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Preface

Differential geometry has a long and glorious history. As its name implies, it is the
study of geometry using differential calculus, and as such, it dates back to Newton
and Leibniz in the seventeenth century. But it was not until the nineteenth century,
with the work of Gauss on surfaces and Riemann on the curvature tensor, that dif-
ferential geometry flourished and its modern foundation was laid. Over the past one
hundred years, differential geometry has proven indispensable to an understanding
of the physical world, in Einstein’s general theory of relativity, in the theory of gravi-
tation, in gauge theory, and now in string theory. Differential geometry is also useful
in topology, several complex variables, algebraic geometry, complex manifolds, and
dynamical systems, among other fields. It has even found applications to group the-
ory as in Gromov’s work and to probability theory as in Diaconis’s work. It is not
too far-fetched to argue that differential geometry should be in every mathematician’s
arsenal.

The basic objects in differential geometry are manifolds endowed with a metric,
which is essentially a way of measuring the length of vectors. A metric gives rise
to notions of distance, angle, area, volume, curvature, straightness, and geodesics.
It is the presence of a metric that distinguishes geometry from topology. However,
another concept that might contest the primacy of a metric in differential geometry
is that of a connection. A connection in a vector bundle may be thought of as a
way of differentiating sections of the vector bundle. A metric determines a unique
connection called a Riemannian connection with certain desirable properties. While
a connection is not as intuitive as a metric, it already gives rise to curvature and
geodesics. With this, the connection can also lay claim to be a fundamental notion
of differential geometry.

Indeed, in 1989, the great geometer S. S. Chern wrote as the editor of a volume
on global differential geometry [5], “The Editor is convinced that the notion of a
connection in a vector bundle will soon find its way into a class on advanced calculus,
as it is a fundamental notion and its applications are wide-spread.”

In 1977, the Nobel Prize-winning physicist C. N. Yang wrote in [23], “Gauge
fields are deeply related to some profoundly beautiful ideas of contemporary
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mathematics, ideas that are the driving forces of part of the mathematics of the last
40 years, . . . , the theory of fiber bundles.” Convinced that gauge fields are related to
connections on fiber bundles, he tried to learn the fiber-bundle theory from several
mathematical classics on the subject, but “learned nothing. The language of modern
mathematics is too cold and abstract for a physicist” [24, p. 73].

While the definition and formal properties of a connection on a principal bundle
can be given in a few pages, it is difficult to understand its meaning without knowing
how it came into being. The present book is an introduction to differential geometry
that follows the historical development of the concepts of connection and curva-
ture, with the goal of explaining the Chern–Weil theory of characteristic classes on
a principal bundle. The goal, once fixed, dictates the choice of topics. Starting with
directional derivatives in a Euclidean space, we introduce and successively general-
ize connections and curvature from a tangent bundle to a vector bundle and finally to
a principal bundle. Along the way, the narrative provides a panorama of some of the
high points in the history of differential geometry, for example, Gauss’ Theorema
Egregium and the Gauss–Bonnet theorem.

Initially, the prerequisites are minimal; a passing acquaintance with manifolds
suffices. Starting with Section 11, it becomes necessary to understand and be able to
manipulate differential forms. Beyond Section 22, a knowledge of de Rham coho-
mology is required. All of this is contained in my book An Introduction to Manifolds
[21] and can be learned in one semester. It is my fervent hope that the present book
will be accessible to physicists as well as mathematicians. For the benefit of the
reader and to establish common notations, we recall in Appendix A the basics of
manifold theory. In an attempt to make the exposition more self-contained, I have
also included sections on algebraic constructions such as the tensor product and the
exterior power.

In two decades of teaching from this manuscript, I have generally been able to
cover the first twenty-five sections in one semester, assuming a one-semester course
on manifolds as the prerequisite. By judiciously leaving some of the sections as
independent reading material, for example, Sections 9, 15, and 26, I have been able
to cover the first thirty sections in one semester.

Every book reflects the biases and interests of its author. This book is no excep-
tion. For a different perspective, the reader may find it profitable to consult other
books. After having read this one, it should be easier to read the others. There are
many good books on differential geometry, each with its particular emphasis. Some
of the ones I have liked include Boothby [1], Conlon [6], do Carmo [7], Kobayashi
and Nomizu [12], Lee [14], Millman and Parker [16], Spivak [19], and Taubes [20].
For applications to physics, see Frankel [9].

As a student, I attended many lectures of Phillip A. Griffiths and Raoul Bott
on algebraic and differential geometry. It is a pleasure to acknowledge their influ-
ence. I want to thank Andreas Arvanitoyeorgos, Jeffrey D. Carlson, Benoit Charbon-
neau, Hanci Chi, Brendan Foley, George Leger, Shibo Liu, Ishan Mata, Steven Scott,
and Huaiyu Zhang for their careful proofreading, useful comments, and errata lists.
Jeffrey D. Carlson in particular should be singled out for the many excellent pieces
of advice he has given me over the years. I also want to thank Bruce Boghosian for
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helping me with Mathematica and for preparing the figure of the Frenet–Serret frame
(Figure 2.5). Finally, I am grateful to the Max Planck Institute for Mathematics in
Bonn, National Taiwan University, and the National Center for Theoretical Sciences
in Taipei for hosting me during the preparation of this manuscript.

Medford, MA, USA Loring W. Tu
April 2017
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Chapter 1

Curvature and Vector Fields

By a manifold, we will always mean a smooth manifold. To understand this book, it
is helpful to have had some prior exposure to the theory of manifolds. The reference
[21] contains all the background needed. For the benefit of the reader, we review in
Appendix A, mostly without proofs, some of the definitions and basic properties of
manifolds.

Bernhard Riemann

(1826–1866)

Appendix A concerns smooth maps, differentials,
vector fields, and differential forms on a manifold.
These are part of the differential topology of mani-
folds. The focus of this book is instead on the dif-
ferential geometry of manifolds. Now a manifold
will be endowed with an additional structure called
a Riemannian metric, which gives a way of mea-
suring length. In differential geometry, the notions
of length, distance, angles, area, and volume make
sense, whereas in differential topology, since a mani-
fold can be stretched and still be diffeomorphic to the
original, these concepts obviously do not make sense.

Some of the central problems in differential ge-
ometry originate in everyday life. Consider the prob-
lem in cartography of representing the surface of the
earth on a flat piece of paper. A good map should
show accurately distances between any two points. Experience suggests that this is
not possible on a large scale. We are all familiar with the Mercator projection which
vastly distorts countries near the north and south poles. On a small scale there are
fairly good maps, but are they merely approximations or can there be truly accurate
maps in a mathematical sense? In other words, is there a distance-preserving bijec-
tion from an open subset of the sphere to some open subset of the plane? Such a map
is an isometry.

Isometry is also related to a problem in industrial design. Certain shapes such as
circular cylinders and cones are easy to manufacture because they can be obtained

© Springer International Publishing AG 2017
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2 §1 Riemannian Manifolds

from a flat sheet by bending. If we take a sheet of paper and bend it in various ways,
we obtain infinitely many surfaces in space, and yet none of them appear to be a
portion of a sphere or an ellipsoid. Which shapes can be obtained from one another
by bending?

