, v_{k}\right\rangle=\left\langle w_{1}, \ldots, w_{k}\right\rangle$. In particular, none of the vectors w_{1}, \ldots, w_{k} is 0 . It is easy to check that w_{1}, \ldots, w_{n} is an orthogonal set. To get an orthonormal set e_{1}, \ldots, e_{n}, define

$$
\begin{equation*}
e_{i}=\frac{w_{i}}{\left\|w_{i}\right\|} . \tag{11.6}
\end{equation*}
$$

The Gram-Schmidt process can also be applied to a frame v_{1}, \ldots, v_{n} for a vector bundle over an open set U. We see from (11.5) and (11.6) that it is a C^{∞} process: if the sections v_{1}, \ldots, v_{n} of E are C^{∞} over U, so are the orthonormal sections e_{1}, \ldots, e_{n}.

11.4 Metric Connection Relative to an Orthonormal Frame

In the preceding subsections we saw that on a framed open set U for a vector bundle $E \rightarrow M$, a connection is completely specified by a matrix $\left[\omega_{j}^{i}\right]$ of 1 -forms on U. Suppose now that the vector bundle $E \rightarrow M$ is endowed with a Riemannian metric. The defining property of a metric connection can be translated into a condition on the connection matrix $\left[\omega_{j}^{i}\right]$ relative to an orthonormal frame.

Proposition 11.4. Let $E \rightarrow M$ be a Riemannian bundle and ∇ a connection on E.
(i) If the connection ∇ is compatible with the metric, then its connection matrix $\left[\omega_{j}^{i}\right]$ relative to any orthonormal frame e_{1}, \ldots, e_{r} for E over a trivializing open set $U \subset M$ is skew-symmetric.
(ii) If every point $p \in M$ has a trivializing neighborhood U for E such that the connection matrix $\left[\omega_{j}^{i}\right]$ relative to an orthonormal frame e_{1}, \ldots, e_{r} for E over U is skew-symmetric, then the connection ∇ is compatible with the metric.

Proof. (i) Suppose ∇ is compatible with the metric. For all $X \in \mathfrak{X}(U)$ and i, j,

$$
\begin{aligned}
0=X\left\langle e_{i}, e_{j}\right\rangle & =\left\langle\nabla_{X} e_{i}, e_{j}\right\rangle+\left\langle e_{i}, \nabla_{X} e_{j}\right\rangle \\
& =\left\langle\omega_{i}^{k}(X) e_{k}, e_{j}\right\rangle+\left\langle e_{i}, \omega_{j}^{k}(X) e_{k}\right\rangle \\
& =\omega_{i}^{k}(X) \delta_{k j}+\omega_{j}^{k}(X) \delta_{i k} \quad\left(\delta_{i j}=\text { Kronecker delta }\right) \\
& =\omega_{i}^{j}(X)+\omega_{j}^{i}(X) .
\end{aligned}
$$

Hence,

$$
\omega_{i}^{j}=-\omega_{j}^{i} .
$$

(ii) We note first that compatibility with the metric is a local condition, so ∇ is compatible with the metric if and only if its restriction ∇^{U} to any open set U is compatible with the metric. Suppose $\omega_{i}^{j}=-\omega_{j}^{i}$. Let $s=\sum a^{i} e_{i}$ and $t=\sum b^{j} e_{j}$, with $a^{i}, b^{j} \in C^{\infty}(U)$. Then

$$
\begin{align*}
X\langle s, t\rangle & =X\left(\sum a^{i} b^{i}\right)=\sum\left(X a^{i}\right) b^{i}+\sum a^{i} X b^{i} . \\
\nabla_{X} s & =\nabla_{X}\left(a^{i} e_{i}\right)=\left(X a^{i}\right) e_{i}+a^{i} \nabla_{X} e_{i} \\
& =\left(X a^{i}\right) e_{i}+a^{i} \omega_{i}^{k}(X) e_{k}, \\
\left\langle\nabla_{X} s, t\right\rangle & =\sum\left(X a^{i}\right) b^{i}+\sum a^{i} \omega_{i}^{j}(X) b^{j}, \tag{11.7}\\
\left\langle s, \nabla_{X} t\right\rangle & =\sum\left(X b^{i}\right) a^{i}+\sum b^{i} \omega_{i}^{j}(X) a^{j} \\
& =\sum\left(X b^{i}\right) a^{i}+\sum a^{i} b^{j} \omega_{j}^{i}(X) . \tag{11.8}
\end{align*}
$$

But by the skew-symmetry of ω,

$$
\sum a^{i} b^{j} \omega_{i}^{j}(X)+\sum a^{i} b^{j} \omega_{j}^{i}(X)=0 .
$$

Hence, adding (11.7) and (11.8) gives

$$
\begin{aligned}
\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle & =\sum\left(X a^{i}\right) b^{i}+\sum\left(X b^{i}\right) a^{i} \\
& =X\langle s, t\rangle .
\end{aligned}
$$

Proposition 11.5. If the connection matrix $\left[\omega_{j}^{i}\right]$ relative to a frame e_{1}, \ldots, e_{n} of an affine connection on a manifold is skew-symmetric, then so is the curvature matrix $\left[\Omega_{j}^{i}\right]$.

Proof. By the structural equation (Theorem 11.1),

$$
\begin{array}{rlrl}
\Omega_{i}^{j} & =d \omega_{i}^{j}+\omega_{k}^{j} \wedge \omega_{i}^{k} & \\
& =-d \omega_{j}^{i}+\left(-\omega_{j}^{k}\right) \wedge\left(-\omega_{k}^{i}\right) & & \left(\text { skew-symmetry of }\left[\omega_{j}^{i}\right]\right) \\
& =-d \omega_{j}^{i}-\omega_{k}^{i} \wedge \omega_{j}^{k} & & (\text { anticommutativity of } \wedge) \\
& =-\Omega_{j}^{i} . & &
\end{array}
$$

By Propositions 11.4 and 11.5, if a connection on a Riemannian bundle is compatible with the metric, then its curvature matrix Ω relative to an orthonormal frame is skew-symmetric.

11.5 Connections on the Tangent Bundle

A connection on the tangent bundle $T M$ of a manifold M is simply an affine connection on M. In addition to the curvature tensor $R(X, Y) Z$, an affine connection has a torsion tensor $T(X, Y)$.

Let U be an open set in M on which the tangent bundle $T M$ has a smooth frame e_{1}, \ldots, e_{n}. If U is a coordinate open set with coordinates x^{1}, \ldots, x^{n}, then $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ is such a frame, but we will consider the more general setting where U need not be a coordinate open set. Let $\theta^{1}, \ldots, \theta^{n}$ be the dual frame of 1-forms on U; this means

$$
\theta^{i}\left(e_{j}\right)=\delta_{j}^{i} .
$$

Proposition 11.6. If X is a smooth vector field on the open set U, then $X=\sum \theta^{i}(X) e_{i}$. Proof. Since e_{1}, \ldots, e_{n} is a frame for the tangent bundle $T M$ over U,

$$
X=\sum a^{j} e_{j}
$$

for some C^{∞} functions $a^{j} \in C^{\infty}(U)$. Applying θ^{i} to both sides gives

$$
\theta^{i}(X)=\sum_{j} \theta^{i}\left(a^{j} e_{j}\right)=\sum_{j} a^{j} \delta_{j}^{i}=a^{i}
$$

Therefore,

$$
X=\sum \theta^{i}(X) e_{i}
$$

For $X, Y \in \mathfrak{X}(U)$, the torsion $T(X, Y)$ is a linear combination of the vector fields e_{1}, \ldots, e_{n}, so we can write

$$
T(X, Y)=\sum \tau^{i}(X, Y) e_{i} .
$$

Since $T(X, Y)$ is alternating and \mathcal{F}-bilinear, so are the coefficients τ^{i}. Therefore, the τ^{i},s are 2-forms on U, called the torsion forms of the affine connection ∇ relative to the frame e_{1}, \ldots, e_{n} on U.

Since the torsion and curvature forms are determined completely by the frame e_{1}, \ldots, e_{n} and the connection, there should be formulas for τ^{i} and Ω_{j}^{i} in terms of the dual forms and the connection forms. Indeed, Theorem 11.1 expresses the curvature forms in terms of the connection forms alone.

Theorem 11.7 (Structural equations). Relative to a frame e_{1}, \ldots, e_{n} for the tangent bundle over an open set U of a manifold M, the torsion and curvature forms of an affine connection on M can be given in terms of the dual 1-forms and the connection forms:
(i) (the first structural equation) $\tau^{i}=d \theta^{i}+\sum_{j} \omega_{j}^{i} \wedge \theta^{j}$;
(ii) (the second structural equation) $\Omega_{j}^{i}=d \omega_{j}^{i}+\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}$.

Proof. The second structural equation (ii) is a special case of Theorem 11.1, which is true more generally for any vector bundle. The proof of the first structural equation (i) is a matter of unraveling the definition of torsion. Let X and Y be smooth vector fields on U. By Proposition 11.6, we can write

$$
Y=\sum \theta^{j}(Y) e_{j}
$$

Then

$$
\begin{aligned}
\nabla_{X} Y & =\nabla_{X}\left(\theta^{j}(Y) e_{j}\right) & & \\
& =\left(X \theta^{j}(Y)\right) e_{j}+\theta^{j}(Y) \nabla_{X} e_{j} & & \text { (Leibniz rule) } \\
& =\left(X \theta^{j}(Y)\right) e_{j}+\theta^{j}(Y) \omega_{j}^{i}(X) e_{i} & & \text { (definition of connection form). }
\end{aligned}
$$

By symmetry,

$$
\nabla_{Y} X=\left(Y \theta^{j}(X)\right) e_{j}+\theta^{j}(X) \omega_{j}^{i}(Y) e_{i}
$$

Finally, by Proposition 11.6 again,

$$
[X, Y]=\theta^{i}([X, Y]) e_{i}
$$

Thus,

$$
\begin{aligned}
T(X, Y) & =\nabla_{X} Y-\nabla_{Y} X-[X, Y] \\
& =\left(\left(\left(X \theta^{i}(Y)-Y \theta^{i}(X)-\theta^{i}([X, Y])\right)+\left(\omega_{j}^{i}(X) \theta^{j}(Y)-\omega_{j}^{i}(Y) \theta^{j}(X)\right)\right) e_{i}\right. \\
& =\left(d \theta^{i}+\omega_{j}^{i} \wedge \theta^{j}\right)(X, Y) e_{i},
\end{aligned}
$$

where the last equality follows from (11.3) and (11.2). Hence,

$$
\tau^{i}=d \theta^{i}+\sum \omega_{j}^{i} \wedge \theta^{j}
$$

We can now translate the two defining properties of the Riemannian connection into conditions on the matrix $\left[\omega_{j}^{i}\right]$.

Proposition 11.8. Let M be a Riemannian manifold and U an open subset on which there is an orthonormal frame e_{1}, \ldots, e_{n}. Let $\theta^{1}, \ldots, \theta^{n}$ be the dual frame of 1-forms. Then there exists a unique skew-symmetric matrix $\left[\omega_{j}^{i}\right]$ of 1-forms such that

$$
\begin{equation*}
d \theta^{i}+\sum_{j} \omega_{j}^{i} \wedge \theta^{j}=0 \quad \text { for all } i=1, \ldots, n \tag{11.9}
\end{equation*}
$$

Proof. In Theorem 6.6 we showed the existence of a Riemannian connection ∇ on any manifold. Let $\left[\omega_{j}^{i}\right]$ be the connection matrix of ∇ relative to the orthonormal frame e_{1}, \ldots, e_{n} on U. Because ∇ is compatible with the metric, by Proposition 11.4, the matrix $\left[\omega_{j}^{i}\right]$ is skew-symmetric. Because ∇ is torsion-free, by Theorem 11.7, it satisfies

$$
d \theta^{i}+\sum_{j} \omega_{j}^{i} \wedge \theta^{j}=0
$$

This proves the existence of the matrix $\left[\omega_{j}^{i}\right]$ with the two required properties.
To prove uniqueness, suppose $\left[\omega_{j}^{i}\right]$ is any skew-symmetric matrix of 1 -forms on U satisfying (11.9). In Section 11.2, taking the vector bundle E to be the tangent bundle $T M$, we showed that $\left[\omega_{j}^{i}\right]$ defines an affine connection ∇ on U of which it is the connection matrix relative to the frame e_{1}, \ldots, e_{n}. Because $\left[\omega_{j}^{i}\right]$ is skew-symmetric, ∇ is compatible with the metric (Proposition 11.4), and because $\left[\omega_{j}^{i}\right]$ satisfies the equations (11.9), ∇ is torsion-free (Theorem 11.7). Thus, ∇ is the unique Riemannian connection on U.

If $A=\left[\alpha_{j}^{i}\right]$ and $B=\left[\beta_{j}^{i}\right]$ are matrices of differential forms on M with the number of columns of A equal to the number of rows of B, then their wedge product $A \wedge B$ is defined to be the matrix of differential forms whose (i, j)-entry is

$$
(A \wedge B)_{j}^{i}=\sum_{k} \alpha_{k}^{i} \wedge \beta_{j}^{k}
$$

and $d A$ is defined to be $\left[d \alpha_{j}^{i}\right]$. In matrix notation, we write

$$
\tau=\left[\begin{array}{c}
\tau^{1} \\
\vdots \\
\tau^{n}
\end{array}\right], \quad \theta=\left[\begin{array}{c}
\theta^{1} \\
\vdots \\
\theta^{n}
\end{array}\right], \quad \omega=\left[\omega_{j}^{i}\right], \quad \Omega=\left[\Omega_{j}^{i}\right]
$$

Then the first structural equation becomes

$$
\tau=d \theta+\omega \wedge \theta
$$

and the second structural equation becomes

$$
\Omega=d \omega+\omega \wedge \omega
$$

Problems

11.1. Connection and curvature forms on the Poincaré disk

The Poincaré disk is the open unit disk

$$
\mathbb{D}=\{z=x+i y \in \mathbb{C}| | z \mid<1\}
$$

in the complex plane with Riemannian metric

$$
\langle,\rangle_{z}=\frac{4(d x \otimes d x+d y \otimes d y)}{\left(1-|z|^{2}\right)^{2}}=\frac{4(d x \otimes d x+d y \otimes d y)}{\left(1-x^{2}-y^{2}\right)^{2}} .
$$

An orthonormal frame for \mathbb{D} is

$$
e_{1}=\frac{1}{2}\left(1-|z|^{2}\right) \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{2}\left(1-|z|^{2}\right) \frac{\partial}{\partial y} .
$$

Find the connection matrix $\omega=\left[\omega_{j}^{i}\right]$ and the curvature matrix $\Omega=\left[\Omega_{j}^{i}\right]$ relative to the orthonormal frame e_{1}, e_{2} of the Riemannian connection ∇ on the Poincaré disk. (Hint: First find the dual frame θ^{1}, θ^{2}. Then solve for ω_{j}^{i} in (11.9).)

11.2. Connection defined by a matrix of 1 -forms

Show that (11.4) defines a connection on a vector bundle E over a framed open set U.

§12 The Theorema Egregium Using Forms

In Section 8 we proved Gauss's Theorema Egregium using vector fields. In this section we reprove the theorem, but using differential forms. An essential step is the derivation of a differential-form analogue of the Gauss curvature equation. The Theorema Egregium gives an intrinsic characterization of the Gaussian curvature of a surface, dependent only on the metric and independent of the embedding of the surface in a Euclidean space. This characterization can be taken as the definition of the Gaussian curvature of an abstract Riemannian 2-manifold. As an example, we compute the Gaussian curvature of the Poincaré half-plane.

12.1 The Gauss Curvature Equation

The Gauss curvature equation (Theorem 8.1) for an oriented surface M in \mathbb{R}^{3} relates the curvature tensor to the shape operator. It has an analogue in terms of differential forms.

Consider a smooth surface M in \mathbb{R}^{3} and a point p in M. Let U be an open neighborhood of p in M on which there is an orthonormal frame e_{1}, e_{2}. This is always possible by the Gram-Schmidt process, which turns any frame into an orthonormal frame. Let e_{3} be the cross product $e_{1} \times e_{2}$. Then e_{1}, e_{2}, e_{3} is an orthonormal frame for the vector bundle $\left.T \mathbb{R}^{3}\right|_{U}$ over U.

For the connection D on the bundle $\left.T \mathbb{R}^{3}\right|_{M}$, let $\left[\omega_{j}^{i}\right]$ be the connection matrix of 1forms relative to the orthonormal frame e_{1}, e_{2}, e_{3} over U. Since D is compatible with the metric and the frame e_{1}, e_{2}, e_{3} is orthonormal, the matrix $\left[\omega_{j}^{i}\right]$ is skew-symmetric (Proposition 11.4). Hence, for $X \in \mathfrak{X}(M)$,

$$
\begin{align*}
& D_{X} e_{1}=-\omega_{2}^{1}(X) e_{2}-\omega_{3}^{1}(X) e_{3} \tag{12.1}\\
& D_{X} e_{2}=\omega_{2}^{1}(X) e_{1} \tag{12.2}\\
& D_{X} e_{3}=\omega_{3}^{1}(X) e_{1}+\omega_{3}^{2}(X) e_{2}^{2} \tag{12.3}
\end{align*}
$$

Let ∇ be the Riemannian connection on the surface M. Recall that for $X, Y \in$ $\mathfrak{X}(M)$, the directional derivative $D_{X} Y$ need not be tangent to the surface M, and $\nabla_{X} Y$ is simply the tangential component $\left(D_{X} Y\right)_{\tan }$ of $D_{X} Y$. By (12.1) and (12.2),

$$
\begin{aligned}
& \nabla_{X} e_{1}=\left(D_{X} e_{1}\right)_{\tan }=-\omega_{2}^{1}(X) e_{2} \\
& \nabla_{X} e_{2}=\left(D_{X} e_{2}\right)_{\tan }=\omega_{2}^{1}(X) e_{1}
\end{aligned}
$$

It follows that the connection matrix of the Riemannian connection ∇ on M is

$$
\omega=\left[\begin{array}{cc}
0 & \omega_{2}^{1} \\
-\omega_{2}^{1} & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \omega_{2}^{1}
$$

Since

$$
\omega \wedge \omega=\left[\begin{array}{cc}
0 & \omega_{2}^{1} \\
-\omega_{2}^{1} & 0
\end{array}\right] \wedge\left[\begin{array}{cc}
0 & \omega_{2}^{1} \\
-\omega_{2}^{1} & 0
\end{array}\right]=\left[\begin{array}{cc}
-\omega_{2}^{1} \wedge \omega_{2}^{1} & 0 \\
0 & -\omega_{2}^{1} \wedge \omega_{2}^{1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],
$$

the curvature matrix of ∇ is

$$
\Omega=d \omega+\omega \wedge \omega=d \omega=\left[\begin{array}{cc}
0 & d \omega_{2}^{1} \\
-d \omega_{2}^{1} & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] d \omega_{2}^{1} .
$$

So the curvature matrix of ∇ is completely described by

$$
\begin{equation*}
\Omega_{2}^{1}=d \omega_{2}^{1} . \tag{12.4}
\end{equation*}
$$

Set the unit normal vector field N on U to be $N=-e_{3}$. By (12.3), the shape operator L is described by

$$
\begin{equation*}
L(X)=-D_{X} N=D_{X} e_{3}=\omega_{3}^{1}(X) e_{1}+\omega_{3}^{2}(X) e_{2}, \quad X \in \mathfrak{X}(M) \tag{12.5}
\end{equation*}
$$

Theorem 12.1 (Gauss curvature equation). Let e_{1}, e_{2} be an orthonormal frame of vector fields on an oriented open subset U of a surface M in \mathbb{R}^{3}, and let e_{3} be a unit normal vector field on U. Relative to e_{1}, e_{2}, e_{3}, the curvature form Ω_{2}^{1} of the Riemannian connection on M is related to the connection forms of the directional derivative D on the bundle $\left.T \mathbb{R}^{3}\right|_{M}$ by

$$
\begin{equation*}
\Omega_{2}^{1}=\omega_{3}^{1} \wedge \omega_{3}^{2} \tag{12.6}
\end{equation*}
$$

We call formula (12.6) the Gauss curvature equation, because on the left-hand side, Ω_{2}^{1} describes the curvature tensor of the surface, while on the right-hand side, ω_{3}^{1} and ω_{3}^{2} describe the shape operator.

Proof. Let $\tilde{\Omega}_{j}^{i}$ be the curvature forms of the connection D on $\left.T \mathbb{R}^{3}\right|_{M}$. Because the curvature tensor of D is zero, the second structural equation for $\tilde{\Omega}$ gives

$$
\begin{equation*}
\tilde{\Omega}_{j}^{i}=d \omega_{j}^{i}+\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}=0 \tag{12.7}
\end{equation*}
$$

In particular,

$$
d \omega_{2}^{1}+\omega_{1}^{1} \wedge \omega_{2}^{1}+\omega_{2}^{1} \wedge \omega_{2}^{2}+\omega_{3}^{1} \wedge \omega_{2}^{3}=0
$$

Since $\omega_{1}^{1}=\omega_{2}^{2}=0$, this reduces to

$$
d \omega_{2}^{1}+\omega_{3}^{1} \wedge \omega_{2}^{3}=0
$$

Since the matrix $\left[\omega_{j}^{i}\right]$ is skew-symmetric,

$$
d \omega_{2}^{1}=\omega_{3}^{1} \wedge \omega_{3}^{2} .
$$

The Gauss curvature equation now follows from (12.4).

12.2 The Theorema Egregium

Keeping the same notations as in the preceding subsection, we will derive formulas for the Gaussian curvature of a surface in \mathbb{R}^{3}, first in terms of the connection forms for the directional derivative and then in terms of the curvature form Ω_{2}^{1}.

Proposition 12.2. For a smooth surface in \mathbb{R}^{3}, if e_{1}, e_{2} is an orthonormal frame over an oriented open subset U of the surface and e_{3} is a unit normal vector field on U, then the Gaussian curvature K on U is given by

$$
K=\operatorname{det}\left[\begin{array}{l}
\omega_{3}^{1}\left(e_{1}\right) \omega_{3}^{1}\left(e_{2}\right) \\
\omega_{3}^{2}\left(e_{1}\right) \\
\omega_{3}^{2}\left(e_{2}\right)
\end{array}\right]=\left(\omega_{3}^{1} \wedge \omega_{3}^{2}\right)\left(e_{1}, e_{2}\right) .
$$

Proof. From (12.5),

$$
\begin{aligned}
& L\left(e_{1}\right)=\omega_{3}^{1}\left(e_{1}\right) e_{1}+\omega_{3}^{2}\left(e_{1}\right) e_{2} \\
& L\left(e_{2}\right)=\omega_{3}^{1}\left(e_{2}\right) e_{1}+\omega_{3}^{2}\left(e_{2}\right) e_{2}
\end{aligned}
$$

So the matrix of L relative to the frame e_{1}, e_{2} is

$$
\left[\begin{array}{ll}
\omega_{3}^{1}\left(e_{1}\right) & \omega_{3}^{1}\left(e_{2}\right) \\
\omega_{3}^{2}\left(e_{1}\right) & \omega_{3}^{2}\left(e_{2}\right)
\end{array}\right] .
$$

Therefore,

$$
\begin{aligned}
K & =\operatorname{det} L=\operatorname{det}\left[\begin{array}{l}
\omega_{3}^{1}\left(e_{1}\right) \omega_{3}^{1}\left(e_{2}\right) \\
\omega_{3}^{2}\left(e_{1}\right) \omega_{3}^{2}\left(e_{2}\right)
\end{array}\right] \\
& =\omega_{3}^{1}\left(e_{1}\right) \omega_{3}^{2}\left(e_{2}\right)-\omega_{3}^{1}\left(e_{2}\right) \omega_{3}^{2}\left(e_{1}\right)=\left(\omega_{3}^{1} \wedge \omega_{3}^{2}\right)\left(e_{1}, e_{2}\right) .
\end{aligned}
$$

Theorem 12.3 (Theorema Egregium). For a smooth surface in \mathbb{R}^{3}, if e_{1}, e_{2} is an orthonormal frame over an open subset U of the surface with dual frame θ^{1}, θ^{2}, then the Gaussian curvature K on U is given by

$$
\begin{equation*}
K=\Omega_{2}^{1}\left(e_{1}, e_{2}\right) \tag{12.8}
\end{equation*}
$$

or by

$$
\begin{equation*}
d \omega_{2}^{1}=K \theta^{1} \wedge \theta^{2} \tag{12.9}
\end{equation*}
$$

Proof. Formula (12.8) is an immediate consequence of Proposition 12.2 and the Gauss curvature equation (12.6).

As for (12.9), since

$$
K=K\left(\theta^{1} \wedge \theta^{2}\right)\left(e_{1}, e_{2}\right)=\Omega_{2}^{1}\left(e_{1}, e_{2}\right)
$$

and a 2 -form on U is completely determined by its value on e_{1}, e_{2}, we have $\Omega_{2}^{1}=$ $K \theta^{1} \wedge \theta^{2}$. By (12.4),

$$
d \omega_{2}^{1}=K \theta^{1} \wedge \theta^{2}
$$

Since Ω_{2}^{1} depends only on the metric and not on the embedding of the surface in \mathbb{R}^{3}, formula (12.8) shows that the same is true of the Gaussian curvature. We can therefore take this formula to be the definition of the Gaussian curvature of an abstract Riemannian 2-manifold. It is consistent with the formula in the first version (Theorem 8.3) of the Theorema Egregium, for by the definition of the curvature matrix, if e_{1}, e_{2} is an orthonormal frame on an open subset U of M, then

$$
R(X, Y) e_{2}=\Omega_{2}^{1}(X, Y) e_{1} \quad \text { for all } X, Y \in \mathfrak{X}(U)
$$

so that

$$
\left\langle R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle=\left\langle\Omega_{2}^{1}\left(e_{1}, e_{2}\right) e_{1}, e_{1}\right\rangle=\Omega_{2}^{1}\left(e_{1}, e_{2}\right)
$$

Definition 12.4. The Gaussian curvature K at a point p of a Riemannian 2manifold M is defined to be

$$
\begin{equation*}
K_{p}=\left\langle R_{p}(u, v) v, u\right\rangle \tag{12.10}
\end{equation*}
$$

for any orthonormal basis u, v for the tangent plane $T_{p} M$.
For the Gaussian curvature to be well defined, we need to show that formula (12.10) is independent of the choice of orthonormal basis. This we do in the next section.

12.3 Skew-Symmetries of the Curvature Tensor

Recall that the curvature of an affine connection ∇ on a manifold M is defined to be

$$
\begin{gathered}
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), \\
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
\end{gathered}
$$

We showed that $R(X, Y) Z$ is \mathcal{F}-linear in every argument; therefore, it is a point operator. A point operator is also called a tensor. It is immediate from the definition that the curvature tensor $R(X, Y) Z$ is skew-symmetric in X and Y.

Proposition 12.5. If an affine connection ∇ on a Riemannian manifold M is compatible with the metric, then for vector fields $X, Y, Z, W \in \mathfrak{X}(M)$, the tensor $\langle R(X, Y) Z, W\rangle$ is skew-symmetric in Z and W.

Proof. Because $\langle R(X, Y) Z, W\rangle$ is a tensor, it is enough to check its skew-symmetry locally, for example, on an open set U on which there is a frame e_{1}, \ldots, e_{n}. By Gram-Schmidt, we may assume that the frame e_{1}, \ldots, e_{n} is orthonormal. Then

$$
\left\langle R(X, Y) e_{j}, e_{i}\right\rangle=\Omega_{j}^{i}(X, Y) .
$$

Since ∇ is compatible with the metric, its curvature matrix $\Omega=\left[\Omega_{j}^{i}\right]$ relative to an orthonormal frame is skew-symmetric. Therefore,

$$
\left\langle R(X, Y) e_{j}, e_{i}\right\rangle=\Omega_{j}^{i}(X, Y)=-\Omega_{i}^{j}(X, Y)=-\left\langle R(X, Y) e_{i}, e_{j}\right\rangle .
$$

On U, we can write $Z=\sum z^{i} e_{i}$ and $W=\sum w^{j} e_{j}$ for some C^{∞} functions $z^{i}, w^{j} \in C^{\infty}(U)$. Then

$$
\begin{aligned}
\langle R(X, Y) Z, W\rangle & =\sum z^{i} w^{j}\left\langle R(X, Y) e_{i}, e_{j}\right\rangle=-\sum z^{i} w^{j}\left\langle R(X, Y) e_{j}, e_{i}\right\rangle \\
& =-\langle R(X, Y) W, Z\rangle .
\end{aligned}
$$

We now show that $\langle R(u, v) v, u\rangle$ is independent of the orthonormal basis u, v for $T_{p} M$. Suppose \bar{u}, \bar{v} is another orthonormal basis. Then

$$
\begin{aligned}
& \bar{u}=a u+b v, \\
& \bar{v}=c u+d v
\end{aligned}
$$

for an orthogonal matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and

$$
\begin{aligned}
\langle R(\bar{u}, \bar{v}) \bar{v}, \bar{u}\rangle & =\langle(\operatorname{det} A) R(u, v)(c u+d v), a u+d v\rangle \\
& =(\operatorname{det} A)^{2}\langle R(u, v) v, u\rangle
\end{aligned}
$$

by the skew-symmetry of $\langle R(u, v) z, w\rangle$ in z and w. Since $A \in \mathrm{O}(2), \operatorname{det} A= \pm 1$. Hence,

$$
\langle R(\bar{u}, \bar{v}) \bar{v}, \bar{u}\rangle=\langle R(u, v) v, u\rangle .
$$

12.4 Sectional Curvature

Let M be a Riemannian manifold and p a point in M. If P is a 2-dimensional subspace of the tangent space $T_{p} M$, then we define the sectional curvature of P to be

$$
\begin{equation*}
K(P)=\left\langle R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right\rangle \tag{12.11}
\end{equation*}
$$

for any orthonormal basis e_{1}, e_{2} of P. Just as in the definition of the Gaussian curvature, the right-hand side of (12.11) is independent of the orthonormal basis e_{1}, e_{2} (cf§12.3).

If u, v is an arbitrary basis for the 2-plane P, then a computation similar to that in $\S 8.3$ shows that the sectional curvature of P is also given by

$$
K(P)=\frac{\langle R(u, v) v, u\rangle}{\langle u, u\rangle\langle v, v\rangle-\langle u, v\rangle^{2}} .
$$

12.5 Poincaré Half-Plane

Example 12.6 (The Gaussian curvature of the Poincaré half-plane). The Poincaré half-plane is the upper half-plane

$$
\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}
$$

with the metric:

$$
\langle,\rangle_{(x, y)}=\frac{d x \otimes d x+d y \otimes d y}{y^{2}} .
$$

Classically, the notation for a Riemannian metric is $d s^{2}$. Hence, the metric on the Poincaré half-plane is

$$
d s^{2}=\frac{d x \otimes d x+d y \otimes d y}{y^{2}} .
$$

With this metric, an orthonormal frame is

$$
e_{1}=y \frac{\partial}{\partial x}, \quad e_{2}=y \frac{\partial}{\partial y}
$$

So the dual frame is

$$
\theta^{1}=\frac{1}{y} d x, \quad \theta^{2}=\frac{1}{y} d y .
$$

Hence,

$$
\begin{equation*}
d \theta^{1}=\frac{1}{y^{2}} d x \wedge d y, \quad d \theta^{2}=0 \tag{12.12}
\end{equation*}
$$

On the Poincaré half-plane the connection form ω_{2}^{1} is a linear combination of $d x$ and $d y$, so we may write

$$
\begin{equation*}
\omega_{2}^{1}=a d x+b d y . \tag{12.13}
\end{equation*}
$$

We will determine the coefficients a and b from the first structural equation:

$$
\begin{align*}
& d \theta^{1}=-\omega_{2}^{1} \wedge \theta^{2} \tag{12.14}\\
& d \theta^{2}=-\omega_{1}^{2} \wedge \theta^{1}=\omega_{2}^{1} \wedge \theta^{1} \tag{12.15}
\end{align*}
$$

By (12.12), (12.13), and (12.14),

$$
\frac{1}{y^{2}} d x \wedge d y=d \theta^{1}=-(a d x+b d y) \wedge \frac{1}{y} d y=-\frac{a}{y} d x \wedge d y
$$

So $a=-1 / y$. By (12.12), (12.13), and (12.15),

$$
0=d \theta^{2}=\left(-\frac{1}{y} d x+b d y\right) \wedge \frac{1}{y} d x=-\frac{b}{y} d x \wedge d y
$$

So $b=0$. Therefore,

$$
\begin{aligned}
\omega_{2}^{1} & =-\frac{1}{y} d x \\
d \omega_{2}^{1} & =\frac{1}{y^{2}} d y \wedge d x \\
& =-\frac{1}{y^{2}} d x \wedge d y
\end{aligned}
$$

By definition, the Gaussian curvature of the Poincaré half-plane is

$$
\begin{aligned}
K & =\Omega_{2}^{1}\left(e_{1}, e_{2}\right)=-\frac{1}{y^{2}}(d x \wedge d y)\left(y \frac{\partial}{\partial x}, y \frac{\partial}{\partial y}\right) \\
& =-(d x \wedge d y)\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=-1
\end{aligned}
$$

Problems

12.1. The orthogonal group $O(2)$

(a) Show that an element A of the orthogonal group $\mathrm{O}(2)$ is either

$$
A=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \text { or }\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right],
$$

where $a^{2}+b^{2}=1, a, b \in \mathbb{R}$.
(b) Let $\mathrm{SO}(2)=\{A \in \mathrm{O}(2) \mid \operatorname{det} A=1\}$. Show that every element A of $\mathrm{SO}(2)$ is of the form

$$
A=\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right], \quad t \in \mathbb{R} .
$$

Thus, $\mathrm{SO}(2)$ is the group of rotations about the origin in \mathbb{R}^{2}.
Let $J=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Then $\mathrm{O}(2)=\mathrm{SO}(2) \cup \mathrm{SO}(2) J$. This proves that $\mathrm{O}(2)$ has two connected components, each diffeomorphic to the circle S^{1}.

12.2. Gaussian curvature of the Euclidean plane

Let $e_{1}=\partial / \partial x, e_{2}=\partial / \partial y$ be the standard orthonormal frame on \mathbb{R}^{2}. Compute the connection form ω_{2}^{1} relative to e_{1}, e_{2} of the Riemannian connection on \mathbb{R}^{2}, and then compute the Gaussian curvature C.

12.3. Gaussian curvature of a non-Euclidean plane

Let $h(x)$ be a C^{∞} positive function on \mathbb{R}; thus, $h(x)>0$ for all $x \in \mathbb{R}$. At each $(x, y) \in \mathbb{R}^{2}$, define

$$
\langle,\rangle_{(x, y)}=d x \otimes d x+h(x)^{2} d y \otimes d y
$$

(a) Show that \langle,$\rangle is a Riemannian metric on \mathbb{R}^{2}$.
(b) Compute the Gaussian curvature of \mathbb{R}^{2} with this metric.

12.4. Gaussian curvature of the Poincaré disk

Compute the Gaussian curvature of the Poincaré disk defined in Problem 11.1.

12.5. Gaussian curvature under a conformal map

Let $T: M \rightarrow M^{\prime}$ be a diffeomorphism of Riemannian manifolds of dimension 2 . Suppose at each point $p \in M$, there is a positive number $a(p)$ such that

$$
\left\langle T_{*} v, T_{*} w\right\rangle_{M^{\prime}, T(p)}=a(p)\langle v, w\rangle_{M, p}
$$

for all $u, v \in T_{p}(M)$. Find the relation between the Gaussian curvatures of M and M^{\prime}.

Chapter 3

Geodesics

A geodesic on a Riemannian manifold is the analogue of a line in Euclidean space. One can characterize a line in Euclidean space in several equivalent ways, among which are the following:
(1) A line is "straight" in the sense that it has a parametrization with a constant velocity vector field.
(2) A line connecting two points gives the shortest distance between the two points.

These two properties are not necessarily equivalent on a Riemannian manifold. We define a geodesic by generalizing the notion of "straightness." For this, it is not necessary to have a metric, but only a connection. On a Riemannian manifold, of course, there is always the unique Riemannian connection, and so one can speak of geodesics on a Riemannian manifold.

$\S 13$ More on Affine Connections

This chapter is a compilation of some properties of an affine connection that will prove useful later. First we discuss how an affine connection on a manifold M induces a unique covariant derivative of vector fields along a smooth curve in M. This generalizes the derivative $d V / d t$ of a vector field V along a smooth curve in \mathbb{R}^{n}. Secondly, we present a way of describing a connection in local coordinates, using the so-called Christoffel symbols.

13.1 Covariant Differentiation Along a Curve

Let $c:[a, b] \rightarrow M$ be a smooth parametrized curve in a manifold M. Recall that a vector field along the curve c in M is a function

$$
V:[a, b] \rightarrow \coprod_{t \in[a, b]} T_{c(t)} M,
$$

where \amalg stands for the disjoint union, such that $V(t) \in T_{c(t)} M$ (Figure 13.1). Such a vector field $V(t)$ is C^{∞} if for any C^{∞} function f on M, the function $V(t) f$ is C^{∞} as a function of t. We denote the vector space of all C^{∞} vector fields along the curve $c(t)$ by $\Gamma\left(\left.T M\right|_{c(t)}\right)$.

Fig. 13.1. Vector field along a curve $c(t)$ in M.

For a smooth vector field $V(t)=\sum v^{i}(t) \partial / \partial x^{i}$ along a smooth curve $c(t)$ in \mathbb{R}^{n}, we defined its derivative $d V / d t$ by differentiating the components $v^{i}(t)$ with respect to t. Then $d V / d t=\sum \dot{v}^{i} \partial / \partial x^{i}$ satisfies the following properties:
(i) $d V / d t$ is \mathbb{R}-linear in V;
(ii) for any C^{∞} function f on $[a, b]$,

$$
\frac{d(f V)}{d t}=\frac{d f}{d t} V+f \frac{d V}{d t}
$$

(iii) (Proposition 4.11) if V is induced from a C^{∞} vector field \tilde{V} on \mathbb{R}^{n}, in the sense that $V(t)=\tilde{V}_{c(t)}$ and D is the directional derivative in \mathbb{R}^{n}, then

$$
\frac{d V}{d t}=D_{c^{\prime}(t)} \tilde{V}
$$

It turns out that to every connection ∇ on a manifold M one can associate a way of differentiating vector fields along a curve satisfying the same properties as the derivative above.

Theorem 13.1. Let M be a manifold with an affine connection ∇, and $c:[a, b] \rightarrow M$ a smooth curve in M. Then there is a unique map

$$
\frac{D}{d t}: \Gamma\left(\left.T M\right|_{c(t)}\right) \rightarrow \Gamma\left(\left.T M\right|_{c(t)}\right)
$$

such that for $V \in \Gamma\left(\left.T M\right|_{c(t)}\right)$,
(i) $(\mathbb{R}$-linearity) $D V / d t$ is \mathbb{R}-linear in V;
(ii) (Leibniz rule) for any C^{∞} function f on the interval $[a, b]$,

$$
\frac{D(f V)}{d t}=\frac{d f}{d t} V+f \frac{D V}{d t}
$$

(iii) (Compatibility with ∇) if V is induced from a C^{∞} vector field \tilde{V} on M, in the sense that $V(t)=\tilde{V}_{c(t)}$, then

$$
\frac{D V}{d t}(t)=\nabla_{c^{\prime}(t)} \tilde{V} .
$$

We call $D V / d t$ the covariant derivative (associated to ∇) of the vector field V along the curve $c(t)$ in M.

Proof. Suppose such a covariant derivative $D / d t$ exists. On a framed open set $\left(U, e_{1}, \ldots, e_{n}\right)$, a vector field $V(t)$ along c can be written as a linear combination

$$
V(t)=\sum v^{i}(t) e_{i, c(t)}
$$

Then

$$
\begin{align*}
\frac{D V}{d t} & =\sum \frac{D}{d t}\left(v^{i}(t) e_{i, c(t)}\right) & & \text { (by property (i)) } \\
& =\sum \frac{d v^{i}}{d t} e_{i}+v^{i} \frac{D e_{i}}{d t} & & \text { (by property (ii)) } \\
& =\sum \frac{d v^{i}}{d t} e_{i}+v^{i} \nabla_{c^{\prime}(t)} e_{i} & & \text { (by property (iii)), } \tag{13.1}
\end{align*}
$$

where we abuse notation and write e_{i} instead of $e_{i, c(t)}$. This formula proves the uniqueness of $D / d t$ if it exists.

As for existence, we define $D V / d t$ for a curve $c(t)$ in a framed open set U by the formula (13.1). It is easily verified that $D V / d t$ satisfies the three properties (i), (ii), (iii) (Problem 13.1). Hence, $D / d t$ exists for curves in U. If $\bar{e}_{1}, \ldots, \bar{e}_{n}$ is another frame on U, then $V(t)$ is a linear combination $\sum \bar{v}^{i}(t) \bar{e}_{i, c(t)}$ and the covariant derivative $\bar{D} V / d t$ defined by

$$
\frac{\bar{D} V}{d t}=\sum_{i} \frac{d \bar{v}^{i}}{d t} \bar{e}_{i}+\bar{v}^{i} \nabla_{c^{\prime}(t)} \bar{e}_{i}
$$

also satisfies the three properties of the theorem. By the uniqueness of the covariant derivative, $D V / d t=\bar{D} V / d t$. This proves that the covariant derivative $D V / d t$ is independent of the frame. By covering M with framed open sets, (13.1) then defines a covariant derivative $D V / d t$ for the curve $c(t)$ in M.

Theorem 13.2. Let M be a Riemannian manifold, ∇ an affine connection on M, and $c:[a, b] \rightarrow M$ a smooth curve in M. If ∇ is compatible with the metric, then for any smooth vector fields V, W along c,

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle .
$$

Proof. It suffices to check this equality locally, so let U be an open set on which an orthonormal frame e_{1}, \ldots, e_{n} exists. With respect to this frame,

$$
V=\sum v^{i}(t) e_{i, c(t)}, \quad W=\sum w^{j}(t) e_{j, c(t)}
$$

for some C^{∞} functions v^{i}, w^{j} on $[a, b]$. Then

$$
\frac{d}{d t}\langle V, W\rangle=\frac{d}{d t} \sum v^{i} w^{i}=\sum \frac{d v^{i}}{d t} w^{i}+\sum v^{i} \frac{d w^{i}}{d t} .
$$

By the defining properties of a covariant derivative,

$$
\frac{D V}{d t}=\sum_{i} \frac{d v^{i}}{d t} e_{i}+v^{i} \frac{D e_{i}}{d t}=\sum_{i} \frac{d v^{i}}{d t} e_{i}+v^{i} \nabla_{c^{\prime}(t)} e_{i}
$$

where we again abuse notation and write e_{i} instead of $e_{i} \circ c$. Similarly,

$$
\frac{D W}{d t}=\frac{d w^{j}}{d t} e_{j}+w^{j} \nabla_{c^{\prime}(t)} e_{j}
$$

Hence,

$$
\begin{aligned}
&\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle=\sum_{i} \frac{d v^{i}}{d t} w^{i}+\sum_{i, j} v^{i} w^{j}\left\langle\nabla_{c^{\prime}(t)} e_{i}, e_{j}\right\rangle \\
&+\sum_{i} v^{i} \frac{d w^{i}}{d t}+\sum_{i, j} v^{i} w^{j}\left\langle e_{i}, \nabla_{c^{\prime}(t)} e_{j}\right\rangle .
\end{aligned}
$$

Since e_{1}, \ldots, e_{n} are orthonormal vector fields on U and ∇ is compatible with the metric,

$$
\left\langle\nabla_{c^{\prime}(t)} e_{i}, e_{j}\right\rangle+\left\langle e_{i}, \nabla_{c^{\prime}(t)} e_{j}\right\rangle=c^{\prime}(t)\left\langle e_{i}, e_{j}\right\rangle=c^{\prime}(t) \delta_{i j}=0 .
$$

Therefore,

$$
\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle=\sum \frac{d v^{i}}{d t} w^{i}+v^{i} \frac{d w^{i}}{d t}=\frac{d}{d t}\langle V, W\rangle .
$$

Example 13.3. If ∇ is the directional derivative on \mathbb{R}^{n} and $V(t)=\Sigma v^{i}(t) \partial / \partial x^{i}$ is a vector field along a smooth curve $c(t)$ in \mathbb{R}^{n}, then the covariant derivative is

$$
\frac{D V}{d t}=\sum \frac{d v^{i}}{d t} \frac{\partial}{\partial x^{i}}+\sum v^{i} D_{c^{\prime}(t)} \frac{\partial}{\partial x^{i}}=\sum \frac{d v^{i}}{d t} \frac{\partial}{\partial x^{i}}=\frac{d V}{d t}
$$

since $D_{c^{\prime}(t)} \partial / \partial x^{i}=0$ by (4.2).

13.2 Connection-Preserving Diffeomorphisms

Although it is in general not possible to push forward a vector field except under a diffeomorphism, it is always possible to push forward a vector field along a curve under any C^{∞} map. Let $f: M \rightarrow \tilde{M}$ be a C^{∞} map (not necessarily a diffeomorphism) of manifolds, and $c:[a, b] \rightarrow M$ a smooth curve in M. The pushforward of the vector field $V(t)$ along c in M is the vector field $\left(f_{*} V\right)(t)$ along the image curve $f \circ c$ in \tilde{M} defined by

$$
\left(f_{*} V\right)(t)=f_{*, c(t)}(V(t)) .
$$

Denote by (M, ∇) a C^{∞} manifold with an affine connection ∇. We say that a C^{∞} diffeomorphism $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$ preserves the connection or is connectionpreserving if for all $X, Y \in \mathfrak{X}(M)$,

$$
f_{*}\left(\nabla_{X} Y\right)=\tilde{\nabla}_{f_{*} X} f_{*} Y
$$

In this terminology, an isometry of Riemannian manifolds preserves the Riemannian connection (Problem 8.2).

We now show that a connection-preserving diffeomorphism also preserves the covariant derivative along a curve.

Proposition 13.4. Suppose $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$ is a connection-preserving diffeomorphism, $c(t)$ a smooth curve in M, and $D / d t$, $\tilde{D} / d t$ the covariant derivatives along c in M and $f \circ c$ in \tilde{M}, respectively. If $V(t)$ is a vector field along c in M, then

$$
f_{*}\left(\frac{D V}{d t}\right)=\frac{\tilde{D}\left(f_{*} V\right)}{d t} .
$$

Proof. Choose a neighborhood U of $c(t)$ on which there is a frame e_{1}, \ldots, e_{n}, and write $V(t)=\sum v^{i}(t) e_{i, c(t)}$. Then $\tilde{e}_{1}:=f_{*} e_{1}, \ldots, \tilde{e}_{n}:=f_{*} e_{n}$ is a frame on the neighborhood $f(U)$ of $f(c(t))$ in \tilde{M} and

$$
\left(f_{*} V\right)(t)=\sum v^{i}(t) \tilde{e}_{i,(f \circ c)(t)} .
$$

By the definition of the covariant derivative,

$$
\frac{D V}{d t}(t)=\sum \frac{d v^{i}}{d t}(t) e_{i, c(t)}+v^{i}(t) \nabla_{c^{\prime}(t)} e_{i}
$$

Because f preserves the connection,

$$
\begin{aligned}
\left(f_{*} \frac{D V}{d t}\right)(t) & =\sum \frac{d v^{i}}{d t} f_{*, c(t)}\left(e_{i, c(t)}\right)+v^{i}(t) \tilde{\nabla}_{f_{*} c^{\prime}(t)} f_{*} e_{i} \\
& =\sum \frac{d v^{i}}{d t} \tilde{e}_{i(f(f) c)(t)}+v^{i}(t) \tilde{\nabla}_{(f \circ c)^{\prime}(t)} \tilde{e}_{i} \\
& =\left(\frac{\tilde{D}}{d t} f_{*} V\right)(t) .
\end{aligned}
$$

13.3 Christoffel Symbols

One way to describe a connection locally is by the connection forms relative to a frame. Another way, which we now discuss, is by a set of n^{3} functions called the Christoffel symbols.

The Christoffel symbols are defined relative to a coordinate frame. Let ∇ be an affine connection on a manifold M and let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a coordinate open set in M. Denote by ∂_{i} the coordinate vector field $\partial / \partial x^{i}$. Then $\nabla_{\partial_{i}} \partial_{j}$ is a linear combination of $\partial_{1}, \ldots, \partial_{n}$, so there exist numbers $\Gamma_{i j}^{k}$ at each point such that

$$
\nabla_{\partial_{i}} \partial_{j}=\sum_{k=1}^{n} \Gamma_{i j}^{k} \partial_{k} .
$$

These n^{3} functions $\Gamma_{i j}^{k}$ are called the Christoffel symbols of the connection ∇ on the coordinate open set $\left(U, x^{1}, \ldots, x^{n}\right)$. By the Leibniz rule and \mathcal{F}-linearity in the first argument of a connection, the Christoffel symbols completely describe a connection on U.

Elwin Bruno Christoffel
(1829-1900)

Proposition 13.5. An affine connection ∇ on a manifold is torsion-free if and only if in every coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$ the Christoffel symbol $\Gamma_{i j}^{k}$ is symmetric in i and j :

$$
\Gamma_{i j}^{k}=\Gamma_{j i}^{k}
$$

Proof. (\Rightarrow) Let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a coordinate open set. Since partial differentiation is independent of the order of differentiation,

$$
\left[\partial_{i}, \partial_{j}\right]=\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0
$$

By torsion-freeness,

$$
\nabla_{\partial_{i}} \partial_{j}-\nabla_{\partial_{j}} \partial_{i}=\left[\partial_{i}, \partial_{j}\right]=0
$$

In terms of Christoffel symbols,

$$
\sum_{k} \Gamma_{i j}^{k} \partial_{k}-\sum_{k} \Gamma_{j i}^{k} \partial_{k}=0
$$

Since $\partial_{1}, \ldots, \partial_{n}$ are linearly independent at each point, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
(\Leftarrow) Conversely, suppose $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ in the coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$. Then $\nabla_{\partial_{i}} \partial_{j}=\nabla_{\partial_{j}} \partial_{i}$. Hence,

$$
T\left(\partial_{i}, \partial_{j}\right)=\nabla_{\partial_{i}} \partial_{j}-\nabla_{\partial_{j}} \partial_{i}=0
$$

Since $T($,$) is a bilinear function on T_{p} M$, this proves that $T(X, Y)_{p}:=T\left(X_{p}, Y_{p}\right)=0$ for all $X_{p}, Y_{p} \in T_{p} M$. Thus, for all $X, Y \in \mathfrak{X}(M)$, we have $T(X, Y)=0$.

Remark 13.6. Because of this proposition, a torsion-free connection is also called a symmetric connection.

Example 13.7 (Christoffel symbols for the Poincaré half-plane). The Poincaré halfplane (Example 12.6) is covered by a single coordinate open set (U, x, y). Let $\partial_{1}=$ $\partial / \partial x, \partial_{2}=\partial / \partial y$ be the coordinate frame. We showed in Example 12.6 that its connection form ω_{2}^{1} relative to the orthonormal frame $e_{1}=y \partial_{1}, e_{2}=y \partial_{2}$ is

$$
\omega_{2}^{1}=-\frac{1}{y} d x
$$

Then

$$
\partial_{1}=\frac{1}{y} e_{1}, \quad \partial_{2}=\frac{1}{y} e_{2},
$$

and for any smooth vector field X on the Poincaré half-plane,

$$
\begin{align*}
\nabla_{X} \partial_{1} & =\nabla_{X}\left(\frac{1}{y} e_{1}\right)=X\left(\frac{1}{y}\right) e_{1}+\frac{1}{y} \nabla_{X} e_{1} \\
& =-\frac{1}{y^{2}}(X y) y \partial_{1}+\frac{1}{y} \omega_{1}^{2}(X) e_{2} \\
& =-\frac{1}{y}(X y) \partial_{1}+\frac{1}{y^{2}} d x(X) y \partial_{2} \\
& =-\frac{1}{y}(X y) \partial_{1}+\frac{1}{y}(X x) \partial_{2} \tag{13.2}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\nabla_{X} \partial_{2}=-\frac{1}{y}(X x) \partial_{1}-\frac{1}{y}(X y) \partial_{2} \tag{13.3}
\end{equation*}
$$

By (13.2) and (13.3), relative to the coordinate frame $\partial_{1}, \partial_{2}$, the connection is given by

$$
\begin{array}{ll}
\nabla_{\partial_{1}} \partial_{1}=\frac{1}{y} \partial_{2}, & \nabla_{\partial_{2}} \partial_{1}=-\frac{1}{y} \partial_{1}, \\
\nabla_{\partial_{1}} \partial_{2}=-\frac{1}{y} \partial_{1}, & \nabla_{\partial_{2}} \partial_{2}=-\frac{1}{y} \partial_{2} .
\end{array}
$$

Therefore, the Christoffel symbols $\Gamma_{i j}^{k}$ for the Poincaré half-plane are

$i j$	1	2
11	0	$1 / y$
12	$-1 / y$	0
21	$-1 / y$	0
22	0	$-1 / y$

Problems

13.1. Covariant derivative along a curve

Verify that if $D V / d t$ is defined by (13.1), then it satisfies the three properties (i), (ii), and (iii) of Theorem 13.1.

13.2. Covariant derivative on a surface in \mathbb{R}^{3}

Let M be a surface in \mathbb{R}^{3} with its Riemannian connection: for $X, Y \in \mathfrak{X}(M)$,

$$
\nabla_{X} Y=\operatorname{pr}\left(D_{X} Y\right)
$$

If $V(t)$ is a vector field along a curve $c(t)$ in M, show that $D V / d t=\operatorname{pr}(d V / d t)$. (Hint: Show that $\operatorname{pr}(d V / d t)$ verifies the three properties of the covariant derivative.)

13.3. Chain rule for the covariant derivative

Suppose M is a manifold with a connection and $D V / d t$ is the covariant derivative of a vector field V along a curve $c(t)$ in M. If t is a C^{∞} function of another variable u, then V gives rise to a vector field $V(t(u))$ along the curve $\bar{c}(u)=c(t(u))$. We will write $\bar{V}(u)=V(t(u))$. Show that

$$
\frac{D \bar{V}}{d u}=\frac{D V}{d t} \frac{d t}{d u} .
$$

13.4. Christoffel symbols of a surface of revolution

Let M be a surface of revolution in \mathbb{R}^{3} with parametrization

$$
\psi(u, v)=\left[\begin{array}{c}
f(u) \cos v \\
f(u) \sin v \\
g(u)
\end{array}\right], \quad 0<v<2 \pi
$$

as in Problem 5.7. Let ∇ be the Riemannian connection on M. Find the Christoffel symbols of ∇ with respect to u, v.

13.5. Christoffel symbols of the Poincaré disk

Compute the Christoffel symbols of the Riemannian connection on the Poincaré disk \mathbb{D} in Problem 11.1.

$\S 14$ Geodesics

In this section we prove the existence and uniqueness of a geodesic with a specified initial point and a specified initial velocity. As an example, we determine all the geodesics on the Poincaré half-plane. These geodesics played a pivotal role in the history of non-Euclidean geometry, for they proved for the first time that the parallel postulate is independent of Euclid's first four postulates.

14.1 The Definition of a Geodesic

A straight line in \mathbb{R}^{n} with parametrization

$$
c(t)=p+t v, \quad p, v \in \mathbb{R}^{n}
$$

is characterized by the property that its acceleration $c^{\prime \prime}(t)$ is identically zero. If $T(t)=c^{\prime}(t)$ is the tangent vector of the curve at $c(t)$, then $c^{\prime \prime}(t)$ is also the covariant derivative $D T / d t$ associated to the Euclidean connection D on \mathbb{R}^{n}. This example suggests a way to generalize the notion of "straightness" to an arbitrary manifold with a connection.

Definition 14.1. Let M be a manifold with an affine connection ∇ and I an open, closed, or half-open interval in \mathbb{R}. A parametrized curve $c: I \rightarrow M$ is a geodesic if the covariant derivative $D T / d t$ of its velocity vector field $T(t)=c^{\prime}(t)$ is zero. The geodesic is said to be maximal if its domain I cannot be extended to a larger interval.

Remark 14.2. The notion of a geodesic depends only on a connection and does not require a metric on the manifold M. However, if M is a Riemannian manifold, then we will always take the connection to be the unique Riemannian connection. On a Riemannian manifold, the speed of a curve $c(t)$ is defined to be the magnitude of its velocity vector:

$$
\left\|c^{\prime}(t)\right\|=\sqrt{\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle}
$$

Proposition 14.3. The speed of a geodesic on a Riemannian manifold is constant.
Proof. Let $T=c^{\prime}(t)$ be the velocity of the geodesic. The speed is constant if and only if its square $f(t)=\langle T, T\rangle$ is constant. But

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}\langle T, T\rangle \\
& =2\left\langle\frac{D T}{d t}, T\right\rangle=0 .
\end{aligned}
$$

So $f(t)$ is constant.

Let M be a smooth surface in \mathbb{R}^{3}. Recall that its Riemannian connection is given by

$$
\nabla_{X} Y=\left(D_{X} Y\right)_{\tan },
$$

the tangential component of the directional derivative $D_{X} Y$. If N is a unit normal vector field on an open subset U of M, then the tangential component of a vector field Z along M is

$$
Z_{\tan }=Z-\langle Z, N\rangle N
$$

By Problem 13.2, for a vector field V along a curve $c(t)$ in M, the covariant derivative associated to the Riemannian connection ∇ on M is

$$
\frac{D V}{d t}=\left(\frac{d V}{d t}\right)_{\tan }
$$

Example 14.4 (Geodesics on a sphere). On a 2-sphere M of radius a in \mathbb{R}^{3}, let $\gamma(t)$ be a great circle parametrized by arc length. Then $\gamma(t)$ has unit speed. Differentiating

$$
\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle=1
$$

with respect to t gives

$$
2\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime}(t)\right\rangle=0
$$

This shows that the acceleration $\gamma^{\prime \prime}(t)$ of a unit-speed curve in \mathbb{R}^{3} is perpendicular to the velocity.

Since $\gamma(t)$ lies in the plane of the circle, so do $\gamma^{\prime}(t)$ and $\gamma^{\prime \prime}(t)$. Being perpendicular to $\gamma^{\prime}(t)$, the acceleration $\gamma^{\prime \prime}(t)$ must point in the radial direction (Figure 14.1). Hence, because $\gamma^{\prime \prime}(t)$ is perpendicular to the tangent plane at $\gamma(t)$,

$$
\frac{D T}{d t}=\left(\frac{d T}{d t}\right)_{\tan }=\gamma^{\prime \prime}(t)_{\tan }=0
$$

This shows that every great circle is a geodesic on the sphere.

Fig. 14.1. Velocity and acceleration vectors of a great circle.

14.2 Reparametrization of a Geodesic

In this section we show that a geodesic can be reparametrized as long as the reparametrization is a linear function.

Proposition 14.5. Suppose $\gamma(u)$ is a nonconstant geodesic on a manifold with a connection and $\bar{\gamma}(t):=\gamma(u(t))$ is a reparametrization of $\gamma(u)$. Then $\bar{\gamma}(t)$ is a geodesic if and only if $u=\alpha t+\beta$ for some real constants α and β.
Proof. Let $T(u)=\gamma^{\prime}(u)$ and $\bar{T}(t)=\bar{\gamma}^{\prime}(t)$ be the tangent vector fields of the two curves $\gamma(u)$ and $\bar{\gamma}(t)$. By the chain rule,

$$
\begin{aligned}
\bar{T}(t) & =\frac{d}{d t} \gamma(u(t))=\gamma^{\prime}(u(t)) u^{\prime}(t) \\
& =u^{\prime}(t) T(u(t)) .
\end{aligned}
$$

By property (ii) of a covariant derivative,

$$
\begin{aligned}
\frac{D \bar{T}}{d t} & =u^{\prime \prime}(t) T(u(t))+u^{\prime}(t) \frac{D T(u(t))}{d t} \\
& =u^{\prime \prime}(t) T(u(t))+u^{\prime}(t) \frac{D T}{d u} \frac{d u}{d t} \\
& =u^{\prime \prime}(t) T(u(t))
\end{aligned}
$$

$$
=u^{\prime \prime}(t) T(u(t))+u^{\prime}(t) \frac{D T}{d u} \frac{d u}{d t} \quad \text { (by the chain rule, Problem 13.3) }
$$

where $D T / d u=0$ because $\gamma(u)$ is a geodesic. Since $T(u)$ has constant length, it is never zero. Therefore,

$$
\frac{D \bar{T}}{d t}=0 \quad \Longleftrightarrow \quad u^{\prime \prime}=0 \quad \Longleftrightarrow \quad u=\alpha t+\beta
$$

for some $\alpha, \beta \in \mathbb{R}$.
Corollary 14.6. Let (a, b) be an interval containing 0 . For any positive constant $k \in \mathbb{R}^{+}$, the curve $\gamma(u)$ is a geodesic on (a, b) with initial point q and initial vector v if and only if $\bar{\gamma}(t):=\gamma(k t)$ is a geodesic on $(a / k, b / k)$ with initial point q and initial vector $k v$.

Proof. Since

$$
\frac{a}{k}<t<\frac{b}{k} \quad \Longleftrightarrow \quad a<k t<b
$$

the curve $\bar{\gamma}(t):=\gamma(k t)$ is defined on $(a / k, b / k)$ if and only if $\gamma(t)$ is defined on (a, b). By the chain rule,

$$
\begin{equation*}
\bar{\gamma}^{\prime}(t)=k \gamma^{\prime}(k t) . \tag{14.1}
\end{equation*}
$$

Equivalently,

$$
\bar{T}(t)=k T(k t)
$$

so that

$$
\frac{D \bar{T}}{d t}(t)=k^{2} \frac{D T}{d t}(k t)
$$

Thus, $\bar{\gamma}$ is a geodesic if and only if γ is a geodesic. They have the same initial point $\bar{\gamma}(0)=\gamma(0)$. By (14.1), their initial vectors are related by

$$
\bar{\gamma}^{\prime}(0)=k \gamma^{\prime}(0)
$$

14.3 Existence of Geodesics

Suppose M is a manifold with a connection ∇, and $(U, \phi)=\left(U, x^{1}, \ldots, x^{n}\right)$ is a chart relative to which the Christoffel symbols are $\Gamma_{i j}^{k}$. Let $c:[a, b] \rightarrow M$ be a smooth curve. In the chart (U, ϕ) the curve c has coordinates

$$
(\phi \circ c)(t)=\left(x^{1}(c(t)), \ldots, x^{n}(c(t))\right) .
$$

We will write $y(t)=(\phi \circ c)(t)$ and $y^{i}(t)=\left(x^{i} \circ c\right)(t)$, and say that c is given in U by

$$
y(t)=\left(y^{1}(t), \ldots, y^{n}(t)\right) .
$$

In this section we will determine a set of differential equations on $y^{i}(t)$ for the curve to be a geodesic.

Denote by \dot{y}^{i} the first derivative $d y^{i} / d t$ and by \ddot{y}^{i} the second derivative $d^{2} y^{i} / d t^{2}$. Let $\partial_{i}=\partial / \partial x^{i}$. Then

$$
T(t)=c^{\prime}(t)=\sum \dot{y}^{j} \partial_{j, c(t)}
$$

and

$$
\begin{align*}
\frac{D T}{d t}(t) & =\sum_{j} \ddot{y}^{j} \partial_{j, c(t)}+\sum_{j} \dot{y}^{j} \nabla_{c^{\prime}(t)} \partial_{j} \\
& =\sum_{j} \ddot{y}^{j} \partial_{j, c(t)}+\sum_{i, j} \dot{y}^{j} \nabla_{\dot{y}^{i}} \partial_{i, c(t)} \partial_{j} . \tag{14.2}
\end{align*}
$$

To simplify the notation, we sometimes write ∂_{j} to mean $\partial_{j, c(t)}$ and $\Gamma_{i j}^{k}$ to mean $\Gamma_{i j}^{k}(c(t))$. Then (14.2) becomes

$$
\begin{aligned}
\frac{D T}{d t} & =\sum_{j} \ddot{y}^{j} \partial_{j}+\sum_{i, j} \dot{y}^{j} \nabla_{\dot{y}^{i} \partial_{i}} \partial_{j} \\
& =\sum_{k} \dot{y}^{k} \partial_{k}+\sum_{i, j, k} \dot{y}^{i} \dot{y}^{j} \Gamma_{i j}^{k} \partial_{k} \\
& =\sum_{k}\left(\ddot{y}^{k}+\sum_{i, j} \dot{y}^{i} \dot{y}^{j} \Gamma_{i j}^{k}\right) \partial_{k} .
\end{aligned}
$$

So $c(t)$ is a geodesic if and only if

$$
\dot{y}^{k}+\sum_{i, j} \Gamma_{i j}^{k} \dot{y}^{i} \dot{y}^{j}=0, \quad k=1, \ldots, n .
$$

We summarize this discussion in the following theorem.
Theorem 14.7. On a manifold with a connection, a parametrized curve $c(t)$ is a geodesic if and only if relative to any chart $(U, \phi)=\left(U, x^{1}, \ldots, x^{n}\right)$, the components of $(\phi \circ c)(t)=\left(y^{1}(t), \ldots, y^{n}(t)\right)$ satisfy the system of differential equations

$$
\begin{equation*}
\ddot{y}^{k}+\sum_{i, j} \Gamma_{i j}^{k} \dot{y}^{i} \dot{y}^{j}=0, \quad k=1, \ldots, n, \tag{14.3}
\end{equation*}
$$

where the $\Gamma_{i j}^{k}$'s are evaluated on $c(t)$.

This is a system of second-order ordinary differential equations on the real line, called the geodesic equations. By an existence and uniqueness theorem of ordinary differential equations, we have the following theorem.

Theorem 14.8. Let M be a manifold with a connection ∇. Given any point $p \in M$ and tangent vector $v \in T_{p} M$, there is a geodesic $c(t)$ in M with initial point $c(0)=p$ and initial velocity $c^{\prime}(0)=v$. Moreover, this geodesic is unique in the sense that any other geodesic satisfying the same initial conditions must agree with $c(t)$ on the intersection of their domains.

Example 14.9 (Geodesics on a sphere). Suppose $\gamma:[a, b] \rightarrow S^{2}$ is a geodesic. For $t_{0} \in[a, b]$, there is a great circle through $\gamma\left(t_{0}\right)$ with velocity $\gamma^{\prime}\left(t_{0}\right)$. From Example 14.4, we know that this great circle is a geodesic. Since a geodesic with a given point and a given velocity vector at the point is unique (Theorem 14.8), $\gamma(t)$ must coincide with a great circle wherever it is defined. This proves the converse of Example 14.4 that all geodesics on S^{2} lie on great circles.

Let $\gamma_{v}(t, q)$ be the unique maximal geodesic with initial point q and initial vector $v \in T_{q} M$. We also write $\gamma_{v}(t)$. By Corollary 14.6,

$$
\gamma_{v}(k t)=\gamma_{k v}(t)
$$

for any positive real number k.
On a Riemannian manifold we always use the unique Riemannian connection to define geodesics. In this case, tangent vectors have lengths and the theory of ordinary differential equations gives the following theorem.

Theorem 14.10. For any point p of a Riemannian manifold M, there are a neighborhood U of p and numbers $\delta, a>0$ so that for any $q \in U$ and $v \in T_{q} M$ with $\|v\|<\delta$, there is a unique geodesic $\gamma:(-a, a) \rightarrow M$ with $\gamma(0)=q$ and $\gamma^{\prime}(0)=v$.

A priori the interval of definition $(-a, a)$ of the geodesic in this theorem may be quite small. However, by rescaling the interval by a constant factor (Corollary 14.6), one can expand the interval to any finite length, at the expense of making the initial vector shorter.

Theorem 14.11. For any point p of a Riemannian manifold M, there are a neighborhood U of p and a real number $\varepsilon>0$ so that for any $q \in U$ and $\bar{v} \in T_{q} M$ with $\|\bar{v}\|<\varepsilon$, there is a unique geodesic $\bar{\gamma}:(-2,2) \rightarrow M$ with $\bar{\gamma}(0)=q$ and $\bar{\gamma}(0)=\bar{v}$.

Proof. Fix $p \in M$ and find a neighborhood U of p and positive numbers δ and a as in Theorem 14.10. Set $k=a / 2$. By Corollary 14.6, $\gamma(t)$ is a geodesic on $(-a, a)$ with initial point q and initial vector v if and only if $\bar{\gamma}(t):=\gamma(k t)$ is a geodesic on $(-a / k, a / k)=(-2,2)$ with initial point q and initial vector $\bar{v}:=k v$. Moreover,

$$
\|v\|=\left\|\gamma^{\prime}(0)\right\|<\delta \quad \Longleftrightarrow \quad\|\bar{v}\|=\|\bar{\gamma}(0)\|=k\|v\|<k \delta=\frac{a \delta}{2}
$$

Choose $\varepsilon=a \delta / 2$. Then Theorem 14.10 translates into this one.

Proposition 14.12. A connection-preserving diffeomorphism $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$ takes geodesics to geodesics.

Proof. Suppose $c(t)$ is a geodesic in M, with tangent vector field $T(t)=c^{\prime}(t)$. If $\tilde{T}(t)=(f \circ c)^{\prime}(t)$ is the tangent vector field of $f \circ c$, then

$$
\tilde{T}(t)=f_{*}\left(c_{*} \frac{d}{d t}\right)=f_{*}\left(c^{\prime}(t)\right)=f_{*} T
$$

Let $D / d t$ and $\tilde{D} / d t$ be the covariant derivatives along $c(t)$ and $(f \circ c)(t)$, respectively. Then $D T / d t \equiv 0$, because $c(t)$ is a geodesic. By Proposition 13.4,

$$
\frac{\tilde{D} \tilde{T}}{d t}=f_{*}\left(\frac{D T}{d t}\right)=f_{*} 0=0 .
$$

Hence, $f \circ c$ is a geodesic in \tilde{M}.
Because an isometry of Riemannian manifolds preserves the Riemannian connection (Problem 8.2), by Proposition 14.12 it carries geodesics to geodesics.

14.4 Geodesics in the Poincaré Half-Plane

The Poincaré half-plane is covered by a single coordinate open set with coordinates x, y (Figure 14.2). In Example 13.7 we calculated its Christoffel symbols. The

Fig. 14.2. The Poincaré half-plane.
system of geodesic equations (14.3) for the geodesic $c(t)=(x(t), y(t))$ consists of two equations:

$$
\begin{gather*}
\ddot{x}-\frac{2}{y} \dot{x} \dot{y}=0, \tag{14.4}\\
\ddot{y}+\frac{1}{y} \dot{x}^{2}-\frac{1}{y} \dot{y}^{2}=0 . \tag{14.5}
\end{gather*}
$$

There is a third equation arising from the fact that a geodesic has constant speed (Proposition 14.3):

$$
\begin{equation*}
\langle\dot{c}(t), \dot{c}(t)\rangle=\text { constant } . \tag{14.6}
\end{equation*}
$$

This equation is a consequence of the first two, because any curve satisfying Equations (14.4) and (14.5) will be a geodesic and hence will have constant speed. We include it because of its simplicity. In fact, by a simple reparametrization, we may even assume that the speed is 1 . Hence, (14.6) becomes

$$
\frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}}=1
$$

or

$$
\begin{equation*}
\dot{x}^{2}+\dot{y}^{2}=y^{2} . \tag{14.7}
\end{equation*}
$$

Assuming \dot{x} not identically zero, we can divide (14.4) by \dot{x} and solve it by separation of variables:

$$
\frac{\ddot{x}}{\dot{x}}=2 \frac{\dot{y}}{y} .
$$

Integrating both sides with respect to t gives

$$
\ln \dot{x}=2(\ln y)+\text { constant }=\ln \left(y^{2}\right)+\text { constant } .
$$

Hence,

$$
\begin{equation*}
\dot{x}=k y^{2} \tag{14.8}
\end{equation*}
$$

for some constant k
Plugging this into (14.7) and solving for \dot{y} gives

$$
\begin{gather*}
k^{2} y^{4}+\dot{y}^{2}=y^{2}, \tag{14.9}\\
\dot{y}= \pm y \sqrt{1-k^{2} y^{2}} . \tag{14.10}
\end{gather*}
$$

Dividing (14.8) by (14.10), we get

$$
\frac{d x}{d y}= \pm \frac{k y^{2}}{y \sqrt{1-k^{2} y^{2}}}= \pm \frac{k y}{\sqrt{1-k^{2} y^{2}}}
$$

Integrate with respect to y to get

$$
x=\mp \frac{1}{k} \sqrt{1-k^{2} y^{2}}+\text { constant } d .
$$

This equation can be put in the form

$$
(x-d)^{2}+y^{2}=\frac{1}{k^{2}},
$$

which is the equation of a circle centered on the x-axis (Figure 14.3).
In our derivation so far, we assumed that the first derivative \dot{x} is not identically zero. It remains to consider the case $\dot{x} \equiv 0$. If $\dot{x} \equiv 0$, then $x=$ constant, so the curve is a vertical line. Thus, the geodesics in the Poincaré half-plane are either vertical lines or semicircles centered on the x-axis.

Fig. 14.3. A geodesic in the Poincaré half-plane.

Fig. 14.4. Geodesics in the Poincaré half-plane.

In this calculation we never used (14.5). It is in fact a redundant equation (Problem 14.1).

The Poincaré half-plane is important historically, since it provides a model of a non-Euclidean geometry. In Euclid's axiomatic development of plane geometry, the first four postulates are usually considered self-evident [10, pp. 14-18]. The fifth postulate, called the parallel postulate, was a source of controversy. Two lines in the plane are said to be parallel if they do not intersect. One form of the fifth postulate states that given a line and a point not on the line, there is a unique parallel line through the given point. For hundreds of years, heroic efforts were made to deduce the fifth postulate from the other four, to derive a contradiction, or to prove its independence. If we interpret the geodesics of the Poincaré half-plane as lines, then the Poincaré half-plane satisfies Euclid's first four postulates, but not the parallel postulate: given a geodesic, say a vertical line, and a point not on the line, there are infinitely many geodesics through the point and not intersecting the given line (see Figure 14.4). In this way the Poincaré half-plane proves conclusively that the parallel postulate is independent of Euclid's first four postulates.

14.5 Parallel Translation

Closely related to geodesics is the notion of parallel translation along a curve. A parallel vector field along a curve is an analogue of a constant vector field in \mathbb{R}^{n}. Throughout the rest of this chapter we assume that M is a manifold with a connection ∇ and $c: I \rightarrow M$ is a smooth curve in M defined on some interval I.

Definition 14.13. A smooth vector field $V(t)$ along c is parallel if $D V / d t \equiv 0$ on I.
In this terminology a geodesic is simply a curve c whose tangent vector field $T(t)=c^{\prime}(t)$ is parallel along c.

Fix a point $p=c\left(t_{0}\right)$ and a frame e_{1}, \ldots, e_{n} in a neighborhood U of p in M. Let $\left[\omega_{j}^{i}\right]$ be the matrix of connection forms of ∇ relative to this frame. If $V(t)=$ $\sum v^{i}(t) e_{i, c(t)}$ for $c(t) \in U$, then

$$
\begin{aligned}
\frac{D V}{d t} & =\sum_{i} \dot{v}^{i} e_{i, c(t)}+\sum_{i} v^{i} \frac{D e_{i, c(t)}}{d t} \\
& =\sum_{i} \dot{v}^{i} e_{i, c(t)}+\sum_{j} v^{j} \nabla_{c^{\prime}(t)} e_{j} \\
& =\sum_{i} \dot{v}^{i} e_{i, c(t)}+\sum_{i, j} v^{j} \omega_{j}^{i}\left(c^{\prime}(t)\right) e_{i, c(t)} \\
& =\sum_{i}\left(\dot{v}^{i}+\sum_{j} \omega_{j}^{i}\left(c^{\prime}(t)\right) v^{j}\right) e_{i, c(t)} .
\end{aligned}
$$

Thus $D V / d t=0$ if and only if

$$
\begin{equation*}
\dot{v}^{i}+\sum_{j=1}^{n} \omega_{j}^{i}\left(c^{\prime}(t)\right) v^{j}=0, \quad i=1, \ldots, n . \tag{14.11}
\end{equation*}
$$

This is a system of linear first-order ordinary differential equations. By the existence and uniqueness theorem of ordinary differential equations, there is always a unique solution $V(t)$ on a small interval about t_{0} with a given $V\left(t_{0}\right)$. In the next subsection we show that in fact the solution exists not only over a small interval, but also over the entire curve c.

If $V(t)$ is parallel along a curve $c:[a, b] \rightarrow M$, then we say that $V(b)$ is obtained from $V(a)$ by parallel translation along c or that $V(b)$ is the parallel translate or parallel transport of $V(a)$ along c. By the uniqueness theorem of ordinary differential equations, $V(t)$ is uniquely determined by the initial condition $V(a)$, so if parallel translation exists along c, then it is well defined.

14.6 Existence of Parallel Translation Along a Curve

While a geodesic is guaranteed to exist only locally, parallel translation is possible along the entire length of a curve.

Theorem 14.14. Let M be a manifold with a connection ∇ and let $c:[a, b] \rightarrow M$ be a smooth curve in M. Parallel translation is possible from $c(a)$ to $c(b)$ along c, i.e., given a vector $v_{0} \in T_{c(a)}$, there exists a parallel vector field $V(t)$ along $c:[a, b] \rightarrow$ M such that $V(a)=v_{0}$. Parallel translation along c induces a linear isomorphism $\varphi_{a, b}: T_{c(a)}(M) \xrightarrow{\sim} T_{c(b)}(M)$.

Proof. Because the parallel transport equation $D V / d t=0$ is \mathbb{R}-linear in V, a linear combination with constant coefficients of parallel vector fields along c is again parallel along c.

Let w_{1}, \ldots, w_{n} be a basis for $T_{c\left(t_{0}\right)} M$. For each $i=1, \ldots, n$, there is an interval inside $[a, b]$ of length ε_{i} about t_{0} such that a parallel vector field $W_{i}(t)$ exists along
$c:\left(t_{0}-\varepsilon_{i}, t_{0}+\varepsilon_{i}\right) \rightarrow M$ whose value at t_{0} is w_{i}. For ε equal to the minimum of $\varepsilon_{1}, \ldots, \varepsilon_{n}$, the n basis vectors w_{1}, \ldots, w_{n} for $T_{c\left(t_{0}\right)} M$ can be parallel translated along c over the interval $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$. By taking linear combinations as in the remark above, we can parallel translate every tangent vector in $T_{c\left(t_{0}\right)} M$ along c over the interval $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$.

For $t_{1} \in\left(t_{0}-\boldsymbol{\varepsilon}, t_{0}+\boldsymbol{\varepsilon}\right)$ parallel translation along c produces a linear map $\varphi_{t_{0}, t_{1}}$: $T_{c\left(t_{0}\right)} M \rightarrow T_{c\left(t_{1}\right)} M$. Note that a vector field $V(t)$ is parallel along a curve $c(t)$ if and only if $V(-t)$ is parallel along $c(-t)$, the curve c reparametrized with the opposite orientation. This shows that the linear map $\varphi_{t_{0}, t_{1}}$ has an inverse $\varphi_{t_{1}, t_{0}}$ and is therefore an isomorphism.

Thus for each $t \in[a, b]$ there is an open interval about t over which parallel translation along c is possible. Since $[a, b]$ is compact, it is covered by finitely many such open intervals. Hence, it is possible to parallel translate along c from $c(a)$ to $c(b)$.

While a geodesic with a given initial point and initial velocity exists only locally, parallel translation is always possible along the entire length of a smooth curve. In fact, the curve need not even be smooth.

Definition 14.15. A curve $c:[a, b] \rightarrow M$ is piecewise smooth if there exist numbers

$$
a=t_{0}<t_{1}<\cdots<t_{r}=b
$$

such that c is smooth on $\left[t_{i}, t_{i+1}\right]$ for $i=0, \ldots, r-1$.
By parallel translating over each smooth segment in succession, one can parallel translate over any piecewise smooth curve.

14.7 Parallel Translation on a Riemannian Manifold

Parallel translation is defined on any manifold with a connection; it is not necessary to have a Riemannian metric. On a Riemannian manifold we will always assume that parallel translation is with respect to the Riemannian connection.

Proposition 14.16. On a Riemannian manifold M parallel translation preserves length and inner product: if $V(t)$ and $W(t)$ are parallel vector fields along a smooth curve $c:[a, b] \rightarrow M$, then the length $\|V(t)\|$ and the inner product $\langle V(t), W(t)\rangle$ are constant for all $t \in[a, b]$.

Proof. Since $\|V(t)\|=\sqrt{\langle V(t), V(t)\rangle}$, it suffices to prove that $\langle V(t), W(t)\rangle$ is constant. By the product rule for the covariant derivative of a connection compatible with the metric (Theorem 13.2),

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle=0
$$

since $D V / d t=0$ and $D W / d t=0$. Thus $\langle V(t), W(t)\rangle$ is constant as a function of t.

Since the angle θ between two vectors u and v can be defined in terms of length and inner product by

$$
\cos \theta=\frac{\langle u, v\rangle}{\|u\|\|v\|}, \quad 0 \leq \theta \leq \pi
$$

parallel translation also preserves angles.

Fig. 14.5. Parallel translating v along a closed piecewise smooth geodesic.

Example 14.17 (Parallel translation on a sphere). Let γ_{1} and γ_{2} be two meridians through the north pole p of a sphere S^{2} making an angle θ with each other, and let v be a vector at p tangent to γ_{1} (Figure 14.5). As great circles, both γ_{1} and γ_{2} are geodesics on the sphere. We will parallel translate v along γ_{1} to the equator, along the equator to γ_{2}, and then along γ_{2} back to the north pole p.

Since γ_{1} is a geodesic, its tangent vector field is parallel, so the parallel translate of v to the equator remains parallel to γ_{1} and perpendicular to the equator. Since parallel translation preserves angles, as v is parallel translated along the equator to γ_{2}, it remains perpendicular to the equator at all times. When it reaches γ_{2} along the equator, it will be tangent to γ_{2}. Parallel translating this vector along γ_{2} back to p results in a tangent vector to γ_{2} at p. Figure 14.5 shows the position of v at various points of its journey. From this example we see that parallel translating a tangent vector of a manifold around a closed loop need not end in the original vector. This phenomenon is called holonomy.

Problems

14.1. Geodesic equations

Show that if we differentiate (14.10) with respect to t, we end up with (14.5). Hence, (14.5) is redundant.
14.2. Surface of revolution in \mathbb{R}^{3}

In Problem 5.7 you compute the mean and Gaussian curvatures of a surface of revolution M in \mathbb{R}^{3}.
(a) Using the notations of Problem 5.7, find the geodesic equations of the surface of revolution.
(b) Prove that the meridians of the surface of revolution are geodesics.
(c) Find a necessary and sufficient condition on $f(u)$ and $g(u)$ for a latitude circle to be a geodesic.

14.3. Poincaré disk

Let \mathbb{D} be the Poincaré disk (Problem 11.1).
(a) Show that in polar coordinates (r, θ), the Poincaré metric is given by

$$
\langle,\rangle_{(r, \theta)}=\frac{4\left(d r \otimes d r+r^{2} d \theta \otimes d \theta\right)}{\left(1-r^{2}\right)^{2}}
$$

Using polar coordinates, compute for \mathbb{D}
(b) the Gaussian curvature,
(c) the Christoffel symbols,
(d) the geodesic equations.

$\S 15$ Exponential Maps

There are two exponential maps in geometry: the exponential map of a connection and the exponential map for a Lie group. While these are two independent notions, when a Lie group has a bi-invariant Riemannian metric, as all compact Lie groups do, the exponential map for the Lie group coincides with the exponential map of the Riemannian connection.

On a manifold M with a connection, a geodesic is locally defined by a system of second-order ordinary differential equations. By the existence and uniqueness theorems of ordinary differential equations there is a unique geodesic through any given point q with any given direction v. However, this geodesic may be very short, defined only on a small interval $(-a, a)$ about 0 . By reparametrizing the geodesic by a constant factor, one can expand the domain of definition of the geodesic at the expense of shortening the initial vector.

On a Riemannian manifold every point p has a neighborhood U in which there is a uniform bound such that all geodesics starting in U with initial vectors of length less than the bound will be defined on an interval including $[-1,1]$ (Theorem 14.11). For any $q \in U$ this leads to the definition of the exponential map Exp_{q} from a small neighborhood of the origin in $T_{q} M$ to the manifold M. This exponential map derives its importance from, among other things, providing coordinate charts in which any isometry is represented by a linear map (see Section 15.2).

The exponential map for a Lie group G is defined in terms of the integral curves of the left-invariant vector fields on G. Unlike the exponential map of a connection, the Lie group exponential is defined on the entire Lie algebra \mathfrak{g}. It shares some of the properties of the exponential map of a connection. The problems at the end of the chapter explore the relationship between the two notions of exponential map.

15.1 The Exponential Map of a Connection

Suppose M is a manifold with an affine connection. For any point $q \in M$ and vector $v \in T_{q} M$, denote by $\gamma_{v}(t, q)$ or simply $\gamma_{v}(t)$ the unique maximal geodesic with initial point $\gamma_{v}(0)=q$ and initial vector $\gamma_{v}^{\prime}(0)=v$. If $\gamma_{v}(1)$ is defined, we set

$$
\operatorname{Exp}_{q}(v)=\gamma_{v}(1)
$$

Now assume that M is endowed with a Riemannian metric. For any point $p \in M$, Theorem 14.11 guarantees a neighborhood U of p and a real number $\varepsilon>0$ such that for all $q \in U$ the exponential map Exp_{q} is defined on the open ball $B(0, \varepsilon)$ in $T_{q} M$:

$$
\operatorname{Exp}_{q}: T_{q} M \supset B(0, \varepsilon) \rightarrow M
$$

Let $s: M \rightarrow T M$ be the zero section of the tangent bundle $T M$, and let $s(U)$ be the image of $U \subset M$ under s. Viewed as a function of two variables (q, v), the exponential map $\operatorname{Exp}_{q}(v)$ is defined on an ε-tube around $s(U)$ in $T M$ (see Figure 15.1).

Fig. 15.1. A neighborhood U of p and the domain of the exponential map in the tangent bundle $T M$.

Proposition 15.1. On a manifold with a connection the maximal geodesic with initial point q and initial vector v is $\gamma_{v}(t, q)=\operatorname{Exp}_{q}(t v)$.

Proof.

$$
\begin{aligned}
\operatorname{Exp}_{q}(t v) & =\gamma_{t v}(1) \quad\left(\text { definition of } \operatorname{Exp}_{q}\right) \\
& =\gamma_{v}(t) \quad(\text { Corollary 14.6 }) .
\end{aligned}
$$

Theorem 15.2 (Naturality of the exponential map). Let $f: N \rightarrow M$ be an isometry of Riemannian manifolds, and $p \in N$. Suppose $V \subset T_{p} N$ and $U \subset T_{f(p)} M$ are neighborhoods of the origin on which the exponential maps Exp_{p} and $\operatorname{Exp}_{f(p)}$ are defined. If the differential $f_{*, p}$ maps V into U, then the following diagram is commutative:

Proof. For $v \in V \subset T_{p} N$, let $\gamma_{v}(t, p)$ be the maximal geodesic in N with initial point p and initial vector v. Since an isometry takes geodesics to geodesics, $\left(f \circ \gamma_{v}\right)(t, p)$ is the maximal geodesic in M with initial point $f(p)$ and initial vector $f_{*} v$. By the uniqueness of the geodesic,

$$
\left(f \circ \gamma_{v}\right)(t, p)=\gamma_{f_{*} v}(t, f(p)) .
$$

Setting $t=1$ gives

$$
f\left(\operatorname{Exp}_{p} v\right)=\operatorname{Exp}_{f(p)}\left(f_{*} v\right)
$$

15.2 The Differential of the Exponential Map

Suppose p is a point in a Riemannian manifold N and $V \subset T_{p} N$ is a neighborhood of 0 on which the exponential map Exp_{p} is defined. Since $T_{p} N$ is a vector space, its tangent space $T_{0}\left(T_{p} N\right)$ at the origin can be canonically identified with $T_{p} N$.

Proposition 15.3. The differential $\left(\operatorname{Exp}_{p}\right)_{*, 0}$ at the origin of the exponential map $\operatorname{Exp}_{p}: V \subset T_{p} N \rightarrow N$ is the identity map $\mathbb{1}_{T_{p} N}: T_{p} N \rightarrow T_{p} N$.

Proof. For $v \in T_{p} N$, a curve $c(t)$ in $T_{p} N$ with $c(0)=0$ and $c^{\prime}(0)=v$ is $c(t)=t v$. Using this curve to compute the differential of Exp_{p}, we have

$$
\begin{aligned}
\left(\operatorname{Exp}_{p}\right)_{*, 0}(v) & =\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}_{p}(c(t))=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}_{p}(t v) \\
& =\left.\frac{d}{d t}\right|_{t=0} \gamma_{v}(t) \quad(\text { Proposition 15.1) } \\
& =\gamma_{v}(0)=v
\end{aligned}
$$

where $\gamma_{v}(t)$ is the unique geodesic with initial point p and initial vector v.

By the inverse function theorem, the map $\operatorname{Exp}_{p}: V \subset T_{p} N \rightarrow N$ is a local diffeomorphism at $0 \in T_{p} N$. Thus, there are neighborhoods V^{\prime} of 0 in $T_{p} N$ and $V^{\prime \prime}$ of p in N such that $\operatorname{Exp}_{p}: V^{\prime} \rightarrow V^{\prime \prime}$ is a diffeomorphism.

Now suppose $f: N \rightarrow M$ is an isometry of Riemannian manifolds. As above, there are neighborhoods U^{\prime} of 0 in $T_{f(p)} M$ and $U^{\prime \prime}$ of $f(p)$ in M such that $\operatorname{Exp}_{f(p)}: U^{\prime}$ $\rightarrow U^{\prime \prime}$ is a diffeomorphism. Since $f_{*, p}$ is continuous, one may choose V^{\prime} sufficiently small so that $f_{*, p}$ maps V^{\prime} to U^{\prime}. By the naturality of the exponential map (Theorem 15.2) there is a commutative diagram

$$
\begin{aligned}
T_{p} N & \supset V^{\prime} \xrightarrow[f_{*, p}]{ } U^{\prime} \subset T_{f(p)} M \\
\operatorname{Exp}_{p} \downarrow \simeq & \simeq \operatorname{Exp}_{f(p)} \\
N & \supset \quad V^{\prime \prime} \longrightarrow U^{\prime \prime} \subset M .
\end{aligned}
$$

This diagram may be interpreted as follows: relative to the coordinate charts given by the inverse of the exponential map, an isometry of Riemannian manifolds is locally a linear map; more precisely, it is the linear map given by its differential. This is in contrast to the usual statement about the differential $f_{*, p}$ at a point p being the best linear approximation to a C^{∞} map in a neighborhood of the point. Here the isometry f is equal to its differential right on the nose.

15.3 Normal Coordinates

Fix a point p in a Riemannian manifold M. By the preceding section, there is a neighborhood V of 0 in $T_{p} M$ and a neighborhood U of p in M such that the exponential map $\operatorname{Exp}_{p}: V \rightarrow U$ is a diffeomorphism. Using the exponential map we can transfer coordinates on $T_{p} M$ to M. Choose an orthonormal basis e_{1}, \ldots, e_{n} for $T_{p} M$ and let r^{1}, \ldots, r^{n} be the coordinates with respect to the orthonormal basis e_{1}, \ldots, e_{n} on $T_{p} M$. Then $x^{1}:=r^{1} \circ \operatorname{Exp}_{p}^{-1}, \ldots, x^{n}:=r^{n} \circ \operatorname{Exp}_{p}^{-1}$ is a coordinate system on U such that the tangent vectors $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ are orthonormal at p. The coordinate neighborhood $\left(U, x^{1}, \ldots, x^{n}\right)$ is called a normal neighborhood of p and x^{1}, \ldots, x^{n} are called normal coordinates on U.

In a normal neighborhood of p, the geodesics through p have a particularly simple expression, for the coordinate expression for the geodesic $\gamma(t)=\operatorname{Exp}_{p}(a t)$ for $a=\sum a^{i} e_{i} \in T_{p} M$ is

$$
x(\gamma(t))=r \circ \operatorname{Exp}_{p}^{-1}(\gamma(t))=a t .
$$

We write this as $\left(x^{1}, \ldots, x^{n}\right)=\left(a^{1} t, \ldots, a^{n} t\right)$.
Theorem 15.4. In a normal neighborhood $\left(U, x^{1}, \ldots, x^{n}\right)$ of p, all the partial derivatives of $g_{i j}$ and all the Christoffel symbols $\Gamma_{i j}^{k}$ vanish at p.

Proof. Let $\left(x^{1}, \ldots, x^{n}\right)=\left(a^{1} t, \ldots, a^{n} t\right)$ be a geodesic through p. It satisfies the geodesic equations

$$
\ddot{x}^{k}+\sum_{i, j} \Gamma_{i j}^{k} \dot{x}^{i} \dot{x} \dot{j}=0, \quad k=1, \ldots, n,
$$

or

$$
\sum \Gamma_{i j}^{k} a^{i} a^{j}=0 .
$$

Since this is true for all $\left(a^{1}, \ldots, a^{n}\right)$ at p, setting $\left(a^{1}, \ldots, a^{n}\right)=(0, \ldots, 1,0, \ldots, 0,1, \ldots, 0)$ with $a^{i}=a^{j}=1$ and all other entries 0 , we get

$$
\Gamma_{i j}^{k}+\Gamma_{j i}^{k}=0
$$

By the symmetry of the connection, $\Gamma_{i j}^{k}=0$ at the point p. (At other points, not all of $\left(x^{1}, \ldots, x^{n}\right)=\left(a^{1} t, \ldots, a^{n} t\right)$ will be geodesics. $)$

Write ∂_{i} for $\partial / \partial x^{i}$. By the compatibility of the connection ∇ with the metric,

$$
\partial_{k} g_{i j}=\partial_{k}\left\langle\partial_{i}, \partial_{j}\right\rangle=\left\langle\nabla_{\partial_{k}} \partial_{i}, \partial_{j}\right\rangle+\left\langle\partial_{i}, \nabla_{\partial_{k}} \partial_{j}\right\rangle .
$$

At $p, \nabla_{\partial_{k}} \partial_{i}=0$ and $\nabla_{\partial_{k}} \partial_{j}=0$ since all the Christoffel symbols vanish. Therefore, $\left(\partial_{k} g_{i j}\right)(p)=0$.

Normal coordinates are especially useful for computation, because at the point p, all $\nabla_{\partial_{k}} \partial_{i}=0$.

15.4 Left-Invariant Vector Fields on a Lie Group

Let G be a Lie group and $\mathfrak{g}=T_{e} G$ its Lie algebra. Any element $X_{e} \in \mathfrak{g}$ determines a left-invariant vector field X on G by $X_{g}:=\left(\ell_{g}\right)_{*}\left(X_{e}\right)$. This establishes a one-toone correspondence between $T_{e} G$ and the vector space of left-invariant vector fields on G. Sometimes we adopt an alternate notation for a left-invariant vector field on a Lie group: if $A \in \mathfrak{g}$, then the left-invariant vector field on G generated by A is \tilde{A}, with $\tilde{A}_{g}=\ell_{g *} A$.

Proposition 15.5. If $\varphi_{t}(p)$ is an integral curve starting at p of a left-invariant vector field X on a Lie group G, then for any $g \in G$, the left translate $g \varphi_{t}(p)$ is the integral curve of X starting at $g p$.

Proof. We compute the velocity of $g \varphi_{t}(p)$:

$$
\begin{aligned}
\frac{d}{d t}\left(g \varphi_{t}(p)\right) & =\left(\ell_{g}\right)_{*} \frac{d}{d t} \varphi_{t}(p) & & (\text { definition of } d / d t \text { and the chain rule) } \\
& =\left(\ell_{g}\right)_{*} X_{\varphi_{t}(p)} & & \left(\varphi_{t}(p) \text { is an integral curve of } X\right) \\
& =X_{g \varphi_{t}(p)} & & (X \text { is left-invariant }) .
\end{aligned}
$$

This proves that $g \varphi_{t}(p)$ is also an integral curve of X. At $t=0, g \varphi_{t}(p)=$ $g \varphi_{0}(p)=g p$.

Corollary 15.6. The local flow φ_{t} of a left-invariant vector field X on a Lie group G commutes with left multiplication: $\ell_{g} \circ \varphi_{t}=\varphi_{t} \circ \ell_{g}$ for all $g \in G$, whenever both sides are defined.

Proof. By Proposition 15.5, both $g \varphi_{t}(p)$ and $\varphi_{t}(g p)$ are integral curves of X starting at $g p$. By the uniqueness of the integral curve, $g \varphi_{t}(p)=\varphi_{t}(g p)$. This can be rewritten as $\left(\ell_{g} \circ \varphi_{t}\right)(p)=\left(\varphi_{t} \circ \ell g\right)(p)$.

Proposition 15.7. The maximal integral curve $\varphi_{t}(p)$ of a left-invariant vector field X on a Lie group G, where p is a point of G, is defined for all $t \in \mathbb{R}$.

Proof. By an existence theorem of ordinary differential equations, there are a real number $\varepsilon>0$ and an integral curve $\varphi_{t}(e):[-\varepsilon, \varepsilon] \rightarrow G$ of X through e. By Proposition 15.5, $p \varphi_{t}(e)=\varphi_{t}(p)$ is an integral curve of X defined on $[-\varepsilon, \varepsilon]$ through any point $p \in G$. Let $q=\varphi_{\varepsilon}(p)$ be the endpoint of $\varphi_{t}(p)$ on $[-\varepsilon, \varepsilon]$. Then $\varphi_{t}(q)$ is an integral curve of X defined on $[-\varepsilon, \varepsilon]$. The two integral curves $\varphi_{t}(p)$ and $\varphi_{t}(q)$ agree on their overlap and so the domain of $\varphi_{t}(p)$ can be extended to $[-\varepsilon, 2 \varepsilon]$. Thus, the domain of an integral curve of X through any point can always be extended an extra ε unit. By induction, the maximal integral curve of X through any point is defined for all $t \in \mathbb{R}$.

It follows from this proposition that a left-invariant vector field X on a Lie group G has a global flow $\varphi: \mathbb{R} \times G \rightarrow G$.

15.5 Exponential Map for a Lie Group

For a Lie group G there is also a notion of an exponential map. Unlike the exponential map of a connection, which is a priori defined only on a small neighborhood of 0 in the tangent space $T_{p} M$ of each point p in a manifold with a connection, the exponential map for a Lie group is defined on the entire tangent space $T_{e} G$, but only for the tangent space at the identity. When the Lie group has a bi-invariant Riemannian metric (Section 15.8), the exponential map for the Lie group coincides with the exponential map of the Riemannian connection.

For $X_{e} \in \mathfrak{g}:=T_{e} G$, denote by X the left-invariant vector field on G generated by X_{e}. In this section we consider primarily integral curves starting at the identity e. To show the dependence on X, we write $c_{X}(t)=\varphi_{t}(e)$ for the integral curve through e of the left-invariant vector field X on G.

If s is a real number, then

$$
\begin{aligned}
\frac{d}{d t} c_{X}(s t) & =s c_{X}^{\prime}(s t) \quad \text { (chain rule) } \\
& =s X_{c_{X}(s t)} \quad\left(c_{X} \text { is an integral curve of } X\right)
\end{aligned}
$$

This shows that $c_{X}(s t)$ as a function of t is an integral curve through e of the leftinvariant vector field $s X$. Hence,

$$
\begin{equation*}
c_{X}(s t)=c_{s X}(t) \tag{15.1}
\end{equation*}
$$

Definition 15.8. The exponential map for a Lie group G with Lie algebra \mathfrak{g} is the map exp: $\mathfrak{g} \rightarrow G$ defined by $\exp \left(X_{e}\right)=c_{X}(1)$ for $X_{e} \in \mathfrak{g}$.

To distinguish the exponential map of a connection from the exponential map for a Lie group, we denote the former as Exp_{p} and the latter as exp.

Proposition 15.9. (i) For $X_{e} \in \mathfrak{g}$, the integral curve starting at e of the left-invariant vector field X is $\exp \left(t X_{e}\right)=c_{X}(t)=\varphi_{t}(e)$.
(ii) For $X_{e} \in \mathfrak{g}$ and $g \in G$, the integral curve starting at g of the left-invariant vector field X is $g \exp \left(t X_{e}\right)$.
(iii) For $s, t \in \mathbb{R}$ and $X_{e} \in \mathfrak{g}, \exp \left((s+t) X_{e}\right)=\left(\exp s X_{e}\right)\left(\exp t X_{e}\right)$.
(iv) The exponential map $\exp : \mathfrak{g} \rightarrow G$ is a C^{∞} map.
(v) The differential at 0 of the exponential map, $\exp _{*, 0}: T_{0}(\mathfrak{g})=\mathfrak{g} \rightarrow T_{e} G=\mathfrak{g}$ is the identity map.
(vi) For the general linear group $\mathrm{GL}(n, \mathbb{R})$,

$$
\exp A=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \quad \text { for } A \in \mathfrak{g l}(n, \mathbb{R})
$$

Proof. (i) By the definition of exp and by (15.1),

$$
\exp \left(t X_{e}\right)=c_{t X}(1)=c_{X}(t)
$$

(ii) This follows from (i) and Proposition 15.5.
(iii) View s as a constant and differentiate with respect to t :

$$
\frac{d}{d t} c_{X}(s+t)=c_{X}^{\prime}(s+t)=X_{c_{X}(s+t)}
$$

This shows that $c_{X}(s+t)$ as a function of t is an integral curve with initial point $c_{X}(s)$ of the left-invariant vector field X. With s fixed, $c_{X}(s) c_{X}(t)$ is also an integral curve of X with initial point $c_{X}(s)$. By the uniqueness of integral curves,

$$
c_{X}(s+t)=c_{X}(s) c_{X}(t)
$$

Using (i), we can rewrite this equation as $\exp \left((s+t) X_{e}\right)=\left(\exp s X_{e}\right)\left(\exp t X_{e}\right)$.
(iv) (following [22], p. 103) The proof is based on the fact from the theory of ordinary differential equations that the flow of a C^{∞} vector field is C^{∞}. Recall that for each $X_{e} \in \mathfrak{g}, X$ is the left-invariant vector field generated by X_{e}. Define a vector field V on $G \times \mathfrak{g}$ by

$$
V_{\left(g, X_{e}\right)}=\left(X_{g}, 0\right)=\left(\ell_{g *}\left(X_{e}\right), 0\right) .
$$

By (ii), the integral curve of V starting at $\left(g, X_{e}\right)$ is $c(t)=\left(g \exp t X_{e}, X_{e}\right)$. The global flow of V is

$$
\begin{aligned}
\varphi: \mathbb{R} \times(G \times \mathfrak{g}) & \rightarrow G \times \mathfrak{g} \\
\varphi\left(t,\left(g, X_{e}\right)\right) & =\left(g \exp t X_{e}, X_{e}\right)
\end{aligned}
$$

Let $\pi: G \times \mathfrak{g} \rightarrow G$ be the projection to the first factor. Then

$$
\exp \left(X_{e}\right)=(\pi \circ \varphi)\left(1,\left(e, X_{e}\right)\right)
$$

As a composite of C^{∞} maps, exp: $\mathfrak{g} \rightarrow G$ is C^{∞}.
(v) For $X_{e} \in \mathfrak{g}$, a C^{∞} curve starting at 0 in \mathfrak{g} with initial vector X_{e} is $c(t)=t X_{e}$. Computing the differential $\exp _{*, 0}$ using this curve, we get by (i) that

$$
\exp _{*, 0}\left(X_{e}\right)=\left.\frac{d}{d t}\right|_{t=0} \exp c(t)=\left.\frac{d}{d t}\right|_{t=0} \exp \left(t X_{e}\right)=X_{e}
$$

(vi) We know from ([21], Sect. 15.3, p. 170) that $c(t)=\sum_{k=0}^{\infty} A^{k} t^{k} / k$! is absolutely convergent for $A \in \mathfrak{g l}(n, \mathbb{R})$. Denote by \tilde{A} the left-invariant vector field on $\operatorname{GL}(n, \mathbb{R})$ generated by A. By [21, Example 8.19],

$$
\tilde{A}_{g}=\left(\ell_{g}\right)_{*} A=g A
$$

Now $c(0)=I$, the identity matrix, and

$$
\begin{aligned}
c^{\prime}(t) & =\sum_{k=1}^{\infty} \frac{k A^{k} t^{k-1}}{k!} \\
& =\sum_{k=1}^{\infty} \frac{A^{k-1} t^{k-1}}{(k-1)!} A \\
& =c(t) A=\tilde{A}_{c(t)} .
\end{aligned}
$$

Hence $c(t)$ is the integral curve of \tilde{A} through I. By (i),

$$
\exp t A=c(t)=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

Setting $t=1$ gives the desired identity.

Definition 15.10. A 1-parameter subgroup of a Lie group G is a group homomor$\operatorname{phism} \varphi: \mathbb{R} \rightarrow G$.

In this terminology, Proposition 15.9 (iii) says that if X is a left-invariant vector field on a Lie group G, then its integral curve $c_{X}(t)=\exp \left(t X_{e}\right)$ through the identity e is a 1-parameter subgroup of G.

Corollary 15.11. The diffeomorphism $\varphi_{t}: G \rightarrow G$ induced from the flow of a leftinvariant vector field X on a Lie group G is right multiplication by $\exp t X_{e}$:

$$
\varphi_{t}(g)=r_{\exp t X_{e}}(g)
$$

Proof. Applying Corollary 15.6 to e, we get

$$
\varphi_{t}(g)=\varphi_{t}(g e)=g \varphi_{t}(e)=r_{\varphi_{t}(e)}(g)=r_{\exp t X_{e}}(g)
$$

15.6 Naturality of the Exponential Map for a Lie Group

Just as the exponential map for a Riemannian manifold is natural with respect to isometries, so the exponential map for a Lie group is natural with respect to Lie group homomorphisms.

Theorem 15.12. Let H and G be Lie groups with Lie algebras \mathfrak{h} and \mathfrak{g}, respectively. If $f: H \rightarrow G$ is a Lie group homomorphism, then the diagram

commutes.
Lemma 15.13. If $f: H \rightarrow G$ is a group homomorphism, then for any $h \in H$,

$$
\begin{equation*}
f \circ \ell_{h}=\ell_{f(h)} \circ f . \tag{15.2}
\end{equation*}
$$

Proof (of lemma). For $x \in H$,

$$
\left(f \circ \ell_{h}\right)(x)=f(h x)=f(h) f(x)=\left(\ell_{f(h)} \circ f\right)(x)
$$

Proof (of theorem). For $A \in \mathfrak{h}$, denote by \tilde{A} the left-invariant vector field on the Lie group H generated by A. If $c(t)$ is an integral curve of \tilde{A} through e, then

$$
\begin{equation*}
c^{\prime}(t)=\tilde{A}_{c(t)}=\left(\ell_{c(t)}\right)_{*} A \tag{15.3}
\end{equation*}
$$

We will now show that $(f \circ c)(t)$ is an integral curve of $\widetilde{f_{*} A}$, the left-invariant vector field on G generated by $f_{*} A \in \mathfrak{g}$. Taking the differential of (15.2), we get

$$
\begin{equation*}
f_{*} \circ \ell_{h *}=\ell_{f(h) *} \circ f_{*} \tag{15.4}
\end{equation*}
$$

Then

$$
\begin{aligned}
(f \circ c)^{\prime}(t) & =f_{*} c^{\prime}(t) & & \text { (by the chain rule again) } \\
& =f_{*} \ell_{c(t) *} A & & (\text { by }(15.3)) \\
& =\ell_{f(c(t)) *}\left(f_{*} A\right) & & (\text { by }(15.4)) \\
& =\widetilde{f_{*} A_{(f \circ c)(t)} .} & &
\end{aligned}
$$

By the definition of the exponential map for a Lie group,

$$
\exp \left(f_{*} A\right)=(f \circ c)(1)=f(c(1))=f(\exp A)
$$

15.7 Adjoint Representation

Let G be a Lie group with Lie algebra \mathfrak{g}. For $g \in G$, define $c_{g}: G \rightarrow G$ to be conjugation by g :

$$
c_{g}(x)=g x g^{-1}
$$

The differential at the identity of c_{g} is denoted by

$$
\operatorname{Ad}(g)=\left(c_{g}\right)_{*, e}: \mathfrak{g} \rightarrow \mathfrak{g}
$$

For $g, h \in G$,

$$
c_{g h}=c_{g} \circ c_{h},
$$

so that by the chain rule,

$$
\left(c_{g h}\right)_{*}=\left(c_{g}\right)_{*} \circ\left(c_{h}\right)_{*},
$$

or

$$
\operatorname{Ad}(g h)=\operatorname{Ad}(g) \circ \operatorname{Ad}(h) .
$$

Thus, $\mathrm{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g})$ is a group homomorphism; it is called the adjoint representation of the Lie group G.

Proposition 15.14. Let G be a Lie group. The adjoint representation Ad: $G \rightarrow$ $\mathrm{GL}(\mathfrak{g})$ is a C^{∞} map.

Proof. By the definition of a Lie group, the Lie group multiplication $\mu: G \times G \rightarrow G$ and inversion $g \mapsto g^{-1}$ are C^{∞} maps. In terms of μ,

$$
c_{g}(x)=\mu\left(g, \mu\left(x, g^{-1}\right)\right), \quad g, x \in G
$$

which shows that as a function of g and x, the conjugation $c_{g}(x)$ is also C^{∞}.
Let x^{1}, \ldots, x^{n} be a coordinate system in a neighborhood of the identity e. Then $\operatorname{Ad}(g)=\left(c_{g}\right)_{*, e}$ is represented by the Jacobian matrix $\left[\left(\partial\left(x^{i} \circ c_{g}\right) / \partial x^{j}\right)(e)\right]$. Since all the partial derivatives $\partial\left(x^{i} \circ c_{g}\right) / \partial x^{j}(e)$ are C^{∞} in $g, \operatorname{Ad}(g)$ is a C^{∞} function of g.

The differential of Ad at the identity is a Lie algebra homomorphism

$$
\mathrm{ad}:=(\mathrm{Ad})_{*, e}: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

called the adjoint representation of the Lie algebra \mathfrak{g}. We usually write $\operatorname{ad}(A)(B)$ as $\operatorname{ad}_{A} B$.

Proposition 15.15. For $A, B \in \mathfrak{g}, \operatorname{ad}_{A} B=[A, B]$.
Proof. For $A \in \mathfrak{g}$, let \tilde{A} be the left-invariant vector field generated by A. We will write the exponential $\exp (A)$ as e^{A}. By Proposition 15.9(i), the integral curve through e of \tilde{A} is $\varphi_{t}(e)=e^{t A}$, and by Corollary 15.11 the diffeomorphism $\varphi_{t}: G \rightarrow G$ induced from the flow of \tilde{A} is right multiplication by $e^{t A}$. For $A, B \in \mathfrak{g}$,

$$
\begin{aligned}
\operatorname{ad}_{A} B & =\left(\operatorname{Ad}_{*, e} A\right)(B) & & \text { (definition of ad) } \\
& =\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}\left(e^{t A}\right)(B) & & \left(\text { computing } \operatorname{Ad}_{*} \text { using the curve } \varphi_{t}(e)=e^{t A}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(c_{e^{t A}}\right)_{*}(B) & & \text { (definition of Ad) } \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(r_{e^{-t A}}\right)_{*}\left(\ell_{e^{t A}}\right)_{*} B & & \text { (definition of conjugation } \left.c\left(e^{t A}\right)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(r_{e^{-t A}}\right)_{*} \tilde{B}_{e^{t A}} & & \text { (definition of } \tilde{B}) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{-t}\right)_{*}\left(\tilde{B}_{e^{t A}}\right) & & \left(\varphi_{t}=r_{e^{t A}}, \varphi_{t}(e)=e^{t A}\right) \\
& =\left(\mathcal{L}_{\tilde{A}} \tilde{B}\right)_{e} & & \left(\text { definition of the Lie derivative } \mathcal{L}_{\tilde{A}} \tilde{B}\right) \\
& =[\tilde{A}, \tilde{B}]_{e} & & ([21, \text { Th. 20.4, p. 225]) } \\
& =[A, B] & & \text { (definition of }[A, B]) .
\end{aligned}
$$

15.8 Associativity of a Bi-Invariant Metric on a Lie Group

A Riemannian metric \langle,$\rangle on a Lie group G$ is said to be left-invariant if for all C^{∞} vector fields X, Y on G and $g \in G$,

$$
\left\langle\ell_{g *} X, \ell_{g *} Y\right\rangle=\langle X, Y\rangle .
$$

A right-invariant metric is defined similarly with r_{g} in place of ℓ_{g}. A metric that is both left- and right-invariant is said to be bi-invariant.

Proposition 15.16. If \langle,$\rangle is a bi-invariant metric on a Lie group G$, then for all left-invariant vector fields X, Y, Z on G,

$$
\langle[X, Y], Z\rangle=\langle X,[Y, Z]\rangle
$$

Proof. Since \langle,$\rangle is bi-invariant, for any g \in G$ and $X_{e}, Z_{e} \in \mathfrak{g}$,

$$
\begin{aligned}
\left\langle X_{e}, Z_{e}\right\rangle & =\left\langle\ell_{g *} r_{g^{-1} *} X_{e}, \ell_{g *} r_{g^{-1}} Z_{e}\right\rangle \\
& =\left\langle(\operatorname{Ad} g) X_{e},(\operatorname{Ad} g) Z_{e}\right\rangle
\end{aligned}
$$

If $c(t)$ is the integral curve through e of the left-invariant vector field Y, then

$$
\begin{equation*}
\left\langle X_{e}, Z_{e}\right\rangle=\left\langle(\operatorname{Ad} c(t)) X_{e},(\operatorname{Ad} c(t)) Z_{e}\right\rangle \quad \text { for all } t \tag{15.5}
\end{equation*}
$$

Differentiating (15.5) with respect to t and evaluating at $t=0$ gives

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\right|_{t=0}\left\langle(\operatorname{Ad} c(t)) X_{e},(\operatorname{Ad} c(t)) Z_{e}\right\rangle \\
& =\left\langle\left(\operatorname{Ad}_{*} c^{\prime}(0)\right) X_{e},(\operatorname{Ad} c(0)) Z_{e}\right\rangle+\left\langle(\operatorname{Ad} c(0)) X_{e},\left(\operatorname{Ad}_{*} c^{\prime}(0)\right) Z_{e}\right\rangle \\
& =\left\langle\operatorname{ad}_{Y_{e}} X_{e}, Z_{e}\right\rangle+\left\langle X_{e}, \operatorname{ad}_{Y_{e}} Z_{e}\right\rangle \\
& =\left\langle\left[Y_{e}, X_{e}\right], Z_{e}\right\rangle+\left\langle X_{e},\left[Y_{e}, Z_{e}\right]\right\rangle \quad \text { (by Proposition 15.15) } \\
& =-\left\langle\left[X_{e}, Y_{e}\right], Z_{e}\right\rangle+\left\langle X_{e},\left[Y_{e}, Z_{e}\right]\right\rangle .
\end{aligned}
$$

Since \langle,$\rangle is left-invariant and \ell_{g, *}\left[X_{e}, Y_{e}\right]=\left[\ell_{g, *}\left(X_{e}\right), \ell_{g, *}\left(Y_{e}\right)\right]=\left[X_{g}, Y_{g}\right]$ for all $g \in G$ (see [21, Proposition 16.14, p. 185]), left-translating the equation above by g gives the proposition.

Problems

15.1. Exponential maps on \mathbb{R}^{2}

Give \mathbb{R}^{2} its usual Euclidean metric.
(a) At any point $p \in \mathbb{R}^{2}$, the tangent space $T_{p} \mathbb{R}^{2}$ can be canonically identified with \mathbb{R}^{2}. Show that under this identification $T_{p} \mathbb{R}^{2} \simeq \mathbb{R}^{2}$, the exponential map $\operatorname{Exp}_{p}: T_{p} \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the identity map.
(b) Viewed as a Lie group under addition, \mathbb{R}^{2} has Lie algebra \mathbb{R}^{2}. Show that the exponential map exp: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is also the identity map.

15.2. Exponentials as generators

Prove that a connected Lie group G with Lie algebra \mathfrak{g} is generated by $\exp A$ for all $A \in \mathfrak{g}$; i.e., every element $g \in G$ is a product of finitely many exponentials: $g=\left(\exp A_{1}\right) \cdots\left(\exp A_{r}\right)$.

15.3. Invariant Riemannian metrics on a Lie group

Let G be a Lie group and \mathfrak{g} its Lie algebra. Suppose \langle,\rangle_{e} is an inner product on \mathfrak{g}. For any $g \in G$ and $X_{g}, Y_{g} \in T_{g} G$, define

$$
\left\langle X_{g}, Y_{g}\right\rangle=\left\langle\ell_{g^{-1} *} X_{g}, \ell_{g^{-1} *} Y_{g}\right\rangle_{e} .
$$

(a) Show that \langle,$\rangle is a left-invariant Riemannian metric on G$.
(b) Show that this sets up a bijection

$$
\{\text { inner products on } \mathfrak{g}\} \longleftrightarrow\{\text { left-invariant Riemannian metrics on } G\} .
$$

(c) Show that under the bijection in (b), $\operatorname{Ad}(G)$-invariant inner products on \mathfrak{g} correspond to bi-invariant Riemannian metrics on G.

15.4. Riemannian connection on a Lie group with a bi-invariant metric

Let G be a Lie group with a bi-invariant Riemannian metric. Prove that if ∇ is its Riemannian connection, then $\nabla_{X} Y=\frac{1}{2}[X, Y]$ for all left-invariant vector fields X and Y on G. (Hint: Use (6.8) and Proposition 15.16.)

15.5. Geodesics on a Lie group with a bi-invariant metric

(a) Let G be a Lie group with a bi-invariant Riemannian metric. Prove that the geodesics on G are precisely the integral curves of left-invariant vector fields. (Hint: Let $c(t)$ be an integral curve through e of a left-invariant vector field X. Apply Problem 15.4 to show that $c(t)$ is a geodesic.)
(b) Show that if a Lie group has a bi-invariant Riemannian metric, then the exponential map for the Lie group coincides with the exponential map Exp_{e} of the Riemannian connection.

15.9 Addendum. The Exponential Map as a Natural Transformation

The naturality of the exponential map for a Riemannian manifold says in fact that the exponential map is a natural transformation between two functors. There are two functors lurking in the background in Theorem 15.2, and in this addendum we will ferret them out.

Let F and G be two functors from a category \mathcal{A} to a category \mathcal{B}. A natural transformation from F to G is a collection of morphisms $\varphi_{A}: F(A) \rightarrow G(A)$ in \mathcal{B}, one for each object A in \mathcal{A}, such that for each morphism $f: A \rightarrow A^{\prime}$ in \mathcal{A} the diagram

is commutative.
Let \mathcal{A} be the category in which the objects are pointed Riemannian manifolds (M, p) and for any two objects (N, q) and (M, p), a morphism $(N, q) \rightarrow(M, p)$ is an isometry $f: N \rightarrow M$ such that $f(q)=p$.

Next, we define the category \mathcal{B}. Consider the set of all pairs (U, p), where U is an open subset of a manifold M and $p \in U$. We say that two pairs (U, p) and (V, q) are equivalent, written $(U, p) \sim(V, q)$, if $p=q$ and U and V are open subsets of the same manifold. This is clearly an equivalence relation. An equivalence class of such
pairs (U, p) with $U \subset M$ is called a germ of neighborhoods of p in M. A morphism $f:[(U, p)] \rightarrow[(V, q)]$ from the germ of (U, p) to the germ of (V, q) is a collection of C^{∞} maps $f_{U^{\prime}, V^{\prime}}:\left(U^{\prime}, p\right) \rightarrow\left(V^{\prime}, q\right)$ such that

$$
\left(U^{\prime}, p\right) \sim(U, p), \quad\left(V^{\prime}, q\right) \sim(V, q)
$$

and for any overlapping $\left(U^{\prime}, p\right)$ and $\left(U^{\prime \prime}, p\right)$ on which $f_{U^{\prime}, V^{\prime}}$ and $f_{U^{\prime \prime}, V^{\prime \prime}}$ are defined,

$$
\left.f_{U^{\prime}, V^{\prime}}\right|_{U^{\prime} \cap U^{\prime \prime}}=\left.f_{U^{\prime \prime}, V^{\prime \prime}}\right|_{U^{\prime} \cap U^{\prime \prime}}
$$

This collection $\left\{f_{U^{\prime}, V^{\prime}}\right\}$ need not be defined on all $\left(U^{\prime}, p\right) \in[(U, p)]$; it is enough that $f_{U^{\prime}, V^{\prime}}$ be defined on some neighborhood U^{\prime} of p in M. As the category \mathcal{B}, we take the objects to be all germs of neighborhoods and the morphisms to be morphisms of germs of neighborhoods.

The functor $F: \mathcal{A} \rightarrow \mathcal{B}$ takes a pointed Riemannian manifold (M, p) to the germ $\left[\left(T_{p} M, 0\right)\right]$ of neighborhoods of the origin in the tangent space $T_{p} M$, and takes an isometry $f:(N, q) \rightarrow(M, p)$ of pointed Riemannian manifolds to the morphism of germs of neighborhoods induced by the differential $f_{*, q}:\left(T_{q} N, 0\right) \rightarrow\left(T_{p} M, 0\right)$.

The functor $G: \mathcal{A} \rightarrow \mathcal{B}$ takes a pointed Riemannian manifold (M, p) to its germ $[(M, p)]$ of neighborhoods, and takes an isometry $f:(N, q) \rightarrow(M, p)$ to the morphism of germs of neighborhoods induced by f.

The exponential map Exp_{q} of a Riemannian manifold N at q induces a morphism $\operatorname{Exp}_{q}:\left[\left(T_{q} N, 0\right)\right] \rightarrow[(N, q)]$ of germs of neighborhoods. In the language of categories and functors, Theorem 15.2 is equivalent to the statement that the exponential map is a natural transformation from the functor F to the functor G.

$\S 16$ Distance and Volume

In differential topology, where two manifolds are considered the same if they are diffeomorphic, the concepts of length and volume do not make sense, for length and volume are clearly not invariant under diffeomorphisms. In differential geometry, where two Riemannian manifolds are considered the same if they are isometric, length and volume do make sense, for they are invariant under isometries. In this chapter we define length and distance on a Riemannian manifold and construct a volume form on an oriented Riemannian manifold.

16.1 Distance in a Riemannian Manifold

In a Riemannian manifold we defined the length of a tangent vector $X_{p} \in T_{p} M$ to be

$$
\left\|X_{p}\right\|=\sqrt{\left\langle X_{p}, X_{p}\right\rangle}
$$

If $c:[a, b] \rightarrow M$ is a parametrized curve in M, its arc length is given by

$$
\ell(c)=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

We can reparametrize $c(t)$ via a diffeomorphism $t(u):\left[a_{1}, b_{1}\right] \rightarrow[a, b]$; the reparametrization of $c(t)$ is then $c(t(u)):\left[a_{1}, b_{1}\right] \rightarrow M$. We say that the reparametrization is orientation-preserving if it preserves the order of the endpoints: $t\left(a_{1}\right)=a$ and $t\left(b_{1}\right)=b$; it is orientation-reversing if it reverses the order of the endpoints. Since a diffeomorphism $t(u):\left[a_{1}, b_{1}\right] \rightarrow[a, b]$ is one-to-one, it is either increasing or decreasing. Let $u(t)$ be its inverse. Because $u(t(u))=u$, by the chain rule,

$$
\frac{d t}{d u} \cdot \frac{d u}{d t}=1
$$

which shows that $d t / d u$ is never zero. So $d t / d u$ is either always positive or always negative, depending on whether the reparametrization $t(u)$ preserves or reverses the orientation.

Proposition 16.1. The arc length of a curve $c:[a, b] \rightarrow M$ in a Riemannian manifold M is independent of its parametrization.

Proof. Suppose $c(t(u)), a_{1} \leq u \leq b_{1}$ is an orientation-preserving reparametrization. Then $d t / d u>0$. By the chain rule,

$$
\begin{equation*}
\frac{d}{d u} c(t(u))=c^{\prime}(t(u)) \frac{d t}{d u} \tag{16.1}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\int_{a_{1}}^{b_{1}}\left\|\frac{d}{d u} c(t(u))\right\| d u & =\int_{a_{1}}^{b_{1}}\left\|c^{\prime}(t(u))\right\|\left|\frac{d t}{d u}\right| d u \\
& =\int_{a_{1}}^{b_{1}}\left\|c^{\prime}(t(u))\right\| \frac{d t}{d u} d u \\
& =\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t \quad \text { (change of variables formula). }
\end{aligned}
$$

If $c(t(u))$ is an orientation-reversing parametrization, the calculation is the same except that (i) $|d t / d u|=-d t / d u$, because $d t / d u<0$, and (ii) the limits of integration in the last line are reversed. These two changes cancel out:

$$
\begin{aligned}
\int_{a_{1}}^{b_{1}}\left\|\frac{d}{d u} c(t(u))\right\| d u & =\int_{a_{1}}^{b_{1}}\left\|c^{\prime}(t(u))\right\|\left|\frac{d t}{d u}\right| d u \\
& =-\int_{a_{1}}^{b_{1}}\left\|c^{\prime}(t(u))\right\| \frac{d t}{d u} d u=\int_{b_{1}}^{a_{1}}\left\|c^{\prime}(t(u))\right\| \frac{d t}{d u} d u \\
& =\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t \quad \text { (change of variables formula). }
\end{aligned}
$$

So the arc length is still independent of the parametrization.
Given two points p and q on a connected Riemannian manifold, we define the distance between them to be

$$
d(p, q)=\inf _{c} \ell(c)
$$

where the infimum is taken over all piecewise smooth curves c from p to q and $\ell(c)$ is the length of the curve c.

For the distance $d(p, q)$ to be defined, there must be a curve joining p and q. Hence, in order to have a distance function, the Riemannian manifold should be path-connected. By a theorem of general topology, a locally path-connected space is path-connected if and only if it is connected (Problem A.2). Being locally Euclidean, a manifold is locally path-connected. Thus, for a manifold, path-connectedness is equivalent to connectedness. Whenever we speak of the distance function on a Riemannian manifold M, we will assume M to be connected.

It is easily verified that the distance function on a Riemannian manifold satisfies the three defining properties of a metric on a metric space: for all $p, q, r \in M$,
(i) positive-definiteness: $d(p, q) \geq 0$ and equality holds if and only if $p=q$;
(ii) symmetry: $d(p, q)=d(q, p)$;
(iii) triangle inequality: $d(p, r) \leq d(p, q)+d(q, r)$.

Therefore, with the distance as a metric, the Riemannian manifold M becomes a metric space.

Remark 16.2. This metric is not the Riemannian metric, which is an inner product on the tangent space $T_{p} M$ at each point p of the manifold. In the literature a "Riemannian metric" is sometimes shortened to a "metric." So the word "metric" can have two different meanings in Riemannian geometry.

Example 16.3. Let M be the punctured plane $\mathbb{R}^{2}-\{(0,0)\}$ with the Euclidean metric as the Riemannian metric. There is no geodesic from $(-1,-1)$ to $(1,1)$, because the origin is missing from the manifold, but the distance between the two points is defined and is equal to $2 \sqrt{2}$ (Figure 16.1). This example shows that the distance between two points need not be realized by a geodesic.

Fig. 16.1. Punctured plane.

16.2 Geodesic Completeness

In differential topology, a curve $c:(a, b) \rightarrow M$ in a manifold M can be reparametrized so that its domain is \mathbb{R}, because the interval (a, b) is diffeomorphic to \mathbb{R}. Now suppose the manifold M is Riemannian and the curve is a geodesic. By Proposition 14.5, any reparametrization of the geodesic which keeps it a geodesic must have the form $t=\alpha u+\beta$, for $\alpha, \beta \in \mathbb{R}$. Such a linear change of variables maps a finite interval to another finite interval. Thus, whether or not a geodesic has the entire real line \mathbb{R} as its domain is independent of the parametrization.

Definition 16.4. A Riemannian manifold is said to be geodesically complete if the domain of every geodesic in it can be extended to \mathbb{R}.

Example. The Euclidean space \mathbb{R}^{n} is geodesically complete.

Example. The sphere S^{2} is geodesically complete.
Example. The punctured Euclidean plane $\mathbb{R}^{2}-\{(0,0)\}$ is not geodesically complete, since the domain of the geodesic $c(t)=(t, t), 1<t<\infty$ cannot be extended to $-\infty<t<\infty$.

Definition 16.5. A geodesic defined on $[a, b]$ is said to be minimal if its length is minimal among all piecewise smooth curves joining its two endpoints.

A proof of the following fundamental theorem on geodesic completeness may be found in [19, Volume 1, Theorem 18, p. 342].

Heinz Hopf (1894-1971) and Willi Rinow (1907-1979)

Theorem 16.6 (Hopf-Rinow theorem). A Riemannian manifold is geodesically complete if and only if it is complete as a metric space in the distance metric d defined above. Moreover, in a geodesically complete Riemannian manifold, any two points may be joined by a minimal geodesic.

16.3 Dual 1-Forms Under a Change of Frame

Many of the constructions in differential geometry are local, in terms of a frame of vector fields and its dual frame of 1 -forms, for example, the connection matrix and the curvature matrix of an affine connection. To see how the construction transforms under a change of frame, it is useful to know how the dual frame of 1 -forms transforms.

If e_{1}, \ldots, e_{n} and $\bar{e}_{1}, \ldots, \bar{e}_{n}$ are two C^{∞} frames on an open set U in a manifold M, then

$$
\begin{equation*}
\bar{e}_{j}=\sum_{i} a_{j}^{i} e_{i} \tag{16.2}
\end{equation*}
$$

for some C^{∞} function $\left[a_{j}^{i}\right]: U \rightarrow \operatorname{GL}(n, \mathbb{R})$. Let $\theta^{1}, \ldots, \theta^{n}$ and $\bar{\theta}^{1}, \ldots, \bar{\theta}^{n}$ be the dual frames of 1-forms, respectively, meaning

$$
\theta^{i}\left(e_{j}\right)=\delta_{j}^{i} \quad \text { and } \quad \bar{\theta}^{i}\left(\bar{e}_{j}\right)=\delta_{j}^{i}
$$

where δ_{j}^{i} is the Kronecker delta. To write $\bar{\theta}^{1}, \ldots, \bar{\theta}^{n}$ in terms of $\theta^{1}, \ldots, \theta^{n}$, it is best to use matrix notation.

In matrix notation we write the frame e_{1}, \ldots, e_{n} as a row vector

$$
e=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right]
$$

and the dual frame $\theta^{1}, \ldots, \theta^{n}$ as a column vector

$$
\theta=\left[\begin{array}{c}
\theta^{1} \\
\vdots \\
\theta^{n}
\end{array}\right] .
$$

The duality is expressed in matrix notation as a matrix product:

$$
\theta e=\left[\begin{array}{c}
\theta^{1} \\
\vdots \\
\theta^{n}
\end{array}\right]\left[e_{1} \cdots e_{n}\right]=\left[\theta^{i}\left(e_{j}\right)\right]=\left[\delta_{j}^{i}\right]=I .
$$

Equation (16.2) translates into

$$
\bar{e}=\left[\begin{array}{lll}
\bar{e}_{1} & \cdots & \bar{e}_{n}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right]\left[a_{j}^{i}\right]=e A .
$$

Proposition 16.7. Let $e=\left[e_{1} \cdots e_{n}\right]$ and $\bar{e}=\left[\bar{e}_{1} \cdots \bar{e}_{n}\right]$ be two frames on an open set U. If $\bar{e}=e A$ for $A: U \rightarrow \mathrm{GL}(n, \mathbb{R})$, then the dual frames $\bar{\theta}$ and θ are related by $\bar{\theta}=A^{-1} \theta$.

What this means is that if $\bar{\theta}^{i}=\sum b_{j}^{i} \theta^{j}$, then $B=\left[b_{j}^{i}\right]=A^{-1}$.
Proof. Since

$$
\left(A^{-1} \theta\right) \bar{e}=A^{-1} \theta e A=A^{-1} I A=I
$$

we have $\bar{\theta}=A^{-1} \theta$.
Next we study how $\bar{\theta}^{1} \wedge \cdots \wedge \bar{\theta}^{n}$ is related to $\theta^{1} \wedge \cdots \wedge \theta^{n}$.
Proposition 16.8 (Wedge product under a change of frame). Let V be a vector space of dimension n and $\theta^{1}, \ldots, \theta^{n}$ a basis for the dual space V^{\vee}. If the 1-covectors $\bar{\theta}^{1}, \ldots, \bar{\theta}^{n}$ and $\theta^{1}, \ldots, \theta^{n}$ are related by $\bar{\theta}^{i}=\sum b_{j}^{i} \theta^{j}$, then with $B=\left[b_{j}^{i}\right]$,

$$
\bar{\theta}^{1} \wedge \cdots \wedge \bar{\theta}^{n}=(\operatorname{det} B) \theta^{1} \wedge \cdots \wedge \theta^{n}
$$

Proof. Problem 16.3.

16.4 Volume Form

On an oriented manifold of dimension n there are many nowhere-vanishing n-forms. If ω is a nowhere-vanishing n-form, so is any nonzero multiple of ω. In general, it is not possible to single out one of them as the volume form. If the oriented manifold is Riemannian, however, we will show that there is a canonically defined volume form.

Let $\left(U, x^{1}, \ldots, x^{n}\right)$ be an arbitrary chart on an oriented Riemannian manifold M. Applying the Gram-Schmidt process to the coordinate frame $\partial_{1}, \ldots, \partial_{n}$, we can construct an orthonormal frame e_{1}, \ldots, e_{n} on U. Let $\theta^{1}, \ldots, \theta^{n}$ be the dual frame of 1-forms and define

$$
\omega=\theta^{1} \wedge \cdots \wedge \theta^{n}
$$

Then ω is a nowhere-vanishing n-form on U.

To see how ω depends on the choice of an orthonormal frame, let $\bar{e}_{1}, \ldots, \bar{e}_{n}$ be another orthonormal frame on U. Then there are C^{∞} functions $a_{j}^{i}: U \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\bar{e}_{j}=\sum a_{j}^{i} e_{i} . \tag{16.3}
\end{equation*}
$$

Since both e_{1}, \ldots, e_{n} and $\bar{e}_{1}, \ldots, \bar{e}_{n}$ are orthonormal, the change of basis matrix $A=$ $\left[a_{j}^{i}\right]$ is a function from U to the orthogonal group $\mathrm{O}(n)$. Let $\bar{\theta}^{1}, \ldots, \bar{\theta}^{n}$ be the dual frame of $\bar{e}_{1}, \ldots, \bar{e}_{n}$. By Proposition 16.7, $\bar{\theta}^{i}=\sum\left(A^{-1}\right)_{j}^{i} \theta^{j}$. It then follows from Proposition 16.8 that

$$
\bar{\theta}^{1} \wedge \cdots \wedge \bar{\theta}^{n}=\operatorname{det}\left(A^{-1}\right) \theta^{1} \wedge \cdots \wedge \theta^{n} .
$$

We now assume that e and \bar{e} are both positively oriented. Then the matrix function $A: U \rightarrow \mathrm{SO}(n)$ assumes values in the special orthogonal group. Since $A^{-1} \in \mathrm{SO}(n)$, $\operatorname{det}\left(A^{-1}\right)=1$, and so

$$
\bar{\theta}^{1} \wedge \cdots \wedge \bar{\theta}^{n}=\theta^{1} \wedge \cdots \wedge \theta^{n}
$$

This proves that $\omega=\theta^{1} \wedge \cdots \wedge \theta^{n}$ is independent of the choice of the positively oriented orthonormal frame. It is a canonically defined n-form on an oriented Riemannian manifold M. We call ω the volume form of M. In case the integral $\int_{M} \omega$ is finite, we call $\int_{M} \omega$ the volume of the oriented Riemannian manifold M.

Example 16.9 (Volume form on \mathbb{R}^{2}). On \mathbb{R}^{2}, an orthonormal basis is $\partial / \partial x, \partial / \partial y$, with dual basis $\theta^{1}=d x, \theta^{2}=d y$. Hence, the volume form on \mathbb{R}^{2} is $d x \wedge d y$.

Example 16.10 (Volume form on \mathbb{H}^{2}). By Section 12.5 , an orthonormal frame on the Poincaré half-plane \mathbb{H}^{2} is $e_{1}=y \partial / \partial x, e_{2}=y \partial / \partial y$, with dual frame $\theta^{1}=(d x) / y$, $\theta^{2}=(d y) / y$. Hence, the volume form on \mathbb{H}^{2} is $d x \wedge d y / y^{2}$.

The notion of a tangent bundle extends to a manifold M with boundary ∂M (see [21, Section 22.4, pp. 253-254]); hence so does the notion of a Riemannian metric: a Riemannian metric on a manifold M with boundary is a positive-definite symmetric bilinear form on the tangent bundle $T M$. If M is a Riemannian manifold with boundary, then ∂M inherits naturally a Riemannian metric from M.

Theorem 16.11. Let vol_{M} and $\mathrm{vol}_{\partial M}$ be the volume forms on an oriented Riemannian manifold M and on its boundary ∂M. Assume that the boundary is given the boundary orientation [21, §22.6]. If X is the outward unit normal along ∂M, then $\operatorname{vol}_{\partial M}=l_{X}\left(\operatorname{vol}_{M}\right)$, where l_{X} is the interior multiplication with X. (For the basic properties of interior multiplication, see [21, Section 20.4, pp. 227-229].)

Proof. Let p be a point in the boundary ∂M. If $\left(X, e_{2}, \ldots, e_{n}\right)$ is a positively oriented orthonormal frame field for M in a neighborhood U of p, then by the definition of the boundary orientation, $\left(e_{2}, \ldots, e_{n}\right)$ is a positively oriented orthonormal frame for ∂M in $U \cap \partial M$. Let $\theta^{1}, \ldots, \theta^{n}$ be the dual frame to X, e_{2}, \ldots, e_{n}. Clearly, $\theta^{2}, \ldots, \theta^{n}$ is dual to e_{2}, \ldots, e_{n} on $U \cap \partial M$. So

$$
\operatorname{vol}_{M}=\theta^{1} \wedge \cdots \wedge \theta^{n} \quad \text { and } \quad \operatorname{vol}_{\partial M}=\theta^{2} \wedge \cdots \wedge \theta^{n}
$$

At a point of ∂M,

$$
\begin{aligned}
l_{X}\left(\operatorname{vol}_{M}\right) & =l_{X}\left(\theta^{1} \wedge \cdots \wedge \theta^{n}\right) \\
& =\sum_{j}(-1)^{j-1} \theta^{j}(X) \theta^{1} \wedge \cdots \wedge \widehat{\theta^{j}} \wedge \cdots \wedge \theta^{n} \\
& =\theta^{1}(X) \theta^{2} \wedge \cdots \wedge \theta^{n} \\
& =\theta^{2} \wedge \cdots \wedge \theta^{n}=\operatorname{vol}_{\partial M} .
\end{aligned}
$$

Example 16.12 (The volume form on a circle). The volume form on the unit disk

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}
$$

is $d x \wedge d y$. The unit outward normal X along its boundary $\partial D=S^{1}$ is

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} .
$$

By Theorem 16.11, the volume form on the unit circle oriented counterclockwise is

$$
\begin{aligned}
\omega_{S^{1}} & =l_{X}(d x \wedge d y)=\left(l_{X} d x\right) d y-d x\left(v_{X} d y\right) \\
& =(X x) d y-d x(X y)=x d y-y d x
\end{aligned}
$$

16.5 The Volume Form in Local Coordinates

On a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$ of a Riemannian manifold M, the volume form vol_{M}, being a nowhere-vanishing top form, is a multiple $f d x^{1} \wedge \cdots \wedge d x^{n}$ of $d x^{1} \wedge$ $\cdots \wedge d x^{n}$ for some nonvanishing function f on U. The next theorem determines f in terms of the Riemannian metric.

Theorem 16.13. Let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a coordinate chart on a Riemannian manifold M, and let $g_{i j}=\left\langle\partial_{i}, \partial_{j}\right\rangle=\left\langle\partial / \partial x^{i}, \partial / \partial x^{j}\right\rangle$. Then the volume form of M on U is given by

$$
\operatorname{vol}_{M}=\sqrt{\operatorname{det} g} d x^{1} \wedge \cdots \wedge d x^{n}
$$

where g is the matrix $\left[g_{i j}\right]$.
Proof. Let e_{1}, \ldots, e_{n} be an orthonormal frame on U, with dual frame of 1-forms $\theta^{1}, \ldots, \theta^{n}$. Then $\partial_{j}=\sum_{i} a_{j}^{i} e_{i}$ for some matrix-valued function $A=\left[a_{j}^{i}\right]: U \rightarrow$ $\operatorname{GL}(n, \mathbb{R})$. The dual frame to $\partial_{1}, \ldots, \partial_{n}$ is $d x^{1}, \ldots, d x^{n}$. By Proposition 16.7, $d x^{i}=\sum_{j} b_{j}^{i} \theta^{j}$ with $B=\left[b_{j}^{i}\right]=A^{-1}$. By Proposition 16.8,

$$
d x^{1} \wedge \cdots \wedge d x^{n}=(\operatorname{det} B) \theta^{1} \wedge \cdots \wedge \theta^{n}
$$

Hence,

$$
\begin{aligned}
\operatorname{vol}_{M} & =\theta^{1} \wedge \cdots \wedge \theta^{n}=(\operatorname{det} B)^{-1} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =(\operatorname{det} A) d x^{1} \wedge \cdots \wedge d x^{n} .
\end{aligned}
$$

To find $\operatorname{det} A$, note that

$$
\begin{aligned}
g_{i j} & =\left\langle\partial_{i}, \partial_{j}\right\rangle=\left\langle\sum a_{i}^{k} e_{k}, a_{j}^{\ell} e_{\ell}\right\rangle=\sum a_{i}^{k} a_{j}^{\ell}\left\langle e_{k}, e_{\ell}\right\rangle \\
& =\sum a_{i}^{k} a_{j}^{\ell} \delta_{k \ell}=\sum_{k} a_{i}^{k} a_{j}^{k}=\left(A^{T} A\right)_{j}^{i} .
\end{aligned}
$$

Therefore,

$$
g=\left[g_{i j}\right]=A^{T} A,
$$

so that

$$
\operatorname{det} g=\operatorname{det}\left(A^{T} A\right)=(\operatorname{det} A)^{2}
$$

It follows that

$$
\operatorname{det} A=\sqrt{\operatorname{det} g}
$$

and

$$
\operatorname{vol}_{M}=(\operatorname{det} A) d x^{1} \wedge \cdots \wedge d x^{n}=\sqrt{\operatorname{det} g} d x^{1} \wedge \cdots \wedge d x^{n}
$$

Problems

16.1. Transition matrix for orthonormal bases

Suppose e_{1}, \ldots, e_{n} and $\bar{e}_{1}, \ldots, \bar{e}_{n}$ are two orthonormal bases in an inner product space V. Prove that if $\bar{e}_{j}=\sum a_{j}^{i} e_{i}$, then the matrix $A=\left[a_{j}^{i}\right]$ is orthogonal, i.e., $A^{T} A=I$.

16.2. The triangle inequality

Prove the triangle inequality for the distance function on a Riemannian manifold M : for all $p, q, r \in M$,

$$
d(p, r) \leq d(p, q)+d(q, r)
$$

16.3. Wedge product under a change of frame

Prove Proposition 16.8.

16.4. Volume form of a sphere in Cartesian coordinates

Let $S^{n-1}(a)$ be the sphere of radius a centered at the origin in \mathbb{R}^{n}. Orient $S^{n-1}(a)$ as the boundary of the solid ball of radius a. Prove that if x^{1}, \ldots, x^{n} are the Cartesian coordinates on \mathbb{R}^{n}, then the volume form on $S^{n-1}(a)$ is

$$
\operatorname{vol}_{S^{n-1}(a)}=\frac{1}{a} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n} .
$$

(Hint: Instead of finding an orthonormal frame on the sphere, use Theorem 16.11.)

16.5. Volume form of a 2 -sphere in spherical coordinates

Parametrize the 2 -sphere M of radius a in \mathbb{R}^{3} by spherical coordinates θ, ϕ, where θ is the angle in the (x, y)-plane relative to the positive x-axis and ϕ is the angle relative to the positive z-axis (Figure 16.2). Then

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
a \sin \phi \cos \theta \\
a \sin \phi \sin \theta \\
a \cos \phi
\end{array}\right], \quad 0 \leq \theta<2 \pi, \quad 0<\phi<\pi .
$$

Fig. 16.2. Spherical coordinates in \mathbb{R}^{3}.
(a) Compute $\partial / \partial \phi$ and $\partial / \partial \theta$ and show that they are orthogonal to each other. (Hint: Use [21, Prop. 8.10, p. 90] to write $\partial / \partial \phi$ and $\partial / \partial \theta$ in terms of $\partial / \partial x, \partial / \partial y, \partial / \partial z$.)
(b) Let $e_{1}=(\partial / \partial \phi) /\|\partial / \partial \phi\|, e_{2}=(\partial / \partial \theta) /\|\partial / \partial \theta\|$. Calculate the dual basis α^{1}, α^{2} of 1 -forms and the volume form on the 2 -sphere of radius a in terms of a, ϕ, θ.
(c) Calculate the volume of M. (Since M is a surface, by its volume we mean its surface area.)

16.6. Volume form of an n-sphere in spherical coordinates

For $n \geq 3$ we define the spherical coordinates on \mathbb{R}^{n} as follows (see Figure 16.3). Let r_{k} be the distance of the point $\left(x_{1}, \ldots, x_{k}\right)$ from the origin in \mathbb{R}^{k} :

$$
r_{k}=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}} .
$$

(In this problem we use subscripts instead of superscripts on coordinate functions so that x_{1}^{2} means the square of x_{1}.) The spherical coordinates on \mathbb{R}^{2} are the usual polar coordinates $r=r_{2}, \theta, 0 \leq \theta<2 \pi$. For $n \geq 3$, if $x=\left(x_{1}, \ldots, x_{n}\right)$, then the angle ϕ_{n} is the angle the vector x makes relative to the x_{n}-axis; it is determined uniquely by the formula

$$
\cos \phi_{n}=\frac{x_{n}}{r_{n}}, \quad 0 \leq \phi_{n} \leq \pi .
$$

Project x to \mathbb{R}^{n-1} along the x_{n}-axis. By induction the spherical coordinates $r_{n-1}, \theta, \phi_{3}, \ldots$, ϕ_{n-1} of the projection $\left(x_{1}, \ldots, x_{n-1}\right)$ in \mathbb{R}^{n-1} are defined. Then the spherical coordinates of $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} are defined to be $r_{n}, \theta, \phi_{3}, \ldots, \phi_{n-1}, \phi_{n}$. Thus for $k=3, \ldots, n$, we have $\cos \phi_{k}=x_{k} / r_{k}$. Let $S^{n-1}(a)$ be the sphere $r_{n}=a$.
(a) Find the length of the vectors $\partial / \partial \theta, \partial / \partial \phi_{k}$ for $k=3, \ldots, n$.
(b) Normalize the vectors in part (a) to obtain an orthonormal frame e_{2}, \ldots, e_{n} on the sphere $S^{n-1}(a)$.
(c) Give the sphere $S^{n-1}(a)$ the boundary orientation of the closed solid ball of radius a. (For a discussion of boundary orientation, see [21, Section 21.6, p. 255].) Show that the volume form on $S^{n-1}(a)$ in spherical coordinates is up to sign

$$
\omega=a^{n-1}\left(\sin ^{n-2} \phi_{n}\right)\left(\sin ^{n-3} \phi_{n-1}\right) \cdots\left(\sin \phi_{3}\right) d \theta \wedge d \phi_{3} \wedge \cdots \wedge d \phi_{n} .
$$

16.7. Surface area of a sphere

Because the "volume of a sphere" usually means the volume of the ball enclosed by the sphere, we will call the integral of the volume form on a sphere the surface area of the sphere.

Fig. 16.3. Spherical coordinates in \mathbb{R}^{n}.
(a) By integration by parts, show that

$$
\int_{0}^{\pi} \sin ^{n} \phi d \phi=\frac{n-1}{n} \int_{0}^{\pi} \sin ^{n-2} \phi d \phi
$$

(b) Give a numerical expression for $\int_{0}^{\pi} \sin ^{2 k} \phi d \phi$ and $\int_{0}^{\pi} \sin ^{2 k-1} \phi d \phi$.
(c) Compute the surface area of a sphere of radius a. Treat the even-dimensional case and the odd-dimensional case separately.

16.8. Volume form on a smooth hypersurface in \mathbb{R}^{n}

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{∞} function whose partial derivatives $\partial f / \partial x^{i}$ are not simultaneously zero at any point of the zero locus $Z(f)$ of f. By the regular level set theorem, $Z(f)$ is a smooth manifold of dimension $n-1$ (see [21, Th. 9.9, p. 105]). It inherits a Riemannian metric from \mathbb{R}^{n}.
(a) Show that the gradient vector field $\operatorname{grad} f=\sum\left(\partial f / \partial x^{i}\right) \partial / \partial x^{i}$ is a nowhere-vanishing normal vector field along $Z(f)$.
(b) The unit normal vector field $X=\operatorname{grad} f /\|\operatorname{grad} f\|$ on $Z(f)$ defines an orientation on $Z(f)$: an orthonormal frame $\left(e_{2}, \ldots, e_{n}\right)$ at $p \in Z(f)$ is said to be positive for $T_{p}(Z(f))$ if and only if $\left(X, e_{2}, \ldots, e_{n}\right)$ is positive for $T_{p}\left(\mathbb{R}^{n}\right)$. Compute the volume form on $Z(f)$ with this orientation.

§17 The Gauss-Bonnet Theorem

According to an elementary theorem in Euclidean geometry, the three angles of a triangle in the plane add up to 180°. This simple fact has a beautiful generalization to any polygon on a Riemannian 2-manifold. The formula, called the Gauss-Bonnet formula for a polygon, relates the sum of the angles of a polygon to the geodesic curvature of the edges of the polygon and the Gaussian curvature of the surface. As a corollary, the angles of a geodesic triangle on a Riemannian 2-manifold can add up to more or less than 180°, depending on whether the Gaussian curvature is everywhere positive or everywhere negative.

The Gauss-Bonnet formula for a polygon leads to the Gauss-Bonnet theorem for an oriented Riemannian 2-manifold, according to which the total Gaussian curvature $\int_{M} K$ vol of an oriented Riemannian 2-manifold M is equal to 2π times the Euler characteristic $\chi(M)$. The most striking feature of this theorem is that while the Gaussian curvature K depends on the Riemannian metric, the Euler characteristic does not. Thus, although the Gaussian curvature depends on the metric, its integral does not. Read another way, the Gauss-Bonnet theorem also implies that although the Euler characteristic by definition depends on a polygonal decomposition of the surface, because the total curvature does not, the Euler characteristic is in fact independent of the polygonal decomposition.

It follows that two homeomorphic compact orientable surfaces have the same Euler characteristic, since a homeomorphism carries a polygonal decomposition from one surface to the other and preserves the number of vertices, edges, and faces. Thus, at least for compact orientable surfaces, the Euler characteristic is a topological invariant. It is the first instance of a topological invariant that can be constructed using curvature.

17.1 Geodesic Curvature

In the same way the curvature of a curve in Euclidean space is defined using the usual derivative (Problem 2.7), we can define the geodesic curvature of a curve in a Riemannian manifold using the covariant derivative along the curve.

Consider a unit-speed curve $\gamma(s):[a, b] \rightarrow M$ in a Riemannian manifold M. The Riemannian connection of M induces a covariant derivative $D / d s$ along the curve. Let $T(s)=\gamma^{\prime}(s)$. The curve $\gamma(s)$ is a geodesic if and only if $D T / d s$ vanishes identically. Thus, the magnitude $\|D T / d s\|$ gives a measure of the extent to which $\gamma(s)$ fails to be a geodesic. It is called the geodesic curvature $\tilde{\kappa}_{g}$ of the curve $\gamma(s)$:

$$
\tilde{\kappa}_{g}=\left\|\frac{D T}{d s}\right\|
$$

So defined, the geodesic curvature is always nonnegative.
It follows directly from the definition that a unit-speed curve is a geodesic if and only if its geodesic curvature is zero.

17.2 The Angle Function Along a Curve

At a point p of an oriented Riemannian manifold M, the angle ζ between two vectors u and v in the tangent space $T_{p} M$ is given by the formula

$$
\cos \zeta=\frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

In general, the angle ζ is defined only up to an integer multiple of 2π.
Suppose now that $\left(U, e_{1}, e_{2}\right)$ is a framed open set on which there is a positively oriented orthonormal frame e_{1}, e_{2}. If $c:[a, b] \rightarrow U$ is a C^{∞} curve, let $\underline{\zeta}(t)$ be the angle from $e_{1, c(t)}$ to $c^{\prime}(t)$ in $T_{c(t)} M$. Because $\zeta(t)$ is defined only up to an integer multiple of $2 \pi, \underline{\zeta}$ is a function from $[a, b]$ to $\mathbb{R} / 2 \pi \mathbb{Z}$. It is a C^{∞} function, since it is locally a branch of $\cos ^{-1}\left\langle c^{\prime}(t), e_{1, c(t)}\right\rangle /\left\|c^{\prime}(t)\right\|$. Let ζ_{0} be a real number such that

$$
\cos \zeta_{0}=\frac{\left\langle c^{\prime}(a), e_{1, c(a)}\right\rangle}{\left\|c^{\prime}(a)\right\|}
$$

Since \mathbb{R} is a covering space of $\mathbb{R} / 2 \pi \mathbb{Z}$ and the interval $[a, b]$ is simply connected, we know from the theory of covering spaces that there is a unique $C^{\infty} \operatorname{map} \zeta:[a, b] \rightarrow \mathbb{R}$ with a specified initial value $\zeta(a)=\zeta_{0}$ that covers $\underline{\zeta}$:

We call $\zeta:[a, b] \rightarrow \mathbb{R}$ the angle function with initial value ζ_{0} along the curve c relative to the frame e_{1}, e_{2}. Since an angle function along a curve is uniquely determined by its initial value, any two angle functions along the curve c relative to e_{1}, e_{2} differ by a constant integer multiple of 2π.

17.3 Signed Geodesic Curvature on an Oriented Surface

Mimicking the definition of the signed curvature for a plane curve, we can give the geodesic curvature a sign on an oriented Riemannian 2-manifold. Given a unitspeed curve $\gamma(s):[a, b] \rightarrow M$ on an oriented Riemannian 2-manifold M, choose a unit vector field \mathbf{n} along the curve so that T, \mathbf{n} is positively oriented and orthonormal. Since $\langle T, T\rangle \equiv 1$ on the curve,

$$
\frac{d}{d s}\langle T, T\rangle=0
$$

By Theorem 13.2,

$$
2\left\langle\frac{D T}{d s}, T\right\rangle=0
$$

Since the tangent space of M at $\gamma(s)$ is 2-dimensional and $D T / d s$ is perpendicular to $T, D T / d s$ must be a scalar multiple of \mathbf{n}.

Definition 17.1. The signed geodesic curvature at a point $\gamma(s)$ of a unit-speed curve in an oriented Riemannian 2-manifold is the number $\kappa_{g}(s)$ such that

$$
\frac{D T}{d s}=\kappa_{g} \mathbf{n} .
$$

The signed geodesic curvature κ_{g} can also be computed as

$$
\kappa_{g}=\left\langle\frac{D T}{d s}, \mathbf{n}\right\rangle
$$

Let U be an open subset of the oriented Riemannian 2-manifold M such that there is an orthonormal frame e_{1}, e_{2} on U. We assume that the frame e_{1}, e_{2} is positively oriented. Suppose $\gamma:[a, b] \rightarrow U$ is a unit-speed curve. Let $\zeta:[a, b] \rightarrow U$ be an angle function along the curve γ relative to e_{1}, e_{2}. Thus, $\zeta(s)$ is the angle that the velocity vector $T(s)$ makes relative to e_{1} at $\gamma(s)$ (Figure 17.1). In terms of the angle ζ,

$$
\begin{align*}
& T=(\cos \zeta) e_{1}+(\sin \zeta) e_{2} \tag{17.1}\\
& \mathbf{n}=-(\sin \zeta) e_{1}+(\cos \zeta) e_{2} \tag{17.2}
\end{align*}
$$

where e_{1}, e_{2} are evaluated at $c(t)$.

Fig. 17.1. The angle ζ.

Proposition 17.2. Let ω_{2}^{1} be the connection form of an affine connection on a Riemannian 2-manifold relative to the positively oriented orthonormal frame e_{1}, e_{2} on U. Then the signed geodesic curvature of the unit-speed curve γ is given by

$$
\kappa_{g}=\frac{d \zeta}{d s}-\omega_{2}^{1}(T)
$$

Proof. Differentiating (17.1) with respect to s gives

$$
\frac{D T}{d s}=\left(\frac{d}{d s} \cos \zeta\right) e_{1}+(\cos \zeta) \frac{D e_{1}}{d s}+\left(\frac{d}{d s} \sin \zeta\right) e_{2}+(\sin \zeta) \frac{D e_{2}}{d s}
$$

In this sum, e_{i} really means $e_{i, c(t)}$ and $D e_{i, c(t)} / d s=\nabla_{T} e_{i}$ by Theorem 13.1(iii), so that by Proposition 11.4,

$$
\begin{aligned}
\frac{D e_{1}}{d s} & =\nabla_{T} e_{1}=\omega_{1}^{2}(T) e_{2}=-\omega_{2}^{1}(T) e_{2} \\
\frac{D e_{2}}{d s} & =\nabla_{T} e_{2}=\omega_{2}^{1}(T) e_{1}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{D T}{d s}= & -(\sin \zeta) \frac{d \zeta}{d s} e_{1}-(\cos \zeta) \omega_{2}^{1}(T) e_{2} \\
& +(\cos \zeta) \frac{d \zeta}{d s} e_{2}+(\sin \zeta) \omega_{2}^{1}(T) e_{1} \\
= & \left(\frac{d \zeta}{d s}-\omega_{2}^{1}(T)\right) \mathbf{n}
\end{aligned}
$$

So

$$
\kappa_{g}=\frac{d \zeta}{d s}-\omega_{2}^{1}(T)
$$

Since κ_{g} is a C^{∞} function on the interval $[a, b]$, it can be integrated. The integral $\int_{a}^{b} \kappa_{g} d s$ is called the total geodesic curvature of the unit-speed curve $\gamma:[a, b] \rightarrow M$.

Corollary 17.3. Let M be an oriented Riemannian 2-manifold. Assume that the image of the unit-speed curve $\gamma:[a, b] \rightarrow M$ is a 1-dimensional submanifold C with boundary. If C lies in an open set U with positively oriented orthonormal frame e_{1}, e_{2} and connection form ω_{2}^{1}, then its total geodesic curvature is

$$
\int_{a}^{b} \kappa_{g} d s=\zeta(b)-\zeta(a)-\int_{C} \omega_{2}^{1}
$$

Proof. Note that $\gamma^{-1}: C \rightarrow[a, b]$ is a coordinate map on C, so that

$$
\int_{C} \omega_{2}^{1}=\int_{a}^{b} \gamma^{*} \omega_{2}^{1}
$$

Let s be the coordinate on $[a, b]$. Then

$$
\begin{equation*}
\gamma^{*} \omega_{2}^{1}=f(s) d s \tag{17.3}
\end{equation*}
$$

for some C^{∞} function $f(s)$. To find $f(s)$, apply both sides of (17.3) to $d / d s$:

$$
f(s)=\left(\gamma^{*} \omega_{2}^{1}\right)\left(\frac{d}{d s}\right)=\omega_{2}^{1}\left(\gamma_{*} \frac{d}{d s}\right)=\omega_{2}^{1}\left(\gamma^{\prime}(s)\right)=\omega_{2}^{1}(T)
$$

Hence, $\gamma^{*} \omega_{2}^{1}=\omega_{2}^{1}(T) d s$. By Proposition 17.2,

$$
\begin{aligned}
\int_{a}^{b} \kappa_{g} d s & =\int_{a}^{b} \frac{d \zeta}{d s} d s-\int_{a}^{b} \omega_{2}^{1}(T) d s \\
& =\zeta(b)-\zeta(a)-\int_{a}^{b} \omega_{2}^{1}(T) d s \\
& =\zeta(b)-\zeta(a)-\int_{a}^{b} \gamma^{*} \omega_{2}^{1} \\
& =\zeta(b)-\zeta(a)-\int_{C} \omega_{2}^{1}
\end{aligned}
$$

17.4 Gauss-Bonnet Formula for a Polygon

A polygon on a surface M is a piecewise smooth simple closed curve $\gamma:[a, b] \rightarrow M$; here "closed" means that $\gamma(a)=\gamma(b)$ and "simple" means that the curve has no other self-intersections. We say that a polygon is unit-speed if it has unit speed everywhere except at the nonsmooth points. Suppose now that M is an oriented Riemannian 2manifold and that $\gamma:[a, b] \rightarrow M$ is a unit-speed polygon that lies in an open set U on which there is an oriented orthonormal frame e_{1}, e_{2}. Let $\gamma\left(s_{0}\right), \gamma\left(s_{1}\right), \ldots, \gamma\left(s_{m}\right)$ be the vertices of the curve, where $a=s_{0}, b=s_{m}$, and $\gamma(a)=\gamma(b)$. Denote by C the image of γ, and by R the region enclosed by the curve C (Figure 17.2). Let K be the Gaussian curvature of the oriented Riemannian 2-manifold M.

In a neighborhood of a vertex $\gamma\left(s_{i}\right)$, the curve is the union of two 1-dimensional manifolds with boundary. Let $\gamma^{\prime}\left(s_{i}^{-}\right)$be the outward-pointing tangent vector at $\gamma\left(s_{i}\right)$ of the incoming curve, and let $\gamma^{\prime}\left(s_{i}^{+}\right)$be the inward-pointing tangent vector at $\gamma\left(s_{i}\right)$ of the outgoing curve. The angle ε_{i} in $]-\pi, \pi[$ from the incoming tangent vector $\gamma^{\prime}\left(s_{i}^{-}\right)$to the outgoing tangent vector $\gamma^{\prime}\left(s_{i}^{+}\right)$is called the jump angle at $\gamma\left(s_{i}\right)$. The interior angle at $\gamma\left(s_{i}\right)$ is defined to be

$$
\beta_{i}:=\pi-\varepsilon_{i} .
$$

Along each edge $\gamma\left(\left[s_{i-1}, s_{i}\right]\right)$ of a polygon, the velocity vector T changes its angle by $\Delta \zeta_{i}=\zeta\left(s_{i}\right)-\zeta\left(s_{i-1}\right)$. At the vertex $\gamma\left(s_{i}\right)$, the angle jumps by ε_{i}. Thus, the total change in the angle of T around a polygon is

$$
\sum_{i=1}^{m} \Delta \zeta_{i}+\sum_{i=1}^{m} \varepsilon_{i}
$$

In Figure 17.2, it appears that the total change in the angle is 2π. This is the content of the Hopf Umlaufsatz (circulation theorem), which we state below. On an oriented surface, a polygon is positively oriented if it has the boundary orientation of the oriented region it encloses. In the plane, positive orientation is counterclockwise.

Theorem 17.4 (Hopf Umlaufsatz). Let $\left(U, e_{1}, e_{2}\right)$ be a framed open set on an oriented Riemannian 2-manifold, and $\gamma:[a, b] \rightarrow U$ a positively oriented piecewise smooth simple closed curve. Then the total change in the angle of $T(s)=\gamma^{\prime}(s)$ around γ is

Fig. 17.2. A polygonal region on a surface.

$$
\sum_{i=1}^{m} \Delta \zeta_{i}+\sum_{i=1}^{m} \varepsilon_{i}=2 \pi
$$

The Hopf Umlaufsatz is also called the rotation index theorem or the rotation angle theorem. A proof may be found in [11] or [16, Th. 2.9, pp. 56-57]. In the Addendum we give a proof for the case of a plane curve.

Theorem 17.5 (Gauss-Bonnet formula for a polygon). Under the hypotheses above,

$$
\int_{a}^{b} \kappa_{g} d s=2 \pi-\sum_{i=1}^{m} \varepsilon_{i}-\int_{R} K \mathrm{vol} .
$$

Proof. The integral $\int_{a}^{b} \kappa_{g} d s$ is the sum of the total geodesic curvature on each edge of the simple closed curve. As before, we denote by $\Delta \zeta_{i}$ the change in the angle ζ along the i th edge of γ. By Corollary 17.3,

$$
\begin{align*}
\int_{a}^{b} \kappa_{g} d s & =\sum_{i=1}^{m} \int_{s_{i-1}}^{s_{i}} \kappa_{g} d s \\
& =\sum_{i} \Delta \zeta_{i}-\int_{C} \omega_{2}^{1} \tag{17.4}
\end{align*}
$$

By the Hopf Umlaufsatz,

$$
\begin{equation*}
\sum \Delta \zeta_{i}=2 \pi-\sum \varepsilon_{i} \tag{17.5}
\end{equation*}
$$

Recall from Section 12 that on a framed open set $\left(U, e_{1}, e_{2}\right)$ of a Riemannian 2-manifold with orthonormal frame e_{1}, e_{2} and dual frame θ^{1}, θ^{2}, if $\left[\Omega_{j}^{i}\right]$ is the curvature matrix relative to the frame e_{1}, e_{2}, then

$$
\Omega_{2}^{1}=d \omega_{2}^{1}=K \theta^{1} \wedge \theta^{2}
$$

Therefore,

$$
\begin{align*}
\int_{C} \omega_{2}^{1} & =\int_{\partial R} \omega_{2}^{1} \\
& =\int_{R} d \omega_{2}^{1} \quad \quad \text { (by Stokes' theorem) } \\
& =\int_{R} K \theta^{1} \wedge \theta^{2}=\int_{R} K \text { vol } . \tag{17.6}
\end{align*}
$$

Combining (17.4), (17.5), and (17.6) gives the Gauss-Bonnet formula for a polygon.

17.5 Triangles on a Riemannian 2-Manifold

A geodesic polygon is a polygon whose segments are geodesics. We will deduce from the Gauss-Bonnet formula a famous result on the sum of the angles of a geodesic triangle on a Riemannian 2-manifold.
Proposition 17.6. Suppose a geodesic m-gon γ lies in a framed open set of an oriented Riemannian 2-manifold. If β_{i} is the interior angle at vertex i of the geodesic m-gon, R is the closed region enclosed by γ, and K is the Gaussian curvature on R, then

$$
\sum_{i=1}^{m} \beta_{i}=(m-2) \pi+\int_{R} K \mathrm{vol}
$$

Proof. Along a geodesic m-gon, the geodesic curvature κ_{g} is identically zero. The exterior angle ε_{i} at vertex i is

$$
\varepsilon_{i}=\pi-\beta_{i} .
$$

Hence, the Gauss-Bonnet formula becomes

$$
0=2 \pi-\sum_{i=1}^{m}\left(\pi-\beta_{i}\right)-\int_{R} K \mathrm{vol},
$$

or

$$
\sum_{i=1}^{m} \beta_{i}=(m-2) \pi+\int_{R} K \mathrm{vol} .
$$

The following corollary is immediate.
Corollary 17.7. Suppose a geodesic triangle lies in a framed open set of an oriented Riemannian 2-manifold M.
(i) If M has zero Gaussian curvature, the angles of the geodesic triangle add up to π radians.
(ii) If M has everywhere positive Gaussian curvature, the angles of the geodesic triangle add up to more than π radians.
(iii) If M has everywhere negative Gaussian curvature, the angles of the geodesic triangle add up to less than π radians.

By Section 12.5, the Poincaré half-plane has constant Gaussian curvature -1 . It is also known as the hyperbolic plane. We will call a geodesic triangle in the Poincaré half-plane a hyperbolic triangle.
Corollary 17.8. The area enclosed by a hyperbolic triangle is π minus the sum of its interior angles.
Proof. If R is the region enclosed by the hyperbolic triangle, then by Proposition 17.6,

$$
\begin{aligned}
\operatorname{Area}(R) & =\int_{R} 1 \mathrm{vol}=-\int_{R} K \mathrm{vol} \\
& =\pi-\sum_{i=1}^{3} \beta_{i} .
\end{aligned}
$$

17.6 Gauss-Bonnet Theorem for a Surface

Let M be a compact oriented Riemannian 2-manifold. Suppose M has been cut up into polygonal regions, each of which is bounded by a piecewise smooth simple closed curve and lies in a framed open set. We call such a polygonal decomposition sufficiently fine. Let V, E, F be the number of vertices, edges, and faces, respectively, of this polygonal decomposition. The Euler characteristic of the decomposition is defined to be

$$
\chi=V-E+F .
$$

Theorem 17.9 (Gauss-Bonnet theorem). For a compact oriented Riemannian 2manifold M,

$$
\int_{M} K \mathrm{vol}=2 \pi \chi(M)
$$

Proof. Decompose the surface M into a sufficiently fine polygonal decomposition. The orientation on the surface will orient each face in such a way that each edge is oriented in two opposite ways, depending on which of the two adjacent faces it is a boundary of (see Figure 17.3).

Fig. 17.3. Orienting a triangulated surface.

Denote the polygonal regions by R_{j}. If we sum up $\int \kappa_{g} d s$ over the boundaries of all the regions R_{j}, the result is zero because each edge occurs twice, with opposite orientations. Let $\beta_{i}^{(j)}, 1 \leq i \leq n_{j}$, be the interior angles of the j th polygon. Then by the Gauss-Bonnet formula for a polygon (Theorem 17.5),

$$
0=\sum_{j} \int_{\partial R_{j}} \kappa_{g} d s=2 \pi F-\sum_{j} \sum_{i=1}^{n_{j}}\left(\pi-\beta_{i}^{(j)}\right)-\sum_{j} \int_{R_{j}} K \mathrm{vol} .
$$

In the sum $\sum_{j} \sum_{i}\left(\pi-\beta_{i}^{(j)}\right)$, the term π occurs $2 E$ times because each edge occurs twice. The sum of all the interior angles is 2π at each vertex; hence,

$$
\sum_{i, j} \beta_{i}^{(j)}=2 \pi V .
$$

Therefore,

$$
0=2 \pi F-2 \pi E+\sum_{i, j} \beta_{i}^{(j)}-\int_{M} K \mathrm{vol},
$$

or

$$
\begin{aligned}
\int_{M} K \mathrm{vol} & =2 \pi V-2 \pi E+2 \pi F \\
& =2 \pi \chi(M)
\end{aligned}
$$

In the Gauss-Bonnet theorem the total curvature $\int_{M} K$ vol on the left-hand side is independent of the polygonal decomposition while the Euler characteristic $2 \pi \chi$ on the right-hand side is independent of the Riemannian structure. This theorem shows that the Euler characteristic of a sufficiently fine polygonal decomposition is independent of the decomposition and that the total curvature is a topological invariant, independent of the Riemannian structure.

By the classification theorem for surfaces, a compact orientable surface is classified by an integer g called its genus, which is essentially the number of holes in the surface (Figure 17.4).

Fig. 17.4. Compact orientable surfaces.

Any two compact orientable surfaces of the same genus are diffeomorphic and moreover, if M is a compact orientable surface of genus g, then

$$
\chi(M)=2-2 g .
$$

Theorem 17.10. If a compact orientable Riemannian manifold of dimension 2 has positive Gaussian curvature K everywhere, then it is diffeomorphic to a sphere.

Proof. By the Gauss-Bonnet theorem,

$$
2 \pi \chi(M)=\int_{M} K \mathrm{vol}>0
$$

So $\chi(M)=2-2 g>0$, which is equivalent to $g<1$. Hence, $g=0$ and M is diffeomorphic to a sphere.

17.7 Gauss-Bonnet Theorem for a Hypersurface in $\mathbb{R}^{2 n+1}$

If M is an even-dimensional smooth, compact, oriented hypersurface in $\mathbb{R}^{2 n+1}$, we defined its Gaussian curvature K in Section 9.1. The Gauss-Bonnet theorem for a hypersurface states that

$$
\int_{M} K \operatorname{vol}_{M}=\frac{\operatorname{vol}\left(S^{2 n}\right)}{2} \chi(M)
$$

For a proof, see [19, Vol. 5, Ch. 13, Th. 26, p. 442]. For $n=1, \operatorname{vol}\left(S^{2}\right)=4 \pi$ and this theorem agrees with Theorem 17.9.

Problems

17.1. Interior angles of a polygon

Use the Gauss-Bonnet formula to find the sum of the interior angles of a geodesic m-gon in the Euclidean plane.

17.2. Total curvature of a plane curve

Let C be a smooth, simple closed plane curve parametrized counterclockwise by $\gamma(s)$, where $s \in[0, \ell]$ is the arc length. If $k(s)$ is the signed curvature of the curve at $\gamma(s)$, prove that

$$
\int_{0}^{\ell} k(s) d s=2 \pi
$$

This is a restatement of Hopf's Umlaufsatz, since if θ is the angle of the tangent vector $\gamma^{\prime}(s)$ relative to the positive x-axis, then

$$
\int_{0}^{\ell} k(s) d s=\int_{0}^{\ell} \frac{d \theta}{d s} d s=\theta(\ell)-\theta(0)
$$

is the change in the angle θ from $s=0$ to $s=\ell$.

17.3. The Gauss map and volume

Let M be a smooth, compact, oriented surface in \mathbb{R}^{3}. The Gauss map $v: M \rightarrow S^{2}$ of M is defined in Problem 5.3. If vol_{M} and $\mathrm{vol}_{S^{2}}$ are the volume forms on M and on S^{2} respectively, prove that

$$
v^{*}\left(\operatorname{vol}_{S^{2}}\right)=K \operatorname{vol}_{M},
$$

where K is the Gaussian curvature on M.

17.4. Degree of the Gauss map of a surface

If $f: M \rightarrow N$ is a map of compact oriented manifolds of the same dimension, the degree of f is defined to be the number

$$
\operatorname{deg} f=\int_{M} f^{*} \omega
$$

where ω is a top form on N with $\int_{N} \omega=1$ [3, p. 40]. Prove that for a smooth, compact, oriented surface M in \mathbb{R}^{3}, the degree of the Gauss map $v: M \rightarrow S^{2}$ is

$$
\operatorname{deg} v=\frac{1}{2} \chi(M) .
$$

(Hint: Take ω to be $\operatorname{vol}_{S^{2}} / 4 \pi$. Then $\operatorname{deg} v=\int_{M} v^{*}\left(\operatorname{vol}_{S^{2}}\right) / 4 \pi$. Use Problem 17.3 and the Gauss-Bonnet theorem.)

17.5. Degree of the Gauss map of a hypersurface

Let M be a smooth, compact, oriented $2 n$-dimensional hypersurface in $\mathbb{R}^{2 n+1}$. Let N be the unit outward normal vector field on M. The Gauss map $v: M \rightarrow S^{2 n}$ assigns to each point $p \in M$ the unit outward normal N_{p}. Using the Gauss-Bonnet theorem for a hypersurface, prove that the degree of the Gauss map is

$$
\operatorname{deg} v=\frac{1}{2} \chi(M) .
$$

Addendum. Hopf Umlaufsatz in the Plane

In this Addendum we give a proof of the Hop Umlaufsatz in the plane, more or less along the line of Hopf's 1935 paper [11].

Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular curve (Recall that "regular" means that c^{\prime} is never zero). Let $\bar{\zeta}:[a, b] \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ be the angle that the unit tangent vector makes with respect to the positive x-axis. Because angles are defined up to an integral multiple of 2π, it is a C^{∞} function with values in $\mathbb{R} / 2 \pi \mathbb{Z}$. Since the interval $[a, b]$ is simply connected, $\bar{\zeta}$ has a C^{∞} lift $\zeta:[a, b] \rightarrow \mathbb{R}$, which is unique if we fix the initial value $\zeta(a) \in \mathbb{R}$. If c is piecewise smooth with vertices at $s_{0}<s_{1}<\cdots<s_{r}$, then at each vertex $c\left(s_{i}\right)$, the angle at the endpoint of one segment and the jump angle there determines uniquely the angle at the initial point of the next segment. Thus, on a piecewise smooth curve there is a well-defined C^{∞} angle function on each segment once the initial angle $\zeta(a) \in \mathbb{R}$ is specified.
Theorem 17.1 (Hopf Umlaufsatz for a plane curve). Let $\gamma:[0, \ell] \rightarrow \mathbb{R}^{2}$ be a piecewise smooth simple closed curve oriented counterclockwise and parametrized by arc length. Then the change in the angle around γ is

$$
\zeta(\ell)-\zeta(0)=2 \pi
$$

Fig. 17.5. A simple closed curve.

Proof. Let $C=\gamma([0, \ell])$ be the image of the parametrized curve. First consider the case when C is smooth. Since C is compact, it is bounded and therefore lies above some horizontal line. Parallel translate this horizontal line upward until it is tangent to C. Translate the coordinate system so that the origin $O=(0,0)$ is a point of tangency with a horizontal tangent (Figure 17.5).

For any two points $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)$ on C with $t_{1}<t_{2}$, let $\bar{\zeta}\left(t_{1}, t_{2}\right)$ be the angle that the unit secant vector $\overrightarrow{\gamma\left(t_{1}\right) \gamma\left(t_{2}\right)} /\left\|\overrightarrow{\gamma\left(t_{1}\right) \gamma\left(t_{2}\right)}\right\|$ makes relative to the positive x-axis. If $t_{1}=t_{2}$, let $\bar{\zeta}\left(t_{1}, t_{2}\right)$ be the angle that the unit tangent vector at $\gamma\left(t_{1}\right)$ makes relative to the positive x-axis.

Let T be the closed triangle in \mathbb{R}^{2} with vertices $O=(0,0), A=(0, \ell)$, and $L=$ (ℓ, ℓ) (Figure 17.6). The angle function $\bar{\zeta}: T \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ is continuous on the closed rectangle T and C^{∞} on the open rectangle. Since T is simply connected, $\bar{\zeta}$ lifts to a continuous function $\zeta: T \rightarrow \mathbb{R}$ that is C^{∞} in the interior of T.

Fig. 17.6. Domain of the secant angle function.

Then $d \zeta$ is a well-defined 1-form on T, and the change in the angle ζ around the curve γ is given by the integral

$$
\int_{\overline{O L}} d \zeta=\zeta(L)-\zeta(O)=\zeta(\ell)-\zeta(0)
$$

By Stokes' theorem,

$$
\int_{\partial T} d \zeta=\int_{T} d(d \zeta)=0
$$

where $\partial T=\overline{O L}+\overline{L A}+\overline{A O}=\overline{O L}-\overline{A L}-\overline{O A}$. Hence,

$$
\begin{equation*}
\int_{\overline{O L}} d \zeta=\int_{\overline{O A}} d \zeta+\int_{\overline{A L}} d \zeta \tag{17.7}
\end{equation*}
$$

On the right the first integral $\int_{\overline{O A}} d \zeta=\zeta(0, \ell)-\zeta(0,0)$ is the change in the angle as the secant moves from $(0,0)$ to $(0, \ell)$, i.e., the initial point of the secant is fixed at O while the endpoint moves from O to O counterclokwise along the curve (Figure 17.7). Thus,

$$
\int_{\overline{O A}} d \zeta=\zeta(0, \ell)-\zeta(0,0)=\pi-0=\pi
$$

The second integral on the right in (17.7),

$$
\int_{\overline{A L}} d \zeta=\zeta(\ell, \ell)-\zeta(0, \ell)
$$

is the change in the angle of the secant if the initial point of the secant moves from O to O counterclockwise along the curve while the endpoint is fixed at O (Figure 17.8). Thus,

Fig. 17.7. Change in the secant angle from $(0,0)$ to $(0, \ell)$.

Fig. 17.8. Change in the secant angle from $(0, \ell)$ to (ℓ, ℓ).

$$
\int_{\overline{A L}} d \zeta=\zeta(\ell, \ell)-\zeta(0, \ell)=2 \pi-\pi=\pi
$$

So in (17.7),

$$
\zeta(\ell)-\zeta(0)=\int_{\overline{O L}} d \zeta=\int_{\overline{O A}} d \zeta+\int_{\overline{A L}} d \zeta=\pi+\pi=2 \pi
$$

This proves the Hopf Umlaufsatz for a smooth curve γ.
If $\gamma:[0, \ell] \rightarrow \mathbb{R}^{2}$ is piecewise smooth so that C has corners, we can "smooth a corner" by replacing it by a smooth arc and thereby removing the singularity (Figure 17.9).

In a neighborhood of each corner, the change in the angle is the change in the angle over the smooth pieces plus the jump angle at the corner. It is the same as the change in the angle of the smoothed curve. Hence,

Fig. 17.9. Smoothing a corner.

$$
\zeta(\ell)-\zeta(0)=\sum \Delta \zeta_{i}+\sum \varepsilon_{i}=2 \pi
$$

Chapter 4

Tools from Algebra and Topology

This chapter is a digression in algebra and topology. We saw earlier that the tangent space construction gives rise to a functor from the category of C^{∞} manifolds (M, p) with a marked point to the category of vector spaces. Much of differential topology and differential geometry consists of trying to see how much of the geometric information is encoded in the linear algebra of tangent spaces. To this end, we need a larger arsenal of algebraic techniques than linear spaces and linear maps.

In Sections 18 and 19, we introduce the tensor product, the dual, the Hom functor, and the exterior power. These functors are applied in Section 20 to the fibers of vector bundles in order to form new vector bundles. In Section 21, we generalize differential forms with values in \mathbb{R} to differential forms with values in a vector space or even in a vector bundle. The curvature form of a connection on a vector bundle E is an example of a 2-form with values in a vector bundle, namely, the endomorphism bundle $\operatorname{End}(E)$.

Although we are primarily interested in the tensor product of vector spaces, it is not any more difficult to define the tensor product of modules. This could come in handy in algebraic topology, where one might want to tensor two abelian groups, or in the theory of vector bundles, where the space of C^{∞} sections of a bundle over a manifold is a module over the ring of C^{∞} functions on the manifold. All the modules in this book will be left modules over a commutative ring R with identity. When the ring R is a field, the R-modules are vector spaces. The vector spaces may be infinite-dimensional, except where explicitly stated otherwise.

$\S 18$ The Tensor Product and the Dual Module

Some of the basic operations on a vector space are not linear. For example, any inner product on a vector space V is by definition bilinear, hence not linear on $V \times V$. In general, linear maps are easier to deal with than multilinear maps. The tensor product is a way of converting multilinear maps to linear maps. The main theorem
(Theorem 18.3) states that bilinear maps on a Cartesian product $V \times W$ of vector spaces V and W correspond in a one-to-one manner to linear maps on the tensor product $V \otimes W$.