In 1827 Carl Friedrich Gauss laid the foundation for the differential geometry
of surfaces in his work Disquisitiones generales circa superficies curvas (General
investigation of curved surfaces). One of his great achievements was the proof of
the invariance of Gaussian curvature under distance-preserving maps. This result
is known as Gauss’s Theorema Egregium, which means “remarkable theorem” in
Latin. By the Theorema Egregium, one can use the Gaussian curvature to distin-
guish non-isometric surfaces. In the first eight sections of this book, our goal is to
introduce enough basic constructions of differential geometry to prove the Theorema
Egregium.

§1 Riemannian Manifolds

A Riemannian metric is essentially a smoothly varying inner product on the tangent
space at each point of a manifold. In this section we recall some generalities about
an inner product on a vector space and by means of a partition of unity argument,
prove the existence of a Riemannian metric on any manifold.

1.1 Inner Products on a Vector Space

A point u in R
3 will denote either an ordered triple (u1,u2,u3) of real numbers or a

column vector
⎡

⎣
u1

u2

u3

⎤

⎦ .

The Euclidean inner product, or the dot product, on R
3 is defined by

〈u,v〉=
3

∑
i=1

uivi.

In terms of this, one can define the length of a vector

‖v‖=
√

〈v,v〉, (1.1)

the angle θ between two nonzero vectors (Figure 1.1)

cosθ =
〈u,v〉
‖u‖‖v‖ , 0≤ θ ≤ π, (1.2)

and the arc length of a parametrized curve c(t) in R3, a≤ t ≤ b:

s=
∫ b

a
‖c′(t)‖dt.
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θ u

v

Fig. 1.1. The angle between two vectors.

Definition 1.1. An inner product on a real vector space V is a positive-definite,
symmetric, bilinear form 〈 , 〉 : V ×V → R. This means that for u,v,w ∈ V and
a,b ∈ R,

(i) (positive-definiteness) 〈v,v〉 ≥ 0; the equality holds if and only if v= 0.
(ii) (symmetry) 〈u,v〉= 〈v,u〉.
(iii) (bilinearity) 〈au+bv,w〉= a〈u,w〉+b〈v,w〉.

As stated, condition (iii) is linearity in only the first argument. However, by the
symmetry property (ii), condition (iii) implies linearity in the second argument as
well.

Proposition 1.2 (Restriction of an inner product to a subspace). Let 〈 , 〉 be an
inner product on a vector space V . If W is a subspace of V , then the restriction

〈 , 〉W := 〈 ,〉|W×W : W ×W → R

is an inner product on W.

Proof. Problem 1.3. ��
Proposition 1.3 (Nonnegative linear combination of inner products). Let 〈 , 〉i,
i = 1, . . . ,r, be inner products on a vector V and let a1, . . . ,ar be nonnegative real
numbers with at least one ai > 0. Then the linear combination 〈 , 〉 := ∑ai〈 , 〉i is
again an inner product on V .

Proof. Problem 1.4. ��

1.2 Representations of Inner Products by Symmetric Matrices

Let e1, . . . ,en be a basis for a vector space V . Relative to this basis we can represent
vectors in V as column vectors:

∑xiei ←→ x=

⎡

⎢
⎣

x1

...
xn

⎤

⎥
⎦ , ∑yiei ←→ y=

⎡

⎢
⎣

y1

...
yn

⎤

⎥
⎦ .

By bilinearity, an inner product on V is determined completely by its values on a set
of basis vectors. Let A be the n×n matrix whose entries are

ai j = 〈ei,e j〉.
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By the symmetry of the inner product, A is a symmetric matrix. In terms of column
vectors,

〈
∑xiei,∑y je j

〉
=∑ai jx

iy j = xTAy.

Definition 1.4. An n×n symmetric matrix A is said to be positive-definite if

(i) xTAx≥ 0 for all x in Rn, and
(ii) equality holds if and only if x= 0.

Thus, once a basis on V is chosen, an inner product on V determines a positive-
definite symmetric matrix.

Conversely, if A is an n× n positive-definite symmetric matrix and {e1, . . . ,en}
is a basis for V , then

〈
∑xiei,∑yiei

〉
=∑ai jx

iy j = xTAy

defines an inner product on V . (Problem 1.1.)
It follows that there is a one-to-one correspondence

{
inner products on a vector
space V of dimension n

}

←→
{
n×n positive-definite
symmetric matrices

}

.

The dual space V∨ of a vector space V is by definition Hom(V,R), the space of
all linear maps from V to R. Let α1, . . . ,αn be the basis for V∨ dual to the basis
e1, . . . ,en for V . If x= ∑xiei ∈V , then α i(x) = xi. Thus, with x= ∑xiei, y= ∑y je j,
and 〈ei,e j〉= ai j, one has

〈x,y〉=∑ai jx
iy j =∑ai jα i(x)α j(y)

=∑ai j(α i⊗α j)(x,y).

So in terms of the tensor product, an inner product 〈 , 〉 on V may be written as

〈 , 〉=∑ai jα i⊗α j,

where [ai j] is an n×n positive-definite symmetric matrix.

1.3 Riemannian Metrics

Definition 1.5. A Riemannian metric on a manifold M is the assignment to each
point p in M of an inner product 〈 , 〉p on the tangent space TpM; moreover, the
assignment p �→ 〈 , 〉p is required to be C∞ in the following sense: if X and Y are
C∞ vector fields on M, then p �→ 〈Xp,Yp〉p is a C∞ function on M. A Riemannian
manifold is a pair (M,〈 , 〉) consisting of a manifold M together with a Riemannian
metric 〈 , 〉 on M.

The length of a tangent vector v∈ TpM and the angle between two tangent vectors
u,v ∈ TpM on a Riemannian manifold are defined by the same formulas (1.1) and
(1.2) as in R3.
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Example 1.6. Since all the tangent spaces TpRn for points p in R
n are canonically

isomorphic to R
n, the Euclidean inner product on R

n gives rise to a Riemannian
metric on R

n, called the Euclidean metric on R
n.

Example 1.7. Recall that a submanifold M of a manifold N is said to be regular if
locally it is defined by the vanishing of a set of coordinates [21, Section 9]. Thus,
locally a regular submanifold looks like a k-plane in R

n. By a surface M in R
3

we will mean a 2-dimensional regular submanifold of R3. At each point p in M,
the tangent space TpM is a vector subspace of TpR3. The Euclidean metric on R

3

restricts to a function
〈 , 〉M : TpM×TpM → R,

which is clearly positive-definite, symmetric, and bilinear. Thus a surface in R
3

inherits a Riemannian metric from the Euclidean metric on R
3.

Recall that if F : N →M is a C∞ map of smooth manifolds and p ∈ N is a point
in N, then the differential F∗ : TpN → Tf (p)M is the linear map of tangent spaces
given by

(F∗Xp)g= Xp(g ◦ F)

for any Xp ∈ TpN and any C∞ function g defined on a neighborhood of F(p) inM.

Definition 1.8. A C∞ map F : (N,〈 , 〉′) → (M,〈 , 〉) of Riemannian manifolds is
said to be metric-preserving if for all p ∈ N and tangent vectors u,v ∈ TpN,

〈u,v〉′p = 〈F∗u,F∗v〉F(p). (1.3)

An isometry is a metric-preserving diffeomorphism.

Example 1.9. If F : N →M is a diffeomorphism and 〈 , 〉 is a Riemannian metric on
M, then (1.3) defines an induced Riemannian metric 〈 , 〉′ on N.
Example 1.10. Let N and M be the unit circle in C. Define F : N → M, a 2-sheeted
covering space map, by F(z) = z2. Give M a Riemannian metric 〈 , 〉, for example,
the Euclidean metric as a subspace of R2, and define 〈 , 〉′ on N by

〈v,w〉′ = 〈F∗v,F∗w〉.
Then 〈 , 〉′ is a Riemannian metric on N. The map F : N → M is metric-preserving
but not an isometry because F is not a diffeomorphism.