18.1 Construction of the Tensor Product

Let R be a commutative ring with identity. A subset B of a left R-module V is called a basis if every element of V can be written uniquely as a finite linear combination $\sum r_{i} b_{i}$, where $r_{i} \in R$ and $b_{i} \in B$. An R-module is said to be free if it has a basis, and if the basis is finite with n elements, then the free R-module is said to be of rank n.

Example 18.1. The \mathbb{Z}-module $\mathbb{Z} / 2$ has no basis, for the only possible candidate for a basis element is 1 , yet $0=0 \cdot 1=2 \cdot 1$, which shows that 0 is not uniquely a linear combination of 1 .

Let V and W be left R-modules. To define their tensor product, first construct the free R-module Free $(V \times W)$ whose basis is the set of all ordered pairs $(v, w) \in V \times W$. This means an element of $\operatorname{Free}(V \times W)$ is uniquely a finite linear combination of elements of $V \times W$:

$$
\sum r_{i}\left(v_{i}, w_{i}\right), \quad r_{i} \in R, \quad\left(v_{i}, w_{i}\right) \in V \times W .
$$

In Free $(V \times W)$, consider the R-submodule S spanned by all elements of the form:

$$
\begin{gather*}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right), \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right), \\
(r v, w)-r(v, w), \tag{18.1}\\
(v, r w)-r(v, w)
\end{gather*}
$$

for all $v_{1}, v_{2}, v \in V, w_{1}, w_{2}, w \in W$, and $r \in R$.
Definition 18.2. The tensor product $V \otimes_{R} W$ of two R-modules V and W is the quotient R-module Free $(V \times W) / S$, where S is the R-submodule spanned by elements of the form (18.1). When it is understood that the coefficient ring is R, we write simply $V \otimes W$.

We denote the equivalence class of (v, w) by $v \otimes w$ and call it the tensor product of v and w. By construction, $v \otimes w$ is bilinear in its arguments:

$$
\begin{gather*}
\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w, \tag{18.2}\\
v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}, \tag{18.3}\\
(r v) \otimes w=r(v \otimes w)=v \otimes r w . \tag{18.4}
\end{gather*}
$$

In other words, the canonical map

$$
\begin{aligned}
\otimes: V \times W & \rightarrow V \otimes W \\
(v, w) & \mapsto v \otimes w
\end{aligned}
$$

is bilinear.

Elements of the form $v \otimes w$ are said to be decomposable in $V \otimes W$. By construction every element in $V \otimes W$ is a finite sum of decomposable elements:

$$
\sum r_{i}\left(v_{i} \otimes w_{i}\right)=\sum\left(r_{i} v_{i}\right) \otimes w_{i} .
$$

The decomposition into a finite sum of decomposable elements is not unique; for example,

$$
v_{1} \otimes w+v_{2} \otimes w=\left(v_{1}+v_{2}\right) \otimes w
$$

18.2 Universal Mapping Property for Bilinear Maps

The tensor product satisfies the following universal mapping property.
Theorem 18.3. Let V, W, Z be left modules over a commutative ring R with identity. Given any R-bilinear map $f: V \times W \rightarrow Z$, there is a unique R-linear map $\tilde{f}: V \otimes$ $W \rightarrow Z$ such that the diagram

commutes.
The commutativity of the diagram means that $\tilde{f} \circ \otimes=f$, or

$$
\tilde{f}(v \otimes w)=f(v, w) \quad \text { for all }(v, w) \in V \times W
$$

Proof (of Theorem 18.3). In general there is a one-to-one correspondence between linear maps on a free modules and set maps on a basis of the free module. We define

$$
F: \text { Free }(V \times W) \rightarrow Z
$$

by setting

$$
F(v, w)=f(v, w)
$$

and extending the definition by linearity:

$$
F\left(\sum r_{i}\left(v_{i}, w_{i}\right)\right)=\sum r_{i} f\left(v_{i}, w_{i}\right)
$$

Because f is bilinear, F vanishes on all the generators (18.1) of the subspace S. For example,

$$
\begin{aligned}
F\left(\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)\right) & =F\left(v_{1}+v_{2}, w\right)-F\left(v_{1}, w\right)-F\left(v_{2}, w\right) \\
& =f\left(v_{1}+v_{2}, w\right)-f\left(v_{1}, w\right)-f\left(v_{2}, w\right) \\
& =0
\end{aligned}
$$

So the linear map F induces a linear map of the quotient module

$$
\tilde{f}: V \otimes W=\frac{\operatorname{Free}(V \times W)}{S} \rightarrow Z
$$

such that

$$
\tilde{f}(v \otimes w)=F(v, w)=f(v, w) .
$$

This proves the existence of the linear map \tilde{f}.
To prove uniqueness, suppose $\tilde{g}: V \otimes W \rightarrow Z$ is another linear map that makes the diagram (18.5) commutative. Then

$$
\tilde{g}(v \otimes w)=f(v, w)=\tilde{f}(v \otimes w)
$$

for all $(v, w) \in V \times W$, so \tilde{g} and \tilde{f} agree on decomposable elements. Since the decomposable elements span $V \otimes W$ and both \tilde{g} and \tilde{f} are linear, $\tilde{g}=\tilde{f}$ on all of $V \otimes W$.

18.3 Characterization of the Tensor Product

Let V and W be left modules over a commutative ring R with identity. We say that a left R-module T and an R-bilinear map $\phi: V \times W \rightarrow T$ have the universal mapping property for bilinear maps on $V \times W$ if given any left R-module Z and any R-bilinear map $f: V \times W \rightarrow Z$ there is a unique R-linear map $\tilde{f}: T \rightarrow Z$ making the diagram

commutative. The universal mapping property characterizes the tensor product in the following sense.

Proposition 18.4. Suppose V, W, and T are left R-modules and $\phi: V \times W \rightarrow T$ an R-bilinear map satisfying the universal mapping property for bilinear maps. Then T is isomorphic to the tensor product $V \otimes W$ via the linear map $\tilde{\otimes}: T \rightarrow V \otimes W$.

Proof. By the universal mapping property of T, there is a unique linear map $\tilde{\otimes}: T \rightarrow$ $V \otimes W$ such that the diagram

commutes. Algebraically,

$$
\tilde{\otimes}(\phi(v, w))=v \otimes w
$$

for all $(v, w) \in V \times W$.

Similarly, by the universal mapping property of $V \otimes W$, there is a map $\tilde{\phi}: V \otimes$ $W \rightarrow T$ such that $\tilde{\phi}(v \otimes w)=\phi(v, w)$. Thus,

$$
(\tilde{\phi} \circ \tilde{\otimes})(\phi(v, w))=\tilde{\phi}(v \otimes w)=\phi(v, w)
$$

so $\tilde{\phi} \circ \tilde{\otimes}: T \rightarrow T$ is a linear map that makes the diagram

commute.
On the other hand, the identity map $\mathbb{1}_{T}: T \rightarrow T$ also makes the diagram commute. By the uniqueness statement of the universal mapping property,

$$
\tilde{\phi} \circ \tilde{\otimes}=\mathbb{1}_{T} .
$$

Similarly,

$$
\tilde{\otimes} \circ \tilde{\phi}=\mathbb{1}_{V \otimes W}
$$

Therefore, $\tilde{\otimes}: T \rightarrow V \otimes W$ is a linear isomorphism of R-modules.
As an example of the universal mapping property, we prove the following proposition.

Proposition 18.5. Let V and W be left R-modules. There is a unique R-linear isomorphism

$$
\tilde{f}: V \otimes W \rightarrow W \otimes V
$$

such that

$$
\tilde{f}(v \otimes w)=w \otimes v
$$

for all $v \in V$ and $w \in W$.
Proof. Define

$$
f: V \times W \rightarrow W \otimes V
$$

by

$$
f(v, w)=w \otimes v
$$

Since f is bilinear, by the universal mapping property, there is a unique linear map $\tilde{f}: V \otimes W \rightarrow W \otimes V$ such that

$$
(\tilde{f} \circ \otimes)(v, w)=w \otimes v
$$

or

$$
\tilde{f}(v \otimes w)=w \otimes v
$$

Similarly, one can construct a unique linear map $\tilde{g}: W \otimes V \rightarrow V \otimes W$ such that

$$
\tilde{g}(w \otimes v)=v \otimes w .
$$

Then \tilde{f} and \tilde{g} are inverses to each other on decomposable elements $v \otimes w$. Since $V \otimes W$ is generated by decomposable elements, $\tilde{g} \circ \tilde{f}=\mathbb{1}_{V \otimes W}$ and $\tilde{f} \circ \tilde{g}=\mathbb{1}_{W \otimes V}$.

Remark 18.6. In general, one cannot define a linear map on $V \otimes W$ by simply defining it on the decomposable elements $v \otimes w$ and then extending it by linearity. This is because an element of the tensor product $V \otimes W$ can have many different representations as a sum of decomposable elements; for example,

$$
2 v \otimes w=v \otimes 2 w=v \otimes w+v \otimes w .
$$

There is no assurance that the definition of a map on the decomposable elements will be consistent. One must always start with a bilinear map f on the Cartesian product $V \times W$. Then the universal mapping property guarantees the existence of a unique linear map \tilde{f} on $V \otimes W$ with the property that $\tilde{f}(v \otimes w)=f(v, w)$.

18.4 A Basis for the Tensor Product

In this section we assume V and W to be free R-modules of finite rank with bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}, respectively.

Lemma 18.7. For $1 \leq k \leq n$ and $1 \leq \ell \leq m$, there exist linear functions $f^{k \ell}: V \otimes$ $W \rightarrow R$ such that

$$
f^{k \ell}\left(v_{i} \otimes w_{j}\right)=\delta_{(i, j)}^{(k, \ell)}
$$

for all $1 \leq i \leq n$ and $1 \leq j \leq m$
Proof. Define $h^{k \ell}: V \times W \rightarrow R$ by setting

$$
h^{k \ell}\left(v_{i}, w_{j}\right)=\delta_{(i, j)}^{(k, \ell)}
$$

on the basis elements v_{i} of V and w_{j} of W and extending to $V \times W$ by bilinearity. As defined, $h^{k \ell}: V \times W \rightarrow R$ is bilinear, and so by the universal mapping property it corresponds to a unique linear map

$$
\tilde{h}^{k \ell}: V \otimes W \rightarrow R
$$

such that

$$
\tilde{h}^{k \ell}\left(v_{i} \otimes w_{j}\right)=h^{k \ell}\left(v_{i}, w_{j}\right)=\delta_{(i, j)}^{(k, \ell)} .
$$

Set $f^{k \ell}=\tilde{h}^{k \ell}$.
Theorem 18.8. If v_{1}, \ldots, v_{n} is a basis for V and w_{1}, \ldots, w_{m} is a basis for W, then

$$
\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq n, \quad 1 \leq j \leq m\right\}
$$

is a basis for $V \otimes W$.

Proof. Every decomposable element $v \otimes w$ can be written as a linear combination of $v_{i} \otimes w_{j}$, for if $v=\sum a^{i} v_{i}$ and $w=\sum b^{j} w_{j}$, then

$$
v \otimes w=\sum a^{i} b^{j} v_{i} \otimes w_{j} .
$$

Since every element of $V \otimes W$ is a sum of decomposable elements, we see that the set $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ spans $V \otimes W$.

It remains to show that the set $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ is linearly independent. Suppose there is a linear relation

$$
\sum_{i, j} c^{i j} v_{i} \otimes w_{j}=0, \quad c^{i j} \in R
$$

Applying the linear function $f^{k \ell}$ of Lemma 18.7 gives

$$
\begin{aligned}
0=f^{k \ell}\left(\sum_{i, j} c^{i j} v_{i} \otimes w_{j}\right) & =\sum_{i, j} c^{i j} f^{k \ell}\left(v_{i} \otimes w_{j}\right) \\
& =\sum_{i, j} c^{i j} \delta_{(i, j)}^{(k, \ell)} \\
& =c^{k \ell}
\end{aligned}
$$

This proves that the set $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ is linearly independent.
Corollary 18.9. If V and W are free R-modules of finite rank, then

$$
\operatorname{rk}(V \otimes W)=(\operatorname{rk} V)(\operatorname{rk} W)
$$

18.5 The Dual Module

As before, R is a commutative ring with identity. For two left R-modules V and W, define $\operatorname{Hom}_{R}(V, W)$ to be the set of all R-linear maps $f: V \rightarrow W$. Under pointwise addition and scalar multiplication:

$$
\begin{aligned}
(f+g)(v) & =f(v)+g(v) \\
(r f)(v) & =r(f(v)), \quad f, g \in \operatorname{Hom}_{R}(V, W), v \in V, r \in R
\end{aligned}
$$

the set $\operatorname{Hom}_{R}(V, W)$ becomes a left R-module. If the ring R is understood from the context, we may also write $\operatorname{Hom}(V, W)$ instead of $\operatorname{Hom}_{R}(V, W)$. The dual V^{\vee} of a left R-module V is defined to be $\operatorname{Hom}_{R}(V, R)$.

Proposition 18.10. Suppose V is a free R-module of rank n with basis e_{1}, \ldots, e_{n}. Define $\alpha^{i}: V \rightarrow R$ by

$$
\alpha^{i}\left(e_{j}\right)=\delta_{j}^{i} .
$$

Then the dual V^{\vee} is a free R-module of rank n with basis $\alpha^{1}, \ldots, \alpha^{n}$.

Proof. Problem 18.2.
Corollary 18.11. If V and W are free R-modules of rank n and m, with bases $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$, respectively, then the functions

$$
\begin{aligned}
& f^{k \ell}: V \otimes W \rightarrow R \\
& f^{k \ell}\left(v_{i} \otimes w_{j}\right)=\delta_{(i, j)}^{(k, \ell)}, \quad 1 \leq k \leq n, 1 \leq \ell \leq m
\end{aligned}
$$

of Lemma 18.7 constitute the dual basis for $(V \otimes W)^{\vee}$ dual to the basis $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ for $V \otimes W$.

18.6 Identities for the Tensor Product

This section contains a few important identities involving the tensor product. We leave some of the proofs as exercises.

Proposition 18.12. Let V be a left R-module. Scalar multiplication

$$
\begin{aligned}
f: R \times V & \rightarrow V \\
(r, v) & \mapsto r v
\end{aligned}
$$

is an R-bilinear map that induces an R-linear isomorphism $\tilde{f}: R \otimes_{R} V \rightarrow V$.
Proof. The bilinear map $f: R \times V \rightarrow V$ induces a linear map $\tilde{f}: R \otimes V \rightarrow V$. Define $g: V \rightarrow R \otimes V$ by $g(v)=1 \otimes v$. Then g is R-linear and

$$
g \circ \tilde{f}=\mathbb{1}_{R \otimes V} \quad \text { and } \quad \tilde{f} \circ g=\mathbb{1}_{V}
$$

Therefore, \tilde{f} is an isomorphism.
Example 18.13. For any positive integer m, it follows from the proposition that there is a \mathbb{Z}-isomorphism

$$
\mathbb{Z} \otimes_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}) \simeq \mathbb{Z} / m \mathbb{Z}
$$

For $\alpha \in V^{\vee}$ and $w \in W$, denote by $\alpha() w \in \operatorname{Hom}_{R}(V, W)$ the R-linear map that send $v \in V$ to $\alpha(v) w \in W$.

Proposition 18.14. Let V and W be free left R-modules of finite rank. There is a unique R-linear isomorphism

$$
\tilde{f}: V^{\vee} \otimes W \rightarrow \operatorname{Hom}_{R}(V, W)
$$

such that

$$
\tilde{f}(\alpha \otimes w)=\alpha() w .
$$

Proof. Define $f: V^{\vee} \times W \rightarrow \operatorname{Hom}_{R}(V, W)$ by

$$
f(\alpha, w)=\alpha() w
$$

Since f is R-bilinear, it induces a unique R-linear map $\tilde{f}: V^{\vee} \otimes W \rightarrow \operatorname{Hom}(R, W)$ such that

$$
\tilde{f}(\alpha \otimes w)=\alpha() w .
$$

Let $\left\{v_{i}\right\},\left\{w_{j}\right\}$, and $\left\{\alpha^{i}\right\}$ be bases for V, W, and V^{\vee} respectively. Then a basis for $V^{\vee} \otimes W$ is $\left\{\alpha^{i} \otimes w_{j}\right\}$ and a basis for $\operatorname{Hom}_{R}(V, W)$ is $\left\{\alpha^{i}() w_{j}\right\}$ (Show this). Since $\tilde{f}: V^{\vee} \otimes W \rightarrow \operatorname{Hom}_{R}(V, W)$ takes a basis to a basis, it is an R-linear isomorphism.

Proposition 18.15. Let V and W be free left R-modules of finite rank. There is a unique R-linear isomorphism

$$
\tilde{f}: V^{\vee} \otimes W^{\vee} \rightarrow(V \otimes W)^{\vee}
$$

such that $\tilde{f}(\alpha \otimes \beta)$ is the linear map that sends $v \otimes w$ to $\alpha(v) \beta(w)$.
Proof. Problem 18.4.
Example 18.16 (Tensor product of finite cyclic groups). For any two positive integers m, n, there is a group isomorphism

$$
\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \simeq \mathbb{Z} /(m, n) \mathbb{Z}
$$

where (m, n) is the greatest common divisor of m and n.
Proof. Define a \mathbb{Z}-linear map $\mathbb{Z} \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$ by $a \mapsto a(\bmod (m, n))$. Since $m \mathbb{Z}$ is in the kernel of this map, there is an induced \mathbb{Z}-linear map $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$. Similarly, there is a \mathbb{Z}-linear map $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$. We can therefore define a $\operatorname{map} f: \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$ by

$$
f(a, b)=a b \quad(\bmod (m, n))
$$

Clearly, f is bilinear over \mathbb{Z}. By the universal mapping property of the tensor product, there is a unique \mathbb{Z}-linear map $\tilde{f}: \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$ such that $\tilde{f}(a \otimes b)=$ $a b(\bmod (m, n))$.

By the third defining property of the tensor product (18.4), $a \otimes b=a b(1 \otimes 1)$. Thus, the \mathbb{Z}-module $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ is cyclic with generator $1 \otimes 1$. It remains to determine its order. It is well known from number theory that there exist integers x and y such that

$$
(m, n)=m x+n y .
$$

Since

$$
\begin{aligned}
(m, n)(1 \otimes 1) & =m x(1 \otimes 1)+n y(1 \otimes 1) \\
& =m x \otimes 1+1 \otimes n y=0,
\end{aligned}
$$

the order of $1 \otimes 1$ is a factor of (m, n).

Suppose d is a positive factor of (m, n), but $d<(m, n)$. Then $f(d(1 \otimes 1))=$ $f(d \otimes 1)=d \neq 0$ in $\mathbb{Z} /(m, n) \mathbb{Z}$. Hence, $d(1 \otimes 1) \neq 0$. This proves that $1 \otimes 1$ has order (m, n) in $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$. Thus, $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ is cyclic of order (m, n).

In particular, if m and n are relatively prime, then

$$
\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \simeq \mathbb{Z} / \mathbb{Z}=0
$$

18.7 Functoriality of the Tensor Product

In this section we show that the tensor product gives rise to a functor.
Proposition 18.17. Let $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ be linear maps of left R-modules. Then there is a unique R-linear map

$$
f \otimes g: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}
$$

such that $(f \otimes g)(v \otimes w)=f(v) \otimes g(w)$.
Proof. Define

$$
h: V \times W \rightarrow V^{\prime} \otimes W^{\prime}
$$

by

$$
h(v, w)=f(v) \otimes g(w)
$$

This h is clearly an R-bilinear map. By the universal mapping property (Theorem 18.3), there is a unique R-linear map

$$
\tilde{h}: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}
$$

such that

$$
\tilde{h}(v \otimes w)=h(v, w)=f(v) \otimes g(w) .
$$

The map \tilde{h} is our $f \otimes g$.
Thus, the tensor product construction associates to a pair of left R-modules (V, W) their tensor product $V \otimes W$, and to a pair of R-linear maps $\left(f: V \rightarrow V^{\prime}, g: W \rightarrow\right.$ W^{\prime}) the R-linear map

$$
f \otimes g: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}
$$

It is not difficult to check that this construction satisfies the two properties of a functor:
(i) If $\mathbb{1}_{V}: V \rightarrow V$ and $\mathbb{1}_{W}: W \rightarrow W$ are identity maps, then

$$
\mathbb{1}_{V} \otimes \mathbb{1}_{W}: V \otimes W \rightarrow V \otimes W
$$

is the identity map on $V \otimes W$.
(ii) If $\left(f: V \rightarrow V^{\prime}, g: W \rightarrow W^{\prime}\right)$ and $\left(f^{\prime}: V^{\prime} \rightarrow V^{\prime \prime}, g^{\prime}: W^{\prime} \rightarrow W^{\prime \prime}\right)$ are pairs of R-linear maps, then

$$
\left(f^{\prime} \otimes g^{\prime}\right) \circ(f \otimes g)=\left(f^{\prime} \circ f\right) \otimes\left(g^{\prime} \circ g\right)
$$

So the tensor product is a functor from the category of pairs of R-modules and pairs of linear maps to the category of R-modules and linear maps.

18.8 Generalization to Multilinear Maps

The tensor product construction can be generalized to an arbitrary number of factors. For example, if U, V, and W are left R-modules, we can construct the tensor product $U \otimes V \otimes W$ by following the same procedure as before. First, form the free R-module Free $(U \times V \times W)$ with basis elements all $(u, v, w) \in U \times V \times W$. Then let S be the R-submodule of Free $(U \times V \times W)$ spanned by all "trilinear relations":

$$
\begin{aligned}
& \left(u_{1}+u_{2}, v, w\right)-\left(u_{1}, v, w\right)-\left(u_{2}, v, w\right), \\
& (r u, v, w)-r(u, v, w), \quad \text { and so on. } .
\end{aligned}
$$

The tensor product $U \otimes V \otimes W$ is defined to be the quotient module Free $(U \times V \times$ $W) / S$. The natural map

$$
\begin{aligned}
\otimes: U \times V \times W & \rightarrow U \otimes V \otimes W \\
(u, v, w) & \mapsto u \otimes v \otimes w
\end{aligned}
$$

is trilinear and satisfies the universal mapping property for trilinear maps on $U \times V \times W$.

18.9 Associativity of the Tensor Product

Proposition 18.18. If U, V, and W are left R-modules, then there is a unique R-linear isomorphism

$$
U \otimes(V \otimes W) \rightarrow U \otimes V \otimes W
$$

that sends $u \otimes(v \otimes w)$ to $u \otimes v \otimes w$ for all $u \in U, v \in V$ and $w \in W$.
Proof. It suffices to prove that $U \otimes(V \otimes W)$ together with the trilinear map

$$
\begin{aligned}
\phi: U \times V \times W & \rightarrow U \otimes(V \otimes W) \\
(u, v, w) & \mapsto u \otimes(v \otimes w)
\end{aligned}
$$

satisfies the universal mapping property for trilinear maps on $U \times V \times W$. As in Proposition 18.4, any two spaces satisfying the universal mapping property for trilinear maps on $U \times V \times W$ are isomorphic.

Let Z be any vector space and $f: U \times V \times W \rightarrow Z$ a trilinear map. Fix $u \in U$. Since $f(u, v, w)$ is bilinear in v and w, there is a unique linear map $\tilde{f}(u):, V \otimes W \rightarrow Z$ such that

$$
\tilde{f}(u, v \otimes w)=f(u, v, w) .
$$

Thus, there is a commutative diagram

Now \tilde{f} is bilinear in its two arguments, so there is a unique linear map

$$
\tilde{\tilde{f}}: U \otimes(V \otimes W) \rightarrow U \otimes V \otimes W
$$

such that

$$
\tilde{\tilde{f}}(u \otimes(v \otimes w))=\tilde{f}(u, v \otimes w)=f(u, v, w)
$$

Hence, $\phi: U \times V \times W \rightarrow U \otimes(V \otimes W)$ satisfies the universal mapping property for trilinear maps on $U \times V \times W$, and there is a commutative diagram

Taking $Z=U \otimes V \otimes W$ and $f=\otimes: U \times V \times W \rightarrow U \otimes V \otimes W$, we get

$$
\tilde{\tilde{f}}: U \otimes(V \otimes W) \rightarrow U \otimes V \otimes W
$$

such that

$$
\tilde{\tilde{f}}(u \otimes(v \otimes w))=f(u, v, w)=u \otimes v \otimes w .
$$

By the trilinear analogue of Proposition 18.4, \tilde{f} is an isomorphism.
In the same way we see that there is an isomorphism

$$
(U \otimes V) \otimes W \rightarrow U \otimes V \otimes W
$$

that takes $(u \otimes v) \otimes w$ to $u \otimes v \otimes w$.
Corollary 18.19. If U, V, and W are left R-modules, then there is a unique R-linear isomorphism

$$
U \otimes(V \otimes W) \xrightarrow[\rightarrow]{\sim}(U \otimes V) \otimes W
$$

such that

$$
u \otimes(v \otimes w) \mapsto(u \otimes v) \otimes w
$$

for all $u \in U, v \in V$ and $w \in W$.

18.10 The Tensor Algebra

For a left R-module V, we define

$$
\begin{aligned}
& T^{0}(V)=R, \quad T^{1}(V)=V, \quad T^{2}(V)=V \otimes V, \ldots, \\
& T^{k}(V)=\underbrace{V \otimes \cdots \otimes V}_{k}, \cdots,
\end{aligned}
$$

and

$$
T(V)=\bigoplus_{k=0}^{\infty} T^{k}(V)
$$

Here the direct sum \bigoplus means that each element v in $T(V)$ is uniquely a finite sum $v=\sum_{i} v_{k_{i}}$, where $v_{k_{i}} \in T^{k_{i}}(V)$. Elements of $T^{k}(V)$ are said to be homogeneous of degree k. There is a multiplication map on $T(V)$: first define

$$
\begin{aligned}
\mu: T^{k}(V) \times T^{\ell}(V) & \rightarrow T^{k+\ell}(V) \\
(x, y) & \mapsto x \otimes y
\end{aligned}
$$

and then extend μ to $T(V) \times T(V) \rightarrow T(V)$ by R-bilinearity. In this way, $T(V)$ becomes a graded R-algebra, called the tensor algebra of V. By Corollary 18.19, the tensor algebra $T(V)$ is associative.

Problems

In the following problems, R is a commutative ring with identity.

18.1. Free R-modules of rank n

Show that a free R-module of rank n is isomorphic to $R \oplus \cdots \oplus R$ (n copies).

18.2. The dual of a free module

Prove Proposition 18.10.

18.3. Hom of free modules

Prove that if V and W are free left R-modules of rank n and m, respectively, then $\operatorname{Hom}_{R}(V, W)$ is a free R-module of rank $m n$.

18.4. Dual of a tensor product

Prove Proposition 18.15.

18.5. Tensor product of finite cyclic groups

Let m and n be two positive integers. Identify $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} \mathbb{Z} / n \mathbb{Z}$ as a finite abelian group.

$\S 19$ The Exterior Power

In this section, R denotes a commutative ring with identity and all R-modules are left R-modules. Let V be a left R-module and let $V^{k}=V \times \cdots \times V$ be the Cartesian product of k copies of V. An alternating k-linear map from V to R is a k-linear map $f: V^{k} \rightarrow R$ that vanishes whenever two of the arguments are equal, i.e.,

$$
f(\cdots, v, \cdots, v, \cdots)=0
$$

Just as the tensor product solves the universal mapping problem for multilinear maps over R, so we will now construct a module that solves the universal mapping problem for alternating multilinear maps over R. The question is, given an R-module V, does there exist an R-module W such that alternating k-linear maps from V^{k} to an R-module Z correspond canonically in a one-to-one way to linear maps from W to Z ? The construction of the exterior power $\bigwedge^{k} V$ answers the question in the affirmative.

19.1 The Exterior Algebra

For a left R-module V, let $I(V)$ be the two-sided ideal generated by all elements of the form $v \otimes v$ in the tensor algebra $T(V)$, for $v \in V$. So $I(V)$ includes elements such as $a \otimes v \otimes v \otimes b$ for $a, b \in T(V)$.
Definition 19.1. The exterior algebra $\wedge(V)$ is defined to be the quotient algebra $T(V) / I(V)$. We denote the image of $v_{1} \otimes \cdots \otimes v_{k}$ by

$$
v_{1} \wedge \cdots \wedge v_{k}
$$

Such an element is said to be decomposable and the operation \wedge is called the wedge product.

Define $\Lambda^{k}(V)$, the k th exterior power of V, to be the image of $T^{k}(V)$ in $\Lambda(V)$ under the projection $T(V) \rightarrow \Lambda(V)$. Then there is a canonical module isomorphism

$$
\bigwedge^{k}(V) \simeq \frac{T^{k}(V)}{T^{k}(V) \cap I(V)}=\frac{T^{k}(V)}{I^{k}(V)}
$$

where $I^{k}(V):=T^{k}(V) \cap I(V)$ consists of the homogeneous elements of degree k in $I(V)$. In this way the exterior algebra $\bigwedge(V)$ inherits a grading from the tensor algebra and itself becomes a graded R-algebra. We often write $\bigwedge^{k} V$ for $\bigwedge^{k}(V)$.

19.2 Properties of the Wedge Product

Let R be a commutative ring with identity and V a left R-module. In this subsection, we derive properties of the wedge product on the exterior algebra $\Lambda(V)$.

Lemma 19.2. Let V be an R-module. In the exterior algebra $\bigwedge(V)$,

$$
u \wedge v=-v \wedge u
$$

for all $u, v \in V$.
Proof. For any $w \in V$, we have by definition $w \otimes w \in I(V)$, so that in the exterior algebra $\wedge(V)$, the wedge product $w \wedge w$ is 0 . Thus, for all $u, v \in V$,

$$
\begin{aligned}
0 & =(u+v) \wedge(u+v) \\
& =u \wedge u+u \wedge v+v \wedge u+v \wedge v \\
& =u \wedge v+v \wedge u
\end{aligned}
$$

Hence, $u \wedge v=-v \wedge u$.
Proposition 19.3. If $u \in \Lambda^{k} V$ and $v \in \Lambda^{\ell} V$, then $u \wedge v \in \Lambda^{k+\ell} V$ and

$$
\begin{equation*}
u \wedge v=(-1)^{k \ell} v \wedge u \tag{19.1}
\end{equation*}
$$

Proof. Since both sides of (19.1) are linear in u and in v, it suffices to prove the equation for decomposable elements.

So suppose

$$
u=u_{1} \wedge \cdots \wedge u_{k} \quad \text { and } \quad v=v_{1} \wedge \cdots \wedge v_{\ell} .
$$

By Lemma 19.2, $v_{1} \wedge u_{i}=-u_{i} \wedge v_{1}$. In $u \wedge v$, to move v_{1} across $u_{1} \wedge \cdots \wedge u_{k}$ requires k adjacent transpositions and introduces a sign of $(-1)^{k}$. Similarly, moving v_{2} across $u_{1} \wedge \cdots \wedge u_{k}$ also introduces a sign of $(-1)^{k}$. Hence,

$$
\begin{aligned}
u \wedge v= & (-1)^{k} v_{1} \wedge u_{1} \wedge \cdots \wedge u_{k} \wedge v_{2} \wedge \cdots \wedge v_{\ell} \\
= & (-1)^{k}(-1)^{k} v_{1} \wedge v_{2} \wedge u_{1} \wedge \cdots \wedge u_{k} \wedge v_{3} \wedge \cdots \wedge v_{\ell} \\
& \quad \vdots \\
= & (-1)^{k \ell} v_{1} \wedge \cdots \wedge v_{\ell} \wedge u_{1} \wedge \cdots \wedge u_{k} \\
= & (-1)^{k \ell} v \wedge u
\end{aligned}
$$

Lemma 19.4. In a decomposable element $v_{1} \wedge \cdots \wedge v_{k} \in \bigwedge^{k} V$, with each $v_{i} \in V, a$ transposition of v_{i} and v_{j} introduces a minus sign:

$$
v_{1} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{k}=-v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{k}
$$

Proof. Without loss of generality, we may assume $i<j$. Let $a=v_{i+1} \wedge \cdots \wedge v_{j-1}$. It suffices to prove that

$$
v_{i} \wedge a \wedge v_{j}=-v_{j} \wedge a \wedge v_{i} .
$$

By Proposition 19.3,

$$
\begin{aligned}
\left(v_{i} \wedge a\right) \wedge v_{j} & =(-1)^{\operatorname{deg} a+1} v_{j} \wedge\left(v_{i} \wedge a\right) \\
& =(-1)^{\operatorname{deg} a+1}(-1)^{\operatorname{deg} a} v_{j} \wedge\left(a \wedge v_{i}\right) .
\end{aligned}
$$

Proposition 19.5. If π is a permutation on k letters and $v_{i} \in V$, then

$$
v_{\pi(1)} \wedge \cdots \wedge v_{\pi(k)}=(\operatorname{sgn} \pi) v_{1} \wedge \cdots \wedge v_{k}
$$

Proof. Suppose π can be written as a product of ℓ transpositions. Then $\operatorname{sgn}(\pi)=$ $(-1)^{\ell}$. Since each transposition of the subscripts introduces a minus sign,

$$
v_{\pi(1)} \wedge \cdots \wedge v_{\pi(k)}=(-1)^{\ell} v_{1} \wedge \cdots \wedge v_{k}=(\operatorname{sgn} \pi) v_{1} \wedge \cdots \wedge v_{k}
$$

19.3 Universal Mapping Property for Alternating k-Linear Maps

If V is a left R-module, V^{k} is the Cartesian product $V \times \cdots \times V$ of k copies of V, and $\bigwedge^{k} V$ is the k th exterior power of V, then there is a natural map $\wedge: V^{k} \rightarrow \bigwedge^{k} V$,

$$
\wedge\left(v_{1}, \ldots, v_{k}\right)=v_{1} \wedge \cdots \wedge v_{k} .
$$

This map is clearly k-linear. By Proposition 19.5, it is also alternating.
Theorem 19.6 (Universal mapping property for alternating k-linear maps). For any R-module Z and any alternating k-linear map $f: V^{k} \rightarrow Z$ over R, there is a unique linear map $\tilde{f}: \Lambda^{k} V \rightarrow Z$ over R such that the diagram

commutes.
The commutativity of the diagram is equivalent to

$$
\begin{equation*}
\tilde{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=f\left(v_{1}, \ldots, v_{k}\right) \tag{19.2}
\end{equation*}
$$

for all v_{1}, \ldots, v_{k} in V.
Proof. Since f is k-linear, by the universal mapping property of the tensor product, there is a unique linear map $h: T^{k} V \rightarrow Z$ such that

$$
h\left(v_{1} \otimes \cdots \otimes v_{k}\right)=f\left(v_{1}, \ldots, v_{k}\right) .
$$

Since f is alternating,

$$
h(\cdots \otimes v \otimes v \otimes \cdots)=f(\ldots, v, v, \ldots)=0 \quad \text { for all } v \in V .
$$

So h vanishes on the submodule $I^{k}(V)$, and therefore h induces a linear map on the quotient module

$$
\tilde{f}: \frac{T^{k} V}{I^{k} V}=\bigwedge^{k} V \rightarrow Z
$$

such that

$$
\tilde{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=h\left(v_{1} \otimes \cdots \otimes v_{k}\right)=f\left(v_{1}, \ldots, v_{k}\right) .
$$

This proves the existence of $\tilde{f}: \Lambda^{k} V \rightarrow Z$.
To prove its uniqueness, note that (19.2) defines \tilde{f} on all decomposable elements in $\bigwedge^{k} V$. Since every element of $\bigwedge^{k} V$ is a sum of decomposable elements and \tilde{f} is linear, (19.2) determines uniquely the value of \tilde{f} on all of $\bigwedge^{k} V$.

For a module V over a commutative ring R with identity, denote by $L_{k}(V)$ the R-module of k-linear maps from V^{k} to R, and $A_{k}(V)$ the R-module of alternating k linear maps from V^{k} to R. By the universal mapping property for the tensor product, k-linear maps on V^{k} may be identified with linear maps on the tensor power $T^{k} V$:

$$
\begin{aligned}
L_{k}(V) & \simeq\left(T^{k} V\right)^{\vee} \\
f & \mapsto \tilde{f}
\end{aligned}
$$

where

$$
f\left(v_{1}, \ldots, v_{k}\right)=\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{k}\right)
$$

Similarly, by the universal mapping property for the exterior power, alternating k-linear maps on V may be identified with linear maps on $\bigwedge^{k} V$:

$$
\begin{gather*}
A_{k}(V) \simeq\left(\bigwedge^{k} V\right)^{\vee} \tag{19.3}\\
f \mapsto \tilde{f}
\end{gather*}
$$

where

$$
f\left(v_{1}, \ldots, v_{k}\right)=\tilde{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right)
$$

19.4 A Basis for $\bigwedge^{k} V$

Let R be a commutative ring with identity. We prove in this section that if V is a free R-module of finite rank, then for any k the exterior power $\wedge^{k} V$ is also a free R-module of finite rank. Moreover, from a basis for V, we construct a basis for $\bigwedge^{k} V$.

Lemma 19.7. If $B=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for the free R-module V, then

$$
e_{1} \wedge \cdots \wedge e_{n} \neq 0
$$

It follows that for $1 \leq i_{1}<\cdots<i_{k} \leq n$, we have $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \neq 0$.
Proof. It will be enough to define a linear map $\wedge^{n} V \rightarrow V$ that takes $e_{1} \wedge \cdots \wedge e_{n}$ to a nonzero element. First define an alternating set map $f: B^{n} \rightarrow R$ by

$$
f\left(e_{\pi(1)}, \ldots, e_{\pi(n)}\right)=\operatorname{sgn}(\pi)
$$

where π is a permutation of $\{1, \ldots, n\}$. Next extend f to an n-linear map $f: V^{n} \rightarrow R$, which is also alternating because it is alternating on basis elements. Indeed,

$$
\begin{aligned}
f(\ldots, & \left.\sum a^{i} e_{i}, \ldots, \sum b^{j} e_{j}, \ldots\right) & & \\
& =\sum a^{i} b^{j} f\left(\ldots, e_{i}, \ldots, e_{j}, \ldots\right) & & \text { (by } n \text {-linearity) } \\
& =-\sum a^{i} b^{j} f\left(\ldots, e_{j}, \ldots, e_{i}, \ldots\right) & & \text { (by definition of } f \text {) } \\
& =-f\left(\ldots, \sum b^{j} e_{j}, \ldots, \sum a^{i} e_{i}, \ldots\right) & & \text { (by } n \text {-linearity) }
\end{aligned}
$$

By the universal mapping property for alternating n-linear maps, there is a unique linear map

$$
\tilde{f}: \bigwedge^{n} V \rightarrow R
$$

such that the diagram

commutes. In particular,

$$
\tilde{f}\left(e_{1} \wedge \cdots \wedge e_{n}\right)=f\left(e_{1}, \ldots, e_{n}\right)=1
$$

This shows that $e_{1} \wedge \cdots \wedge e_{n} \neq 0$.
Theorem 19.8. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V, then

$$
S:=\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

is a basis for $\bigwedge^{k} V$.
Proof. Since the exterior power $\bigwedge^{k} V$ is a quotient of the tensor power $T^{k} V$ and

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} \mid 1 \leq i_{1}, \ldots, i_{k} \leq n\right\}
$$

is a basis for $T^{k} V$, the set S spans $\wedge^{k} V$.
It remains to show that the set S is linearly independent. We introduce the multiindex notation $I=\left(1 \leq i_{1}<\cdots<i_{k} \leq n\right)$ and

$$
e_{I}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}
$$

Suppose there is a linear relation

$$
\begin{equation*}
\sum a^{I} e_{I}=0 \tag{19.4}
\end{equation*}
$$

where I runs over all multi-indices $1 \leq i_{1}<\cdots<i_{k} \leq n$ of length k. If $J=\left(j_{1}<\cdots<\right.$ j_{k}) is one particular multi-index in this sum, let J^{\prime} be its complement, also arranged in increasing order. By definition, e_{J} and $e_{J^{\prime}}$ have no factor in common, but if I and J both have length k and $I \neq J$, then there is an e_{i} in e_{I} that is not in e_{J}, so that e_{I} and $e_{J^{\prime}}$ will have e_{i} in common. Hence,

$$
\left\{\begin{array}{l}
e_{J} \wedge e_{J^{\prime}}= \pm e_{1} \wedge \cdots \wedge e_{n}, \\
e_{I} \wedge e_{J^{\prime}}=0,
\end{array} \quad \text { if } I \neq J\right.
$$

Taking the wedge product of (19.4) with $e_{J^{\prime}}$ gives

$$
0=\left(\sum a^{I} e_{I}\right) \wedge e_{J^{\prime}}=a^{J} e_{J} \wedge e_{J^{\prime}}= \pm a^{J} e_{1} \wedge \cdots \wedge e_{n}
$$

Since $e_{1} \wedge \cdots \wedge e_{n} \neq 0$ (Lemma 19.7), $a^{J}=0$. So the set S is linearly independent and hence is a basis for the exterior power $\bigwedge^{k} V$.

Corollary 19.9. If V is a free R-module of rank n, then $\bigwedge^{k} V$ is a free R-module of $\operatorname{rank}\binom{n}{k}$.

19.5 Nondegenerate Pairings

Let R be a commutative ring with identity. A pairing of two R-modules V and W is a bilinear map

$$
\langle,\rangle: V \times W \rightarrow R
$$

The pairing is said to be nondegenerate if

$$
\langle v, w\rangle=0 \text { for all } w \in W \quad \Rightarrow \quad v=0,
$$

and

$$
\langle v, w\rangle=0 \text { for all } v \in V \quad \Rightarrow \quad w=0 .
$$

Example 19.10. An inner product on a real vector space V is a nondegenerate pairing of V with itself, since if $\langle v, w\rangle=0$ for all $w \in V$, then $\langle v, v\rangle=0$ and hence $v=0$. Similarly, $\langle v, w\rangle=0$ for all $v \in V$ implies that $\langle w, w\rangle=0$ and hence $w=0$.

If there is a pairing \langle,$\rangle between two left R$-modules V and W, then each v in V defines a linear map

$$
\langle v,\rangle: W \rightarrow R .
$$

So the pairing induces a map $V \rightarrow W^{\vee}$, given by

$$
v \mapsto\langle v,\rangle .
$$

This map is clearly R-linear. Similarly, the pairing also induces an R-linear map $W \rightarrow V^{\vee}$ via $w \mapsto\langle, w\rangle$. The definition of nondegeneracy says precisely that the two induced linear maps $V \rightarrow W^{\vee}$ and $W \rightarrow V^{\vee}$ are injective. For finite-dimensional vector spaces this is enough to imply isomorphism.

Lemma 19.11. Let V and W be finite-dimensional vector spaces over a field R. If $\langle\rangle:, V \times W \rightarrow R$ is a nondegenerate pairing, then the induced maps $V \rightarrow W^{\vee}$ and $W \rightarrow V^{\vee}$ are isomorphisms.

Proof. By the injectivity of the induced linear maps $V \rightarrow W^{\vee}$ and $W \rightarrow V^{\vee}$,

$$
\operatorname{dim} V \leq \operatorname{dim} W^{\vee} \quad \text { and } \quad \operatorname{dim} W \leq \operatorname{dim} V^{\vee}
$$

Since a finite-dimensional vector space and its dual have the same dimension,

$$
\operatorname{dim} V \leq \operatorname{dim} W^{\vee}=\operatorname{dim} W \leq \operatorname{dim} V^{\vee}=\operatorname{dim} V
$$

Hence, $\operatorname{dim} V=\operatorname{dim} W$. So the injections $V \rightarrow W^{\vee}$ and $W \rightarrow V^{\vee}$ are both isomorphisms.

Any finite-dimensional vector space V is isomorphic to its dual V^{\vee}, because they have the same dimension, but in general there is no canonical isomorphism between V and V^{\vee}. If V is finite-dimensional and has a nondegenerate pairing, however, then the pairing induces a canonical isomorphism

$$
\begin{aligned}
V & \rightarrow V^{\vee} \\
v & \mapsto\langle v,\rangle .
\end{aligned}
$$

19.6 A Nondegenerate Pairing of $\bigwedge^{k}\left(V^{\vee}\right)$ with $\bigwedge^{k} V$

Let V be a vector space. In this subsection we establish a canonical isomorphism between $\bigwedge^{k}\left(V^{\vee}\right)$ and $\left(\bigwedge^{k} V\right)^{\vee}$ by finding a nondegenerate pairing of of $\bigwedge^{k}\left(V^{\vee}\right)$ with $\wedge^{k} V$.

Proposition 19.12. Let V be a module over a commutative ring R with identity. The multilinear map

$$
\begin{aligned}
\left(V^{\vee}\right)^{k} \times V^{k} & \rightarrow R \\
\left(\left(\beta^{1}, \ldots, \beta^{k}\right),\left(v_{1}, \ldots, v_{k}\right)\right) & \mapsto \operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right]
\end{aligned}
$$

induces a pairing

$$
\bigwedge^{k}\left(V^{\vee}\right) \times \bigwedge^{k} V \rightarrow R
$$

Proof. For a fixed $\left(\beta^{1}, \ldots, \beta^{k}\right) \in\left(V^{\vee}\right)^{k}$, the function: $V^{k} \rightarrow R$

$$
\left(v_{1}, \ldots, v_{k}\right) \mapsto \operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right]
$$

is alternating and k-linear. By the universal mapping property for $\Lambda^{k} V$, there is a unique linear map $\wedge^{k} V \rightarrow R$ such that

$$
v_{1} \wedge \cdots \wedge v_{k} \mapsto \operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right] .
$$

In this way we have constructed a map

$$
h:\left(V^{\vee}\right)^{k} \rightarrow\left(\bigwedge^{k} V\right)^{\vee}
$$

such that

$$
h\left(\beta^{1}, \ldots, \beta^{k}\right)\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right] .
$$

Since $h\left(\beta^{1}, \ldots, \beta^{k}\right)$ is alternating k-linear in $\beta^{1}, \ldots, \beta^{k}$, by the universal mapping property again, there is a linear map

$$
\tilde{h}: \bigwedge^{k}\left(V^{\vee}\right) \rightarrow\left(\bigwedge^{k} V\right)^{\vee}
$$

such that

$$
\tilde{h}\left(\beta^{1} \wedge \cdots \wedge \beta^{k}\right)\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right] .
$$

The map \tilde{h} gives rise to a bilinear map

$$
\bigwedge^{k}\left(V^{\vee}\right) \times \bigwedge^{k} V \rightarrow R
$$

such that

$$
\left(\beta^{1} \wedge \cdots \wedge \beta^{k}, v_{1} \wedge \cdots \wedge v_{k}\right) \mapsto \operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right] .
$$

Theorem 19.13. If V is a free R-module of finite rank n, then for any positive integer $k \leq n$, the linear map

$$
\begin{align*}
\tilde{h}: \bigwedge^{k}\left(V^{\vee}\right) & \rightarrow\left(\bigwedge^{k} V\right)^{\vee} \\
\left(\beta^{1} \wedge \cdots \wedge \beta^{k}\right) & \mapsto\left(v_{1} \wedge \cdots \wedge v_{k} \mapsto \operatorname{det}\left[\beta^{i}\left(v_{j}\right)\right]\right) \tag{19.5}
\end{align*}
$$

from the proof of Proposition 19.12 is an isomorphism.
Proof. To simplify the notation, we will rename as f the map \tilde{h}. Since duality leaves the rank of a free module unchanged, by Corollary 19.9 both $\bigwedge^{k}\left(V^{\vee}\right)$ and $\left(\bigwedge^{k} V\right)^{\vee}$ are free R-modules of rank $\binom{n}{k}$. We will prove that f maps a basis for $\bigwedge^{k}\left(V^{\vee}\right)$ to a basis for $\left(\bigwedge^{k} V\right)^{\vee}$, and is therefore an isomorphism.

To this end, let e_{1}, \ldots, e_{n} be a basis for V, and $\alpha^{1}, \ldots, \alpha^{n}$ its dual basis for V^{\vee}. Then

$$
\left\{e_{I}:=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

is a basis for $\bigwedge^{k} V$, and

$$
\left\{\alpha^{I}:=\alpha^{i_{1}} \wedge \cdots \wedge \alpha^{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

is a basis for $\bigwedge^{k}\left(V^{\vee}\right)$. Denote by e_{I}^{*} the basis for $\left(\Lambda^{k} V\right)^{\vee}$ dual to $\left\{e_{I}\right\}$, defined by

$$
e_{I}^{*}\left(e_{J}\right)=\delta_{I, J} .
$$

We claim that $f\left(\alpha^{I}\right)=e_{I}^{*}$. First consider $f\left(\alpha^{I}\right)\left(e_{J}\right)$ for $I=J$:

$$
\begin{aligned}
f\left(\alpha^{I}\right)\left(e_{I}\right) & =f\left(\alpha^{i_{1}} \wedge \cdots \wedge \alpha^{i_{k}}\right)\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}\right) \\
& =\operatorname{det}\left[\alpha^{i_{r}}\left(e_{i_{s}}\right)\right]=\operatorname{det}\left[\delta_{s}^{r}\right]=1 .
\end{aligned}
$$

Next, if $I \neq J$, then some $i_{r_{0}}$ is different from j_{1}, \ldots, j_{k}. Then

$$
f\left(\alpha^{I}\right)\left(e_{J}\right)=\operatorname{det}\left[\alpha^{i_{r}}\left(e_{j_{s}}\right)\right]=0
$$

because the r_{0}-th row is identically zero. Thus, $f\left(\alpha^{I}\right)=e_{I}^{*}$ for all multi-indices I. Since f maps a basis to a basis, it is an isomorphism of free R-modules.

Theorem 19.13 and (19.3) together give a sequence of module isomorphisms

$$
\begin{equation*}
\bigwedge^{k}\left(V^{\vee}\right) \simeq\left(\bigwedge^{k} V\right)^{\vee} \simeq A_{k}(V) \tag{19.6}
\end{equation*}
$$

19.7 A Formula for the Wedge Product

In this section, V is a free module of finite rank over a commutative ring R with identity. According to (19.6), an element $\beta^{1} \wedge \cdots \wedge \beta^{k}$ in $\wedge^{k}\left(V^{\vee}\right)$ can be interpreted as a k-linear map $V \times \cdots \times V \rightarrow R$. Thus, if $\alpha \in \bigwedge^{k}\left(V^{\vee}\right)$ and $\beta \in \Lambda^{\ell}\left(V^{\vee}\right)$, then

$$
\alpha \wedge \beta \in \bigwedge^{k+\ell}\left(V^{\vee}\right) \simeq A_{k+\ell}(V)
$$

can be interpreted as a $(k+\ell)$-linear map on V. We will now identify this $(k+\ell)$ linear map $\alpha \wedge \beta: V^{k+\ell} \rightarrow R$.
Definition 19.14. A (k, ℓ)-shuffle is a permutation $\pi \in S_{k+\ell}$ such that

$$
\pi(1)<\cdots<\pi(k) \quad \text { and } \quad \pi(k+1)<\cdots<\pi(k+\ell) .
$$

Proposition 19.15. For $\alpha \in \bigwedge^{k}\left(V^{\vee}\right), \beta \in \bigwedge^{\ell}\left(V^{\vee}\right)$, and $v_{i} \in V$,

$$
(\alpha \wedge \beta)\left(v_{1}, \ldots, v_{k+\ell}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \alpha\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) \beta\left(v_{\pi(k+1)}, \ldots, v_{\pi(k+\ell)}\right),
$$

where π runs over all the (k, ℓ)-shuffles.
Proof. Since both sides are linear in α and in β, we may assume that both α and β are decomposable, say

$$
\alpha=\alpha^{1} \wedge \cdots \wedge \alpha^{k}, \quad \beta=\beta^{1} \wedge \cdots \wedge \beta^{\ell}
$$

Given any permutation

$$
\rho=\left[\begin{array}{cccccc}
1 & \cdots & k & k+1 & \cdots & k+\ell \\
\rho(1) & \cdots & \rho(k) & \rho(k+1) & \cdots & \rho(k+\ell)
\end{array}\right] \in S_{k+\ell}
$$

we can turn it into a (k, ℓ)-shuffle as follows. Arrange $\rho(1), \ldots, \rho(k)$ in increasing order

$$
\rho\left(i_{1}\right)<\cdots<\rho\left(i_{k}\right)
$$

and define $\sigma(j)=i_{j}$ for $1 \leq j \leq k$. Similarly, arrange $\rho(k+1), \ldots, \rho(k+\ell)$ in increasing order

$$
\rho\left(i_{k+1}\right)<\cdots<\rho\left(i_{k+\ell}\right)
$$

and define $\tau(j)=i_{j}$ for $k+1 \leq j \leq k+\ell$. Then $\rho \circ \sigma \circ \tau$ is a (k, ℓ)-shuffle.
Thus, we can get all permutations of $1, \ldots, k+\ell$ by taking all (k, ℓ)-shuffles and permuting separately the first k elements and the last ℓ elements. Let S_{ℓ} denote the group of permutations of $k+1, \ldots, k+\ell$. Then using (19.5),

$$
\begin{align*}
\left(\alpha^{1} \wedge\right. & \left.\cdots \wedge \alpha^{k} \wedge \beta^{1} \wedge \cdots \wedge \beta^{\ell}\right)\left(v_{1}, \ldots, v_{k+\ell}\right) \\
= & \sum_{\rho \in S_{k+\ell}} \operatorname{sgn}(\rho) \alpha^{1}\left(v_{\rho(1)}\right) \cdots \alpha^{k}\left(v_{\rho(k)}\right) \beta^{1}\left(v_{\rho(k+1)}\right) \cdots \beta^{\ell}\left(v_{\rho(k+\ell)}\right) \\
= & \sum_{(k, \ell) \text {-shuffles } \pi} \sum_{\sigma \in S_{k}} \sum_{\tau \in S_{\ell}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \\
& \alpha^{1}\left(v_{\pi(\sigma(1))}\right) \cdots \alpha^{k}\left(v_{\pi(\sigma(k))}\right) \beta^{1}\left(v_{\pi(\tau(k+1))}\right) \cdots \beta^{k}\left(v_{\pi(\tau(k+\ell))}\right) . \tag{19.7}
\end{align*}
$$

(The sign comes from the fact that $\rho=\pi \circ \tau \circ \sigma$.)
Now set $w_{i}=v_{\pi(i)}$. Then $w_{\sigma(j)}=v_{\pi(\sigma(j))}$, so

$$
\begin{aligned}
\sum_{\sigma \in S_{k}} & \operatorname{sgn}(\sigma) \alpha^{1}\left(v_{\pi(\sigma(1))}\right) \cdots \alpha^{k}\left(v_{\pi(\sigma(k))}\right) \\
& =\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \alpha^{1}\left(w_{\sigma(1)}\right) \cdots \alpha^{k}\left(w_{\sigma(k)}\right) \\
& =\left(\alpha^{1} \wedge \cdots \wedge \alpha^{k}\right)\left(w_{1}, \ldots, w_{k}\right) \\
& =\left(\alpha^{1} \wedge \cdots \wedge \alpha^{k}\right)\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) .
\end{aligned}
$$

Thus, the sum (19.7) is

$$
\begin{aligned}
& \sum_{(k, \ell) \text {-shuffles } \pi} \operatorname{sgn}(\pi)\left(\alpha^{1} \wedge \cdots \wedge \alpha^{k}\right)\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) \\
& \quad=\left(\beta^{1} \wedge \cdots \wedge \beta^{\ell}\right)\left(v_{\pi(k+1)}, \ldots, v_{\pi(k+\ell)}\right) \\
& \quad \sum_{(k, \ell) \text {-shuffles } \pi} \operatorname{sgn}(\pi) \alpha\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) \beta\left(v_{\pi(k+1)}, \ldots, v_{\pi(k+\ell)}\right)
\end{aligned}
$$

Problems

In the following problems, let V be a left module over a commutative ring R with identity.

19.1. Symmetric power of an R-module

A k-linear map $f: V^{k} \rightarrow R$ is symmetric if

$$
f\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right)=f\left(v_{1}, \ldots, v_{k}\right)
$$

for all permutations $\pi \in S_{k}$ and all $v_{i} \in V$.
(a) Mimicking the definition of the exterior power $\bigwedge^{k}(V)$, define the symmetric power $S^{k}(V)$.
(b) State and prove a universal mapping property for symmetric k-linear maps over R.

$\S 20$ Operations on Vector Bundles

On a compact oriented Riemannian manifold M of dimension 2 , let Ω be the curvature matrix of the Riemannian connection relative to an orthonormal frame e_{1}, e_{2} on an open subset of M. In the proof of the Gauss-Bonnet theorem, we saw that the 2-form $K \mathrm{vol}$ on M is locally the entry Ω_{2}^{1} of the curvature matrix. The integral $\int_{M} K$ vol turns out to be a topological invariant. There are many ways to generalize the Gauss-Bonnet theorem; for example, we can (i) replace the 2-manifold M by a higher-dimensional manifold and replace K vol by some other differential form constructed from the curvature form of M, or (ii) replace the tangent bundle by an arbitrary vector bundle. To carry out these generalizations we will need some preliminaries on vector bundles.

In this section, we define subbundles, quotient bundles, and pullback bundles. Starting from two C^{∞} vector bundles E and F over the same base manifold M, we construct their direct sum $E \oplus F$ over M; it is a vector bundle whose fiber at a point $x \in M$ is the direct sum of the fibers E_{x} and F_{x}. This construction can be generalized to any smooth functor of vector spaces, so that one can obtain similarly C^{∞} vector bundles $E \otimes F, \operatorname{Hom}(E, F), E^{\vee}$, and $\bigwedge^{k} E$ over M (see Section 20.7).

20.1 Vector Subbundles

Definition 20.1. A C^{∞} subbundle of a C^{∞} vector bundle $\pi: E \rightarrow M$ is a C^{∞} vector bundle $\rho: F \rightarrow M$ such that
(i) F is a regular submanifold of E, and
(ii) the inclusion map $i: F \rightarrow E$ is a bundle homomorphism.

By composing a section of the subbundle F with the inclusion map $i: F \rightarrow E$, we may view a section of F as a section of the ambient vector bundle E.
Definition 20.2. A k-frame of a C^{∞} vector bundle $\pi: E \rightarrow M$ over an open set U in a manifold M is a collection of sections s_{1}, \ldots, s_{k} of E over U such that at every point p in U, the vectors $s_{1}(p), \ldots, s_{k}(p)$ are linearly independent in the fiber E_{p}. In this terminology, a frame for a vector bundle of rank r is an r-frame.

Lemma 20.3. Let $\pi: E \rightarrow M$ be a C^{∞} vector bundle of rank r and let $p \in M$. Fix a positive integer $k \leq r$. A $C^{\infty} k$-frame s_{1}, \ldots, s_{k} for E defined on a neighborhood U of p can be extended to a $C^{\infty} r$-frame for E on a possibly smaller neighborhood W of p.

Proof. Replacing U by a smaller neighborhood of p if necessary, we may assume that there is a frame e_{1}, \ldots, e_{r} for E over U. On U each s_{j} is a linear combination $s_{j}=\sum a_{j}^{i} e_{i}$ with $a_{j}^{i} \in C^{\infty}(U)$. In matrix notation

$$
\left[\begin{array}{lll}
s_{1} & \cdots & s_{k}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{r}
\end{array}\right]\left[a_{j}^{i}\right] .
$$

The $r \times k$ matrix $a=\left[a_{j}^{i}\right]$ has rank k at every point in U. By renumbering e_{1}, \ldots, e_{r} we may assume that the top $k \times k$ block a^{\prime} of a is nonsingular at the point p. Since nonsingularity is an open condition there is a neighborhood W of p on which the $k \times k$ block a^{\prime} is nonsingular pointwise.

We can extend the $r \times k$ matrix $a=\left[\begin{array}{l}a^{\prime} \\ *\end{array}\right]$ to a nonsingular $r \times r$ matrix b by adjoining an $r \times(r-k)$ matrix $\left[\begin{array}{l}0 \\ I\end{array}\right]$:

$$
b=\left[\begin{array}{ll}
a^{\prime} & 0 \\
* & I
\end{array}\right]
$$

Then

$$
\left[\begin{array}{lllll}
s_{1} & \cdots & s_{k} & e_{k+1} & \cdots
\end{array} e_{r}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{r}
\end{array}\right] b
$$

Since b is an $n \times n$ nonsingular matrix at every point of W, the sections s_{1}, \ldots, s_{k}, e_{k+1}, \ldots, e_{r} form a frame for E over W.

20.2 Subbundle Criterion

A vector bundle is a locally trivial family of vector spaces over a base space. The following theorem gives a sufficient condition for a family of vector subspaces over the same base space to be locally trivial and therefore to be a subbundle.

Theorem 20.4. Let $\pi: E \rightarrow M$ be a C^{∞} vector bundle of rank r and $F:=\coprod_{p \in M} F_{p}$ a subset of E such that for every p in M, the set F_{p} is a k-dimensional vector subspace of the fiber E_{p}. If for every p in M, there exist a neighborhood U of p and $m \geq k$ smooth sections s_{1}, \ldots, s_{m} of E over U that span F_{q} at every point $q \in U$, then F is a C^{∞} subbundle of E.

Proof. By making a neighborhood W of p in U sufficiently small, one may ensure the triviality of E over W, so that there exists a local frame e_{1}, \ldots, e_{r} for E over W. On W, each section s_{j} is a linear combination $s_{j}=\sum_{i=1}^{r} a_{j}^{i} e_{i}$ for an $r \times m$ matrix $a=\left[a_{j}^{i}\right]$ of C^{∞} functions. In matrix notation

$$
s:=\left[\begin{array}{lll}
s_{1} & \cdots & s_{m}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{r}
\end{array}\right]\left[a_{j}^{i}\right]=e a .
$$

At every point of W the matrix a has rank k, because the columns of a are simply the column vectors of s_{1}, \ldots, s_{m} relative to the basis e_{1}, \ldots, e_{r} and s_{1}, \ldots, s_{m} span a k-dimensional vector space pointwise. In particular, at the point p the matrix $a(p)=$ $\left[a_{j}^{i}(p)\right]$ has rank k. It follows that $a(p)$ has a nonsingular $k \times k$ submatrix $a^{\prime}(p)$. By renumbering s_{1}, \ldots, s_{m} and e_{1}, \ldots, e_{r}, we may assume that $a^{\prime}(p)$ is the left uppermost $k \times k$ submatrix of $a(p)$. Since the nonsingularity of a matrix is an open condition, a^{\prime} is nonsingular on a neighborhood W^{\prime} of p in W. At every point of W^{\prime}, since a^{\prime} has rank k, so does the matrix $\left[s_{1} \cdots s_{k}\right.$]. This proves that s_{1}, \ldots, s_{k} form a frame for F over W^{\prime}.

By Lemma 20.3, s_{1}, \ldots, s_{k} can be extended to a C^{∞} frame $t_{1}, \ldots, t_{k}, \ldots, t_{r}$ for E, with $t_{i}=s_{i}$ for $i=1, \ldots, k$, over a possibly smaller neighborhood $W^{\prime \prime}$ of p in W^{\prime}. For any $\left.v \in E\right|_{W^{\prime \prime}}$, let $v=\sum_{i=1}^{r} c^{i}(v) t_{i}(\pi(v))$. Then $\left.F\right|_{W^{\prime \prime}}$ is defined by $c^{k+1}=0, \ldots$, $c^{r}=0$ on $\left.E\right|_{W^{\prime \prime}}$. This proves that F is a regular submanifold of E, because the C^{∞} trivialization

\[

\]

induces a bijection $\psi_{W^{\prime \prime}}:\left.F\right|_{W^{\prime \prime}} \rightarrow W^{\prime \prime} \times \mathbb{R}^{k}$. (The c^{i},s are C^{∞} by Problem 7.5.) As the restriction of a C^{∞} map, $\psi_{W^{\prime \prime}}$ is C^{∞}. Its inverse,

$$
\psi_{W^{\prime \prime}}^{-1}:\left(p, c^{1}, \ldots, c^{k}\right) \mapsto \sum_{i=1}^{k} c^{i} t_{i}(p)=\sum_{i=1}^{k} c^{i} s_{i}(p)
$$

is C^{∞}. Hence, F is a C^{∞} vector bundle of rank k. The inclusion $F \hookrightarrow E$, locally given by

$$
\begin{aligned}
W^{\prime \prime} \times \mathbb{R}^{k} & \rightarrow W^{\prime \prime} \times \mathbb{R}^{r} \\
\left(p, c^{1}, \ldots, c^{k}\right) & \mapsto\left(p, c^{1}, \ldots, c^{k}, 0, \ldots, 0\right)
\end{aligned}
$$

is clearly a bundle map. Thus, F is a smooth rank- k subbundle of E.

20.3 Quotient Bundles

Suppose F is a C^{∞} subbundle of a C^{∞} vector bundle $\pi: E \rightarrow M$. At each point p in M, the fiber F_{p} is a vector subspace of E_{p} and so the quotient space $Q_{p}:=E_{p} / F_{p}$ is defined. Let

$$
Q:=\coprod_{p \in M} Q_{p}=\coprod_{p \in M}\left(E_{p} / F_{p}\right)
$$

and give Q the quotient topology as a quotient space of E. Let $\rho: E \rightarrow Q$ be the quotient map. The projection $\pi: E \rightarrow M$ then induces a map $\pi_{Q}: Q \rightarrow M$ as in the commutative diagram

Since F is locally trivial, every point p in M has a coordinate neighborhood over which one can find a C^{∞} frame s_{1}, \ldots, s_{k} for F. By Lemma 20.3, s_{1}, \ldots, s_{k} can be extended to a C^{∞} frame $s_{1}, \ldots, s_{k}, s_{k+1}, \ldots, s_{r}$ for E over a possibly smaller neighborhood W of p. A point v of $\left.E\right|_{W}$ is uniquely a linear combination

$$
v=\sum c^{i}(v) s_{i}(\pi(v))
$$

The functions c^{i} on $\left.E\right|_{W}$ are coordinate functions and hence are C^{∞}.
Let $\bar{s}_{k+1}, \ldots, \bar{s}_{r}: W \rightarrow Q$ be the sections s_{k+1}, \ldots, s_{r} followed by the projection $E \rightarrow Q$. Then $\left(\bar{s}_{k+1}, \ldots, \bar{s}_{r}\right)$ is a continuous frame for Q over W, and every element $\left.\bar{v} \in Q\right|_{W}:=\pi_{Q}^{-1}(W)$ can be written uniquely as a linear combination

$$
\bar{v}=\sum \bar{c}^{i}(\bar{v}) \bar{s}_{i}\left(\pi_{Q}(\bar{v})\right) .
$$

This gives rise to a bijection

$$
\begin{aligned}
\phi_{W}:\left.Q\right|_{W} & \rightarrow W \times \mathbb{R}^{r-k}, \\
\bar{v} \mapsto & \mapsto\left(p, \bar{c}^{k+1}(\bar{v}), \ldots, \bar{c}^{r}(\bar{v})\right), \quad p=\pi_{Q}(\bar{v}) .
\end{aligned}
$$

The maps \bar{c}^{i} are continuous on $\left.Q\right|_{W}$ because their lifts $\bar{c}^{i} \circ \rho=c^{i}$ to $\left.E\right|_{W}$ are continuous. Thus, ϕ_{W} is a continuous map. Since

$$
\phi_{W}^{-1}\left(p, \bar{c}^{k+1}, \ldots, \bar{c}^{r}\right)=\sum \bar{c}^{i} \bar{s}_{i}(p)
$$

is clearly continuous, ϕ_{W} is a homeomorphism. Using the homeomorphisms ϕ_{W}, one can give Q a manifold structure as well as a C^{∞} vector bundle structure over M. With this vector bundle structure, $\pi_{Q}: Q \rightarrow M$ is called the quotient bundle of E by F.

20.4 The Pullback Bundle

If $\pi: E \rightarrow M$ is a C^{∞} vector bundle over a manifold M and $f: N \rightarrow M$ is a C^{∞} map, then there is a C^{∞} vector bundle $f^{*} E$ over N, called the pullback of E by f, with the property that every bundle map covering f factors through the pullback bundle $f^{*} E$ (see Proposition 20.8).

The total space of the pullback bundle of E by f is defined to be the set

$$
f^{*} E=\{(n, e) \in N \times E \mid f(n)=\pi(e)\}
$$

endowed with the subspace topology. The projections to the two factors,

$$
\begin{array}{rlrl}
\eta: f^{*} E & \rightarrow N, & \zeta: f^{*} E & \rightarrow E \\
\eta(n, e) & =n, & \zeta(n, e)=e
\end{array}
$$

fit into a commutative diagram

We will show that $\eta: f^{*} E \rightarrow N$ is a vector bundle. First, we show that the pullback of a product bundle is a product bundle.

Proposition 20.5. If $f: N \rightarrow M$ is a C^{∞} map of manifolds and $\pi: E=M \times V \rightarrow M$ is a product bundle, then the projection $\eta: f^{*} E \rightarrow N$ is isomorphic to the product bundle $N \times V \rightarrow N$.

Proof. As a set,

$$
\begin{aligned}
f^{*} E & =\{(n,(m, v)) \in N \times(M \times V) \mid f(n)=\pi(m, v)=m\} \\
& =\{(n,(f(n), v)) \in N \times(M \times V)\} .
\end{aligned}
$$

The map

$$
\begin{aligned}
\sigma: f^{*} E & \rightarrow N \times V, \\
(n,(f(n), v)) & \mapsto(n, v)
\end{aligned}
$$

with inverse $(n, v) \mapsto(n,(f(n), v))$ is a fiber-preserving homeomorphism. It gives $\eta: f^{*} E \rightarrow N$ the structure of a C^{∞} vector bundle over N.

Theorem 20.6. Let $\pi: E \rightarrow M$ be a C^{∞} vector bundle with fiber V and $f: N \rightarrow M$ a C^{∞} map. The projection $\eta: f^{*} E \rightarrow N$ can be given the structure of a C^{∞} vector bundle with fiber V.

For any map $\pi: E \rightarrow M$ and open set $U \subset M$, recall that the restriction of E to U is denoted $\left.E\right|_{U}:=\pi^{-1}(U) \rightarrow U$.

Proof. Since E is locally a product $U \times V \rightarrow U$, by Proposition 20.5 , the pullback $f^{*} E$ is locally the product $f^{-1}(U) \times V \rightarrow f^{-1}(U)$.

Lemma. Suppose $\pi: E \rightarrow M$ is a C^{∞} vector bundle with fiber V and $f: N \rightarrow M$ is a C^{∞} map. Let U be an open subset of M. Then

$$
\left.\left(f^{*} E\right)\right|_{f^{-1}(U)}=f^{*}\left(\left.E\right|_{U}\right)
$$

Proof. By definition,

$$
\begin{aligned}
\left.\left(f^{*} E\right)\right|_{f^{-1}(U)} & =\left\{(n, e) \in N \times E \mid n \in f^{-1}(U), f(n)=\pi(e)\right\} \\
& =\left\{(n, e) \in f^{-1}(U) \times E \mid f(n)=\pi(e)\right\} . \\
f^{*}\left(\left.E\right|_{U}\right) & =\left\{(n, e) \in f^{-1}(U) \times\left. E\right|_{U} \mid f(n)=\pi(e)\right\} .
\end{aligned}
$$

Comparing the two, we see that they are equal.
Proposition 20.7. Suppose $\pi: E \rightarrow M$ is a C^{∞} vector bundle with fiber V and trivializing open cover $\left\{U_{\alpha}\right\}$ and $f: N \rightarrow M$ is a C^{∞} map. If $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(V)$ is the transition function for E over $U_{\alpha} \cap U_{\beta}$, then $f^{*} g_{\alpha \beta}$ is the transition function for $f^{*} E$ over $f^{-1}\left(U_{\alpha} \cap U_{\beta}\right)$.

Proof. Suppose $\phi_{\alpha}:\left.E\right|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times V$ is the trivialization for E over U_{α}, with

$$
\phi_{\alpha}(e)=\left(\pi(e), \bar{\phi}_{\alpha}(e)\right) .
$$

Then

$$
f^{*}\left(\left.E\right|_{U_{\alpha}}\right)=\left.\left(f^{*} E\right)\right|_{f^{-1}\left(U_{\alpha}\right.} \xrightarrow{\sim} f^{-1}(U) \times V
$$

is given by

$$
(n, e) \mapsto\left(n, \bar{\phi}_{\alpha}(e)\right) .
$$

So the transition function for $f^{*} E$ over $f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right)$ is

$$
\left(\bar{\phi}_{\alpha} \circ \bar{\phi}_{\beta}^{-1}\right)(f(n))=\left(f^{*} g_{\alpha \beta}\right)(n) .
$$

Proposition 20.8. Suppose $\pi_{F}: F \rightarrow N$ and $\pi_{E}: E \rightarrow M$ are vector bundles and $\varphi: F \rightarrow E$ is a bundle map that covers $f: N \rightarrow M$, i.e., the diagram

commutes. Then there is a unique bundle map $\tilde{\varphi}: F \rightarrow f^{*} E$ over N that makes the following diagram commute:

Proof. For all $q \in F$, the commutativity of the diagram (20.3) forces $\tilde{\varphi}(q)=$ $\left(\pi_{F}(q), \varphi(q)\right)$. This shows that $\tilde{\varphi}$ is unique if it exists. Because φ covers $f, f\left(\pi_{F}(q)\right)$ $=\pi_{E}(\varphi(q))$. Hence, $\left(\pi_{F}(q), \varphi(q)\right) \in f^{*} E$. So the map $\tilde{\varphi}$ as defined above indeed exists. It is \mathbb{R}-linear on each fiber because φ is. It is continuous because π_{F} and φ are assumed continuous.

This proposition shows that given f and E, the commutative diagram (20.1) of the pullback bundle $f^{*} E$ is a final object among all commutative diagrams of the form (20.2).

20.5 Examples of the Pullback Bundle

The pullback construction for vector bundles is indispensable in differential geometry. In this section we give two examples. The first uses the pullback bundle to convert a bundle map over two different base manifolds to a bundle map over a single manifold. This is sometimes desirable in order to obtain an exact sequence of vector bundles over a manifold (see (27.5)). The second example uses the pullback bundle to clarify the notion of a vector field along a curve in a manifold, which we encountered in Sections 4.3 and 13.1.

Example 20.9 (The differential of a map). If $f: N \rightarrow M$ is a C^{∞} map of manifolds, its differentials $f_{*, p}: T_{p} N \rightarrow T_{f(p)} M$ at all points $p \in N$ piece together to give a bundle map $f_{*}: T N \rightarrow T M$ of tangent bundles. By Proposition 20.8, the bundle map f_{*} induces a unique bundle map $\widetilde{f}_{*}: T N \rightarrow f^{*} T M$ over N that makes the diagram

commutative. The map $\widetilde{f}_{*}: T N \rightarrow f^{*} T M$ is given by

$$
X_{p} \in T_{p} N \mapsto\left(p, f_{*, p} X_{p} \in T_{f(p)} M\right) .
$$

Conversely, f_{*} can be obtained from \widetilde{f}_{*} as $f_{*}=\zeta \circ \widetilde{f}_{*}$. In this way the bundle map f_{*} over two base manifolds is converted to a bundle map \widetilde{f}_{*} over the single manifold N.

Example 20.10 (Vector fields along a curve). If $c: I \rightarrow M$ is a smooth map from an open interval $I \subset \mathbb{R}$ into a manifold M, then the pullback $c^{*} T M$ of the tangent bundle $T M$ is a vector bundle over I. A section of the pullback bundle $c^{*} T M$ assigns to each $t \in I$ an element of the fiber $\left(c^{*} T M\right)_{t} \simeq T_{c(t)} M$, i.e., a tangent vector to M at $c(t)$. In other words, a section of $c^{*} T M$ is precisely a vector field along the curve $c(t)$ in M defined in Section 4.3.

Exercise 20.11. Show that a vector field along a curve c in M is smooth if and only if the corresponding section of $c^{*} T M$ is smooth.

Thus, we can identify the space of smooth vector fields along $c(t)$ with the space of smooth sections of the pullback bundle $c^{*} T M$:

$$
\Gamma\left(\left.T M\right|_{c(t)}\right)=\Gamma\left(c^{*} T M\right) .
$$

20.6 The Direct Sum of Vector Bundles

Suppose $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M$ are two smooth vector bundles of ranks r and r^{\prime}, respectively, over a manifold M. For $p \in M$, denote by E_{p} the fiber $\pi^{-1}(p)$ of E over p, and by E_{p}^{\prime} the fiber $\left(\pi^{\prime}\right)^{-1}(p)$ of E^{\prime} over p. Define the direct sum $E \oplus E^{\prime}$ as a set to be the disjoint union

$$
\begin{equation*}
E \oplus E^{\prime}:=\coprod_{p \in M} E_{p} \oplus E_{p}^{\prime}:=\bigcup_{p \in M}\{p\} \times\left(E_{p} \oplus E_{p}^{\prime}\right) \tag{20.4}
\end{equation*}
$$

Let $\rho: E \oplus E^{\prime} \rightarrow M$ be the projection $\rho\left(p,\left(e, e^{\prime}\right)\right)=p$. We will now need to put a topology and a manifold structure on $E \oplus E^{\prime}$ so that $\rho: E \oplus E^{\prime} \rightarrow M$ becomes a C^{∞} vector bundle with fibers $E_{p} \oplus E_{p}^{\prime}$.

Lemma 20.12. If $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ and $\left\{V_{\beta}\right\}_{\beta \in \mathrm{B}}$ are open covers of a topological space M, then $\left\{U_{\alpha} \cap V_{\beta}\right\}_{(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}}$ is again an open cover of M.

Proof. Since $\left\{V_{\beta}\right\}$ is an open cover of M, for each $\alpha \in A$,

$$
U_{\alpha}=U_{\alpha} \cap M=U_{\alpha} \cap\left(\bigcup_{\beta} V_{\beta}\right)=\bigcup_{\beta}\left(U_{\alpha} \cap V_{\beta}\right) .
$$

Thus

$$
M=\bigcup_{\alpha} U_{\alpha}=\bigcup_{\alpha, \beta}\left(U_{\alpha} \cap V_{\beta}\right) .
$$

If $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ and $\left\{V_{\beta}^{\prime}\right\}_{\beta \in \mathrm{B}}$ are trivializing open covers for E and E^{\prime}, respectively, then by Lemma $20.12\left\{U_{\alpha} \cap V_{\beta}^{\prime}\right\}_{\alpha \in \mathrm{A}, \beta \in \mathrm{B}}$ is an open cover of M that simultaneously trivializes both E and E^{\prime}.

Choose a coordinate open cover $\mathfrak{U}=\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ of M that simultaneously trivializes both E and E^{\prime}, with trivializations

$$
\psi_{\alpha}:\left.E\right|_{U_{\alpha}} \xrightarrow[\rightarrow]{\sim} U_{\alpha} \times \mathbb{R}^{r} \quad \text { and } \quad \psi_{\alpha}^{\prime}:\left.E^{\prime}\right|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{r^{\prime}} .
$$

By adding all finite intersections $U_{\alpha_{1}} \cap \cdots \cap U_{\alpha_{i}}$ to the open cover \mathfrak{U}, we may assume that if $U_{\alpha}, U_{\beta} \in \mathfrak{U}$, then $U_{\alpha} \cap U_{\beta} \in \mathfrak{U}$. For each $p \in U_{\alpha}$, there are linear isomorphisms

$$
\psi_{\alpha, p}: E_{p} \xrightarrow{\sim}\{p\} \times \mathbb{R}^{r} \quad \text { and } \quad \psi_{\alpha, p}^{\prime}: E_{p}^{\prime} \xrightarrow{\sim}\{p\} \times \mathbb{R}^{r^{\prime}} .
$$

By the functorial property of the direct sum, there is an induced linear isomorphism

$$
\phi_{\alpha, p}:=\psi_{\alpha, p} \oplus \psi_{\alpha, p}^{\prime}: E_{p} \oplus E_{p}^{\prime} \xrightarrow{\sim}\{p\} \times \mathbb{R}^{r+r^{\prime}},
$$

and hence a bijection

$$
\phi_{\alpha}: \coprod_{p \in U_{\alpha}} E_{p} \oplus E_{p}^{\prime}=\rho^{-1}\left(U_{\alpha}\right) \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{r+r^{\prime}}
$$

that is a linear isomorphism on each fiber.

To simplify the notation we will sometimes write $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$. For $\alpha, \beta \in \mathrm{A}$, the transition function

$$
\phi_{\alpha} \circ \phi_{\beta}^{-1}: U_{\alpha \beta} \times \mathbb{R}^{r+r^{\prime}} \rightarrow \rho^{-1}\left(U_{\alpha \beta}\right) \rightarrow U_{\alpha \beta} \times \mathbb{R}^{r+r^{\prime}}
$$

restricts on each fiber to

$$
\phi_{\alpha, p} \circ \phi_{\beta, p}^{-1}:\{p\} \times \mathbb{R}^{r+r^{\prime}} \rightarrow E_{p} \oplus E_{p}^{\prime} \rightarrow\{p\} \times \mathbb{R}^{r+r^{\prime}}, \quad p \in U_{\alpha \beta} .
$$

If we set $g_{\alpha \beta}(p)=\psi_{\alpha, p} \circ \psi_{\beta, p}^{-1}$ and $g_{\alpha \beta}^{\prime}(p)=\psi_{\alpha, p}^{\prime} \circ\left(\psi_{\beta, p}^{\prime}\right)^{-1}$, then

$$
\begin{aligned}
\left(\phi_{\alpha} \circ \phi_{\beta}^{-1}\right)\left(p,\left(v, v^{\prime}\right)\right) & =\left(p,\left(\psi_{\alpha, p} \circ \psi_{\beta, p}^{-1}\right) v,\left(\psi_{\alpha, p}^{\prime} \circ\left(\psi_{\beta, p}^{\prime}\right)^{-1}\right) v^{\prime}\right) \\
& =\left(p,\left(g_{\alpha \beta}(p) v, g_{\alpha \beta}^{\prime}(p) v^{\prime}\right)\right) .
\end{aligned}
$$

This shows that $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is a continuous map, because $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow \mathrm{GL}(r, \mathbb{R})$ and $g_{\alpha \beta}^{\prime}: U_{\alpha \beta} \rightarrow \mathrm{GL}\left(r^{\prime}, \mathbb{R}\right)$ are both continuous. As its inverse $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is also continuous, $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is a homeomorphism.

Since $U_{\alpha} \times \mathbb{R}^{r+r^{\prime}}$ has a topology, we can use the trivialization ϕ_{α} to define a topology on $\rho^{-1}\left(U_{\alpha}\right)$ so that ϕ_{α} becomes a homeomorphism. We now have a collection $\left\{\rho^{-1}\left(U_{\alpha}\right)\right\}_{\alpha \in \mathrm{A}}$ of subsets of $E \oplus E^{\prime}$ such that
(i) $E \oplus E^{\prime}=\bigcup_{\alpha \in \mathrm{A}} \rho^{-1}\left(U_{\alpha}\right)$;
(ii) for any $\alpha, \beta \in \mathrm{A}$,

$$
\rho^{-1}\left(U_{\alpha}\right) \cap \rho^{-1}\left(U_{\beta}\right)=\rho^{-1}\left(U_{\alpha \beta}\right),
$$

which is again in the collection;
(iii) for each $\alpha \in \mathrm{A}$, there is a bijection

$$
\phi_{\alpha}: \rho^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r+r^{\prime}}
$$

(iv) for each pair $\alpha, \beta \in \mathrm{A}$, the map

$$
\phi_{\alpha} \circ \phi_{\beta}^{-1}: \phi_{\beta}\left(\rho^{-1}\left(U_{\alpha \beta}\right)\right) \rightarrow \phi_{\alpha}\left(\rho^{-1}\left(U_{\alpha \beta}\right)\right)
$$

is a homeomorphism.
We formalize this situation in a topological lemma.
Lemma 20.13. Let $\mathcal{C}=\left\{S_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ be a collection of subsets of a set S such that
(i) their union is S;
(ii) \mathcal{C} is closed under finite intersections;
(iii) for each $\alpha \in \mathrm{A}$, there is a bijection

$$
\phi_{\alpha}: S_{\alpha} \rightarrow Y_{\alpha}
$$

where Y_{α} is a topological space;
(iv) for each pair $\alpha, \beta \in \mathrm{A}, \phi_{\alpha}\left(S_{\alpha \beta}\right)$ is open in Y_{α}, where $S_{\alpha \beta}=S_{\alpha} \cap S_{\beta}$, and the map

$$
\phi_{\alpha} \circ \phi_{\beta}^{-1}: \phi_{\beta}\left(S_{\alpha \beta}\right) \rightarrow \phi_{\alpha}\left(S_{\alpha \beta}\right)
$$

is a homeomorphism.
Then there is a unique topology on S such that for each $\alpha \in \mathrm{A}$, the subset S_{α} is open and the bijection $\phi_{\alpha}: S_{\alpha} \rightarrow Y_{\alpha}$ is a homeomorphism.

The proof of this lemma is left as an exercise (Problem 20.1). Applying the lemma to the collection $\left\{\rho^{-1}\left(U_{\alpha}\right)\right\}_{\alpha \in \mathrm{A}}$ of subsets of $E \oplus E^{\prime}$, we obtain a topology on $E \oplus E^{\prime}$ in which each $\rho^{-1}\left(U_{\alpha}\right)$ is open and each

$$
\begin{equation*}
\phi_{\alpha}: \rho^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r+r^{\prime}} \tag{20.5}
\end{equation*}
$$

is a homeomorphism. Since the sets $U_{\alpha} \times \mathbb{R}^{r+r^{\prime}}$ are homeomorphic to open subsets of $\mathbb{R}^{n+r+r^{\prime}}$ and the transition functions $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ are all $C^{\infty},\left\{\left(\rho^{-1}\left(U_{\alpha}\right), \phi_{\alpha}\right)\right\}$ is a C^{∞} atlas on $E \oplus E^{\prime}$. Thus, $E \oplus E^{\prime}$ is a C^{∞} manifold. Moreover, the trivializations (20.5) show that $\rho: E \oplus E^{\prime} \rightarrow M$ is a C^{∞} vector bundle of rank $r+r^{\prime}$.

20.7 Other Operations on Vector Bundles

The construction of the preceding section can be applied to the disjoint union $\coprod_{p \in M} E_{p} \otimes E_{p}^{\prime}$ of the tensor product of fibers of E and E^{\prime}. This produces a C^{∞} vector bundle $E \otimes E^{\prime}$ of rank $r r^{\prime}$ over M, whose fiber above $p \in M$ is the tensor product $E_{p} \otimes E_{p}^{\prime}$.

More generally, let \mathcal{V} be the category whose objects are finite-dimensional real vector spaces and whose morphisms are isomorphisms, not merely linear maps, of vector spaces. In this category, if two vector spaces have different dimensions, then the set of morphisms between them is the empty set. Denote by $\mathcal{V} \times \mathcal{V}$ the category whose objects are pairs of finite-dimensional vector spaces and whose morphisms are pairs of isomorphisms of vector spaces. Let $\mathcal{T}: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ be a covariant functor that associates to a pair of finite-dimensional vector spaces (V, W) another finite-dimensional vector space $\mathcal{T}(V, W)$, and to a pair of isomorphisms $\left(f: V \rightarrow V^{\prime}, g: W \rightarrow W^{\prime}\right)$ an isomorphism $\mathcal{T}(f, g): \mathcal{T}(V, W) \rightarrow \mathcal{T}\left(V^{\prime}, W^{\prime}\right)$.

If V and V^{\prime} are finite-dimensional vector spaces of the same dimension n, let Iso $\left(V, V^{\prime}\right)$ be the set of all isomorphisms from V to V^{\prime}. With respect to fixed bases for V and V^{\prime}, elements of $\operatorname{Iso}\left(V, V^{\prime}\right)$ are represented by nonsingular $n \times n$ matrices. Hence, $\operatorname{Iso}\left(V, V^{\prime}\right)$ is bijective with $\mathrm{GL}(n, \mathbb{R})$, and therefore has the structure of a manifold as an open subset of $\mathbb{R}^{n \times n}$. The functor $\mathcal{T}: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ is said to be smooth or C^{∞} if for all finite-dimensional vector spaces $V, V^{\prime}, W, W^{\prime}$ with $\operatorname{dim} V=\operatorname{dim} V^{\prime}$ and $\operatorname{dim} W=\operatorname{dim} W^{\prime}$, the map

$$
\begin{aligned}
\mathcal{T}: \operatorname{Iso}\left(V, V^{\prime}\right) \times \operatorname{Iso}\left(W, W^{\prime}\right) & \rightarrow \operatorname{Iso}\left(\mathcal{T}(V, W), \mathcal{T}\left(V^{\prime}, W^{\prime}\right)\right), \\
(f, g) & \mapsto \mathcal{T}(f, g),
\end{aligned}
$$

is smooth.

Example. Let $\mathcal{T}(V, W)=V \oplus W$. This is a smooth functor because if $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ are isomorphisms represented by matrices M_{f} and M_{g} relative to some bases, then $f \oplus g: V \oplus W \rightarrow V^{\prime} \oplus W^{\prime}$ is represented by the matrix

$$
\left[\begin{array}{cc}
M_{f} & 0 \\
0 & M_{g}
\end{array}\right]
$$

relative to the same bases.
Mimicking the construction of the direct sum of two vector bundles, we obtain the following result.

Proposition 20.14. If $\mathcal{T}: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ is a C^{∞} covariant functor, then for any two C^{∞} vector bundles E and F over a manifold M, there is a C^{∞} vector bundle $\mathcal{T}(E, F)$ over M whose fiber at $p \in M$ is $\mathcal{T}\left(E_{p}, F_{p}\right)$.

The same construction applies if \mathcal{T} has any number of arguments. If a functor is contravariant, it must be turned into a covariant functor first to apply this construction. For example, consider the dual functor applied to a vector bundle $E \rightarrow M$. Because of its contravariance, it associates to a trivialization

$$
\psi_{p}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{r}
$$

the map

$$
\psi_{p}^{\vee}:\{p\} \times\left(\mathbb{R}^{r}\right)^{\vee} \rightarrow E_{p}^{\vee},
$$

which has the wrong direction. We need to take the inverse of ψ_{p}^{\vee} to get a trivialization that goes in the right direction,

$$
\left(\psi_{p}^{\vee}\right)^{-1}: E_{p}^{\vee} \rightarrow\{p\} \times\left(\mathbb{R}^{r}\right)^{\vee}
$$

To construct the dual bundle, the functor $\mathfrak{T}: \mathcal{V} \rightarrow \mathcal{V}$ associates to every finitedimensional vector space V its dual space V^{\vee}, and to every isomorphism $f: V \rightarrow W$ the isomorphism $\left(f^{\vee}\right)^{-1}: V^{\vee} \rightarrow W^{\vee}$.

In the category \mathcal{V} the morphisms are all isomorphisms precisely so that one can reverse the direction of a map and make a contravariant functor covariant. In this way, starting from C^{∞} vector bundles E and F over M, one can construct C^{∞} vector bundles $E \oplus F, E \otimes F, \wedge^{k} E, E^{\vee}$, and $\operatorname{Hom}(E, F) \simeq E^{\vee} \otimes F$ over M.

In Section 10.4 we defined a Riemannian metric on a vector bundle $E \rightarrow M$ as a C^{∞} assignment of an inner product \langle,\rangle_{p} on the fiber E_{p} to each point p in M. Using the multilinear algebra and vector bundle theory from the preceding sections, we can be more precise about the kind of object a Riemannian metric is.

An inner product on a real vector space V is first of all a bilinear map: $V \times V \rightarrow \mathbb{R}$. By the universal mapping property, it can be viewed as a linear map: $V \otimes V \rightarrow \mathbb{R}$, or an element of $\operatorname{Hom}(V \otimes V, \mathbb{R})$. By Proposition 18.15,

$$
\operatorname{Hom}(V \otimes V, \mathbb{R}) \simeq(V \otimes V)^{\vee} \simeq V^{\vee} \otimes V^{\vee}
$$

Thus, an inner product on V is an element of $V^{\vee} \otimes V^{\vee}$ which is positive-definite and symmetric as bilinear maps.

A Riemannian metric on the vector bundle $E \rightarrow M$ associates to each point $p \in M$ an element of $E_{p}^{\vee} \otimes E_{p}^{\vee}$; in other words, it is a C^{∞} section of $E^{\vee} \otimes E^{\vee}$ satisfying the positivity and symmetry conditions.

Problems

20.1.* Topology of a union

Prove Lemma 20.13.

20.2. Exterior power of a vector bundle

For a smooth vector bundle E over a manifold M, give the details of the construction of $\wedge^{k} E$ that show it to be a smooth vector bundle over M whose fiber at $p \in M$ is $\bigwedge^{k}\left(E_{p}\right)$.

20.3. Tensor product of two vector bundles

For two smooth vector bundles E and F over a manifold M, give the details of the construction of $E \otimes F$ that show it to be a smooth vector bundle over M whose fiber at $p \in M$ is $E_{p} \otimes F_{p}$.

§21 Vector-Valued Forms

A differential k-form α on a manifold M assigns to each point $p \in M$ an alternating k-linear map

$$
\alpha_{p}: T_{p} M \times \cdots \times T_{p} M \rightarrow \mathbb{R}
$$

If instead of \mathbb{R}, the target space of the map α_{p} is a vector space V, then α is called a vector-valued form. Vector-valued forms arise naturally in differential geometry, for example, when one wants to define connections and curvature for a principal bundle as we do in Chapter 6. In preparation, we gather together in this section some basic constructions and properties of vector-valued forms.

Even more generally, the target space of α_{p} may be the fiber E_{p} of a vector bundle E over M. In this case, α is a differential form with values in a vector bundle. We have already encountered such an object: from Section 10.3, the curvature of a connection on a vector bundle $E \rightarrow M$ can be seen as a 2 -form with values in the endomorphism bundle $\operatorname{End}(E)$.

Throughout this section, V, W, and Z denote finite-dimensional real vector spaces.

21.1 Vector-Valued Forms as Sections of a Vector Bundle

Let M be a manifold and p a point in M. By the universal mapping property for an exterior power, there is a one-to-one correspondence between alternating k-linear maps on the tangent space $T_{p} M$ and linear maps from $\bigwedge^{k} T_{p} M$ to \mathbb{R}. If $A_{k}\left(T_{p} M\right)$ is the space of alternating k-linear functions on the tangent space $T_{p} M$, then by (19.3) and Theorem 19.13, there are canonical isomorphisms

$$
A_{k}\left(T_{p} M\right) \simeq\left(\bigwedge^{k} T_{p} M\right)^{\vee} \simeq \bigwedge^{k}\left(T_{p}^{*} M\right)
$$

Thus, a $C^{\infty} k$-form on M may be viewed as a C^{∞} section of the vector bundle $\bigwedge^{k} T^{*} M$, and so the vector space of $C^{\infty} k$-forms on M is

$$
\Omega^{k}(M)=\Gamma\left(\bigwedge^{k} T^{*} M\right)
$$

It is a simple matter to generalize the usual calculus of differential forms on a manifold to differential forms with values in a finite-dimensional vector space V, or V-valued forms for short.

Let T^{k} be the Cartesian product of k copies of a vector space T. A V-valued k-covector on T is an alternating k-linear function $f: T^{k} \rightarrow V$. By the universal mapping property of the exterior power $\bigwedge^{k} T$ (Theorem 19.6), to each V-valued k-covector $f: T^{k} \rightarrow V$ there corresponds a unique linear map $\tilde{f}: \Lambda^{k} T \rightarrow V$ such that the diagram

commutes, and conversely. We denote the vector space of V-valued k-covectors on T by $A_{k}(T, V)$. The one-to-one correspondence $f \mapsto \tilde{f}$ in (21.1) induces a linear isomorphism

$$
A_{k}(T, V) \xrightarrow[\rightarrow]{\sim} \operatorname{Hom}_{\mathbb{R}}\left(\bigwedge^{k} T, V\right)
$$

By two standard isomorphisms of multilinear algebra (Proposition 18.14 and Theorem 19.13),

$$
\operatorname{Hom}_{\mathbb{R}}\left(\bigwedge^{k} T, V\right) \simeq\left(\bigwedge^{k} T\right)^{\vee} \otimes V \simeq\left(\bigwedge^{k} T^{\vee}\right) \otimes V
$$

It is customary to write T^{\vee} as T^{*}. Thus, a V-valued k-covector on T is an element of the vector space $\left(\bigwedge^{k} T^{*}\right) \otimes V$.

A V-valued k-form on a manifold M is a function that assigns to each point $p \in M$ a V-valued k-covector on the tangent space $T_{p} M$; equivalently, it assigns to each $p \in M$ an element of $\left(\bigwedge^{k} T_{p}^{*} M\right) \otimes V$. If E is a vector bundle over M and V is a vector space, the notation $E \otimes V$ will mean the tensor product of the vector bundle E with the product bundle $M \times V \rightarrow M$. Then a V-valued k-form is a section of the vector bundle $\left(\bigwedge^{k} T^{*} M\right) \otimes V$. We denote the space of smooth V-valued k-forms on M by

$$
\Omega^{k}(M, V):=\Gamma\left(\left(\bigwedge^{k} T^{*} M\right) \otimes V\right)
$$

Let v_{1}, \ldots, v_{n} be a basis for V, and α a V-valued k-form on a manifold M. For any point $p \in M$ and tangent vectors $u_{1}, \ldots, u_{k} \in T_{p} M$, since $\alpha_{p}\left(u_{1}, \ldots, u_{k}\right)$ is an element of V, it is uniquely a linear combination of v_{1}, \ldots, v_{n} with real coefficients depending on p and u_{1}, \ldots, u_{k}. We denote the coefficient of v_{i} by $\alpha_{p}^{i}\left(u_{1}, \ldots, u_{k}\right)$. Then

$$
\begin{equation*}
\alpha_{p}\left(u_{1}, \ldots, u_{k}\right)=\sum_{i} \alpha_{p}^{i}\left(u_{1}, \ldots, u_{k}\right) v_{i} \tag{21.2}
\end{equation*}
$$

Because α_{p} is alternating and k-linear, so is $\alpha_{p}^{i}\left(u_{1}, \ldots, u_{k}\right)$ for each i. Thus, α_{p}^{i} is a k-covector with values in \mathbb{R}. We can rewrite (21.2) as

$$
\alpha_{p}\left(u_{1}, \ldots, u_{k}\right)=\sum_{i}\left(\alpha_{p}^{i} \otimes v_{i}\right)\left(u_{1}, \ldots, u_{k}\right) .
$$

(This notation is consistent with that of the tensor product of a k-linear function with 0 -linear function, i.e., with a constant.) As p varies in M, we see that every V-valued k-form α on M is a linear combination

$$
\alpha=\sum \alpha^{i} \otimes v_{i}
$$

where the α^{i} are ordinary k-forms on M. We usually omit the tensor product sign and write more simply $\alpha=\sum \alpha^{i} v_{i}$. A k-form is also called a form of degree k. A form is homogeneous if it is a sum of forms all of the same degree. The V-valued k-form α is said to be smooth if the coefficients α^{i} are smooth for all $i=1, \ldots, n$. It is immediate that this definition of smoothness is independent of the choice of basis.

21.2 Products of Vector-Valued Forms

Let V, W, Z be finite-dimensional vector spaces and $\mu: V \times W \rightarrow Z$ a bilinear map. One can define a product of a V-valued covector and a W-valued covector on a vector space T,

$$
A_{k}(T, V) \times A_{\ell}(T, W) \rightarrow A_{k+\ell}(T, Z),
$$

by the same formula as the wedge product of two scalar forms, with the bilinear map μ replacing the multiplication of real numbers:

$$
\begin{align*}
& (\alpha \cdot \beta)\left(t_{1}, \ldots, t_{k+\ell}\right) \\
& \quad=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}}(\operatorname{sgn} \sigma) \mu\left(\alpha\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right), \beta\left(t_{\sigma(k+1)}, \ldots, t_{\sigma(k+\ell)}\right)\right) \tag{21.3}
\end{align*}
$$

for $\alpha \in A_{k}(T, V)$ and $\beta \in A_{\ell}(T, W)$.
This formula generalizes the wedge product of scalar covectors. The same proofs as in the scalar case [21, Section 3.7, pp. 26-27] show that
(i) $\alpha \cdot \beta$ is alternating and multilinear in its argument, and hence is a $(k+\ell)$-covector on T;
(ii) instead of summing over all permutations in $S_{k+\ell}$, one may sum over (k, ℓ) shuffles:

$$
\begin{align*}
& (\alpha \cdot \beta)\left(t_{1}, \ldots, t_{k+\ell}\right) \\
& \quad=\sum_{\substack{(k, \ell) \text {-shuffles } \\
\sigma}}(\operatorname{sgn} \sigma) \mu\left(\alpha\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right), \beta\left(t_{\sigma(k+1)}, \ldots, t_{\sigma(k+\ell)}\right)\right) . \tag{21.4}
\end{align*}
$$

(By Definition 19.14, a (k, ℓ)-shuffle is a permutation σ in $S_{k+\ell}$ such that

$$
\sigma(1)<\cdots<\sigma(k) \text { and } \sigma(k+1)<\cdots<\sigma(k+\ell) .)
$$

This $\alpha \cdot \beta$ is a product in the sense of being \mathbb{R}-linear in α and in β. It is neither graded-commutative nor associative, even when $V=W=Z$.

When applied pointwise to a manifold, with $T=T_{p} M$, the product (21.3) gives rise to a bilinear map of vector-valued forms

$$
\Omega^{k}(M, V) \times \Omega^{\ell}(M, W) \rightarrow \Omega^{k+\ell}(M, Z)
$$

Proposition 21.1. Let v_{i} be vectors in a vector space V and let w_{j} be vectors in a vector space W. Suppose $\mu: V \times W \rightarrow Z$ is a bilinear map, and $\alpha=\sum \alpha^{i} v_{i} \in$ $\Omega^{k}(M, V)$ and $\beta=\Sigma \beta^{j} w_{j} \in \Omega^{\ell}(M, W)$ are vector-valued forms, where α^{i} and β^{j} are \mathbb{R}-valued forms on a manifold M. Then

$$
\alpha \cdot \beta=\sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right) \mu\left(v_{i}, w_{j}\right) \in \Omega^{k+\ell}(M, Z) .
$$

Proof. Fix $p \in M$ and $u_{1}, \ldots, u_{k+\ell} \in T_{p} M$. Then

$$
\begin{aligned}
& (\alpha \cdot \beta)_{p}\left(u_{1}, \ldots, u_{k+\ell}\right) \\
& =\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}}(\operatorname{sgn} \sigma) \mu\left(\alpha_{p}\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right), \beta_{p}\left(u_{\sigma(k+1)}, \ldots, u_{\sigma(k+\ell)}\right)\right) \\
& =\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \\
& (\operatorname{sgn} \sigma) \mu\left(\sum_{i} \alpha_{p}^{i}\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right) v_{i}, \sum_{j} \beta_{p}^{j}\left(u_{\sigma(k+1)}, \ldots, u_{\sigma(k+\ell)}\right) w_{j}\right) \\
& =\sum_{i, j} \frac{1}{k!\ell!} \\
& \sum_{\sigma \in S_{k+\ell}}(\operatorname{sgn} \sigma) \alpha_{p}^{i}\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right) \beta_{p}^{j}\left(u_{\sigma(k+1)}, \ldots, u_{\sigma(k+\ell)}\right) \mu\left(v_{i}, w_{j}\right) \\
& =\sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right)_{p}\left(u_{1}, \ldots, u_{k+\ell}\right) \mu\left(v_{i}, w_{j}\right) .
\end{aligned}
$$

To show that $\alpha \wedge \beta$ is smooth, we may take $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ to be bases for V and W, respectively. Then α^{i} and β^{j} are smooth by definition. Let $\left\{z_{k}\right\}$ be a basis for Z and suppose

$$
\mu\left(v_{i}, w_{j}\right)=\sum_{k} c_{i j}^{k} z_{k} .
$$

By the formula just proven,

$$
\alpha \cdot \beta=\sum_{k}\left(\sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right) c_{i j}^{k}\right) z_{k}
$$

which shows that $\alpha \cdot \beta$ is smooth.
Example 21.2. An $m \times n$ matrix-valued form is an element of $\Omega^{*}\left(M, \mathbb{R}^{m \times n}\right)$. Let $e_{i j} \in \mathbb{R}^{m \times p}$ be the matrix with 1 in its (i, j)-entry and 0 in all other entries, and let $\bar{e}_{i j} \in \mathbb{R}^{p \times n}$ and $\tilde{e}_{i j} \in \mathbb{R}^{m \times n}$ be defined similarly. If

$$
\mu: \mathbb{R}^{m \times p} \times \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{m \times n}
$$

is matrix multiplication, then

$$
\mu\left(e_{i j}, \bar{e}_{k \ell}\right)=e_{i j} \bar{e}_{k \ell}=\delta_{j k} \tilde{e}_{i \ell}
$$

For $\alpha=\sum \alpha^{i j} e_{i j} \in \Omega^{*}\left(M, \mathbb{R}^{m \times p}\right)$ and $\beta=\sum \beta^{k \ell} \bar{e}_{k \ell} \in \Omega^{*}\left(M, \mathbb{R}^{p \times n}\right)$, by Proposition 21.1,

$$
\begin{aligned}
\alpha \cdot \beta & =\sum \alpha^{i j} \wedge \beta^{k \ell} \mu\left(e_{i j}, \bar{e}_{k \ell}\right) \\
& =\sum \alpha^{i j} \wedge \beta^{k \ell} \delta_{j k} \tilde{e}_{i \ell} \\
& =\sum_{i, \ell}\left(\sum_{k} \alpha^{i k} \wedge \beta^{k \ell}\right) \tilde{e}_{i \ell}=\alpha \wedge \beta
\end{aligned}
$$

the wedge product of matrices of forms defined in Section 11.1.

21.3 Directional Derivative of a Vector-Valued Function

If $f: M \rightarrow \mathbb{R}$ is a smooth function on the manifold M and X_{p} is a tangent vector to M at p, then we may interpret $X_{p} f$ as the directional derivative of f at p in the direction X_{p}; indeed, for any smooth curve $c(t)$ in M with initial point $c(0)=p$ and initial vector $c^{\prime}(0)=X_{p}$,

$$
\begin{equation*}
X_{p} f=\left.\frac{d}{d t}\right|_{t=0} f(c(t)) \tag{21.5}
\end{equation*}
$$

To extend the definition of $X_{p} f$ to a smooth vector-valued function $f: M \rightarrow V$, choose a basis v_{1}, \ldots, v_{n} for V and write $f=\sum f^{i} v_{i}$ for some smooth real-valued functions $f^{i}: M \rightarrow \mathbb{R}$. Define

$$
\begin{equation*}
X_{p} f=\sum\left(X_{p} f^{i}\right) v_{i} . \tag{21.6}
\end{equation*}
$$

It is a routine exercise to show that the definition 21.6 is independent of the choice of basis (Problem 21.2). It follows that for a smooth vector-valued function $f: M \rightarrow V$ and the same smooth curve $c(t)$ in M as in (21.5),

$$
\begin{aligned}
X_{p} f & =\sum_{\left(X_{p} f^{i}\right) v_{i}} \\
& =\sum_{i}\left(\left.\frac{d}{d t}\right|_{t=0} f^{i}(c(t))\right) v_{i} \\
& =\left.\frac{d}{d t}\right|_{t=0} \sum_{i} f^{i}(c(t)) v_{i} \\
& =\left.\frac{d}{d t}\right|_{t=0} f(c(t))
\end{aligned}
$$

This shows that for a vector-valued function f, one can still interpret $X_{p} f$ as the directional derivative of f at p in the direction X_{p}.

21.4 Exterior Derivative of a Vector-Valued Form

As before, M is a manifold and V is a finite-dimensional vector space. To define the exterior derivative of a V-valued k-form $\alpha \in \Omega^{k}(M, V)$, choose a basis v_{1}, \ldots, v_{n} for V, write $\alpha=\sum \alpha^{i} v_{i}$ with $\alpha^{i} \in \Omega^{k}(M)$, and define

$$
\begin{equation*}
d \alpha=\sum\left(d \alpha^{i}\right) v_{i} . \tag{21.7}
\end{equation*}
$$

It is easy to check that so defined, the exterior derivative $d \alpha$ is independent of the choice of basis (Problem 21.3). This definition is consistent with the definition of the exterior derivative of a matrix-valued form in Section 11.1.

Proposition 21.3. The exterior derivative on vector-valued forms on a manifold M is an antiderivation: if $\alpha \in \Omega^{k}(M, V), \beta \in \Omega^{\ell}(M, W)$, and $\mu: V \times W \rightarrow Z$ is a bilinear map of vector spaces, then

$$
d(\alpha \cdot \beta)=(d \alpha) \cdot \beta+(-1)^{\operatorname{deg} \alpha} \alpha \cdot d \beta
$$

Proof. The easiest way to prove this is to write α and β in terms of bases for V and W, respectively, and to reduce the proposition to the antiderivation property of d on the wedge product of ordinary forms.

To carry this out, let $\left\{v_{i}\right\}$ be a basis for V and $\left\{w_{j}\right\}$ a basis for W. Then $\alpha=$ $\sum \alpha^{i} v_{i}$ and $\beta=\Sigma \beta^{j} w_{j}$ for ordinary forms α^{i}, β^{j} on M. By Proposition 21.1,

$$
\alpha \cdot \beta=\sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right) \mu\left(v_{i}, w_{j}\right)
$$

Then

$$
\begin{aligned}
d(\alpha \cdot \beta)= & \sum_{i, j} d\left(\alpha^{i} \wedge \beta^{j}\right) \mu\left(v_{i}, w_{j}\right) \quad(\text { by (21.7)) } \\
= & \sum_{i, j}\left(\left(d \alpha^{i}\right) \wedge \beta^{j}\right) \mu\left(v_{i}, w_{j}\right)+(-1)^{\operatorname{deg} \alpha} \sum_{i, j}\left(\alpha^{i} \wedge d \beta^{j}\right) \mu\left(v_{i}, w_{j}\right) \\
\quad \quad & \quad \text { antiderivation property of } d \text { on scalar forms) } \\
= & \sum\left(d \alpha^{i}\right) v_{i} \cdot \sum \beta^{j} w_{j}+(-1)^{\operatorname{deg} \alpha} \sum \alpha^{i} v_{i} \cdot \sum\left(d \beta^{j}\right) w_{j}
\end{aligned}
$$

(Proposition 21.1)

$$
=(d \alpha) \cdot \beta+(-1)^{\operatorname{deg} \alpha} \alpha \cdot d \beta
$$

If α and β are matrix-valued forms on a manifold, say of size $m \times p$ and $p \times n$, respectively, and

$$
\mu: \mathbb{R}^{m \times p} \times \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{m \times n}
$$

is matrix multiplication, then by Example 21.2, $\alpha \cdot \beta=\alpha \wedge \beta$, and Proposition 21.3 becomes the antiderivation formula for the matrix wedge product:

$$
\begin{equation*}
d(\alpha \wedge \beta)=(d \alpha) \wedge \beta+(-1)^{\operatorname{deg} \alpha} \alpha \wedge d \beta \tag{21.8}
\end{equation*}
$$

21.5 Differential Forms with Values in a Lie Algebra

In the cases of special interest to us, V is either a Lie algebra \mathfrak{g} or more specifically the matrix algebra $\mathfrak{g l}(n, \mathbb{R})$. If $\mu: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is the Lie bracket, then we write $[\alpha, \beta]$ instead of $\alpha \cdot \beta$ and call it the Lie bracket of the two \mathfrak{g}-valued forms α and β. For $\alpha \in \Omega^{k}(M, \mathfrak{g}), \beta \in \Omega^{\ell}(M, \mathfrak{g}), p \in M$ and $u_{1}, \ldots, u_{k+\ell} \in T_{p} M$,

$$
\begin{align*}
& {[\alpha, \beta]_{p}\left(u_{1}, \ldots, u_{k+\ell}\right)} \\
& \quad=\sum_{(k, \ell) \text {-shuffles }}(\operatorname{sgn} \sigma)\left[\alpha_{p}\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right), \beta_{p}\left(u_{\sigma(k+1)}, \ldots, u_{\sigma(k+\ell)}\right)\right] . \tag{21.9}
\end{align*}
$$

For example, if α and β are \mathfrak{g}-valued 1-forms on a manifold M, and X and Y are C^{∞} vector fields on M, then by (21.9),

$$
\begin{equation*}
[\alpha, \beta](X, Y)=[\alpha(X), \beta(Y)]-[\alpha(Y), \beta(X)] \tag{21.10}
\end{equation*}
$$

In practice it is usually easier to calculate $[\alpha, \beta]$ using a basis. For $V=\mathfrak{g}$, Proposition 21.1 assumes the following form.

Proposition 21.4. Suppose $\left\{A_{1}, \ldots, A_{n}\right\}$ is a set of vectors in a Lie algebra \mathfrak{g} and the forms $\alpha \in \Omega^{k}(M, \mathfrak{g})$ and $\beta \in \Omega^{\ell}(M, \mathfrak{g})$ can be written as $\alpha=\sum \alpha^{i} A_{i}$ and $\beta=\sum \beta^{j} A_{j}$. Then

$$
\begin{equation*}
[\alpha, \beta]=\sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right)\left[A_{i}, A_{j}\right] \in \Omega^{k+\ell}(M, \mathfrak{g}) \tag{21.11}
\end{equation*}
$$

Note that in this proposition $\left\{A_{1}, \ldots, A_{n}\right\}$ is an arbitrary set of vectors in \mathfrak{g}; it need not be a basis.

Proposition 21.5. If α is $a \mathfrak{g}$-valued k-form and β a \mathfrak{g}-valued ℓ-form on a manifold, then

$$
[\alpha, \beta]=(-1)^{k \ell+1}[\beta, \alpha] .
$$

Proof. Let B_{1}, \ldots, B_{n} be a basis for \mathfrak{g}. Then $\alpha=\sum \alpha^{i} B_{i}$ and $\beta=\sum \beta^{j} B_{j}$ for some \mathbb{R}-valued forms α^{i} and β^{j}. Then

$$
\begin{aligned}
{[\alpha, \beta]=} & \sum_{i, j}\left(\alpha^{i} \wedge \beta^{j}\right)\left[B_{i}, B_{j}\right] \\
= & (-1)^{k \ell+1} \sum_{i, j}\left(\beta^{j} \wedge \alpha^{i}\right)\left[B_{j}, B_{i}\right] \\
& \quad(\text { since } \wedge \text { is graded commutative and }[,] \text { is skew }) \\
= & (-1)^{k \ell+1}[\beta, \alpha] .
\end{aligned}
$$

Therefore, if α and β are \mathfrak{g}-valued 1-forms, then $[\alpha, \beta]$ is symmetric in α and β and $[\alpha, \alpha]$ is not necessarily zero. For the Lie bracket of \mathfrak{g}-valued forms, Proposition 21.3 can be restated as follows.

Proposition 21.6. The exterior derivative d on $\Omega^{*}(M, \mathfrak{g})$ is an antiderivation with respect to the Lie bracket: if α and β are homogeneous \mathfrak{g}-valued forms on a manifold M, then

$$
d[\alpha, \beta]=[d \alpha, \beta]+(-1)^{\operatorname{deg} \alpha}[\alpha, d \beta] .
$$

Differential Forms with Values in $\mathfrak{g l}(n, \mathbb{R})$

On the Lie algebra $\mathfrak{g l}(n, \mathbb{R})$ of $n \times n$ real matrices, there are two natural bilinear products, matrix multiplication and the Lie bracket. They are related by

$$
[A, B]=A B-B A \quad \text { for } A, B \in \mathfrak{g l}(n, \mathbb{R})
$$

Let $e_{i j}$ be the n by n matrix with a 1 in the (i, j) entry and 0 everywhere else. Then

$$
e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell}
$$

where $\delta_{j k}$ is the Kronecker delta.
For two homogeneous $\mathfrak{g l}(n, \mathbb{R})$-valued forms α and β on a manifold M, we denote their products induced from matrix multiplication and from the Lie bracket by $\alpha \wedge \beta$ and $[\alpha, \beta]$, respectively. In terms of the basis $\left\{e_{i j}\right\}$ for $\mathfrak{g l}(n, \mathbb{R})$,

$$
\alpha=\sum \alpha^{i j} e_{i j}, \quad \beta=\sum \beta^{k \ell} e_{k \ell}
$$

for some real-valued forms $\alpha^{i j}$ and $\beta^{k \ell}$ on M. By Proposition 21.1 the wedge product of α and β is

$$
\alpha \wedge \beta=\sum_{i, j, k, \ell} \alpha^{i j} \wedge \beta^{k \ell} e_{i j} e_{k \ell}=\sum_{i, k, \ell} \alpha^{i k} \wedge \beta^{k \ell} e_{i \ell}
$$

while their Lie bracket is

$$
[\alpha, \beta]=\sum \alpha^{i j} \wedge \beta^{k \ell}\left[e_{i j}, e_{k \ell}\right]
$$

Proposition 21.7. If α and β are homogeneous $\mathfrak{g l}(n, \mathbb{R})$-valued forms on a manifold M, then

$$
[\alpha, \beta]=\alpha \wedge \beta-(-1)^{(\operatorname{deg} \alpha)(\operatorname{deg} \beta)} \beta \wedge \alpha
$$

Proof. Problem 21.4.
Hence, if α is a homogeneous $\mathfrak{g l}(n, \mathbb{R})$-valued form on a manifold, then

$$
[\alpha, \alpha]= \begin{cases}2 \alpha \wedge \alpha & \text { if } \operatorname{deg} \alpha \text { is odd } \tag{21.12}\\ 0 & \text { if } \operatorname{deg} \alpha \text { is even }\end{cases}
$$

21.6 Pullback of Vector-Valued Forms

Like scalar-valued forms, vector-valued forms on a manifold can be pulled back by smooth maps. Suppose V is a vector space, α a $C^{\infty} V$-valued k-form on a manifold M, and $f: N \rightarrow M$ a C^{∞} map. The pullback $f^{*} \alpha$ is the V-valued k-form on N defined as follows: for any $p \in N$ and $u_{1}, \ldots, u_{k} \in T_{p} N$,

$$
\left(f^{*} \alpha\right)_{p}\left(u_{1}, \ldots, u_{k}\right)=\alpha_{f(p)}\left(f_{*} u_{1}, \ldots, f_{*} u_{k}\right)
$$

The pullback of vector-valued differential forms offers no surprises; it satisfies the same properties as the pullback of scalar-valued differential forms.

Proposition 21.8. Suppose $\mu: V \times W \rightarrow Z$ is a bilinear map of finite-dimensional vector spaces, and $f: N \rightarrow M$ is a smooth map of manifolds.
(i) If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a set in the vector space V and $\alpha=\sum \alpha^{i} v_{i}$ for $\alpha^{i} \in \Omega^{k}(M)$, then $f^{*} \alpha=\sum\left(f^{*} \alpha^{i}\right) v_{i}$.
(ii) The pullback f^{*} of vector-valued forms commutes with the product: if $\alpha \in$ $\Omega^{k}(M, V)$ and $\beta \in \Omega^{\ell}(M, W)$, then

$$
f^{*}(\alpha \cdot \beta)=\left(f^{*} \alpha\right) \cdot\left(f^{*} \beta\right)
$$

(iii) The pullback f^{*} commutes with the exterior derivative: for $\alpha \in \Omega^{k}(M, V)$, $f^{*} d \alpha=d f^{*} \alpha$.

Proof. All three properties are straightforward to prove. We leave the proof as an exercise (Problem 21.6).

In particular, if $\mu: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is the Lie bracket of a Lie algebra \mathfrak{g}, then

$$
f^{*}[\alpha, \beta]=\left[f^{*} \alpha, f^{*} \beta\right]
$$

for any \mathfrak{g}-valued forms α, β on M.

21.7 Forms with Values in a Vector Bundle

For a vector space V, a V-valued k-form on a manifold M assigns to each point $p \in M$ an alternating k-linear map

$$
T_{p} M \times \cdots \times T_{p} M \rightarrow V
$$

More generally, we may allow the vector space V to vary from point to point. If E is a vector bundle over M, then an E-valued k-form assigns to each point p in M an alternating k-linear map

$$
T_{p} M \times \cdots \times T_{p} M \rightarrow E_{p} .
$$

Reasoning as above, we conclude that an E-valued k-form is a section of the vector bundle $\left(\bigwedge^{k} T^{*} M\right) \otimes E$. The space of smooth E-valued k-forms on M is denoted by

$$
\Omega^{k}(M, E):=\Gamma\left(\left(\bigwedge^{k} T^{*} M\right) \otimes E\right)
$$

Example 21.9 (The curvature of a connection). Let $E \rightarrow M$ be a vector bundle with a connection ∇. In Section 10.3 we saw that the curvature of the connection assigns to each point $p \in M$ an alternating bilinear map

$$
T_{p} M \times T_{p} M \rightarrow \operatorname{End}\left(E_{p}\right)
$$

Thus, the curvature is a section of the vector bundle $\left(\bigwedge^{2} T^{*} M\right) \otimes \operatorname{End}(E)$. It is in fact a C^{∞} section (Problem 21.7). As such, it is a smooth 2-form on M with values in the vector bundle $\operatorname{End}(E)$.

21.8 Tensor Fields on a Manifold

Vector fields and differential forms are examples of tensor fields on a manifold.
Definition 21.10. An (a, b)-tensor field on a manifold M is a section of the vector bundle

$$
\left(\bigotimes^{a} T M\right) \otimes\left(\bigotimes^{b} T^{*} M\right)=\underbrace{T M \otimes \cdots \otimes T M}_{a} \otimes \underbrace{T^{*} M \otimes \cdots \otimes T^{*} M}_{b},
$$

where the tangent bundle $T M$ occurs a times and the cotangent bundle $T^{*} M$ occurs b times.

Example. A Riemannian metric on M is a section of $T^{*} M \otimes T^{*} M$, so it is a (0,2)tensor field.

Example. As a section of the tangent bundle $T M$, a vector field on M is a (1,0)-tensor field.

Example. A differential k-form on M associates to each point $p \in M$ an alternating k-linear map

$$
T_{p} M \times \cdots \times T_{p} M \rightarrow \mathbb{R}
$$

By the universal mapping theorem, a k-linear map on $T_{p} M$ corresponds to a linear map

$$
T_{p} M \otimes \cdots \otimes T_{p} M \rightarrow \mathbb{R}
$$

Hence, a k-form is a section of $\bigotimes^{k} T^{*} M$ corresponding to an alternating map. In particular, it is a $(0, k)$-tensor field. (A k-form is also a section of $\bigwedge^{k} T^{*} M \rightarrow M$.)

More generally, if E is a vector bundle over M, then an E-valued (a, b)-tensor field is a section of

$$
\left(\bigotimes^{a} T M\right) \otimes\left(\bigotimes^{b} T^{*} M\right) \otimes E
$$

Example. By Example 21.9, the curvature of a connection on a vector bundle $E \rightarrow M$ is a section of the vector bundle

$$
\begin{aligned}
\operatorname{Hom}(T M \otimes T M, \operatorname{End}(E)) & \simeq(T M \otimes T M)^{\vee} \otimes \operatorname{End}(E) \quad \text { (by Prop. 18.14) } \\
& \simeq T^{*} M \otimes T^{*} M \otimes \operatorname{End}(E) \quad \text { (by Prop. 18.15) }
\end{aligned}
$$

As such, it is an $\operatorname{End}(E)$-valued $(0,2)$-tensor field on the manifold M.

21.9 The Tensor Criterion

A tensor field $T \in \Gamma\left(T^{a, b}(M)\right)$ on a manifold M defines an \mathcal{F}-multilinear function

$$
\begin{aligned}
\Omega^{1}(M)^{a} \times \mathfrak{X}(M)^{b} & \rightarrow \mathcal{F}, \\
\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right) & \mapsto T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right) .
\end{aligned}
$$

Conversely, the following proposition gives a condition for a multilinear function to be a tensor field.

Proposition 21.11 (The tensor criterion). There is a one-to-one correspondence between

$$
\left\{\mathcal{F} \text {-multilinear functions } T: \Omega^{1}(M)^{a} \times \mathfrak{X}(M)^{b} \rightarrow \mathcal{F}\right\}
$$

and

$$
\left\{\text { tensor fields } \tilde{T} \in \Gamma\left(T^{a, b}(M)\right)\right\}
$$

such that

$$
T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right)(p)=\tilde{T}_{p}\left(\omega_{1, p}, \ldots, \omega_{a, p}, Y_{1, p}, \ldots, Y_{b, p}\right)
$$

Because of this proposition, we often identify an \mathcal{F}-multilinear function T with the tensor field \tilde{T} that it corresponds to.

Proof. We give the proof only for $(a, b)=(2,1)$, since the general case is similar. Suppose

$$
T: \Omega^{1}(M) \times \Omega^{1}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}
$$

is 3-linear over \mathcal{F}. Since $\Omega^{1}(M)=\Gamma\left(T^{*} M\right)$ and $\mathfrak{X}(M)=\Gamma(T M)$, by Proposition 7.28 , for each $p \in M$ there is a unique \mathbb{R}-multilinear map

$$
T_{p}: T_{p}^{*} M \times T_{p}^{*} M \times T_{p} M \rightarrow \mathbb{R}
$$

such that for all $\left(\omega_{1}, \omega_{2}, Y\right) \in \Gamma\left(T^{*} M\right) \times \Gamma\left(T^{*} M\right) \times \Gamma(T M)$,

$$
T_{p}\left(\omega_{1, p}, \omega_{2, p}, Y_{p}\right)=T\left(\omega_{1}, \omega_{2}, Y\right)(p)
$$

By the universal property of the tensor product, the multilinear map T_{p} corresponds to a unique linear map $\tilde{T}_{p}: T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p} M \rightarrow \mathbb{R}$ such that

$$
\tilde{T}_{p}\left(\omega_{1, p} \otimes \omega_{2, p} \otimes Y_{p}\right)=T\left(\omega_{1}, \omega_{2}, Y\right)(p)
$$

In other words, \tilde{T}_{p} is an element of

$$
\begin{aligned}
\operatorname{Hom}\left(T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p} M, \mathbb{R}\right) & \simeq\left(T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p} M\right)^{\vee} \\
& =T_{p} M \otimes T_{p} M \otimes T_{p}^{*} M \quad(\text { by Prop. 18.15) }
\end{aligned}
$$

Thus, \tilde{T} is a section of $T^{2,1}(M)=T M \otimes T M \otimes T^{*} M$.

21.10 Remark on Signs Concerning Vector-Valued Forms

Formulas involving vector-valued forms often have additional signs that their scalarvalued or constant analogues do not have. For example, the Lie bracket is anticommutative on elements of a Lie algebra \mathfrak{g} :

$$
[A, B]=-[B, A],
$$

but when applied to \mathfrak{g}-valued forms,

$$
\begin{equation*}
[\alpha, \beta]=(-1)^{(\operatorname{deg} \alpha)(\operatorname{deg} \beta)+1}[\beta, \alpha] \tag{21.13}
\end{equation*}
$$

There is a general rule that appears to describe the additional sign or at least to serve as a useful mnemonic: whenever two graded objects x and y are interchanged, the additional sign is $(-1)^{\operatorname{deg} x \operatorname{deg} y}$. This applies to example (21.13) above. It also applies to Proposition 21.7: For $A, B \in \mathfrak{g l}(n, \mathbb{R})$,

$$
[A, B]=A B-B A,
$$

but for $\mathfrak{g l}(n, \mathbb{R})$-valued forms,

$$
[\alpha, \beta]=\alpha \wedge \beta-(-1)^{\operatorname{deg} \alpha \operatorname{deg} \beta} \beta \wedge \alpha
$$

If we assign a degree of 1 to the exterior derivative d, then the antiderivation property in Proposition 21.3 also fits this pattern.

Problems

21.1. Associativity of the product of vector-valued forms

Suppose $\mu: V \times W \rightarrow Z$ is a bilinear map of vector spaces, $\lambda \in \Omega^{\ell}(M), \alpha \in \Omega^{a}(M, V)$, and $\beta \in \Omega^{b}(M, W)$. Prove that

$$
(\lambda \cdot \alpha) \cdot \beta=\lambda \cdot(\alpha \cdot \beta)=(-1)^{\ell \cdot a} \alpha \cdot(\lambda \cdot \beta)
$$

(Hint: Write α and β in terms of a basis for V and a basis for W, respectively, and apply Proposition 21.1.)

21.2. Directional derivative of a vector-valued function

Show that the definition (21.6) of the directional derivative is independent of the choice of basis.

21.3. Exterior derivative of a vector-valued function

Prove that the definition (21.7) of the exterior derivative is independent of the choice of basis.

21.4. Lie bracket in terms of the wedge product

Prove Proposition 21.7.

21.5. Triple product of $\mathbf{1}$-forms

Show that if α is any \mathfrak{g}-valued 1 -form on a manifold, then

$$
[[\alpha, \alpha], \alpha]=0 .
$$

21.6. Pullback of vector-valued forms

Prove Proposition 21.8.

21.7. Curvature as a section

Let ∇ be a connection on a smooth vector bundle $\pi: E \rightarrow M$. Show that the curvature of ∇ is a smooth section of the vector bundle $\left(\Lambda^{2} T^{*} M\right) \otimes \operatorname{End}(E)$.

21.8. Exterior derivative of a vector-valued 1-form

Let V be a vector space. Prove that for a $C^{\infty} V$-valued 1-form ω and C^{∞} vector fields X, Y on M,

$$
(d \omega)(X, Y)=X \omega(Y)-Y \omega(X)-\omega([X, Y])
$$

(Hint: See [21, Th. 20.14, p. 233].)

21.9.* Maurer-Cartan equation

The Maurer-Cartan form on a Lie group G with Lie algebra \mathfrak{g} is the unique \mathfrak{g}-valued 1-form θ on G that is the identity map at the identity element $e \in G$. Thus, for $X_{e} \in T_{e} G$ and $X_{g} \in T_{g} G$,

$$
\theta_{e}\left(X_{e}\right)=X_{e} \in \mathfrak{g}
$$

and

$$
\theta_{g}\left(X_{g}\right)=\left(\ell_{g^{-1}}^{*} \theta_{e}\right)\left(X_{g}\right)=\theta_{e}\left(\ell_{g^{-1} *} X_{g}\right)=\ell_{g^{-1} *} X_{g}
$$

Prove that the Maurer-Cartan form satisfies the Maurer-Cartan equation

$$
d \theta+\frac{1}{2}[\theta, \theta]=0
$$

(Hint: By \mathcal{F}-linearity, it suffices to check this equation on left-invariant vector fields.)

21.10. Right translation of the Maurer-Cartan form

Prove that under right translation the Maurer-Cartan form θ on a Lie group G satisfies

$$
r_{g}^{*} \theta=\left(\operatorname{Ad} g^{-1}\right) \theta \quad \text { for } g \in G
$$

Chapter 5

Vector Bundles and Characteristic Classes

The Gauss-Bonnet theorem for a compact oriented Riemannian 2-manifold M may be stated in the following way:

$$
\int_{M} \frac{1}{2 \pi} K \mathrm{vol}=\chi(M)
$$

where K is the Gaussian curvature. What is especially significant about this theorem is that on the left-hand side the 2 -form K vol is locally the curvature form Ω_{2}^{1} relative to an orthonormal frame of the Riemannian metric, but on the right-hand side the Euler characteristic $\chi(M)$ is a diffeomorphism invariant, independent of the Riemannian structure. Thus, the Gauss-Bonnet theorem for surfaces raises two interesting questions about higher-dimensional compact oriented manifolds:
(i) Is there a differential form whose integral over M gives the Euler characteristic?
(ii) Is it possible to construct from the curvature tensor diffeomorphism invariants other than the Euler characteristic?
Let $H^{i}(M)$ be the de Rham cohomology vector space of M in degree i. The i th Betti number b_{i} of M is the dimension of $H^{i}(M)$. In algebraic topology one learns that the Euler characteristic of a compact manifold may be computed as the alternating sum of the Betti numbers [18, Th. 22.2, p. 124]:

$$
\begin{equation*}
\chi(M)=\sum_{i=0}^{\operatorname{dim} M}(-1)^{i} b_{i} \tag{*}
\end{equation*}
$$

If the manifold is not compact, this may be an infinite sum and the Euler characteristic need not be defined.

Furthermore, the Poincaré duality theorem for a compact orientable manifold asserts that the integral of the wedge product of forms of complementary dimensions

$$
\begin{aligned}
H^{i}(M) \times H^{n-i}(M) & \xrightarrow[\rightarrow]{H^{n}}(M) \xrightarrow{\int} \mathbb{R} \\
([\omega],[\tau]) & \mapsto \int_{M} \omega \wedge \tau
\end{aligned}
$$

is a nondegenerate pairing [3, p. 44]. Hence, by Lemma 19.11, there is a linear isomorphism of $H^{i}(M)$ with the dual of $H^{n-i}(M)$:

$$
H^{i}(M) \simeq H^{n-i}(M)^{\vee}
$$

and

$$
b^{i}=b^{n-i}
$$

Example. If M is a compact orientable manifold of dimension 5, then its Betti numbers pair up:

$$
b_{0}=b_{5}, \quad b_{1}=b_{4}, \quad b_{2}=b_{3}
$$

and so

$$
\begin{aligned}
\chi(M) & =b_{0}-b_{1}+b_{2}-b_{3}+b_{4}-b_{5} \\
& =\left(b_{0}-b_{5}\right)+\left(b_{2}-b_{3}\right)+\left(b_{4}-b_{1}\right) \\
& =0 .
\end{aligned}
$$

This example generalizes to any odd-dimensional compact orientable manifold.
Proposition. The Euler characteristic of a compact orientable odd-dimensional manifold is 0 .

Proof. If $n=\operatorname{dim} M$ is odd, then the Betti numbers b_{i} and b_{n-i} are equal by Poincaré duality. Moreover, they occur with opposite signs in the alternating sum for the Euler characteristic. Hence, all the terms in $\left(^{*}\right)$ cancel out and $\chi(M)=0$.

Thus, from the point of view of generalizing the Gauss-Bonnet theorem by answering question (i), the only manifolds of interest are compact oriented Riemannian manifolds of even dimension.

Following Chern and Weil, we will associate to a vector bundle E over M global differential forms on M constructed from the curvature matrix of a connection E. These forms turn out to be closed; moreover, their cohomology classes are independent of the connection and so are diffeomorphism invariants of the vector bundle E. They are called characteristic classes of E. Specializing to the tangent bundle $T M$, we obtain in this way new diffeomorphism invariants of the manifold M, among which are the Pontrjagin classes and Pontrjagin numbers of M.

§22 Connections and Curvature Again

This section collects together some facts about connections and curvature on a vector bundle that will be needed in the construction of characteristic classes. We first study how connection and curvature matrices transform under a change of frame. Then we derive the Bianchi identities, which are formulas for the exterior derivative of the connection and curvature matrices. Just as there are two structural equations, corresponding to the torsion vector and the curvature matrix, so there are two Bianchi identities, corresponding to the exterior derivatives of the two structural equations.

22.1 Connection and Curvature Matrices Under a Change of Frame

In Section 10.6 we showed that a connection on a vector bundle $E \rightarrow M$ may be restricted to a connection over any open subset U of M :

$$
\nabla^{U}: \mathfrak{X}(U) \times \Gamma(U, E) \rightarrow \Gamma(U, E)
$$

We will usually omit the superscript U and write ∇ for ∇^{U}.
Suppose there is a frame e_{1}, \ldots, e_{r} for E over U. Then the connection matrix ω of ∇ relative to the frame e_{1}, \ldots, e_{r} over U is the matrix $\left[\omega_{j}^{i}\right]$ of 1-forms defined by

$$
\nabla_{X} e_{j}=\sum \omega_{j}^{i}(X) e_{i}
$$

for $X \in \mathfrak{X}(U)$. If we write the frame e_{1}, \ldots, e_{r} as a row vector $e=\left[e_{1} \cdots e_{r}\right]$, then in matrix notation

$$
\nabla_{X} e=e \omega(X)
$$

As a function of X,

$$
\nabla e=e \omega
$$

Similarly, for C^{∞} vector fields X, Y on U, the curvature matrix Ω of the connection ∇ is the matrix $\left[\Omega_{j}^{i}\right]$ of 2-forms defined by

$$
R(X, Y) e_{j}=\sum \Omega_{j}^{i}(X, Y) e_{i} .
$$

We next study how the connection and curvature matrices ω and Ω transform under a change of frame. Suppose $\bar{e}_{1}, \ldots, \bar{e}_{r}$ is another frame for E over U. Let $\bar{\omega}=\left[\bar{\omega}_{j}^{i}\right]$ and $\bar{\Omega}=\left[\bar{\Omega}_{j}^{i}\right]$ be the connection and curvature matrices of the connection ∇ relative to this new frame. At each point p, the basis vector $\bar{e}_{\ell}(p)$ is a linear combination of $e_{1}(p), \ldots, e_{r}(p)$:

$$
\bar{e}_{\ell}(p)=\sum a_{\ell}^{k}(p) e_{k}(p)
$$

As sections on U,

$$
\bar{e}_{\ell}=\sum a_{\ell}^{k} e_{k}
$$

So we get a matrix of functions $a=\left[a_{\ell}^{k}\right]$. As the coefficients of a smooth section with respect to a smooth frame, the a_{ℓ}^{k} are smooth functions on U. At each point p, the matrix $a(p)=\left[a_{\ell}^{k}(p)\right]$ is invertible because it is a change of basis matrix. Thus we can think of a as a C^{∞} function $U \rightarrow \mathrm{GL}(r, \mathbb{R})$. As row vectors,

$$
\left[\begin{array}{lll}
\bar{e}_{1} & \cdots & \bar{e}_{r}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{r}
\end{array}\right]\left[a_{\ell}^{k}\right]
$$

or in matrix notation,

$$
\begin{equation*}
\bar{e}=e a \tag{22.1}
\end{equation*}
$$

Since in matrix notation (22.1), the matrix of functions a_{j}^{i} must be written on the right of the row vector of sections e_{i}, we will recast the Leibniz rule in this form.

Suppose s is a C^{∞} section of the vector bundle E and f is a C^{∞} function on M. By the Leibniz rule, for any C^{∞} vector field $X \in \mathfrak{X}(M)$,

$$
\begin{align*}
\nabla_{X}(s f) & =\left(\nabla_{X} s\right) f+s X(f) \\
& =\left(\nabla_{X} s\right) f+s d f(X) \tag{22.2}
\end{align*}
$$

We may view ∇s as a function $\mathfrak{X}(M) \rightarrow \Gamma(E)$ with $(\nabla s)(X)=\nabla_{X} s$. Then we may suppress the argument X from (22.2) and rewrite the Leibniz rule as

$$
\begin{equation*}
\nabla(s f)=(\nabla s) f+s d f \quad \text { for } s \in \Gamma(E), f \in C^{\infty}(M) \tag{22.3}
\end{equation*}
$$

Theorem 22.1. Suppose e and \bar{e} are two frames for the vector bundle E over U such that $\bar{e}=$ e e for some $a: U \rightarrow \mathrm{GL}(r, \mathbb{R})$. If ω and $\bar{\omega}$ are the connection matrices and Ω and $\bar{\Omega}$ are the curvature matrices of a connection ∇ relative to the two frames, then
(i) $\bar{\omega}=a^{-1} \omega a+a^{-1} d a$,
(ii) $\bar{\Omega}=a^{-1} \Omega a$.

Proof. (i) We use the Leibniz rule (22.3) to derive the transformation rule for the connection matrix under a change of frame. Since $\bar{e}=e a$, we have $e=\bar{e} a^{-1}$. Recall that if $a=\left[a_{j}^{i}\right]$ is a matrix of C^{∞} functions, then $d a$ is the matrix of $C^{\infty} 1$-forms $\left[d a_{j}^{i}\right]$. Thus,

$$
\begin{aligned}
\nabla \bar{e} & =\nabla(e a) & & \\
& =(\nabla e) a+e d a & & (\text { Leibniz rule }) \\
& =(e \omega) a+e d a & & (\nabla e=e \omega) \\
& =\bar{e} a^{-1} \omega a+\bar{e} a^{-1} d a & & \left(e=\bar{e} a^{-1}\right) \\
& =\bar{e}\left(a^{-1} \omega a+a^{-1} d a\right) . & &
\end{aligned}
$$

Therefore,

$$
\bar{\omega}=a^{-1} \omega a+a^{-1} d a .
$$

(ii) Since the structural equation (Theorem 11.1)

$$
\begin{equation*}
\bar{\Omega}=d \bar{\omega}+\bar{\omega} \wedge \bar{\omega} \tag{22.4}
\end{equation*}
$$

expresses the curvature $\bar{\Omega}$ in terms of the connection matrix ω, the brute-force way to obtain the transformation rule for $\bar{\Omega}$ is to plug the formula in part (i) into (22.4), expand the terms, and try to write the answer in terms of Ω.

Another way is to note that since for any $X_{p}, Y_{p} \in T_{p} M$, the curvature $R\left(X_{p}, Y_{p}\right)$ is the linear transformation of E_{p} to E_{p} with matrix $\left[\Omega_{j}^{i}\left(X_{p}, Y_{p}\right)\right]$ relative to the basis e_{1}, \ldots, e_{r} at p, a change of basis should lead to a conjugate matrix. Indeed, for $X, Y \in \mathfrak{X}(U)$,

$$
R(X, Y) e_{j}=\sum_{i} \Omega_{j}^{i}(X, Y) e_{i},
$$

or in matrix notation,

$$
R(X, Y) e=R(X, Y)\left[e_{1}, \ldots, e_{r}\right]=\left[e_{1}, \ldots, e_{r}\right]\left[\Omega_{j}^{i}(X, Y)\right]=e \Omega(X, Y)
$$

Suppressing X, Y, we get

$$
R(e)=e \Omega
$$

Hence,

$$
\begin{aligned}
R(\bar{e}) & =R(e a) \\
& =R(e) a \quad(R \text { is } \mathcal{F} \text {-linear in the argument } e) \\
& =e \Omega a \\
& =\bar{e} a^{-1} \Omega a .
\end{aligned}
$$

This proves that $\bar{\Omega}=a^{-1} \Omega a$.

22.2 Bianchi Identities

When $E \rightarrow M$ is the tangent bundle, a connection on E is an affine connection as defined in Section 6.1. For an affine connection ∇, the torsion

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

is defined and is a tensor. If e_{1}, \ldots, e_{n} is a frame for the tangent bundle $T M$ over U, then the torsion forms τ^{i} are given by

$$
T(X, Y)=\sum \tau^{i}(X, Y) e_{i} .
$$

We collect $\tau^{1}, \ldots, \tau^{n}$ into a column vector $\tau=\left[\tau^{i}\right]$ of 2 -forms. Similarly, if $\theta^{1}, \ldots, \theta^{n}$ are the 1 -forms dual to the basis e_{1}, \ldots, e_{n}, then θ is the column vector $\left[\theta^{i}\right]$. Recall the two structural equations (Theorem 11.7):

Luigi Bianchi
(1856-1928)
(1) $\tau=d \theta+\omega \wedge \theta$,
(2) $\Omega=d \omega+\omega \wedge \omega$.

Proposition 22.2 (First Bianchi identity). Let ∇ be a connection on the tangent bundle TM of a manifold M. Suppose θ and τ are the column vectors of dual 1 -forms and torsion forms, respectively, on a framed open set, and ω and Ω are the connection and curvature matrices respectively. Then

$$
d \tau=\Omega \wedge \theta-\omega \wedge \tau
$$

Proof. Differentiating the first structural equation gives

$$
\begin{aligned}
d \tau= & d(d \theta)+d \omega \wedge \theta-\omega \wedge d \theta \\
= & 0+(\Omega-\omega \wedge \omega) \wedge \theta-\omega \wedge(\tau-\omega \wedge \theta) \\
& \text { (rewriting } d \omega \text { and } d \theta \text { using the two structural equations) } \\
= & \Omega \wedge \theta-\omega \wedge \tau \quad \text { (since } \omega \wedge \omega \wedge \theta \text { cancels out). }
\end{aligned}
$$

Like the second structural equation, the next two identities apply more generally to a connection ∇ on any smooth vector bundle, not just the tangent bundle.

Proposition 22.3 (Second Bianchi identity). Let ∇ be a connection on a smooth vector bundle E. Suppose ω and Ω are the connection and curvature matrices of ∇ relative to a frame for E over an open set. Then

$$
d \Omega=\Omega \wedge \omega-\omega \wedge \Omega
$$

Proof. Differentiating the second structural equation gives

$$
\begin{aligned}
d \Omega= & d(d \omega)+(d \omega) \wedge \omega-\omega \wedge d \omega \\
= & 0+(\Omega-\omega \wedge \omega) \wedge \omega-\omega \wedge(\Omega-\omega \wedge \omega) \\
& (\text { rewriting } d \omega \text { using the second structural equation) } \\
= & \Omega \wedge \omega-\omega \wedge \Omega .
\end{aligned}
$$

We will use the notation Ω^{k} to mean the wedge product $\Omega \wedge \cdots \wedge \Omega$ of the curvature matrix k times.

Proposition 22.4 (Generalized second Bianchi identity). Under the same hypotheses as in Proposition 22.3, for any integer $k \geq 1$,

$$
d\left(\Omega^{k}\right)=\Omega^{k} \wedge \omega-\omega \wedge \Omega^{k}
$$

Proof. Problem 22.3.

22.3 The First Bianchi Identity in Vector Form

For a Riemannian connection, the torsion form τ is zero and the first Bianchi identity (Proposition 22.2) simplifies to

$$
\Omega \wedge \theta=0
$$

This identity translates into a symmetry property of the curvature tensor.
Theorem 22.5. If X, Y, Z are C^{∞} vector fields on a Riemannian manifold M, then the curvature tensor of the Riemannian connection satisfies

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

Proof. Let e_{1}, \ldots, e_{n} be a frame over an open set U in M, and $\theta^{1}, \ldots, \theta^{n}$ the dual 1-forms. On $U, Z=\sum_{j} \theta^{j}(Z) e_{j}$. In the notation of the preceding section,

$$
\begin{aligned}
R(X, Y) Z & =\sum_{j} R(X, Y) \theta^{j}(Z) e_{j} \\
& =\sum_{i, j} \Omega_{j}^{i}(X, Y) \theta^{j}(Z) e_{i} .
\end{aligned}
$$

The i th component of $\Omega \wedge \theta$ is $\sum_{j} \Omega_{j}^{i} \wedge \theta^{j}$. Thus, for each i, the first Bianchi identity gives

$$
\begin{aligned}
0 & =\sum_{j}\left(\Omega_{j}^{i} \wedge \theta^{j}\right)(X, Y, Z) \\
& =\sum_{j} \Omega_{j}^{i}(X, Y) \theta^{j}(Z)-\Omega_{j}^{i}(X, Z) \theta^{j}(Y)+\Omega_{j}^{i}(Y, Z) \theta^{j}(X) .
\end{aligned}
$$

Multiplying by e_{i} and summing over i, we obtain

$$
0=R(X, Y) Z+R(Z, X) Y+R(Y, Z) X .
$$

22.4 Symmetry Properties of the Curvature Tensor

With the first Bianchi identity, we have now proven three symmetry properties of the curvature tensor: Let X, Y, Z, W be C^{∞} vector fields on a Riemannian manifold. Then the curvature tensor of the Riemannian connection satisfies
(i) (skew-symmetry in X and Y) $R(X, Y)=-R(Y, X)$.
(ii) (skew-symmetry in Z and W, Proposition 12.5)

$$
\langle R(X, Y) Z, W\rangle=-\langle R(X, Y) W, Z\rangle .
$$

(iii) (first Bianchi identity)

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 .
$$

As an algebraic consequence of these three properties, a fourth symmetry property follows.

Theorem 22.6. If X, Y, Z, W are C^{∞} vector fields on a Riemannian manifold, then the curvature tensor of the Riemannian connection satisfies

$$
\langle R(X, Y) Z, W\rangle=\langle R(Z, W) X, Y\rangle .
$$

Proof. By the first Bianchi identity,

$$
\begin{equation*}
\langle R(X, Y) Z, W\rangle+\langle R(Y, Z) X, W\rangle+\langle R(Z, X) Y, W\rangle=0 . \tag{22.5}
\end{equation*}
$$

To cancel out the term $\langle R(Y, Z) X, W\rangle$ in (22.5), we add to (22.5) the first Bianchi identity starting with the term $\langle R(Y, Z) W, X\rangle$:

$$
\begin{equation*}
\langle R(Y, Z) W, X\rangle+\langle R(X, W) Y, X\rangle+\langle R(W, Y) Z, X\rangle=0 . \tag{22.6}
\end{equation*}
$$

Similarly, to cancel out the term $\langle R(Z, X) Y, W\rangle$ in (22.5), we add

$$
\begin{equation*}
\langle R(Z, X) W, Y\rangle+\langle R(X, W) Z, Y\rangle+\langle R(W, Z) X, Y\rangle=0 . \tag{22.7}
\end{equation*}
$$

Finally, to cancel out $\langle R(W, Y) Z, X\rangle$ in (22.6), we add

$$
\begin{equation*}
\langle R(W, Y) X, Z\rangle+\langle R(Y, X) W, Z\rangle+\langle R(X, W) Y, Z\rangle=0 . \tag{22.8}
\end{equation*}
$$

Adding up the four equations (22.5), (22.6), (22.7), (22.8) and making use of the skew-symmetry properties, we get

$$
2\langle R(X, Y) Z, W\rangle-2\langle R(Z, W) X, Y\rangle=0
$$

which proves the theorem.

22.5 Covariant Derivative of Tensor Fields

A connection ∇ on the tangent bundle $T M$ of a manifold M induces a covariant derivative on all tensor fields. This is the content of the following proposition.

Proposition 22.7. Let ∇ be a connection and $X, Y C^{\infty}$ vector fields on the manifold M.
(i) If ω is a $C^{\infty} 1$-form on M, then $\nabla_{X} \omega$ defined by

$$
\left(\nabla_{X} \omega\right)(Y):=X(\omega(Y))-\omega\left(\nabla_{X} Y\right)
$$

is a $C^{\infty} 1$-form on M.
(ii) If T is a $C^{\infty}(a, b)$-tensor field on M, then $\nabla_{X} T$ defined by

$$
\begin{aligned}
\left(\nabla_{X} T\right)\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right):= & X\left(T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right)\right) \\
& -\sum_{i=1}^{a} T\left(\omega_{1}, \ldots, \nabla_{X} \omega_{i}, \ldots \omega_{a}, Y_{1}, \ldots, Y_{b}\right) \\
& -\sum_{j=1}^{b} T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, \nabla_{X} Y_{j}, \ldots Y_{b}\right),
\end{aligned}
$$

for $\omega_{i} \in \Omega^{1}(M), Y_{j} \in \mathfrak{X}(M)$, is a $C^{\infty}(a, b)$-tensor field on M.
Proof. By the tensor criterion (Proposition 21.11), it suffices to check that $\nabla_{X} \omega$ and $\nabla_{X} T$ are \mathcal{F}-linear in its arguments, where $\mathcal{F}:=C^{\infty}(M)$ is the ring of C^{∞} functions on M. Let $f \in \mathcal{F}$.
(i) By definition and the Leibniz rule in Y of a connection,

$$
\begin{aligned}
\left(\nabla_{X} \omega\right)(f Y) & =X(f \omega(Y))-\omega\left(\nabla_{X} f Y\right) \\
& =(X f) \omega(Y)+f X(\omega(Y))-\omega((X f) Y)-f \omega\left(\nabla_{X} Y\right) \\
& =f\left(\nabla_{X} \omega\right)(Y)
\end{aligned}
$$

(ii) Replace ω_{i} by $f \omega_{i}$ in the definition of $\nabla_{X} T$. On the right-hand side, we have

$$
\begin{align*}
& X\left(T\left(\omega_{1}, \ldots, f \omega_{i}, \ldots \omega_{a}, Y_{1}, \ldots, Y_{b}\right)\right) \\
& \quad=(X f) T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right)+f X\left(T\left(\omega_{1}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right)\right) \tag{22.9}
\end{align*}
$$

and

$$
\begin{align*}
& T\left(\omega_{1}, \ldots, \nabla_{X} f \omega_{i}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right) \\
= & T\left(\omega_{1}, \ldots,(X f) \omega_{i}, \ldots, \omega_{a}, Y_{1}, \ldots, Y_{b}\right)+f T\left(\omega_{1}, \ldots, \nabla_{X} \omega_{i}, \ldots \omega_{a}, Y_{1}, \ldots, Y_{b}\right) . \tag{22.10}
\end{align*}
$$

The first terms of these two expressions cancel out. All the other terms on the right of (22.9) and (22.10) are \mathcal{F}-linear in the i th argument.
Similarly, the right-hand side of the definition of $\nabla_{X} T$ is \mathcal{F}-linear in the argument Y_{j}.

On C^{∞} functions f, we define $\nabla_{X} f=X f$.
Let $T^{a, b}(M)=\left(\otimes^{a} T M\right) \otimes\left(\otimes^{b} T^{*} M\right)$ be the bundle of (a, b)-tensors on M.
Theorem 22.8. Let ∇ be a connection on a manifold and $X \in \mathfrak{X}(M)$. The covariant derivative $\nabla_{X}: \Gamma\left(\oplus_{a, b=0}^{\infty} T^{a, b}(M)\right) \rightarrow \Gamma\left(\oplus_{a, b=0}^{\infty} T^{a, b}(M)\right)$ satisfies the product rule for any two tensor fields T_{1}, T_{2} :

$$
\nabla_{X}\left(T_{1} \otimes T_{2}\right)=\left(\nabla_{X} T_{1}\right) \otimes T_{2}+T_{1} \otimes \nabla_{X} T_{2}
$$

Proof. Problem 22.4.

22.6 The Second Bianchi Identity in Vector Form

If ∇ is a connection and $R(X, Y)$ is its curvature endomorphism on a manifold, then we define the Riemann curvature tensor or simply the curvature tensor to be

$$
\operatorname{Rm}(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle, \quad X, Y, Z, W \in \mathfrak{X}(M)
$$

The second Bianchi identity is obtained by differentiating the curvature. In vector form, this means taking the covariant derivative of the curvature tensor Rm .

Theorem 22.9 (The second Bianchi identity in vector form). On a Riemannian manifold, if a connection ∇ is compatible with the metric, then for all X, Y, Z, V, $W \in \mathfrak{X}(M)$,

$$
\sum_{\text {cyclic in } X, Y, Z}\left(\nabla_{X} \operatorname{Rm}\right)(Y, Z, V, W)=0
$$

(This notation means we cyclically rotate X, Y, Z to obtain two other terms.)

Proof. Since $\left(\nabla_{X} \mathrm{Rm}\right)(Y, Z, V, W)$ is \mathcal{F}-linear in all of its argument, it suffices to verify the identity at a point $p \in M$ and for X, Y, Z, V, W a frame of C^{∞} vector fields near p. Such a frame is the coordinate frame $\partial_{1}, \ldots, \partial_{n}$ of a normal coordinate neighborhood U of p. The advantage of using a normal coordinate system is that $\nabla_{X} Y=0$ at p and $[X, Y]=0$ on U for any coordinate vector fields X, Y, i.e., $X=\partial_{i}, Y=\partial_{j}$ for some i, j (Theorem 15.4). This greatly simplifies the expression for the covariant derivative of a tensor field.

Thus, if X, Y, Z, V, W are coordinate vector fields on a normal neighborhood of p, then at the point p

$$
\begin{aligned}
\left(\nabla_{X} \mathrm{Rm}\right)(Y, Z, V, W)= & X(\operatorname{Rm}(Y, Z, V, W))-\operatorname{Rm}\left(\nabla_{X} Y, Z, V, W\right)-\cdots \\
= & X(\operatorname{Rm}(Y, Z, V, W)) \quad \text { since } \nabla_{X} Y(p)=0 \\
= & X\langle R(Y, Z) V, W\rangle \\
= & \left\langle\nabla_{X} R(Y, Z) V, W\right\rangle+\left\langle R(Y, Z) V, \nabla_{X} W\right\rangle \\
& \quad \text { by compatibility of } \nabla \text { with the metric } \\
= & \left\langle\nabla_{X} \nabla_{Y} \nabla_{Z} V, W\right\rangle-\left\langle\nabla_{X} \nabla_{Z} \nabla_{Y} V, W\right\rangle .
\end{aligned}
$$

Cyclically permuting X, Y, Z, we get

$$
\left(\nabla_{Y} \mathrm{Rm}\right)(Z, X, V, W)=\left\langle\nabla_{Y} \nabla_{Z} \nabla_{X} V, W\right\rangle-\left\langle\nabla_{Y} \nabla_{X} \nabla_{Z} V, W\right\rangle
$$

and

$$
\left(\nabla_{Z} \mathrm{Rm}\right)(X, Y, V, W)=\left\langle\nabla_{Z} \nabla_{X} \nabla_{Y} V, W\right\rangle-\left\langle\nabla_{Z} \nabla_{Y} \nabla_{X} V, W\right\rangle .
$$

Summing the three equations gives

$$
\begin{aligned}
\left(\nabla_{X} \mathrm{Rm}\right)(Y, Z, V, W & +\left(\nabla_{Y} \mathrm{Rm}\right)(Z, X, V, W)+\left(\nabla_{Z} \mathrm{Rm}\right)(X, Y, V, W \\
& =\left\langle R(X, Y) \nabla_{Z} V, W\right\rangle+\left\langle R(Y, Z) \nabla_{X} V, W\right\rangle+\left\langle R(Z, X) \nabla_{Y} V, W\right\rangle
\end{aligned}
$$

On the right-hand side, because $R(-,-)-$ is a tensor, we can evaluate the arguments at a single point p. Since $\nabla_{X} V, \nabla_{Y} V, \nabla_{Z} V$ all vanish at p, all three terms are zero. This establishes the second Bianchi identity in vector form.

For the equivalence of the second Bianchi identity (Proposition 22.3) and the second Bianchi identity in vector form (Theorem 22.9), see [12, Vol. 1, Theorem 5.3, p. 155].

22.7 Ricci Curvature

The curvature tensor $\langle R(X, Y) Z, W\rangle$ is a complicated object, but from it one can construct other invariants of a Riemannian manifold M. One such is the sectional curvature introduced in Section 12.4.

Another is the Ricci curvature, which associates to two tangent vectors $u, v \in$ $T_{p} M$ at p the trace of the linear endomorphism

$$
w \mapsto R(w, u) v .
$$

Thus, if X, Y are C^{∞} vector fields on an open set U in M and E_{1}, \ldots, E_{n} is an orthonormal frame on U, then

$$
\begin{aligned}
\operatorname{Ric}(X, Y) & =\operatorname{tr}(R(-, X) Y) \\
& =\sum_{i=1}^{n}\left\langle R\left(E_{i}, X\right) Y, E_{i}\right\rangle .
\end{aligned}
$$

By the symmetry properties of R, for the Riemannian connection

$$
\begin{array}{rlrl}
\operatorname{Ric}(X, Y) & =\sum\left\langle R\left(E_{i}, X\right) Y, E_{i}\right\rangle & & \text { (by definition) } \\
& =\sum\left\langle R\left(Y, E_{i}\right) E_{i}, X\right\rangle & \text { (by Theorem 22.6) } \\
& =\sum\left\langle R\left(E_{i}, Y\right) X, E_{i}\right\rangle \\
& =\operatorname{Ric}(Y, X)
\end{array}
$$

Thus, the Ricci curvature $\operatorname{Ric}(X, Y)$ is a symmetric tensor of type $(0,2)$.

22.8 Scalar Curvature

At each point p of a Riemannian manifold M, the Ricci curvature is a symmetric bilinear form

$$
\text { Ric : } T_{p} M \times T_{p} M \rightarrow T_{p} M
$$

The scalar curvature at p is the trace of the Ricci curvature at p, defined as follows.
By the nondegeneracy of the Riemannian metric \langle,$\rangle , there is a unique linear$ map $\rho: T_{p} M \rightarrow T_{p} M$ such that

$$
\operatorname{Ric}(u, v)=\langle\rho(u), v\rangle \quad \text { for all } u, v \in T_{p} M
$$

The scalar curvature $S(p)$ at the point p is defined to be the trace of ρ.
If e_{1}, \ldots, e_{n} is an orthonormal basis for $T_{p} M$, then

$$
\begin{aligned}
S(p)=\operatorname{tr} \rho & =\sum_{j}\left\langle\rho\left(e_{j}\right), e_{j}\right\rangle \\
& =\sum_{j} \operatorname{Ric}\left(e_{j}, e_{j}\right) \\
& =\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle
\end{aligned}
$$

22.9 Defining a Connection Using Connection Matrices

In the next section we will describe how a connection on a vector bundle induces a connection on a pullback bundle. The easiest way to do this is to define a connection using connection matrices.

If ∇ is a connection on a vector bundle $E \rightarrow M$, then relative to each framed open set $\left(U, e_{1}, \ldots, e_{r}\right)$ for E, there is a connection matrix ω_{e}. By Theorem 22.1, the connection matrix relative to another frame $\bar{e}=e a$ is related to ω_{e} by the formula

$$
\begin{equation*}
\omega_{\bar{e}}=a^{-1} \omega_{e} a+a^{-1} d a \tag{22.11}
\end{equation*}
$$

For $s \in \Gamma(E)$ and $X \in \mathfrak{X}(M)$, to define $\nabla_{X} s \in \Gamma(E)$, it suffices to define $\left.\left(\nabla_{X} s\right)\right|_{U}$ for the open sets U of an open cover of M. By the definition of the restriction of a connection,

$$
\left.\left(\nabla_{X} s\right)\right|_{U}=\nabla_{X}^{U}\left(\left.s\right|_{U}\right)
$$

Thus, a connection ∇ on E is completely determined by its restrictions ∇^{U} to the open sets of an open cover for M. Conversely, a collection of connections ∇^{U} on the open sets U of a trivializing open cover of M that agree on pairwise intersections $U \cap U^{\prime}$ defines a connection on E.

Equivalently, since a connection on a trivial bundle is completely specified by its connection matrix relative to a frame (see Section 11.2), a connection on a vector bundle can also be given by a collection of connection forms $\left\{\omega_{e},(U, e)\right\}$ satisfying the compatibility conditions (22.11).

22.10 Induced Connection on a Pullback Bundle

In this section we show that under a C^{∞} map $f: N \rightarrow M$, a connection on a vector bundle $E \rightarrow M$ pulls back to a unique connection on $f^{*} E \rightarrow N$.

Theorem 22.10. Let ∇ be a connection on a vector bundle $E \rightarrow M$ and $f: N \rightarrow M$ a C^{∞} map. Suppose M is covered by framed open sets $\left(U, e_{1}, \ldots, e_{r}\right)$ for E and the connection matrix relative to the frame e is ω_{e}. Then there is a unique connection on $f^{*} E$ whose connection matrix relative to the frame $f^{*} e_{1}, \ldots, f^{*} e_{r}$ on $f^{-1}(U)$ is $f^{*}\left(\omega_{e}\right)$.
Proof. The matrix $f^{*}\left(\omega_{e}\right)$ of 1-forms defines a connection on the trivial bundle $\left.\left(f^{*} E\right)\right|_{f^{-1}(U)}$ relative to the frame $f^{*} e$ (Section 11.2). If $\bar{e}=e a$ is another frame on U, then by Theorem 22.1

$$
\omega_{\bar{e}}=a^{-1} \omega_{e} a+a^{-1} d a \text { on } U .
$$

Taking the pullback under f^{*} gives

$$
f^{*}\left(\omega_{\bar{e}}\right)=\left(f^{*} a\right)^{-1} f^{*}\left(\omega_{e}\right) f^{*} a+\left(f^{*} a\right)^{-1} d f^{*} a \text { on } f^{-1}(U)
$$

Since $f^{*} \bar{e}=\left(f^{*} e\right)\left(f^{*} a\right)$, the equation above shows that $\left\{f^{*}\left(\omega_{e}\right)\right\}$ satisfies the compatibility condition (22.11) and defines a unique connection on $f^{*} E$.

Problems

22.1. Differential of the inverse of a matrix of functions

If $\omega=\left[\omega_{j}^{i}\right]$ is a matrix of differential forms on a manifold, we define $d \omega$ to be the matrix whose (i, j)-entry is $d\left(\omega_{j}^{i}\right)$. Let $a=\left[a_{j}^{i}\right]$ be a matrix of functions on a manifold. Prove that

$$
d\left(a^{-1}\right)=-a^{-1}(d a) a^{-1} .
$$

(Note: Because a and $d a$ are matrices, we cannot combine the right-hand side into $-(d a) a^{-2}$ as in calculus.)

22.2. Matrix of a linear transformation

Let $L: V \rightarrow V$ be a linear transformation of a finite dimensional vector space V. Suppose e_{1}, \ldots, e_{r} and $\bar{e}_{1}, \ldots, \bar{e}_{r}$ are two bases of V such that $\bar{e}_{j}=\sum_{i} e_{i} a_{j}^{i}$. If $L\left(e_{j}\right)=\sum_{i} e_{i} \lambda_{j}^{i}$ and $L\left(\bar{e}_{\ell}\right)=\sum_{k} \bar{e}_{k} \bar{\lambda}_{\ell}^{k}$, prove that $\bar{\Lambda}=a^{-1} \Lambda a$, where $\bar{\Lambda}=\left[\bar{\lambda}_{\ell}^{k}\right]$ and $\Lambda=\left[\lambda_{j}^{i}\right]$ are the matrices of L with respect to the two bases \bar{e} and e.

22.3. Generalized second Bianchi identity

Prove Proposition 22.4.

22.4. Product rule for the covariant derivative

Prove Theorem 22.8.

§23 Characteristic Classes

A connection on a vector bundle E of rank r over a manifold M can be represented locally by a matrix ω of 1-forms relative to a frame for E over an open set U. Similarly, the curvature of the connection can be represented by a matrix Ω of 2-forms over U. Under a change of frame $\bar{e}=e a$, the curvature matrix transforms by conjugation $\bar{\Omega}=a^{-1} \Omega a$. Thus, if $P(X)$ is a polynomial in r^{2} variables invariant under conjugation by elements of $\mathrm{GL}(r, \mathbb{R})$, then the differential form $P(\Omega)$ will be independent of the frame and will define a global form on M. It turns out that this global form $P(\Omega)$ is closed and is independent of the connection. For a fixed vector bundle E, the cohomology class $[P(\Omega)]$ is therefore a well-defined element of $H^{*}(M)$ depending only on the invariant polynomial $P(X)$. This gives rise to an algebra homomorphism

$$
c_{E}: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) \rightarrow H^{*}(M),
$$

called the Chern-Weil homomorphism from the algebra $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))$ of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ to the de Rham cohomology algebra of M.

For each homogeneous invariant polynomial $P(X)$ of degree k, the cohomology class $[P(\Omega)] \in H^{2 k}(M)$ is an isomorphism invariant of the vector bundle: if two vector bundles of rank r over M are isomorphic, then their cohomology classes associated to $P(X)$ are equal. In this sense, the class $[P(\Omega)]$ is characteristic of the vector bundle E and it is called a characteristic class of E. A global form $P(\Omega)$ representing a characteristic class is called a characteristic form.

23.1 Invariant Polynomials on $\mathfrak{g l}(r, \mathbb{R})$

Let $X=\left[x_{j}^{i}\right]$ be an $r \times r$ matrix with indeterminate entries x_{j}^{i}. A polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})=\mathbb{R}^{r \times r}$ is a polynomial in the entries of X. A polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})$ is said to be Ad $\mathrm{GL}(r, \mathbb{R})$-invariant or simply invariant if

$$
\begin{equation*}
P\left(A^{-1} X A\right)=P(X) \quad \text { for all } A \in \mathrm{GL}(r, \mathbb{R}) \tag{23.1}
\end{equation*}
$$

By Proposition B. 1 in Appendix B, if (23.1) holds for all $r \times r$ matrices X of real numbers, then it holds when X is a matrix of indeterminates, i.e., $P(X)$ is an invariant polynomial on $\mathfrak{g l}(r, \mathbb{R})$. Thus, $\operatorname{tr}(X)$ and $\operatorname{det}(X)$ are examples of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$.

Example 23.1 (Coefficients of the characteristic polynomial). Let $X=\left[x_{j}^{i}\right]$ be an $r \times r$ matrix of indeterminates and let λ be another indeterminate. The coefficients $f_{k}(X)$ of λ^{r-k} in

$$
\operatorname{det}(\lambda I+X)=\lambda^{r}+f_{1}(X) \lambda^{r-1}+\cdots f_{r-1}(X) \lambda+f_{r}(X)
$$

are polynomials on $\mathfrak{g l}(r, \mathbb{R})$. For any $A \in \mathrm{GL}(r, \mathbb{R})$ and any $r \times r$ matrix X of real numbers,

$$
\operatorname{det}\left(\lambda I+A^{-1} X A\right)=\operatorname{det}(\lambda I+X)
$$

Comparing coefficients of λ^{r-k}, we get

$$
f_{k}\left(A^{-1} X A\right)=f_{k}(X) \quad \text { for all } A \in \operatorname{GL}(r, \mathbb{R}), X \in \mathfrak{g l}(r, \mathbb{R}) .
$$

By Proposition B.1, $f_{1}(X), \ldots, f_{r}(X)$ are all invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$. They are the coefficients of the characteristic polynomial of $-X$. (The characteristic polynomial of X is $\operatorname{det}(\lambda I-X)$.)

Example 23.2 (Trace polynomials). For any positive integer k, the polynomial $\sum_{k}(X)$ $:=\operatorname{tr}\left(X^{k}\right)$ is clearly invariant under conjugation for any $X \in \mathfrak{g l}(r, \mathbb{R})$. By Proposition B.1, $\Sigma_{k}(X)$ is an invariant polynomial on $\mathfrak{g l}(r, \mathbb{R})$. It is the k th trace polynomial.

If \mathcal{A} is any commutative \mathbb{R}-algebra with identity, then the canonical map $\mathbb{R} \rightarrow \mathcal{A}$ induces an algebra homomorphism $\mathbb{R}\left[x_{j}^{i}\right] \rightarrow \mathcal{A}\left[x_{j}^{i}\right]$. For any invariant polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})$ and any invertible matrix $A \in \mathrm{GL}(r, \mathbb{R})$, the polynomial

$$
P_{A}(X)=P\left(A^{-1} X A\right)-P(X)
$$

is the zero polynomial in $\mathbb{R}\left[x_{j}^{i}\right]$. Under the homomorphism $\mathbb{R}\left[x_{j}^{i}\right] \rightarrow \mathcal{A}\left[x_{j}^{i}\right]$, the zero polynomial $P_{A}(X)$ maps to the zero polynomial in $\mathcal{A}\left[x_{j}^{i}\right]$. Thus, $P_{A}(X)$ is identically zero when evaluated on $\mathcal{A}^{r \times r}$. This means that for any invariant polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})$ and $A \in \mathrm{GL}(r, \mathbb{R})$, the invariance condition

$$
P\left(A^{-1} X A\right)=P(X)
$$

holds not only for $r \times r$ matrices X of real numbers, but more generally for $r \times r$ matrices with entries in any \mathbb{R}-algebra \mathcal{A} with identity.

23.2 The Chern-Weil Homomorphism

Let $E \rightarrow M$ be a C^{∞} vector bundle over a manifold M. We assume that there is a connection ∇ on E; apart from this, there are no restrictions on E or M. Thus, we do not assume that E is a Riemannian bundle or that M is compact or orientable.

Let $\Omega=\left[\Omega_{j}^{i}\right]$ be the curvature matrix of ∇ relative to a frame $e=\left[e_{1} \cdots e_{r}\right]$ on U. If $\bar{e}=\left[\bar{e}_{1} \cdots \bar{e}_{r}\right]$ is another frame on U, then

$$
\bar{e}=e a
$$

for a C^{∞} function $a: U \rightarrow \operatorname{GL}(r, \mathbb{R})$ and by Theorem 22.1, the curvature matrix $\bar{\Omega}$ relative to the frame \bar{e} is

$$
\bar{\Omega}=a^{-1} \Omega a .
$$

Shiing-Shen Chern (1911-2004)

Printed with permission of May Chou.

Let P be a homogeneous invariant polynomial of degree k on $\mathfrak{g l}(r, \mathbb{R})$. Fix a point $p \in U$. Let \mathcal{A} be the commutative \mathbb{R}-algebra of covectors of even degrees at p,

$$
\mathcal{A}=\bigoplus_{i=0}^{\infty} \bigwedge^{2 i}\left(T_{p}^{*} M\right)
$$

If $\Omega=\left[\Omega_{j}^{i}\right]$ is the curvature matrix of the connection ∇ relative to the frame e for E over U, then $\Omega_{p} \in \mathcal{A}^{r \times r}$ and

$$
\bar{\Omega}_{p}=a(p)^{-1} \Omega_{p} a(p)
$$

where $a(p) \in \mathrm{GL}(r, \mathbb{R})$. By the invariance of $P(X)$ under conjugation,

$$
P\left(\bar{\Omega}_{p}\right)=P\left(a(p)^{-1} \Omega_{p} a(p)\right)=P\left(\Omega_{p}\right) \in \bigwedge^{2 k}\left(T_{p}^{*} M\right)
$$

As p varies over U,

$$
\begin{equation*}
P(\bar{\Omega})=P(\Omega) \in \Omega^{2 k}(U) \tag{23.2}
\end{equation*}
$$

Thus, the $2 k$-form $P(\Omega)$ on U is independent of the frame.
Let $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ be a trivializing open cover for E. On each U_{α}, choose a frame $e^{\alpha}=\left[e_{1}^{\alpha} \cdots e_{r}^{\alpha}\right]$ for E, and let Ω_{α} be the curvature matrix of the connection ∇ relative to this frame. If $P(X)$ is a homogeneous invariant polynomial of degree k on $\mathfrak{g l}(r, \mathbb{R})$, then $P\left(\Omega_{\alpha}\right)$ is a $2 k$-form on U_{α}. On the overlap $U_{\alpha} \cap U_{\beta}$, we have two $2 k$-forms $P\left(\Omega_{\alpha}\right)$ and $P\left(\Omega_{\beta}\right)$. By (23.2) they are equal. Therefore, the collection of forms $\left\{P\left(\Omega_{\alpha}\right)\right\}_{\alpha \in A}$ piece together to give rise to a global $2 k$-form on M, which we denote by $P(\Omega)$.

There are two fundamental results concerning the form $P(\Omega)$.

Theorem 23.3. Let E be a vector bundle of rank r on a manifold M, ∇ a connection on E, and P an invariant homogeneous polynomial of degree k on $\mathfrak{g l}(r, \mathbb{R})$. Then

André Weil
(1906-1998)
(i) the global $2 k$-form $P(\Omega)$ on M is closed;
(ii) the cohomology class of the closed form $P(\Omega)$ in $H^{2 k}(M)$ is independent of the connection.

For any vector bundle E of rank r over M and any connection ∇ on E, the map

$$
\begin{aligned}
c_{E}: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) & \rightarrow H^{*}(M), \\
P(X) & \mapsto[P(\Omega)],
\end{aligned}
$$

sends $P(X) Q(X)$ to $[P(\Omega) \wedge Q(\Omega)]$ and is clearly an algebra homomorphism. It is called the Chern-Weil homomorphism.

23.3 Characteristic Forms Are Closed

In Examples 23.1 and 23.2 we introduced two sets of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$:
(i) the coefficients $f_{k}(X)$ of the characteristic polynomial $\operatorname{det}(t I+X)$,
(ii) the trace polynomials $\Sigma_{k}(X)=\operatorname{tr}\left(X^{k}\right)$.

The polynomials $f_{k}(X)$ and the trace polynomials $\Sigma_{k}(X)$ are related by Newton's identity (Theorem B.14)

$$
\Sigma_{k}-f_{1} \Sigma_{k-1}+f_{2} \Sigma_{k-2}-\cdots+(-1)^{k-1} f_{k-1} \Sigma_{1}+(-1)^{k} k f_{k}=0
$$

These two sets of polynomials play a crucial role in the theory of characteristic classes, because of the following algebraic theorem. A proof of this theorem can be found in Appendix B.

Theorem 23.4. The ring $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))$ of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ is generated as a ring either by the coefficients $f_{k}(X)$ of the characteristic polynomial or by the trace polynomials Σ_{k} :

$$
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))=\mathbb{R}\left[f_{1}, \ldots, f_{r}\right]=\mathbb{R}\left[\Sigma_{1}, \ldots, \Sigma_{r}\right]
$$

In particular, every invariant polynomial P on $\mathfrak{g l}(n, \mathbb{R})$ is a polynomial Q in $\Sigma_{1}, \ldots, \Sigma_{r}$. Thus,

$$
P(\Omega)=Q\left(\Sigma_{1}(\Omega), \ldots, \Sigma_{r}(\Omega)\right)
$$

This shows that it is enough to prove Theorem 23.3 for the trace polynomials, for if the $\Sigma_{k}(\Omega)$ are closed, then any polynomial in the $\Sigma_{k}(\Omega)$ is closed, and if the cohomology classes of the $\Sigma_{k}(\Omega)$ are independent of the connection ∇, then the same is true of any polynomial in the $\Sigma_{k}(\Omega)$.

Recall that if $A=\left[\alpha_{j}^{i}\right]$ and $B=\left[\beta_{j}^{i}\right]$ are matrices of C^{∞} forms on a manifold with the number of columns of A equal to the number of rows of B, then by definition
(i) $(A \wedge B)_{j}^{i}=\sum_{k} \alpha_{k}^{i} \wedge \beta_{i}^{k}$,
(ii) $(d A)_{j}^{i}=d\left(\alpha_{j}^{i}\right)$.

The next proposition collects together some basic properties about matrices of differential forms, their wedge product, and their trace.

Proposition 23.5. Let $A=\left[\alpha_{j}^{i}\right]$ and $B=\left[\beta_{j}^{i}\right]$ be matrices of C^{∞} forms of degrees a and b, respectively, on a manifold.
(i) If $A \wedge B$ is defined, then

$$
(A \wedge B)^{T}=(-1)^{a b} B^{T} \wedge A^{T} .
$$

(For matrices of functions, $(A B)^{T}=B^{T} A^{T}$; for smooth forms, $\alpha \wedge \beta=(-1)^{a b}$ $\beta \wedge \alpha$. Formula (i) generalizes both of these formulas.)
(ii) If $A \wedge B$ and $B \wedge A$ are both defined, then

$$
\operatorname{tr}(A \wedge B)=(-1)^{a b} \operatorname{tr}(B \wedge A)
$$

(iii) If $A=\left[a_{j}^{i}\right]$ is a square matrix of differential forms on M, then

$$
d \operatorname{tr} A=\operatorname{tr} d A
$$

Proof. (i) It suffices to compute the (i, j)-entry of both sides:

$$
\begin{aligned}
& \left((A \wedge B)^{T}\right)_{j}^{i}=(A \wedge B)_{i}^{j}=\sum_{k} \alpha_{k}^{j} \wedge \beta_{i}^{k} \\
& \left(B^{T} \wedge A^{T}\right)_{j}^{i}=\sum_{k}\left(B^{T}\right)_{k}^{i} \wedge\left(A^{T}\right)_{j}^{k}=\sum_{k} \beta_{i}^{k} \wedge \alpha_{k}^{j} .
\end{aligned}
$$

Since α_{k}^{j} is an a-form and β_{i}^{k} is a b-form, the proposition follows.
(ii)

$$
\begin{aligned}
& \operatorname{tr}(A \wedge B)=\sum_{i}(A \wedge B)_{i}^{i}=\sum_{i} \sum_{k} \alpha_{k}^{i} \wedge \beta_{i}^{k}, \\
& \operatorname{tr}(B \wedge A)=\sum_{k}(B \wedge A)_{k}^{k}=\sum_{k} \sum_{i} \beta_{i}^{k} \wedge \alpha_{k}^{i} .
\end{aligned}
$$

(iii)

$$
d \operatorname{tr} A=d\left(\sum_{i} a_{i}^{i}\right)=\sum_{i} d a_{i}^{i}=\operatorname{tr} d A
$$

Proof (of Theorem 23.3(i) for trace polynomials). Let ω and Ω be the connection and curvature matrices relative to a frame e on U. Then

$$
\begin{aligned}
d \operatorname{tr}\left(\Omega^{k}\right) & =\operatorname{tr} d\left(\Omega^{k}\right) & & \text { (Proposition 23.5 (iii)) } \\
& =\operatorname{tr}\left(\Omega^{k} \wedge \omega-\omega \wedge \Omega^{k}\right) & & \text { (Generalized second Bianchi identity) } \\
& =\operatorname{tr}\left(\Omega^{k} \wedge \omega\right)-\operatorname{tr}\left(\omega \wedge \Omega^{k}\right) & & \\
& =0 & & \text { (Proposition 23.5 (ii)) }
\end{aligned}
$$

23.4 Differential Forms Depending on a Real Parameter

If ω_{t} is a $C^{\infty} k$-form on a manifold M depending on a real parameter $t \in J$ for some open interval $J \subset \mathbb{R}$, then locally, on a chart $\left(U, x^{1}, \ldots, x^{n}\right)$ for the manifold, ω_{t} is a linear combination

$$
\omega_{t}=\sum_{I} a_{I}(x, t) d x^{I},
$$

where $I=\left(i_{1}<\cdots<i_{k}\right)$ is a multi-index. We say that ω_{t} depends smoothly on t or varies smoothly with t if for every U in an atlas $\left\{\left(U, x^{1}, \ldots, x^{n}\right)\right\}$ for M, the coefficients $a_{I}(x, t)$ are all C^{∞} functions on $U \times J$. In this case, we also say that $\left\{\omega_{t}\right\}_{t \in J}$ is a smoothly varying family of $C^{\infty} k$-forms on M.

Suppose $\left\{\omega_{t}\right\}_{t \in J}$ is such a family. For each $p \in M$, the map $t \mapsto \omega_{t, p}$ is a map from J to the vector space $\bigwedge^{k}\left(T_{p}^{*} M\right)$. We define $d \omega_{t} / d t$, also written $\dot{\omega}_{t}$, to be the k-form on M such that at each $p \in M$,

$$
\left(\frac{d \omega_{t}}{d t}\right)_{p}=\frac{d}{d t} \omega_{t, p}
$$

This definition makes sense because the vector space $\bigwedge^{k}\left(T_{p}^{*} M\right)$ is finite-dimensional. Locally,

$$
\frac{d}{d t} \omega_{t}=\sum_{I} \frac{\partial a_{I}}{\partial t}(x, t) d x^{I}
$$

Similarly, for $a<b$ in J, we define $\int_{a}^{b} \omega_{t} d t$ to be the k-form on M such that at each $p \in M$,

$$
\left(\int_{a}^{b} \omega_{t} d t\right)_{p}=\int_{a}^{b} \omega_{t, p} d t
$$

Locally,

$$
\begin{equation*}
\int_{a}^{b} \omega_{t} d t=\sum_{I}\left(\int_{a}^{b} a_{I}(x, t) d t\right) d x^{I} \tag{23.3}
\end{equation*}
$$

All of these notions - C^{∞} dependence on t and differentiation and integration with respect to t - extend entry by entry to a matrix of forms depending on a real parameter t.