Example 1.11. A torus in R
3 inherits the Euclidean metric from R

3. However, a
torus is also the quotient space of R2 by the group Z

2 acting as translations, or to
put it more plainly, the quotient space of a square with the opposite edges identi-
fied (see [21, §7] for quotient spaces). In this way, it inherits a Riemannian met-
ric from R

2. With these two Riemannian metrics, the torus becomes two distinct
Riemannian manifolds (Figure 1.2). We will show later that there is no isometry
between these two Riemannian manifolds with the same underlying torus.
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Fig. 1.2. Two Riemannian metrics on the torus.

1.4 Existence of a Riemannian Metric

A smooth manifold M is locally diffeomorphic to an open subset of a Euclidean
space. The local diffeomorphism defines a Riemannian metric on a coordinate open
set (U,x1, . . . ,xn) by the same formula as for Rn. We will write ∂i for the coordinate
vector field ∂/∂xi. If X = ∑ai∂i and Y = ∑b j∂ j, then the formula

〈X ,Y 〉=∑aibi (1.4)

defines a Riemannian metric onU .
To construct a Riemannian metric onM one needs to piece together the Rieman-

nian metrics on the various coordinate open sets of an atlas. The standard tool for
this is the partition of unity, whose definition we recall now. A collection {Sα} of
subsets of a topological space S is said to be locally finite if every point p ∈ S has a
neighborhoodUp that intersects only finitely many of the subsets Sα . The support of
a function f : S→ R is the closure of the subset of S on which f �= 0:

supp f = cl{x ∈ S | f (x) �= 0}.

Suppose {Uα}α∈A is an open cover of a manifold M. A collection of nonnegative
C∞ functions

ρα : M → R, α ∈ A,

is called a C∞ partition of unity subordinate to {Uα} if

(i) suppρα ⊂Uα for all α ,
(ii) the collection of supports, {suppρα}α∈A, is locally finite,
(iii) ∑α∈Aρα = 1.

The local finiteness of the supports guarantees that every point p has a neighborhood
Up over which the sum in (iii) is a finite sum. (For the existence of a C∞ partition of
unity, see [21, Appendix C].)

Theorem 1.12. On every manifold M there is a Riemannian metric.

Proof. Let {(Uα ,φα)} be an atlas on M. Using the coordinates on Uα , we define
as in (1.4) a Riemannian metric 〈 , 〉α on Uα . Let {ρα} be a partition of unity sub-
ordinate to {Uα}. By the local finiteness of the collection {suppρα}, every point
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p has a neighborhood Up on which only finitely many of the ρα ’s are nonzero.
Thus, ∑ρα〈 , 〉α is a finite sum on Up. By Proposition 1.3, at each point p the
sum ∑ρα〈 , 〉α is an inner product on TpM.

To show that ∑ρα〈 , 〉α is C∞, let X and Y be C∞ vector fields on M. Since
∑ρα〈X ,Y 〉α is a finite sum of C∞ functions on Up, it is C∞ on Up. Since p was
arbitrary, ∑ρα〈X ,Y 〉α isC∞ on M. ��

Problems

1.1.∗ Positive-definite symmetric matrix
Show that if A is an n×n positive-definite symmetric matrix and {e1, . . . ,en} is a basis for V ,
then

〈

∑xiei,∑yiei
〉
=∑ai jx

iy j = xTAy

defines an inner product on V .

1.2.∗ Inner product
LetV be an inner product space with inner product 〈 , 〉. For u,v inV , prove that 〈u,w〉= 〈v,w〉
for all w in V if and only if u= v.

1.3. Restriction of an inner product to a subspace
Prove Proposition 1.2.

1.4.∗ Positive linear combination of inner products
Prove Proposition 1.3.

1.5.∗ Extending a vector to a vector field
Let M be a manifold. Show that for any tangent vector v ∈ TpM, there is a C∞ vector field X
on M such that Xp = v.

1.6.∗ Equality of vector fields
Suppose (M,〈 , 〉) is a Riemannian manifold. Show that two C∞ vector fields X ,Y ∈ X(M)
are equal if and only if 〈X ,Z〉= 〈Y,Z〉 for all C∞ vector fields Z ∈ X(M).

1.7.∗ Upper half-plane
Let

H
2 = {(x,y) ∈ R

2 | y> 0}.
At each point p= (x,y) ∈H

2, define

〈 , 〉H2 : TpH
2×TpH

2 → R

by

〈u,v〉H2 =
1
y2

〈u,v〉,

where 〈 , 〉 is the usual Euclidean inner product. Show that 〈 , 〉H2 is a Riemannian metric
on H

2.
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1.8. Product rule in R
n

If f ,g : R→ R
n are differentiable vector-valued functions, show that 〈 f ,g〉 : R→ R is differ-

entiable and
〈 f ,g〉′ = 〈 f ′,g〉+ 〈 f ,g′〉.

(Here f ′ means d f/dt.)

1.9. Product rule in an inner product space
An inner product space (V,〈 , 〉) is automatically a normed vector space, with norm
‖v‖=√〈v,v〉. The derivative of a function f : R→V is defined to be

f ′(t) = lim
h→0

f (t+h)− f (t)
h

,

provided that the limit exists, where the limit is taken with respect to the norm ‖ ‖. If f ,g :
R→V are differentiable functions, show that 〈 f ,g〉 : R→ R is differentiable and

〈 f ,g〉′ = 〈 f ′,g〉+ 〈 f ,g′〉.
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§2 Curves

In common usage a curve in a manifold M can mean two things. Either it is a
parametrized curve, i.e., a smooth map c : [a,b]→M, or it is the set of points in M
that is the image of this map. By definition, a smooth map on a closed interval is a
smooth map on some open set containing the interval. For us, a curve will always
mean a parametrized curve. When the occasion calls for it, we will refer to the image
of a parametrized curve as a geometric curve.

A regular curve is a parametrized curve whose velocity is never zero. A regular
curve can be reparametrized by arc length. In this section we define the signed
curvature of a regular plane curve in terms of the second derivative of its arc length
parametrization.

2.1 Regular Curves

Definition 2.1. A parametrized curve c : [a,b] → M is regular if its velocity c′(t)
is never zero for all t in the domain [a,b]. In other words, a regular curve in M is an
immersion: [a,b]→M.

Example 2.2. The curve c : [−1,1]→ R
2,

c(t) = (t3, t2),

is not regular at t = 0 (Figure 2.1). This example shows that the image of a smooth
nonregular curve need not be smooth.

−1 0 1

1

2

1 2−1−2 x

y

Fig. 2.1. A nonregular curve.

If t = t(u) is a diffeomorphism of one closed interval with another, then β (u) :=
c(t(u)) is a reparametrization of the curve c(t). The same geometric curve can have
many different parametrizations. Among the various reparametrizations of a regular
curve, the most important is the arc length parametrization.
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2.2 Arc Length Parametrization

As in calculus, we define the speed of a curve c : [a,b] → M in a Riemannian man-
ifold M to be the magnitude ‖c′(t)‖ of its velocity c′(t), and the arc length of the
curve to be

�=
∫ b

a
‖c′(u)‖du.