Proposition 23.6. Suppose $\omega=\omega_{t}$ and $\tau=\tau_{t}$ are matrices of C^{∞} differential forms on a manifold M depending smoothly on a real parameter t. Assume that the wedge product $\omega \wedge \tau$ makes sense, i.e., the number of columns of ω is equal to the number of rows of τ.
(i) If $\omega=\left[\omega_{j}^{i}(t)\right]$ is a square matrix, then

$$
\frac{d}{d t}(\operatorname{tr} \omega)=\operatorname{tr}\left(\frac{d \omega}{d t}\right)
$$

(ii) (Product rule)

$$
\frac{d}{d t}(\omega \wedge \tau)=\dot{\omega} \wedge \tau+\omega \wedge \dot{\tau}
$$

(iii) (Commutativity of $d / d t$ with $d) \frac{d}{d t}\left(d \omega_{t}\right)=d\left(\frac{d}{d t} \omega_{t}\right)$.
(iv) (Commutativity of integration with respect to t with d) If $[a, b] \subset J$, then

$$
\int_{a}^{b} d \omega_{t} d t=d\left(\int_{a}^{b} \omega_{t} d t\right)
$$

Proof. (i)

$$
\frac{d}{d t}(\operatorname{tr} \omega)=\frac{d}{d t} \sum \omega_{i}^{i}(t)=\sum \frac{d \omega_{i}^{i}}{d t}=\operatorname{tr}\left(\frac{d \omega}{d t}\right)
$$

The proofs of (ii) and (iii) are straightforward. We leave them as exercises (Problems 23.1 and 23.2).

Since both sides of (iv) are matrices of differential forms on M, it suffices to prove the equality locally and for each entry. On a coordinate open set $\left(U, x^{1}, \ldots, x^{n}\right)$,

$$
\omega_{t}=\sum_{I} a_{I}(x, t) d x^{I} \text { and } d \omega_{t}=\sum_{i, I} \frac{\partial a_{I}}{\partial x^{i}} d x^{i} \wedge d x^{I}
$$

By (23.3),

$$
\begin{equation*}
\int_{a}^{b}\left(d \omega_{t}\right) d t=\sum_{i, I}\left(\int_{a}^{b} \frac{\partial a_{I}}{\partial x^{i}} d t\right) d x^{i} \wedge d x^{I} \tag{23.4}
\end{equation*}
$$

By (23.3) and the definition of the exterior derivative on U,

$$
\begin{align*}
d \int_{a}^{b} \omega_{t} d t & =\sum_{I} d\left(\left(\int_{a}^{b} a_{I}(x, t) d t\right) d x^{I}\right) \\
& =\sum_{I, i} \frac{\partial}{\partial x^{i}}\left(\int_{a}^{b} a_{I}(x, t) d t\right) d x^{i} \wedge d x^{I} \tag{23.5}
\end{align*}
$$

Comparing (23.5) and (23.4), we see that the proposition is equivalent to differentiation under the integral sign:

$$
\frac{\partial}{\partial x^{i}} \int_{a}^{b} a_{I}(x, t) d t=\int_{a}^{b} \frac{\partial}{\partial x^{i}} a_{I}(x, t) d t
$$

By a theorem of real analysis [15, $\S 9.7$, Proposition, p. 517], this is always possible for an integral over a finite interval $[a, b]$ provided that a_{I} and $\partial a_{I} / \partial x^{i}$ are continuous on $U \times[a, b]$.

23.5 Independence of Characteristic Classes of a Connection

Recall from Proposition 10.5 that a convex linear combination of connections on a vector bundle is again a connection. Given two connections ∇^{0} and ∇^{1} on a smooth vector bundle $\pi: E \rightarrow M$, we define for each $t \in \mathbb{R}$ the convex linear combination

$$
\nabla^{t}=(1-t) \nabla^{0}+t \nabla^{1}
$$

and then ∇^{t} is a connection on E.
Let ω_{t} and Ω_{t} be the connection and curvature matrices of ∇^{t} relative to a frame e_{1}, \ldots, e_{r} for E over an open set U. For $X \in \mathfrak{X}(U)$,

$$
\begin{aligned}
\nabla_{X}^{t} e_{j} & =(1-t) \nabla_{X}^{0} e_{j}+t \nabla_{X}^{1} e_{j} \\
& =\sum_{i}\left((1-t)\left(\omega_{0}\right)_{j}^{i}+t\left(\omega_{1}\right)_{j}^{i}\right)(X) e_{i} .
\end{aligned}
$$

Hence,

$$
\omega_{t}=(1-t) \omega_{0}+t \omega_{1}
$$

This proves that the connection matrix ω_{t} depends smoothly on t. By the second structural equation, the curvature matrix Ω_{t} also depends smoothly on t.

To show that the cohomology class of $\operatorname{tr}\left(\Omega_{t}^{k}\right)$ is independent of t, it is natural to differentiate $\operatorname{tr}\left(\Omega_{t}^{k}\right)$ with respect to t and hope that the derivative will be a global exact form on M. In the following proof, in order to simplify the notation, we often suppress the wedge product.
Proposition 23.7. If ∇^{t} is a family of connections on a vector bundle E whose connection and curvature matrices ω_{t} and Ω_{t} on a framed open set U depend smoothly on a real parameter t, then

$$
\frac{d}{d t}\left(\operatorname{tr} \Omega^{k}\right)=d\left(k \operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)\right)
$$

where $\Omega=\Omega_{t}$.
Proof.

$$
\begin{align*}
\frac{d}{d t}\left(\operatorname{tr} \Omega^{k}\right) & =\operatorname{tr}\left(\frac{d}{d t} \Omega^{k}\right) & & \text { (Proposition } 23.6 \text { (i)) } \tag{i}\\
& =\operatorname{tr}\left(\dot{\Omega} \Omega^{k-1}+\Omega \dot{\Omega} \Omega^{k-2}+\cdots+\Omega^{k-1} \dot{\Omega}\right) & & (\text { product rule) } \\
& =k \operatorname{tr}\left(\Omega^{k-1} \dot{\Omega}\right) & & \text { (Proposition } 23.5 \text { (ii)) }
\end{align*}
$$

To show that $\operatorname{tr}\left(\Omega^{k-1} \dot{\Omega}\right)$ is an exact form, we differentiate the structural equation $\Omega=d \omega+\omega \wedge \omega$ with respect to t :

$$
\begin{aligned}
\dot{\Omega} & =\frac{d}{d t} d \omega+\frac{d}{d t}(\omega \wedge \omega) \\
& =d \dot{\omega}+\dot{\omega} \wedge \omega+\omega \wedge \dot{\omega}
\end{aligned}
$$

by the commutativity of $d / d t$ with d (Proposition 23.6(iii)) and the product rule (Proposition 23.6(ii)). Hence,

$$
\begin{aligned}
\operatorname{tr}\left(\Omega^{k-1} \dot{\Omega}\right) & =\operatorname{tr}\left(\Omega^{k-1} d \dot{\omega}+\Omega^{k-1} \dot{\omega} \omega+\Omega^{k-1} \omega \dot{\omega}\right) \\
& =\operatorname{tr}\left(\Omega^{k-1} d \dot{\omega}-\omega \Omega^{k-1} \dot{\omega}+\Omega^{k-1} \omega \dot{\omega}\right)
\end{aligned}
$$

(by Proposition 23.5(ii), there is a sign change
because both $\Omega^{k-1} \dot{\omega}$ and ω have odd degree)
$=\operatorname{tr}\left(\Omega^{k-1} d \dot{\omega}+\left(d \Omega^{k-1}\right) \dot{\omega}\right)$
(generalized second Bianchi identity)
$=\operatorname{tr}\left(d\left(\Omega^{k-1} \dot{\omega}\right)\right)=d\left(\operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)\right) \quad$ (Proposition 23.5 (iii)).
Remark 23.8. Under a change of frame $\bar{e}=e a$,

$$
\bar{\omega}_{t}=a^{-1} \omega_{t} a+a^{-1} d a .
$$

Differentiating with respect to t kills $a^{-1} d a$, since a does not depend on t, hence

$$
\dot{\bar{\omega}}=a^{-1} \dot{\omega} a .
$$

Thus,

$$
\operatorname{tr}\left(\bar{\Omega}^{k-1} \dot{\bar{\omega}}\right)=\operatorname{tr}\left(a^{-1} \Omega^{k-1} a a^{-1} \dot{\omega} a\right)=\operatorname{tr}\left(a^{-1} \Omega^{k-1} \dot{\omega} a\right)=\operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)
$$

This shows that $\operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)$ is independent of the frame and so can be pieced together into a global form on M.

Proof (of Theorem 23.3(ii)). Suppose ∇^{0} and ∇^{1} are two connections on the vector bundle E. Define a family of connections

$$
\nabla^{t}=(1-t) \nabla^{0}+t \nabla^{1}, t \in \mathbb{R}
$$

as before, with connection matrix ω_{t} and curvature matrix Ω_{t} on a framed open set. By Proposition 23.7,

$$
\frac{d}{d t}\left(\operatorname{tr} \Omega_{t}^{k}\right)=d\left(k \operatorname{tr}\left(\Omega_{t}^{k-1} \dot{\omega}_{t}\right)\right)
$$

Integrating both sides with respect to t from 0 to 1 gives

$$
\left.\int_{0}^{1} \frac{d}{d t}\left(\operatorname{tr} \Omega_{t}^{k}\right) d t=\operatorname{tr}\left(\Omega_{t}^{k}\right)\right]_{0}^{1}=\operatorname{tr}\left(\Omega_{1}^{k}\right)-\operatorname{tr}\left(\Omega_{0}^{k}\right)
$$

and

$$
\int_{0}^{1} d\left(k \operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)\right) d t=d \int_{0}^{1} k \operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right) d t
$$

by Proposition 23.6(iv).
Thus,

$$
\operatorname{tr}\left(\Omega_{1}^{k}\right)-\operatorname{tr}\left(\Omega_{0}^{k}\right)=d \int_{0}^{1} k \operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right) d t
$$

In this equation, both $\operatorname{tr}\left(\Omega_{1}^{k}\right)$ and $\operatorname{tr}\left(\Omega_{0}^{k}\right)$ are global forms on M. As noted in $\operatorname{Re}-$ mark 23.8, so is $\operatorname{tr}\left(\Omega^{k-1} \dot{\omega}\right)$. Passing to cohomology classes, we get $\left[\operatorname{tr}\left(\Omega_{1}^{k}\right)\right]=$ $\left[\operatorname{tr}\left(\Omega_{0}^{k}\right)\right]$. This proves that the cohomology class of $\operatorname{tr}\left(\Omega^{k}\right)$ is independent of the connection.

For any invariant homogeneous polynomial $P(X)$ of degree k on $\mathfrak{g l}(r, \mathbb{R})$, since $P(\Omega)$ is a polynomial in $\operatorname{tr}(\Omega), \operatorname{tr}\left(\Omega^{2}\right), \ldots, \operatorname{tr}\left(\Omega^{k}\right)$, the characteristic form $P(\Omega)$ is closed and the cohomology class of $P(\Omega)$ is independent of the connection.

23.6 Functorial Definition of a Characteristic Class

A characteristic class on real vector bundles associates to each manifold M a map $c_{M}:\left\{\begin{array}{l}\text { isomorphism classes of real } \\ \text { vector bundles over } M\end{array}\right\} \rightarrow H^{*}(M)$.
such that if $f: N \rightarrow M$ is a map of C^{∞} manifolds and $E \rightarrow M$ is a vector bundle over M, then

$$
\begin{equation*}
c_{N}\left(f^{*} E\right)=f^{*} c_{M}(E) \tag{23.6}
\end{equation*}
$$

Let $\operatorname{Vect}_{k}(M)$ be the set of all isomorphism classes of rank k vector bundles over M. Both $\operatorname{Vect}_{k}()$ and $H^{*}()$ are functors on the category of smooth manifolds. In functorial language a characteristic class is a natural transformation $c: \operatorname{Vect}_{k}() \rightarrow$ $H^{*}()$. By the definition of a natural transformation, if $f: N \rightarrow M$ is a C^{∞} map of manifolds, then there is a commutative diagram

which is precisely (23.6). For this reason, property (23.6) is often called the naturality property of the characteristic class c.

23.7 Naturality

We will now show that if $E \rightarrow M$ is a vector bundle of rank r and P is an $\operatorname{Ad}(\mathrm{GL}(r, \mathbb{R}))$-invariant polynomial on $\mathfrak{g l}(r, \mathbb{R})$, then the cohomology class $[P(\Omega)]$ satisfies the naturality property and therefore defines a characteristic class.

If ∇ is a connection on E, with connection matrices ω_{e} relative to frames e for E, by Theorem 22.10 there is a unique connection ∇^{\prime} on $f^{*} E \rightarrow N$ whose connection matrix relative to the frame $f^{*} e$ is $f^{*}\left(\omega_{e}\right)$.

The induced curvature form on $f^{*} E$ is therefore

$$
f^{*} \omega_{e}+\frac{1}{2}\left[f^{*} \omega_{e}, f^{*} \omega_{e}\right]=f^{*} \Omega_{e}
$$

Since f^{*} is an algebra homomorphism,

$$
P\left(f^{*} \Omega_{e}\right)=f^{*} P\left(\Omega_{e}\right)
$$

which proves the naturality of the characteristic class $[P(\Omega)]$.

Problems

23.1. Product rule for forms depending on t

(a) Suppose $\omega=\omega_{t}$ and $\tau=\tau_{t}$ are C^{∞} differential forms on M depending smoothly on a real parameter t. Denote the derivative of ω by $d \omega / d t$ or $\dot{\omega}$. Prove the product rule

$$
\frac{d}{d t}(\omega \wedge \tau)=\dot{\omega} \wedge \tau+\omega \wedge \dot{\tau}
$$

(b) Prove the same formula if ω and τ are matrices of k-forms and ℓ-forms on M depending smoothly on t.
(c) If α, β, γ are matrices of differential forms on M depending smoothly on $t \in J$ for which $\alpha \wedge \beta \wedge \gamma$ is defined, prove that

$$
\frac{d}{d t}(\alpha \beta \gamma)=\dot{\alpha} \beta \gamma+\alpha \dot{\beta} \gamma+\alpha \beta \dot{\gamma}
$$

23.2. Commutativity of $d / d t$ with the exterior derivative

Suppose ω_{t} is a $C^{\infty} k$-form on a manifold M depending smoothly on t in some open interval $J \subset \mathbb{R}$. Prove that

$$
\frac{d}{d t}\left(d \omega_{t}\right)=d\left(\dot{\omega}_{t}\right)
$$

(Hint: Write out ω_{t} in terms of local coordinates x^{1}, \ldots, x^{n} near p.)

§24 Pontrjagin Classes

Suppose E is a smooth vector bundle of rank r over a manifold M. In the preceding section we showed that starting with any connection ∇ on E, if $P(X)$ is a homogeneous invariant polynomial of degree k on $\mathfrak{g l}(r, \mathbb{R})$ and Ω is the curvature matrix of ∇ relative to any frame for E, then $P(\Omega)$ defines a closed global $2 k$-form on M, whose cohomology class is independent of the connection. The cohomology class $[P(\Omega)]$ is called the characteristic class associated to P of the vector bundle E. This construction gives rise to the Chern-Weil homomorphism,

$$
c_{E}: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) \rightarrow H^{*}(M)
$$

from the algebra of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ to the de Rham cohomology algebra of M. The image of the Chern-Weil homomorphism is precisely the subalgebra of characteristic classes of E associated to invariant polynomials.

Since the algebra $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))$ of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ is generated by the

Lev Pontrjagin
(1908-1988) coefficients $f_{k}(X)$ of the characteristic polynomials and by the trace polynomials $\operatorname{tr}\left(X^{k}\right)$ (Appendix B, Theorem B.17), to determine all the characteristic classes of E, it suffices to calculate the characteristic classes associated to either set of polynomials. The characteristic classes arising from the $f_{k}(X)$ are called Pontrjagin classes.

24.1 Vanishing of Characteristic Classes

In Section 11.4, we learned that on a Riemannian bundle E over a manifold M the curvature matrix of a metric connection relative to an orthonormal frame is skewsymmetric:

$$
\Omega=\left[\begin{array}{cccc}
0 & \Omega_{2}^{1} & \cdots & \Omega_{r}^{1} \\
-\Omega_{2}^{1} & 0 & \cdots & \\
\vdots & & \ddots & \vdots \\
-\Omega_{r}^{1} & & \cdots & 0
\end{array}\right] .
$$

From the skew-symmetry of the curvature matrix, we see that $f_{1}(\Omega)=\operatorname{tr}(\Omega)=0$.

This example is an instance of a general phenomenon: if k is odd, then the cohomology class $\left[\operatorname{tr}\left(\Omega^{k}\right)\right]=0$ for any connection on any vector bundle. To see this, we begin with two simple algebraic lemmas.

Lemma 24.1. If A is a skew-symmetric matrix of 2-forms on a manifold, then A^{k} is symmetric for k even and skew-symmetric for k odd.

Proof. By Proposition 23.5(i),

$$
(A \wedge A)^{T}=A^{T} \wedge A^{T}=(-A) \wedge(-A)=A \wedge A
$$

and

$$
((A \wedge A) \wedge A)^{T}=A^{T} \wedge\left(A^{T} \wedge A^{T}\right)=(-A) \wedge(-A) \wedge(-A)=-A \wedge A \wedge A
$$

Hence, A^{2} is symmetric and A^{3} is skew-symmetric. The general case proceeds by induction.

Lemma 24.2. Suppose 2 is not a zero divisor in a ring R. Then the diagonal entries of a skew-symmetric matrix over R are all zero.

Proof. A skew-symmetric matrix is a square matrix $A=\left[a_{j}^{i}\right]$ such that $A^{T}=-A$. This implies that $a_{i}^{i}=-a_{i}^{i}$. Hence, $2 a_{i}^{i}=0$. Since 2 is not a zero divisor in R, one has $a_{i}^{i}=0$ for all i.

Next, we recall a few facts about Riemannian metrics, connections, and curvature on a vector bundle.
(i) It is possible to construct a Riemannian metric on any smooth vector bundle (Theorem 10.8).
(ii) On any Riemannian bundle there is a metric connection, a connection compatible with the metric (Proposition 10.12).
(iii) Relative to an orthonormal frame, the curvature matrix Ω of a metric connection is skew-symmetric (Propositions 11.4 and 11.5).

By Lemma 24.1, if Ω is the curvature matrix of a metric connection relative to an orthonormal frame, then for an odd k the matrix Ω^{k} is skew-symmetric. Since the diagonal entries of a skew-symmetric matrix are all zero, $\operatorname{tr}\left(\Omega^{k}\right)=0$ for all odd k.

Even if the frame \bar{e} is not orthonormal, the same result holds for the curvature matrix of a metric connection. This is because the curvature matrix relative to \bar{e} is $\bar{\Omega}=a^{-1} \Omega a$, where a is the change of basis matrix defined by $\bar{e}=e a$. Since the trace polynomial $\operatorname{tr}\left(X^{k}\right)$ is invariant under conjugation, if Ω is the curvature matrix relative to an orthonormal frame e, then

$$
\operatorname{tr}\left(\bar{\Omega}^{k}\right)=\operatorname{tr}\left(a^{-1} \Omega^{k} a\right)=\operatorname{tr}\left(\Omega^{k}\right)=0 \text { for } k \text { odd. }
$$

If the connection ∇ on E is not compatible with a metric on E, then $\operatorname{tr}\left(\Omega^{k}\right)$ need not be zero. However, by Theorem 23.3(ii) the cohomology class $\left[\operatorname{tr}\left(\Omega^{k}\right)\right]$ is still zero, because the cohomology class is independent of the connection.

Example. Let E be any smooth vector bundle over M. Put a Riemannian metric on E and let ∇ be a metric connection on E, with curvature matrix Ω on a framed open set. Suppose $P(X)$ is a homogeneous invariant polynomial of degree 3 on $\mathfrak{g l}(r, \mathbb{R})$. Since the trace polynomials $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots$ generate the ring of invariant polynomials, P is a linear combination of monomials of degree 3 in the trace polynomials. There are only three such monomials, $\Sigma_{1}^{3}, \Sigma_{1} \Sigma_{2}$ and Σ_{3}. Hence,

$$
P(X)=a \Sigma_{1}(X)^{3}+b \Sigma_{1}(X) \Sigma_{2}(X)+c \Sigma_{3}(X)
$$

for some constants $a, b, c \in \mathbb{R}$. Since the odd trace polynomials $\Sigma_{1}(\Omega)$ and $\Sigma_{3}(\Omega)$ are both zero, $P(\Omega)=0$. Thus, the characteristic class of a vector bundle associated to any homogeneous invariant polynomial of degree 3 is zero.

Clearly, there is nothing special about degree 3 except that it is odd.
Theorem 24.3. If a homogeneous invariant polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})$ has odd degree k, then for any connection ∇ on any vector bundle $E \rightarrow M$ with curvature matrix Ω, the cohomology class $[P(\Omega)]$ is zero in $H^{2 k}(M)$.

Proof. Put a Riemannian metric on E and let ∇^{\prime} be a metric connection on E, with curvature matrix Ω^{\prime} on a framed open set. By Theorem 23.4, $P(X)$ is a linear combination with real coefficients of monomials $\Sigma_{1}^{i_{1}} \cdots \Sigma_{r}^{i_{r}}$ in the trace polynomials. Since k is odd, every monomial term of $P(X)$ has odd degree and so must contain a trace polynomial Σ_{j} of odd degree j as a factor. The vanishing of the odd trace polynomials $\Sigma_{j}\left(\Omega^{\prime}\right)$ implies that $P\left(\Omega^{\prime}\right)=0$. By Theorem 23.3(ii), if ∇ is any connection on E with curvature matrix Ω, then $[P(\Omega)]=\left[P\left(\Omega^{\prime}\right)\right]=0$.

24.2 Pontrjagin Classes

To calculate the characteristic classes of a vector bundle $E \rightarrow M$, we can always use a metric connection ∇ compatible with some Riemannian metric on E. Let Ω be the curvature matrix of such a connection ∇ on a framed open set. From the proof of Theorem 24.3, we see that for k odd, the polynomials $\operatorname{tr}\left(\Omega^{k}\right)$ and $f_{k}(\Omega)$ are all zero. Thus, the ring of characteristic classes of E has two sets of generators:
(i) the trace polynomials of even degrees

$$
\left[\operatorname{tr}\left(\Omega^{2}\right)\right],\left[\operatorname{tr}\left(\Omega^{4}\right)\right],\left[\operatorname{tr}\left(\Omega^{6}\right)\right], \ldots
$$

and
(ii) the coefficients of even degrees of the characteristic polynomial $\operatorname{det}(\lambda I+\Omega)$

$$
\left[f_{2}(\Omega)\right],\left[f_{4}(\Omega)\right],\left[f_{6}(\Omega)\right], \ldots
$$

Definition 24.4. The $\boldsymbol{k} \boldsymbol{t h}$ Pontrjagin class $p_{k}(E)$ of a vector bundle E over M is defined to be

$$
\begin{equation*}
p_{k}(E)=\left[f_{2 k}\left(\frac{\mathrm{i}}{2 \pi} \Omega\right)\right] \in H^{4 k}(M) \tag{24.1}
\end{equation*}
$$

In this definition the factor of i is to ensure that other formulas will be sign-free. Since $f_{2 k}$ is homogeneous of degree $2 k$, the purely imaginary number i disappears in $f_{2 k}((\mathrm{i} / 2 \pi) \Omega)$. A closed differential q-form on M is said to be integral if it gives an integer when integrated over any compact oriented submanifold of dimension q of M. The factor of $1 / 2 \pi$ in the definition of the Pontrjagin class in (24.1) ensures that $p_{k}(E)$ is the class of an integral form. If the rank of E is r, then Ω is an $r \times r$ matrix of 2-forms. For any real number $x \in \mathbb{R}$, let $\lfloor x\rfloor$ be the greatest integer $\leq x$. Then one can collect together all the Pontrjagin classes in a single formula:

$$
\begin{aligned}
\operatorname{det}\left(\lambda I+\frac{\mathrm{i}}{2 \pi} \Omega\right) & =\lambda^{r}+f_{1}\left(\frac{\mathrm{i}}{2 \pi} \Omega\right) \lambda^{r-1}+f_{2}\left(\frac{\mathrm{i}}{2 \pi} \Omega\right) \lambda^{r-2}+\cdots+f_{r}\left(\frac{\mathrm{i}}{2 \pi} \Omega\right) \\
& =\lambda^{r}+p_{1} \lambda^{r-2}+\cdots+p_{\left\lfloor\frac{r}{2}\right\rfloor} \lambda^{r-2\left\lfloor\frac{r}{2}\right\rfloor},
\end{aligned}
$$

where r is the rank of the vector bundle E. Setting $\lambda=1$, we get

$$
\operatorname{det}\left(I+\frac{\mathrm{i}}{2 \pi} \Omega\right)=1+p_{1}+\cdots+p_{\left\lfloor\frac{r}{2}\right\rfloor}
$$

We call this expression the total Pontrjagin class of E and denote it by $p(E)$. Note that $p_{k}=f_{2 k}\left(\frac{i}{2 \pi} \Omega\right) \in H^{4 k}(M)$.

Let E be a vector bundle of rank r over a compact oriented manifold M of dimension $4 m$. A monomial $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{\lfloor r / 2\rfloor}^{a_{\lfloor r / 2\rfloor}}$ of weighted degree

$$
4\left(a_{1}+2 a_{2}+\cdots+\left\lfloor\frac{r}{2}\right\rfloor a_{\left\lfloor\frac{r}{2}\right\rfloor}\right)=4 m
$$

represents a cohomology class of degree $4 m$ on M and can be integrated over M; the resulting number $\int_{M} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{\lfloor r / 2\rfloor}^{a_{\lfloor r / 2}}$ is called a Pontrjagin number of E. The Pontrjagin numbers of a manifold M of dimension $4 m$ are defined to be the Pontrjagin numbers of its tangent bundle $T M$.

Example 24.5. For a compact oriented manifold M of dimension 4, the only Pontrjagin number is $\int_{M} p_{1}$. For a compact oriented manifold of dimension 8, there are two Pontrjagin numbers $\int_{M} p_{1}^{2}$ and $\int_{M} p_{2}$.

24.3 The Whitney Product Formula

The total Pontrjagin class of a direct sum of vector bundles can be easily computed using the Whitney product formula.
Theorem 24.6 (Whitney product formula). If E^{\prime} and $E^{\prime \prime}$ are vector bundles over M, then

$$
p\left(E^{\prime} \oplus E^{\prime \prime}\right)=p\left(E^{\prime}\right) p\left(E^{\prime \prime}\right)
$$

Proof. Let ∇^{\prime} and $\nabla^{\prime \prime}$ be connections on the vector bundles E^{\prime} and $E^{\prime \prime}$, respectively. We define a connection $\nabla:=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ on $E:=E^{\prime} \oplus E^{\prime \prime}$ by

$$
\nabla_{X}\left[\begin{array}{c}
s^{\prime} \\
s^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{X}^{\prime} s^{\prime} \\
\nabla_{X}^{\prime \prime} s^{\prime \prime}
\end{array}\right] \text { for } X \in \mathfrak{X}(M), s^{\prime} \in \Gamma\left(E^{\prime}\right), s^{\prime \prime} \in \Gamma\left(E^{\prime \prime}\right)
$$

For $f \in C^{\infty}(M)$,

$$
\nabla_{f X}\left[\begin{array}{c}
s^{\prime} \\
s^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{f X}^{\prime} s^{\prime} \\
\nabla_{f X}^{\prime \prime} s^{\prime \prime}
\end{array}\right]=f \nabla_{X}\left[\begin{array}{c}
s^{\prime} \\
s^{\prime \prime}
\end{array}\right]
$$

and

$$
\nabla_{X}\left[\begin{array}{l}
f s^{\prime} \\
f s^{\prime \prime}
\end{array}\right]=(X f)\left[\begin{array}{l}
s^{\prime} \\
s^{\prime \prime}
\end{array}\right]+f \nabla_{X}^{\prime \prime}\left[\begin{array}{l}
s^{\prime} \\
s^{\prime \prime}
\end{array}\right] .
$$

Therefore, ∇ is a connection on E.
Let $e^{\prime}=\left[e_{1}^{\prime} \cdots e_{r}^{\prime}\right]$ and $e^{\prime \prime}=\left[\begin{array}{llll}e_{1}^{\prime \prime} & \cdots & e_{s}^{\prime \prime}\end{array}\right]$ be frames for E^{\prime} and $E^{\prime \prime}$, respectively, over an open set U. Then $e=\left[e^{\prime} e^{\prime \prime}\right]$ is a frame of $E^{\prime} \oplus E^{\prime \prime}$ over U. Suppose the connection matrices of ∇^{\prime} and $\nabla^{\prime \prime}$ relative to e^{\prime} and $e^{\prime \prime}$ are ω^{\prime} and $\omega^{\prime \prime}$ and the curvature matrices are Ω^{\prime} and $\Omega^{\prime \prime}$, respectively. Then the connection matrix of ∇ relative to the frame e is

$$
\omega=\left[\begin{array}{cc}
\omega^{\prime} & 0 \\
0 & \omega^{\prime \prime}
\end{array}\right]
$$

Hassler Whitney
(1907-1989)
and the curvature matrix is

$$
\begin{aligned}
\Omega & =d \omega+\omega \wedge \omega=\left[\begin{array}{cc}
d \omega^{\prime} & 0 \\
0 & d \omega^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
\omega^{\prime} \wedge \omega^{\prime} & 0 \\
0 & \omega^{\prime \prime} \wedge \omega^{\prime \prime}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\Omega^{\prime} & 0 \\
0 & \Omega^{\prime \prime}
\end{array}\right] .
\end{aligned}
$$

Therefore, the total Pontrjagin class of $E^{\prime} \oplus E^{\prime \prime}$ is

$$
\begin{aligned}
p\left(E^{\prime} \oplus E^{\prime \prime}\right) & =\operatorname{det}\left(I+\frac{\mathrm{i}}{2 \pi}\left[\begin{array}{cc}
\Omega^{\prime} & 0 \\
0 & \Omega^{\prime \prime}
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
I+\frac{\mathrm{i}}{2 \pi} \Omega^{\prime} & 0 \\
0 & I+\frac{\mathrm{i}}{2 \pi} \Omega^{\prime \prime}
\end{array}\right] \\
& =\operatorname{det}\left(I+\frac{\mathrm{i}}{2 \pi} \Omega^{\prime}\right) \operatorname{det}\left(I+\frac{\mathrm{i}}{2 \pi} \Omega^{\prime \prime}\right) \\
& =p\left(E^{\prime}\right) p\left(E^{\prime \prime}\right) .
\end{aligned}
$$

$\S 25$ The Euler Class and Chern Classes

For dimension reasons alone, we cannot expect the Pontrjagin classes to give a generalized Gauss-Bonnet theorem. A Pontrjagin number makes sense only on a compact oriented manifold of dimension $4 m$, whereas a generalized Gauss-Bonnet theorem should hold for a compact oriented manifold of any even dimension.

We used a Riemannian structure on a vector bundle E to show that the characteristic classes defined by $\operatorname{Ad}(\operatorname{GL}(r, \mathbb{R}))$-invariant polynomials of odd degree all vanish, and we used the orientability of the manifold M to integrate a top form, but we have not used the orientability assumption on the bundle E. This is the final ingredient for a generalized Gauss-Bonnet theorem.

A C^{∞} complex vector bundle is a smooth map $\pi: E \rightarrow M$ of manifolds that is locally of the form $U \times \mathbb{C}^{r} \rightarrow U$. Just as complex numbers are necessary in the theory of polynomial equations, so complex vector bundles play an essential role in many areas of geometry. Examples abound: the tangent bundle of a complex manifold, the tautological subbundle on a complex Grassmannian, the hyperplane bundle of a complex projective variety.

Most of the concepts we developed for real vector bundles have obvious counterparts for complex vector bundles. In particular, the analogues of Pontrjagin classes for complex vector bundles are the Chern classes.

In this section we define the Euler class of a real oriented vector bundle of even rank and the Chern classes of a complex vector bundle.

25.1 Orientation on a Vector Bundle

Recall that an orientation on a vector space V of dimension r is an equivalent class of ordered bases, two ordered bases $\left[u_{1} \ldots u_{r}\right]$ and $\left[v_{1} \ldots v_{r}\right]$ being equivalent if and only if they are related to each other by multiplication by a nonsingular $r \times r$ matrix of positive determinant:

$$
\left[\begin{array}{lll}
v_{1} & \cdots & v_{r}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right] A, \quad \operatorname{det} A>0
$$

Thus, every vector space has exactly two orientations.
Each ordered basis v_{1}, \ldots, v_{r} determines a nonzero element $v_{1} \wedge \cdots \wedge v_{r}$ in the r th exterior power $\bigwedge^{r} V$ (Lemma 19.7). If

$$
\left[\begin{array}{lll}
v_{1} & \cdots & v_{r}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right] A
$$

then by the same calculation as in Proposition 16.8,

$$
v_{1} \wedge \cdots \wedge v_{r}=(\operatorname{det} A) u_{1} \wedge \cdots \wedge u_{r}
$$

Thus, an orientation on V can also be represented by a nonzero element in $\bigwedge^{r} V \simeq \mathbb{R}$, with two nonzero elements representing the same orientation if and only if they are positive multiples of each other.

This suggests how to define orientation on a vector bundle.
Definition 25.1. An orientation on a vector bundle $E \rightarrow M$ of rank r is an equivalence class of nowhere-vanishing C^{∞} sections of the line bundle $\Lambda^{r} E$, two such sections s, s^{\prime} being equivalent if and only if they are related by multiplication by a positive function on $M: s^{\prime}=f s, f>0$.

Intuitively this means that each fiber E_{p} has an orientation which varies with $p \in M$ in a C^{∞} way. By Problem 25.1, a line bundle has a nowhere-vanishing C^{∞} section if and only if it is a trivial bundle, so we have the following proposition.

Proposition 25.2. A vector bundle E of rank r has an orientation if and only if the line bundle $\bigwedge^{r} E$ is trivial.

If a vector bundle has an orientation, we say that it is orientable. On a connected manifold M an orientable vector bundle E of rank r has exactly two orientations, corresponding to the two connected components of $\bigwedge^{r} E$. An orientable vector bundle together with a choice of orientation is said to be oriented. In this language, a manifold is orientable if and only if its tangent bundle is an orientable vector bundle.

25.2 Characteristic Classes of an Oriented Vector Bundle

Let $E \rightarrow M$ be an oriented Riemannian bundle of rank r, and ∇ a connection on E compatible with the metric. A frame $e=\left[e_{1} \cdots e_{r}\right]$ for E over an open set U is said to be positively oriented if at each point p in M it agrees with the orientation on E. We agree to use only positively oriented orthonormal frames to compute the connection matrix ω and the curvature matrix Ω of ∇. By Propositions 11.4 and 11.5 , relative to the orthonormal frame e, both ω and Ω are skew-symmetric.

If \bar{e} is another positively oriented frame for E over U, then

$$
\begin{equation*}
\bar{e}=e a \tag{25.1}
\end{equation*}
$$

for a C^{∞} function $a: U \rightarrow \mathrm{SO}(r)$. Let $\bar{\Omega}$ be the curvature matrix relative to the frame \bar{e}. Under the change of frame (25.1) the curvature matrix Ω transforms as in Theorem 22.1(ii):

$$
\bar{\Omega}=a^{-1} \Omega a
$$

but now a is a special orthogonal matrix at each point.
Hence, to get a global form $P(\Omega)$ on M, we do not need the polynomial $P(X)$ to be invariant under conjugation by all elements of the general linear group $\mathrm{GL}(r, \mathbb{R})$, but only by elements of the special orthogonal group $\operatorname{SO}(r)$. A polynomial $P(X)$ for $X \in \mathbb{R}^{r \times r}$ is $\operatorname{Ad}(\mathrm{SO}(r))$-invariant if

$$
P\left(A^{-1} X A\right)=P(X) \quad \text { for all } A \in \mathrm{SO}(r)
$$

Of course, every $\operatorname{Ad}(\operatorname{GL}(r, \mathbb{R}))$-invariant polynomial is also $\operatorname{Ad}(\mathrm{SO}(r))$-invariant, but might there be an $\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomial that is not $\operatorname{Ad}(\operatorname{GL}(r, \mathbb{R}))$ invariant? Such a polynomial P would give us a new characteristic class. Note that
for an oriented Riemannian bundle, the curvature matrix Ω relative to an orthonormal frame is skew-symmetric, so the polynomial P need not be defined on all of $\mathfrak{g l}(r, \mathbb{R})$, but only on the subspace of skew-symmetric matrices. The space of all $r \times r$ skewsymmetric matrices is the Lie algebra of $\mathrm{SO}(r)$, denoted by $\mathfrak{s o}(r)$. Let $X=\left[x_{j}^{i}\right]$ be an $r \times r$ skew-symmetric matrix of indeterminates. Thus, $x_{i}^{j}=-x_{j}^{i}$ for $1 \leq i<j \leq r$, and $x_{i}^{i}=0$ for all i. A polynomial on $\mathfrak{s o}(r)$ is an element of $\mathbb{R}\left[x_{j}^{i}\right]$, where the $x_{j}^{i}, 1 \leq$ $i, j \leq r$, are indeterminates satisfying the skew-symmetry condition. Alternatively, we may view a polynomial on $\mathfrak{s o}(r)$ as an element of the free polynomial ring $\mathbb{R}\left[x_{j}^{i}\right]$, $1 \leq i<j \leq r$, where the x_{j}^{i} are algebraically independent elements over \mathbb{R}. We now have a purely algebraic problem:

Problem. What are the $\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomials on $\mathfrak{s o}(r)$, the $r \times r$ skewsymmetric matrices?

We already know some of these, namely the $\operatorname{Ad}(\operatorname{GL}(r, \mathbb{R}))$-invariant polynomials, which are generated as a ring either by the trace polynomials or by the coefficients of the characteristic polynomial. It turns out that for r odd, these are the only $\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomials. For r even, the ring of $\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomials has an additional generator called the Pfaffian, which is a square root of the determinant.

25.3 The Pfaffian of a Skew-Symmetric Matrix

Two $r \times r$ matrices X and Y with entries in a field F are said to be congruent if there is an $r \times r$ nonsingular matrix $A \in \mathrm{GL}(r, F)$ such that $Y=A^{T} X A$. By a theorem in linear algebra [13, Th. 8.1, p. 586], every skew-symmetric matrix X over any field F is congruent to a matrix of the form:

$$
A^{T} X A=\left[\begin{array}{lllll}
S & & & & \\
& \ddots & & & \\
& & S & & \\
& & & 0 & \\
\\
& & & & \ddots
\end{array}\right]
$$

where S is the 2×2 skew-symmetric matrix

Johann Friedrich Pfaff
(1765-1825)

$$
S=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Since A is nonsingular, it follows that a nonsingular skew-symmetric matrix X has even rank.

If X is nonsingular, then

$$
A^{T} X A=\left[\begin{array}{lll}
S & & \\
& \ddots & \\
& & S
\end{array}\right]
$$

Moreover, for such a matrix X,

$$
\operatorname{det}\left(A^{T} X A\right)=(\operatorname{det} A)^{2}(\operatorname{det} X)=(\operatorname{det} S) \cdots(\operatorname{det} S)=1
$$

So

$$
\operatorname{det} X=\left(\frac{1}{\operatorname{det} A}\right)^{2} \in F
$$

Thus, the determinant of a skew-symmetric matrix is a perfect square in the field. In fact, more is true.

Theorem 25.3. Let $X=\left[x_{j}^{i}\right]$ be a $2 m \times 2 m$ skew-symmetric matrix of indeterminates. Then $\operatorname{det}(X)$ is a perfect square in the polynomial ring $\mathbb{Z}\left[x_{j}^{i}\right]$.

Proof. Let $\mathbb{Q}\left(x_{j}^{i}\right)$ be the field generated over \mathbb{Q} by the indeterminates x_{j}^{i}. We know that $\operatorname{det} X \neq 0$ in $\mathbb{Z}\left[x_{j}^{i}\right]$, because there exist values of x_{j}^{i} in \mathbb{Z} for which $\operatorname{det} X \neq 0$. Thus, $X=\left[x_{j}^{i}\right]$ is a $2 m \times 2 m$ nonsingular skew-symmetric matrix over the field $\mathbb{Q}\left(x_{j}^{i}\right)$. By the discussion above, there is a matrix $A \in \operatorname{GL}\left(2 m, \mathbb{Q}\left(x_{j}^{i}\right)\right)$ such that

$$
\operatorname{det} X=\left(\frac{1}{\operatorname{det} A}\right)^{2} \in \mathbb{Q}\left(x_{j}^{i}\right)
$$

This proves that $\operatorname{det} X$ is a perfect square in $\mathbb{Q}\left(x_{j}^{i}\right)$, the fraction field of the integral domain $\mathbb{Z}\left[x_{j}^{i}\right]$. Suppose

$$
\operatorname{det} X=\left(\frac{p(x)}{q(x)}\right)^{2}
$$

where $p(x), q(x) \in \mathbb{Z}\left[x_{j}^{i}\right]$ are relatively prime in $\mathbb{Z}\left[x_{j}^{i}\right]$. Then

$$
q(x)^{2} \operatorname{det} X=p(x)^{2} \in \mathbb{Z}\left[x_{j}^{i}\right] .
$$

Since $\mathbb{Z}\left[x_{j}^{i}\right]$ is a unique factorization domain, $q(x)$ must divide $p(x)$, but $q(x)$ and $p(x)$ are relatively prime, so the only possibilities are $q(x)= \pm 1$. It follows that $\operatorname{det} X=p(x)^{2}$ in $\mathbb{Z}\left[x_{j}^{i}\right]$.

The Pfaffian of a $2 m \times 2 m$ skew-symmetric matrix X of indeterminates is defined to be a polynomial $\operatorname{Pf}(X)$ such that

$$
\operatorname{det}(X)=(\operatorname{Pf}(X))^{2}
$$

however, since any perfect square in a ring has two square roots (as long as the characteristic of the ring is not 2), a normalization condition is necessary to determine the sign of $\operatorname{Pf}(X)$. We adopt the convention that on the standard skew-symmetric matrix

$$
J_{2 m}=\left[\begin{array}{lll}
S & & \\
& \ddots & \\
& & S
\end{array}\right], \quad S=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

we have $\operatorname{Pf}\left(J_{2 m}\right)=1$. The $\operatorname{Pfaffian} \operatorname{Pf}(X)$ is a polynomial of degree m on $\mathfrak{s o}(2 m)$.
Example 25.4. If

$$
X=\left[\begin{array}{rr}
0 & x_{2}^{1} \\
-x_{2}^{1} & 0
\end{array}\right]
$$

then $\operatorname{det}(X)=\left(x_{2}^{1}\right)^{2}$ and $\operatorname{Pf}(X)= \pm x_{2}^{1}$. Since $\operatorname{Pf}(S)=1$, the sign must be positive. Thus, $\operatorname{Pf}(X)=x_{2}^{1}$.

Proposition 25.5. Let $A=\left[a_{j}^{i}\right]$ and $X=\left[x_{j}^{i}\right]$ be $2 m \times 2 m$ matrices of indeterminates with X skew-symmetric. Then

$$
\operatorname{Pf}\left(A^{T} X A\right)=\operatorname{det}(A) \operatorname{Pf}(X) \in \mathbb{Z}\left[a_{j}^{i}, x_{j}^{i}\right] .
$$

Proof. By the properties of the determinant (Example B.3),

$$
\begin{equation*}
\operatorname{det}\left(A^{T} X A\right)=(\operatorname{det} A)^{2} \operatorname{det} X \tag{25.2}
\end{equation*}
$$

Since $A^{T} X A$ and X are both skew-symmetric, (25.2) is equivalent to

$$
\left(\operatorname{Pf}\left(A^{T} X A\right)\right)^{2}=(\operatorname{det} A)^{2}(\operatorname{Pf} X)^{2} .
$$

Therefore,

$$
\begin{equation*}
\operatorname{Pf}\left(A^{T} X A\right)= \pm \operatorname{det}(A) \operatorname{Pf}(X) \tag{25.3}
\end{equation*}
$$

Since $\operatorname{Pf}\left(A^{T} X A\right)$ and $\operatorname{det}(A) \operatorname{Pf}(X)$ are two uniquely defined elements of the ring $\mathbb{Z}\left[a_{j}^{i}, x_{j}^{i}\right]$, the sign does not depend on A or X. To determine the sign, it suffices to evaluate (25.3) on some particular A and X with integer entries. Taking $A=I_{2 m}=$ the $2 m \times 2 m$ identity matrix and $X=J_{2 m}$, we get

$$
\operatorname{Pf}\left(A^{T} X A\right)=\operatorname{Pf}\left(J_{2 m}\right)=1=\operatorname{det}(A) \operatorname{Pf}(X)
$$

Therefore, the sign is + and

$$
\operatorname{Pf}\left(A^{T} X A\right)=\operatorname{det}(A) \operatorname{Pf}(X)
$$

From the proposition, it follows that if $X \in \mathfrak{s o}(r)$ and $A \in \mathrm{SO}(r)$, then

$$
\operatorname{Pf}\left(A^{-1} X A\right)=\operatorname{Pf}\left(A^{T} X A\right)=\operatorname{det}(A) \operatorname{Pf}(X)=\operatorname{Pf}(X)
$$

Hence, the Pfaffian $\operatorname{Pf}(X)$ is an $\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomial on $r \times r$ skewsymmetric matrices.

25.4 The Euler Class

If $a \in \mathrm{SO}(2 m)$, then $a^{-1}=a^{T}$ and $\operatorname{det} a=1$. Coming back to the curvature matrix Ω relative to a positively oriented orthonormal frame e of an oriented Riemannian bundle $E \rightarrow M$ over an open set U, we see that if $\bar{\Omega}$ is the curvature matrix relative to another positively oriented orthonormal frame \bar{e} for $\left.E\right|_{U}$, then by Theorem 22.1(ii) the Pfaffian satisfies

$$
\begin{aligned}
\operatorname{Pf}(\bar{\Omega}) & =\operatorname{Pf}\left(a^{-1} \Omega a\right)=\operatorname{Pf}\left(a^{T} \Omega a\right) \\
& =\operatorname{det}(a) \operatorname{Pf}(\Omega)=\operatorname{Pf}(\Omega) .
\end{aligned}
$$

So $\operatorname{Pf}(\Omega)$ is independent of the positively oriented orthonormal frame e. As before, $\operatorname{Pf}(\Omega)$ defines a global form on M. One can prove that this global form is closed and that its cohomology class $[\operatorname{Pf}(\Omega)] \in H^{2 m}(M)$ is independent of the connection [17, pp. 310-311]. Instead of doing this, we will give an alternate construction in Section 32 valid for any Lie group. The class $e(E):=[\operatorname{Pf}((1 / 2 \pi) \Omega)]$ is called the Euler class of the oriented Riemannian bundle E.

25.5 Generalized Gauss-Bonnet Theorem

We can finally state, though not prove, a generalization of the Gauss-Bonnet theorem to higher dimensions.

Theorem 25.6. ([19, Vol. 5, Ch. 13, Th. 26, p.404], [17, p. 311]) Let M be a compact oriented Riemannian manifold M of dimension $2 m$, and ∇ a metric connection on its tangent bundle TM with curvature matrix Ω relative to a positively oriented orthonormal frame. Then

$$
\int_{M} \operatorname{Pf}\left(\frac{1}{2 \pi} \Omega\right)=\chi(M)
$$

Example 25.7. When M is a compact oriented surface and e_{1}, e_{2} is a positively oriented orthonormal frame on M, we found the connection and curvature matrices to be

$$
\omega=\left[\begin{array}{cc}
0 & \omega_{2}^{1} \\
-\omega_{2}^{1} & 0
\end{array}\right], \quad \Omega=d \omega+\omega \wedge \omega=d \omega=\left[\begin{array}{cc}
0 & d \omega_{2}^{1} \\
-d \omega_{2}^{1} & 0
\end{array}\right] .
$$

(see Section 12.1.) By Theorem 12.3, $d \omega_{2}^{1}=K \theta^{1} \wedge \theta^{2}$, where K is the Gaussian curvature and θ^{1}, θ^{2} the dual frame to e_{1}, e_{2}. So

$$
\operatorname{Pf}(\Omega)=d \omega_{2}^{1}=K \theta^{1} \wedge \theta^{2}
$$

From the generalized Gauss-Bonnet theorem, we get

$$
\int_{M} e(T M)=\int_{M} \operatorname{Pf}\left(\frac{1}{2 \pi} \Omega\right)=\int_{M} \frac{1}{2 \pi} K \theta^{1} \wedge \theta^{2}=\chi(M),
$$

which is the classical Gauss-Bonnet theorem for a compact oriented Riemannian 2-manifold.

25.6 Hermitian Metrics

On the complex vector space \mathbb{C}^{n}, the Hermitian inner product is given by

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j} \quad \text { for } z, w \in \mathbb{C}^{n}
$$

Extracting the properties of the Hermitian inner product, we obtain the definition of a complex inner product on a complex vector space.

Definition 25.8. A complex inner product on a complex vector space V is a positive-definite, Hermitian-symmetric, sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{C}$. This means that for $u, v, w \in V$ and $a, b \in \mathbb{C}$,
(i) (positive-definiteness) $\langle v, v\rangle \geq 0$; the equality holds if and only if $v=0$.
(ii) (Hermitian symmetry) $\langle u, v\rangle=\overline{\langle v, u\rangle}$.
(iii) (sesquilinearity) \langle,$\rangle is linear in the first argument and conjugate linear in the$ second argument:

$$
\begin{aligned}
& \langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle, \\
& \langle w, a u+b v\rangle=\bar{a}\langle w, u\rangle+\bar{b}\langle w, v\rangle .
\end{aligned}
$$

In fact, for sesquilinearity it is enough to check linearity in the first argument. Conjugate linearity in the second argument follows from linearity in the first argument and Hermitian symmetry.

A Hermitian metric on a C^{∞} complex vector bundle $E \rightarrow M$ assigns to each $p \in M$ a complex inner product \langle,\rangle_{p} on the fiber E_{p}; the assignment is required to be C^{∞} in the following sense: if s and t are C^{∞} sections of E, then $\langle s, t\rangle$ is a C^{∞} complex-valued function on M. A complex vector bundle on which there is given a Hermitian metric is called a Hermitian bundle.

It is easy to check that a finite positive linear combination $\sum a_{i}\langle,\rangle_{i}$ of complex inner products on a complex vector space V is again a complex inner product. A partition of unity argument as in Theorem 10.8 then proves the existence of a C^{∞} Hermitian metric on any C^{∞} complex vector bundle.

25.7 Connections and Curvature on a Complex Vector Bundle

A connection on a complex vector bundle $E \rightarrow M$ is defined in exactly the same way as a connection on a real vector bundle (Definition 10.1): it is an \mathbb{R}-bilinear map $\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$ that is \mathcal{F}-linear in the first argument, \mathbb{C}-linear in the second argument, and satisfies the Leibniz rule in the second argument. Just as in Theorem 10.6, every C^{∞} complex vector bundle E over a manifold M has a connection.

On a Hermitian bundle $E \rightarrow M$, a connection ∇ is called a metric connection and is said to be compatible with the Hermitian metric if for all $X \in \mathfrak{X}(M)$ and $s, t \in \Gamma(E)$,

$$
X\langle s, t\rangle=\left\langle\nabla_{X} s, t\right\rangle+\left\langle s, \nabla_{X} t\right\rangle .
$$

Relative to a frame e_{1}, \ldots, e_{r} over U for a complex vector bundle E, a connection ∇ can be represented by a matrix $\left[\omega_{j}^{i}\right]$ of complex-valued 1-forms:

$$
\nabla_{X} e_{j}=\sum_{i=1}^{r} \omega_{j}^{i}(X) e_{i} .
$$

This is just like the real case except that now ω_{j}^{i} are complex-valued 1-forms on U. For $X, Y \in \mathfrak{X}(M)$, the curvature $R(X, Y): \Gamma(E) \rightarrow \Gamma(E)$ of the connection is defined as before:

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} .
$$

Relative to a frame e_{1}, \ldots, e_{r} for E over U, curvature is represented by a matrix $\left[\Omega_{j}^{i}\right]$ of complex-valued 2 -forms. We again have the structural equation

$$
\Omega=d \omega+\omega \wedge \omega
$$

25.8 Chern Classes

Under a change of frame $\bar{e}=e a$, where $a \in \operatorname{GL}(r, \mathbb{C})$, the connection and curvature matrices transform by the formulas (Theorem 22.1)

$$
\begin{aligned}
& \bar{\omega}=a^{-1} \omega a+a^{-1} d a, \\
& \bar{\Omega}=a^{-1} \Omega a .
\end{aligned}
$$

Thus, a complex polynomial Q on $\mathfrak{g l}(r, \mathbb{C})$ that is invariant under conjugation by elements of $\operatorname{GL}(r, \mathbb{C})$ will define a global form $Q(\Omega)$ on M. As before, one shows that $[Q(\Omega)]$ is closed and that the cohomology class $[Q(\Omega)]$ is independent of the connection. Taking $Q(\Omega)=\operatorname{det}\left(I+\frac{i}{2 \pi} \Omega\right)$, we obtain the Chern classes $c_{i}(E)$ of E from

$$
\operatorname{det}\left(I+\frac{\sqrt{-1}}{2 \pi} \Omega\right)=1+c_{1}(E)+\cdots+c_{r}(E) .
$$

The same argument as in Section 24 proves that Chern classes satisfy the naturality property and the Whitney product formula.

Problems

25.1. Trivial line bundle

A line bundle is a vector bundle of rank 1. Prove that if a C^{∞} line bundle $E \rightarrow M$ has a nowhere-vanishing C^{∞} section, then it is a trivial bundle.

25.2. The determinant and the Pfaffian

For

$$
X=\left[\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right],
$$

find $\operatorname{det}(X)$ and $\operatorname{Pf}(X)$.

25.3. Odd-dimensional skew-symmetric matrices

Using the definition of a skew-symmetric matrix $A^{T}=-A$, prove that for r odd, an $r \times r$ skew-symmetric matrix is necessarily singular.

§26 Some Applications of Characteristic Classes

The Pontrjagin classes, the Euler class, and the Chern classes are collectively called characteristic classes of a real or complex vector bundle. They are fundamental diffeomorphism invariants of a vector bundle. Applied to the tangent bundle of a manifold, they yield diffeomorphism invariants of a manifold. We now give a sampling, without proof, of their applications in topology and geometry.

26.1 The Generalized Gauss-Bonnet Theorem

For a compact, oriented Riemannian manifold M of even dimension $2 n$, the Euler class $e(T M)$ of the tangent bundle is represented by a closed $2 n$-form in the entries of the curvature matrix of M. As we said earlier, the generalized Gauss-Bonnet theorem states that [17, p. 311]

$$
\int_{M} e(T M)=\chi(M)
$$

26.2 Characteristic Numbers

On a compact oriented manifold M of dimension $4 n$, a monomial $p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ has total degree

$$
4 i_{1}+8 i_{2}+\cdots+4 n i_{n}
$$

If the total degree happens to be $4 n$, then the integral $\int_{M} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ is defined. It is called a Pontrjagin number of M. The Pontrjagin numbers are diffeomorphism invariants of the manifold M; in fact, they turn out to be topological invariants as well.

The complex analogue of a smooth manifold is a complex manifold. It is a second countable, Hausdorff topological space that is locally homeomorphic to an open subset of \mathbb{C}^{n}; moreover, if $\phi_{\alpha}: U_{\alpha} \rightarrow \phi_{\alpha}\left(U_{\alpha}\right) \subset \mathbb{C}^{n}$ and $\phi_{\beta}: U_{\beta} \rightarrow$ $\phi_{\beta}\left(U_{\beta}\right) \subset \mathbb{C}^{n}$ are two such homeomorphisms, then the transition function ϕ_{β} 。 $\phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is required to be holomorphic. If $\left(U, z^{1}, \ldots, z^{n}\right)$ is a chart of the complex manifold, then the holomorphic tangent space $T_{p} M$ has basis $\left(\partial / \partial z^{1}\right)_{p}, \ldots,\left(\partial / \partial z^{n}\right)_{p}$. Just as in the real case, the disjoint union $\coprod_{p \in M} T_{p} M$ has the structure of a complex vector bundle over M, called the holomorphic tangent bundle. Let c_{1}, \ldots, c_{n} be the Chern classes of the holomorphic tangent bundle of a complex manifold of complex dimension n. The degree of the monomial $c_{1}^{i_{1}} \cdots c_{n}^{i_{n}}$ is $2 i_{1}+\cdots+2 n i_{n}$. If this degree happens to be the same as the real dimension $2 n$ of the manifold, then the integral $\int_{M} c_{1}^{i_{1}} \cdots c_{n}^{i_{n}}$ is defined and is called a Chern number of M. The Chern numbers are diffeomorphism invariants and also topological invariants of a complex manifold.

26.3 The Cobordism Problem

Two oriented manifolds M_{1} and M_{2} are said to be cobordant if there exists an oriented manifold N with boundary such that

$$
\partial N=M_{1}-M_{2},
$$

where $-M_{2}$ denotes M_{2} with the opposite orientation. An oriented manifold is cobordant to the empty set if it is the boundary of another oriented manifold. The Pontrjagin numbers give a necessary condition for a compact oriented manifold to be cobordant to the empty set.

Theorem 26.1. If a compact oriented manifold M of dimension $4 n$ is cobordant to the empty set, then all the Pontrjagin numbers of M vanish.

Proof. Suppose $M=\partial N$ for some manifold N with boundary and that $p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ has degree $4 n$. Then

$$
\begin{aligned}
\int_{M} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}} & =\int_{\partial N} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}} \\
& =\int_{N} d\left(p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}\right) \quad(\text { by Stokes' theorem }) \\
& =0
\end{aligned}
$$

since Pontrjagin classes are represented by closed forms and a product of closed forms is closed.

Corollary 26.2. If two compact oriented manifolds M_{1} and M_{2} are cobordant, then their respective Pontrjagin numbers are equal.

Proof. If $M_{1}-M_{2}=\partial N$, then $\int_{M_{1}-M_{2}} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}=0$ by Theorem 26.1. Hence,

$$
\int_{M_{1}} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}=\int_{M_{2}} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}} .
$$

26.4 The Embedding Problem

According to Whitney's embedding theorem, a smooth manifold of dimension n can be embedded in $\mathbb{R}^{2 n+1}$. Could one improve on the dimension? In some cases Pontrjagin classes give a necessary condition.

Theorem 26.3. If a compact oriented manifold M of dimension $4 n$ can be embedded as a hypersurface in $\mathbb{R}^{4 n+1}$, then all the Pontrjagin classes of M vanish.

Proof. Since M is compact oriented in $\mathbb{R}^{4 n+1}$, it has an outward unit normal vector field and so its normal bundle N in $\mathbb{R}^{4 n+1}$ is trivial. From the short exact sequence of C^{∞} bundles,

$$
\left.0 \rightarrow T M \rightarrow T \mathbb{R}^{4 n+1}\right|_{M} \rightarrow N \rightarrow 0
$$

we obtain a direct sum

$$
\left.T \mathbb{R}^{4 n+1}\right|_{M} \simeq T M \oplus N .
$$

By the Whitney product formula for Pontrjagin classes,

$$
1=p\left(\left.T \mathbb{R}^{4 n+1}\right|_{M}\right)=p(T M) p(N)=p(T M)
$$

Thus, all the Pontrjagin classes of M are trivial.

26.5 The Hirzebruch Signature Formula

On a $4 n$-dimensional compact oriented manifold M, the intersection of $2 n$-dimensional cycles defines a symmetric bilinear pairing

$$
\langle,\rangle: H^{2 n}(M ; \mathbb{R}) \times H^{2 n}(M ; \mathbb{R}) \rightarrow H^{4 n}(M ; \mathbb{R})=\mathbb{R}
$$

called the intersection form. The intersection form is represented by a symmetric matrix, which has real eigenvalues. If b^{+}is the number of positive eigenvalues and b^{-}is the number of negative eigenvalues of the symmetric matrix, then the difference $\sigma(M):=b^{+}-b^{-}$is called the signature of M. Clearly, it is a topological invariant of the $4 n$-dimensional manifold.

In 1953 Hirzebruch found a formula for the signature in terms of Pontrjagin classes.

Theorem 26.4 (Hirzebruch signature formula). The signature of a compact, smooth, oriented $4 n$-dimensional manifold is given by

$$
\sigma(M)=\int_{M} L_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

where the L_{n} 's are the L-polynomials defined in Appendix B.

26.6 The Riemann-Roch Problem

Many problems in complex analysis and algebraic geometry can be formulated in terms of sections of vector bundles. A holomorphic vector bundle is a holomorphic map $\pi: E \rightarrow M$ of complex manifolds that is locally a product $U \times \mathbb{C}^{r}$ such that the transition functions are holomorphic. If E is a holomorphic vector bundle over a complex manifold M, then the vector space of holomorphic sections of E can be identified with the zeroth cohomology group $H^{0}(M ; E)$ with coefficients in the sheaf of holomorphic sections of E. When M is compact, this vector space turns out to be finite-dimensional, but its dimension is in general not so easy to compute. Instead, the alternating sum

$$
\chi(M ; E)=\sum_{g=0}^{n}(-1)^{q} \operatorname{dim} H^{q}(M ; E), \quad n=\operatorname{dim}_{\mathbb{C}} M
$$

is more amenable to computation.

Let L be a complex line bundle over a compact Riemann surface M. The degree of L is defined to be $\int_{M} c_{1}(L)$, where $c_{1}(L)$ is the first Chern class of L. The classical Riemann-Roch theorem states that for a holomorphic line bundle L over a compact Riemann surface M of genus g,

$$
\chi(M ; L)=\operatorname{deg} L-g+1 .
$$

The HIrzebruch-Riemann-Roch theorem, discovered in 1954, is a generalization to a holomorphic vector bundle E over a compact complex manifold M of complex dimension n

$$
\begin{equation*}
\chi(M ; E)=\int_{M}[\operatorname{ch}(E) \operatorname{td}(T M)]_{n}, \tag{26.1}
\end{equation*}
$$

where the Chern character

$$
\operatorname{ch}(E)=\operatorname{ch}\left(c_{1}(E), \ldots, c_{r}(E)\right)
$$

and the Todd polynomial

$$
\operatorname{td}(T M)=\operatorname{td}\left(c_{1}(M), \ldots, c_{n}(M)\right)
$$

are defined as in Appendix B and [$]_{n}$ means the component of degree n.
In some cases one has vanishing theorems $H^{q}(M ; E)=0$ for higher cohomology $q \geq 1$. When this happens, $\operatorname{dim} H^{0}(M ; E)=\chi(M ; E)$, which can be computed from the Hirzebruch-Riemann-Roch theorem.

Chapter 6

Principal Bundles and Characteristic Classes

A principal bundle is a locally trivial family of groups. It turns out that the theory of connections on a vector bundle can be subsumed under the theory of connections on a principal bundle. The latter, moreover, has the advantage that its connection forms are basis-free.

In this chapter we will first give several equivalent constructions of a connection on a principal bundle, and then generalize the notion curvature to a principal bundle, paving the way to a generalization of characteristic classes to principal bundles. Along the way, we also generalize covariant derivatives to principal bundles.

$\S 27$ Principal Bundles

We saw in Section 11 that a connection ∇ on a vector bundle E over a manifold M can be represented by a matrix of 1 -forms over a framed open set. For any frame $e=\left[e_{1} \cdots e_{r}\right]$ for E over an open set U, the connection matrix ω_{e} relative to e is defined by

$$
\nabla_{X} e_{j}=\sum_{i}\left(\omega_{e}\right)_{j}^{i}(X) e_{i}
$$

for all C^{∞} vector fields X over U. If $\bar{e}=\left[\bar{e}_{1} \cdots \bar{e}_{r}\right]=e a$ is another frame for E over U, where $a: U \rightarrow \mathrm{GL}(r, \mathbb{R})$ is a matrix of C^{∞} transition functions, then by Theorem 22.1 the connection matrix ω_{e} transforms according to the rule

$$
\omega_{\bar{e}}=a^{-1} \omega_{e} a+a^{-1} d a .
$$

Associated to a vector bundle is an object called its frame bundle $\pi: \operatorname{Fr}(E) \rightarrow M$; the total space $\operatorname{Fr}(E)$ of the frame bundle is the set of all ordered bases in the fibers of the vector bundle $E \rightarrow M$, with a suitable topology and manifold structure. A section of the frame bundle $\pi: \operatorname{Fr}(E) \rightarrow M$ over an open set $U \subset M$ is a map $s: U \rightarrow \operatorname{Fr}(E)$
such that $\pi \circ s=\mathbb{1}_{U}$, the identity map on U. From this point of view a frame $e=\left[e_{1} \cdots e_{r}\right]$ over U is simply a section of the frame bundle $\operatorname{Fr}(E)$ over U.

Suppose ∇ is a connection on the vector bundle $E \rightarrow M$. Miraculously, there exists a matrix-valued 1-form ω on the frame bundle $\operatorname{Fr}(E)$ such that for every frame e over an open set $U \subset M$, the connection matrix ω_{e} of ∇ is the pullback of ω by the section $e: U \rightarrow \operatorname{Fr}(E)$ (Theorem 29.10). This matrix-valued 1-form, called an Ehresmann connection on the frame bundle $\operatorname{Fr}(E)$, is determined uniquely by the connection on the vector bundle E and vice versa. It is an intrinsic object of which a connection matrix ω_{e} is but a local manifestation. The frame bundle of a vector bundle is an example of a principal G-bundle for the group $G=\mathrm{GL}(r, \mathbb{R})$. The Ehresmann connection on the frame bundle generalizes to a connection on an arbitrary principal bundle.

This section collects together some general facts about principal bundles.

27.1 Principal Bundles

Let E, M, and F be manifolds. We will denote an open cover \mathfrak{U} of M either as $\left\{U_{\alpha}\right\}$ or more simply as an unindexed set $\{U\}$ whose general element is denoted by U. A local trivialization with fiber F for a smooth surjection $\pi: E \rightarrow M$ is an open cover $\mathfrak{U}=\{U\}$ for M together with a collection $\left\{\phi_{U}: \pi^{-1}(U) \rightarrow U \times F \mid U \in \mathfrak{U}\right\}$ of fiberpreserving diffeomorphisms $\phi_{U}: \pi^{-1}(U) \rightarrow U \times F$:

Charles Ehresmann
(1905-1979)
where η is projection to the first factor. A fiber bundle with fiber F is a smooth surjection $\pi: E \rightarrow M$ having a local trivialization with fiber F. We also say that it is locally trivial with fiber F. The manifold E is the total space and the manifold M the base space of the fiber bundle.

The fiber of a fiber bundle $\pi: E \rightarrow M$ over $x \in M$ is the set $E_{x}:=\pi^{-1}(x)$. Because π is a submersion, by the regular level set theorem ([21], Th. 9.13, p. 96) each fiber E_{x} is a regular submanifold of E. For $x \in U$, define $\phi_{U, x}:=\left.\phi_{U}\right|_{E_{x}}: E_{x} \rightarrow\{x\} \times F$ to be the restriction of the trivialization $\phi_{U}: \pi^{-1}(U) \rightarrow U \times F$ to the fiber E_{x}.

Proposition 27.1. Let $\pi: E \rightarrow M$ be a fiber bundle with fiber F. If $\phi_{U}: \pi^{-1}(U) \rightarrow$ $U \times F$ is a trivialization, then $\phi_{U, x}: E_{x} \rightarrow\{x\} \times F$ is a diffeomorphism.

Proof. The map $\phi_{U, x}$ is smooth because it is the restriction of the smooth map ϕ_{U} to a regular submanifold. It is bijective because ϕ_{U} is bijective and fiber-preserving. Its inverse $\phi_{U, x}^{-1}$ is the restriction of the smooth map $\phi_{U}^{-1}: U \times F \rightarrow \pi^{-1}(U)$ to the fiber $\{x\} \times F$ and is therefore also smooth.

A smooth right action of a Lie group G on a manifold M is a smooth map

$$
\mu: M \times G \rightarrow M,
$$

denoted by $x \cdot g:=\mu(x, g)$, such that for all $x \in M$ and $g, h \in G$,
(i) $x \cdot e=x$, where e is the identity element of G,
(ii) $(x \cdot g) \cdot h=x \cdot(g h)$.

We often omit the dot and write more simply $x g$ for $x \cdot g$. If there is such a map μ, we also say that G acts smoothly on M on the right. A left action is defined similarly. The stabilizer of a point $x \in M$ under an action of G is the subgroup

$$
\operatorname{Stab}(x):=\{g \in G \mid x \cdot g=x\} .
$$

The orbit of $x \in M$ is the set

$$
\operatorname{Orbit}(x):=x G:=\{x \cdot g \in M \mid g \in G\} .
$$

Denote by $\operatorname{Stab}(x) \backslash G$ the set of right cosets of $\operatorname{Stab}(x)$ in G. By the orbit-stabilizer theorem, for each $x \in M$ the map: $G \rightarrow \operatorname{Orbit}(x), g \mapsto x \cdot g$ induces a bijection of sets:

$$
\begin{aligned}
\operatorname{Stab}(x) \backslash G & \longleftrightarrow \operatorname{Orbit}(x), \\
\operatorname{Stab}(x) g & \longleftrightarrow x \cdot g .
\end{aligned}
$$

The action of G on M is free if the stabilizer of every point $x \in M$ is the trivial subgroup $\{e\}$.

A manifold M together with a right action of a Lie group G on M is called a right G-manifold or simply a G-manifold. A map $f: N \rightarrow M$ between right G-manifolds is right G-equivariant if

$$
f(x \cdot g)=f(x) \cdot g
$$

for all $(x, g) \in N \times G$. Similarly, a map $f: N \rightarrow M$ between left G-manifolds is left G-equivariant if

$$
f(g \cdot x)=g \cdot f(x)
$$

for all $(g, x) \in G \times N$.
A left action can be turned into a right action and vice versa; for example, if G acts on M on the left, then

$$
x \cdot g=g^{-1} \cdot x
$$

is a right action of G on M. Thus, if N is a right G-manifold and M is a left G-manifold, we say a map $f: N \rightarrow M$ is G-equivariant if

$$
\begin{equation*}
f(x \cdot g)=f(x) \cdot g=g^{-1} \cdot f(x) \tag{27.1}
\end{equation*}
$$

for all $(x, g) \in N \times G$.

A smooth fiber bundle $\pi: P \rightarrow M$ with fiber G is a smooth principal G-bundle if G acts smoothly and freely on P on the right and the fiber-preserving local trivializations

$$
\phi_{U}: \pi^{-1}(U) \rightarrow U \times G
$$

are G-equivariant, where G acts on $U \times G$ on the right by

$$
(x, h) \cdot g=(x, h g)
$$

Example 27.2 (Product G-bundles). The simplest example of a principal G-bundle over a manifold M is the product G-bundle $\eta: M \times G \rightarrow M$. A trivialization is the identity map on $M \times G$.

Example 27.3 (Homogenous manifolds). If G is a Lie group and H is a closed subgroup, then the quotient G / H can be given the structure of a manifold such that the projection map $\pi: G \rightarrow G / H$ is a principal H-bundle. This is proven in [22, Th. 3.58, p. 120].

Example 27.4 (Hopf bundle). The group S^{1} of unit complex numbers acts on the complex vector space \mathbb{C}^{n+1} by left multiplication. This action induces an action of S^{1} on the unit sphere $S^{2 n+1}$ in \mathbb{C}^{n+1}. The complex projective space $\mathbb{C} P^{n}$ may be defined as the orbit space of $S^{2 n+1}$ by S^{1}. The natural projection $S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ with fiber S^{1} turn out to be a principal S^{1}-bundle. When $n=1, S^{3} \rightarrow \mathbb{C} P^{1}$ with fiber S^{1} is called the Hopf bundle.

Definition 27.5. Let $\pi_{Q}: Q \rightarrow N$ and $\pi_{P}: P \rightarrow M$ be principal G-bundles. A morphism of principal G-bundles is a pair of maps $(\bar{f}: Q \rightarrow P, f: N \rightarrow M)$ such that $\bar{f}: Q \rightarrow P$ is G-equivariant and the diagram

commutes.
Proposition 27.6. If $\pi: P \rightarrow M$ is a principal G-bundle, then the group G acts transitively on each fiber.

Proof. Since G acts transitively on $\{x\} \times G$ and the fiber diffeomorphism $\phi_{U, x}: P_{x} \rightarrow$ $\{x\} \times G$ is G-equivariant, G must also act transitively on the fiber P_{x}.

Lemma 27.7. For any group G, a right G-equivariant map $f: G \rightarrow G$ is necessarily a left translation.

Proof. Suppose that for all $x, g \in G$,

$$
f(x g)=f(x) g
$$

Setting $x=e$, the identity element of G, we obtain

$$
f(g)=f(e) g=\ell_{f(e)}(g)
$$

where $\ell_{f(e)}: G \rightarrow G$ is left translation by $f(e)$.
Suppose $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ is a local trivialization for a principal G-bundle $\pi: P \rightarrow M$. Whenever the intersection $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$ is nonempty, there are two trivializations on $\pi^{-1}\left(U_{\alpha \beta}\right)$:

$$
U_{\alpha \beta} \times G \stackrel{\phi_{\alpha}}{\rightleftarrows} \pi^{-1}\left(U_{\alpha \beta}\right) \xrightarrow{\phi_{\beta}} U_{\alpha \beta} \times G .
$$

Then $\phi_{\alpha} \circ \phi_{\beta}^{-1}: U_{\alpha \beta} \times G \rightarrow U_{\alpha \beta} \times G$ is a fiber-preserving right G-equivariant map. By Lemma 27.7, it is a left translation on each fiber. Thus,

$$
\begin{equation*}
\left(\phi_{\alpha} \circ \phi_{\beta}^{-1}\right)(x, h)=\left(x, g_{\alpha \beta}(x) h\right), \tag{27.2}
\end{equation*}
$$

where $(x, h) \in U_{\alpha \beta} \times G$ and $g_{\alpha \beta}(x) \in G$. Because $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is a C^{∞} function of x and h, setting $h=e$, we see that $g_{\alpha \beta}(x)$ is a C^{∞} function of x. The C^{∞} functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ are called transition functions of the principal bundle $\pi: P \rightarrow M$ relative to the trivializing open cover $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$. They satisfy the cocycle condition: for all $\alpha, \beta, \gamma \in \mathrm{A}$,

$$
g_{\alpha \beta} g_{\beta \gamma}=g_{\alpha \gamma} \quad \text { if } U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \varnothing
$$

From the cocycle condition, one can deduce other properties of the transition functions.

Proposition 27.8. The transition functions $g_{\alpha \beta}$ of a principal bundle $\pi: P \rightarrow M$ relative to a trivializing open cover $\left\{U_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ satisfy the following properties: for all $\alpha, \beta \in \mathrm{A}$,
(i) $g_{\alpha \alpha}=$ the constant map e,
(ii) $g_{\alpha \beta}=g_{\beta \alpha}^{-1}$ if $U_{\alpha} \cap U_{\beta} \neq \varnothing$.

Proof. (i) If $\alpha=\beta=\gamma$, the cocycle condition gives

$$
g_{\alpha \alpha} g_{\alpha \alpha}=g_{\alpha \alpha}
$$

Hence, $g_{\alpha \alpha}=$ the constant map e.
(ii) if $\gamma=\alpha$, the cocycle condition gives

$$
g_{\alpha \beta} g_{\beta \alpha}=g_{\alpha \alpha}=e
$$

or

$$
g_{\alpha \beta}=g_{\beta \alpha}^{-1} \quad \text { for } U_{\alpha} \cap U_{\beta} \neq \varnothing
$$

In a principal G-bundle $P \rightarrow M$, the group G acts on the right on the total space P, but the transition functions $g_{\alpha \beta}$ in (27.2) are given by left translations by $g_{\alpha \beta}(x) \in G$. This phenomenon is a consequence of Lemma 27.7.

27.2 The Frame Bundle of a Vector Bundle

For any real vector space V, let $\operatorname{Fr}(V)$ be the set of all ordered bases in V. Suppose V has dimension r. We will represent an ordered basis v_{1}, \ldots, v_{r} by a row vector $v=\left[v_{1} \cdots v_{r}\right]$, so that the general linear group $\operatorname{GL}(r, \mathbb{R})$ acts on $\operatorname{Fr}(V)$ on the right by matrix multiplication

$$
\begin{aligned}
v \cdot a & =\left[v_{1} \cdots v_{r}\right]\left[a_{j}^{i}\right] \\
& =\left[\sum v_{i} a_{1}^{i} \cdots \sum \sum v_{i} a_{r}^{i}\right] .
\end{aligned}
$$

Fix a point $v \in \operatorname{Fr}(V)$. Since the action of $\mathrm{GL}(r, \mathbb{R})$ on $\operatorname{Fr}(V)$ is clearly transitive and free, i.e., $\operatorname{Orbit}(v)=\operatorname{Fr}(V)$ and $\operatorname{Stab}(v)=\{I\}$, by the orbit-stabilizer theorem there is a bijection

$$
\begin{aligned}
\phi_{v}: \mathrm{GL}(r, \mathbb{R})=\frac{\mathrm{GL}(r, \mathbb{R})}{\operatorname{Stab}(v)} & \longleftrightarrow \operatorname{Orbit}(v)=\operatorname{Fr}(V), \\
g & \longleftrightarrow v g
\end{aligned}
$$

Using the bijection ϕ_{ν}, we put a manifold structure on $\operatorname{Fr}(V)$ in such a way that ϕ_{ν} becomes a diffeomorphism.

If v^{\prime} is another element of $\operatorname{Fr}(V)$, then $v^{\prime}=v a$ for some $a \in \mathrm{GL}(r, \mathbb{R})$ and

$$
\phi_{v a}(g)=v a g=\phi_{v}(a g)=\left(\phi_{v} \circ \ell_{a}\right)(g) .
$$

Since left multiplication $\ell_{a}: \mathrm{GL}(r, \mathbb{R}) \rightarrow \mathrm{GL}(r, \mathbb{R})$ is a diffeomorphism, the manifold structure on $\operatorname{Fr}(V)$ defined by ϕ_{v} is the same as the one defined by $\phi_{v a}$. We call $\operatorname{Fr}(V)$ with this manifold structure the frame manifold of the vector space V.

Remark 27.9. A linear isomorphism $\phi: V \rightarrow W$ induces a C^{∞} diffeomorphism $\widetilde{\phi}$: $\operatorname{Fr}(V) \rightarrow \operatorname{Fr}(W)$ by

$$
\widetilde{\phi}\left[v_{1} \cdots v_{r}\right]=\left[\begin{array}{llll}
\phi\left(v_{1}\right) & \cdots & \left.\phi\left(v_{r}\right)\right] .
\end{array}\right.
$$

Define an action of $\operatorname{GL}(r, \mathbb{R})$ on $\operatorname{Fr}\left(\mathbb{R}^{r}\right)$ by

$$
g \cdot\left[v_{1} \cdots v_{r}\right]=\left[\begin{array}{llll}
g v_{1} & \cdots & g v_{r}
\end{array}\right] .
$$

Thus, if $\phi: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ is given by left multiplication by $g \in \mathrm{GL}(r, \mathbb{R})$, then so is the induced map $\widetilde{\phi}$ on the frame manifold $\operatorname{Fr}\left(\mathbb{R}^{r}\right)$.

Example 27.10 (The frame bundle). Let $\eta: E \rightarrow M$ be a C^{∞} vector bundle of rank r. We associate to the vector bundle E a C^{∞} principal $\mathrm{GL}(r, \mathbb{R})$-bundle $\pi: \operatorname{Fr}(E) \rightarrow M$ as follows. As a set the total space $\operatorname{Fr}(E)$ is defined to be the disjoint union

$$
\operatorname{Fr}(E)=\coprod_{x \in M} \operatorname{Fr}\left(E_{x}\right) .
$$

There is a natural projection map $\pi: \operatorname{Fr}(E) \rightarrow M$ that maps $\operatorname{Fr}\left(E_{x}\right)$ to $\{x\}$.

A local trivialization $\phi_{\alpha}:\left.E\right|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{r}$ induces a bijection

$$
\begin{aligned}
\widetilde{\phi_{\alpha}}:\left.\operatorname{Fr}(E)\right|_{U_{\alpha}} & \sim \\
{\left[v_{1} \cdots v_{\alpha}\right] } & \in \operatorname{Fr}\left(\mathbb{R}^{r}\right), \\
\operatorname{Fr}\left(E_{x}\right) & \mapsto\left(x,\left[\phi_{\alpha, x}\left(v_{1}\right) \cdots \phi_{\alpha, x}\left(v_{r}\right)\right]\right) .
\end{aligned}
$$

Via $\widetilde{\phi_{\alpha}}$ one transfers the topology and manifold structure from $U_{\alpha} \times \operatorname{Fr}\left(\mathbb{R}^{r}\right)$ to $\left.\operatorname{Fr}(E)\right|_{U_{\alpha}}$. This gives $\operatorname{Fr}(E)$ a topology and a manifold structure such that $\pi: \operatorname{Fr}(E) \rightarrow M$ is locally trivial with fiber $\operatorname{Fr}\left(\mathbb{R}^{r}\right)$. As the frame manifold $\operatorname{Fr}\left(\mathbb{R}^{r}\right)$ is diffeomorphic to the general linear group $\mathrm{GL}(r, \mathbb{R})$, it is easy to check that $\operatorname{Fr}(E) \rightarrow M$ is a C^{∞} principal $\mathrm{GL}(r, \mathbb{R})$-bundle. We call it the frame bundle of the vector bundle E.

On a nonempty overlap $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$, the transition function for the vector bundle E is the C^{∞} function $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow \mathrm{GL}(r, \mathbb{R})$ given by

$$
\begin{aligned}
\phi_{\alpha} \circ \phi_{\beta}^{-1}: U_{\alpha \beta} \times \mathbb{R}^{r} & \rightarrow U_{\alpha \beta} \times \mathbb{R}^{r} \\
\left(\phi_{\alpha} \circ \phi_{\beta}^{-1}\right)(x, w) & =\left(x, g_{\alpha \beta}(x) w\right) .
\end{aligned}
$$

Since the local trivialization for the frame bundle $\operatorname{Fr}(E)$ is induced from the trivialization $\left\{U_{\alpha}, \phi_{\alpha}\right\}$ for E, the transition functions for $\operatorname{Fr}(E)$ are induced from the transition functions $\left\{g_{\alpha \beta}\right\}$ for E. By Remark 27.9 the transition functions for the open cover $\left\{\left.\operatorname{Fr}(E)\right|_{U_{\alpha}}\right\}$ of $\operatorname{Fr}(E)$ are the same as the transition functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow \operatorname{GL}(r, \mathbb{R})$ for the vector bundle E, but now of course $\operatorname{GL}(r, \mathbb{R})$ acts on $\operatorname{Fr}\left(\mathbb{R}^{r}\right)$ instead of on \mathbb{R}^{r}.

27.3 Fundamental Vector Fields of a Right Action

Suppose G is a Lie group with Lie algebra \mathfrak{g} and G acts smoothly on a manifold P on the right. To every element $A \in \mathfrak{g}$ one can associate a vector field \underline{A} on P called the fundamental vector field on P associated to A : for p in P, define

$$
\underline{A}_{p}=\left.\frac{d}{d t}\right|_{t=0} p \cdot e^{t A} \in T_{p} P
$$

To understand this equation, first fix a point $p \in P$. Then $c_{p}: t \mapsto p \cdot e^{t A}$ is a curve in P with initial point p. By definition, the vector \underline{A}_{p} is the initial vector of this curve. Thus,

$$
\underline{A}_{p}=c_{p}^{\prime}(0)=c_{p *}\left(\left.\frac{d}{d t}\right|_{t=0}\right) \in T_{p} P .
$$

As a tangent vector at p is a derivation on germs of C^{∞} functions at p, in terms of a C^{∞} function f at p,

$$
\underline{A}_{p} f=c_{p *}\left(\left.\frac{d}{d t}\right|_{t=0}\right) f=\left.\frac{d}{d t}\right|_{t=0} f \circ c_{p}=\left.\frac{d}{d t}\right|_{t=0} f\left(p \cdot e^{t A}\right) .
$$

Proposition 27.11. For each $A \in \mathfrak{g}$, the fundamental vector field \underline{A} is C^{∞} on P.

Proof. It suffices to show that for every C^{∞} function f on P, the function $\underline{A} f$ is also C^{∞} on P. Let $\mu: P \times G \rightarrow P$ be the C^{∞} map defining the right action of G on P. For any p in P,

$$
\underline{A}_{p} f=\left.\frac{d}{d t}\right|_{t=0} f\left(p \cdot e^{t A}\right)=\left.\frac{d}{d t}\right|_{t=0}(f \circ \mu)\left(p, e^{t A}\right)
$$

Since $e^{t A}$ is a C^{∞} function of t, and f and μ are both C^{∞}, the derivative

$$
\frac{d}{d t}(f \circ \mu)\left(p, e^{t A}\right)
$$

is C^{∞} in p and in t. Therefore, $\underline{A}_{p} f$ is a C^{∞} function of p.
Recall that $\mathfrak{X}(P)$ denotes the Lie algebra of C^{∞} vector fields on the manifold P. The fundamental vector field construction gives rise to a map

$$
\sigma: \mathfrak{g} \rightarrow \mathfrak{X}(P), \quad \sigma(A):=\underline{A} .
$$

For p in P, define $j_{p}: G \rightarrow P$ by $j_{p}(g)=p \cdot g$. Computing the differential $j_{p *}$ using the curve $c(t)=e^{t A}$, we obtain the expression

$$
\begin{equation*}
j_{p *}(A)=\left.\frac{d}{d t}\right|_{t=0} j_{p}\left(e^{t A}\right)=\left.\frac{d}{d t}\right|_{t=0} p \cdot e^{t A}=\underline{A}_{p} \tag{27.3}
\end{equation*}
$$

This alternate description of fundamental vector fields, $\underline{A}_{p}=j_{p *}(A)$, shows that the map $\sigma: \mathfrak{g} \rightarrow \mathfrak{X}(P)$ is linear over \mathbb{R}. In fact, σ is a Lie algebra homomorphism (Problem 27.1).

Example 27.12. Consider the action of a Lie group G on itself by right multiplication. For $p \in G$, the map $j_{p}: G \rightarrow G, j_{p}(g)=p \cdot g=\ell_{p}(g)$ is simply left multiplication by p. By (27.3), for $A \in \mathfrak{g}, \underline{A}_{p}=\ell_{p *}(A)$. Thus, for the action of G on G by right multiplication, the fundamental vector field \underline{A} on G is precisely the left-invariant vector field generated by A. In this sense the fundamental vector field of a right action is a generalization of a left-invariant vector field on a Lie group.

For g in a Lie group G, let $c_{g}: G \rightarrow G$ be conjugation by $g: c_{g}(x)=g x g^{-1}$. The adjoint representation is defined to be the differential of the conjugation map: $\operatorname{Ad}(g)=\left(c_{g}\right)_{*}: \mathfrak{g} \rightarrow \mathfrak{g}$.
Proposition 27.13. Suppose a Lie group G acts smoothly on a manifold P on the right. Let $r_{g}: P \rightarrow P$ be the right translation $r_{g}(p)=p \cdot g$. For $A \in \mathfrak{g}$ the fundamental vector field \underline{A} on P satisfies the following equivariance property:

$$
r_{g *} \underline{A}=\left(\operatorname{Ad} g^{-1}\right) A .
$$

Proof. We need to show that for every p in $P, r_{g *}\left(\underline{A}_{p}\right)=\underline{\left(\operatorname{Ad} g^{-1}\right) A_{p g}}$. For x in G,

$$
\left(r_{g} \circ j_{p}\right)(x)=p x g=p g g^{-1} x g=j_{p g}\left(g^{-1} x g\right)=\left(j_{p g} \circ c_{g^{-1}}\right)(x) .
$$

By the chain rule,

$$
r_{g *}\left(\underline{A}_{p}\right)=r_{g *} j_{p *}(A)=j_{p g *}\left(c_{g^{-1}}\right)_{*}(A)=j_{p g *}\left(\left(\operatorname{Ad} g^{-1}\right) A\right)=\underline{\left(\operatorname{Ad} g^{-1}\right) A_{p g}}
$$

27.4 Integral Curves of a Fundamental Vector Field

In this section suppose a Lie group G with Lie algebra $\mathfrak{g}:=\operatorname{Lie}(G)$ acts smoothly on the right on a manifold P.

Proposition 27.14. For $p \in P$ and $A \in \mathfrak{g}$, the curve $c_{p}(t)=p \cdot e^{t A}, t \in \mathbb{R}$, is the integral curve of the fundamental vector field \underline{A} through p.

Proof. We need to show that $c_{p}^{\prime}(t)=\underline{A}_{c_{p}(t)}$ for all $t \in \mathbb{R}$ and all $p \in P$. It is essentially a sequence of definitions:

$$
c_{p}^{\prime}(t)=\left.\frac{d}{d s}\right|_{s=0} c_{p}(t+s)=\left.\frac{d}{d s}\right|_{s=0} p e^{t A} e^{s A}=\underline{A}_{p e^{t A}}=\underline{A}_{c_{p}(t)} .
$$

Proposition 27.15. The fundamental vector field \underline{A} on a manifold P vanishes at a point p in P if and only if A is in the Lie algebra of $\operatorname{Stab}(p)$.

Proof. (\Leftarrow) If $A \in \operatorname{Lie}(\operatorname{Stab}(p))$, then $e^{t A} \in \operatorname{Stab}(p)$, so

$$
\underline{A}_{p}=\left.\frac{d}{d t}\right|_{t=0} p \cdot e^{t A}=\left.\frac{d}{d t}\right|_{t=0} p=0 .
$$

(\Rightarrow) Suppose $\underline{A}_{p}=0$. Then the constant map $\gamma(t)=p$ is an integral curve of \underline{A} through p, since

$$
\gamma^{\prime}(t)=0=\underline{A}_{p}=\underline{A}_{\gamma(t)} .
$$

On the other hand, by Proposition 27.14, $c_{p}(t)=p \cdot e^{t A}$ is also an integral curve of \underline{A} through p. By the uniqueness of the integral curve through a point, $c_{p}(t)=\gamma(t)$ or $p \cdot e^{t A}=p$ for all $t \in \mathbb{R}$. This implies that $e^{t A} \in \operatorname{Stab}(p)$ and therefore $A \in$ $\operatorname{Lie}(\operatorname{Stab}(p))$.

Corollary 27.16. For a right action of a Lie group G on a manifold P, let $p \in P$ and $j_{p}: G \rightarrow P$ be the map $j_{p}(g)=p \cdot g$. Then the kernel $\operatorname{ker} j_{p *}$ of the differential of j_{p} at the identity

$$
j_{p *}=\left(j_{p}\right)_{*, e}: \mathfrak{g} \rightarrow T_{p} P
$$

is $\operatorname{Lie}(\operatorname{Stab}(p))$.
Proof. For $A \in \mathfrak{g}$, we have $\underline{A}_{p}=j_{p *}(A)$ by (27.3). Thus,

$$
\begin{aligned}
A \in \operatorname{ker} j_{p *} & \Longleftrightarrow j_{p *}(A)=0 \\
& \Longleftrightarrow \underline{A}_{p}=0 \\
& \Longleftrightarrow A \in \operatorname{Lie}(\operatorname{Stab}(p)) \quad \text { (by Proposition 27.15). }
\end{aligned}
$$

27.5 Vertical Subbundle of the Tangent Bundle $T P$

Throughout this section, G is a Lie group with Lie algebra \mathfrak{g} and $\pi: P \rightarrow M$ is a principal G-bundle. On the total space P there is a natural notion of vertical tangent vectors. We will show that the vertical tangent vectors on P form a trivial subbundle of the tangent bundle $T P$.

By the local triviality of a principal bundle, at every point $p \in P$ the differential $\pi_{*, p}: T_{p} P \rightarrow T_{\pi(p)} M$ of the projection π is surjective. The vertical tangent subspace $\mathcal{V}_{p} \subset T_{p} P$ is defined to be ker $\pi_{*, p}$. Hence, there is a short exact sequence of vector spaces

$$
\begin{equation*}
0 \rightarrow \mathcal{V}_{p} \longrightarrow T_{p} P \xrightarrow{\pi_{*, p}} T_{\pi(p)} M \rightarrow 0, \tag{27.4}
\end{equation*}
$$

and

$$
\operatorname{dim} \mathcal{V}_{p}=\operatorname{dim} T_{p} P-\operatorname{dim} T_{\pi(p)} M=\operatorname{dim} G
$$

An element of \mathcal{V}_{p} is called a vertical tangent vector at p.
Proposition 27.17. For any $A \in \mathfrak{g}$, the fundamental vector field \underline{A} is vertical at every point $p \in P$.

Proof. With $j_{p}: G \rightarrow P$ defined as usual by $j_{p}(g)=p \cdot g$,

$$
\left(\pi \circ j_{p}\right)(g)=\pi(p \cdot g)=\pi(p) .
$$

Since $\underline{A}_{p}=j_{p *}(A)$ by (27.3), and $\pi \circ j_{p}$ is a constant map,

$$
\pi_{*, p}\left(\underline{A}_{p}\right)=\left(\pi_{*, p} \circ j_{p *}\right)(A)=\left(\pi \circ j_{p}\right)_{*}(A)=0 .
$$

Thus, in case P is a principal G-bundle, we can refine Corollary 27.16 to show that $j_{p *}$ maps \mathfrak{g} into the vertical tangent space:

$$
\left(j_{p}\right)_{*, e}: \mathfrak{g} \rightarrow \mathcal{V}_{p} \subset T_{p} P
$$

In fact, this is an isomorphism.
Proposition 27.18. For $p \in P$, the differential at e of the map $j_{p}: G \rightarrow P$ is an isomorphism of \mathfrak{g} onto the vertical tangent space: $j_{p *}=\left(j_{p}\right)_{*, e}: \mathfrak{g} \xrightarrow{\sim} \mathcal{V}_{p}$.

Proof. By Corollary 27.16, $\operatorname{ker} j_{p *}=\operatorname{Lie}(\operatorname{Stab}(p))$. Since G acts freely on P, the stabilizer of any point $p \in P$ is the trivial subgroup $\{e\}$. Thus, $\operatorname{ker} j_{p *}=0$ and $j_{p *}$ is injective. By Proposition 27.17, the image $j_{p *}$ lies in the vertical tangent space \mathcal{V}_{p}. Since \mathfrak{g} and \mathcal{V}_{p} have the same dimension, the injective linear map $j_{p *}: \mathfrak{g} \rightarrow \mathcal{V}_{p}$ has to be an isomorphism.

Corollary 27.19. The vertical tangent vectors at a point of a principal bundle are precisely the fundamental vectors.

Let B_{1}, \ldots, B_{ℓ} be a basis for the Lie algebra \mathfrak{g}. By the proposition, the fundamental vector fields $\underline{B_{1}}, \ldots, B_{\ell}$ on P form a basis of \mathcal{V}_{p} at every point $p \in P$. Hence, they span a trivial subbundle $\overline{\mathcal{V}}:=\coprod_{p \in P} \mathcal{V}_{p}$ of the tangent bundle $T P$. We call \mathcal{V} the vertical subbundle of TP.

As we learned in Section 20.5, the differential $\pi_{*}: T P \rightarrow T M$ of a C^{∞} map $\pi: P \rightarrow M$ induces a bundle map $\tilde{\pi}_{*}: T P \rightarrow \pi^{*} T M$ over P, given by

The map $\tilde{\pi}_{*}$ is surjective because it sends the fiber $T_{p} P$ onto the fiber $\left(\pi^{*} T M\right)_{p} \simeq$ $T_{\pi(p)} M$. Its kernel is precisely the vertical subbundle \mathcal{V} by (27.4). Hence, \mathcal{V} fits into a short exact sequence of vector bundles over P :

$$
\begin{equation*}
0 \rightarrow V \longrightarrow T P \xrightarrow{\tilde{\pi}_{*}} \pi^{*} T M \rightarrow 0 . \tag{27.5}
\end{equation*}
$$

27.6 Horizontal Distributions on a Principal Bundle

On the total space P of a smooth principal bundle $\pi: P \rightarrow M$, there is a well-defined vertical subbundle \mathcal{V} of the tangent bundle $T P$. We call a subbundle \mathcal{H} of $T P$ a horizontal distribution on P if $T P=\mathcal{V} \oplus \mathcal{H}$ as vector bundles; in other words, $T_{p} P=$ $\mathcal{V}_{p}+\mathcal{H}_{p}$ and $\mathcal{V}_{p} \cap \mathcal{H}_{p}=0$ for every $p \in P$. In general, there is no canonically defined horizontal distribution on a principal bundle.

A splitting of a short exact sequence of vector bundles $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ over a manifold P is a bundle map $k: C \rightarrow B$ such that $j \circ k=\mathbb{1}_{C}$, the identity bundle map on C.

Proposition 27.20. Let

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0 \tag{27.6}
\end{equation*}
$$

be a short exact sequence of vector bundles over a manifold P. Then there is a one-to-one correspondence

$$
\{\text { subbundles } H \subset B \mid B=i(A) \oplus H\} \longleftrightarrow\{\text { splittings } k: C \rightarrow B \text { of (27.6) }\}
$$

Proof. If H is a subbundle of B such that $B=i(A) \oplus H$, then there are bundle isomorphisms $H \simeq B / i(A) \simeq C$. Hence, C maps isomorphically onto H in B. This gives a splitting $k: C \rightarrow B$.

If $k: C \rightarrow B$ is a splitting, let $H:=k(C)$, which is a subbundle of B. Moreover, if $i(a)=k(c)$ for some $a \in A$ and $c \in C$, then

$$
0=j i(a)=j k(c)=c .
$$

Hence, $i(A) \cap k(C)=0$.

Finally, to show that $B=i(A)+k(C)$, let $b \in B$. Then

$$
j(b-k j(b))=j(b)-j(b)=0 .
$$

By the exactness of (27.6), $b-k j(b)=i(a)$ for some $a \in A$. Thus,

$$
b=i(a)+k j(b) \in i(A)+k(C) .
$$

This proves that $B=i(A)+k(C)$ and therefore $B=i(A) \oplus k(C)$.
As we just saw in the preceding section, for every principal bundle $\pi: P \rightarrow M$ the vertical subbundle \mathcal{V} fits into a short exact sequence (27.5) of vector bundles over P. By Proposition 27.20, there is a one-to-one correspondence between horizontal distributions on P and splittings of the sequence (27.5).

Problems

27.1. Lie bracket of fundamental vector fields

Let G be a Lie group with Lie algebra \mathfrak{g} and let P be a manifold on which G acts on the right. Prove that for $A, B \in \mathfrak{g}$,

$$
\underline{[A, B]}=[\underline{A}, \underline{B}] .
$$

Hence, the map $\sigma: \mathfrak{g} \rightarrow \mathfrak{X}(P), A \mapsto \underline{A}$ is a Lie algebra homomorphism.

27.2* Short exact sequence of vector spaces

Prove that if $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ is a short exact sequence of finite-dimensional vector spaces, then $\operatorname{dim} B=\operatorname{dim} A+\operatorname{dim} C$.

27.3. Splitting of a short exact sequence

Suppose $0 \rightarrow A \xrightarrow{i} B \rightarrow C \rightarrow 0$ is a short exact sequence of vector bundles over a manifold P. A retraction of $i: A \rightarrow B$ is a map $r: B \xrightarrow{j} A$ such that $r \circ i=\mathbb{1}_{A}$. Show that i has a retraction if and only if the sequence has a splitting.

27.4. The differential of an action

Let $\mu: P \times G \rightarrow P$ be an action of a Lie group G on a manifold P. For $g \in G$, the tangent space $T_{g} G$ may be identified with $\ell_{g * \mathfrak{g}} \mathfrak{g}$, where $\ell_{g}: G \rightarrow G$ is left multiplication by $g \in G$ and $\mathfrak{g}=T_{e} G$ is the Lie algebra of G. Hence, an element of the tangent space $T_{(p, g)}(P \times G)$ is of the form $\left(X_{p}, \ell_{g *} A\right)$ for $X_{p} \in T_{p} P$ and $A \in \mathfrak{g}$. Prove that the differential

$$
\mu_{*}=\mu_{*,(p, g)}: T_{(p, g)}(P \times G) \rightarrow T_{p g} P
$$

is given by

$$
\mu_{*}\left(X_{p}, \ell_{g *} A\right)=r_{g *}\left(X_{p}\right)+\underline{A}_{p g} .
$$

27.5. Fundamental vector field under a trivialization

Let $\phi_{\alpha}: \pi^{-1} U_{\alpha} \rightarrow U_{\alpha} \times G$

$$
\phi_{\alpha}(p)=\left(\pi(p), g_{\alpha}(p)\right)
$$

be a trivialization of $\pi^{-1} U_{g a}$ in a principal bundle P. Let $A \in \mathfrak{g}$, the Lie algebra of G and \underline{A} the fundamental vector field on P that it induces. Prove that

$$
g_{\alpha *}\left(\underline{\mathrm{~A}}_{p}\right)=\ell_{g_{\alpha}(p) *}(A) \in T_{g_{\alpha}(p)}(G)
$$

27.6. Trivial principal bundle

Prove that a principal bundle $\pi: P \rightarrow M$ is trivial if and only if it has a section.

27.7. Pullback of a principal bundle to itself

Prove that if $\pi: P \rightarrow M$ is a principal bundle, then the pullback bundle $\pi^{*} P \rightarrow P$ is trivial.

27.8. Quotient space of a principal bundle

Let G be a Lie group and H a closed subgroup. Prove that if $\pi P \rightarrow M$ is a principal G-bundle, then $P \rightarrow P / H$ is a principal H-subbundle.

27.9. Fundamental vector fields

Let N and M be G-manifolds with G acting on the right. If $A \in \mathfrak{g}$ and $f: N \rightarrow M$ is G-equivariant, then

$$
f_{*}\left(\underline{A}_{N, q}\right)=\underline{A}_{M, f(q)} .
$$

§28 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra \mathfrak{g}. As we saw in the preceding section, on a principal G-bundle $P \rightarrow M$, the notion of a vertical tangent vector is well defined, but not that of a horizontal tangent vector. A connection on a principal bundle is essentially the choice of a horizontal complement to the vertical tangent bundle on P. Alternatively, it can be given by a \mathfrak{g}-valued 1 -form on P. In this section we will study these two equivalent manifestations of a connection:
(i) a smooth right-invariant horizontal distribution on P,
(ii) a smooth G-equivariant \mathfrak{g}-valued 1 -form ω on P such that on the fundamental vector fields,

$$
\begin{equation*}
\omega(\underline{A})=A \quad \text { for all } A \in \mathfrak{g} \tag{28.1}
\end{equation*}
$$

Under the identification of \mathfrak{g} with a vertical tangent space, condition (28.1) says that ω restricts to the identity map on vertical vectors.

The correspondence between (i) and (ii) is easy to describe. Given a rightinvariant horizontal distribution \mathcal{H} on P, we define a \mathfrak{g}-valued 1-form ω on P to be, at each point p, the projection with kernel \mathcal{H}_{p} from the tangent space to the vertical space. Conversely, given a right-equivariant \mathfrak{g}-valued 1 -form ω that is the identity on the vertical space at each point $p \in P$, we define a horizontal distribution \mathcal{H} on P to be $\operatorname{ker} \omega_{p}$ at each $p \in P$.

28.1 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra \mathfrak{g}, and let $\pi: P \rightarrow M$ be a principal G-bundle. A distribution on a manifold is a subbundle of the tangent bundle. Recall that a distribution \mathcal{H} on P is horizontal if it is complementary to the vertical subbundle \mathcal{V} of the tangent bundle $T P$: for all p in P,

$$
T_{p} P=\mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

Suppose \mathcal{H} is a horizontal distribution on the total space P of a principal G-bundle $\pi: P \rightarrow M$. For $p \in P$, if $j_{p}: G \rightarrow P$ is the map $j_{p}(g)=p \cdot g$, then the vertical tangent space ν_{p} can be canonically identified with the Lie algebra \mathfrak{g} via the isomorphism $j_{p *}: \mathfrak{g} \rightarrow \mathcal{V}_{p}$ (Proposition 27.18). Let $v: T_{p} P=\mathcal{V}_{p} \oplus \mathcal{H}_{p} \rightarrow \mathcal{V}_{p}$ be the projection to the vertical tangent space with kernel \mathcal{H}_{p}. For $Y_{p} \in T_{p} P, v\left(Y_{p}\right)$ is called the vertical component of Y_{p}. (Although the vertical subspace \mathcal{V}_{p} is intrinsically defined, the notion of the vertical component of a tangent vector depends on the choice of a horizontal complement \mathcal{H}_{p}.) If ω_{p} is the composite

$$
\begin{equation*}
\omega_{p}:=j_{p *}^{-1} \circ v: T_{p} P \xrightarrow{v} \nu_{p} \xrightarrow{j_{p *}^{-1}} \mathfrak{g}, \tag{28.2}
\end{equation*}
$$

then ω is a \mathfrak{g}-valued 1 -form on P. In terms of ω, the vertical component of $Y_{p} \in T_{p} P$ is

$$
\begin{equation*}
v\left(Y_{p}\right)=j_{p *}\left(\omega_{p}\left(Y_{p}\right)\right) \tag{28.3}
\end{equation*}
$$

Theorem 28.1. If \mathcal{H} is a smooth right-invariant horizontal distribution on the total space P of a principal G-bundle $\pi: P \rightarrow M$, then the \mathfrak{g}-valued 1-form ω on P defined above satisfies the following three properties:
(i) for any $A \in \mathfrak{g}$ and $p \in P$, we have $\omega_{p}\left(\underline{A}_{p}\right)=A$;
(ii) (G-equivariance) for any $g \in G, r_{g}^{*} \omega=\left(\operatorname{Ad}^{-1}\right) \omega$;
(iii) ω is C^{∞}.

Proof. (i) Since \underline{A}_{p} is already vertical (Proposition 27.17), the projection v leaves it invariant, so

$$
\omega_{p}\left(\underline{A}_{p}\right)=j_{p *}^{-1}\left(v\left(\underline{A}_{p}\right)\right)=j_{p *}^{-1}\left(\underline{A}_{p}\right)=A .
$$

(ii) For $p \in P$ and $Y_{p} \in T_{p} P$, we need to show

$$
\omega_{p g}\left(r_{g *} Y_{p}\right)=\left(\operatorname{Ad} g^{-1}\right) \omega_{p}\left(Y_{p}\right)
$$

Since both sides are \mathbb{R}-linear in Y_{p} and Y_{p} is the sum of a vertical and a horizontal vector, we may treat these two cases separately.

If Y_{p} is vertical, then by Proposition 27.18, $Y_{p}=\underline{A}_{p}$ for some $A \in \mathfrak{g}$. In this case

$$
\begin{aligned}
\omega_{p g}\left(r_{g *} \underline{A}_{p}\right) & =\omega_{p g}\left(\underline{\left(\operatorname{Ad} g^{-1}\right) A_{p g}}\right) & & \text { (by Proposition 27.13) } \\
& =\left(\operatorname{Ad} g^{-1}\right) A & & \text { (by (i)) } \\
& =\left(\operatorname{Ad} g^{-1}\right) \omega_{p}\left(\underline{A}_{p}\right) & & \text { (by (i) again). }
\end{aligned}
$$

If Y_{p} is horizontal, then by the right-invariance of the horizontal distribution \mathcal{H}, so is $r_{g *} Y_{p}$. Hence,

$$
\omega_{p g}\left(r_{g *} Y_{p}\right)=0=\left(\operatorname{Ad} g^{-1}\right) \omega_{p}\left(Y_{p}\right)
$$

(iii) Fix a point $p \in P$. We will show that ω is C^{∞} in a neighborhood of p. Let B_{1}, \ldots, B_{ℓ} be a basis for the Lie algebra \mathfrak{g} and B_{1}, \ldots, B_{ℓ} the associated fundamental vector fields on P. By Proposition 27.11, these vector fields are all C^{∞} on P. Since \mathcal{H} is a C^{∞} distribution on P, one can find a neighborhood W of p and C^{∞} horizontal vector fields X_{1}, \ldots, X_{n} on W that span \mathcal{H} at every point of W. Then $B_{1}, \ldots, \underline{B}_{\ell}, X_{1}, \ldots, X_{n}$ is a C^{∞} frame for the tangent bundle $T P$ over W. Thus, any C^{∞} vector field X on W can be written as a linear combination

$$
X=\sum a^{i} \underline{B_{i}}+\sum b^{j} X_{j}
$$

with C^{∞} coefficients a^{i}, b^{j} on W. By the definition of ω,

$$
\omega(X)=\omega\left(\sum a^{i} \underline{B_{i}}\right)=\sum a^{i} B_{i} .
$$

This proves that ω is a $C^{\infty} 1$-form on W.

Note that in this theorem the proof of the smoothness of ω requires only that the horizontal distribution \mathcal{H} be smooth; it does not use the right-invariance of \mathcal{H}.

Definition 28.2. An Ehresmann connection or simply a connection on a principal G-bundle $P \rightarrow M$ is a \mathfrak{g}-valued 1-form ω on P satisfying the three properties of Theorem 28.1.

A \mathfrak{g}-valued 1-form α on P can be viewed as a map $\alpha: T P \rightarrow \mathfrak{g}$ from the tangent bundle $T P$ to the Lie algebra \mathfrak{g}. Now both $T P$ and \mathfrak{g} are G-manifolds: the Lie group G acts on $T P$ on the right by the differentials of right translations and it acts on \mathfrak{g} on the left by the adjoint representation. By (27.1), $\alpha: T P \rightarrow \mathfrak{g}$ is G-equivariant if and only if for all $p \in P, X_{p} \in T_{p} P$, and $g \in G$,

$$
\alpha\left(X_{p} \cdot g\right)=g^{-1} \cdot \alpha\left(X_{p}\right)
$$

or

$$
\alpha\left(r_{g *} X_{p}\right)=\left(\operatorname{Ad} g^{-1}\right) \alpha\left(X_{p}\right)
$$

Thus, $\alpha: T P \rightarrow \mathfrak{g}$ is G-equivariant if and only if $r_{g}^{*} \alpha=\left(\operatorname{Ad} g^{-1}\right) \alpha$ for all $g \in G$. Condition (ii) of a connection ω on a principal bundle says precisely that ω is G equivariant as a map from $T P$ to \mathfrak{g}.

28.2 Vertical and Horizontal Components of a Tangent Vector

As we noted in Section 27.5, on any principal G-bundle $\pi: P \rightarrow M$, the vertical subspace \mathcal{V}_{p} of the tangent space $T_{p} P$ is intrinsically defined:

$$
\mathcal{V}_{p}:=\operatorname{ker} \pi_{*}: T_{p} P \rightarrow T_{\pi(p)} M .
$$

By Proposition 27.18, the map $j_{p *}$ naturally identifies the Lie algebra \mathfrak{g} of G with the vertical subspace \mathcal{V}_{p}.

In the presence of a horizontal distribution on the total space P of a principal bundle, every tangent vector $Y_{p} \in T_{p} P$ decomposes uniquely into the sum of a vertical vector and a horizontal vector:

$$
Y_{p}=v\left(Y_{p}\right)+h\left(Y_{p}\right) \in \mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

These are called, respectively, the vertical component and horizontal component of the vector Y_{p}. As p varies over P, this decomposition extends to a decomposition of a vector field Y on P :

$$
Y=v(Y)+h(Y)
$$

We often omit the parentheses in $v(Y)$ and $h(Y)$, and write $v Y$ and $h Y$ instead.
Proposition 28.3. If \mathcal{H} is a C^{∞} horizontal distribution on the total space P of a principal bundle, then the vertical and horizontal components $v(Y)$ and $h(Y)$ of a C^{∞} vector field Y on P are also C^{∞}.

Proof. Let ω be the \mathfrak{g}-valued 1 -form associated to the horizontal distribution \mathcal{H} by (28.2). It is C^{∞} by Theorem 28.1(iii). In terms of a basis B_{1}, \ldots, B_{ℓ} for \mathfrak{g}, we can write $\omega=\sum \omega^{i} B_{i}$, where ω^{i} are $C^{\infty} 1$-forms on P. If $Y_{p} \in T_{p} P$, then by (28.3) its vertical component $v\left(Y_{p}\right)$ is

$$
v\left(Y_{p}\right)=j_{p *}\left(\omega_{p}\left(Y_{p}\right)\right)=j_{p *}\left(\sum \omega_{p}^{i}\left(Y_{p}\right) B_{i}\right)=\sum \omega_{p}^{i}\left(Y_{p}\right)\left(\underline{B_{i}}\right)_{p} .
$$

As p varies over P,

$$
v(Y)=\sum \omega^{i}(Y) \underline{B_{i}} .
$$

Since ω^{i}, Y, and $\underline{B_{i}}$ are all C^{∞}, so is $v(Y)$. Because $h(Y)=Y-v(Y)$, the horizontal component $h(Y)$ of a C^{∞} vector field Y on P is also C^{∞}.

On a principal bundle $\pi: P \rightarrow M$, if $r_{g}: P \rightarrow P$ is right translation by $g \in G$, then $\pi \circ r_{g}=\pi$. It follows that $\pi_{*} \circ r_{g *}=\pi_{*}$. Thus, the right translation $r_{g *}: T_{p} P \rightarrow T_{p g} P$ sends a vertical vector to a vertical vector. By hypothesis, $r_{g *} \mathcal{H}_{p}=\mathcal{H}_{p g}$ and hence the right translation $r_{g *}$ also sends a horizontal vector to a horizontal vector.

Proposition 28.4. Suppose \mathcal{H} is a smooth right-invariant horizontal distribution on the total space of a principal G-bundle $\pi: P \rightarrow M$. For each $g \in G$, the right translation $r_{g *}$ commutes with the projections v and h.

Proof. Any $X_{p} \in T_{p} P$ decomposes into vertical and horizontal components:

$$
X_{p}=v\left(X_{p}\right)+h\left(X_{p}\right) .
$$

Applying $r_{g *}$ to both sides, we get

$$
\begin{equation*}
r_{g *} X_{p}=r_{g *} v\left(X_{p}\right)+r_{g *} h\left(X_{p}\right) . \tag{28.4}
\end{equation*}
$$

Since $r_{g *}$ preserves vertical and horizontal subspaces, $r_{g *} v\left(X_{p}\right)$ is vertical and $r_{g *} h\left(X_{p}\right)$ is horizontal. Thus, (28.4) is the decomposition of $r_{g *} X_{p}$ into vertical and horizontal components. This means for every $X_{p} \in T_{p} P$,

$$
v r_{g *}\left(X_{p}\right)=r_{g *} v\left(X_{p}\right) \quad \text { and } \quad h r_{g *}\left(X_{p}\right)=r_{g *} h\left(X_{p}\right) .
$$

28.3 The Horizontal Distribution of an Ehresmann Connection

In Section 28.1 we showed that a smooth, right-invariant horizontal distribution on the total space of a principal bundle determines an Ehresmann connection. We now prove the converse.

Theorem 28.5. If ω is a connection on the principal G-bundle $\pi: P \rightarrow M$, then $\mathcal{H}_{p}:=\operatorname{ker} \omega_{p}, p \in P$, is a smooth right-invariant horizontal distribution on P.

Proof. We need to verify three properties:
(i) At each point p in P, the tangent space $T_{p} P$ decomposes into a direct sum $T_{p} P=\mathcal{V}_{p} \oplus \mathcal{H}_{p}$.
(ii) For $p \in P$ and $g \in G, r_{g *}\left(\mathcal{H}_{p}\right) \subset \mathcal{H}_{p g}$.
(iii) \mathcal{H} is a C^{∞} subbundle of the tangent bundle $T P$.
(i) Since $\mathcal{H}_{p}=\operatorname{ker} \omega_{p}$, there is an exact sequence

$$
0 \rightarrow \mathcal{H}_{p} \rightarrow T_{p} P \xrightarrow{\omega_{p}} \mathfrak{g} \rightarrow 0 .
$$

The map $j_{p *}: \mathfrak{g} \rightarrow \mathcal{V}_{p} \subset T_{p} P$ provides a splitting of the sequence. By Proposition 27.20, there is a sequence of isomorphisms

$$
T_{p} P \simeq \mathfrak{g} \oplus \mathcal{H}_{p} \simeq \mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

(ii) Suppose $Y_{p} \in \mathcal{H}_{p}=\operatorname{ker} \omega_{p}$. By the right-equivariance property of an Ehresmann connection,

$$
\omega_{p g}\left(r_{g *} Y_{p}\right)=\left(r_{g}^{*} \omega\right)_{p}\left(Y_{p}\right)=\left(\operatorname{Ad}^{-1}\right) \omega_{p}\left(Y_{p}\right)=0
$$

Hence, $r_{g *} Y_{p} \in \mathcal{H}_{p g}$.
(iii) Let B_{1}, \ldots, B_{ℓ} be a basis for the Lie algebra \mathfrak{g} of G. Then $\omega=\sum \omega^{i} B_{i}$, where $\omega^{1}, \ldots, \omega^{\ell}$ are smooth \mathbb{R}-valued 1-forms on P and for $p \in P$,

$$
\mathcal{H}_{p}=\bigcap_{i=1}^{\ell} \operatorname{ker} \omega_{p}^{i}
$$

Since $\omega_{p}: T_{p} P \rightarrow \mathfrak{g}$ is surjective, $\omega^{1}, \ldots, \omega^{\ell}$ are linearly independent at p.
Fix a point $p \in P$ and let x^{1}, \ldots, x^{m} be local coordinates near p on P. Then

$$
\omega^{i}=\sum_{j=1}^{m} f_{j}^{i} d x^{j}, \quad i=1, \ldots, \ell
$$

for some C^{∞} functions f_{j}^{i} in a neighborhood of p.
Let b^{1}, \ldots, b^{m} be the fiber coordinates of $T P$ near p, i.e., if $v_{q} \in T_{q} P$ for q near p, then

$$
v_{q}=\left.\sum b^{j} \frac{\partial}{\partial x^{j}}\right|_{q}
$$

In terms of local coordinates,

$$
\begin{aligned}
\mathcal{H}_{q}=\bigcap_{i=1}^{\ell} \operatorname{ker} \omega_{q}^{i} & =\left\{v_{q} \in T_{q} P \mid \omega_{q}^{i}\left(v_{q}\right)=0, i=1, \ldots, \ell\right\} \\
& =\left\{\left(b^{1}, \ldots, b^{m}\right) \in \mathbb{R}^{m} \mid \sum_{j=1}^{m} f_{j}^{i}(q) b^{j}=0, i=1, \ldots, \ell\right\} .
\end{aligned}
$$

Let $F^{i}(q, b)=\sum_{j=1}^{m} f_{j}^{i}(q) b^{j}, i=1, \ldots, \ell$. Since $\omega^{1}, \ldots, \omega^{\ell}$ are linearly independent at p, the Jacobian matrix $\left[\partial F^{i} / \partial b^{j}\right]=\left[f_{j}^{i}\right]$, an $\ell \times m$ matrix, has rank ℓ at p. Without loss of generality, we may assume that the first $\ell \times \ell$ block of $\left[f_{j}^{i}(p)\right]$ has
rank ℓ. Since having maximal rank is an open condition, there is a neighborhood U_{p} of p on which the first $\ell \times \ell$ block of $\left[f_{j}^{i}\right]$ has rank ℓ. By the implicit function theorem, on $U_{p}, b^{1}, \ldots, b^{\ell}$ are C^{∞} functions of $b^{\ell+1}, \ldots, b^{m}$, say

$$
\begin{aligned}
b^{1} & =b^{1}\left(b^{\ell+1}, \ldots, b^{m}\right), \\
& \vdots \\
b^{\ell} & =b^{\ell}\left(b^{\ell+1}, \ldots, b^{m}\right)
\end{aligned}
$$

Let

$$
\begin{gathered}
X_{1}=\sum_{j=1}^{\ell} b^{j}(1,0, \ldots, 0) \frac{\partial}{\partial x^{j}}+\frac{\partial}{\partial x^{\ell+1}} \\
X_{2}=\sum_{j=1}^{\ell} b^{j}(0,1,0, \ldots, 0) \frac{\partial}{\partial x^{j}}+\frac{\partial}{\partial x^{\ell+2}} \\
\vdots \\
X_{m-\ell}= \\
\sum_{j=1}^{\ell} b^{j}(0,0, \ldots, 1) \frac{\partial}{\partial x^{j}}+\frac{\partial}{\partial x^{m}} .
\end{gathered}
$$

These are C^{∞} vector fields on U_{p} that span \mathcal{H}_{q} at each point $q \in U_{p}$. By the subbundle criterion (Theorem 20.4), \mathcal{H} is a C^{∞} subbundle of $T P$.

28.4 Horizontal Lift of a Vector Field to a Principal Bundle

Suppose \mathcal{H} is a horizontal distribution on a principal bundle $\pi: P \rightarrow M$. Let X be a vector field on M. For every $p \in P$, because the vertical subspace \mathcal{V}_{p} is $\operatorname{ker} \pi_{*}$, the differential $\pi_{*}: T_{p} P \rightarrow T_{\pi(p)} M$ induces an isomorphism

$$
\frac{T_{p} P}{\operatorname{ker} \pi_{*}} \xrightarrow[\rightarrow]{\rightrightarrows} \mathcal{H}_{p} \xrightarrow{\sim} T_{\pi(p)} M
$$

of the horizontal subspace \mathcal{H}_{p} with the tangent space $T_{\pi(p)} M$. Consequently, there is a unique horizontal vector $\tilde{X}_{p} \in \mathcal{H}_{p}$ such that $\pi_{*}\left(\tilde{X}_{p}\right)=X_{\pi(p)} \in T_{\pi(p)} M$. The vector field \tilde{X} is called the horizontal lift of X to P.

Proposition 28.6. If \mathcal{H} is a C^{∞} right-invariant horizontal distribution on the total space P of a principal bundle $\pi: P \rightarrow M$, then the horizontal lift \tilde{X} of a C^{∞} vector field X on M is a C^{∞} right-invariant vector field on P.
Proof. Let $x \in M$ and $p \in \pi^{-1}(x)$. By definition, $\pi_{*}\left(\tilde{X}_{p}\right)=X_{x}$. If q is any other point of $\pi^{-1}(x)$, then $q=p g$ for some $g \in G$. Since $\pi \circ r_{g}=\pi$,

$$
\pi_{*}\left(r_{g *} \tilde{X}_{p}\right)=\left(\pi \circ r_{g}\right)_{*} \tilde{X}_{p}=\pi_{*} \tilde{X}_{p}=X_{p}
$$

By the uniqueness of the horizontal lift, $r_{g *} \tilde{X}_{p}=\tilde{X}_{p g}$. This proves the right-invariance of \tilde{X}.

We prove the smoothness of \tilde{X} by proving it locally. Let $\{U\}$ be a trivializing open cover for P with trivializations $\phi_{U}: \pi^{-1}(U) \xrightarrow{\sim} U \times G$. Define

$$
Z_{(x, g)}=\left(X_{x}, 0\right) \in T_{(x, g)}(U \times G)
$$

Let $\eta: U \times G \rightarrow U$ be the projection to the first factor. Then Z is a C^{∞} vector field on $U \times G$ such that $\eta_{*} Z_{(x, g)}=X_{x}$, and $Y:=\left(\phi_{U *}\right)^{-1} Z$ is a C^{∞} vector field on $\pi^{-1}(U)$ such that $\pi_{*} Y_{p}=X_{\pi(p)}$. By Proposition 28.3, $h Y$ is a C^{∞} vector field on $\pi^{-1}(U)$. Clearly it is horizontal. Because $Y_{p}=v\left(Y_{p}\right)+h\left(Y_{p}\right)$ and $\pi_{*} v\left(Y_{p}\right)=0$, we have $\pi_{*} Y_{p}=$ $\pi_{*} h\left(Y_{p}\right)=X_{\pi(p)}$. Thus, $h Y$ lifts X over U. By the uniqueness of the horizontal lift, $h Y=\widetilde{X}$ over U. This proves that \tilde{X} is a smooth vector field on P.

28.5 Lie Bracket of a Fundamental Vector Field

If a principal bundle P comes with a connection, then it makes sense to speak of horizontal vector fields on P; these are vector fields all of whose vectors are horizontal.

Lemma 28.7. Suppose P is a principal bundle with a connection. Let \underline{A} be the fundamental vector field on P associated to $A \in \mathfrak{g}$.
(i) If Y is a horizontal vector field on P, then $[\underline{A}, Y]$ is horizontal.
(ii) If Y is a right-invariant vector field on P, then $[\underline{A}, Y]=0$.

Proof. (i) A local flow for \underline{A} is $\phi_{t}(p)=p e^{t A}=r_{e^{t A}}(p)$ (Proposition 27.14). By the identification of the Lie bracket with the Lie derivative of vector fields [21, Th. 20.4, p. 225] and the definition of the Lie derivative,

$$
\begin{equation*}
[\underline{A}, Y]_{p}=\left(\mathcal{L}_{\underline{A}} Y\right)_{p}=\lim _{t \rightarrow 0} \frac{\left(r_{e^{-t A}}\right)_{*} Y_{p e^{t A}}-Y_{p}}{t} \tag{28.5}
\end{equation*}
$$

Since right translation preserves horizontality (Theorem 28.5), both $\left(r_{e^{-t A}}\right)_{*} Y_{p e^{t A}}$ and Y_{p} are horizontal vectors. Denote the difference quotient in (28.5) by $c(t)$. For every t near 0 in $\mathbb{R}, c(t)$ is in the vector space \mathcal{H}_{p} of horizontal vectors at p. Therefore, $[\underline{A}, Y]_{p}=\lim _{t \rightarrow 0} c(t) \in \mathcal{H}_{p}$.
(ii) If Y is right-invariant, then

$$
\left(r_{e^{-t A}}\right)_{*} Y_{p e^{t A}}=Y_{p}
$$

In that case, it follows from (28.5) that $[\underline{A}, Y]_{p}=0$.

Problems

28.1. Maurer-Cartan connection

If θ is the Maurer-Cartan form on a Lie group and $\pi_{2}: M \times G \rightarrow G$ is the projection to the second factor, prove that $\omega:=\pi_{2}^{*} \theta$ is a connection on the trivial bundle $\pi_{1}: M \times G \rightarrow M$. It is called the Maurer-Cartan connection.

28.2. Convex linear combinations of connections

Prove that a convex linear combination ω of connections $\omega_{1}, \ldots, \omega_{n}$ on a principal bundle $\pi: P \rightarrow M$ is again a connection on $P .\left(\omega=\sum \lambda_{i} \omega_{i}, \sum \lambda_{i}=1, \lambda_{i} \geq 0.\right)$

28.3. Pullback of a connection

Let $\pi_{Q}: Q \rightarrow N$ and $\pi_{P}: P \rightarrow M$ be principal G-bundles, and let $(\bar{f}: Q \rightarrow P, f: N \rightarrow M)$ be a morphism of principal bundles. Prove that if θ is a connection on P, then $\bar{f}^{*} \theta$ is a connection on Q.

§29 Horizontal Distributions on a Frame Bundle

In this section we will explain the process by which a connection ∇ on a vector bundle E over a manifold M gives rise to a smooth right-invariant horizontal distribution on the associated frame bundle $\operatorname{Fr}(E)$. This involves a sequence of steps. A connection on the vector bundle E induces a covariant derivative on sections of the vector bundle along a curve. Parallel sections along the curve are those whose derivative vanishes. Just as for tangent vectors in Section 14, starting with a frame e_{x} for the fiber of the vector bundle at the initial point x of a curve, there is a unique way to parallel translate the frame along the curve. In terms of the frame bundle $\operatorname{Fr}(E)$, what this means is that every curve in M has a unique lift to $\operatorname{Fr}(E)$ starting at e_{x} representing parallel frames along the curve. Such a lift is called a horizontal lift. The initial vector at e_{x} of a horizontal lift is a horizontal vector at e_{x}. The horizontal vectors at a point of $\operatorname{Fr}(E)$ form a subspace of the tangent space $T_{e_{x}}(\operatorname{Fr}(E))$. In this way we obtain a horizontal distribution on the frame bundle. We show that this horizontal distribution on $\operatorname{Fr}(E)$ arising from a connection on the vector bundle E is smooth and right-invariant. It therefore corresponds to a connection ω on the principal bundle $\operatorname{Fr}(E)$. We then show that ω pulls back under a section e of $\operatorname{Fr}(E)$ to the connection matrix ω_{e} of the connection ∇ relative to the frame e on an open set U.

29.1 Parallel Translation in a Vector Bundle

In Section 14 we defined parallel translation of a tangent vector along a curve in a manifold with an affine connection. In fact, the same development carries over to an arbitrary vector bundle $\eta: E \rightarrow M$ with a connection ∇.

Let $c:[a, b] \rightarrow M$ be a smooth curve in M. Instead of vector fields along the curve c, we consider smooth sections of the pullback bundle $c^{*} E$ over $[a, b]$. These are called smooth sections of the vector bundle E along the curve c. We denote by $\Gamma\left(c^{*} E\right)$ the vector space of smooth sections of E along the curve c. If $E=T M$ is the tangent bundle of a manifold M, then an element of $\Gamma\left(c^{*} T M\right)$ is simply a vector field along the curve c in M. Just as in Theorem 13.1, there is a unique \mathbb{R}-linear map

$$
\frac{D}{d t}: \Gamma\left(c^{*} E\right) \rightarrow \Gamma\left(c^{*} E\right)
$$

called the covariant derivative corresponding to ∇, such that
(i) (Leibniz rule) for any C^{∞} function f on the interval $[a, b]$,

$$
\frac{D(f s)}{d t}=\frac{d f}{d t} s+f \frac{D s}{d t}
$$

(ii) if s is induced from a global section $\tilde{s} \in \Gamma(M, E)$ in the sense that $s(t)=\tilde{s}(c(t))$, then

$$
\frac{D s}{d t}(t)=\nabla_{c^{\prime}(t)} \tilde{s}
$$

Definition 29.1. A section $s \in \Gamma\left(c^{*} E\right)$ is parallel along a curve $c:[a, b] \rightarrow M$ if $D s / d t \equiv 0$ on $[a, b]$.

As in Section 14.5, the equation $D s / d t \equiv 0$ for a section s to be parallel is equivalent to a system of linear first-order ordinary differential equations. Suppose $c:[a, b] \rightarrow M$ maps into a framed open set $\left(U, e_{1}, \ldots, e_{r}\right)$ for E. Then $s \in \Gamma\left(c^{*} E\right)$ can be written as

$$
s(t)=\sum s^{i}(t) e_{i, c(t)} .
$$

By properties (i) and (ii) of the covariant derivative,

$$
\begin{aligned}
\frac{D s}{d t} & =\sum_{i} \frac{d s^{i}}{d t} e_{i}+\sum_{j} s^{j} \frac{D}{d t} e_{j, c(t)} \\
& =\sum_{i} \frac{d s^{i}}{d t} e_{i}+\sum_{j} s^{j} \nabla_{c^{\prime}(t)} e_{j} \\
& =\sum_{i} \frac{d s^{i}}{d t} e_{i}+\sum_{i, j} s^{j} \omega_{j}^{i}\left(c^{\prime}(t)\right) e_{i} .
\end{aligned}
$$

Hence, $D s / d t \equiv 0$ if and only if

$$
\frac{d s^{i}}{d t}+\sum_{j} s^{j} \omega_{j}^{i}\left(c^{\prime}(t)\right)=0 \text { for all } i
$$

This is a system of linear first-order differential equations. By the existence and uniqueness theorems of differential equations, it has a solution on a small interval about a give point t_{0} and the solution is uniquely determined by its value at t_{0}. Thus, a parallel section is uniquely determined by its value at a point. If $s \in \Gamma\left(c^{*} E\right)$ is a parallel section of the pullback bundle $c^{*} E$, we say that $s(b)$ is the parallel transport of $s(a)$ along $c:[a, b] \rightarrow M$. The resulting map: $E_{c(a)} \rightarrow E_{c(b)}$ is called parallel translation from $E_{c(a)}$ to $E_{c(b)}$.

Theorem 29.2. Let $\eta: E \rightarrow M$ be a C^{∞} vector bundle with a connection ∇ and let $c:[a, b] \rightarrow M$ be a smooth curve in M. There is a unique parallel translation $\varphi_{a, b}$ from $E_{c(a)}$ to $E_{c(b)}$ along c. This parallel translation $\varphi_{a, b}: E_{c(a)} \rightarrow E_{c(b)}$ is a linear isomorphism.

The proof is similar to that of Theorem 14.14.
A parallel frame along the curve $c:[a, b] \rightarrow M$ is a collection of parallel sections $\left(e_{1}(t), \ldots, e_{r}(t)\right), t \in[a, b]$, such that for each t, the elements $e_{1}(t), \ldots, e_{r}(t)$ form a basis for the vector space $E_{c(t)}$.

Let $\pi: \operatorname{Fr}(E) \rightarrow M$ be the frame bundle of the vector bundle $\eta: E \rightarrow M$. A curve $\tilde{c}(t)$ in $\operatorname{Fr}(E)$ is called a lift of the curve $c(t)$ in M if $c(t)=\pi(\tilde{c}(t))$. It is a horizontal lift if in addition $\tilde{c}(t)$ is a parallel frame along c.

Restricting the domain of the curve c to the interval $[a, t]$, we obtain from Theorem 29.2 that parallel translation is a linear isomorphism of $E_{c(a)}$ with $E_{c(t)}$. Thus, if
a collection of parallel sections $\left(s_{1}(t), \ldots, s_{r}(t)\right) \in \Gamma\left(c^{*} E\right)$ forms a basis at one time t, then it forms a basis at every time $t \in[a, b]$. By Theorem 29.2, for every smooth curve $c:[a, b] \rightarrow M$ and ordered basis $\left(s_{1,0}, \ldots, s_{r, 0}\right)$ for $E_{c(a)}$, there is a unique parallel frame along c whose value at a is $\left(s_{1,0}, \ldots, s_{r, 0}\right)$. In terms of the frame bundle $\operatorname{Fr}(E)$, this shows the existence and uniqueness of a horizontal lift with a specified initial point in $\operatorname{Fr}(E)$ of a curve $c(t)$ in M.

29.2 Horizontal Vectors on a Frame Bundle

On a general principal bundle vertical vectors are intrinsically defined, but horizontal vectors are not. We will see shortly that a connection on a vector bundle E over a manifold M determines a well-defined horizontal distribution on the frame bundle $\operatorname{Fr}(E)$. The elements of the horizontal distribution are the horizontal vectors. Thus, the notion of a horizontal vector on the frame bundle $\operatorname{Fr}(E)$ depends on a connection on E.

Definition 29.3. Let $E \rightarrow M$ be a vector bundle with a connection $\nabla, x \in M$, and $e_{x} \in \operatorname{Fr}\left(E_{x}\right)$. A tangent vector $v \in T_{e_{x}}(\operatorname{Fr}(E))$ is said to be horizontal if there is a curve $c(t)$ through x in M such that v is the initial vector $\tilde{c}^{\prime}(0)$ of the unique horizontal lift of $\tilde{c}(t)$ of $c(t)$ to $\operatorname{Fr}(E)$ starting at e_{x}.

Our goal now is to show that the horizontal vectors at a point e_{x} of the frame bundle form a vector subspace of the tangent space $T_{e_{x}}(\operatorname{Fr}(E))$. To this end we will derive an explicit formula for $\tilde{c}^{\prime}(0)$ in terms of a local frame for E. Suppose $c:[0, b] \rightarrow M$ is a smooth curve with initial point $c(0)=x$, and $\tilde{c}(t)$ is its unique horizontal lift to $\operatorname{Fr}(E)$ with initial point $e_{x}=\left(e_{1,0}, \ldots, e_{r, 0}\right)$. Let s be a frame for E over a neighborhood U of x with $s(x)=e_{x}$. Then $s(c(t))$ is a lift of $c(t)$ to $\operatorname{Fr}(E)$ with initial point e_{x}, but of course it is not necessarily a horizontal lift (see Figure 29.1). For any $t \in[0, b]$, we have two ordered bases $s(c(t))$ and $\tilde{c}(t)$ for $E_{c(t)}$, so there is a smooth matrix $a(t) \in \mathrm{GL}(r, \mathbb{R})$ such that $s(c(t))=\tilde{c}(t) a(t)$. At $t=0, s(c(0))=e_{x}=$ $\tilde{c}(0)$, so that $a(0)=I$, the identity matrix in $\operatorname{GL}(r, \mathbb{R})$.

Lemma 29.4. In the notation above, let $s_{*}: T_{x}(M) \rightarrow T_{e_{x}}(\operatorname{Fr}(E))$ be the differential of s and $a^{\prime}(0)$ the fundamental vector field on $\operatorname{Fr}(E)$ associated to $a^{\prime}(0) \in \mathfrak{g l}(r, \mathbb{R})$. Then

$$
s_{*}\left(c^{\prime}(0)\right)=\tilde{c}^{\prime}(0)+\underline{a}^{\prime}(0)_{e_{x}} .
$$

Proof. Let $P=\operatorname{Fr}(E)$ and $G=\mathrm{GL}(r, \mathbb{R})$, and let $\mu: P \times G \rightarrow P$ be the right action of G on P. Then

$$
\begin{equation*}
s(c(t))=\tilde{c}(t) a(t)=\mu(\tilde{c}(t), a(t)) \tag{29.1}
\end{equation*}
$$

with $c(0)=x, \tilde{c}(0)=e_{x}$, and $a(0)=$ the identity matrix I. Differentiating (29.1) with respect to t and evaluating at 0 gives

$$
s_{*}\left(c^{\prime}(0)\right)=\mu_{*,(\tilde{c}(0), a(0))}\left(\tilde{c}^{\prime}(0), a^{\prime}(0)\right) .
$$

Fig. 29.1. Two liftings of a curve

By the formula for the differential of an action (Problem 27.4),

$$
s_{*}\left(c^{\prime}(0)\right)=r_{a(0) *} \tilde{c}^{\prime}(0)+\underline{a}^{\prime}(0)_{\tilde{c}(0)}=\tilde{c}^{\prime}(0)+\underline{a}^{\prime}(0)_{e_{x}} .
$$

Lemma 29.5. Let $E \rightarrow M$ be a vector bundle with a connection ∇. Suppose $s=$ $\left(s_{1}, \ldots, s_{r}\right)$ is a frame for E over an open set $U, \tilde{c}(t)$ a parallel frame over a curve $c(t)$ in U with $\tilde{c}(0)=s(c(0))$, and $a(t)$ the curve in $\mathrm{GL}(r, \mathbb{R})$ such that $s(c(t))=\tilde{c}(t) a(t)$. If $\omega_{s}=\left[\omega_{j}^{i}\right]$ is the connection matrix of ∇ with respect to the frame $\left(s_{1}, \ldots, s_{r}\right)$ over U, then $a^{\prime}(0)=\omega_{s}\left(c^{\prime}(0)\right)$.

Proof. Label $c(0)=x$ and $\tilde{c}_{i}(0)=s_{i}(c(0))=e_{i, x}$. By the definition of the connection matrix,

$$
\begin{equation*}
\nabla_{c^{\prime}(0)} s_{j}=\sum \omega_{j}^{i}\left(c^{\prime}(0)\right) s_{i}(c(0))=\sum \omega_{j}^{i}\left(c^{\prime}(0)\right) e_{i, x} . \tag{29.2}
\end{equation*}
$$

On the other hand, by the defining properties of the covariant derivative (Section 29.1),

$$
\begin{aligned}
\nabla_{c^{\prime}(t)} s_{j} & =\frac{D\left(s_{j} \circ c\right)}{d t}(t)=\frac{D}{d t} \sum \tilde{c}_{i}(t) a_{j}^{i}(t) \\
& =\sum\left(a_{j}^{i}\right)^{\prime}(t) \tilde{c}_{i}(t)+\sum a_{j}^{i}(t) \frac{D \tilde{c}_{i}}{d t}(t) \\
& =\sum\left(a_{j}^{i}\right)^{\prime}(t) \tilde{c}_{i}(t) \quad\left(\text { since } D \tilde{c}_{i} / d t \equiv 0\right) .
\end{aligned}
$$

Setting $t=0$ gives

$$
\begin{equation*}
\nabla_{c^{\prime}(0)} s_{j}=\sum\left(a_{j}^{i}\right)^{\prime}(0) e_{i, x} . \tag{29.3}
\end{equation*}
$$

Equating (29.2) and (29.3), we obtain $\left(a_{j}^{i}\right)^{\prime}(0)=\omega_{j}^{i}\left(c^{\prime}(0)\right)$.
Thus, Lemma 29.4 for the horizontal lift of $c^{\prime}(0)$ can be rewritten in the form

$$
\begin{equation*}
\tilde{c}^{\prime}(0)=s_{*}\left(c^{\prime}(0)\right)-\underline{a}^{\prime}(0)_{e_{x}}=s_{*}\left(c^{\prime}(0)\right)-\underline{\omega}_{s}\left(c^{\prime}(0)\right)_{e_{x}} . \tag{29.4}
\end{equation*}
$$

Proposition 29.6. Let $\pi: E \rightarrow M$ be a smooth vector bundle with a connection over a manifold M of dimension n. For $x \in M$ and e_{x} an ordered basis for the fiber E_{x}, the subset $\mathcal{H}_{e_{x}}$ of horizontal vectors in the tangent space $T_{e_{x}}(\operatorname{Fr}(E))$ is a vector space of dimension n, and $\pi_{*}: \mathcal{H}_{e_{x}} \rightarrow T_{x} M$ is a linear isomorphism.

Proof. In formula (29.4), $\omega_{s}\left(c^{\prime}(0)\right)$ is \mathbb{R}-linear in its argument $c^{\prime}(0)$ because ω_{s} is a 1-form at $c(0)$. The operation $A \mapsto \underline{A}_{e_{x}}$ of associating to a matrix $A \in \mathfrak{g l}(r, \mathbb{R})$ a tangent vector $\underline{A}_{e_{x}} \in T_{e_{x}}(\operatorname{Fr}(E))$ is \mathbb{R}-linear by (27.3). Hence, formula (29.4) shows that the map

$$
\begin{aligned}
\phi: T_{x} M & \rightarrow T_{e_{x}}(\operatorname{Fr}(E)), \\
c^{\prime}(0) & \mapsto \tilde{c}^{\prime}(0)
\end{aligned}
$$

is \mathbb{R}-linear. As the image of a vector space $T_{x} M$ under a linear map, the set $\mathcal{H}_{e_{x}}$ of horizontal vectors $\tilde{c}^{\prime}(0)$ at e_{x} is a vector subspace of $T_{e_{x}}(\operatorname{Fr}(E))$.

Since $\pi(\tilde{c}(t))=c(t)$, taking the derivative at $t=0$ gives $\pi_{*}\left(\tilde{c}^{\prime}(0)\right)=c^{\prime}(0)$, so π_{*} is a left inverse to the map ϕ. This proves that $\phi: T_{x} M \rightarrow T_{e_{x}}(\operatorname{Fr}(E))$ is injective. Its image is by definition $\mathcal{H}_{e_{x}}$. It follows that $\phi: T_{x} M \rightarrow \mathcal{H}_{e_{x}}$ is an isomorphism with inverse $\pi_{*}: \mathcal{H}_{e_{x}} \rightarrow T_{e_{x}} M$.

29.3 Horizontal Lift of a Vector Field to a Frame Bundle

We have learned so far that a connection on a vector bundle $E \rightarrow M$ defines a horizontal subspace \mathcal{H}_{p} of the tangent space $T_{p} P$ at each point p of the total space of the frame bundle $\pi: P=\operatorname{Fr}(E) \rightarrow M$. The horizontal subspace \mathcal{H}_{p} has the same dimension as M. The vertical subspace \mathcal{V}_{p} of $T_{p} P$ is the kernel of the surjection $\pi_{*}: T_{p} P \rightarrow T_{\pi(p)} M$; as such, $\operatorname{dim} \mathcal{V}_{p}=\operatorname{dim} T_{p} P-\operatorname{dim} M$. Hence, \mathcal{V}_{p} and \mathcal{H}_{p} have complementary dimensions in $T_{p} P$. Since $\pi_{*}\left(\mathcal{V}_{p}\right)=0$ and $\pi_{*}: \mathcal{H}_{p} \rightarrow T_{\pi(p)} M$ is an isomorphism, $\mathcal{V}_{p} \cap \mathcal{H}_{p}=0$. It follows that there is a direct sum decomposition

$$
\begin{equation*}
T_{p}(\operatorname{Fr}(E))=\mathcal{V}_{p} \oplus \mathcal{H}_{p} \tag{29.5}
\end{equation*}
$$

Our goal now is to show that as p varies in P, the subset $\mathcal{H}:=\bigcup_{p \in P} \mathcal{H}_{p}$ of the tangent bundle TP defines a C^{∞} horizontal distribution on P in the sense of Section 27.6.

Since $\pi_{*, p}: \mathcal{H}_{p} \rightarrow T_{\pi(p)} M$ is an isomorphism for each $p \in P$, if X is a vector field on M, then there is a unique vector field \tilde{X} on P such that $\tilde{X}_{p} \in \mathcal{H}_{p}$ and $\pi_{*, p}\left(\tilde{X}_{p}\right)=$ $X_{\pi(p)}$. The vector field \tilde{X} is called the horizontal lift of X to the frame bundle P.

Since every tangent vector $X_{x} \in T_{x} M$ is the initial vector $c^{\prime}(0)$ of a curve c, formula (29.4) for the horizontal lift of a tangent vector can be rewritten in the following form.

Lemma 29.7 (Horizontal lift formula). Suppose ∇ is a connection on a vector bundle $E \rightarrow M$ and ω_{s} is its connection matrix on a framed open set (U, s). For $x \in U$, $p=s(x) \in \operatorname{Fr}(E)$, and $X_{x} \in T_{x} M$, let \tilde{X}_{p} be the horizontal lift of X_{x} to p in $\operatorname{Fr}(E)$. Then

$$
\tilde{X}_{p}=s_{*, x}\left(X_{x}\right)-\underline{\omega_{s}\left(X_{x}\right)} p .
$$

Proposition 29.8. Let $E \rightarrow M$ be a C^{∞} rank r vector bundle with a connection and $\pi: \operatorname{Fr}(E) \rightarrow M$ its frame bundle. If X is a C^{∞} vector field on M, then its horizontal lift \tilde{X} to $\operatorname{Fr}(E)$ is a C^{∞} vector field.

Proof. Let $P=\operatorname{Fr}(E)$ and $G=\mathrm{GL}(r, \mathbb{R})$. Since the question is local, we may assume that the bundle P is trivial, say $P=M \times G$. By the right invariance of the horizontal distribution,

$$
\begin{equation*}
\tilde{X}_{(x, a)}=r_{a *} \tilde{X}_{(x, 1)} . \tag{29.6}
\end{equation*}
$$

Let $s: M \rightarrow P=M \times G$ be the section $s(x)=(x, 1)$. By the horizontal lift formula (Lemma 29.7),

$$
\begin{equation*}
\tilde{X}_{(x, 1)}=s_{*, x}\left(X_{x}\right)-\underline{\omega_{s}\left(X_{x}\right)}(x, 1) . \tag{29.7}
\end{equation*}
$$

Let $p=(x, a) \in P$ and let f be a C^{∞} function on P. We will prove that $\tilde{X}_{p} f$ is C^{∞} as a function of p. By (29.6) and (29.7),

$$
\begin{equation*}
\tilde{X}_{p} f=r_{a *} s_{*, x}\left(X_{x}\right) f-r_{a *}{\underline{\omega_{s}}\left(X_{x}\right)_{(x, 1)} f, ~}_{\text {rem }} \tag{29.8}
\end{equation*}
$$

so it suffices to prove separately that $\left(r_{a *}\left(s_{*, x} X_{x}\right)\right) f$ and $\left(r_{a *} \underline{\omega_{s}\left(X_{x}\right)}(x, 1)\right) f$ are C^{∞} functions on P.

The first term is

$$
\begin{align*}
\left(r_{a *} s_{*, x}\left(X_{x}\right)\right) f & =X_{x}\left(f \circ r_{a} \circ s\right) \\
& =X\left(f \circ r_{a} \circ s\right)(\pi(p)) \\
& =X(f(s(\pi(p)) a))=X(f(\mu(s(\pi(p)), a))) \\
& =X\left(f\left(\mu\left(s(\pi(p)), \pi_{2}(p)\right)\right)\right), \tag{29.9}
\end{align*}
$$

where $\mu: P \times G \rightarrow P$ is the action of G on P and $\pi_{2}: P=M \times G \rightarrow G$ is the projection $\pi_{2}(p)=\pi_{2}(x, a)=a$. The formula (29.9) expresses $\left(r_{a *} s_{*, x}\left(X_{x}\right)\right) f$ as a C^{∞} function on P.

By the right equivariance of the connection form ω_{s}, in (29.8) the second term can be rewritten as

$$
\begin{aligned}
r_{a *} \underline{\omega}_{s}\left(X_{x}\right) \\
(x, 1)
\end{aligned} f={\underline{\left(\operatorname{Ad} a^{-1}\right) \omega_{s}\left(X_{x}\right)}(x, a)} f
$$

where $\left(\operatorname{Ad} \pi_{2}(p)^{-1}\right) \omega_{s}\left(X_{\pi(p)}\right)$ is a C^{∞} function: $P \rightarrow \mathfrak{g l}(r, \mathbb{R})$ that we will denote by $A(p)$. The problem now is to show that $p \mapsto \underline{A(p)}_{p} f$ is a C^{∞} function of p.

Let $\mu: P \times G \rightarrow P$ be the right action of $G=\mathrm{GL}(r, \mathbb{R})$ on $P=\operatorname{Fr}(E)$. Then

$$
\underline{A(p)} p=\left.\frac{d}{d t}\right|_{t=0} f\left(p \cdot e^{t A(p)}\right)=\left.\frac{d}{d t}\right|_{t=0} f\left(\mu\left(p, e^{t A(p)}\right)\right) .
$$

Since f, μ, A, and the exponential map are all C^{∞} functions, $\underline{A(p)}_{p} f$ is a C^{∞} function of p. Thus, $\tilde{X}_{p} f$ in (29.8) is a C^{∞} function of p. This proves that \tilde{X} is a C^{∞} vector field on P.

Theorem 29.9. A connection ∇ on a smooth vector bundle $E \rightarrow M$ defines a C^{∞} distribution \mathcal{H} on the frame bundle $\pi: P=\operatorname{Fr}(E) \rightarrow M$ such that at any $p \in P$,
(i) $T_{p} P=\mathcal{V}_{p} \oplus \mathcal{H}_{p}$;
(ii) $r_{g *}\left(\mathcal{H}_{p}\right)=\mathcal{H}_{p g}$ for any $g \in G=\mathrm{GL}(r, \mathbb{R})$,
where $r_{g}: P \rightarrow P$ is the right action of G on P.
Proof. To prove that \mathcal{H} is a C^{∞} subbundle of $T P$, let U be a coordinate open set in M and s_{1}, \ldots, s_{n} a C^{∞} frame on U. By Proposition 29.8 the horizontal lifts $\widetilde{s_{1}}, \ldots, \widetilde{s_{n}}$ are C^{∞} vector fields on $\tilde{U}:=\pi^{-1}(U)$. Moreover, for each $p \in \tilde{U}$, since $\pi_{*, p}: \mathcal{H}_{p} \rightarrow$ $T_{\pi(p)} M$ is an isomorphism, $\left(\widetilde{s_{1}}\right)_{p}, \ldots,\left(\widetilde{s_{n}}\right)_{p}$ form a basis for \mathcal{H}_{p}. Thus, over \tilde{U} the C^{∞} sections $\widetilde{s_{1}}, \ldots, \widetilde{s_{n}}$ of $T P$ span \mathcal{H}. By Theorem 20.4, this proves that \mathcal{H} is a C^{∞} subbundle of $T P$.

Equation (29.5) establishes (i).
As for (ii), let $\tilde{c}^{\prime}(0) \in \mathcal{H}_{p}$, where $c(t)$ is a curve in M and $\tilde{c}(t)=\left[v_{1}(t) \cdots v_{r}(t)\right]$ is its horizontal lift to P with initial point p. Here we are writing a frame as a row vector so that the group action is simply matrix multiplication on the right. For any $g=\left[g_{j}^{i}\right] \in \mathrm{GL}(r, \mathbb{R})$,

$$
\tilde{c}(t) g=\left[\sum g_{1}^{i} v_{i}(t) \cdots \sum g_{r}^{i} v_{i}(t)\right] .
$$

Since $D v_{i} / d t \equiv 0$ by the horizontality of v_{i} and g_{j}^{i} are constants, $D\left(\sum g_{j}^{i} v_{i}\right) / d t \equiv 0$. Thus, $\tilde{c}(t) g$ is the horizontal lift of $c(t)$ with initial point $\tilde{c}(0) g$. It has initial tangent vector

$$
\left.\frac{d}{d t}\right|_{t=0} \tilde{c}(t) g=r_{g *} \tilde{c}^{\prime}(0) \in \mathcal{H}_{p g} .
$$

This proves that $r_{g *} \mathcal{H}_{p} \subset \mathcal{H}_{p g}$. Because $r_{g *}: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p g}$ has a two-sided inverse $r_{g^{-1} *}$, it is bijective. In particular, $r_{g *} \mathcal{H}_{p}=\mathcal{H}_{p g}$.

29.4 Pullback of a Connection on a Frame Bundle Under a Section

Recall that a connection ∇ on a vector bundle E can be represented on a framed open set $\left(U, e_{1}, \ldots, e_{r}\right)$ for E by a connection matrix ω_{e} depending on the frame. Such a frame $e=\left(e_{1}, \ldots, e_{r}\right)$ is in fact a section $e: U \rightarrow \operatorname{Fr}(E)$ of the frame bundle. We now use the horizontal lift formula (Lemma 29.7) to prove that the Ehresmann connection ω on the frame bundle $\operatorname{Fr}(E)$ determined by ∇ pulls back under the section e to the connection matrix ω_{e}.

Theorem 29.10. Let ∇ be a connection on a vector bundle $E \rightarrow M$ and let ω be the Ehresmann connection on the frame bundle $\operatorname{Fr}(E)$ determined by ∇. If $e=\left(e_{1}, \ldots, e_{r}\right)$ is a frame for E over an open set U, viewed as a section $e:\left.U \rightarrow \operatorname{Fr}(E)\right|_{U}$, and ω_{e} is the connection matrix of ∇ relative to the frame e, then $\omega_{e}=e^{*} \omega$.

Proof. Let $x \in U$ and $p=e(x) \in \operatorname{Fr}(E)$. Suppose X_{x} is a tangent vector to M at x. If we write $\omega_{e, x}$ for the value of the connection matrix ω_{e} at the point $x \in U$, then $\omega_{e, x}$ is an $r \times r$ matrix of 1-forms at x and $\omega_{e, x}\left(X_{x}\right)$ is an $r \times r$ matrix of real numbers, i.e., an element of the Lie algebra $\mathfrak{g l}(r, \mathbb{R})$. The corresponding fundamental vector field on $\operatorname{Fr}(E)$ is $\omega_{e, x}\left(X_{x}\right)$. By Lemma 29.7, the horizontal lift of X_{x} to $p \in \operatorname{Fr}(E)$ is

$$
\tilde{X}_{p}=e_{*} X_{x}-{\underline{\omega_{e, x}\left(X_{x}\right)}}_{p} .
$$

Applying the Ehresmann connection ω_{p} to both sides of this equation, we get

$$
\begin{aligned}
0 & =\omega_{p}\left(\tilde{X}_{p}\right)=\omega_{p}\left(e_{*} X_{x}\right)-\omega_{p}\left({\underline{\omega_{e, x}\left(X_{x}\right)}}_{p}\right) \\
& =\left(e^{*} \omega_{p}\right)\left(X_{x}\right)-\omega_{e, x}\left(X_{x}\right) \quad \text { (by Theorem 28.1(i)). }
\end{aligned}
$$

Since this is true for all $X_{x} \in T_{x} M$,

$$
e^{*} \omega_{p}=\left(e^{*} \omega\right)_{x}=\omega_{e, x}
$$

$\S 30$ Curvature on a Principal Bundle

Let G be a Lie group with Lie algebra \mathfrak{g}. Associated to a connection ω on a principal G-bundle is a \mathfrak{g}-valued 2 -form Ω called its curvature. The definition of the curvature is suggested by the second structural equation for a connection ∇ on a vector bundle E. Just as the connection form ω on the frame bundle $\operatorname{Fr}(E)$ pulls back by a section e of $\operatorname{Fr}(E)$ to the connection matrix ω_{e} of ∇ with respect to the frame e, so the curvature form Ω on the frame bundle $\operatorname{Fr}(E)$ pulls back by e to the curvature matrix Ω_{e} of ∇ with respect to e. Thus, the curvature form Ω on the frame bundle is an intrinsic object of which the curvature matrices Ω_{e} are but local manifestations.

30.1 Curvature Form on a Principal Bundle

By Theorem 11.1 if ∇ is a connection on a vector bundle $E \rightarrow M$, then its connection and curvature matrices ω_{e} and Ω_{e} on a framed open set $(U, e)=\left(U, e_{1}, \ldots, e_{r}\right)$ are related by the second structural equation (Theorem 11.1)

$$
\Omega_{e}=d \omega_{e}+\omega_{e} \wedge \omega_{e}
$$

In terms of the Lie bracket of matrix-valued forms (see (21.12)), this can be rewritten as

$$
\Omega_{e}=d \omega_{e}+\frac{1}{2}\left[\omega_{e}, \omega_{e}\right]
$$

An Ehresmann connection on a principal bundle is Lie algebra-valued. In a general Lie algebra, the wedge product is not defined, but the Lie bracket is always defined. This strongly suggests the following definition for the curvature of an Ehresmann connection on a principal bundle.

Definition 30.1. Let G be a Lie group with Lie algebra \mathfrak{g}. Suppose ω is an Ehresmann connection on a principal G-bundle $\pi: P \rightarrow M$. Then the curvature of the connection ω is the \mathfrak{g}-valued 2 -form

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega] .
$$

Recall that frames for a vector bundle E over an open set U are sections of the frame bundle $\operatorname{Fr}(E)$. Let ω be the connection form on the frame bundle $\operatorname{Fr}(E)$ determined by a connection ∇ on E. In the same way that ω pulls back by sections of $\operatorname{Fr}(E)$ to connection matrices, the curvature form Ω of the connection ω on $\operatorname{Fr}(E)$ pulls back by sections to curvature matrices.

Proposition 30.2. If ∇ is a connection on a vector bundle $E \rightarrow M$ and ω is the associated Ehresmann connection on the frame bundle $\operatorname{Fr}(E)$, then the curvature matrix Ω_{e} relative to a frame $e=\left(e_{1}, \ldots, e_{r}\right)$ for E over an open set U is the pullback $e^{*} \Omega$ of the curvature Ω on the frame bundle $\operatorname{Fr}(E)$.

Proof.

$$
\begin{aligned}
e^{*} \Omega & =e^{*} d \omega+\frac{1}{2} e^{*}[\omega, \omega] & & \\
& =d e^{*} \omega+\frac{1}{2}\left[e^{*} \omega, e^{*} \omega\right] & & \left(e^{*} \text { commutes with } d \text { and }[,]\right. \text { by Proposition 21.8) } \\
& =d \omega_{e}+\frac{1}{2}\left[\omega_{e}, \omega_{e}\right] & & (\text { by Theorem 29.10) } \\
& =\Omega_{e} . & & (\text { by the second structural equation })
\end{aligned}
$$

30.2 Properties of the Curvature Form

Now that we have defined the curvature of a connection on a principal G-bundle $\pi: P \rightarrow M$, it is natural to study some of its properties. Like a connection form, the curvature form Ω is equivariant with respect to right translation on P and the adjoint representation on \mathfrak{g}. However, unlike a connection form, a curvature form is horizontal in the sense that it vanishes as long as one argument is vertical. In this respect it acts almost like the opposite of a connection form, which vanishes on horizontal vectors.

Lemma 30.3. Let G be a Lie group with Lie algebra \mathfrak{g} and $\pi: P \rightarrow M$ a principal G-bundle with a connection ω. Fix a point $p \in P$.
(i) Every vertical vector $X_{p} \in T_{p} P$ can be extended to a fundamental vector field \underline{A} on P for some $A \in \mathfrak{g}$.
(ii) Every horizontal vector $Y_{p} \in T_{p} P$ can be extended to the horizontal lift \tilde{B} of a C^{∞} vector field B on M.

Proof. (i) By the surjectivity of $j_{p *}: \mathfrak{g} \rightarrow \mathcal{V}_{p}$ (Proposition 27.18) and Equation (27.3),

$$
X_{p}=j_{p *}(A)=\underline{A}_{p}
$$

for some $A \in \mathfrak{g}$. Then the fundamental vector field \underline{A} on P extends X_{p}.
(ii) Let $x=\pi(p)$ in M and let B_{x} be the projection $\pi_{*}\left(Y_{p}\right) \in T_{x} M$ of the vector Y_{p}. We can extend B_{x} to a smooth vector field B on M. The horizontal lift \tilde{B} of B extends Y_{p} on P.

By Proposition 28.6, such a horizontal lift \tilde{B} is necessarily right-invariant.
Theorem 30.4. Let G be a Lie group with Lie algebra \mathfrak{g}. Suppose $\pi: P \rightarrow M$ is a principal G-bundle, ω a connection on P, and Ω the curvature form of ω.
(i) (Horizontality) For $p \in P$ and $X_{p}, Y_{p} \in T_{p} P$,

$$
\begin{equation*}
\Omega_{p}\left(X_{p}, Y_{p}\right)=(d \omega)_{p}\left(h X_{p}, h Y_{p}\right) . \tag{30.1}
\end{equation*}
$$

(ii) (G-equivariance) For $g \in G$, we have $r_{g}^{*} \Omega=\left(\operatorname{Ad} g^{-1}\right) \Omega$.
(iii) (Second Bianchi identity) $d \Omega=[\Omega, \omega]$.

Proof. (i) Since both sides of (30.1) are linear in X_{p} and in Y_{p}, we may decompose X_{p} and Y_{p} into vertical and horizontal components, and so it suffices to check the equation for vertical and horizontal vectors only. There are three cases.

Case 1. Both X_{p} and Y_{p} are horizontal. Then

$$
\begin{aligned}
\Omega_{p}\left(X_{p}, Y_{p}\right)= & (d \omega)_{p}\left(X_{p}, Y_{p}\right)+\frac{1}{2}\left[\omega_{p}, \omega_{p}\right]\left(X_{p}, Y_{p}\right) & & \text { (definition of } \Omega \text {) } \\
= & (d \omega)_{p}\left(X_{p}, Y_{p}\right) & & \\
& +\frac{1}{2}\left(\left[\omega_{p}\left(X_{p}\right), \omega_{p}\left(Y_{p}\right)\right]-\left[\omega_{p}\left(Y_{p}\right), \omega_{p}\left(X_{p}\right)\right]\right) & & \\
= & (d \omega)_{p}\left(X_{p}, Y_{p}\right) & & \left(\omega_{p}\left(X_{p}\right)=0\right) \\
= & (d \omega)_{p}\left(h X_{p}, h Y_{p}\right) . & & \left(X_{p}, Y_{p}\right. \text { horizontal) }
\end{aligned}
$$

Case 2. One of X_{p} and Y_{p} is horizontal; the other is vertical. Without loss of generality, we may assume X_{p} vertical and Y_{p} horizontal. Then $\left[\omega_{p}, \omega_{p}\right]\left(X_{p}, Y_{p}\right)=0$ as in Case 1.

By Lemma 30.3 the vertical vector X_{p} extends to a fundamental vector field \underline{A} on P and the horizontal vector Y_{p} extends to a right-invariant horizontal vector field \tilde{B} on P. By the global formula for the exterior derivative (Problem 21.8)

$$
d \omega(\underline{A}, \tilde{B})=\underline{A}(\omega(\tilde{B}))-\tilde{B}(\omega(\underline{A}))-\omega([\underline{A}, \tilde{B}]) .
$$

On the right-hand side, $\omega(\tilde{B})=0$ because \tilde{B} is horizontal, and $\tilde{B} \omega(\underline{A})=\tilde{B} A=0$ because A is a constant function on P. Being the bracket of a fundamental and a horizontal vector field, $[\underline{A}, \tilde{B}]$ is horizontal by Lemma 28.7, and therefore $\omega([\underline{A}, \tilde{B}])=0$. Hence, the left-hand side of (30.1) becomes

$$
\Omega_{p}\left(X_{p}, Y_{p}\right)=(d \omega)_{p}\left(\underline{A}_{p}, \tilde{B}_{p}\right)=0
$$

The right-hand side of (30.1) is also zero because $h X_{p}=0$.
Case 3. Both X_{p} and Y_{p} are vertical. As in Case 2, we can write $X_{p}=\underline{A}_{p}$ and $Y_{p}=\underline{B}_{p}$ for some $A, B \in \mathfrak{g}$. We have thus extended the vertical vectors X_{p} and Y_{p} to fundamental vector fields $X=\underline{A}$ and $Y=\underline{B}$ on P. By the definition of curvature,

$$
\begin{align*}
\Omega(X, Y) & =\Omega(\underline{A}, \underline{B}) \\
& =d \omega(\underline{A}, \underline{B})+\frac{1}{2}([\omega(\underline{A}), \omega(\underline{B})]-[\omega(\underline{B}), \omega(\underline{A})]) \\
& =d \omega(\underline{A}, \underline{B})+[A, B] . \tag{30.2}
\end{align*}
$$

In this sum the first term is

$$
\begin{align*}
d \omega(\underline{A}, \underline{B}) & =\underline{A}(\omega(\underline{B}))-\underline{B}(\omega(\underline{A}))-\omega([\underline{A}, \underline{B}]) \\
& =\underline{A}(B)-\underline{B}(A)-\omega(\underline{A, B]}) \tag{Problem27.1}\\
& =0-0-[A, B] .
\end{align*}
$$

Hence, (30.2) becomes

$$
\Omega(X, Y)=-[A, B]+[A, B]=0
$$

On the other hand,

$$
(d \omega)_{p}\left(h X_{p}, h Y_{p}\right)=(d \omega)_{p}(0,0)=0
$$

(ii) Since the connection form ω is right-equivariant with respect to Ad ,

$$
\begin{array}{rlr}
r_{g}^{*} \Omega & =r_{g}^{*}\left(d \omega+\frac{1}{2}[\omega, \omega]\right) & \text { (definition of curvature) } \\
& =d r_{g}^{*} \omega+\frac{1}{2}\left[r_{g}^{*} \omega, r_{g}^{*} \omega\right] & \text { (Proposition 21.8) } \tag{Proposition21.8}\\
& =d\left(\operatorname{Ad} g^{-1}\right) \omega+\frac{1}{2}\left[\left(\operatorname{Ad} g^{-1}\right) \omega,\left(\operatorname{Ad} g^{-1}\right) \omega\right] & \\
& =\left(\operatorname{Ad} g^{-1}\right)\left(d \omega+\frac{1}{2}[\omega, \omega]\right) & \\
& =\left(\operatorname{Ad} g^{-1}\right) \Omega &
\end{array}
$$

In this computation we used the fact that because $\operatorname{Ad} g^{-1}=\left(c_{g^{-1}}\right)_{*}$ is the differential of a Lie group homomorphism, it is a Lie algebra homomorphism.
(iii) Taking the exterior derivative of the definition of the curvature form, we get

$$
\begin{array}{rlrl}
d \Omega & =\frac{1}{2} d[\omega, \omega] & \\
& =\frac{1}{2}([d \omega, \omega]-[\omega, d \omega]) & & (\text { Proposition 21.6) } \\
& =[d \omega, \omega] & & \text { (Proposition 21.5) } \\
& =\left[\Omega-\frac{1}{2}[\omega, \omega], \omega\right] & & \text { (definition of } \Omega) \\
& =[\Omega, \omega]-\frac{1}{2}[[\omega, \omega], \omega] & \\
& =[\Omega, \omega] . & & \\
\text { (Problem 21.5) }
\end{array}
$$

In case P is the frame bundle $\operatorname{Fr}(E)$ of a rank r vector bundle E, with structure group $\operatorname{GL}(r, \mathbb{R})$, the second Bianchi identity becomes by Proposition 21.7

$$
\begin{equation*}
d \Omega=[\Omega, \omega]=\Omega \wedge \omega-\omega \wedge \Omega \tag{30.3}
\end{equation*}
$$

where the connection and curvature forms ω and Ω are $\mathfrak{g l}(r, \mathbb{R})$-valued forms on $\operatorname{Fr}(E)$. It should not be so surprising that it has the same form as the second Bianchi identity for the connection and curvature matrices relative to a frame e for E (Proposition 22.3). Indeed, by pulling back (30.3) by a frame $e: U \rightarrow \operatorname{Fr}(E)$, we get

$$
\begin{aligned}
e^{*} d \Omega & =e^{*}(\Omega \wedge \omega)-e^{*}(\omega \wedge \Omega) \\
d e^{*} \Omega & =\left(e^{*} \Omega\right) \wedge e^{*} \omega-\left(e^{*} \omega\right) \wedge e^{*} \Omega \\
d \Omega_{e} & =\Omega_{e} \wedge \omega_{e}-\omega_{e} \wedge \Omega_{e}
\end{aligned}
$$

which is precisely Proposition 22.3.

Problems

30.1. Curvature of the Maurer-Cartan connection

Let G be a Lie group with Lie algebra \mathfrak{g}, and M a manifold. Compute the curvature of the Maurer-Cartan connection ω on the trivial bundle $\pi: M \times G \rightarrow M$.

30.2. Generalized second Bianchi identity on a frame bundle

Suppose $\operatorname{Fr}(E)$ is the frame bundle of a rank r vector bundle E over M. Let ω be an Ehresmann connection and Ω its curvature form on $\operatorname{Fr}(E)$. These are differential forms on $\operatorname{Fr}(E)$ with values in the Lie algebra $\mathfrak{g l}(r, \mathbb{R})$. Matrix multiplication and the Lie bracket on $\mathfrak{g l}(r, \mathbb{R})$ lead to two ways to multiply $\mathfrak{g l}(r, \mathbb{R})$-valued forms (see Section 21.5). We write Ω^{k} to denote the wedge product of Ω with itself k times. Prove that $d\left(\Omega^{k}\right)=\left[\Omega^{k}, \omega\right]$.

30.3. Lie bracket of horizontal vector fields

Let $P \rightarrow M$ be a principal bundle with a connection, and X, Y horizontal vector fields on P.
(a) Prove that $\Omega(X, Y)=-\omega([X, Y])$.
(b) Show that $[X, Y]$ is horizontal if and only if the curvature $\Omega(X, Y)$ equals zero.

$\S 31$ Covariant Derivative on a Principal Bundle

Throughout this chapter, G will be a Lie group with Lie algebra \mathfrak{g} and V will be a finite-dimensional vector space. To a principal G-bundle $\pi: P \rightarrow M$ and a representation $\rho: G \rightarrow \mathrm{GL}(V)$, one can associate a vector bundle $P \times{ }_{\rho} V \rightarrow M$ with fiber V. When ρ is the adjoint representation Ad of G on its Lie algebra \mathfrak{g}, the associated bundle $P \times_{\text {Ad }} \mathfrak{g}$ is called the adjoint bundle, denoted by $\operatorname{Ad} P$.

Differential forms on M with values in the associated bundle $P \times{ }_{\rho} V$ turn out to correspond in a one-to-one manner to certain V-valued forms on P called tensorial forms of type ρ. The curvature Ω of a connection ω on the principal bundle P is a \mathfrak{g}-valued tensorial 2 -form of type Ad on P. Under this correspondence it may be viewed as a 2 -form on M with values in the adjoint bundle $\operatorname{Ad} P$.

Using a connection ω, one can define a covariant derivative D of vector-valued forms on a principal bundle P. This covariant derivative maps tensorial forms to tensorial forms, and therefore induces a covariant derivative on forms on M with values in an associated bundle. In terms of the covariant derivative D, the curvature form is $\Omega=D \omega$, and Bianchi's second identity becomes $D \Omega=0$.

31.1 The Associated Bundle

Let $\pi: P \rightarrow M$ be a principal G-bundle and $\rho: G \rightarrow \mathrm{GL}(V)$ a representation of G on a finite-dimensional vector space V. We write $\rho(g) v$ as $g \cdot v$ or even $g v$. The associated bundle $E:=P \times{ }_{\rho} V$ is the quotient of $P \times V$ by the equivalence relation

$$
\begin{equation*}
(p, v) \sim\left(p g, g^{-1} \cdot v\right) \quad \text { for } g \in G \text { and }(p, v) \in P \times V \tag{31.1}
\end{equation*}
$$

We denote the equivalence class of (p, v) by $[p, v]$. The associated bundle comes with a natural projection $\beta: P \times_{\rho} V \rightarrow M, \beta([p, v])=\pi(p)$. Because

$$
\beta\left(\left[p g, g^{-1} \cdot v\right]\right)=\pi(p g)=\pi(p)=\beta([p, v]),
$$

the projection β is well defined.
As a first example, the proposition below shows that an associated bundle of a trivial principal G-bundle is a trivial vector bundle.

Proposition 31.1. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a finite-dimensional representation of a Lie group G, and U is any manifold, then there is a fiber-preserving diffeomorphism

$$
\begin{aligned}
\phi:(U \times G) \times{ }_{\rho} V & \xrightarrow[\rightarrow]{ } U \times V, \\
{[(x, g), v] } & \mapsto(x, g \cdot v) .
\end{aligned}
$$

Proof. The map ϕ is well defined because if h is any element of G, then

$$
\phi\left(\left[(x, g) h, h^{-1} \cdot v\right]\right)=\left(x,(g h) \cdot h^{-1} \cdot v\right)=(x, g \cdot v)=\phi([(x, g), v]) .
$$

Define $\psi: U \times V \rightarrow(U \times G) \times{ }_{\rho} V$ by

$$
\psi(x, v)=[(x, 1), v] .
$$

It is easy to check that ϕ and ψ are inverse to each other, are C^{∞}, and commute with the projections.

Since a principal bundle $P \rightarrow M$ is locally $U \times G$, Proposition 31.1 shows that the associated bundle $P \times{ }_{\rho} V \rightarrow M$ is locally trivial with fiber V. The vector space structure on V then makes $P \times{ }_{\rho} V$ into a vector bundle over M :

$$
\begin{align*}
{\left[p, v_{1}\right]+\left[p, v_{2}\right] } & =\left[p, v_{1}+v_{2}\right], \tag{31.2}\\
\lambda[p, v] & =[p, \lambda v], \quad \lambda \in \mathbb{R} .
\end{align*}
$$

It is easy to show that these are well-defined operations not depending on the choice of $p \in E_{x}$ and that this makes the associated bundle $\beta: E \rightarrow M$ into a vector bundle (Problem 31.2).

Example 31.2. Let Ad: $G \rightarrow \mathrm{GL}(\mathfrak{g})$ be the adjoint representation of a Lie group G on its Lie algebra \mathfrak{g}. For a principal G-bundle $\pi: P \rightarrow M$, the associated vector bundle $\mathrm{Ad} P:=P \times_{\mathrm{Ad}} \mathfrak{g}$ is called the adjoint bundle of P.

31.2 The Fiber of the Associated Bundle

If $\pi: P \rightarrow M$ is a principal G-bundle, $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation, and $E:=$ $P \times{ }_{\rho} V \rightarrow M$ is the associated bundle, we denote by P_{x} the fiber of P above $x \in M$, and by E_{x} the fiber of E above $x \in M$. For each $p \in P_{x}$, there is a canonical way of identifying the fiber E_{x} with the vector space V :

$$
\begin{aligned}
f_{p}: V & \rightarrow E_{x}, \\
v & \mapsto[p, v] .
\end{aligned}
$$

Lemma 31.3. Let $\pi: P \rightarrow M$ be a principal G-bundle, $\rho: G \rightarrow \mathrm{GL}(V)$ a finitedimensional representation, and $E=P \times{ }_{\rho} V$ the associated vector bundle. For each point p in the fiber P_{x}, the map $f_{p}: V \rightarrow E_{x}$ is a linear isomorphism.

Proof. Suppose $[p, v]=[p, w]$. Then $(p, w)=\left(p g, g^{-1} v\right)$ for some $g \in G$. Since G acts freely on P, the equality $p=p g$ implies that $g=1$. Hence, $w=g^{-1} v=v$. This proves that f_{p} is injective.

If $[q, w]$ is any point in E_{x}, then $q \in P_{x}$, so $q=p g$ for some $g \in G$. It follows that

$$
[q, w]=[p g, w]=[p, g w]=f_{p}(g w) .
$$

This proves that f_{p} is surjective.
The upshot is that every point p of the total space P of a principal bundle gives a linear isomorphism $f_{p}: V \rightarrow E_{\pi(p)}$ from V to the fiber of the associated bundle E above $\pi(p)$.

Lemma 31.4. Let $E=P \times{ }_{\rho} V$ be the vector bundle associated to the principal G bundle $P \rightarrow M$ via the representation $\rho: G \rightarrow \mathrm{GL}(V)$, and $f_{p}: V \rightarrow E_{x}$ the linear isomorphism $v \mapsto[p, v]$. If $g \in G$, then $f_{p g}=f_{p} \circ \rho(g)$.

Proof. For $v \in V$,

$$
f_{p g}(v)=[p g, v]=[p, g \cdot v]=f_{p}(g \cdot v)=f_{p}(\rho(g) v) .
$$

Example 31.5. Let $\pi: P \rightarrow M$ be a principal G-bundle. The vector bundle $P \times \rho$ $V \rightarrow M$ associated to the trivial representation $\rho: G \rightarrow \mathrm{GL}(V)$ is the trivial bundle $M \times V \rightarrow M$, for there is a vector bundle isomorphism

$$
\begin{aligned}
P \times_{\rho} V & \rightarrow M \times V, \\
{[p, v]=\left[p g, g^{-1} \cdot v\right]=[p g, v] } & \mapsto(\pi(p), v),
\end{aligned}
$$

with inverse map

$$
(x, v) \mapsto[p, v] \quad \text { for any } p \in \pi^{-1}(x) .
$$

In this case, for each $p \in P$ the linear isomorphism $f_{p}: V \rightarrow E_{x}=V, v \mapsto[p, v]$, is the identity map.

31.3 Tensorial Forms on a Principal Bundle

We keep the same notation as in the previous section. Thus, $\pi: P \rightarrow M$ is a principal G-bundle, $\rho: G \rightarrow \mathrm{GL}(V)$ a finite-dimensional representation of G, and $E:=P \times{ }_{\rho} V$ the vector bundle associated to P via ρ.

Definition 31.6. A V-valued k-form φ on P is said to be right-equivariant of type ρ or right-equivariant with respect to ρ if for every $g \in G$,

$$
r_{g}^{*} \varphi=\rho\left(g^{-1}\right) \cdot \varphi .
$$

What this means is that for $p \in P$ and $v_{1}, \ldots, v_{k} \in T_{p} P$,

$$
\left(r_{g}^{*} \varphi\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\rho\left(g^{-1}\right)\left(\varphi_{p}\left(v_{1}, \ldots, v_{k}\right)\right) .
$$

In the literature (for example, [12, p. 75]), such a form is said to be pseudotensorial of type ρ.

Definition 31.7. A V-valued k-form φ on P is said to be horizontal if φ vanishes whenever one of its arguments is a vertical vector. Since a 0 -form never takes an argument, every 0 -form on P is by definition horizontal.

Definition 31.8. A V-valued k-form φ on P is tensorial of type ρ if it is rightequivariant of type ρ and horizontal. The set of all smooth tensorial V-valued k-forms of type ρ is denoted by $\Omega_{\rho}^{k}(P, V)$.

Example. Since the curvature Ω of a connection ω on a principal G-bundle P is horizontal and right-equivariant of type Ad, it is tensorial of type Ad.

The set $\Omega_{\rho}^{k}(P, V)$ of tensorial k-forms of type ρ on P becomes a vector space with the usual addition and scalar multiplication of forms. These forms are of special interest because they can be viewed as forms on the base manifold M with values in the associated bundle $E:=P \times{ }_{\rho} V$. To each tensorial V-valued k form $\varphi \in \Omega_{\rho}^{k}(P, V)$ we associate a k-form $\varphi^{b} \in \Omega^{k}(M, E)$ as follows. Given $x \in M$ and $v_{1}, \ldots, v_{k} \in T_{x} M$, choose any point p in the fiber P_{x} and choose lifts u_{1}, \ldots, u_{k} at p of v_{1}, \ldots, v_{k}, i.e., vectors in $T_{p} P$ such that $\pi_{*}\left(u_{i}\right)=v_{i}$. Then φ^{b} is defined by

$$
\begin{equation*}
\varphi_{x}^{b}\left(v_{1}, \ldots, v_{k}\right)=f_{p}\left(\varphi_{p}\left(u_{1}, \ldots, u_{k}\right)\right) \in E_{x} \tag{31.3}
\end{equation*}
$$

where $f_{p}: V \rightarrow E_{x}$ is the isomorphism $v \mapsto[p, v]$ of the preceding section.
Conversely, if $\psi \in \Omega^{k}(M, E)$, we define $\psi^{\sharp} \in \Omega_{\rho}^{k}(P, V)$ as follows. Given $p \in P$ and $u_{1}, \ldots, u_{k} \in T_{p} P$, let $x=\pi(p)$ and set

$$
\begin{equation*}
\psi_{p}^{\sharp}\left(u_{1}, \ldots, u_{k}\right)=f_{p}^{-1}\left(\psi_{x}\left(\pi_{*} u_{1}, \ldots, \pi_{*} u_{k}\right)\right) \in V . \tag{31.4}
\end{equation*}
$$

Theorem 31.9. The map

$$
\begin{aligned}
\Omega_{\rho}^{k}(P, V) & \rightarrow \Omega^{k}(M, E), \\
\varphi & \mapsto \varphi^{b},
\end{aligned}
$$

is a well-defined linear isomorphism with inverse $\psi^{\sharp} \leftrightarrow \psi$.
Proof. To show that φ^{b} is well defined, we need to prove that the definition (31.3) is independent of the choice of $p \in P_{x}$ and of $u_{1}, \ldots, u_{k} \in T_{p} P$. Suppose $u_{1}^{\prime}, \ldots, u_{k}^{\prime} \in T_{p} P$ is another set of vectors such that $\pi_{*}\left(u_{i}^{\prime}\right)=v_{i}$. Then $\pi_{*}\left(u_{i}^{\prime}-u_{i}\right)=0$ so that $u_{i}^{\prime}-u_{i}$ is vertical. Since φ is horizontal and k-linear,

$$
\begin{aligned}
\varphi_{p}\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right) & =\varphi_{p}\left(u_{1}+\operatorname{vertical}, \ldots, u_{k}+\operatorname{vertical}\right) \\
& =\varphi_{p}\left(u_{1}, \ldots, u_{k}\right)
\end{aligned}
$$

This proves that for a given $p \in P$, the definition (31.3) is independent of the choice of lifts of v_{1}, \ldots, v_{k} to p.