For each t ∈ [a,b], let s(t) be the arc length of the curve c restricted to [a, t]:

s(t) =
∫ t

a
‖c′(u)‖du.

The function s : [a,b] → [0, �] is the arc length function of the curve c. By the fun-
damental theorem of calculus, the derivative of s with respect to t is s′(t) = ‖c′(t)‖,
the speed of c.

Proposition 2.3. The arc length function s : [a,b] → [0, �] of a regular curve
c : [a,b]→M has a C∞ inverse.

Proof. Because c(t) is regular, s′(t) = ‖c′(t)‖ is never zero. Then s′(t) > 0 for
all t. This implies that s(t) is a monotonically increasing function, and so has an
inverse t(s). By the inverse function theorem, t is aC∞ function of s. ��

Thus, given a regular curve c(t), we can write t as aC∞ function of the arc length
s to get the arc length parametrization γ(s) = c

(
t(s)
)
.

Proposition 2.4. A curve is parametrized by arc length if and only if it has unit speed
and its parameter starts at 0.

Proof. As noted above, the speed of a curve c : [a,b] → M can be computed as the
rate of change of the arc length s with respect to t ∈ [a,b]:

‖c′(t)‖= ds
dt

.

Let γ(s) be the arc length reparametrization of c. Since s(a) = 0, the parameter s
starts at 0. By the chain rule, the velocity of γ is

γ ′(s) = c′(t(s))t ′(s).

Hence, the speed of γ is

‖γ ′(s)‖= ‖c′(t(s))‖ |t ′(s)|= ds
dt

∣
∣
∣
∣
dt
ds

∣
∣
∣
∣=

∣
∣
∣
∣
ds
dt

dt
ds

∣
∣
∣
∣= 1.

Conversely, if a curve c(t) has unit speed, then its arc length is

s(t) =
∫ t

a
‖c′(u)‖du=

∫ t

a
1du= t−a.

If a = 0, then s = t. So a unit-speed curve starting at t = 0 is parametrized by arc
length. ��
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Example 2.5. The curve c : [0,2π]→ R
2,

c(t) = (acos t,asin t), a> 0,

is regular. Its image is the circle of radius a centered at the origin. Its arc length
function is

s=
∫ t

0
‖c′(u)‖du=

∫ t

0

∥
∥
∥
∥

[−asinu
acosu

]∥
∥
∥
∥ du

=
∫ t

0
adu= at.

Hence, t = s/a and the arc length parametrization is

γ(s) =
(
acos

s
a
,asin

s
a

)
.

2.3 Signed Curvature of a Plane Curve

We all have an intuitive idea of what curvature means. For example, a small circle
appears to curve more than a large circle. In this section, we will quantify the notion
of curvature for a curve in the plane R2.

Our plane curve γ : [0, �]→R
2 will be parametrized by the arc length s. Then the

velocity vector T (s) = γ ′(s) has unit length and is tangent to the curve at the point
p= γ(s). A reasonable measure of curvature at p is the magnitude of the derivative

T ′(s) =
dT
ds

(s) = γ ′′(s),

since the faster T changes, the more the curve bends. However, in order to distinguish
the directions in which the curve can bend, we will define a curvature with a sign.

There are two unit vectors in the plane perpendicular to T (s) at p. We can choose
either one to be n(s), but usually n(s) is chosen so that the pair (T (s),n(s)) is ori-
ented positively in the plane, i.e., counterclockwise.

Denote by 〈 , 〉 the Euclidean inner product on R
2. Since T has unit length,

〈T,T 〉= 1.

Using the product rule (Problem 1.8) to differentiate this equation with respect to s
gives

〈T ′,T 〉+ 〈T,T ′〉= 0,

or
2〈T ′,T 〉= 0.

Thus, T ′ is perpendicular to T and so it must be a multiple of n. The scalar κ such
that

T ′ = κn
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is called the signed curvature, or simply the curvature, of the plane curve at
p= γ(s). We can also write

κ = 〈T ′,n〉= 〈γ ′′,n〉.
The sign of the curvature depends on the choice of n; it indicates whether the curve
is bending towards n or away from n (Figure 2.2).

κ < 0
κ > 0

Tn

Fig. 2.2. The sign of the curvature κ .

Example 2.6 (The circle).By Example 2.5, the circle of radius a centered at the origin
has arc length parametrization

γ(s) =
(
acos

s
a
,asin

s
a

)
, 0≤ s≤ 2πa.

The unit tangent vector to the curve is

T (s) = γ ′(s) =

⎡

⎢
⎣

−sin
s
a

cos
s
a

⎤

⎥
⎦ .

Its derivative is

T ′(s) = γ ′′(s) =

⎡

⎢
⎢
⎣

−1
a
cos

s
a

−1
a
sin

s
a

⎤

⎥
⎥
⎦ .

We choose the unit normal n so that the pair (T,n) is oriented counterclockwise.
This means n is obtained from T by multiplying by the rotation matrix

rot
(π
2

)
=

⎡

⎢
⎣

cos
π
2

−sin
π
2

sin
π
2

cos
π
2

⎤

⎥
⎦=

[
0 −1
1 0

]

.

Hence,

n=

[
0 −1
1 0

]

T =

⎡

⎢
⎣

−cos
s
a

−sin
s
a

⎤

⎥
⎦ .
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So T ′ = (1/a)n, which shows that the signed curvature κ(s) of a circle of radius a is
1/a, independent of s. This accords with the intuition that the larger the radius of a
circle, the smaller the curvature.

2.4 Orientation and Curvature

A curve whose endpoints are fixed has two possible arc length parametrizations,
depending on how the curve is oriented. If the arc length of the curve is �, then the
two parametrizations γ(s), γ̃(s) are related by

γ̃(s) = γ(�− s).

Differentiating with respect to the arc length s gives

T̃ (s) := γ̃ ′(s) =−γ ′(�− s) =−T (�− s) and γ̃ ′′(s) = γ ′′(�− s).

Rotating the tangent vector T̃ (s) by 90◦ amounts to multiplying T̃ (s) on the left
by the rotation matrix rot(π/2). Thus,

ñ(s) = rot
(π
2

)
T̃ (s) =− rot

(π
2

)
T (�− s) =−n(�− s).

It follows that the signed curvature of γ̃ at γ̃(s) = γ(�− s) is

κ̃(s) = 〈γ̃ ′′(s), ñ(s)〉= 〈γ ′′(�− s),−n(�− s)〉=−κ(�− s).

In summary, reversing the orientation of a plane curve reverses the sign of its signed
curvature at any point.

n

T

Counterclockwise circle Clockwise circle

T̃

ñ

Fig. 2.3. Reversing the orientation of a curve changes the sign of the curvature at a point.

Example 2.7. The counterclockwise circle

γ(s) = (acoss/a,asins/a), 0≤ s≤ 2πa,

has signed curvature 1/a, while the clockwise circle

γ̃(s) = γ(−s), 0≤ s≤ 2πa,

has signed curvature −1/a. Geometrically, the unit tangent vector T of the counter-
clockwise circle turns towards the normal vector n, while the unit tangent vector T̃
of the clockwise circle turns away from the normal vector ñ (Figure 2.3).
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Problems

2.1.∗ Signed curvature
Let T (s) be the unit tangent vector field on a plane curve γ(s) parametrized by arc length.
Write

T (s) =

[
cosθ(s)
sinθ(s)

]

,

where θ(s) is the angle of T (s) with respect to the positive horizontal axis. Show that the
signed curvature κ is the derivative dθ/ds.

2.2. Curvature of a unit-speed plane curve
Suppose γ(s) = (x(s),y(s)) is a unit-speed curve in the plane. Write x′ = x′(s) = dx/ds and
y′ = y′(s) = dy/ds.

(a) Show that the signed curvature κ of γ(s) is −x′′/y′ when y′ �= 0 and y′′/x′ when x′ �= 0.
(b) For a unit-speed curve, θ = tan−1(y′/x′). By calculating dθ/ds, show that the signed

curvature is κ = x′y′′ − x′′y′. (If x′ = 0, then because the curve is unit speed, y′ �= 0 and
θ = tan−1(+∞) = π/2.)

2.3. Curvature of a regular plane curve
In physics literature, it is customary to denote the derivative with respect to time by a dot,
e.g., ẋ = dx/dt, and the derivative with respect to distance by a prime, e.g., x′ = dx/ds. We
will sometimes follow this convention. Let c(t) = (x(t),y(t)) be a regular plane curve. Using
Problem 2.1 and the chain rule dθ/ds = (dθ/dt)/(ds/dt), show that the signed curvature of
the curve c(t) is

κ =
ẋÿ− ẍẏ

(ẋ2+ ẏ2)3/2
,

where ẋ= dx/dt and ẍ= d2x/dt2.

2.4. Curvature of a graph in the plane
The graph of a C∞ function y= f (x) is the set

{(x, f (x)) | x ∈ R}
in the plane. Showed that the signed curvature of this graph at

(
x, f (x)

)
is

κ =
f ′′(x)

(
1+
(
f ′(x)

))3/2
.

2.5. Curvature of an ellipse
The ellipse with equation x2/a2+y2/b2 = 1 in the (x,y)-plane (Figure 2.4) can be parametrized
by

x= acos t, y= bsin t, 0≤ t ≤ 2π.
Find the curvature of the ellipse at an arbitrary point (x,y).

2.6. Arc length of a cuspidal cubic
The cuspidal cubic x2 = y3 (Figure 2.4) can be parametrized by (t3, t2). Find its arc length
from t = 0 to t = a.
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1

−1

1 2−1−2
x

y

x2

4
+y2 = 1

1

1−1

x2 = y3

x

y

Fig. 2.4. An ellipse and a cuspidal cubic

2.7.∗ Curvature of a space curve
Let I be a closed interval inR. If γ : I→R

3 is a regular space curve parametrized by arc length,
its curvature κ at γ(s) is defined to be ‖γ ′′(s)‖.1 Consider the helix c(t) = (acos t,asint,bt)
in space.

(a) Reparametrize c by arc length: γ(s) = c(t(s)).
(b) Compute the curvature of the helix at γ(s).

2.8. Curvature of a line in space
Show that the curvature of a line in space is zero at every point.

2.9. The Frenet–Serret formulas
Let γ : I →R

3 be a regular space curve parametrized by arc length. Then T = γ ′(s) is tangent
to γ at γ(s) and has unit length. Assume that γ ′′(s) �= 0.

(a) Prove that γ ′′(s) is normal to T .
(b) Let N be the unit vector γ ′′(s)/‖γ ′′(s)‖. Then T ′ = κN, where κ is the curvature of the

space curve.
(c) The unit vector B = T ×N is called the binormal of γ at γ(s). The three vectors T,N,B

form an orthonormal basis for R3 at γ(s), called the Frenet–Serret frame (Figure 2.5).
Prove that

N′ =−κT + τB
for some real number τ , which is called the torsion of the unit-speed curve γ .

(d) Prove that B′ =−τN.
The set of equations

T ′ = κN
N′ =−κT + τB
B′ = − τN

1The curvature of a space curve is always nonnegative, while the signed curvature of a
plane curve could be negative. To distinguish the two for a space curve that happens to be
a plane curve, one can use κ2 for the signed curvature. We will use the same notation κ for
both, as it is clear from the context what is meant.
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Fig. 2.5. A Frenet–Serret frame.

is called the Frenet–Serret formulas. In matrix notation,

⎡

⎣
T
N
B

⎤

⎦

′

=

⎡

⎣
κ

−κ τ
−τ

⎤

⎦

⎡

⎣
T
N
B

⎤

⎦ .

Jean Frédéric Frenet (1816–1900) and Joseph Alfred Serret (1819–1885)
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§3 Surfaces in Space

There are several ways to generalize the curvature of a plane curve to a surface. One
way, following Euler (1760), is to consider the curvature of all the normal sections of
the surface at a point. A second way is to study the derivative of a unit normal vector
field on the surface. In this section we use Euler’s method to define several measure-
ments of curvature at a point on a surface. We then state the two theorems, Gauss’s
Theorema Egregium and the Gauss–Bonnet theorem, that will serve as guideposts in
our study of differential geometry. We will take up the relationship between curva-
ture and the derivative of a normal vector field in Section 5.

3.1 Principal, Mean, and Gaussian Curvatures

Recall that a regular submanifold of a manifold M̃ is a subset of the manifold M̃
locally defined by the vanishing of coordinate functions (see [21, Section 9] for a
discussion of regular submanifolds). By a surface in R

3, we mean a 2-dimensional
regular submanifold ofR3. Let p be a point on a surfaceM inR3. A normal vector to
M at p is a vector Np ∈ TpR3 that is orthogonal to the tangent plane TpM. A normal
vector field onM is a function N that assigns to each p ∈M a normal vector Np at p.
If N is a normal vector field on M, then at each point p ∈M, we can write

Np =
3

∑
i=1

ai(p)
∂
∂xi

∣
∣
∣
∣
p
.

The normal vector field N onM is said to beC∞ if the coefficient functions a1,a2,a3

are C∞ functions on M.

p
M

P Np

Xp

Fig. 3.1. Normal section at p.

Let N be a C∞ unit normal vector field on a neighborhood of p in M. Denote by
Np the unit normal vector at p. Under the canonical identification of TpR3 with R

3,
every plane P through Np slices the surface M along a plane curve P∩M through p.
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By the transversality theorem from differential topology, the intersection P∩M, be-
ing transversal, is smooth (see Problem 3.2). We call such a plane curve a normal
section of the surface through p (Figure 3.1). Assuming that the normal sections
have C∞ parametrizations, which we will show later, we can compute the curvature
of a normal section with respect to Np. The collection of the curvatures at p of all
the normal sections gives a fairly good picture of how the surface curves at p.

Leonhard Euler

(1707–1783)

(Portrait by Jakob Emanuel
Handmann, 1753)

More precisely, each unit tangent vector Xp to
the surface M at p determines together with Np a
plane that slices M along a normal section. More-
over, the unit tangent vector Xp determines an ori-
entation of the normal section. Let γ(s) be the arc
length parametrization of this normal section with ini-
tial point γ(0) = p and initial vector γ ′(0) = Xp. Note
that γ(s) is completely determined by the unit tangent
vector Xp. Define the normal curvature of the normal
section γ(s) at p with respect to Np by

κ(Xp) = 〈γ ′′(0),Np〉. (3.1)

Of course, this Np is not always the same as the n(0)
in Section 2, which was obtained by rotating the unit
tangent vector 90◦ counterclockwise in R

2; an arbi-
trary plane in R

3 does not have a preferred orienta-
tion.

Since the set of all unit vectors in TpM is a circle,
we have a function

κ : S1 → R.