Next suppose we choose $p g$ instead of p as the point in the fiber P_{x}. Because $\pi \circ r_{g}=\pi$,

$$
\pi_{*}\left(r_{g *} u_{i}\right)=\left(\pi \circ r_{g}\right)_{*} u_{i}=\pi_{*} u_{i}=v_{i},
$$

so that $r_{g *} u_{1}, \ldots, r_{g *} u_{k}$ are lifts of v_{1}, \ldots, v_{k} to $p g$. We have, by right equivariance with respect to ρ,

$$
\begin{aligned}
\varphi_{p g}\left(r_{g *} u_{1}, \ldots, r_{g *} u_{k}\right) & =\left(r_{g}^{*} \varphi_{p g}\right)\left(u_{1}, \ldots, u_{k}\right) \\
& =\rho\left(g^{-1}\right) \varphi_{p}\left(u_{1}, \ldots, u_{k}\right) .
\end{aligned}
$$

So by Lemma 31.4,

$$
\begin{aligned}
f_{p g}\left(\varphi_{p g}\left(r_{g *} u_{1}, \ldots, r_{g *} u_{k}\right)\right) & =f_{p g}\left(\rho\left(g^{-1}\right) \varphi_{p}\left(u_{1}, \ldots, u_{k}\right)\right) \\
& =\left(f_{p} \circ \rho(g)\right)\left(\rho\left(g^{-1}\right) \varphi_{p}\left(u_{1}, \ldots, u_{k}\right)\right) \\
& =f_{p}\left(\varphi_{p}\left(u_{1}, \ldots, u_{k}\right)\right) .
\end{aligned}
$$

This proves that the definition (31.3) is independent of the choice of p in the fiber P_{x}.
Let $\psi \in \Omega^{k}(M, E)$. It is clear from the definition (31.4) that ψ^{\sharp} is horizontal. It is easy to show that ψ^{\sharp} is right-equivariant with respect to ρ (Problem 31.4). Hence, $\psi^{\sharp} \in \Omega_{\rho}^{k}(P, V)$.

For $v_{1}, \ldots, v_{k} \in T_{x} M$, choose $p \in P_{x}$ and vectors $u_{1}, \ldots, u_{k} \in T_{p} P$ that lift v_{1}, \ldots, v_{k}. Then

$$
\begin{aligned}
\left(\psi^{\sharp b}\right)_{x}\left(v_{1}, \ldots, v_{k}\right) & =f_{p}\left(\psi_{p}^{\sharp}\left(u_{1}, \ldots, u_{k}\right)\right) \\
& =f_{p}\left(f_{p}^{-1}\left(\psi_{x}\left(\pi_{*} u_{1}, \ldots, \pi_{*} u_{k}\right)\right)\right) \\
& =\psi_{x}\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Hence, $\psi^{\sharp b}=\psi$.
Similarly, $\varphi^{\text {} \sharp}=\varphi$ for $\varphi \in \Omega_{\rho}^{k}(P, V)$, which we leave to the reader to show (Problem 31.5). Therefore, the map $\psi \mapsto \psi^{\sharp}$ is inverse to the map $\varphi \mapsto \varphi^{b}$.

Example 31.10 (Curvature as a form on the base). By Theorem 31.9, the curvature form Ω of a connection on a principal G-bundle P can be viewed as an element of $\Omega^{2}(M, \operatorname{Ad} P)$, a 2-form on M with values in the adjoint bundle $\operatorname{Ad} P$.

When $k=0$ in Theorem 31.9, $\Omega_{p}^{0}(P, V)$ consists of maps $f: P \rightarrow V$ that are rightequivariant with respect to ρ :

$$
\left(r_{g}^{*} f\right)(p)=\rho(g)^{-1} f(p)
$$

or

$$
f(p g)=\rho\left(g^{-1}\right) f(p)=g^{-1} \cdot f(p) .
$$

On the right-hand side of Theorem 31.9,

$$
\Omega^{0}\left(M, P \times{ }_{\rho} V\right)=\Omega^{0}(M, E)=\text { sections of the associated bundle } E .
$$

Hence, we have the following corollary.
Corollary 31.11. Let G be a Lie group, $P \rightarrow M$ a principal G-bundle, and $\rho: G \rightarrow$ $\operatorname{Aut}(V)$ a representation of G. There is a one-to-one correspondence

$$
\left\{\begin{array}{l}
G \text {-equivariant maps } \\
f: P \rightarrow V
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\text { sections of the associated bundle } \\
P \times_{\rho} V \rightarrow M
\end{array}\right\}
$$

By the local triviality condition, for any principal bundle $\pi: P \rightarrow M$ the projection map π is a submersion and therefore the pullback map $\pi^{*}: \Omega^{*}(M) \rightarrow \Omega^{*}(P)$ is an injection. A differential form φ on P is said to be basic if it is the pullback $\pi^{*} \psi$
of a form ψ on M; it is G-invariant if $r_{g}^{*} \varphi=\varphi$ for all $g \in G$. More generally, for any vector space V, these concepts apply to V-valued forms as well.

Suppose $\rho: G \rightarrow \mathrm{GL}(V)$ is the trivial representation $\rho(g)=\mathbb{1}$ for all $g \in G$. Then an equivariant form φ of type ρ on P satisfies

$$
r_{g}^{*} \varphi=\rho\left(g^{-1}\right) \cdot \varphi=\varphi \quad \text { for all } g \in G
$$

Thus, an equivariant form of type ρ for the trivial representation ρ is exactly an invariant form on P. Unravelling Theorem 31.9 for a trivial representation will give the following theorem.

Theorem 31.12. Let $\pi: P \rightarrow M$ be a principal G-bundle and V a vector space. $A V$-valued form on P is basic if and only if it is horizontal and G-invariant.

Proof. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be the trivial representation. As noted above, $\Omega_{\rho}^{k}(P, V)$ consists of horizontal, G-invariant V-valued k-forms on P.

By Example 31.5, when ρ is the trivial representation, the vector bundle $E=$ $P \times{ }_{\rho} V$ is the product bundle $M \times V$ over M and for each $p \in P$, the linear isomorphism $f_{p}: V \rightarrow E_{x}=V$, where $x=\pi(p)$, is the identity map. Then the isomorphism

$$
\begin{aligned}
\Omega^{k}(M, E)=\Omega^{k}(M, M \times V)=\Omega^{k}(M, V) & \rightarrow \Omega_{\rho}^{k}(P, V), \\
\psi & \mapsto \psi^{\#},
\end{aligned}
$$

is given by

$$
\begin{aligned}
\psi_{p}^{\#}\left(u_{1}, \ldots, u_{k}\right) & =\psi_{x}\left(\pi_{*} u_{1}, \ldots, \pi_{*} u_{k}\right) \quad(\text { by }(31.4)) \\
& =\left(\pi^{*} \psi\right)_{p}\left(u_{1}, \ldots, u_{k}\right) .
\end{aligned}
$$

Therefore,

$$
\psi^{\#}=\pi^{*} \psi
$$

This proves that horizontal, G-invariant forms on P are precisely the basic forms.

31.4 Covariant Derivative

Recall that the existence of a connection ω on a principal G-bundle π : $P \rightarrow M$ is equivalent to the decomposition of the tangent bundle $T P$ into a direct sum of the vertical subbundle \mathcal{V} and a smooth right-invariant horizontal subbundle \mathcal{H}. For any vector $X_{p} \in T_{p} P$, we write

$$
X_{p}=v X_{p}+h X_{p}
$$

as the sum of its vertical and horizontal components. This will allow us to define a covariant derivative of vector-valued forms on P. By the isomorphism of Theorem 31.9, we obtain in turn a covariant derivative of forms on M with values in an associated bundle.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional representation of G and let $E:=$ $P \times{ }_{\rho} V$ be the associated vector bundle.

Proposition 31.13. If $\varphi \in \Omega^{k}(P, V)$ is right-equivariant of type ρ, then so is $d \varphi$.
Proof. For a fixed $g \in G$,

$$
\begin{aligned}
r_{g}^{*} d \varphi & =d r_{g}^{*} \varphi=d \rho\left(g^{-1}\right) \varphi \\
& =\rho\left(g^{-1}\right) d \varphi,
\end{aligned}
$$

since $\rho\left(g^{-1}\right)$ is a constant linear map for a fixed g.
In general, the exterior derivative does not preserve horizontality. For any V valued k-form φ on P, we define its horizontal component $\varphi^{h} \in \Omega^{k}(P, V)$ as follows: for $p \in P$ and $v_{1}, \ldots, v_{k} \in T_{p} P$,

$$
\varphi_{p}^{h}\left(v_{1}, \ldots, v_{k}\right)=\varphi_{p}\left(h v_{1}, \ldots, h v_{k}\right) .
$$

Proposition 31.14. If $\varphi \in \Omega^{k}(P, V)$ is right-equivariant of type ρ, then so is φ^{h}.
Proof. For $g \in G, p \in P$, and $v_{1}, \ldots, v_{k} \in T_{p} P$,

$$
\begin{aligned}
r_{g}^{*}\left(\varphi_{p g}^{h}\right)\left(v_{1}, \ldots, v_{k}\right) & =\varphi_{p g}^{h}\left(r_{g *} v_{1}, \ldots, r_{g *} v_{k}\right) & & \text { (definition of pullback) } \\
& =\varphi_{p g}\left(h r_{g *} v_{1}, \ldots, h r_{g *} v_{k}\right) & & \text { (definition of } \left.\varphi^{h}\right) \\
& =\varphi_{p g}\left(r_{g *} h v_{1}, \ldots, r_{g *} h v_{k}\right) & & \text { (Proposition 28.4) } \\
& =\left(r_{g}^{*} \varphi_{p g}\right)\left(h v_{1}, \ldots, h v_{k}\right) & & \\
& =\rho\left(g^{-1}\right) \cdot \varphi_{p}\left(h v_{1}, \ldots, h v_{k}\right) & & \text { (right-equivariance of } \varphi \text {) } \\
& =\rho\left(g^{-1}\right) \cdot \varphi_{p}^{h}\left(v_{1}, \ldots, v_{k}\right) & &
\end{aligned}
$$

Propositions 31.13 and 31.14 together imply that if $\varphi \in \Omega^{k}(P, V)$ is rightequivariant of type ρ, then $(d \varphi)^{h} \in \Omega^{k+1}(P, V)$ is horizontal and right-equivariant of type ρ, i.e., tensorial of type ρ.

Definition 31.15. Let $\pi: P \rightarrow M$ be a principal G-bundle with a connection ω and let V be a real vector space. The covariant derivative of a V-valued k-form $\varphi \in \Omega^{k}(P, V)$ is $D \varphi=(d \varphi)^{h}$.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional representation of the Lie group G. The covariant derivative is defined for any V-valued k-form on P, and it maps a rightequivariant form of type ρ to a tensorial form of type ρ. In particular, it restricts to a map

$$
\begin{equation*}
D: \Omega_{\rho}^{k}(P, V) \rightarrow \Omega_{\rho}^{k+1}(P, V) \tag{31.5}
\end{equation*}
$$

on the space of tensorial forms.
Proposition 31.16. Let $\pi: P \rightarrow M$ be a principal G-bundle with a connection and $\rho: G \rightarrow \mathrm{GL}(V)$ a representation of G. The covariant derivative

$$
D: \Omega_{\rho}^{k}(P, V) \rightarrow \Omega_{\rho}^{k+1}(P, V)
$$

on tensorial forms of type ρ is an antiderivation of degree +1 .

Proof. Let $\omega, \tau \in \Omega_{\rho}^{*}(P, V)$ be tensorial forms of type ρ. Then

$$
\begin{aligned}
D(\omega \wedge \tau) & =(d(\omega \wedge \tau))^{h} \\
& =\left((d \omega) \wedge \tau+(-1)^{\operatorname{deg} \omega} \omega \wedge d \tau\right)^{h} \\
& =(d \omega)^{h} \wedge \tau^{h}+(-1)^{\operatorname{deg} \omega} \omega^{h} \wedge(d \tau)^{h} \\
& =D w \wedge \tau^{h}+(-1)^{\operatorname{deg} \omega} \omega^{h} \wedge D \tau .
\end{aligned}
$$

Since τ and ω are horizontal, $\tau^{h}=\tau$ and $\omega^{h}=\omega$. Therefore,

$$
D(\omega \wedge \tau)=D \omega \wedge \tau+(-1)^{\operatorname{deg} \omega} \omega \wedge D \tau
$$

If $E:=P \times{ }_{\rho} V$ is the associated vector bundle via the representation ρ, then the isomorphism of Theorem 31.9 transforms the linear map (31.5) into a linear map

$$
D: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E) .
$$

Unlike the exterior derivative, the covariant derivative depends on the choice of a connection on P. Moreover, $D^{2} \neq 0$ in general.

Example 31.17 (Curvature of a principal bundle). By Theorem 30.4 the curvature form $\Omega \in \Omega_{\text {Ad }}^{2}(P, \mathfrak{g})$ on a principal bundle is the covariant derivative $D \omega$ of the connection form $\omega \in \Omega^{1}(P, \mathfrak{g})$. Because ω is not horizontal, it is not in $\Omega_{\text {Ad }}^{1}(P, \mathfrak{g})$.

31.5 A Formula for the Covariant Derivative of a Tensorial Form

Let $\pi: P \rightarrow M$ be a smooth principal G-bundle with a connection ω, and let $\rho: G \rightarrow$ $\mathrm{GL}(V)$ be a finite-dimensional representation of G. In the preceding section we defined the covariant derivative of a V-valued k-form φ on $P: D \varphi=(d \varphi)^{h}$, the horizontal component of $d \varphi$. In this section we derive a useful alternative formula for the covariant derivative, but only for a tensorial form.

The Lie group representation $\rho: G \rightarrow \mathrm{GL}(V)$ induces a Lie algebra representation $\rho_{*}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, which allows us to define a product of a \mathfrak{g}-valued k-form τ and a V-valued ℓ-form φ on P : for $p \in P$ and $v_{1}, \ldots, v_{k+\ell} \in T_{p} P$,

$$
\begin{aligned}
& (\tau \cdot \varphi)_{p}\left(v_{1}, \ldots, v_{k+\ell}\right) \\
& \quad=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn}(\sigma) \rho_{*}\left(\tau_{p}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)\right) \varphi_{p}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right) .
\end{aligned}
$$

For the same reason as the wedge product, $\tau \cdot \varphi$ is multilinear and alternating in its arguments; it is therefore a $(k+\ell)$-covector with values in V.

Example 31.18. If $V=\mathfrak{g}$ and $\rho=\mathrm{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g})$ is the adjoint representation, then

$$
(\tau \cdot \varphi)_{p}=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn}(\sigma)\left[\tau_{p}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right), \varphi_{p}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right)\right]
$$

In this case we also write $[\tau, \varphi]$ instead of $\tau \cdot \varphi$.

Theorem 31.19. Let $\pi: P \rightarrow M$ be a principal G-bundle with connection form ω, and $\rho: G \rightarrow \mathrm{GL}(V)$ a finite-dimensional representation of G. If $\varphi \in \Omega_{\rho}^{k}(P, V)$ is a V-valued tensorial form of type ρ, then its covariant derivative is given by

$$
D \varphi=d \varphi+\omega \cdot \varphi
$$

Proof. Fix $p \in P$ and $v_{1}, \ldots, v_{k+1} \in T_{p} P$. We need to show that

$$
\begin{align*}
& (d \varphi)_{p}\left(h v_{1}, \ldots, h v_{k+1}\right)=(d \varphi)_{p}\left(v_{1}, \ldots, v_{k+1}\right) \\
& \quad+\frac{1}{k!} \sum_{\sigma \in S_{k+1}} \operatorname{sgn}(\sigma) \rho_{*}\left(\omega_{p}\left(v_{\sigma(1)}\right)\right) \varphi_{p}\left(v_{\sigma(2)}, \ldots, v_{\sigma(k+1)}\right) . \tag{31.6}
\end{align*}
$$

Because both sides of (31.6) are linear in each argument v_{i}, which may be decomposed into the sum of a vertical and a horizontal component, we may assume that each v_{i} is either vertical or horizontal. By Lemma 30.3, throughout the proof we may further assume that the vectors v_{1}, \ldots, v_{k+1} have been extended to vector fields X_{1}, \ldots, X_{k+1} on P each of which is either vertical or horizontal. If X_{i} is vertical, then it is a fundamental vector field A_{i} for some $A_{i} \in \mathfrak{g}$. If X_{i} is horizontal, then it is the horizontal lift \tilde{B}_{i} of a vector field B_{i} on M. By construction, \tilde{B}_{i} is right-invariant (Proposition 28.6).

Instead of proving (31.6) at a point p, we will prove the equality of functions

$$
\begin{equation*}
(d \varphi)\left(h X_{1}, \ldots, h X_{k+1}\right)=\mathrm{I}+\mathrm{II} \tag{31.7}
\end{equation*}
$$

where

$$
\mathrm{I}=(d \varphi)\left(X_{1}, \ldots, X_{k+1}\right)
$$

and

$$
\mathrm{II}=\frac{1}{k!} \sum_{\sigma \in S_{k+1}} \operatorname{sgn}(\sigma) \rho_{*}\left(\omega\left(X_{\sigma(1)}\right)\right) \varphi\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right) .
$$

Case 1. The vector fields X_{1}, \ldots, X_{k+1} are all horizontal.
Then II $=0$ because $\omega\left(X_{\sigma(1)}\right)=0$ for all $\sigma \in S_{k+1}$. In this case, (31.7) is trivially true.

Case 2. At least two of X_{1}, \ldots, X_{k+1} are vertical.
By the skew-symmetry of the arguments, we may assume that $X_{1}=\underline{A_{1}}$ and $X_{2}=\underline{A_{2}}$ are vertical. By Problem 27.1, $\left[X_{1}, X_{2}\right]=\left[A_{1}, A_{2}\right]$ is also vertical.

The left-hand side of (31.7) is zero because $h X_{1}=0$. By the global formula for the exterior derivative [21, Th. 20.14, p. 233],

$$
\mathrm{I}=\sum_{i=1}^{k+1}(-1)^{i-1} X_{i} \varphi\left(\ldots, \widehat{X}_{i}, \ldots\right)+\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \varphi\left(\left[X_{i}, X_{j}\right], \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots\right)
$$

In this expression every term in the first sum is zero because φ is horizontal and at least one of its arguments is vertical. In the second sum at least one of the arguments of φ is X_{1}, X_{2}, or $\left[X_{1}, X_{2}\right]$, all of which are vertical. Therefore, every term in the second sum in I is also zero.

As for II in (31.7), in every term at least one of the arguments of φ is vertical, so $\mathrm{II}=0$.

Case 3. The first vector field $X_{1}=\underline{A}$ is vertical; the rest X_{2}, \ldots, X_{k+1} are horizontal and right-invariant.
The left-hand side of (31.7) is clearly zero because $h X_{1}=0$.
On the right-hand side,

$$
\begin{aligned}
\mathrm{I}= & (d \varphi)\left(X_{1}, \ldots, X_{k+1}\right) \\
=\sum(-1)^{i+1} X_{i} \varphi & \varphi\left(X_{1}, \ldots, \widehat{X}_{i}, \ldots, X_{k+1}\right) \\
& \quad+\sum(-1)^{i+j} \varphi\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{k+1}\right) .
\end{aligned}
$$

Because φ is horizontal and X_{1} is vertical, the only nonzero term in the first sum is

$$
X_{1} \varphi\left(X_{2}, \ldots, X_{k+1}\right)=\underline{A} \varphi\left(X_{2}, \ldots, X_{k+1}\right)
$$

and the only nonzero terms in the second sum are

$$
\sum_{j=2}^{k+1}(-1)^{1+j} \varphi\left(\left[X_{1}, X_{j}\right], \widehat{X}_{1}, X_{2}, \ldots, \widehat{X}_{j}, \ldots, X_{k+1}\right)
$$

Since the $X_{j}, j=2, \ldots, k+1$, are right-invariant horizontal vector fields, by Lemma 28.7,

$$
\left[X_{1}, X_{j}\right]=\left[\underline{A}, X_{j}\right]=0 .
$$

Therefore,

$$
\mathrm{I}=\underline{A} \varphi\left(X_{2}, \ldots, X_{k+1}\right) .
$$

If $\sigma(i)=1$ for any $i \geq 2$, then

$$
\varphi\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right)=0
$$

It follows that the nonzero terms in II all satisfy $\sigma(1)=1$ and

$$
\begin{aligned}
\mathrm{II} & =\frac{1}{k!} \sum_{\substack{\sigma \in S_{k+1} \\
\sigma(1)=1}} \operatorname{sgn}(\sigma) \rho_{*}\left(\omega\left(X_{1}\right)\right) \varphi\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right) \\
& =\frac{1}{k!} \sum_{\substack{\sigma \in S_{k+1} \\
\sigma(1)=1}} \operatorname{sgn}(\sigma) \rho_{*}(A) \varphi\left(X_{\sigma(2)}, \ldots, X_{\sigma(k+1)}\right) \\
& =\rho_{*}(A) \varphi\left(X_{2}, \ldots, X_{k+1}\right) \quad \text { (because } \varphi \text { is alternating). }
\end{aligned}
$$

Denote by f the function $\varphi\left(X_{2}, \ldots, X_{k+1}\right)$ on P. For $p \in P$, to calculate $\underline{A}_{p} f$, choose a curve $c(t)$ in G with initial point $c(0)=e$ and initial vector $c^{\prime}(0)=A$, for example, $c(t)=\exp (t A)$. Then with $j_{p}: G \rightarrow P$ being the map $j_{p}(g)=p \cdot g$,

$$
\begin{aligned}
\underline{A}_{p} f & =j_{p *}(A) f=j_{p *}\left(c^{\prime}(0)\right) f=j_{p *}\left(c_{*}\left(\left.\frac{d}{d t}\right|_{t=0}\right)\right) f \\
& =\left(j_{p} \circ c\right)_{*}\left(\left.\frac{d}{d t}\right|_{t=0}\right) f=\left.\frac{d}{d t}\right|_{t=0}\left(f \circ j_{p} \circ c\right) .
\end{aligned}
$$

By the right-invariance of the horizontal vector fields X_{2}, \ldots, X_{k+1},

$$
\begin{aligned}
\left(f \circ j_{p} \circ c\right)(t) & =f(p c(t)) \\
& =\varphi_{p c(t)}\left(X_{2, p c(t)}, \ldots, X_{k+1, p c(t)}\right) \\
& =\varphi_{p c(t)}\left(r_{c(t) *} X_{2, p}, \ldots, r_{c(t) *} X_{k+1, p}\right) \\
& =r_{c(t)}^{*} \varphi_{p c(t)}\left(X_{2, p}, \ldots, X_{k+1, p}\right) \\
& =\rho\left(c(t)^{-1}\right) \varphi_{p}\left(X_{2, p}, \ldots, X_{k+1, p}\right) \quad \text { (right-equivariance of } \varphi \text {) } \\
& =\rho\left(c(t)^{-1}\right) f(p) .
\end{aligned}
$$

Differentiating this expression with respect to t and using the fact that the differential of the inverse is the negative [21, Problem 8.8(b)], we have

$$
\underline{A}_{p} f=\left(f \circ j_{p} \circ c\right)^{\prime}(0)=-\rho_{*}\left(c^{\prime}(0)\right) f(p)=-\rho_{*}(A) f(p) .
$$

So the right-hand side of (31.7) is

$$
\mathrm{I}+\mathrm{II}=\underline{A} f+\rho_{*}(A) f=-\rho_{*}(A) f+\rho_{*}(A) f=0 .
$$

If V is the Lie algebra \mathfrak{g} of a Lie group G and ρ is the adjoint representation of G, then $\omega \cdot \varphi=[\omega, \varphi]$. In this case, for any tensorial k-form $\varphi \in \Omega_{\text {Ad }}^{k}(P, \mathfrak{g})$,

$$
D \varphi=d \varphi+[\omega, \varphi] .
$$

Although the covariant derivative is defined for any V-valued form on P, Theorem 31.19 is true only for tensorial forms. Since the connection form ω is not tensorial, Theorem 31.19 cannot be applied to ω. In fact, by the definition of the curvature form,

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega] .
$$

By Theorem 30.4, $\Omega=(d \omega)^{h}=D \omega$. Combining these two expressions for the curvature, one obtains

$$
D \omega=d \omega+\frac{1}{2}[\omega, \omega] .
$$

The factor of $1 / 2$ shows that Theorem 31.19 is not true when applied to ω.
Since the curvature form Ω on a principal bundle P is tensorial of type Ad, Theorem 31.19 applies and the second Bianchi identity (Theorem 30.4) may be restated as

$$
\begin{equation*}
D \Omega=d \Omega+[\omega, \Omega]=0 \tag{31.8}
\end{equation*}
$$

Problems

Unless otherwise specified, in the following problems G is a Lie group with Lie algebra \mathfrak{g}, $\pi: P \rightarrow M$ a principal G-bundle, $\rho: G \rightarrow \mathrm{GL}(V)$ a finite-dimensional representation of G, and $E=P \times{ }_{\rho} V$ the associated bundle.

31.1. Transition functions of an associated bundle

Show that if $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ is a trivialization for P with transition functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$, then there is a trivialization $\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}$ for E with transition functions $\rho \circ g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow$ GL (V).

31.2. Vector bundle structure on an associated bundle

Show that the operations (31.2) on $E=P \times \rho V$ are well defined and make the associated bundle $\beta: E \rightarrow M$ into a vector bundle.

31.3. Associated bundle of a frame bundle

Let $E \rightarrow M$ be a vector bundle of rank r and $\operatorname{Fr}(E) \rightarrow M$ its frame bundle. Show that the vector bundle associated to $\operatorname{Fr}(E)$ via the identity representation $\rho: \operatorname{GL}(r, \mathbb{R}) \rightarrow \mathrm{GL}(r, \mathbb{R})$ is isomorphic to E.

31.4. Tensorial forms

Prove that if $\psi \in \Omega^{k}\left(M, P \times{ }_{\rho} V\right)$, then $\psi^{\sharp} \in \Omega^{k}(P, V)$ is right-equivariant with respect to ρ.

31.5. Tensorial forms

For $\varphi \in \Omega_{\rho}^{k}(P, V)$, prove that $\varphi^{\triangleright \sharp}=\varphi$.

§32 Characteristic Classes of Principal Bundles

To a real vector bundle $E \rightarrow M$ of rank r, one can associate its frame bundle $\operatorname{Fr}(E) \rightarrow M$, a principal $\mathrm{GL}(r, \mathbb{R})$-bundle. Similarly, to a complex vector bundle of rank r, one can associate its frame bundle, a principal $\mathrm{GL}(r, \mathbb{C})$-bundle and to an oriented real vector bundle of rank r, one can associate its oriented frame bundle, a principal $\mathrm{GL}^{+}(r, \mathbb{R})$-bundle, where $\mathrm{GL}^{+}(r, \mathbb{R})$ is the group of all $r \times r$ matrices of positive determinant. The Pontrjagin classes of a real vector bundle, the Chern classes of a complex vector bundle, and the Euler class of an oriented real vector bundle may be viewed as characteristic classes of the associated principal G-bundle for $G=\mathrm{GL}(r, \mathbb{R}), \mathrm{GL}(r, \mathbb{C})$, and $\mathrm{GL}^{+}(r, \mathbb{R})$, respectively.

In this section we will generalize the construction of characteristic classes to principal G-bundles for any Lie group G. These are some of the most important diffeomorphism invariants of a principal bundle.

32.1 Invariant Polynomials on a Lie Algebra

Let V be a vector space of dimension n and V^{\vee} its dual space. An element of $\operatorname{Sym}^{k}\left(V^{\vee}\right)$ is called a polynomial of degree k on V. Relative to a basis e_{1}, \ldots, e_{n} for V and corresponding dual basis $\alpha^{1}, \ldots, \alpha^{n}$ for V^{\vee}, a function $f: V \rightarrow \mathbb{R}$ is a polynomial of degree k if and only if it is expressible as a sum of monomials of degree k in $\alpha^{1}, \ldots, \alpha^{n}$:

$$
\begin{equation*}
f=\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}} \tag{32.1}
\end{equation*}
$$

For example, if $V=\mathbb{R}^{n \times n}$ is the vector space of all $n \times n$ matrices, then $\operatorname{tr} X$ is a polynomial of degree 1 on V and $\operatorname{det} X$ is a polynomial of degree n on V.

Suppose now that \mathfrak{g} is the Lie algebra of a Lie group G. A polynomial $f: \mathfrak{g} \rightarrow \mathbb{R}$ is said to be $\operatorname{Ad}(G)$-invariant if for all $g \in G$ and $X \in \mathfrak{g}$,

$$
f((\operatorname{Ad} g) X)=f(X)
$$

For example, if G is the general linear group $\operatorname{GL}(n, \mathbb{R})$, then $(\operatorname{Ad} g) X=g X g^{-1}$ and $\operatorname{tr} X$ and $\operatorname{det} X$ are $\operatorname{Ad} G$-invariant polynomials on the Lie algebra $\mathfrak{g l}(n, \mathbb{R})$.

32.2 The Chern-Weil Homomorphism

Let G be a Lie group with Lie algebra $\mathfrak{g}, P \rightarrow M$ a principal G-bundle, ω an Ehresmann connection on P, and Ω the curvature form of ω. Fix a basis e_{1}, \ldots, e_{n} for \mathfrak{g} and dual basis $\alpha^{1}, \ldots, \alpha^{n}$ for \mathfrak{g}^{\vee}. Then the curvature form Ω is a linear combination

$$
\Omega=\sum \Omega^{i} e_{i}
$$

where the coefficients Ω^{i} are real-valued 2-forms on P. If $f: \mathfrak{g} \rightarrow \mathbb{R}$ is the polynomial $\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}}$, we define $f(\Omega)$ to be the $2 k$-form

$$
f(\Omega)=\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}}
$$

on P. Although defined in terms of a basis for \mathfrak{g}, the $2 k$-form $f(\Omega)$ is independent of the choice of a basis (Problem 32.2).

Recall that the covariant derivative $D \varphi$ of a k-form φ on a principal bundle P is given by

$$
(D \varphi)_{p}\left(v_{1}, \ldots, v_{k}\right)=(d \varphi)_{p}\left(h v_{1}, \ldots, h v_{k}\right),
$$

where $v_{i} \in T_{p} P$ and $h v_{i}$ is the horizontal component of v_{i}.
Lemma 32.1. Let $\pi: P \rightarrow M$ be a principal bundle. If φ is a basic form on P, then $d \varphi=D \varphi$.

Proof. A tangent vector $X_{p} \in T_{p} P$ decomposes into the sum of its vertical and horizontal components:

$$
X_{p}=v X_{p}+h X_{p} .
$$

Here $h: T_{p} P \rightarrow T_{p} P$ is the map that takes a tangent vector to its horizontal component. Since $\pi_{*} X_{p}=\pi_{*} h X_{p}$ for all $X_{p} \in T_{p} P$, we have

$$
\pi_{*}=\pi_{*} \circ h .
$$

Suppose $\varphi=\pi^{*} \tau$ for $\tau \in \Omega^{k}(M)$. Then

$$
\begin{aligned}
D \varphi & =(d \varphi) \circ h & & (\text { definition of } D) \\
& =\left(d \pi^{*} \tau\right) \circ h & & (\varphi \text { is basic }) \\
& =\left(\pi^{*} d \tau\right) \circ h & & ([21, \text { Prop. 19.5] }) \\
& =d \tau \circ \pi_{*} \circ h & & \left(\text { definition of } \pi^{*}\right) \\
& =d \tau \circ \pi_{*} & & \left(\pi_{*} \circ h=\pi_{*}\right) \\
& =\pi^{*} d \tau & & \left(\text { definition of } \pi^{*}\right) \\
& =d \pi^{*} \tau & & ([21, \text { Prop. 19.5] }) \\
& =d \varphi & & \left(\varphi=\pi^{*} \tau\right) .
\end{aligned}
$$

The Chern-Weil homomorphism is based on the following theorem. As before, G is a Lie group with Lie algebra \mathfrak{g}.

Theorem 32.2. Let Ω be the curvature of a connection ω on a principal G-bundle $\pi: P \rightarrow M$, and f an $\operatorname{Ad}(G)$-invariant polynomial of degree k on \mathfrak{g}. Then
(i) $f(\Omega)$ is a basic form on P, i.e., there exists a $2 k$-form Λ on M such that $f(\Omega)=$ $\pi^{*} \Lambda$.
(ii) Λ is a closed form.
(iii) The cohomology class $[\Lambda]$ is independent of the connection.

Proof. (i) Since the curvature Ω is horizontal, so are its components Ω^{i} and therefore so is $f(\Omega)=\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}}$.

To check the G-invariance of $f(\Omega)$, let $g \in G$. Then

$$
\begin{aligned}
r_{g}^{*}(f(\Omega)) & =r_{g}^{*}\left(\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}}\right) \\
& =\sum a_{I} r_{g}^{*}\left(\Omega^{i_{1}}\right) \wedge \cdots \wedge r_{g}^{*}\left(\Omega^{i_{k}}\right) .
\end{aligned}
$$

Since the curvature form Ω is right-equivariant,

$$
r_{g}^{*} \Omega=\left(\operatorname{Ad} g^{-1}\right) \Omega
$$

or

$$
r_{g}^{*}\left(\sum \Omega^{i} e_{i}\right)=\sum\left(\left(\operatorname{Ad} g^{-1}\right) \Omega\right)^{i} e_{i}
$$

so that

$$
r_{g}^{*}\left(\Omega^{i}\right)=\left(\left(\operatorname{Ad} g^{-1}\right) \Omega\right)^{i}
$$

Thus,

$$
\begin{aligned}
r_{g}^{*}(f(\Omega)) & =\sum a_{I}\left(\left(\operatorname{Ad} g^{-1}\right) \Omega\right)^{i_{1}} \wedge \cdots \wedge\left(\left(\operatorname{Ad} g^{-1}\right) \Omega\right)^{i_{k}} \\
& =f\left(\left(\operatorname{Ad} g^{-1}\right) \Omega\right) \\
& =f(\Omega) \quad(\text { by the Ad } G \text {-invariance of } f) .
\end{aligned}
$$

Since $f(\Omega)$ is horizontal and G-invariant, by Theorem 31.12, it is basic.
(ii) Since $\pi_{*}: T_{p} P \rightarrow T_{\pi(p)} M$ is surjective, $\pi^{*}: \Omega^{*}(M) \rightarrow \Omega^{*}(P)$ is injective. Therefore, to show that $d \Lambda=0$, it suffices to show that

$$
\pi^{*} d \Lambda=d \pi^{*} \Lambda=d f(\Omega)=0
$$

If $f=\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}}$, then

$$
f(\Omega)=\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}} .
$$

In this expression, each a_{I} is a constant and therefore by Lemma 32.1

$$
D a_{I}=d a_{I}=0
$$

By the second Bianchi identity (31.8), $D \Omega=0$. Therefore, $D \Omega^{i}=0$ for each i. Since the Ω^{i} are right-equivariant of type Ad and horizontal, they are tensorial forms. By Lemma 32.1 and because D is an antiderivation on tensorial forms (Proposition 31.16)

$$
\begin{aligned}
d(f(\Omega)) & =D(f(\Omega))=D\left(\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}}\right) \\
& =\sum_{I} \sum_{j} a_{I} \Omega^{i_{1}} \wedge \cdots \wedge D \Omega^{i_{j}} \wedge \cdots \wedge \Omega^{i_{2 k}} \\
& =0 .
\end{aligned}
$$

(iii) Let I be an open interval containing the closed interval $[0,1]$. Then $P \times I$ is a principal G-bundle over $M \times I$. Denote by ρ the projection $P \times I \rightarrow P$ to the first factor. If ω_{0} and ω_{1} are two connections on P, then

$$
\begin{equation*}
\tilde{\omega}=(1-t) \rho^{*} \omega_{0}+t \rho^{*} \omega_{1} \tag{32.2}
\end{equation*}
$$

is a connection on $P \times I$ (Check the details). Moreover, if $i_{t}: P \rightarrow P \times I$ is the inclusion $p \mapsto(p, t)$, then $i_{0}^{*} \tilde{\omega}=\omega_{0}$ and $i_{1}^{*} \tilde{\omega}=\omega_{1}$.
Let

$$
\tilde{\Omega}=d \tilde{\omega}+\frac{1}{2}[\tilde{\omega}, \tilde{\omega}]
$$

be the curvature of the connection $\tilde{\omega}$. It pulls back under i_{0} to

$$
\begin{aligned}
i_{0}^{*} \tilde{\Omega} & =d 1_{0}^{*} \tilde{\omega}+\frac{1}{2} i_{0}^{*}[\tilde{\omega}, \tilde{\omega}] \\
& =d \omega_{0}+\frac{1}{2}\left[i_{0}^{*} \tilde{\omega}, i_{0}^{*} \tilde{\omega}\right] \\
& =d \omega_{0}+\frac{1}{2}\left[\omega_{0}, \omega_{0}\right] \\
& =\Omega_{0},
\end{aligned}
$$

the curvature of the connection ω_{0}. Similarly, $i_{1}^{*} \tilde{\Omega}=\Omega_{1}$, the curvature of the connection ω_{1}.
For any $\operatorname{Ad}(G)$-invariant polynomial

$$
f=\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}}
$$

of degree k on \mathfrak{g},

$$
\begin{aligned}
i_{0}^{*} f(\tilde{\Omega}) & =i_{0}^{*} \sum a_{I} \tilde{\Omega}^{i_{1}} \wedge \cdots \wedge \tilde{\Omega}^{i_{k}} \\
& =\sum a_{I} \Omega_{0}^{i_{1}} \wedge \cdots \wedge \Omega_{0}^{i_{k}} \\
& =f\left(\Omega_{0}\right)
\end{aligned}
$$

and

$$
i_{1}^{*} f(\tilde{\Omega})=f\left(\Omega_{1}\right)
$$

Note that i_{0} and $i_{1}: P \rightarrow P \times I$ are homotopic through the homotopy i_{t}. By the homotopy axiom of de Rham cohomology, the cohomology classes $\left[i_{0}^{*} f(\tilde{\Omega})\right]$ and $\left[i_{1}^{*} f(\tilde{\Omega})\right]$ are equal. Thus, $\left[f\left(\Omega_{0}\right)\right]=\left[f\left(\Omega_{1}\right)\right]$, or

$$
\pi^{*}\left[\Lambda_{0}\right]=\pi^{*}\left[\Lambda_{1}\right] .
$$

By the injectivity of $\pi^{*},\left[\Lambda_{0}\right]=\left[\Lambda_{1}\right]$, so the cohomology class of Λ is independent of the connection.

Let $\pi: P \rightarrow M$ be a principal G-bundle with curvature form Ω. To every $\operatorname{Ad}(G)-$ invariant polynomial on \mathfrak{g}, one can associate the cohomology class $[\Lambda] \in H^{*}(M)$ such that $f(\Omega)=\pi^{*} \Lambda$. The cohomology class $[\Lambda]$ is called the characteristic class of P associated to f. Denote by $\operatorname{Inv}(\mathfrak{g})$ the algebra of all $\operatorname{Ad}(G)$-invariant polynomials on \mathfrak{g}. The map

$$
\begin{align*}
w: \operatorname{Inv}(\mathfrak{g}) & \rightarrow H^{*}(M) \\
f & \mapsto[\Lambda], \text { where } f(\Omega)=\pi^{*} \Lambda, \tag{32.3}
\end{align*}
$$

that maps each $\operatorname{Ad}(G)$-invariant polynomial to its characteristic class is called the Chern-Weil homomorphism.

Example 32.3. If the Lie group G is $\mathrm{GL}(r, \mathbb{C})$, then by Theorem B. 10 the ring of $\operatorname{Ad}(G)$-invariant polynomials on $\mathfrak{g l}(r, \mathbb{C})$ is generated by the coefficients $f_{k}(X)$ of the characteristic polynomial

$$
\operatorname{det}(\lambda I+X)=\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
$$

The characteristic classes associated to $f_{1}(X), \ldots, f_{k}(X)$ are the Chern classes of a principal GL (r, \mathbb{C})-bundle. These Chern classes generalize the Chern classes of the frame bundle $\operatorname{Fr}(E)$ of a complex vector bundle E of rank r.

Example 32.4. If the Lie group G is $\mathrm{GL}(r, \mathbb{R})$, then by Theorem B. 13 the ring of $\operatorname{Ad}(G)$-invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ is also generated by the coefficients $f_{k}(X)$ of the characteristic polynomial

$$
\operatorname{det}(\lambda I+X)=\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
$$

The characteristic classes associated to $f_{1}(X), \ldots, f_{k}(X)$ generalize the Pontrjagin classes of the frame bundle $\operatorname{Fr}(E)$ of a real vector bundle E of rank r. (For a real frame bundle the coefficients $f_{k}(\Omega)$ vanish for k odd.)

Problems

32.1. Polynomials on a vector space

Let V be a vector space with bases e_{1}, \ldots, e_{n} and u_{1}, \ldots, u_{n}. Prove that if a function $f: V \rightarrow \mathbb{R}$ is a polynomial of degree k with respect to the basis e_{1}, \ldots, e_{n}, then it is a polynomial of degree k with respect to the basis u_{1}, \ldots, u_{n}. Thus, the notion of a polynomial of degree k on a vector space V is independent of the choice of a basis.

32.2. Chern-Weil forms

In this problem we keep the notations of this section. Let e_{1}, \ldots, e_{n} and $u_{1}, \ldots u_{n}$ be two bases for the Lie algebra \mathfrak{g} with dual bases $\alpha^{1}, \ldots, \alpha^{n}$ and $\beta^{1}, \ldots, \beta^{n}$, respectively. Suppose

$$
\Omega=\sum \Omega^{i} e_{i}=\sum \Psi^{j} u_{j}
$$

and

$$
f=\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}}=\sum b_{I} \beta^{i_{1}} \cdots \beta^{i_{k}}
$$

Prove that

$$
\sum a_{I} \Omega^{i_{1}} \wedge \cdots \wedge \Omega^{i_{k}}=\sum b_{I} \Psi^{i_{1}} \wedge \cdots \wedge \Psi^{i_{k}}
$$

This shows that the definition of $f(\Omega)$ is independent of the choice of basis for \mathfrak{g}.

32.3. Connection on $P \times I$

Show that the 1 -form $\tilde{\omega}$ in (32.2) is a connection on $P \times I$.

32.4. Chern-Weil homomorphism

Show that the map $w: \operatorname{Inv}(\mathfrak{g}) \rightarrow H^{*}(M)$ in (32.3) is an algebra homomorphism.

Appendices

§A Manifolds

This appendix is a review, mostly without proofs, of the basic notions in the theory of manifolds and differential forms. For more details, see [21].

A. 1 Manifolds and Smooth Maps

We will be following the convention of classical differential geometry in which vector fields take on subscripts, differential forms take on superscripts, and coefficient functions can have either superscripts or subscripts depending on whether they are coefficient functions of vector fields or of differential forms. See [21, §4.7, p. 44] for a more detailed explanation of this convention.

A manifold is a higher-dimensional analogue of a smooth curve or surface. Its prototype is the Euclidean space \mathbb{R}^{n}, with coordinates r^{1}, \ldots, r^{n}. Let U be an open subset of \mathbb{R}^{n}. A function $f=\left(f^{1}, \ldots, f^{m}\right): U \rightarrow \mathbb{R}^{m}$ is smooth on U if the partial derivatives $\partial^{k} f / \partial r^{j_{1}} \ldots \partial r^{j_{k}}$ exist on U for all integers $k \geq 1$ and all j_{1}, \ldots, j_{k}. In this book we use the terms "smooth" and " C^{∞} " interchangeably.

A topological space M is locally Euclidean of dimension n if for every point p in M, there is a homeomorphism ϕ of a neighborhood U of p with an open subset of \mathbb{R}^{n}. Such a pair $\left(U, \phi: U \rightarrow \mathbb{R}^{n}\right)$ is called a coordinate chart or simply a chart. If $p \in U$, then we say that (U, ϕ) is a chart about p. A collection of charts $\left\{\left(U_{\alpha}, \phi_{\alpha}: U_{\alpha} \rightarrow\right.\right.$ $\left.\left.\mathbb{R}^{n}\right)\right\}$ is C^{∞} compatible if for every α and β, the transition function

$$
\phi_{\alpha} \circ \phi_{\beta}^{-1}: \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is C^{∞}. A collection of C^{∞} compatible charts $\left\{\left(U_{\alpha}, \phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}\right)\right\}$ that cover M is called a C^{∞} atlas. A C^{∞} atlas is said to be maximal if it contains every chart that is C^{∞} compatible with all the charts in the atlas.

Definition A.1. A topological manifold is a Hausdorff, second countable, locally Euclidean topological space. By "second countable," we mean that the space has a countable basis of open sets. A smooth or C^{∞} manifold is a pair consisting of a topological manifold M and a maximal C^{∞} atlas $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ on M. In this book all manifolds will be smooth manifolds.

In the definition of a manifold, the Hausdorff condition excludes certain pathological examples, while the second countability condition guarantees the existence of a partition of unity, a useful technical tool that we will define shortly.

In practice, to show that a Hausdorff, second countable topological space is a smooth manifold it suffices to exhibit a C^{∞} atlas, for by Zorn's lemma every C^{∞} atlas is contained in a unique maximal atlas.

Example A.2. Let S^{1} be the circle defined by $x^{2}+y^{2}=1$ in \mathbb{R}^{2}, with open sets (see Figure A.1)

$$
\begin{aligned}
& U_{x}^{+}=\left\{(x, y) \in S^{1} \mid x>0\right\}, \\
& U_{x}^{-}=\left\{(x, y) \in S^{1} \mid x<0\right\}, \\
& U_{y}^{+}=\left\{(x, y) \in S^{1} \mid y>0\right\}, \\
& U_{y}^{-}=\left\{(x, y) \in S^{1} \mid y<0\right\} .
\end{aligned}
$$

Fig. A.1. A C^{∞} atlas on S^{1}.

Then $\left\{\left(U_{x}^{+}, y\right),\left(U_{x}^{-}, y\right),\left(U_{y}^{+}, x\right),\left(U_{y}^{-}, x\right)\right\}$ is a C^{∞} atlas on S^{1}. For example, the transition function from
the open interval $] 0,1\left[=x\left(U_{x}^{+} \cap U_{y}^{-}\right) \rightarrow y\left(U_{x}^{+} \cap U_{y}^{-}\right)=\right]-1,0[$
is $y=-\sqrt{1-x^{2}}$, which is C^{∞} on its domain.
A function $f: M \rightarrow \mathbb{R}^{n}$ on a manifold M is said to be smooth or C^{∞} at $p \in M$ if there is a chart (U, ϕ) about p in the maximal atlas of M such that the function

$$
f \circ \phi^{-1}: \mathbb{R}^{m} \supset \phi(U) \rightarrow \mathbb{R}^{n}
$$

is C^{∞}. The function $f: M \rightarrow \mathbb{R}^{n}$ is said to be smooth or C^{∞} on M if it is C^{∞} at every point of M. Recall that an algebra over \mathbb{R} is a vector space together with a bilinear map $\mu: A \times A \rightarrow A$, called multiplication, such that under addition and multiplication, A becomes a ring. Under addition, multiplication, and scalar multiplication, the set of all C^{∞} functions $f: M \rightarrow \mathbb{R}$ is an algebra over \mathbb{R}, denoted by $C^{\infty}(M)$.

A map $F: N \rightarrow M$ between two manifolds is smooth or C^{∞} at $p \in N$ if there is a chart (U, ϕ) about p in N and a chart (V, ψ) about $F(p)$ in M with $V \supset F(U)$ such that the composite map $\psi \circ F \circ \phi^{-1}: \mathbb{R}^{n} \supset \phi(U) \rightarrow \psi(V) \subset \mathbb{R}^{m}$ is C^{∞} at $\phi(p)$. It is smooth on N if it is smooth at every point of N. A smooth map $F: N \rightarrow M$ is called a diffeomorphism if it has a smooth inverse, i.e., a smooth map $G: M \rightarrow N$ such that $F \circ G=\mathbb{1}_{M}$ and $G \circ F=\mathbb{1}_{N}$.

A typical matrix in linear algebra is usually an $m \times n$ matrix, with m rows and n columns. Such a matrix represents a linear transformation $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. For this reason, we usually write a C^{∞} map as $F: N \rightarrow M$, rather than $F: M \rightarrow N$.

A. 2 Tangent Vectors

The derivatives of a function f at a point p in \mathbb{R}^{n} depend only on the values of f in a small neighborhood of p. To make precise what is meant by a "small" neighborhood, we introduce the concept of the germ of a function. Decree two C^{∞} functions $f: U \rightarrow \mathbb{R}$ and $g: V \rightarrow \mathbb{R}$ defined on neighborhoods U and V of p to be equivalent if there is a neighborhood W of p contained in both U and V such that f agrees with g on W. The equivalence class of $f: U \rightarrow \mathbb{R}$ is called the germ of f at p.

It is easy to verify that addition, multiplication, and scalar multiplication are well-defined operations on the set $C_{p}^{\infty}(M)$ of germs of C^{∞} real-valued functions at p in M. These three operations make $C_{p}^{\infty}(M)$ into an algebra over \mathbb{R}.
Definition A.3. A point-derivation at a point p of a manifold M is a linear map $D: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ such that for any $f, g \in C_{p}^{\infty}(M)$,

$$
D(f g)=(D f) g(p)+f(p) D g
$$

A point-derivation at p is also called a tangent vector at p. The set of all tangent vectors at p is a vector space $T_{p} M$, called the tangent space of M at p.

Example A.4. If r^{1}, \ldots, r^{n} are the standard coordinates on \mathbb{R}^{n} and $p \in \mathbb{R}^{n}$, then the usual partial derivatives

$$
\left.\frac{\partial}{\partial r^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial r^{n}}\right|_{p}
$$

are tangent vectors at p that form a basis for the tangent space $T_{p}\left(\mathbb{R}^{n}\right)$.
At a point p in a coordinate chart $(U, \phi)=\left(U, x^{1}, \ldots, x^{n}\right)$, where $x^{i}=r^{i} \circ \phi$ is the i th component of ϕ, we define the coordinate vectors $\partial /\left.\partial x^{i}\right|_{p} \in T_{p} M$ by

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p} f=\left.\frac{\partial}{\partial r^{i}}\right|_{\phi(p)} f \circ \phi^{-1} \quad \text { for each } f \in C_{p}^{\infty}(M)
$$

If $F: N \rightarrow M$ is a C^{∞} map, then at each point $p \in N$ its differential

$$
\begin{equation*}
F_{*, p}: T_{p} N \rightarrow T_{F(p)} M, \tag{A.1}
\end{equation*}
$$

is the linear map defined by

$$
\left(F_{*, p} X_{p}\right)(h)=X_{p}(h \circ F)
$$

for $X_{p} \in T_{p} N$ and $h \in C_{F(p)}^{\infty}(M)$. Usually the point p is clear from context and we may write F_{*} instead of $F_{*, p}$. It is easy to verify that if $F: N \rightarrow M$ and $G: M \rightarrow P$ are C^{∞} maps, then for any $p \in N$,

$$
(G \circ F)_{*, p}=G_{*, F(p)} \circ F_{*, p},
$$

or, suppressing the points,

$$
(G \circ F)_{*}=G_{*} \circ F_{*} .
$$

A. 3 Vector Fields

A vector field X on a manifold M is the assignment of a tangent vector $X_{p} \in T_{p} M$ to each point $p \in M$. At every p in a chart $\left(U, x^{1}, \ldots, x^{n}\right)$, since the coordinate vectors $\partial /\left.\partial x^{i}\right|_{p}$ form a basis of the tangent space $T_{p} M$, the vector X_{p} can be written as a linear combination

$$
X_{p}=\left.\sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}}\right|_{p} \text { with } a^{i}(p) \in \mathbb{R}
$$

As p varies over U, the coefficients $a^{i}(p)$ become functions on U. The vector field X is said to be smooth or C^{∞} if M has a C^{∞} atlas such that on each chart $\left(U, x^{1}, \ldots, x^{n}\right)$ of the atlas, the coefficient functions a^{i} in $X=\sum a^{i} \partial / \partial x^{i}$ are C^{∞}. We denote the set of all C^{∞} vector fields on M by $\mathfrak{X}(M)$. It is a vector space under the addition of vector fields and scalar multiplication by real numbers. As a matter of notation, we write tangent vectors at p as $X_{p}, Y_{p}, Z_{p} \in T_{p} M$, or if the point p is understood from context, as $v_{1}, v_{2}, \ldots, v_{k} \in T_{p} M$. As a shorthand, we sometimes write ∂_{i} for $\partial / \partial x^{i}$.

A frame of vector fields on an open set $U \subset M$ is a collection of vector fields X_{1}, \ldots, X_{n} on U such that at each point $p \in U$, the vectors $\left(X_{1}\right)_{p}, \ldots,\left(X_{n}\right)_{p}$ form a basis for the tangent space $T_{p} M$. For example, in a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$, the coordinate vector fields $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ form a frame of vector fields on U.

A C^{∞} vector field X on a manifold M gives rise to a linear operator on the vector space $C^{\infty}(M)$ of C^{∞} functions on M by the rule

$$
(X f)(p)=X_{p} f \quad \text { for } f \in C^{\infty}(M) \text { and } p \in M .
$$

To show that $X f$ is a C^{∞} function on M, it suffices to write X in terms of local coordinates x^{1}, \ldots, x^{n} in a neighborhood of p, say $X=\sum a^{i} \partial / \partial x^{i}$. Since X is assumed C^{∞}, all the coefficients a^{i} are C^{∞}. Therefore, if f is C^{∞}, then $X f=\sum a^{i} \partial f / \partial x^{i}$ is also.

The Lie bracket of two vector fields $X, Y \in \mathfrak{X}(M)$ is the vector field $[X, Y]$ defined by

$$
\begin{equation*}
[X, Y]_{p} f=X_{p}(Y f)-Y_{p}(X f) \quad \text { for } p \in M \text { and } f \in C_{p}^{\infty}(M) . \tag{A.2}
\end{equation*}
$$

So defined, $[X, Y]_{p}$ is a point-derivation at p (Problem A.3(a)) and therefore $[X, Y]$ is indeed a vector field on M. The formula for $[X, Y]$ in local coordinates (Problem A.3(b)) shows that if X and Y are C^{∞}, then so is $[X, Y]$.

If $f: N \rightarrow M$ is a C^{∞} map, its differential $f_{*, p}: T_{p} N \rightarrow T_{f(p)} M$ pushes forward a tangent vector at a point in N to a tangent vector in M. It should be noted, however, that in general there is no push-forward map $f_{*}: \mathfrak{X}(N) \rightarrow \mathfrak{X}(M)$ for vector fields. For example, when f is not one-to-one, say $f(p)=f(q)$ for $p \neq q$ in N, it may happen that for some $X \in \mathfrak{X}(N), f_{*, p} X_{p} \neq f_{*, q} X_{q}$; in this case, there is no way to define $f_{*} X$ so that $\left(f_{*} X\right)_{f(p)}=f_{*, p} X_{p}$ for all $p \in N$. Similarly, if $f: N \rightarrow M$ is not onto, then there is no natural way to define $f_{*} X$ at a point of M not in the image of f. Of course, if $f: N \rightarrow M$ is a diffeomorphism, then the pushforward $f_{*}: \mathfrak{X}(N) \rightarrow \mathfrak{X}(M)$ is well defined.

A. 4 Differential Forms

For $k \geq 1$, a k-form or a form of degree k on M is the assignment to each p in M of an alternating k-linear function

$$
\omega_{p}: \underbrace{T_{p} M \times \cdots \times T_{p} M}_{k \text { copies }} \rightarrow \mathbb{R} .
$$

Here "alternating" means that for every permutation σ of the set $\{1,2, \ldots, k\}$ and $v_{1}, \ldots, v_{k} \in T_{p} M$,

$$
\begin{equation*}
\omega_{p}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=(\operatorname{sgn} \sigma) \omega_{p}\left(v_{1}, \ldots, v_{k}\right), \tag{A.3}
\end{equation*}
$$

where $\operatorname{sgn} \sigma$, the sign of the permutation σ, is ± 1 depending on whether σ is even or odd. We define a 0 -form to be the assignment of a real number to each $p \in M$; in other words, a 0 -form on M is simply a real-valued function on M. When $k=1$, the condition of being alternating is vacuous. Thus, a 1-form on M is the assignment of a linear function $\omega_{p}: T_{p} M \rightarrow \mathbb{R}$ to each p in M. For $k<0$, a k-form is 0 by definition.

An alternating k-linear function on a vector space V is also called a k-covector on V. As above, a 0 -covector is a constant and a 1 -covector on V is a linear function $f: V \rightarrow \mathbb{R}$. Let $A_{k}(V)$ be the vector space of all k-covectors on V. Then $A_{0}(V)=\mathbb{R}$ and $A_{1}(V)=V^{\vee}:=\operatorname{Hom}(V, \mathbb{R})$, the dual vector space of V. In this language a k-form on M is the assignment of a k-covector $\omega_{p} \in A_{k}\left(T_{p} M\right)$ to each point p in M.

Let S_{k} be the group of all permutations of $\{1,2, \ldots, k\}$. A (k, ℓ)-shuffle is a permutation $\sigma \in S_{k+\ell}$ such that

$$
\sigma(1)<\cdots<\sigma(k) \text { and } \sigma(k+1)<\cdots<\sigma(k+\ell) .
$$

The wedge product of a k-covector α and an ℓ-covector β on a vector space V is by definition the $(k+\ell)$-linear function

$$
\begin{equation*}
(\alpha \wedge \beta)\left(v_{1}, \ldots, v_{k+\ell}\right)=\sum(\operatorname{sgn} \sigma) \alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right) \tag{A.4}
\end{equation*}
$$

where the sum runs over all (k, ℓ)-shuffles. For example, if α and β are 1-covectors, then

$$
(\alpha \wedge \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)-\alpha\left(v_{2}\right) \beta\left(v_{1}\right)
$$

The wedge of a 0 -covector, i.e., a constant c, with another covector ω is simply scalar multiplication. In this case, in keeping with the traditional notation for scalar multiplication, we often replace the wedge by a dot or even by nothing: $c \wedge \omega=$ $c \cdot \omega=c \omega$.

The wedge product $\alpha \wedge \beta$ is a $(k+\ell)$-covector; moreover, the wedge operation \wedge is bilinear, associative, and anticommutative in its two arguments. Anticommutativity means that

$$
\alpha \wedge \beta=(-1)^{\operatorname{deg} \alpha \operatorname{deg} \beta} \beta \wedge \alpha
$$

Proposition A.5. If $\alpha^{1}, \ldots, \alpha^{n}$ is a basis for the 1-covectors on a vector space V, then a basis for the k-covectors on V is the set

$$
\left\{\alpha^{i_{1}} \wedge \cdots \wedge \alpha^{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

A k-tuple of integers $I=\left(i_{1}, \ldots, i_{k}\right)$ is called a multi-index. If $i_{1} \leq \cdots \leq i_{k}$, we call I an ascending multi-index, and if $i_{1}<\cdots<i_{k}$, we call I a strictly ascending multi-index. To simplify the notation, we will write $\alpha^{I}=\alpha^{i_{1}} \wedge \cdots \wedge \alpha^{i_{k}}$.

As noted earlier, for a point p in a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$, a basis for the tangent space $T_{p} M$ is

$$
\left.\frac{\partial}{\partial x^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}
$$

Let $\left(d x^{1}\right)_{p}, \ldots,\left(d x^{n}\right)_{p}$ be the dual basis for the cotangent space $A_{1}\left(T_{p} M\right)=T_{p}^{*} M$, i.e.,

$$
\left(d x^{i}\right)_{p}\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)=\delta_{j}^{i} .
$$

By Proposition A.5, if ω is a k-form on M, then at each $p \in U, \omega_{p}$ is a linear combination:

$$
\omega_{p}=\sum_{I} a_{I}(p)\left(d x^{I}\right)_{p}=\sum_{I} a_{I}(p)\left(d x^{i_{1}}\right)_{p} \wedge \cdots \wedge\left(d x^{i_{k}}\right)_{p}
$$

We say that the k-form ω is smooth if M has an atlas $\left\{\left(U, x^{1}, \ldots, x^{n}\right)\right\}$ such that on each U, the coefficients $a_{I}: U \rightarrow \mathbb{R}$ of ω are smooth. By differential k-forms, we will mean smooth k-forms on a manifold.

A frame of differential k-forms on an open set $U \subset M$ is a collection of differential k-forms $\omega_{1}, \ldots, \omega_{r}$ on U such that at each point $p \in U$, the k-covectors $\left(\omega_{1}\right)_{p}, \ldots,\left(\omega_{r}\right)_{p}$ form a basis for the vector space $A_{k}\left(T_{p} M\right)$ of k-covectors on the
tangent space at p. For example, on a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$, the k-forms $d x^{I}=d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}, 1 \leq i_{1}<\cdots<i_{k} \leq n$, constitute a frame of differential k-forms on U.

A subset B of a left R-module V is called a basis if every element of V can be written uniquely as a finite linear combination $\sum r_{i} b_{i}$, where $r_{i} \in R$ and $b_{i} \in B$. An R-module with a basis is said to be free, and if the basis is finite with n elements, then the free R-module is said to be of $\boldsymbol{r a n k} n$. It can be shown that if a free R-module has a finite basis, then any two bases have the same number of elements, so that the rank is well defined. We denote the rank of a free R-module V by $\mathrm{rk} V$.

Let $\Omega^{k}(M)$ denote the vector space of $C^{\infty} k$-forms on M and let

$$
\Omega^{*}(M)=\bigoplus_{k=0}^{n} \Omega^{k}(M)
$$

If $\left(U, x^{1}, \ldots, x^{n}\right)$ is a coordinate chart on M, then $\Omega^{k}(U)$ is a free module over $C^{\infty}(U)$ of rank $\binom{n}{k}$, with basis $d x^{I}$ as above.

An algebra A is said to be graded if it can be written as a direct sum $A=\bigoplus_{k=0}^{\infty} A_{k}$ of vector spaces such that under multiplication, $A_{k} \cdot A_{\ell} \subset A_{k+\ell}$. The wedge product \wedge makes $\Omega^{*}(M)$ into an anticommutative graded algebra over \mathbb{R}.

A. 5 Exterior Differentiation on a Manifold

An exterior derivative on a manifold M is a linear operator $d: \Omega^{*}(M) \rightarrow \Omega^{*}(M)$, satisfying the following three properties:
(1) d is an antiderivation of degree 1 , i.e., d increases the degree by 1 and for $\omega \in$ $\Omega^{k}(M)$ and $\tau \in \Omega^{\ell}(M)$,

$$
d(\omega \wedge \tau)=d \omega \wedge \tau+(-1)^{k} \omega \wedge d \tau
$$

(2) $d^{2}=d \circ d=0$;
(3) on a 0 -form $f \in C^{\infty}(M)$,

$$
(d f)_{p}\left(X_{p}\right)=X_{p} f \text { for } p \in M \text { and } X_{p} \in T_{p} M
$$

By induction the antiderivation property (1) extends to more than two factors; for example,

$$
d(\omega \wedge \tau \wedge \eta)=d \omega \wedge \tau \wedge \eta+(-1)^{\operatorname{deg} \omega} \omega \wedge d \tau \wedge \eta+(-1)^{\operatorname{deg} \omega \wedge \tau} \omega \wedge \tau \wedge d \eta
$$

The existence and uniqueness of an exterior derivative on a general manifold is established in [21, Section 19]. To develop some facility with this operator, we will examine the case when M is covered by a single coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$. This case can be used to define and compute locally on a manifold.

Proposition A.6. Let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a coordinate chart. Suppose $d: \Omega^{*}(U) \rightarrow$ $\Omega^{*}(U)$ is an exterior derivative. Then
(i) for any $f \in \Omega^{0}(U)$,

$$
d f=\sum \frac{\partial f}{\partial x^{i}} d x^{i} ;
$$

(ii) $d\left(d x^{I}\right)=0$;
(iii) for any $a_{I} d x^{I} \in \Omega^{k}(M), d\left(a_{I} d x^{I}\right)=d a_{I} \wedge d x^{I}$.

Proof. (i) Since $\left(d x^{1}\right)_{p}, \ldots,\left(d x^{n}\right)_{p}$ is a basis of 1 -covectors at each point $p \in U$, there are constants $a_{i}(p)$ such that

$$
(d f)_{p}=\sum a_{i}(p)\left(d x^{i}\right)_{p}
$$

Suppressing p, we may write

$$
d f=\sum a_{i} d x^{i} .
$$

Applying both sides to the vector field $\partial / \partial x^{i}$ gives

$$
d f\left(\frac{\partial}{\partial x^{j}}\right)=\sum_{i} a_{i} d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\sum_{i} a_{i} \delta_{j}^{i}=a_{j} .
$$

On the other hand, by property (3) of d,

$$
d f\left(\frac{\partial}{\partial x^{j}}\right)=\frac{\partial}{\partial x^{j}}(f) .
$$

Hence, $a_{j}=\partial f / \partial x^{j}$ and $d f=\sum\left(\partial f / \partial x^{j}\right) d x^{j}$.
(ii) By the antiderivation property of d,

$$
\begin{aligned}
d\left(d x^{I}\right) & =d\left(d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right)=\sum_{j}(-1)^{j-1} d x^{i_{1}} \wedge \cdots \wedge d d x^{i_{j}} \wedge \cdots \wedge d x^{i_{k}} \\
& =0 \quad \text { since } d^{2}=0
\end{aligned}
$$

(iii) By the antiderivation property of d,

$$
\begin{aligned}
d\left(a_{I} d x^{I}\right) & =d a_{I} \wedge d x^{I}+a_{I} d\left(d x^{I}\right) \\
& =d a_{I} \wedge d x^{I} \quad \text { since } d\left(d x^{I}\right)=0 .
\end{aligned}
$$

Proposition A. 6 proves the uniqueness of exterior differentiation on a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$. To prove its existence, we define d by two of the formulas of Proposition A.6:
(i) if $f \in \Omega^{0}(U)$, then $d f=\sum\left(\partial f / \partial x^{i}\right) d x^{i}$;
(iii) if $\omega=\sum a_{I} d x^{I} \in \Omega^{k}(U)$ for $k \geq 1$, then $d \omega=\sum d a_{I} \wedge d x^{I}$.

Next we check that so defined, d satisfies the three properties of exterior differentiation.
(1) For $\omega \in \Omega^{k}(U)$ and $\tau \in \Omega^{\ell}(U)$,

$$
\begin{equation*}
d(\omega \wedge \tau)=(d \omega) \wedge \tau+(-1)^{k} \omega \wedge d \tau \tag{A.5}
\end{equation*}
$$

Proof. Suppose $\omega=\sum a_{I} d x^{I}$ and $\tau=\sum b_{J} d x^{J}$. On functions, $d(f g)=(d f) g+$ $f(d g)$ is simply another manifestation of the ordinary product rule, since

$$
\begin{aligned}
d(f g) & =\sum \frac{\partial}{\partial x^{i}}(f g) d x^{i} \\
& =\sum\left(\frac{\partial f}{\partial x^{i}} g+f \frac{\partial g}{\partial x^{i}}\right) d x^{i} \\
& =\left(\sum \frac{\partial f}{\partial x^{i}} d x^{i}\right) g+f \sum \frac{\partial g}{\partial x^{i}} d x^{i} \\
& =(d f) g+f d g .
\end{aligned}
$$

Next suppose $k \geq 1$. Since d is linear and \wedge is bilinear over \mathbb{R}, we may assume that $\omega=a_{I} d x^{I}$ and $\bar{\tau}=b_{J} d x^{J}$, each consisting of a single term. Then

$$
\begin{aligned}
d(\omega \wedge \tau) & =d\left(a_{I} b_{J} d x^{I} \wedge d x^{J}\right) \\
& =d\left(a_{I} b_{J}\right) \wedge d x^{I} \wedge d x^{J} \quad(\text { definition of } d) \\
& =\left(d a_{I}\right) b_{J} \wedge d x^{I} \wedge d x^{J}+a_{I} d b_{J} \wedge d x^{I} \wedge d x^{J}
\end{aligned}
$$

$$
\text { (by the degree } 0 \text { case) }
$$

$$
=d a_{I} \wedge d x^{I} \wedge b_{J} d x^{J}+(-1)^{k} a_{I} d x^{I} \wedge d b_{J} \wedge d x^{J}
$$

$$
=d \omega \wedge \tau+(-1)^{k} \omega \wedge d \tau
$$

(2) $d^{2}=0$ on $\Omega^{k}(U)$.

Proof. This is a consequence of the fact that the mixed partials of a function are equal. For $f \in \Omega^{0}(U)$,

$$
d^{2} f=d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} d x^{j} \wedge d x^{i}
$$

In this double sum, the factors $\partial^{2} f / \partial x^{j} \partial x^{i}$ are symmetric in i, j, while $d x^{j} \wedge d x^{i}$ are skew-symmetric in i, j. Hence, for each pair $i<j$ there are two terms

$$
\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} d x^{i} \wedge d x^{j}, \quad \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} d x^{j} \wedge d x^{i}
$$

that add up to zero. It follows that $d^{2} f=0$.
For $\omega=\sum a_{I} d x^{I} \in \Omega^{k}(U)$, where $k \geq 1$,

$$
\begin{aligned}
d^{2} \omega & \left.=d\left(\sum d a_{I} \wedge d x^{I}\right) \quad \quad \text { (by the definition of } d \omega\right) \\
& =\sum\left(d^{2} a_{I}\right) \wedge d x^{I}+d a_{I} \wedge d\left(d x^{I}\right) \\
& =0 .
\end{aligned}
$$

In this computation, $d^{2} a_{I}=0$ by the degree 0 case, and $d\left(d x^{I}\right)=0$ follows as in the proof of Proposition A.6(ii) by the antiderivation property and the degree 0 case.
(3) For f a C^{∞} function and X a C^{∞} vector field on $\left(U, x^{1}, \ldots, x^{n}\right),(d f)(X)=X f$.

Proof. Suppose $X=\sum a^{j} \partial / \partial x^{j}$. Then

$$
(d f)(X)=\left(\sum \frac{\partial f}{\partial x^{i}} d x^{i}\right)\left(\sum a^{j} \frac{\partial}{\partial x^{j}}\right)=\sum a^{i} \frac{\partial f}{\partial x^{i}}=X f .
$$

A. 6 Exterior Differentiation on \mathbb{R}^{3}

On \mathbb{R}^{3} with coordinates x, y, z, every smooth vector field X is uniquely a linear combination

$$
X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}
$$

with coefficient functions $a, b, c \in C^{\infty}\left(\mathbb{R}^{3}\right)$. Thus, the vector space $\mathfrak{X}\left(\mathbb{R}^{3}\right)$ of smooth vector fields on \mathbb{R}^{3} is a free module of rank 3 over $C^{\infty}\left(\mathbb{R}^{3}\right)$ with basis $\{\partial / \partial x, \partial / \partial y$, $\partial / \partial z\}$. Similarly, $\Omega^{3}\left(\mathbb{R}^{3}\right)$ is a free module of rank 1 over $C^{\infty}\left(\mathbb{R}^{3}\right)$ with basis $\{d x \wedge$ $d y \wedge d z\}$, while $\Omega^{1}\left(\mathbb{R}^{3}\right)$ and $\Omega^{2}\left(\mathbb{R}^{3}\right)$ are free modules of rank 3 over $C^{\infty}\left(\mathbb{R}^{3}\right)$ with bases $\{d x, d y, d z\}$ and $\{d y \wedge d z, d z \wedge d x, d x \wedge d y\}$, respectively. So the following identifications are possible:

$$
\begin{array}{rlll}
\text { functions } & =0 \text {-forms } & \longleftrightarrow 3 \text {-forms } \\
f & =f & \longleftrightarrow f d x \wedge d y \wedge d z
\end{array}
$$

and

$$
\left.\begin{array}{lccc}
\text { vector fields } & \leftrightarrow & \text { 1-forms } & \leftrightarrow
\end{array} \begin{array}{c}
\text { 2-forms }
\end{array}\right]
$$

We will write $f_{x}=\partial f / \partial x, f_{y}=\partial f / \partial y$, and $f_{z}=\partial f / \partial z$. On functions,

$$
d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

On 1-forms,

$$
d(a d x+b d y+c d z)=\left(c_{y}-b_{z}\right) d y \wedge d z-\left(c_{x}-a_{z}\right) d z \wedge d x+\left(b_{x}-a_{y}\right) d x \wedge d y
$$

On 2-forms,

$$
d(a d y \wedge d z+b d z \wedge d x+c d x \wedge d y)=\left(a_{x}+b_{y}+c_{z}\right) d x \wedge d y \wedge d z
$$

Identifying forms with vector fields and functions, we have the following correspondences:

$$
\begin{aligned}
& d(0 \text {-form }) \longleftrightarrow \text { gradient of a function } \\
& d(1 \text {-form }) \longleftrightarrow \text { curl of a vector field } \\
& d(2 \text {-form }) \longleftrightarrow \text { divergence of a vector field. }
\end{aligned}
$$

A. 7 Pullback of Differential Forms

Unlike vector fields, which in general cannot be pushed forward under a C^{∞} map, differential forms can always be pulled back. Let $F: N \rightarrow M$ be a C^{∞} map. The pullback of a C^{∞} function f on M is the C^{∞} function $F^{*} f:=f \circ F$ on N. This defines the pullback on $C^{\infty} 0$-forms. For $k>0$, the pullback of a k-form ω on M is the k-form $F^{*} \omega$ on N defined by

$$
\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\omega_{F(p)}\left(F_{*, p} v_{1}, \ldots, F_{*, p} v_{k}\right)
$$

for $p \in N$ and $v_{1}, \ldots, v_{k} \in T_{p} M$. From this definition, it is not obvious that the pullback $F^{*} \omega$ of a C^{∞} form ω is C^{∞}. To show this, we first derive a few basic properties of the pullback.

Proposition A.7. Let $F: N \rightarrow M$ be a C^{∞} map of manifolds. If ω and τ are k-forms and σ is an ℓ-form on M, then
(i) $F^{*}(\omega+\tau)=F^{*} \omega+F^{*} \tau$;
(ii) for any real number $a, F^{*}(a \omega)=a F^{*} \omega$;
(iii) $F^{*}(\omega \wedge \sigma)=F^{*} \omega \wedge F^{*} \sigma$;
(iv) for any C^{∞} function h on $M, d F^{*} h=F^{*} d h$.

Proof. The first three properties (i), (ii), (iii) follow directly from the definitions. To prove (iv), let $p \in N$ and $X_{p} \in T_{p} N$. Then

$$
\begin{aligned}
\left(d F^{*} h\right)_{p}\left(X_{p}\right) & =X_{p}\left(F^{*} h\right) & & (\text { property (3) of } d) \\
& =X_{p}(h \circ F) & & \left(\text { definition of } F^{*} h\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(F^{*} d h\right)_{p}\left(X_{p}\right) & =(d h)_{F(p)}\left(F_{*, p} X_{p}\right) & & \left(\text { definition of } F^{*}\right) \\
& =\left(F_{*, p} X_{p}\right) h & & (\text { property }(3) \text { of } d) \\
& =X_{p}(h \circ F) . & & \left(\text { definition of } F_{*, p}\right)
\end{aligned}
$$

Hence,

$$
d F^{*} h=F^{*} d h .
$$

We now prove that the pullback of a C^{∞} form is C^{∞}. On a coordinate chart $\left(U, x^{1}, \ldots, x^{n}\right)$ in M, a $C^{\infty} k$-form ω can be written as a linear combination

$$
\omega=\sum a_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

where the coefficients a_{I} are C^{∞} functions on U. By the preceding proposition,

$$
\begin{aligned}
F^{*} \omega & =\sum\left(F^{*} a_{I}\right) d\left(F^{*} x^{i_{1}}\right) \wedge \cdots \wedge d\left(F^{*} x^{i_{k}}\right) \\
& =\sum\left(a_{I} \circ F\right) d\left(x^{i_{1}} \circ F\right) \wedge \cdots \wedge d\left(x^{i_{k}} \circ F\right),
\end{aligned}
$$

which shows that $F^{*} \omega$ is C^{∞}, because it is a sum of products of C^{∞} functions and C^{∞} 1 -forms.

Proposition A.8. Suppose $F: N \rightarrow M$ is a smooth map. On $C^{\infty} k$-forms, $d F^{*}=F^{*} d$. Proof. Let $\omega \in \Omega^{k}(M)$ and $p \in M$. Choose a chart $\left(U, x^{1}, \ldots, x^{n}\right)$ about p in M. On U,

$$
\omega=\sum a_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

As computed above,

$$
F^{*} \omega=\sum\left(a_{I} \circ F\right) d\left(x^{i_{1}} \circ F\right) \wedge \cdots \wedge d\left(x^{i_{k}} \circ F\right) .
$$

Hence,

$$
\begin{aligned}
d F^{*} \omega= & \sum d\left(a_{I} \circ F\right) \wedge d\left(x^{i_{1}} \circ F\right) \wedge \cdots \wedge d\left(x^{i_{k}} \circ F\right) \\
= & \sum d\left(F^{*} a_{I}\right) \wedge d\left(F^{*} x^{i_{1}}\right) \wedge \cdots \wedge d\left(F^{*} x^{i_{k}}\right) \\
= & \sum F^{*} d a_{I} \wedge F^{*} d x^{i_{1}} \wedge \cdots \wedge F^{*} d x^{i_{k}} \\
& \left(d F^{*}=F^{*} d \text { on functions by Prop. A. } 7(\text { iv })\right) \\
= & \sum F^{*}\left(d a_{I} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right) \\
& \left(F^{*}\right. \text { preserves the wedge product by Prop. A.7(iii)) } \\
= & F^{*} d \omega .
\end{aligned}
$$

In summary, for any C^{∞} map $F: N \rightarrow M$, the pullback map $F^{*}: \Omega^{*}(M) \rightarrow \Omega^{*}(N)$ is an algebra homomorphism that commutes with the exterior derivative d.

Example A. 9 (Pullback under the inclusion map of an immersed submanifold). Let N and M be manifolds. A C^{∞} map $f: N \rightarrow M$ is called an immersion if for all $p \in N$, the differential $f_{*, p}: T_{p} N \rightarrow T_{f(p)} M$ is injective. A subset S of M with a manifold structure such that the inclusion map $i: S \hookrightarrow M$ is an immersion is called an immersed submanifold of M. An example is the image of a line with irrational slope in the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. An immersed submanifold need not have the subspace topology.

If $\omega \in \Omega^{k}(M), p \in S$, and $v_{1}, \ldots, v_{k} \in T_{p} S$, then by the definition of the pullback,

$$
\left(i^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\omega_{i(p)}\left(i_{*} v_{1}, \ldots, i_{*} v_{k}\right)=\omega_{p}\left(v_{1}, \ldots, v_{k}\right)
$$

Thus, the pullback of ω under the inclusion map $i: S \hookrightarrow M$ is simply the restriction of ω to the submanifold S. We also adopt the more suggestive notation $\left.\omega\right|_{S}$ for $i^{*} \omega$.

Problems

A.1. Connected components

(a) The connected component of a point p in a topological space S is the largest connected subset of S containing p. Show that the connected components of a manifold are open.
(b) Let \mathbb{Q} be the set of rational numbers considered as a subspace of the real line \mathbb{R}. Show that the connected component of $p \in \mathbb{Q}$ is the singleton set $\{p\}$, which is not open in \mathbb{Q}. Which condition in the definition of a manifold does \mathbb{Q} violate?

A.2. Path-connectedness versus connectedness

A topological space S is said to be locally path-connected at a point $p \in S$ if for every neighborhood U of p, there is a path-connected neighborhood V of p such that $V \subset U$. The space S is locally path-connected if it is locally path-connected at every point $p \in S$. A path component of S is a maximal path-connected subset of S.
(a) Prove that in a locally path-connected space S, every path component is open.
(b) Prove that a locally path-connected space is path-connected if and only if it is connected.

A.3. The Lie bracket

Let X and Y be C^{∞} vector fields on a manifold M, and p a point in M.
(a) Define $[X, Y]_{p}$ by (A.2). Show that for $f, g \in C_{p}^{\infty}(M)$,

$$
[X, Y]_{p}(f g)=\left([X, Y]_{p} f\right) g(p)+f(p)\left([X, Y]_{p} g\right)
$$

Thus, $[X, Y]_{p}$ is a tangent vector at p.
(b) Suppose $X=\sum a^{i} \partial_{i}$ and $Y=\sum b^{j} \partial_{j}$ in a coordinate neighborhood $\left(U, x^{1}, \ldots, x^{n}\right)$ of p in M. Prove that

$$
[X, Y]=\sum_{i, j}\left(a^{j} \partial_{j} b^{i}-b^{j} \partial_{j} a^{i}\right) \partial_{i}
$$

§B Invariant Polynomials

Let $X=\left[x_{j}^{i}\right]$ be an $r \times r$ matrix with indeterminate entries x_{j}^{i}. Over any field F, a polynomial $P(X) \in F\left[x_{j}^{i}\right]$ in the r^{2} variables x_{j}^{i} is said to be invariant if for all invertible matrices A in the general linear group $\mathrm{GL}(r, F)$, we have

$$
P\left(A^{-1} X A\right)=P(X)
$$

Over the field of real or complex numbers, there are two sets of obviously invariant polynomials: (1) the coefficients $f_{i}(X)$ of the characteristic polynomial of $-X$:

$$
\operatorname{det}(\lambda I+X)=\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
$$

and (2) the trace polynomials $\Sigma_{k}(X)=\operatorname{tr}\left(X^{k}\right)$. This appendix contains results on invariant polynomials needed in the sections on characteristic classes. We discuss first the distinction between polynomials and polynomial functions. Then we show that a polynomial identity with integer coefficients that holds over the reals holds over any commutative ring with 1 . This is followed by the theorem that over the field of real or complex numbers, the ring of invariant polynomials is generated by the coefficients of the characteristic polynomial of $-X$. Finally, we prove Newton's identity relating the elementary symmetric polynomials to the power sums. As a corollary, the ring of invariant polynomials over \mathbb{R} or \mathbb{C} can also be generated by the trace polynomials.

B. 1 Polynomials Versus Polynomial Functions

Let R be a commutative ring with identity 1 . A polynomial in n variables over R is an element of the R-algebra $R\left[x_{1}, \ldots, x_{n}\right]$, where x_{1}, \ldots, x_{n} are indeterminates. A polynomial $P(x) \in R\left[x_{1}, \ldots, x_{n}\right]$ defines a function $\hat{P}: R^{n} \rightarrow R$ by evaluation. Hence, if $\operatorname{Fun}\left(R^{n}, R\right)$ denotes the R-algebra of functions from R^{n} to R, then there is a map

$$
\begin{aligned}
\varepsilon: R\left[x_{1}, \ldots, x_{n}\right] & \rightarrow \operatorname{Fun}\left(R^{n}, R\right), \\
P & \mapsto \hat{P} .
\end{aligned}
$$

By the definition of addition and multiplication of functions, the map ε is clearly an R-algebra homomorphism. An element in the image of ε is called a polynomial function over R.
Example. Let F be the field $\mathbb{Z} / p \mathbb{Z}$ for a prime p. The set $F^{\times}=(\mathbb{Z} / p \mathbb{Z})^{\times}$of nonzero elements of F forms a group of order $p-1$ under multiplication. By Lagrange's theorem from group theory, $x^{p-1}=1$ for all $x \in F^{\times}$. Therefore, allowing $x=0$, we get $x^{p}=x$ for all $x \in F$. Thus, although x^{p} and x are distinct polynomials in $F[x]$, they give rise to the same polynomial functions in $\operatorname{Fun}\left(F^{n}, F\right)$. In this example, the map

$$
\varepsilon: F[x] \rightarrow \operatorname{Fun}(F, F)
$$

is not injective.

Proposition B.1. If F is an infinite field (of any characteristic), then a polynomial function $\hat{P}: F^{n} \rightarrow F$ is the zero function if and only if P is the zero polynomial; i.e., the map

$$
\varepsilon: F\left[x_{1}, \ldots, x_{n}\right] \rightarrow \operatorname{Fun}\left(F^{n}, F\right)
$$

is injective.
Proof. If P is the zero polynomial, then of course \hat{P} is the zero function. We prove the converse by induction on n. Consider first the case $n=1$. Suppose $P(x)$ is a polynomial of degree m in x such that \hat{P} is the zero function. Since a nonzero polynomial of degree m can have at most m zeros, and $P(x)$ vanishes on an infinite field, $P(x)$ must be the zero polynomial.

Next, we make the induction hypothesis that ε is injective whenever the number of variables is $\leq n-1$. Let

$$
P\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\sum_{k=0}^{m} P_{k}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{k},
$$

where $P_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ are polynomials in $n-1$ variables. Suppose \hat{P} is the zero function on F^{n}. Fix $\left(a_{1}, \ldots, a_{n-1}\right) \in F^{n-1}$. Then $P\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ is a polynomial in x_{n}, and $\hat{P}\left(a_{1}, \ldots, a_{n-1}, x_{n}\right) \in \operatorname{Fun}(F, F)$ is the zero function. By the one-variable case, $P\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ is the zero polynomial. It follows that all its coefficients $P_{k}\left(a_{1}, \ldots, a_{k-1}\right)$ are zero. Since $\left(a_{1}, \ldots, a_{n-1}\right)$ is an arbitrary point of F^{n-1}, the polynomial function \hat{P}_{k} is the zero function on F^{n-1}. By the induction hypothesis, the P_{k} 's are all zero polynomials. Hence, $P\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\sum_{k=0}^{m} P_{k}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{k}$ is the zero polynomial.

Thus, for an infinite field F, polynomial functions on F^{n} may be identified with polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$.

B. 2 Polynomial Identities

Using Proposition B.1, we can derive the following principle by which a polynomial identity over one field can imply the same identity over any commutative ring with 1. Contrary to expectation, in this principle a special case implies a general case.

Proposition B. 2 (Principle of extension of algebraic identities). If a polynomial $P(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with integer coefficients is identically zero when evaluated on a field F of characteristic zero, then it is identically zero when evaluated on any commutative ring R with 1 .

Proof. Because F has characteristic zero, the canonical map

$$
\mathbb{Z} \rightarrow F, \quad k \mapsto k \cdot 1,
$$

is an injection. The injection $\mathbb{Z} \rightarrow F$ induces an injection $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow F\left[x_{1}, \ldots, x_{n}\right]$ of polynomial rings, so that $P(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ may be viewed as a polynomial
over F. By hypothesis, the polynomial function \hat{P} on F^{n} is identically zero. Since F is an infinite field, we conclude from Proposition B. 1 that $P(x)$ is the zero polynomial in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

If R is a commutative ring with 1 , then there is a canonical map

$$
\mathbb{Z} \rightarrow R, \quad k \mapsto k \cdot 1,
$$

that induces a canonical map $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow R\left[x_{1}, \ldots, x_{n}\right]$, which need not be an injection, but under which the zero polynomial $P(x)$ in $\mathbb{Z}[x]$ goes to the zero polynomial in $R[x]$. This means that $P(x)$ will be identically zero when evaluated on R.

Example B. 3 (A determinantal identity). Let $a_{j}^{i}, b_{j}^{i}, 1 \leq i, j \leq r$, be indeterminates, and let $P(A, B)$ be the polynomial

$$
P(A, B)=\operatorname{det}(A B)-\operatorname{det}(A) \operatorname{det}(B) \in \mathbb{Z}\left[a_{j}^{i}, b_{j}^{i}\right]
$$

It is well known that if A and B are real $r \times r$ matrices, then $P(A, B)$ is zero. By the principle of extension of algebraic identities (Proposition B.2), for any commutative ring R with 1 and for all $A, B \in R^{r \times r}$,

$$
P(A, B)=\operatorname{det}(A B)-\operatorname{det}(A) \operatorname{det}(B)=0 .
$$

Thus, the truth of the identity $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ over \mathbb{R} implies its truth over any commutative ring R with 1 .

In particular, over any commutative ring R with 1 , if a matrix $A \in R^{r \times r}$ is invertible in $R^{r \times r}$, then $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}$.

B. 3 Invariant Polynomials on $\mathfrak{g l}(r, F)$

Let F be a field, and $\mathfrak{g l}(r, F)=F^{r \times r}$ the F-vector space of $r \times r$ matrices with entries in F. A polynomial $P(X)$ on $\mathfrak{g l}(r, F)$ is an element of the commutative F-algebra $F\left[x_{j}^{i}\right]$, i.e., it is a polynomial in the indeterminates $x_{j}^{i}, 1 \leq i, j \leq r$. An invertible matrix $A \in \mathrm{GL}(r, F)$ acts on polynomials on $\mathfrak{g l}(r, F)$ by

$$
(A \cdot P)(X)=P\left(A^{-1} X A\right)
$$

A polynomial $P(X)$ on $\mathfrak{g l}(r, F)$ is said to be invariant if

$$
P\left(A^{-1} X A\right)=P(X) \quad \text { for all } A \in \mathrm{GL}(r, F)
$$

Example B. 4 (Determinant). Let F be any field and $R=F\left[x_{j}^{i}\right]$ the polynomial algebra over F in $r \times r$ indeterminates. If $A \in G L(r, F)$, then

$$
A \in F^{r \times r} \subset R^{r \times r}
$$

and $X=\left[x_{j}^{i}\right]$ is a matrix of indeterminates in $R^{r \times r}$, so by Example B.3,

$$
\operatorname{det}\left(A^{-1} X A\right)=(\operatorname{det} A)^{-1} \operatorname{det} X \operatorname{det} A=\operatorname{det} X .
$$

Therefore, $\operatorname{det}(X) \in F\left[x_{j}^{i}\right]$ is an invariant polynomial on $\mathfrak{g l}(r, F)$.

Although an invariant polynomial on $\mathfrak{g l}(r, F)$ applies a priori to matrices with entries in F, it can in fact be applied to any commutative F-algebra R with identity.