Clearly, κ(−Xp) = κ(Xp) for Xp ∈ S1, because replacing a unit tangent vector by
its negative simply reverses the orientation of the normal section, which reverses the
sign of the first derivative γ ′(s) but does not change the sign of the second derivative
γ ′′(s).

The maximum and minimum values κ1,κ2 of the function κ are the principal
curvatures of the surface at p. Their average (κ1+κ2)/2 is the mean curvature H,
and their product κ1κ2 the Gaussian curvature K. A unit direction Xp ∈ TpM along
which a principal curvature occurs is called a principal direction. Note that if Xp is
a principal direction, then so is −Xp, since κ(−Xp) = κ(Xp). If κ1 and κ2 are equal,
then every unit vector in TpM is a principal direction.

Remark 3.1. Using −Np instead of Np reverses the signs of all the normal curvatures
at p, as one sees from (3.1). This will change the sign of the mean curvature, but it
leaves invariant the Gaussian curvature. Thus, the Gaussian curvature K is indepen-
dent of the choice of the unit normal vector field N.

Example 3.2 (Sphere of radius a). Every normal section of a sphere of radius a is
a circle of radius a. With respect to the unit inward-pointing unit normal vector
field, the principal curvatures are both 1/a (see Example 2.6), the mean curvature is
H = 1/a and the Gaussian curvature is K = 1/a2.
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Example 3.3. For a plane M in R
3 the principal curvatures, mean curvature, and

Gaussian curvature are all zero.

Example 3.4. For a cylinder of radius a with a unit inward normal, it appears that the
principal curvatures are 0 and 1/a, corresponding to normal sections that are a line
and a circle, respectively (Figure 3.2). We will establish this rigorously in Section 5.
Hence, the mean curvature is 1/2a and the Gaussian curvature is 0. If we use the
unit outward normal on the cylinder, then the principal curvatures are 0 and −1/a,
and the mean curvature is −1/2a, but the Gaussian curvature is still 0.

p

κ2 = 0

κ1 = 1
a

Fig. 3.2. Principal curvatures of a cylinder.

3.2 Gauss’s Theorema Egregium

Carl Friedrich Gauss

(1777–1855)

(Artist: Gottlieb Biermann,
1887)

Since the plane is locally isometric to a cylinder, Ex-
amples 3.3 and 3.4 show that the principal curvatures
κ1,κ2 and the mean curvature H are not isometric in-
variants. It is an astonishing fact that although neither
κ1 nor κ2 is invariant under isometries, their product,
the Gaussian curvature K, is. This is the content of
the Theorema Egregium of Gauss.

Another way to appreciate the significance of this
theorem is to think in terms of isometric embeddings.
We may think of portions of the plane and the cylin-
der as different isometric embeddings of the same
planar region. The examples show that the princi-
pal curvatures κ1,κ2 and the mean curvature depend
on the embedding. The product κ1κ2 would a priori
seem to depend on the embedding, but in fact does
not. In the next few sections we will develop the ma-
chinery to prove the Theorema Egregium.
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3.3 The Gauss–Bonnet Theorem

For an oriented surfaceM inR3 the Gaussian curvature K is a function on the surface.
If the surface is compact, we can integrate K to obtain a single number

∫
MKdS. Here

the integral is the usual surface integral from vector calculus.

Example 3.5. For the sphereM of radius a (Figure 3.3), the integral of the Gaussian
curvature is

∫

M
KdS=

∫

M

1
a2

dS=
1
a2

∫

M
1dS

=
1
a2

(surface area of M)

=
1
a2

4πa2 = 4π.

a

Fig. 3.3. Sphere of radius a.

Notice that although the Gaussian curvature of a sphere depends on the radius,
in the integration the radius cancels out and the final answer is independent of the
radius.

Pierre Ossian Bonnet

(1819–1892)

Example 3.5 is a special case of the Gauss–Bonnet
theorem, which for a compact oriented surfaceM inR3

asserts that
∫

M
KdS= 2πχ(M), (3.2)

where χ(M) denotes the Euler characteristic. Equa-
tion (3.2) is a rather unexpected formula, for on the
left-hand side the Gaussian curvature K depends on a
notion of distance, but the right-hand side is a topolog-
ical invariant, independent of any Riemannian metric.
Somehow, in the integration process, all the metric in-
formation gets canceled out, leaving us with a topolog-
ical invariant. For the 2-sphere, the Euler characteristic
is 2 and the theorem checks with the computation in
Example 3.5.
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In due course we will study the theory of characteristic classes for vector bundles,
a vast generalization of the Gauss–Bonnet theorem.

Problems

3.1. Principal curvatures in terms of K and H
Compute the principal curvatures κ1,κ2 at a point of an oriented surface in R

3 in terms of its
Gaussian curvature K and mean curvature H.

3.2. Normal section at a point
SupposeM is a smooth surface in R3, p a point inM, and N a smooth unit normal vector field
on a neighborhood of p in M. Let P be the plane spanned by a unit tangent vector Xp ∈ TpM
and the unit normal vector Np. Denote by C := P∩M the normal section of the surface M at
p cut out by the plane P.

(a) The plane P is the zero set of some linear function f (x,y,z). Let f̄ : M → R be the restric-
tion of f toM. Then the normal sectionC is precisely the level set f̄−1(0). Show that p is
a regular point of f̄ , i.e., that the differential f̄∗,p : TpM → T0R is surjective. (Hint: Which
map is f∗,p : R3 = TpR3 → Tf (p)R= R? What is its kernel?)

(b) Show that a normal section of M at p is a regular submanifold of dimension one in a
neighborhood of p. (Hint: Apply [21, Proposition 11.4] and the regular level set theorem
[21, Theorem 9.9].)

3.3. Regular submanifold of dimension one
Show that if a curve C in a smooth surface is a regular submanifold of dimension one in a
neighborhood of a point p ∈C, then C has a C∞ parametrization near p. (Hint: Relative to an
adapted chart (U,x1,x2) centered at p, the curveC is the x1-axis. AC∞ parametrization of the
x1-axis in the (x1,x2)-plane is (x1,x2) = (t,0).)
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§4 Directional Derivatives in Euclidean Space

The directional derivative is one way of differentiating vector fields on R
n with

respect to a tangent vector. In this section we extend the calculus definition of the
directional derivative of a function to the directional derivative of a vector field along
a submanifold of Rn.

4.1 Directional Derivatives in Euclidean Space

Suppose Xp = ∑ai∂/∂xi|p is a tangent vector at a point p = (p1, . . . , pn) in R
n and

f (x1, . . . ,xn) is a C∞ function in a neighborhood of p in R
n. To compute the direc-

tional derivative of f at p in the direction Xp, we first write down a set of parametric
equations for the line through p in the direction Xp:

xi = pi+ tai, i= 1, . . . ,n.

Let a= (a1, . . . ,an). Then the directional derivative DXp f is

DXp f = lim
t→0

f (p+ ta)− f (p)
t

=
d
dt

∣
∣
∣
∣
t=0

f (p+ ta) (4.1)

=∑ ∂ f
∂xi

∣
∣
∣
∣
p
· dx

i

dt

∣
∣
∣
∣
0
=∑ ∂ f

∂xi

∣
∣
∣
∣
p
·ai (by the chain rule)

=

(

∑ ai
∂
∂xi

∣
∣
∣
∣
p

)

f = Xp f .

In calculus, Xp is required to be a unit vector, but we will allow Xp to be an arbitrary
vector at p.