Proposition B.5. Suppose $P(X) \in F\left[x_{j}^{i}\right]$ is an invariant polynomial on $\mathfrak{g l}(r, F)$, and R is a commutative F-algebra with identity 1 . Then for any $A \in \mathrm{GL}(r, F)$ and $X \in R^{r \times r}$,

$$
P\left(A^{-1} X A\right)=P(X)
$$

Proof. Fix an invertible matrix $A \in \mathrm{GL}(r, F)$. Since $P(X)$ is invariant on $\mathfrak{g l}(r, F)$, the polynomial

$$
P_{A}(X):=P\left(A^{-1} X A\right)-P(X) \in F\left[x_{j}^{i}\right]
$$

is by definition the zero polynomial. If R is a commutative F-algebra with identity 1, then the canonical map $F \rightarrow R, f \mapsto f \cdot 1$, is injective and induces an injection $F\left[x_{j}^{i}\right] \hookrightarrow R\left[x_{j}^{i}\right]$, under which the zero polynomial $P_{A}(X)$ maps to the zero polynomial. Therefore, $P_{A}(X)=P\left(A^{-1} X A\right)-P(X)$ is the zero polynomial in $R\left[x_{j}^{i}\right]$. It follows that for any $X \in R^{r \times r}$,

$$
P\left(A^{-1} X A\right)=P(X)
$$

Let λ, x_{j}^{i} be indeterminates. Then

$$
\begin{aligned}
\operatorname{det}(\lambda I+X) & =\lambda^{r}+f_{1}(X) \lambda^{r-1}+\cdots f_{r-1}(X) \lambda+f_{r}(X) \\
& =\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
\end{aligned}
$$

The polynomials $f_{k}(X) \in \mathbb{Z}\left[x_{j}^{i}\right]$ have integer coefficients. For any field F, the canonical $\operatorname{map} \mathbb{Z} \rightarrow F$ is not necessarily injective, for example, if the field F has positive characteristic. So the induced map $\varphi: \mathbb{Z}\left[x_{j}^{i}\right] \rightarrow F\left[x_{j}^{i}\right]$ is not necessarily injective. Although it is possible to define the polynomials f_{k} over any field, we will restrict ourselves to fields F of characteristic zero, for in this case the canonical maps $\mathbb{Z} \rightarrow F$ and $\mathbb{Z}\left[x_{j}^{i}\right] \rightarrow F\left[x_{j}^{i}\right]$ are injective, so we may view the $f_{k}(X)$'s in $\mathbb{Z}\left[x_{j}^{i}\right]$ as polynomials over F.

Proposition B.6. Let F be a field of characteristic zero. Then the coefficients $f_{k}(X)$ of the characteristic polynomial $\operatorname{det}(\lambda I+X)$ are invariant polynomials on $\mathfrak{g l}(r, F)$.

Proof. With λ, x_{j}^{i} as indeterminates, we take R to be the commutative ring $F\left[\lambda, x_{j}^{i}\right]$ with identity. Since $\operatorname{det}(X)$ is an invariant polynomial on $\mathfrak{g l}(r, F)$ (Example B.4), by Proposition B. 5 for any $A \in \mathrm{GL}(r, F)$,

$$
\begin{aligned}
\operatorname{det}(\lambda I+X) & =\operatorname{det}\left(A^{-1}(\lambda I+X) A\right) \\
& =\operatorname{det}\left(\lambda I+A^{-1} X A\right) .
\end{aligned}
$$

Hence,

$$
\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}=\sum_{k=0}^{r} f_{k}\left(A^{-1} X A\right) \lambda^{r-k}
$$

Comparing the coefficients of λ^{r-k} on both sides gives

$$
f_{k}\left(A^{-1} X A\right)=f_{k}(X) \quad \text { for all } A \in \operatorname{GL}(r, F) .
$$

This proves that all the polynomials $f_{k}(X)$ are invariant polynomials on $\mathfrak{g l}(r, F)$.
For each integer $k \geq 0$, the k th trace polynomial is defined to be

$$
\Sigma_{k}(X)=\operatorname{tr}\left(X^{k}\right) \in \mathbb{Z}\left[x_{j}^{i}\right] .
$$

Since $\operatorname{tr}(X)=f_{1}(X)$ is an invariant polynomial on $\mathfrak{g l}(r, F)$, for any $A \in \operatorname{GL}(r, F)$,

$$
\Sigma_{k}\left(A^{-1} X A\right)=\operatorname{tr}\left(A^{-1} X^{k} A\right)=\operatorname{tr}\left(X^{k}\right)=\Sigma_{k}(X)
$$

So the trace polynomials $\Sigma_{k}(X)$ are also invariant polynomials on $\mathfrak{g l}(r, F)$.

B. 4 Invariant Complex Polynomials

The goal of this subsection is to determine all complex polynomials on $\mathfrak{g l}(r, \mathbb{C})$ invariant under conjugation by elements of $\mathrm{GL}(r, \mathbb{C})$.

Suppose $X \in \mathfrak{g l}(r, \mathbb{C})$ is a diagonalizable matrix of complex numbers (as opposed to indeterminates). Because X is diagonalizable, there exists a nonsingular matrix $A \in \mathrm{GL}(r, \mathbb{C})$ such that

$$
A^{-1} X A=\left[\begin{array}{llll}
t_{1} & & \\
& \ddots & \\
& & \\
& & t_{r}
\end{array}\right]=\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)
$$

with t_{1}, \ldots, t_{r} being the eigenvalues of X. For such a matrix X,

$$
\begin{aligned}
\operatorname{tr}(X) & =\operatorname{tr}\left(A^{-1} X A\right)=\sum t_{i} \\
\operatorname{det}(X) & =\operatorname{det}\left(A^{-1} X A\right)=\prod t_{i} .
\end{aligned}
$$

Thus, $\operatorname{tr}(X)$ and $\operatorname{det}(X)$ can be expressed as symmetric polynomials of their eigenvalues. This example suggests that to an invariant polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{C})$, one can associate a symmetric polynomial $\tilde{P}\left(t_{1}, \ldots, t_{r}\right)$ such that if t_{1}, \ldots, t_{r} are the eigenvalues of a complex matrix $X \in \mathfrak{g l}(r, \mathbb{C})$, then $P(X)=\tilde{P}\left(t_{1}, \ldots, t_{r}\right)$. Note that $\sum t_{i}$ and Πt_{i} are simply the restriction of $\operatorname{tr}(X)$ and $\operatorname{det}(X)$, respectively, to the diagonal matrix $\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$.

Let $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))$ be the algebra of all invariant complex polynomials on $\mathfrak{g l}(r, \mathbb{C})$, and $\mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}$ the algebra of complex symmetric polynomials in t_{1}, \ldots, t_{r}. To an invariant polynomial $P(X) \in \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))$, we associate the polynomial

$$
\tilde{P}\left(t_{1}, \ldots, t_{r}\right)=P\left(\left[\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{r}
\end{array}\right]\right)
$$

If $\sigma \in S_{r}$ is a permutation of $\{1, \ldots, r\}$, the permutation matrix $P_{\sigma} \in \mathrm{GL}(r, \mathbb{Z})$ is the matrix whose $(i, \sigma(i))$-entry is 1 and whose other entries are all 0 . For example,

$$
P_{(12)}=\left[\begin{array}{ccccc}
0 & 1 & & & \\
1 & 0 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right]
$$

If σ is a transposition, then P_{σ} is called a transposition matrix.
It is easy to check that conjugating the diagonal matrix $\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$ by the transposition matrix $P_{(i j)}$ interchanges t_{i} and t_{j} in $\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$. Consequently, by conjugating $\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$ by a product of transposition matrices, we can make t_{1}, \ldots, t_{r} appear in any order. Thus, $\tilde{P}\left(t_{1}, \ldots, t_{r}\right)$ is invariant under all permutations of t_{1}, \ldots, t_{r}, i.e., it is a symmetric polynomial in t_{1}, \ldots, t_{r}.

Theorem B.7. The map

$$
\begin{aligned}
\varphi: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C})) & \rightarrow \mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}} \\
P(X) & \mapsto \tilde{P}\left(t_{1}, \ldots, t_{r}\right)=P\left(\left[\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & \\
& & t_{r}
\end{array}\right]\right)
\end{aligned}
$$

given by restricting an invariant polynomial $P(X)$ to the diagonal matrix $\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$ is an isomorphism of algebras over \mathbb{C}.

The elementary symmetric polynomials in a set of variables t_{1}, \ldots, t_{r} are the polynomials

$$
\begin{aligned}
& \sigma_{0}=1, \quad \sigma_{1}=\sum t_{i}, \quad \sigma_{2}=\sum_{i<j} t_{i} t_{j}, \\
& \vdots \\
& \sigma_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r} t_{i_{1}} t_{i_{2}} \cdots t_{i_{k}}, \\
& \vdots \\
& \sigma_{r}=t_{1} \cdots t_{r}
\end{aligned}
$$

Example B.8. For any indeterminate λ, let

$$
P_{\lambda}(X)=\operatorname{det}(\lambda I+X)=\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
$$

Then

$$
\begin{align*}
& \varphi\left(P_{\lambda}(X)\right)=P_{\lambda}\left(\left[\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{r}
\end{array}\right]\right)=\operatorname{det}\left(\lambda I+\left[\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{r}
\end{array}\right]\right) \\
&=\prod_{i=1}^{r}\left(\lambda+t_{i}\right) \\
& \tag{B.1}\\
& \\
& \\
& k=0
\end{align*} \sigma_{k}(t) \lambda^{r-k} .
$$

Since φ is an algebra homomorphism,

$$
\begin{equation*}
\varphi\left(P_{\lambda}(X)\right)=\varphi\left(\sum_{k} f_{k}(X) \lambda^{r-k}\right)=\sum_{k} \varphi\left(f_{k}(X)\right) \lambda^{r-k} \tag{B.2}
\end{equation*}
$$

Comparing the coefficients of λ^{r-k} in (B.1) and (B.2) gives

$$
\varphi\left(f_{k}(X)\right)=\sigma_{k}(t)
$$

The proof of Theorem B. 7 depends on two facts from algebra:
(1) The set of all diagonalizable $r \times r$ complex matrices is a dense subset of $\mathfrak{g l}(r, \mathbb{C})$.
(2) (Fundamental theorem of symmetric polynomials) Every symmetric polynomial in t_{1}, \ldots, t_{r} is a polynomial in the elementary symmetric polynomials σ_{1}, \ldots, σ_{r}.

Proof (of (1)). Recall from linear algebra that matrices with distinct eigenvalues are diagonalizable. The eigenvalues of the matrix X are the roots of its characteristic polynomial $f_{X}(\lambda)=\operatorname{det}(\lambda I-X)$. The polynomial $f_{X}(\lambda)$ has multiple roots if and only if $f_{X}(\lambda)$ and its derivative $f_{X}^{\prime}(\lambda)$ have a root in common. Two polynomials $f(\lambda)$ and $g(\lambda)$ have a root in common if and only if their resultant $R(f, g)$, which is a polynomial in the coefficients of f and g, is zero. Thus, the matrix X has repeated eigenvalues if and only if $R\left(f_{X}, f_{X}^{\prime}\right)=0$. Note that the resultant $R\left(f_{X}, f_{X}^{\prime}\right)$ is a polynomial with coefficients that are functions of entries of X. Since $R\left(f_{X}, f_{X}^{\prime}\right)=0$ defines a subset of codimension one in $\mathfrak{g l}(n, \mathbb{C})$, the set of complex matrices with distinct eigenvalues is dense in $\mathfrak{g l}(r, \mathbb{C})$. Hence, the set of diagonalize matrices in $\mathfrak{g l}(n, \mathbb{C})$ is dense.

Proof (of (2)). This is a standard theorem in algebra. See, for example, [13, Chap. IV, §6, Th. 6.1, p. 191].

Proof (of Theorem B.7). Injectivity of φ : By Proposition B.1, because \mathbb{C} is an infinite field, complex polynomials may be identified with complex polynomial functions. So we will interpret elements of both $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))$ and $\mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}$ as polynomial functions on $\mathfrak{g l}(r, \mathbb{C})$ and \mathbb{C}^{r}, respectively.

Suppose the invariant polynomial $P(X)$ vanishes on all diagonal matrices $X \in$ $\mathfrak{g l}(r, \mathbb{C})$. By the invariance of $P(X)$ under conjugation, $P(X)$ vanishes on all diagonalizable matrices $X \in \mathfrak{g l}(r, \mathbb{C})$. Since the subset of diagonalizable matrices is dense
in $\mathfrak{g l}(r, \mathbb{C})$, by continuity $P(X)$ vanishes on $\mathfrak{g l}(r, \mathbb{C})$. Therefore, $P(X)$ is the zero function and hence the zero polynomial on $\mathfrak{g l}(r, \mathbb{C})$.
Surjectivity of φ : We know from Example B. 8 that the elementary symmetric polynomial $\sigma_{k}\left(t_{1}, \ldots, t_{r}\right)$ is the image of the polynomial $f_{k}(X)$ under φ. By the fundamental theorem on symmetric polynomials, every element of $\mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}$ is of the form $Q\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ for some polynomial Q. Then

$$
\begin{aligned}
Q\left(\sigma_{1}, \ldots, \sigma_{r}\right) & =Q\left(\varphi\left(f_{1}(X)\right), \ldots, \varphi\left(f_{r}(X)\right)\right) \\
& =\varphi\left(Q\left(f_{1}(X), \ldots, f_{r}(X)\right)=\varphi(P(X))\right.
\end{aligned}
$$

where $P(X)=Q\left(f_{1}(X), \ldots, f_{r}(X)\right) \in \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))$.
Example B.9. If $\Sigma_{k}(X)=\operatorname{tr}\left(X^{k}\right)$ are the trace polynomials, then

$$
\tilde{\Sigma}_{k}\left(t_{1}, \ldots, t_{r}\right)=\operatorname{tr}\left[\begin{array}{lll}
t_{1}^{k} & & \\
& \ddots & \\
& & t_{r}^{k}
\end{array}\right]=\sum t_{i}^{k}=s_{k}
$$

So the symmetric polynomials corresponding to the trace polynomials Σ_{k} are the power sums s_{k}.

Theorem B.10. The ring of invariant complex polynomials on $\mathfrak{g l}(r, \mathbb{C})$ is generated as an algebra over \mathbb{C} by the coefficients $f_{i}(X)$ of the characteristic polynomial $\operatorname{det}(\lambda I+X)$. Thus,

$$
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))=\mathbb{C}\left[f_{1}(X), \ldots, f_{r}(X)\right]
$$

Proof. Under the isomorphism

$$
\varphi: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C})) \xrightarrow{\sim} \mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}},
$$

the polynomials $f_{k}(X)$ correspond to the elementary symmetric polynomials $\sigma_{k}\left(t_{1}, \ldots, t_{r}\right)$. Since $\mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}=\mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{r}\right]$ by the fundamental theorem on symmetric polynomials, the isomorphism φ gives

$$
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C}))=\mathbb{C}\left[f_{1}(X), \ldots, f_{r}(X)\right]
$$

B. 5 L-Polynomials, Todd Polynomials, and the Chern Character

The L-polynomials, Todd polynomials, and the Chern character are three families of polynomials of great importance in algebraic topology. All three are defined in terms of elementary symmetric polynomials.

Consider the formal power series

$$
f(t)=\frac{\sqrt{t}}{\tanh \sqrt{t}}=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots .
$$

Let t_{1}, \ldots, t_{r} be algebraically independent variables over \mathbb{Q}. Then the formal power series

$$
\begin{aligned}
F\left(t_{1}, \ldots, t_{r}\right)=\prod_{i=1}^{r} f\left(t_{i}\right) & =\prod_{i=1}^{r}\left(1+\frac{1}{3} t_{i}-\frac{1}{45} t_{i}^{2}+\cdots\right) \\
& =1+F_{1}\left(t_{1}, \ldots, t_{r}\right)+F_{2}\left(t_{1}, \ldots, t_{r}\right)+F_{3}\left(t_{1}, \ldots, t_{r}\right)+\cdots
\end{aligned}
$$

is symmetric in t_{1}, \ldots, t_{r}, so that for each n its homogeneous component $F_{n}\left(t_{1}, \ldots, t_{r}\right)$ is a symmetric polynomial of degree n. By the fundamental theorem of symmetric polynomials,

$$
F_{n}\left(t_{1}, \ldots, t_{r}\right)=L_{n}\left(x_{1}, \ldots, x_{r}\right)
$$

where x_{1}, \ldots, x_{r} are the elementary symmetric polynomials in t_{1}, \ldots, t_{r}. The polynomials $L_{n}\left(x_{1}, \ldots, x_{r}\right)$ are called the L-polynomials.. The L-polynomials appear in Hirzebruch's signature formula (26.4).

It is easy to work out the first few L-polynomials:

$$
\begin{aligned}
F_{1}\left(t_{1}, \ldots, t_{r}\right) & =\frac{1}{3} \sum t_{i}=\frac{1}{3} x_{1}=L_{1}\left(x_{1}\right), \\
F_{2}\left(t_{1}, \ldots, t_{r}\right) & =-\frac{1}{45} \sum t_{i}^{2}+\frac{1}{9} \sum_{i<j} t_{i} t_{j} \\
& =-\frac{1}{45}\left(\left(\sum_{i} t_{i}\right)^{2}-2 \sum_{i<j} t_{i} t_{j}\right)+\frac{1}{9} \sum_{i<j} t_{i} t_{j} \\
& =-\frac{1}{45}\left(\sum_{i} t_{i}\right)^{2}+\frac{7}{45} \sum_{i<j} t_{i} t_{j} \\
& =\frac{1}{45}\left(7 x_{2}-x_{1}^{2}\right)=L_{2}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Instead of $f(t)=\sqrt{t} / \tanh \sqrt{t}$, one may apply the same construction to any analytic function to obtain a sequence of homogeneous polynomials. For example, starting with the formal power series of

$$
f(t)=\frac{t}{1-e^{-t}}=1+\frac{t}{2}+\frac{t^{2}}{12}-\frac{t^{4}}{120}+\cdots
$$

one forms the product

$$
\begin{aligned}
F\left(t_{1}, \ldots, t_{r}\right) & =\prod_{i=1}^{r} f\left(t_{i}\right) \\
& =1+F_{1}\left(t_{1}\right)+F_{2}\left(t_{1}, t_{2}\right)+\cdots \\
& =1+T_{1}\left(x_{1}\right)+T_{2}\left(x_{1}, x_{2}\right)+\cdots .
\end{aligned}
$$

The polynomials $T_{n}\left(x_{1}, \ldots, x_{n}\right)$, called the Todd Polynomials, play a key role in the Hirzebruch-Riemann-Roch theorem (26.1).

Again, it is easy to work out the first few Todd polynomials:

$$
\begin{aligned}
F_{1}\left(t_{1}, \ldots, t_{r}\right) & =\frac{1}{2} \sum t_{i}=\frac{1}{2} x_{1}=T_{1}\left(x_{1}\right) \\
F_{2}\left(t_{1}, \ldots, t_{r}\right) & =\frac{1}{12} \sum t_{i}^{2}+\frac{1}{4} \sum_{i<j} t_{i} t_{j} \\
& =\frac{1}{12}\left(\left(\sum t_{i}\right)^{2}-2 \sum_{i<j} t_{i} t_{j}+3 \sum_{i<j} t_{i} t_{j}\right) \\
& =\frac{1}{12}\left(x_{1}^{2}+x_{2}\right)=T_{2}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

The Chern character is defined differently from the L-polynomials and the Todd polynomials. Instead of the product of $f\left(t_{i}\right)$, we take the sum:

$$
\operatorname{ch}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} e^{t_{i}}
$$

Since in each degree $\sum_{i=1}^{n} e^{t_{i}}$ is a symmetric polynomial in t_{1}, \ldots, t_{n}, it can be expressed as a polynomial in the elementary symmetric functions x_{1}, \ldots, x_{n}. Thus,

$$
\operatorname{ch}\left(x_{1}, \ldots, x_{n}\right)=n+\operatorname{ch}_{1}\left(x_{1}, \ldots, x_{n}\right)+\operatorname{ch}_{2}\left(x_{1}, \ldots, x_{n}\right)+\ldots,
$$

where

$$
\operatorname{ch}_{k}\left(x_{1}, \ldots, n\right)=\sum_{i=1}^{n} \frac{t_{i}^{k}}{k!}
$$

Then

$$
\begin{aligned}
\operatorname{ch}_{1}\left(x_{1}, \ldots, x_{n}\right) & =\sum t_{i}=x_{1}, \\
\operatorname{ch}_{2}\left(x_{1}, \ldots, x_{n}\right) & =\sum \frac{t_{i}^{2}}{2}=\frac{\left(\sum t_{i}\right)^{2}-2 \sum_{i<j} t_{i} t_{j}}{2} \\
& =\frac{x_{1}^{2}-x_{2}}{2} .
\end{aligned}
$$

The Chern character of a vector bundle E is defined to be

$$
\operatorname{ch}(E)=\operatorname{ch}\left(c_{1}, \ldots, c_{n}\right)
$$

where c_{1}, \ldots, c_{n} are the Chern classes of E. Formally, if $c(E)=\Pi\left(1+t_{i}\right)$, then $\operatorname{ch}(E)=\sum e^{t_{i}}$.

B. 6 Invariant Real Polynomials

In this subsection we will prove the analogue of Theorem B. 10 for invariant real polynomials, that every invariant real polynomial on $\mathfrak{g l}(r, \mathbb{R})$ is a real polynomial in the elementary symmetric polynomials.

Proposition B.11. If a real homogeneous polynomial $P(X)$ on $\mathfrak{g l}(r, \mathbb{R})$ is invariant under conjugation by $\mathrm{GL}(r, \mathbb{R})$, then it is invariant under conjugation by $\operatorname{GL}(r, \mathbb{C})$.

Proof. By Cramer's rule, $A^{-1}=A^{*} / \operatorname{det} A$, where A^{*} is the transpose of the matrix of signed minors of A. Suppose $P(X)$ has degree k. Then the equation

$$
P\left(A X A^{-1}\right)=P\left(A X A^{*} / \operatorname{det} A\right)=P(X)
$$

is equivalent by homogeneity to

$$
P\left(A X A^{*}\right)=(\operatorname{det} A)^{k} P(X)
$$

or

$$
\begin{equation*}
q(A, X):=P\left(A X A^{*}\right)-(\operatorname{det} A)^{k} P(X)=0 . \tag{B.3}
\end{equation*}
$$

This is a polynomial equation in $a_{i j}$ and $x_{i j}$ that vanishes for $(A, X) \in \operatorname{GL}(r, \mathbb{R}) \times$ $\mathbb{R}^{n \times n}$. By continuity, (B.3) holds for all $(A, X) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times n}$. Since $q(A, X)$ gives a holomorphic function on $\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n}$, if it vanishes identically over \mathbb{R}, then it vanishes identically over \mathbb{C}. (This is a property of holomorphic functions. It can be proven by noting that a holomorphic function is expressible as a power series, and if the function vanishes identically over \mathbb{R}, then the power series over \mathbb{R} is zero. Since the power series over \mathbb{C} is the same as the power series over \mathbb{R}, the function is identically zero.)

Proposition B. 11 may be paraphrased by the equation

$$
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))=\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C})) \cap \mathbb{R}\left[x_{j}^{i}\right]
$$

Theorem B.12. Let $\varphi_{\mathbb{R}}$ be the restriction of the map φ of Theorem B. 7 to $\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))$:

$$
\begin{aligned}
\varphi_{\mathbb{R}}: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) \rightarrow \mathbb{R}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}} \\
P(X) \mapsto \tilde{P}\left(t_{1}, \ldots, t_{r}\right)=P\left(\left[\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & \\
& & t_{r}
\end{array}\right]\right) .
\end{aligned}
$$

Then $\varphi_{\mathbb{R}}$ is an algebra isomorphism over \mathbb{R}.
Proof. We have a commutative diagram

$$
\begin{gathered}
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{C})) \xrightarrow{\varphi} \mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}} \\
\cup \\
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) \xrightarrow{\varphi_{\mathbb{R}}} \mathbb{R}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}} .
\end{gathered}
$$

The injectivity of $\varphi_{\mathbb{R}}$ follows immediately from the injectivity of φ.
As for the surjectivity of $\varphi_{\mathbb{R}}$, the proof is the same as the complex case (Theorem B.7). More precisely, every symmetric polynomial $p\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{R}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}$ is a real polynomial in the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{r}$ of t_{1}, \ldots, t_{r} :

$$
p\left(t_{1}, \ldots, t_{r}\right)=q\left(\sigma_{1}, \ldots, \sigma_{r}\right)
$$

Since $\sigma_{k}(t)=\varphi\left(f_{k}(X)\right)$ and φ is an algebra homomorphism,

$$
p\left(t_{1}, \ldots, t_{r}\right)=q\left(\varphi\left(f_{1}(X)\right), \ldots, \varphi\left(f_{r}(X)\right)\right)=\varphi\left(q\left(f_{1}(X), \ldots, f_{r}(X)\right)\right),
$$

which proves that $\varphi_{\mathbb{R}}$ is onto.
Theorem B.13. The ring of invariant real polynomials on $\mathfrak{g l}(r, \mathbb{R})$ is generated as an algebra over \mathbb{R} by the coefficients $f_{i}(X)$ of the characteristic polynomial $\operatorname{det}(\lambda I+X)$. Thus,

$$
\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))=\mathbb{R}\left[f_{1}(X), \ldots, f_{r}(X)\right]
$$

Proof. The proof is the same as that of Theorem B.10, with \mathbb{R} instead of \mathbb{C}.

B. 7 Newton's Identities

Among the symmetric polynomials in t_{1}, \ldots, t_{r}, two sets are of special significance: the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{r}$ and the power sums s_{1}, \ldots, s_{r}. Newton's identities give relations among the two sets. As a corollary, each set generates the algebra of symmetric polynomials over \mathbb{R}. Define $\sigma_{0}=1$.

Theorem B. 14 (Newton's identities). For each integer $k \geq 1$,

$$
\left(\sum_{i=0}^{k-1}(-1)^{i} \sigma_{i} s_{k-i}\right)+(-1)^{k} k \sigma_{k}=0
$$

or written out,

$$
s_{k}-\sigma_{1} s_{k-1}+\sigma_{2} s_{k-2}-\cdots+(-1)^{k-1} \sigma_{k-1} s_{1}+(-1)^{k} k \sigma_{k}=0 .
$$

Proof (from [2, p. 79]). Consider the identity

$$
\left(1-t_{1} x\right) \cdots\left(1-t_{r} x\right)=1-\sigma_{1} x+\sigma_{2} x^{2}-\cdots+(-1)^{r} \sigma_{r} x^{r}
$$

Denote the right-hand side by $f(x)$ and take the logarithmic derivative of both sides to get

$$
\begin{aligned}
\ln \left(1-t_{1} x\right)+\cdots+\ln \left(1-t_{r} x\right) & =\ln f(x), \\
\frac{-t_{1}}{1-t_{1} x}+\cdots+\frac{-t_{r}}{1-t_{r} x} & =\frac{f^{\prime}(x)}{f(x)} .
\end{aligned}
$$

Hence,

$$
\frac{t_{1} x}{1-t_{1} x}+\cdots+\frac{t_{r} x}{1-t_{r} x}=\frac{-x f^{\prime}(x)}{f(x)} .
$$

Expanding the left-hand side as a sum of geometric series, we get

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(t_{1} x\right)^{i}+\cdots+\sum_{i=1}^{\infty}\left(t_{r} x\right)^{i} & =\frac{-x f^{\prime}(x)}{f(x)} \\
\sum_{i=1}^{\infty} s_{i} x^{i} & =\frac{-x f^{\prime}(x)}{f(x)}
\end{aligned}
$$

Now multiply both sides by $f(x)$:

$$
\begin{gathered}
f(x)\left(\sum_{i=1}^{\infty} s_{i} x^{i}\right)=-x f^{\prime}(x) \\
\left(1-\sigma_{1} x+\sigma_{2} x^{2}-\cdots+(-1)^{r} \sigma_{r} x^{r}\right)\left(s_{1} x+s_{2} x^{2}+\cdots\right) \\
=\sigma_{1} x-2 \sigma_{2} x^{2}+\cdots+(-1)^{r+1} r \sigma_{r} x^{r}
\end{gathered}
$$

A comparison of the coefficients of x^{k} on both sides of the equation gives

$$
s_{k}-\sigma_{1} s_{k-1}+\cdots+(-1)^{k-1} \sigma_{k-1} s_{1}=(-1)^{k+1} k \sigma_{k}
$$

Using Newton's identities we can write each elementary symmetric polynomial σ_{k} as a polynomial in the power sums.

Example B.15. For σ_{1} and σ_{2} we can get the relations directly:

$$
\begin{aligned}
\sigma_{1} & =t_{1}+\cdots+t_{r}=s_{1} \\
\sigma_{2} & =\sum_{i<j} t_{i} t_{j}=\frac{1}{2}\left(\left(t_{1}+\cdots+t_{r}\right)^{2}-\left(t_{1}^{2}+\cdots+t_{r}^{2}\right)\right) \\
& =\frac{1}{2}\left(s_{1}^{2}-s_{2}\right)
\end{aligned}
$$

For σ_{3}, Newton's identities give

$$
\begin{aligned}
3 \sigma_{3} & =s_{3}-\sigma_{1} s_{2}+\sigma_{2} s_{1} \\
& =s_{3}-s_{1} s_{2}+\frac{1}{2}\left(s_{1}^{2}-s_{2}\right) s_{1}
\end{aligned}
$$

A mathematical induction on k using Newton's identities proves that every elementary symmetric polynomial σ_{k} is a polynomial in the power sums s_{1}, \ldots, s_{k}.

Theorem B.16. The algebra of symmetric polynomials over \mathbb{R} can be generated as an algebra over \mathbb{R} by the elementary symmetric polynomials or by the power sums:

$$
\mathbb{R}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}=\mathbb{R}\left[\sigma_{1}, \ldots, \sigma_{r}\right]=\mathbb{R}\left[s_{1}, \ldots, s_{r}\right]
$$

Proof. We have just shown that every σ_{k} is a polynomial in s_{1}, \ldots, s_{r}. Conversely, since each s_{k} is symmetric, by the fundamental theorem on symmetric polynomials it is a polynomial in $\sigma_{1}, \ldots, \sigma_{r}$.

Theorem B.17. The algebra of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})$ is generated as an algebra over \mathbb{R} by the coefficients $f_{1}(X), \ldots, f_{r}(X)$ of the characteristic polynomial $\operatorname{det}(\lambda I+X)$ or by the trace polynomials $\operatorname{tr}(X), \ldots, \operatorname{tr}\left(X^{r}\right)$.

Proof. By Examples B. 8 and B.9, under the algebra isomorphism

$$
\phi: \operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R})) \rightarrow \mathbb{R}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}},
$$

the polynomials $f_{1}(X), \ldots, f_{r}(X)$ correspond to the generators $\sigma_{1}, \ldots, \sigma_{r}$ and the trace polynomials correspond to the generators s_{1}, \ldots, s_{r}. This theorem then follows from Theorems B. 13 and B. 16 .

An analogous statement holds for the complex invariant polynomials on $\mathfrak{g l}(r, \mathbb{C})$.

Problems

B.1. The invariant polynomial $f_{2}(X)$

Let $X=\left[x_{j}^{i}\right]$ be an $r \times r$ matrix of indeterminates. The polynomials $f_{k}(X) \in \mathbb{Z}\left[x_{j}^{i}\right]$ are the coefficients in the characteristic polynomial

$$
\operatorname{det}(\lambda I+X)=\sum_{k=0}^{r} f_{k}(X) \lambda^{r-k}
$$

Find a formula for the polynomial $f_{2}(X) \in \mathbb{Z}\left[x_{j}^{i}\right]$. Write out all the terms of the formula when $r=3$.

Hints and Solutions to Selected End-of-Section Problems

Problems with complete solutions are starred (*). Equations are numbered consecutively within each problem.

1.1 Positive-definite symmetric matrix

Fixing a basis e_{1}, \ldots, e_{n} for V defines an isomorphism $V \xrightarrow{\sim} \mathbb{R}^{n}$ by mapping a vector in V to its coordinates relative to e_{1}, \ldots, e_{n}. So we may work exclusively with column vectors in \mathbb{R}^{n}. Because A is positive-definite, $\langle\mathbf{x}, \mathbf{x}\rangle=\mathbf{x}^{T} A \mathbf{x} \geq 0$ with equality if and only if $\mathbf{x}=0$. Because A is symmetric,

$$
\langle\mathbf{y}, \mathbf{x}\rangle=\mathbf{y}^{T} A \mathbf{x}=\left(\mathbf{x}^{T} A^{T} \mathbf{y}\right)^{T}=\left(\mathbf{x}^{T} A \mathbf{y}\right)^{T}=\mathbf{x}^{T} A \mathbf{y}=\langle\mathbf{x}, \mathbf{y}\rangle .
$$

Finally, the expression $\mathbf{x}^{T} A \mathbf{y}$ is clearly linear in \mathbf{x} and in \mathbf{y}.

1.2* Inner product

By linearity in the first argument,

$$
\langle u, w\rangle=\langle v, w\rangle \quad \text { iff } \quad\langle u-v, w\rangle=0 .
$$

Since the inner product is positive-definite, this implies that $u-v=0$.

1.4* Positive linear combination of inner products

For any $v \in V$, we have $\langle v, v\rangle=\sum a_{i}\langle v, v\rangle_{i} \geq 0$. If equality holds, then every term is 0 and therefore $\mathrm{v}=0$ by the positive-definiteness of any of the inner products \langle,\rangle_{i}. Symmetry and bilinearity in either argument are just as obvious.

1.5* Extending a vector to a vector field

Let $\left(U, x^{1}, \ldots, x^{n}\right)$ be a coordinate chart about p. If $Z_{p}=\sum a^{i} \partial /\left.\partial x^{i}\right|_{p}$, then $Z:=\sum a^{i} \partial / \partial x^{i}$ is a C^{∞} vector field on U that extends Z_{p}. To extend Z_{p} to a C^{∞} vector field on M, let f be a C^{∞} bump function supported in U which is 1 at p. Define

$$
X_{q}= \begin{cases}f(q) Z_{q}, & \text { for } q \in U, \\ 0, & \text { for } q \notin U .\end{cases}
$$

Then X is a vector field on M such that $X_{p}=Z_{p}$.

On U the vector field X is C^{∞} because it is the product of a C^{∞} function and a C^{∞} vector field Z. If $q \notin U$, then since supp f is a closed subset $\subset U$, there is a neighborhood V of q such that $V \cap \operatorname{supp} f=\varnothing$. Thus, $X \equiv 0$ on V, and is trivially C^{∞} at q. This proves that X is C^{∞} at every point of M.

1.6* Equality of vector fields

(\Rightarrow) If $X=Y$, then clearly $\langle X, Z\rangle=\langle Y, Z\rangle$ for all $Z \in \mathfrak{X}(M)$.
(\Leftarrow) To prove that $X=Y$, it suffices to show that $X_{p}=Y_{p}$ for all $p \in M$. Let Z_{p} be any vector in $T_{p} M$. By Problem 1.5, Z_{p} can be extended to a C^{∞} vector field Z on M. By hypothesis, $\langle X, Z\rangle=\langle Y, Z\rangle$. Hence,

$$
\left\langle X_{p}, Z_{p}\right\rangle=\langle X, Z\rangle_{p}=\langle Y, Z\rangle_{p}=\left\langle Y_{p}, Z_{p}\right\rangle .
$$

By Problem 1.2, this implies that $X_{p}=Y_{p}$. Since p is an arbitrary point of M, it follows that $X=Y$.

1.7* Hyperbolic upper half-plane

Since $1 / y^{2}$ is always positive on \mathbb{H}^{2}, by Problem 1.4 the function \langle,\rangle^{\prime} is an inner product at each point $p \in \mathbb{H}^{2}$. It remains to check that if $X, Y \in \mathfrak{X}\left(\mathbb{H}^{2}\right)$, then $\langle X, Y\rangle^{\prime}=\left(1 / y^{2}\right)\langle X, Y\rangle$ is a C^{∞} function on \mathbb{H}^{2}. This is true because being the Euclidean metric, $\langle X, Y\rangle$ is C^{∞} on \mathbb{H}^{2} and $1 / y^{2}$ is C^{∞} on \mathbb{H}^{2}.

2.1* Signed curvature

If $\gamma^{\prime}(s)=T(s)=(\cos \theta(s), \sin \theta(s))$, then

$$
\gamma^{\prime \prime}(s)=T^{\prime}(s)=\left[\begin{array}{r}
-\theta^{\prime}(s) \sin \theta(s) \\
\theta^{\prime}(s) \cos \theta(s)
\end{array}\right] \text { and } \mathbf{n}(s)=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\cos \theta(s) \\
\sin \theta(s)
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta(s) \\
\cos \theta(s)
\end{array}\right] .
$$

Therefore, $\gamma^{\prime \prime}(s)=\theta^{\prime}(s) \mathbf{n}(s)$. This proves that $\kappa=\theta^{\prime}(s)$.
2.3 Write $\theta=\arctan (\dot{y} / \dot{x})$. Compute $\kappa=d \theta / d s=(d \theta / d t) /(d s / d t)$, where $d s / d t=\left(\dot{x}^{2}+\right.$ $\left.\dot{y}^{2}\right)^{1 / 2}$.
2.4 In Problem 2.3, set the parameter $t=x$.
$2.5 \kappa=a b /\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)$.
$2.6(1 / 27)\left[-8+\left(4+9 a^{2}\right)^{3 / 2}\right]$.

2.7* Curvature of a space curve

a) Since

$$
s(t)=\int_{0}^{t}\left|c^{\prime}(u)\right| d u=\int_{0}^{t} \sqrt{a^{2}+b^{2}} d u=\sqrt{a^{2}+b^{2}} t
$$

$t=s / \sqrt{a^{2}+b^{2}}$.
b) Let $C=1 / \sqrt{a^{2}+b^{2}}$. Then $\gamma(s)=(a \cos C s, a \sin C s, b C s)$. A short computation gives $\left|\gamma^{\prime \prime}(s)\right|=a /\left(a^{2}+b^{2}\right)$.
$3.1 \kappa_{1}, \kappa_{2}=H \pm 2 \sqrt{H^{2}-K}$.

5.3* The Gauss map

Let $c(t)$ be a curve through p with $c^{\prime}(0)=X_{p}$. Define a vector field $\bar{N}(t)$ along c by $\bar{N}(t)=$ $d N_{c(t)} / d t$. Then

$$
\begin{aligned}
v_{*, p}\left(X_{p}\right) & =\left.\frac{d}{d t}\right|_{t=0} v(c(t))=\left.\frac{d}{d t}\right|_{t=0} N_{c(t)}=\left.\frac{d}{d t}\right|_{t=0} \bar{N}(t) \\
& =\bar{N}^{\prime}(0)=D_{c^{\prime}(0)} N \quad \text { (by Proposition 4.11) } \\
& =D_{X_{p}} N=-L\left(X_{p}\right) .
\end{aligned}
$$

5.4 Area $v(M)=\int_{v(M)} 1=\int_{M}\left|\operatorname{det} v_{*}\right|$ by the change of variables formula. Now apply Problem 5.3.
5.8 Choose an orthonormal basis e_{1}, e_{2} for $T_{p} M$ and write $X_{p}=(\cos \theta) e_{1}+(\sin \theta) e_{2}$. Let the shape operator L be represented by the matrix $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ relative to e_{1}, e_{2}. Find $\kappa\left(X_{p}\right)$ in terms of a, b, c, d and θ and compute $\int_{0}^{2 \pi} \kappa\left(X_{p}\right) d \theta$.
5.9 (a) Take the inner product of both sides of the equation $L\left(e_{1}\right)=a e_{1}+b e_{2}$ with e_{1} and with e_{2}. Then solve for a, b.
(b) $K=\operatorname{det}\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]^{-1} \operatorname{det}\left[\begin{array}{ll}e & f \\ f & g\end{array}\right]=\left(e g-f^{2}\right) /\left(E G-F^{2}\right)$.
$H=(e G-2 f F+g E) /\left(2\left(E G-F^{2}\right)\right)$.
5.10 (a) First show that $e_{1}=\left(1,0, h_{x}\right), e_{2}=\left(0,1, h_{y}\right)$.
(b) By Lemma 5.2, $\left\langle L\left(e_{i}\right), e_{j}\right\rangle=\left\langle D_{e_{i}} e_{j}, N\right\rangle$, where $N=\left(e_{1} \times e_{2}\right) /\left\|e_{1} \times e_{2}\right\|$. Show that

$$
D_{e_{1}} e_{1}=\left(0,0, h_{x x}\right), \quad D_{e_{2}} e_{1}=\left(0,0, h_{x y}\right), \quad D_{e_{2}} e_{2}=\left(0,0, h_{y y}\right) .
$$

(c) Use Problem 5.9(b).
5.11 (a) $e_{1}=((\sinh u) \cos \theta,(\sinh u) \sin \theta, 1), e_{2}=(-(\cosh u) \sin \theta,(\cosh u) \cos \theta, 0)$.
(b) $E=\cosh ^{2} u, F=0, G=\cosh ^{2} u$.
(c) $e_{1}^{\prime}=((\cosh u) \cos \theta,(\cosh u) \sin \theta, 0), e_{2}^{\prime}=(-(\sinh u) \sin \theta,(\sinh u) \cos \theta, 1)$.

7.1* Derivation and local operator

Suppose a C^{∞} function g on M is zero on an open set U. Let $p \in U$ and choose a bump function $f \in C^{\infty}(M)$ such that $f(p)=1$ and $\operatorname{supp} f \subset U$. then $f g \equiv 0$ because $g \equiv 0$ on U and $f \equiv 0$ on $M-U$. By the derivation property,

$$
0=(D(f g))(p)=(D f)(p) g(p)+f(p)(D g)(p)=D g(p),
$$

since $g(p)=0$ and $f(p)=1$. As p is an arbitrary point of $U, D g \equiv 0$ on U.

7.4* Section with a prescribed value

Let U be a neighborhood of p in M over which E is trivial: $\left.E\right|_{U} \stackrel{\phi}{\sim} U \times \mathbb{R}^{k}$. Suppose $\phi(e)=(p, v)$. Then $s_{U}(q):=\phi^{-1}(q, v)$ is a C^{∞} section of E over U with $s_{U}(p)=\phi^{-1}(p, v)=e$. By Proposition 7.13, there is a C^{∞} global section $s \in \Gamma(M, E)$ that agrees with s_{U} over some neighborhood of p. Then $s(p)=s_{U}(p)=e$.

7.5* Coefficients relative to a global frame

It suffices to show that a^{j} is C^{∞} over any trivializing open set for E. Choose a trivializing open set U for E with trivialization

$$
\phi: \pi^{-1}(U) \simeq U \times \mathbb{R}^{k}, \quad e \mapsto\left(p, b^{1}, \ldots, b^{k}\right)
$$

Let s_{1}, \ldots, s_{k} be the frame over U corresponding to the standard basis in \mathbb{R}^{k} under ϕ. Then for any $v \in \pi^{-1}(U), v=\sum b^{i} s_{i}$. The b^{i} 's are C^{∞} functions on E because they are components of the C^{∞} map ϕ.

Since e_{1}, \ldots, e_{k} is a C^{∞} frame over U,

$$
e_{j}=\sum f_{j}^{i} s_{i}
$$

with $f_{j}^{i} C^{\infty}$. Then

$$
v=\sum b^{i} s_{i}=\sum a^{j} e_{j}=\sum a^{j} f_{j}^{i} s_{i} .
$$

Comparing the coefficients of s_{i} gives

$$
b^{i}=\sum_{j} a^{j} f_{j}^{i}
$$

In matrix notation, $\mathbf{b}=C \mathbf{a}$. Hence, $\mathbf{a}=C^{-1} \mathbf{b}$, which shows that the a^{j} are C^{∞} because the entries of C and \mathbf{b} are all C^{∞}.

12.1* The orthogonal group $O(2)$

(a) The condition $A^{T} A=I$ is equivalent to the fact that the columns of the matrix A form an orthonormal basis of \mathbb{R}^{2}. Let $\left[\begin{array}{l}a \\ b\end{array}\right]$ be the first column of A. Then $a^{2}+b^{2}=1$. Since the second column of A is a unit vector in \mathbb{R}^{2} orthogonal to $\left[\begin{array}{l}a \\ b\end{array}\right]$, it is either $\left[\begin{array}{r}-b \\ a\end{array}\right]$ or $\left[\begin{array}{r}b \\ -a\end{array}\right]$. Hence,

$$
A=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \text { or }\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right],
$$

with $a^{2}+b^{2}=1$.
(b) In part (a),

$$
\operatorname{det}\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]=a^{2}+b^{2}=1, \quad \operatorname{det}\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right]=-a^{2}-b^{2}=-1 .
$$

Therefore,

$$
\mathrm{SO}(2)=\left\{\left.\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \right\rvert\, a^{2}+b^{2}=1\right\} .
$$

The condition $a^{2}+b^{2}=1$ implies that (a, b) is a point on the unit circle. Hence, (a, b) is of the form $(\cos t, \sin t)$ for some $t \in \mathbb{R}$. So every element of $\operatorname{SO}(2)$ is of the form

$$
\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]
$$

14.1* Geodesic equations

Differentiating (14.10) with respect to t gives

$$
\begin{align*}
2 \ddot{y} & = \pm \dot{y} \sqrt{1-k^{2} y^{2}} \mp y \frac{k^{2} y \dot{y}}{\sqrt{1-k^{2} y^{2}}} \\
& = \pm \dot{y}\left(\pm \frac{\dot{y}}{y}\right) \mp \frac{k^{2} y^{3} \dot{y}}{y \sqrt{1-k^{2} y^{2}}}=\frac{\dot{y}^{2}}{y}-k^{2} y^{3} \tag{14.8}\\
& =\frac{\dot{y}^{2}}{y}-\frac{k^{2} y^{4}}{y}=\frac{\dot{y}^{2}}{y}-\frac{\dot{x}^{2}}{y} . \tag{14.10}
\end{align*}
$$

Thus,

$$
\ddot{y}+\frac{1}{y} \dot{x}^{2}-\frac{1}{y} \dot{y}^{2}=0,
$$

which is (14.5).

16.4* Volume form of a sphere in Cartesian coordinates

The unit outward normal vector field on the sphere $S^{n-1}(a)$ is $X=(1 / a) \sum x^{i} \partial / \partial x^{i}$. The volume form on the closed ball $\overline{B^{n}}(a)$ of radius a is the restriction of the volume form on \mathbb{R}^{n}; thus,

$$
\operatorname{vol}_{\overline{B^{n}}(a)}=d x^{1} \wedge \cdots \wedge d x^{n} .
$$

By Theorem 16.11,

$$
\begin{aligned}
\operatorname{vol}_{S^{n-1}(a)} & =l_{X}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =\frac{1}{a} \sum x^{i} \iota_{\partial / \partial x^{i}}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =\frac{1}{a} \sum(-1)^{i-1} x^{i} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n} .
\end{aligned}
$$

20.1* Topology of a union

Using the bijection $\phi_{\alpha}: S_{\alpha} \rightarrow Y_{\alpha}$ in (iii), each S_{α} can be given a topology so that ϕ_{α} becomes a homeomorphism. Condition (iv) guarantees that the open subsets of $S_{\alpha} \cap S_{\beta}$ are well defined. Let \mathcal{T} be the topology on S generated by all the open subsets of S_{α} for all α; this means \mathcal{T} is the smallest topology containing all such sets.

If U_{α} is open in S_{α} and U_{β} is open in S_{β}, then $U_{\alpha} \cap U_{\beta}$ is open in \mathcal{T}. Since $U_{\alpha} \cap U_{\beta} \subset S_{\alpha}$, we need to show that $U_{\alpha} \cap U_{\beta}$ is already open in S_{α} so that in generating \mathcal{T} we did not create additional open sets in S_{α}. By condition (ii), $S_{\alpha} \cap S_{\beta}:=S_{\alpha \beta}$ is in the collection \mathcal{C}, so it is open via $\phi_{\alpha \beta}: S_{\alpha \beta} \rightarrow Y_{\alpha \beta}$. By the compatibility of $S_{\alpha \beta}$ and S_{α} in (ii), $S_{\alpha \beta}$ is open S_{α}. Since U_{α} is open in $S_{\alpha}, U_{\alpha} \cap S_{\alpha \beta}=U_{\alpha} \cap S_{\beta}$ is open in S_{α}. By (iv), $U_{\alpha} \cap S_{\beta}$ is also open in S_{β}. Therefore, $\left(U_{\alpha} \cap S_{\beta}\right) \cap U_{\beta}=U_{\alpha} \cap U_{\beta}$ is open in S_{β}. By (iv) again, it is also open in S_{α}.

21.9 * The Maurer-Cartan equation

Since $d \theta+\frac{1}{2}[\theta, \theta]$ is a 2 -form and therefore is bilinear over the C^{∞} functions, it suffices to check the equation on a frame of vector fields. Such a frame is, for example, given by leftinvariant vector fields. Thus, it suffices to check

$$
d \theta(X, Y)+\frac{1}{2}[\theta, \theta](X, Y)=0
$$

for two left-invariant vector fields X, Y on G.
By Problem 21.8,

$$
d \theta(X, Y)=X \theta(Y)-Y \theta(X)-\theta([X, Y]) .
$$

Since $\theta(X)$ and $\theta(Y)$ are constants, $X \theta(Y)=0$ and $Y \theta(X)=0$. Thus,

$$
d \theta(X, Y)=-\theta([X, Y])=-\theta_{e}\left([X, Y]_{e}\right)=-[X, Y]_{e}=-\left[X_{e}, Y_{e}\right] .
$$

By (21.10),

$$
\begin{aligned}
{[\theta, \theta](X, Y) } & =[\theta(X), \theta(Y)]-[\theta(Y), \theta(X)] \\
& =2[\theta(X), \theta(Y)] \\
& \left.=2\left[\theta_{e}\left(X_{e}\right), \theta_{e}\left(Y_{e}\right)\right] \quad \text { since } \theta(X), \theta(Y) \text { are constants }\right) \\
& =2\left[X_{e}, Y_{e}\right] .
\end{aligned}
$$

The Maurer-Cartan equation follows.
22.4 If T_{1} is an (a, b)-tensor field and T_{2} is an $\left(a^{\prime}, b^{\prime}\right)$-tensor field, evaluate both sides on $\omega_{1}, \ldots, \omega_{a+a^{\prime}}, Y_{1}, \ldots, Y_{b+b^{\prime}}$.

27.2* Short exact sequence of vector spaces

By the first isomorphism theorem of linear algebra,

$$
\frac{B}{i(A)}=\frac{B}{\operatorname{ker} j} \simeq \operatorname{im} j=C .
$$

Hence,

$$
\operatorname{dim} B-\operatorname{dim} i(A)=\operatorname{dim} C .
$$

Because $i: A \rightarrow B$ is injective, $\operatorname{dim} i(A)=\operatorname{dim} A$. Therefore,

$$
\operatorname{dim} B=\operatorname{dim} A+\operatorname{dim} C .
$$

27.4* The differential of an action

By linearity,

$$
\mu_{*}\left(X_{p}, \ell_{g *} A\right)=\mu_{*}\left(X_{p}, 0\right)+\mu_{*}\left(0, \ell_{g *} A\right),
$$

so it suffices to compute the two terms on the right separately.
Let $c(t)$ be a curve through p in P with initial vector X_{p}. Then a curve through (p, g) in $P \times G$ with initial vector $\left(X_{p}, 0\right)$ is $(c(t), g)$. Computing the differential μ_{*} using the curve $(c(t), g)$, we get

$$
\begin{aligned}
\mu_{*,(p, g)}\left(X_{p}, 0\right) & =\left.\frac{d}{d t}\right|_{t=0} \mu(c(t), g) \\
& =\left.\frac{d}{d t}\right|_{t=0} c(t) \cdot g \\
& =r_{g * *} c^{\prime}(0)=r_{g *} X_{p} .
\end{aligned}
$$

A curve through (p, g) with initial vector $\left(0, \ell_{g *} A\right)$ is $\left(p, g e^{t A}\right)$, so

$$
\begin{aligned}
\mu_{*,(p, g)}\left(0, \ell_{g *} A\right) & =\left.\frac{d}{d t}\right|_{t=0} \mu\left(p, g e^{t A}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} p g e^{t A} \\
& =\underline{A}_{p g} .
\end{aligned}
$$

Hence,

$$
\mu_{*,(p, g)}\left(X_{p}, \ell_{g *} A\right)=r_{g *} X_{p}+\underline{A}_{p} g .
$$

30.3* Lie bracket of horizontal vector fields

$$
\begin{aligned}
\Omega(X, Y) & =\left(d \omega+\frac{1}{2}[\omega, \omega]\right)(X, Y) \\
& =(d \omega)(X, Y)+\frac{1}{2}([\omega(X), \omega(Y)]-[\omega(Y), \omega(X)]) \\
& =(d \omega)(X, Y) \quad(\text { since } X, Y \text { are horizontal }) \\
& =X \omega(Y)-Y \omega(X)-\omega([X, Y]) \\
& =-\omega([X, Y]) .
\end{aligned}
$$

Thus, $[X, Y]$ is horizontal if and only if $\Omega(X, Y)=0$.

31.4* Tensorial forms

Let $p \in P, g \in G$, and $u_{1}, \ldots, u_{k} \in T_{p} P$. Then

$$
\begin{aligned}
r_{g}^{*}\left(\psi_{p g}^{\sharp}\right)\left(u_{1}, \ldots, u_{k}\right) & =\psi_{p g}^{\sharp}\left(r_{g *} u_{1}, \ldots, r_{g *} u_{k}\right) \\
& =f_{p g}^{-1}\left(\psi_{x}\left(\pi_{*} r_{g *} u_{1}, \ldots, \pi_{*} r_{g *} u_{k}\right)\right) \\
& =\rho\left(g^{-1}\right) f_{p}^{-1}\left(\psi_{x}\left(\pi_{*} u_{1}, \ldots, \pi_{*} u_{k}\right)\right) \quad\left(\text { because } f_{p g}=f_{p} \circ \rho(g)\right) \\
& =\rho\left(g^{-1}\right) \psi_{p}^{\sharp}\left(u_{1}, \ldots, u_{k}\right) .
\end{aligned}
$$

31.5* Tensorial forms

Let $p \in P$ and $u_{1}, \ldots, u_{k} \in T_{p} P$. Write $x=\pi(p)$. Then

$$
\begin{aligned}
\left(\varphi^{\text {b\# }}\right)_{p}\left(u_{1}, \ldots, u_{k}\right) & =f_{p}^{-1}\left(\varphi_{x}^{b}\left(\pi_{*} u_{1}, \ldots, \pi_{*} u_{k}\right)\right) \\
& =f_{p}^{-1} f_{p} \varphi_{p}\left(u_{1}, \ldots, u_{k}\right) \\
& =\varphi_{p}\left(u_{1}, \ldots, u_{k}\right) .
\end{aligned}
$$

32.1* Polynomials on a vector space

Let $\alpha^{1}, \ldots, \alpha^{n}$ be dual to e_{1}, \ldots, e_{n} and $\beta^{1}, \ldots, \beta^{n}$ be dual to u_{1}, \ldots, u_{n}. Then $\alpha^{i}=\sum c_{j}^{i} \beta^{j}$ for some invertible matrix $\left[c_{j}^{i}\right]$, and

$$
\begin{aligned}
f & =\sum a_{I} \alpha^{i_{1}} \cdots \alpha^{i_{k}} \\
& =\sum a_{I} c_{j_{1}}^{i_{1}} \cdots c_{j_{k}}^{i_{k}}
\end{aligned} \beta^{i_{1}} \cdots \beta^{i_{k}} .
$$

So f is also a polynomial of degree k with respect to u_{1}, \ldots, u_{n}.

32.2* Chern-Weil forms

Suppose $\alpha^{i}=\sum c_{j}^{i} \beta^{j}$. Then

$$
\Omega^{i}=\alpha^{i}(\boldsymbol{\Omega})=\sum c_{j}^{i} \boldsymbol{\beta}^{j}(\boldsymbol{\Omega})=\sum c_{j}^{i} \Psi^{j}
$$

and

$$
\begin{aligned}
f & =\sum a_{I} c_{j_{1}}^{i_{1}} \beta^{j_{1}} \cdots c_{j_{k}}^{i_{k}} \beta^{j_{k}} \\
& =\sum a_{I} c_{j_{1}}^{i_{1}} \cdots c_{j_{k}}^{i_{k}} \beta^{j_{1}} \cdots \beta^{j_{i}} .
\end{aligned}
$$

So

$$
\begin{aligned}
f(\Psi) & =\sum a_{I} c_{j_{1}}^{i_{1}} \cdots c_{j_{k}}^{i_{k}} \Psi^{j_{1}} \ldots \Psi^{j_{i}} \\
& =\sum a_{I} \Omega^{j_{1}} \cdots \Omega^{j_{i}} \\
& =f(\Omega) .
\end{aligned}
$$

List of Notations

\mathbb{R}^{n}	Euclidean n-space (p. 2)		
$\left(u^{1}, u^{2}, u^{3}\right)$	a point in \mathbb{R}^{3} (p.2)		
$\mathbf{u}=\left[\begin{array}{l} u^{1} \\ u^{2} \\ u^{3} \end{array}\right]$	column vector (p. 2)		
	dot product, inner product, or Riemannian metric (p. 2)		
$\\|v\\|$	length of a vector v (p.2)		
$\left.\langle\rangle\right\|_{,W \times W}$	restriction of \langle,$\rangle to a subspace W$ (p.3)		
A^{T}	transpose of the matrix A (p.4)		
$T_{p} M$	tangent space at p to M (p.4)		
\mathbb{H}^{2}	upper half-plane (p.7)		
$[a, b]$	closed interval from a to b (p.9)		
$T(s)$	unit tangent vector at time s (p. 11)		
$T^{\prime}(s)$	derivative of $T(s)$ (p.11)		
$\mathbf{n}(s)$	unit normal vector to a curve at time s (p.11)		
κ	signed curvature of a plane curve (p. 12)		
\dot{x}	$d x / d t$ (p.14)		
\ddot{x}	$d^{2} x / d t^{2}$ (p.14)		
N_{p}	normal vector at p (p.17)		
$\kappa\left(X_{p}\right)$	normal curvature (p.18)		
H	mean curvature (p.18)		
K	Gaussian curvature (p.18)		
$\chi(M)$	Euler characteristic (p.20)		
$D_{X_{p}} f$	directional derivative of f in the direction X_{p} (p.22)		
© Springer International Publishing AG 2017 L.W. Tu, Differential Geometry, Graduate Texts in Mathematics 275, DOI 10.1007/978-3-319-55084-8			

∂_{i}	partial derivative $\partial / \partial x^{i}$ (p.22)
$\mathfrak{X}(M)$	Lie algebra of all C^{∞} vector fields on a manifold M (p.23)
[X, Y]	Lie bracket of two vector fields (p.24)
$T(X, Y)$	torsion tensor (p.24)
$\operatorname{End}_{\mathbb{R}}(V)$	ring of endomorphisms over \mathbb{R} of a vector space V (p.24)
$R(X, Y)$	curvature tensor (p.24)
$V(t)$	vector field along a curve (p. 25)
$c^{\prime}(t)$	velocity vector field of a curve (p.25)
$\left.\partial_{i}\right\|_{c(t)}$	the vector field ∂_{i} evaluated at $c(t)(\mathrm{p} .26)$
$\Gamma\left(\left.T R\right\|_{M}\right)$	the set of C^{∞} vector fields along a submanifold M in a manifold R (p.26)
$Z(f)$	zero set of a function f (p.29)
L_{p}	shape operator, Weingarten map (p. 30)
$\mathrm{II}\left(X_{p}, Y_{p}\right)$	second fundamental form (p.35)
$\operatorname{grad} f$	gradient of a function f (p.34)
v	Gauss map (p.39)
∇	affine connection, connection on a vector bundle (p. 43)
TM	tangent bundle of M (p.51)
$\Gamma(U, E)$	the set of smooth sections of E over U (p.51)
$\Gamma(E)$	the set of smooth global sections of E (p.51)
$C^{\infty}(M)$	the algebra of C^{∞} functions over M (p.52)
$\Omega^{k}(M)$	space of $C^{\infty} k$-forms on M (p.54)
$X_{\text {tan }}$	tangential component of a vector field X along a manifold M (p. 62)
$\operatorname{III}(X, Y)$	third fundamental form (p.68)
$\omega=\left[\omega_{j}^{i}\right]$	connection matrix (p. 80)
$\Omega=\left[\Omega_{j}^{i}\right]$	curvature matrix (p. 80)
$\alpha \wedge \beta$	wedge product of differential forms (p. 80)
$A \wedge B$	wedge product of matrices of differential forms (p. 86)
$\operatorname{proj}_{a} b$	orthogonal projection of b to the linear span of the vector a (p.81)
θ^{i}	dual 1-form (p. 84)
τ^{i}	torsion form (p. 84)
D	Poincaré disk (p.86)
$K(P)$	sectional curvature of a plane P (p.92)

$d x \otimes d x$	tensor product (p.93)
$d s^{2}$	Riemannian metric (p.93)
$\amalg T_{c(t)} M$	disjoint union (p.95)
$D / d t$	covariant derivative (p.96)
$f_{*} V$	pushforward of a vector field $V(t)$ along a curve (p. 98)
$\Gamma_{i j}^{k}$	Christoffel symbols (p. 100)
Exp_{q}	exponential map of a connection (p.115)
$B(0, \varepsilon)$	open ball of radius ε centered at 0 (p.115)
$f_{*, p}$	differential of f at p (p. 116)
$\mathfrak{g}=T_{e} G$	Lie algebra of a Lie group G (p.119)
$\ell{ }_{g}$	left multiplication by g (p.119)
$\varphi_{t}(p)$	integral curve starting at p (p.119)
$c_{X}(t)=\varphi_{t}(e)$	integral curve through e of the left-invariant vector field X (p. 120)
exp	exponential map for a Lie group G 120)
c_{g}	conjugation by g (p.123)
Ad	adjoint representation of a Lie group (p. 123)
ad	adjoint representation of a Lie algebra (p.124)
$\operatorname{ad}_{A} B$	$\operatorname{ad}(A)(B)($ p. 124)
vol_{M}	volume form of a Riemannian manifold M (p. 133)
det	determinant (p.134)
$\tilde{\kappa}_{g}$	geodesic curvature (p. 138)
ζ	angle function along a curve (p.139)
κ_{g}	signed geodesic curvature (p. 140)
$\int_{a}^{b} \kappa_{g} d s$	total geodesic curvature (p. 141)
ε_{i}	jump angle (p. 142)
β_{i}	interior angle (p. 142)
$\Delta \zeta_{i}$	change in the angle along the i th edge (p.142)
Free (V)	free module with basis V (p.152)
$V \otimes_{R} W$	tensor product of two R-modules (p. 152)
$\operatorname{Hom}_{R}(V, W)$	the set of R-module homomorphisms from V to W (p.157)
V^{\vee}, V^{*}	dual of an R-module (p. 157, p. 187)
$T^{k}(V)$	k th tensor power of a module V (p. 162)

$T(V)$	tensor algebra of a module V (p.163)
$\wedge(V)$	exterior algebra of V (p.164)
$\Lambda^{k}(V), \Lambda^{k} V$	k th exterior power of V (p. 164)
$\operatorname{sgn}(\pi)$	sign of a permutation (p. 166)
$\left[\begin{array}{llll}s_{1} & \cdots & s_{k}\end{array}\right]$	a k-frame (p. 174)
$f^{*} E$	pullback bundle of E by f (p. 177)
$\left.E\right\|_{U}$	restriction of the bundle E to U (p. 178)
$E \oplus E^{\prime}$	direct sum of vector bundles (p. 181)
$E \otimes E^{\prime}$	tensor product of vector bundles (p.183)
$\operatorname{Iso}\left(V, V^{\prime}\right)$	the set of all isomorphisms from V to V^{\prime} (p. 183)
$\wedge^{k} E$	k th exterior power of a vector bundle (p.184)
$\Omega^{k}(M)$	vector space of $C^{\infty} k$-forms on M (p. 186)
$A_{k}(T, V)$	vector space of all alternating k-linear maps from T to V (p. 187)
$\Omega^{k}(M, V)$	vector space of smooth V-valued k-forms on M (p.187)
$X_{p} f$	directional derivative of a vector-valued function f (p. 190)
$\alpha \cdot \beta$	product of vector-valued forms (p. 191)
$[\alpha, \beta]$	Lie bracket of \mathfrak{g}-valued forms (p. 191)
$e_{i j}$	the matrix with a 1 in the (i, j)-entry and 0 everywhere else (p. 193)
$\Omega^{k}(M, E)$	vector space of smooth E-valued k-forms on M (p.194)
Ω^{k}	the wedge product $\Omega \wedge \cdots \wedge \Omega$ of the curvature matrix k times (p. 204)
tr	trace of a linear endomorphism (p.209)
$\operatorname{Ric}(X, Y)$	Ricci curvature (p. 209)
$S(p)$	scalar curvature at p (p.209)
$\operatorname{Inv}(\mathfrak{g l}(r, \mathbb{R}))$	algebra of invariant polynomials on $\mathfrak{g l}(r, \mathbb{R})(\mathrm{p} .212)$
f_{k}	a coefficient of $\operatorname{det}(\lambda I+X)($ p. 213)
$\Sigma_{k}(X)$	the trace polynomial $\operatorname{tr}\left(X^{k}\right)($ p. 213)
$[P(\Omega)]$	the cohomology class of the form $P(\Omega)$ (p.221)
$p_{k}(E)$	Pontrjagin class of a real vector bundle E (p.225)
$\mathrm{SO}(r)$	special orthogonal group (p. 229)
$\mathfrak{s o}(r)$	Lie algebra of $\mathrm{SO}(r)$ (p. 230)
$\operatorname{Pf}(X)$	Pfaffian of a skew-symmetric matrix X (p.231)
$e(E)$	Euler class of an oriented Riemannian bundle E (p.233)

$c_{k}(E)$	Chern class of a complex vector bundle (p. 235)
$\operatorname{Stab}(x)$	stabilizer of x (p. 243)
$\operatorname{Orbit}(x), x G$	orbit of x (p.243)
$U_{\alpha \beta}$	the intersection $U_{\alpha} \cap U_{\beta}$ (p.245)
$\operatorname{Fr}(V)$	frame manifold of the vector space V (p.246)
$\operatorname{Fr}(E)$	frame bundle of the vector bundle E (p.246)
\underline{A}_{p}	fundamental vector field associated to A (p. 247)
\mathcal{V}_{p}	vertical tangent subspace (p. 250)
$\varphi_{a, b}$	parallel translation from $E_{c(a)}$ to $E_{c(b)}(\mathrm{p} .263)$
\mathcal{H}_{p}	horizontal subspace (p. 266)
$v\left(Y_{p}\right)$	vertical component of a vector $Y_{p}(\mathrm{p} .254)$
$h\left(Y_{p}\right)$	horizontal component of a vector $Y_{p}(\mathrm{p} .256)$
$P \times{ }_{\rho} V$	associated bundle (p. 275)
$\Omega_{\rho}^{k}(P, V)$	tensorial V-valued k-forms of type ρ (p. 277)
AdP	adjoint bundle (p. 279)
φ^{h}	horizontal component of a form φ (p.281)
$D \varphi$	covariant derivative of a V-valued form on a principal bundle (p. 281)
$\operatorname{Inv}(\mathfrak{g})$	algebra of $\operatorname{Ad}(G)$-invariant polynomials on \mathfrak{g} (p. 290)
(U, ϕ)	coordinate chart (p. 293)
$C_{p}^{\infty}(M)$	set of germs of C^{∞} functions at p in M (p. 295)
$\mathbb{R}^{2} / \mathbb{Z}^{2}$	torus (p. 304)
$R\left[x_{1}, \ldots, x_{n}\right]$	polynomial ring over R in n variables (p.306)
$\operatorname{Fun}\left(\mathbb{R}^{n}, \mathbb{R}\right)$	algebra of functions from \mathbb{R}^{n} to $\mathbb{R}(\mathrm{p} .306)$
$\mathbb{C}\left[t_{1}, \ldots, t_{r}\right]^{S_{r}}$	the algebra of complex symmetric polynomials (p.310)
P_{σ}	permutation matrix (p.311)
σ_{i}	elementary symmetric polynomial (p.311)

References

[1] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., Academic Press, San Diego, 1986.
[2] R. Bott, Lectures on characteristic classes and foliations (Notes by L. Conlon), in Lectures on Algebraic Topology and Differential Topology, Lecture Notes in Math. 279, Springer, New York, 1972, pp. 1-94.
[3] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, 3rd corrected printing, Graduate Texts in Math., Vol. 82, Springer, New York, 1995.
[4] E. Cartan, Oeuvres Complètes, 3 vols., Gauthier-Villars, Paris, 1952-1955.
[5] S. S. Chern, Vector bundles with a connection, Global Differential Geometry, MAA Studies in Math., vol. 27, Mathematical Association of America, 1989, pp. 1-26.
[6] L. Conlon, Differentiable Manifolds, 2nd ed., Birkhäuser, Springer, New York, 2001.
[7] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Springer, New York, 1992.
[8] J. Dupont, Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer, New York, 1978.
[9] T. Frankel, The Geometry of Physics, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.
[10] M. Greenberg, Euclidean and Non-Euclidean Geometries: Development and History, 3rd ed., W. H. Freeman and Co., New York, 1993.
[11] H. Hopf, Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Mathematica 2 (1935), 50-62.
[12] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I and II, John Wiley and Sons, 1963.
[13] S. Lang, Algebra, revised 3rd ed., Springer, New York, 1993.
[14] J. M. Lee, Riemannian Manifolds, Springer, New York, 1997.
[15] J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis, 2nd ed., W. H. Freeman, New York, 1993.
[16] R. S. Millman and G. D. Parker, Elements of Differential Geometry, PrenticeHall, Englewood Cliffs, New Jersey, 1977.
[17] J. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Math. Studies 76, Princeton University Press, Princeton, NJ, 1974.
[18] J. R. Munkres, Elements of Algebraic Topology, Perseus Publishing, Cambridge, MA, 1984.
[19] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1, 2, and 5, 3rd ed., Publish or Perish, Houston, TX, 2005.
[20] C. Taubes, Differential Geometry: Bundles, Connections, Metrics and Curvature, Oxford University Press, Oxford, England, 2011.
[21] L. W. Tu, An Introduction to Manifolds, 2nd ed., Universitext, Springer, New York, 2011.
[22] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York, 1983.
[23] C. N. Yang, Magnetic monopoles, fiber bundles, and gauge fields, Annals of New York Academy of Sciences 294 (1977), pp. 86-97.
[24] C. N. Yang, Selected Papers, 1945-1980, with Commentary, World Scientific, Singapore, 2005.

Index

action, 243
action of $\mathrm{GL}(r, F)$ on polynomials, 308
Ad GL(r, \mathbb{R})-invariant, 212
adjoint representation
of a Lie group, 123
adjoint bundle, 276
adjoint representation, 123, 248
of a Lie algebra, 124
affine connection, 43
algebra, 295
graded, 299
alternating k-linear function, 297
alternating linear map, 164
alternating multilinear maps
universal mapping property, 166
angle
between two vectors, 2
angle function, 139
anticommutativity, 298
antiderivation, 299
arc length, $2,10,128$
is independent of parametrization, 128
arc length function, 10
arc length parametrization, 10
ascending multi-index, 298
associated bundle, 275
associativity
of a bi-invariant metric, 125
of the tensor product, 161
atlas, 293
base space, 242
of a vector bundle, 49
basic
iff invariant and horizontal, 280
basic form, 279
basis, 299
for a tensor product, 156
for the exterior power, 168
Betti numbers, 199
bi-invariant metric
on a Lie group, 124
Bianchi identity
first, 203
in vector form, 204
second, 204, 271
in vector form, 207
bilinear form, 3
bilinear maps
universal mapping property, 153
bilinear maps over \mathcal{F}, 59
binormal, 15
bundle isomorphism, 51
bundle map, 51
over a manifold, 51
Cartan, Élie, 71
catenary, 36
catenoid, 37
characteristic classes, 212, 220
independence of a connection, 218
naturality of, 221
of a principal bundle, 290
vanishing, 223
characteristic form, 212
closed, 215
chart, 293
chart about a point, 293
charts
compatible, 293
Chern character, 315
Chern classes
of a complex vector bundle, 235
of a principal $\mathrm{GL}(r, \mathbb{C})$-bundle, 291
Chern-Weil homomorphism, 212, 214, 290
Christoffel symbols, 99, 100
for the Poincaré half-plane, 101
of a surface of revolution, 102
of the Poincaré disk, 102, 114
symmetric iff torsion-free, 100
circle
volume form, 134
cobordant, 237
cocycle condition, 245
Codazzi-Mainardi equation, 62
coefficients
of the first fundamental form, 35
of the second fundamental form, 36
coefficients of characteristic polynomial, 306
coefficients of characteristic polynomial are invariant polynomials, 309
coefficients of the characteristic polynomial, 212, 213
compatible charts, 293
compatible with the Hermitian metric, 234
complex inner product, 234
complex invariant polynomials
generated by coefficients of characteristic
polynomials, 313
complex manifold, 236
complex vector bundle, 228
component, 31
congruent matrices, 230
connected component, 304
connection
affine, 43
at a point, 77
compatible with the metric, 45,75
defined using connection matrices, 209
Euclidean, 43
Levi-Civita, 45
metric
in terms of forms, 82
on a complex vector bundle, 234
on a framed open set, 81
on a principal bundle, 254,256
on a trivial bundle, 72
on a vector bundle, 72
Riemannian, 45
symmetric, 100
connection forms, 80
connection matrix, 80
dependence on frames, 202
connection on a vector bundle existence, 73
connection-preserving diffeomorphism, 99
preserves geodesics, 108
connections
convex linear combination of, 48
convex linear combination, 73
coordinate chart, 293
coordinate vectors, 295
covariant derivative
corresponding to a connection, 262
covariant derivative
of tensor fields, 206
of a basic form, 288
of a tensorial form, 282
of a vector field along a curve, 97
on a principal bundle, 281
on surface in $\mathbb{R}^{3}, 104$
covariant differentiation
along a curve, 95
covector, 297
curvature, 44
G-equivariance, 271
and shape operator, 32
Gaussian, 18
Gaussian, in terms of an arbitrary basis, 64
geodesic curvature, 138
is \mathcal{F}-linear, 44
is horizontal, 271
is independent of orientation, 13
mean, 18
normal, 18
of Maurer-Cartan connection, 274
of a connection on a principal bundle, 270
of a connection on a vector bundle, 74
of a plane curve, 12,14
of a space curve, 15
of an ellipse, 14
of directional derivative, 24
principal, 18
sectional, 92
signed geodesic curvature, 140
symmetries, 205
total curvature, 146
total geodesic curvature, 141
curvature tensor, 207
independence of orthonormal basis, 92
curvature forms, 80
curvature matrix, 80
dependence on frames, 202
is skew-symmetric relative to an orthonormal frame, 84
curvature tensor, 74
skew-symmetry, 91
curve, 9
geometric, 9
parametrized, 9
piecewise smooth, 112
regular, 9
cuspidal cubic
arc length, 15
cylinder
mean and Gaussian curvature, 40
shape operator, 40
decomposable
in the exterior algebra, 164
in the tensor product, 153
degree, 147
of a form, 188
of a line bundle, 239
diagonal entries
of a skew-symmetric matrix is 0,224
diagonalizable matrices
are dense in $\mathfrak{g l}(r, \mathbb{C}), 312$
diffeomorphism, 295
differential, 296
differential form, 297, 298
vector-valued, 187
differential forms
depending smoothly on a real parameter, 216
with values in a vector bundle, 194
with values in a vector space, 186
differentiating under an integral sign), 218
dimension
of tensor product, 157
direct sum
of vector bundles, 181
directional derivative
computation using a curve, 22
in $\mathbb{R}^{n}, 22$
has zero curvature, 25
is compatible with the metric, 25
is torsion-free, 25
of a vector field, 22
of a vector-valued form, 190
on a submanifold of $\mathbb{R}^{n}, 27$
properties, 23
distance
on a connected Riemannian manifold, 129
distribution, 254
horizontal, 251
dot product, 2
dual
of a module, 157
dual 1-forms
under a change of frame, 132
dual 1-forms, 84

Ehresmann connection, 242, 256
Einstein summation convention, 80
elementary symmetric polynomials, 311
ellipse
curvature, 14
equivariant map, 243
Euclid's fifth postulate, 110
Euclid's parallel postulate, 110
Euclidean connection, 43
Euclidean inner product, 2
Euclidean metric, 5
Euler characteristic
independent of decomposition, 146
of a compact orientable odd-dimensional manifold is 0,200
of a polygonal decomposition of a surface, 145
Euler class, 233
existence of a geodesic, 107
existence of a connection, 73
existence of a Hermitian metric, 234
existence of geodesics, 106
exponential map
of a connection, 115
exponential map
as a natural transformation, 126
differential, 117
for a Lie group, 120, 122
naturality, 116
extension of algebraic identities, 307
exterior derivative, 299
exterior differentiation
on $\mathbb{R}^{3}, 302$
exterior algebra, 164
exterior derivative
of a vector-valued 1-form, 198
of a vector-valued form, 190
properties, 300
exterior power, 164
basis, 168
\mathcal{F}-bilinearity, 59
\mathcal{F}-linear map
of sections correspond to a bundle map, 58
fiber, 242
of a vector bundle, 49
fiber bundle, 242
first fundamental form
coefficients, 35
first Bianchi identity, 203
vector form, 204
first fundamental form, 35
first fundamental form, 68
first structural equation, 85
flat section, 72
form
smooth, 188, 298
forms with values in a Lie algebra, 191
frame, 56, 174
k-forms, 298
of vector fields, 296
positively oriented, 229
frame bundle, 247
of a vector bundle, 247
frame manifold
of a vector space, 246
framed open set, 81
free action, 243
free module, 299
rank, 299
Frenet-Serret formulas, 15
Frenet-Serret frame, 15
functoriality
of tensor product, 160
fundamental theorem on symmetric polynomials, 312
fundamental vector field, 247
integral curve, 249
right-equivariance, 248
vanishing at a point, 249
Fundamental vector fields
Lie bracket of, 252
G-manifold, 243
Gauss curvature equation in terms of forms, 89
Gauss curvature equation, 62
Gauss map, 39, 40, 147
Gauss's Theorema Egregium, 19, 63
Gauss-Bonnet formula
for a polygon, 143
Gauss-Bonnet theorem, 20
for a surface, 145
generalized, 233
Gaussian curvature, 18, 67
and Gauss map, 147
in terms of an arbitrary basis, 64
is the determinant of the shape operator, 34
of a cylinder, 40
of a Riemannian 2-manifold, 91
of a sphere, 40
of a surface, 90
of a surface of revolution, 41
of the Poincaré disk, 114
Poincaré half-plane, 94
positive, 146
generalized Gauss-Bonnet theorem, 233
generalized second Bianchi identity, 204
on a frame bundle, 274
genus
of a compact orientable surface, 146
geodesic, 95, 103
existence of, 106
existence of, 107
in the Poincaré half-plane, 108
maximal, 103
minimal, 130
on a sphere, 104
reparametrization, 105
speed is constant, 103
geodesic equations, 107
geodesic curvature, 138
signed geodesic curvature, 140
total geodesic curvature, 141
geodesic equations, 106
of the Poincaré disk, 114
geodesic polygon, 144
geodesic triangle
sum of angles, 144
geodesically complete, 130
geodesics
on a sphere, 107
geometric curve, 9
germ
of a function at a point, 295
germ of neighborhoods, 127
graded algebra, 299
gradient vector field, 137
Gram-Schmidt process, 81
graph
curvature, 14
helicoid, 37
Hermitian bundle, 234
Hermitian inner product, 234
Hermitian metric, 234
existence of, 234
Hermitian symmetric, 234
Hirzebruch-Riemann-Roch theorem, 239
holomorphic tangent bundle, 236
holomorphic vector bundle, 238
holonomy, 113
homogeneous elements, 163
homogeneous form, 188
homogeneous manifold, 244
Hopf bundle, 244
Hopf Umlaufsatz, 142
Hopf-Rinow theorem, 131
horizontal component
of a form, 281
of a tangent vector, 256
horizontal distribution, 251, 254
of an Ehresmann connection, 257
horizontal form, 277
horizontal lift, 262, 263
of a vector field, 259, 266
horizontal lift formula, 266
horizontal lift of a vector field
to a frame bundle, 266
to a principal bundle, 259
horizontal tangent vector, 264
horizontal vector, 262
Horizontal vector fields
Lie bracket of, 274
hyperbolic plane, 114,144
hyperbolic triangle, 144
hypersurface, 29, 66
normal vector field, 29
volume form, 137
immersed submanifold, 304
immersion, 304
induced connection
on a pullback bundle, 210
inner product, 3
Euclidean, 2
representation by a symmetric matrix, 3
restriction to a subspace, 3
inner products
nonnegative linear combination, 3
integral curve
of a fundamental vector field, 249
integral form, 226
interior angle, 142
interior angles
of a polygon, 147
invariant, 212
invariant complex polynomials, 310
invariant form, 280
invariant polynomial, 212, 306, 308
generators, 215
isometric invariant, 63
isometry, 1,5
isomorphic vector bundles, 51
jump angle, 142

L-polynomials, 314
left action, 243
left G-equivariant map, 243
left-invariant metric, 124
left-invariant vector field, 119
Leibniz rule, 43
length, 4
of a vector, 2
length of a vector, 128
Levi-Civita connection, 45
Lie bracket
of a vertical and a horizontal vector field, 260

Lie bracket, 297, 305
of fundamental vector fields, 252
of horizontal vector fields, 274
of vector fields, 28
Lie derivative
comparison with the directional derivative in $\mathbb{R}^{n}, 25$
Lie group
exponential map, 122
lift, 263
horizontal, 263
line bundle, 49, 235
trivial, 235
local operator, 53, 76
restriction, 55
local trivialization, 242
locally Euclidean, 293
locally finite, 6
locally path-connected, 305
locally trivial, 242
Maurer-Cartan connection, 260
curvature of, 274
Maurer-Cartan equation, 198
Maurer-Cartan form, 198
right translate, 198
maximal atlas, 293
maximal geodesic, 103
mean curvature, $18,41,67$
of a cylinder, 40
of a sphere, 40
of a surface of revolution, 41
metric
on the Poincaré half-plane, 93
metric connection, 75, 234
existence of, 76
relative to an orthonormal frame is skew-symmetric, 83
metric space, 129
metric-preserving map, 5
minimal geodesic, 130
Möbius strip, 50
module
free, 299
morphism
of principal bundles, 244
multi-index, 298
ascending, 298
strictly ascending, 298
natural transformation, 126
naturality
of the exponential map, 116
of characteristic classes, 221
of the exponential map for a Lie group, 122
naturality property, 221
Newton's identities, 317
Newton's identity, 215
non-Euclidean geometry, 110
nondegenerate pairing, 169
normal coordinates, 118
normal curvature
average value of, 41
of a normal section, 18
normal neighborhood, 118
normal section, 18
normal vector, 17
normal vector field, 17
along a hypersurface, 29
smooth, 17
orbit, 243
orientable vector bundle, 229
orientation
and curvature, 13
on a vector bundle, 229
on a vector space, 228
orientation-preserving reparametrization, 128
orientation-reversing reparametrization, 128
oriented vector bundle, 229
orthogonal projection, 81
on a surface in $\mathbb{R}^{3}, 46$
pairing
nondegenerate, 169
of two modules, 169
parallel translation
existence of, 111
parallel along a curve, 263
parallel frame
along a curve, 263
parallel postulate, 110
parallel translate, 111
parallel translation, 111, 263
on a sphere, 113
preserves length and inner product, 112
parallel transport, 111, 263
parallel vector field, 110
parametrization
by arc length, 10
parametrized curve, 9
partition of unity, 6
path component, 305
permutation matrix, 311
Pfaffian, 231
piecewise smooth curve, 112
Poincaré disk
connection and curvature forms, 86
Poincaré half-plane
Gaussian curvature, 94
metric, 93
Poincare
Poincaré disk
Christoffel symbols, 102
Poincaré disk
Gaussian curvature, 94
Poincaré half-plane, 144
Poincaré half plane
Gaussian curvature, 92
Poincaré half-plane
geodesics, 108
point operator, 53
point-derivation, 295
polygon
geodesic polygon, 144
on a surface, 142
polynomial, 212, 306
$\operatorname{Ad}(G)$-invariant, 287
on $\mathfrak{g l}(r, F), 308$
on a vector space, 287
polynomial function, 306
polynomial on $\mathfrak{s o}(r), 230$
polynomials
versus polynomial functions, 306
Pontrjagin class, 225
Pontrjagin number, 226, 236
positive orientation
on a polygon, 142
positive-definite, 234
positive-definite bilinear form, 3
positive-definite symmetric matrix, 4
positively oriented frame, 229
principal curvature
is an eigenvalue of the shape operator, 33
principal bundle, 244
principal curvature, 18,67
principal direction, 18
is an eigenvector of the shape operator, 33
principle of extension of algebraic identities, 307
product bundle, 50, 244
product of vector-valued forms, 188
projection
orthogonal, 81
pseudo-tensorial form
with respect to a representation, 277
pullback
of a vector bundle, 177
of a differential form, 303
of a function, 303
pullback of vector-valued forms, 193
pullback bundle, 177
induced connection, 210
examples, 180
pushforward
of of a vector field, 98
quotient bundle, 177
rank, 299
rank of a vector bundle, 49
real invariant polynomials, 315
generated by the coefficients of characteristic polynomial, 317
generation, 319
regular curve, 9
regular point, 29
regular submanifold, 5, 17
regular value, 29
reparametrization, 9, 128
orientation-preserving, 128
orientation-reversing, 128
reparametrization of a geodesic, 105
restriction
of a connection to an open subset, 76
of a form to a submanifold, 304
of a local operator, 55
of a vector bundle to an open set, 178
of a vector bundle, 50
retraction, 252
Ricci curvature, 208
Riemann curvature tensor, 207
Riemannian bundle, 74
Riemannian connection, 45
existence and uniqueness, 45
in terms of differential forms, 85
on a surface in $\mathbb{R}^{3}, 47$
Riemannian manifold, 4
is a metric space, 129
Riemannian metric, 4
existence, 6
on a manifold with boundary, 133
on a vector bundle, 74
right action, 243
right G-equivariant map, 243
right-equivariant form
with respect to a representation, 277
rotation angle theorem, 143
rotation index theorem, 143
scalar curvature, 209
second Bianchi identity
in vector form, 207
second Bianchi identity, 204, 271
generalized, 204
generalized, on a frame bundle, 274
second fundamental form, 35,68
coefficients, 36
second structural equation, 85
section
of a vector bundle, 51
sectional curvature, 92
sections
of a vector bundle along a curve, 262
sesquilinear, 234
shape operator, 30,66
and curvature, 32
is self-adjoint, 31
matrix is symmetric, 32
of a cylinder, 40
of a sphere, 40
of a surface of revolution, 41
short exact sequence
rank condition, 252
splitting, 252
shuffle, 172, 297
sign convention, 197
signature, 238
signed curvature, 12
signed geodesic curvature, 140
signs concerning vector-valued forms, 197
singular value, 29
skew-symmetric matrices
powers, 224
skew-symmetric matrix
diagonal 0,224
smooth dependence
of a form on $t, 216$
smooth form, 188, 298
smooth function, 293, 294
smooth manifold, 294
smooth map, 295
smooth vector field, 296
smoothly varying
family of forms, 216
$\operatorname{Ad}(\mathrm{SO}(r))$-invariant polynomial, 229
speed, 10, 103
sphere
geodesics, 107
geodesics on, 104
mean and Gaussian curvature, 40
shape operator, 40
volume form in Cartesian coordinates, 135
spherical coordinates, 135
splitting, 251, 252
stabilizer, 243
straight, 95
strictly ascending multi-index, 298
structural equation
first, 85
second, 80, 85
subbundle, 174
subbundle criterion, 175
submanifold
immersed, 304
regular, 5
summation convention
Einstein, 80
support
of a function, 6
surface
in $\mathbb{R}^{3}, 5$
surface in \mathbb{R}^{3}
covariant derivative, 104
Gaussian curvature, 90
surface of revolution
Christoffel symbols, 102
mean and Gaussian curvature, 41
shape operator, 41
symmetric bilinear form, 3
symmetric connection, 100
symmetric polynomials
fundamental theorem, 312
generation, 318
symmetric power, 173
symmetries
of curvature, 205
tangent bundle, 51
tangent space, 295
tangent vector, 295
tensor, 91
tensor product
basis, 156
tensor algebra, 162, 163
tensor criterior, 196
tensor field
covariant derivative of, 206
tensor field on a manifold, 195
tensor product, 152
associativity, 161
basis, 156
characterization, 154
dimension, 157
functorial properties, 160
identities, 158
of finite cyclic groups, 159,163
of three vector spaces, 161
tensorial form
of type $\rho, 277$
Theorema Egregium, 19, 63
using forms, 90
third fundamental form, 68
topological manifold, 294
torsion, 44
is \mathcal{F}-linear, 44
of directional derivative, 24
torsion forms, 84
torsion-free, 45
in terms of Christoffel symbols, 100
torsion-free connection, 100
torus
as a Riemannian manifold, 5
total curvature, 40, 146
is a topological invariant, 146
of a plane curve, 147
total geodesic curvature, 141
total Pontrjagin class, 226
total space, 242
of a vector bundle, 49
trace
derivative of, 215
of a bilinear form, 209
trace polynomial, 213, 215, 306, 310
transition functions, 245
transitive action on a fiber, 244
transposition matrix, 311
triangle
sum of angles, 144
trivial line bundle, 235
trivialization, 49, 72
trivializing open cover, 50
trivializing open set, 49

Umlaufsatz, 147
unit-speed polygon, 142
universal mapping property for bilinear maps, 154
universal mapping property
for alternating k-linear maps, 166
for bilinear maps, 153
of the tensor product, 153
vanishing
of characteristic classes, 223
vector bundle
associated to a representation, 275
vector bundle, 49
base space, 49
holomorphic, 238
isomorphism, 51
total space, 49
vector field, 296
along a curve, 25
along a submanifold, 26
left-invariant, 119
on a submanifold, 26
parallel, 110
vector subbundle, 174
vector-valued forms
product, 188
vector-valued k-covector, 186
vector-valued differential forms, 186
vector-valued form, 186, 187
directional derivative, 190
pullback, 193
velocity vector field, 25
vertical component, 254
of a tangent vector, 256
vertical subbundle, 251
vertical tangent space, 250
vertical tangent vector, 250
volume form
of a smooth hypersurface, 137
of a sphere, 135
of a sphere in spherical coordinates, 135
of an oriented Riemannian manifold, 133
on a circle, 134
on $\mathbb{H}^{2}, 133$
on $\mathbb{R}^{2}, 133$
on the boundary, 133
wedge product, 164,298
is anticommutative, 165
properties, 164
under a change of frame, 132
wedge product formula, 172
Weingarten map, 30
Whitney product formula, 226

Photo by Bachrach

Loring W. Tu was born in Taipei, Taiwan, and grew up in Taiwan, Canada, and the United States. He attended McGill University and Princeton University as an undergraduate, and obtained his Ph.D. from Harvard University under the supervision of Phillip A. Griffiths. He has taught at the University of Michigan, Ann Arbor, and at Johns Hopkins University, and is currently Professor of Mathematics at Tufts University in Massachusetts.

An algebraic geometer by training, he has done research at the interface of algebraic geometry, topology, and differential geometry, including Hodge theory, degeneracy loci, moduli spaces of vector bundles, and equivariant cohomology. He is the coauthor with Raoul Bott of Differential Forms in Algebraic Topology and the author of An Introduction to Manifolds.

[^0]: ${ }^{1}$ The curvature of a space curve is always nonnegative, while the signed curvature of a plane curve could be negative. To distinguish the two for a space curve that happens to be a plane curve, one can use κ_{2} for the signed curvature. We will use the same notation κ for both, as it is clear from the context what is meant.