As a shorthand, we write ∂i for ∂/∂xi. The directional derivative at p of a C∞

vector field Y = ∑bi∂i = ∑bi ∂/∂xi on R
n in the direction Xp is defined to be

DXpY =∑(Xpb
i)
∂
∂xi

∣
∣
∣
∣
p
. (4.2)

This formula shows clearly that DXpY is R-linear in Xp.
Although (4.1) computes the directional derivative using the values of f along a

line through p, we can in fact use any curve c(t) with initial point p and initial vector
Xp (Figure 4.1), for

DXp f = Xp f = c′(0) f = c∗
(

d
dt

∣
∣
∣
∣
t=0

)

f =
d
dt

∣
∣
∣
∣
t=0

f (c(t)).
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p

Xp

c(t)

Fig. 4.1. Tangent vector at a point

Remark 4.1. Thus, for DXp f to be defined, it is not necessary that f be defined in an
open neighborhood of p. As long as f is defined along some curve starting at p with
initial velocity Xp, the directional derivative DXp f will make sense. A similar remark
applies to the directional derivative DXpY of a vector field Y .

When X is a C∞ vector field on R
n, not just a vector at p, we define the vector

field DXY on Rn by
(DXY )p = DXpY for all p ∈ R

n.

Equation (4.2) shows that if X and Y areC∞ vector fields on Rn, then so is DXY . Let
X(Rn) be the vector space of all C∞ vector fields on R

n. The directional derivative
in Rn gives a map

D : X(Rn)×X(Rn)→ X(Rn),

which we write as DXY instead of D(X ,Y ). Let F = C∞(Rn) be the ring of C∞

functions on R
n. Then X(Rn) is both a vector space over R and a module over F.

Proposition 4.2. For X ,Y ∈ X(Rn), the directional derivative DXY satisfies the fol-
lowing properties:

(i) DXY is F-linear in X and R-linear in Y ;
(ii) (Leibniz rule) if f is a C∞ function on R

n, then

DX ( fY ) = (X f )Y + fDXY.

Proof. (i) Let f be aC∞ function on R
n and p an arbitrary point of Rn. Then

(DfXY )p = Df (p)XpY

= f (p)DXpY (because DXpY is R-linear in Xp by (4.2))

= ( fDXY )p.

For Z ∈ X(Rn), we have

(DX+ZY )p = DXp+ZpY = DXpY +DZpY = (DXY +DZY )p.

This proves that DXY is F-linear in X . The R-linearity in Y is clear from (4.2).
(ii) Suppose Y = ∑bi∂i, where bi ∈C∞(Rn). Then

(DX ( fY ))p =∑Xp( f b
i) ∂i|p

=∑(Xp f )b
i(p) ∂i|p+∑ f (p)Xpb

i ∂i|p
= (Xp f )Yp+ f (p)DXpY

= ((X f )Y + fDXY )p. ��
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4.2 Other Properties of the Directional Derivative

Since the directional derivative D in Rn is an R-bilinear map

D : X(Rn)×X(Rn)→ X(Rn),

one can ask if it is symmetric, that is, for all X ,Y ∈X(Rn), is DXY =DYX? A simple
calculation using the standard frame shows that the answer is no; in fact, if [X ,Y ] is
the Lie bracket defined in (A.2), then

DXY −DYX = [X ,Y ].

The quantity
T (X ,Y ) = DXY −DYX− [X ,Y ]

turns out to be fundamental in differential geometry and is called the torsion of the
directional derivative D.

For each smooth vector field X ∈X(Rn), the directional derivativeDX : X(Rn)→
X(Rn) is an R-linear endomorphism. This gives rise to a map

X(Rn)→ EndR(X(R
n)),

X �→ DX .
(4.3)

The vector space X(Rn) of C∞ vector fields on R
n is a Lie algebra under the Lie

bracket of vector fields. For any vector space V , the endomorphism ring EndR(V ) of
endomorphisms of V is also a Lie algebra, with Lie bracket

[A,B] = A ◦ B−B ◦ A, A,B ∈ End(V ).

So the map in (4.3) is an R-linear map of Lie algebras. It is natural to ask if it is a
Lie algebra homomorphism, i.e., is

[DX ,DY ] = D[X ,Y ]?

The answer is yes for the directional derivative in R
n. A measure of the deviation

of the linear map X �→ DX from being a Lie algebra homomorphism is given by the
function

R(X ,Y ) = [DX ,DY ]−D[X ,Y ] = DXDY −DYDX −D[X ,Y ] ∈ EndR(X(M)),

called the curvature of D.
Finally, one might ask if the product rule holds for the Euclidean inner product:

DZ〈X ,Y 〉= 〈DZX ,Y 〉+ 〈X ,DZY 〉.
The answer is again yes. The following proposition summarizes the properties

of the directional derivative in R
n.

Proposition 4.3. Let D be the directional derivative in R
n and X ,Y,Z C∞ vector

fields on Rn. Then
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(i) (zero torsion) DXY −DYX− [X ,Y ] = 0,
(ii) (zero curvature) DXDYZ−DYDXZ−D[X ,Y ]Z = 0,
(iii) (compatibility with the metric) X〈Y,Z〉= 〈DXY,Z〉+ 〈Y,DXZ〉.
Proof. (i) Problem 4.2.
(ii) Let Z = ∑ci∂i ∈ X(Rn). Then

DXDYZ = DX
(
∑(Yci)∂i

)
=∑(XYci)∂i.

By symmetry,

DYDXZ =∑(YXci)∂i.

So

DXDYZ−DYDXZ =∑(XY −YX)ci∂i = D[X ,Y ]Z.

(iii) Let Y = ∑bi∂i and Z = ∑c j∂ j ∈ X(Rn). Then

X〈Y,Z〉= X(∑bici) =∑(Xbi)ci+∑bi(Xci),

= 〈DXY,Z〉+ 〈Y,DXZ〉. ��

If X and Y are smooth vector fields on a manifold M, then the Lie derivative
LXY is another way of differentiating Y with respect to X (for a discussion of the
Lie derivative, see [21, Section 20]). While the directional derivative DXY in R

n is
F-linear in X , the Lie derivative LXY is not, so the two concepts are not the same.
Indeed, since LXY = [X ,Y ], by Proposition 4.3(i), for vector fields on Rn,

LXY = DXY −DYX .

4.3 Vector Fields Along a Curve

Suppose c : [a,b]→M is a parametrized curve in a manifold M.

Definition 4.4. A vector field V along c : [a,b] → M is the assignment of a tangent
vectorV (t)∈ Tc(t)M to each t ∈ [a,b]. Such a vector field is said to beC∞ if for every
C∞ function f on M, the function V (t) f isC∞ as a function of t.

Example 4.5. The velocity vector field c′(t) of a parametrized curve c is defined by

c′(t) = c∗,t
(

d
dt

∣
∣
∣
∣
t

)

∈ Tc(t)M.

It is a vector field along c.

Example 4.6. If Ṽ is a vector field onM and c : [a,b]→M is a parametrized curve in
M, then Ṽ induces a vector field V along c by

V (t) = Ṽc(t).
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Now suppose c : [a,b]→ R
n is a curve in R

n and V is a C∞ vector field along c.
Then V (t) can be written as a linear combination of the standard basis vectors:

V (t) =∑vi(t) ∂i|c(t) .

So it makes sense to differentiate V with respect to t:

dV
dt

(t) =∑ dvi

dt
(t) ∂i|c(t) ,

which is also aC∞ vector field along c.
For a smooth vector field V along a curve c in an arbitrary manifold M, without

further hypotheses on M, the derivative dV/dt is in general not defined. This is
because an arbitrary manifold does not have a canonical frame of vector fields such
as ∂/∂x1, . . . ,∂/∂xn on Rn.

Proposition 4.7. Let c : [a,b] → R
n be a curve in R

n and let V (t),W (t) be smooth
vector fields along c. Then

d
dt

〈V (t),W (t)〉=
〈
dV
dt

,W

〉

+

〈

V,
dW
dt

〉

.

Proof. Write V (t) andW (t) in terms of ∂i|c(t) and differentiate. ��

4.4 Vector Fields Along a Submanifold

Let M be a regular submanifold of a manifold M̃. At a point p in M, there are two
kinds of tangent vectors to M̃, depending on whether they are tangent to M or not.
For example, if M is a surface in R

3, the vectors in a tangent vector field on M are
all tangent to M, but the vectors in a normal vector field on M are not tangent to M
but to R3.

Definition 4.8. Let M be a submanifold of a manifold M̃. A vector field X on M
assigns to each p ∈ M a tangent vector Xp ∈ TpM. A vector field X along M in M̃
assigns to each p ∈M a tangent vector Xp ∈ TpM̃. A vector field X alongM is called
C∞ if for every C∞ function f on M̃, the function X f isC∞ on M.

The distinction between these two concepts is indicated by the prepositions “on”
and “along.” While it may be dangerous for little prepositions to assume such grave
duties, this appears to be common usage in the literature. In this terminology, a
normal vector field to a surface M in R

3 is a vector field along M in R
3, but not a

vector field on M. Of course, a vector field on M is a vector field along M.
As in Section A.3, the set of all C∞ vector fields on a manifold M is denoted by

X(M). The set of all C∞ vector fields along a submanifold M in a manifold M̃ will
be denoted by Γ(TM̃|M). They are both modules over the ring F = C∞(M) of C∞

functions on M.
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4.5 Directional Derivatives on a Submanifold of Rn

Suppose M is a regular submanifold of Rn. At any point p ∈ M, if Xp ∈ TpM is a
tangent vector at p andY =∑bi∂i is a vector field alongM inRn, then the directional
derivative DXpY is defined. In fact,

DXpY =∑(Xpb
i) ∂i|p .

As p varies overM, this allows us to associate to aC∞ vector field X on M and a
C∞ vector field Y along M aC∞ vector field DXY along M by

DXY =∑(Xbi)∂i ∈ Γ(TRn|M).
For any p ∈ M, we have (DXY )p = DXpY by definition. It follows that there is an
R-bilinear map

D : X(M)×Γ(TRn|M)→ Γ(TRn|M)
D(X ,Y ) = DXY.

We call D the directional derivative on M. Because of the asymmetry between X
and Y—one is a vector field on M, the other a vector field along M, the torsion
T (X ,Y ) := DXY −DYX − [X ,Y ] no longer makes sense. Otherwise, D satisfies the
same properties as the directional derivative D on Rn.

Proposition 4.9. Suppose M is a regular submanifold of Rn and D is the directional
derivative on M. For X ∈ X(M) and Y ∈ Γ(TRn|M),
(i) D(X ,Y ) = DXY is F-linear in X and R-linear in Y ;
(ii) (Leibniz rule) if f ∈C∞(M), then

D(X , fY ) = DX ( fY ) = (X f )Y + fDXY.

Proposition 4.10. Suppose M is a regular submanifold ofRn and D is the directional
derivative on M.

(i) (zero curvature) If X ,Y ∈ X(M) and Z ∈ Γ(TRn|M), then
DXDYZ−DYDXZ−D[X ,Y ]Z = 0.

(ii) (compatibility with the metric) If X ∈ X(M) and Y,Z ∈ Γ(TRn|M), then
X〈Y,Z〉= 〈DXY,Z〉+ 〈Y,DXZ〉.

Proof. By Remark 4.1, these are proven in exactly the same way as Proposition 4.3.
��

Suppose Ṽ is a C∞ vector field along a regular submanifold M in R
n and

c : [a,b]→M is a C∞ curve inM. Then Ṽ induces a vector field V along c:

V (t) = Ṽc(t) ∈ Tc(t)R
n.
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Proposition 4.11. Differentiation with respect to t of a vector field along a curve is
the directional derivative in the tangent direction:

dV
dt

= Dc′(t)Ṽ .

Proof. Let

V (t) =∑vi(t) ∂i|c(t) and Ṽp =∑ ṽi(p) ∂i|p for p ∈M.

Since V (t) = Ṽc(t),
vi = ṽi ◦ c.

By the definition of c′(t),

c′(t)ṽi = c∗
(

d
dt

)

ṽi =
d
dt
(ṽi ◦ c) =

d
dt
vi.

Therefore,

Dc′(t)Ṽ =∑(c′(t)ṽi) ∂i|c(t) (by (4.2))

=∑ dvi

dt
∂i|c(t) =

dV
dt

. ��

Problems

4.1. Lie bracket of vector fields
Let f ,g be C∞ functions and X ,Y beC∞ vector fields on a manifold M. Show that

[ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X .

(Hint: Two smooth vector fields V andW on a manifold M are equal if and only if for every
h ∈C∞(M), Vh=Wh.)

4.2. Directional derivative in R
n

Prove Proposition 4.3(i).

4.3. Directional derivative on a submanifold
Let M be a regular submanifold of Rn and

D : X(M)×Γ(TRn|M)→ Γ(TRn|M)

the directional derivative onM. Since X(M)⊂ Γ(TRn|M), we can restrict D to X(M)×X(M)
to obtain

D : X(M)×X(M)→ Γ(TRn|M).

(a) Let T be the unit tangent vector field to the circle S1. Prove that DTT is not tangent to S1.
This example shows that D|X(M)×X(M) does not necessarily map into X(M).

(b) If X ,Y ∈ X(M), prove that

DXY −DYX = [X ,Y ].
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§5 The Shape Operator

To define the curvature of a plane curve in Section 2, we differentiated its unit tangent
vector field with respect to arc length. Extrapolating from this, we can try to describe
the curvature of a surface in R

3 by differentiating a unit normal vector field along
various directions.

5.1 Normal Vector Fields

Recall that a point p of Rn is a regular point of a function f : Rn →R if the differen-
tial f∗,p : TpRn → Tf (p)R is surjective, equivalently, if at least one partial derivative
∂ f/∂xi(p) is nonzero. A point q ∈ R is a regular value if its inverse image f−1(q)
consists entirely of regular points; otherwise, it is a singular value.

A hypersurface in R
n is the zero set Z( f ) of a C∞ function f on R

n. Consider a
hypersurfaceM in R3 defined as the zero set of theC∞ function f (x,y,z). We assume
that the partial derivatives fx, fy, fz do not vanish simultaneously on M. Then 0 is a
regular value of f , and M = f−1(0) is a regular level set. By the regular level set
theorem, M is a regular submanifold of R3.

As a submanifold of R3, M inherits a Riemannian metric from the Euclidean
metric on R

3. Let N = grad f = 〈 fx, fy, fz〉 be the gradient vector field of f on M.

Proposition 5.1. If 0 is a regular value of theC∞ function f onR3, then N= grad f is
a nowhere-vanishing normal vector field along the smooth hypersurface M = Z( f ).

Proof. Let p ∈ M and Xp ∈ TpM. It suffices to show that 〈Np,Xp〉 = 0. Choose a
curve c(t) = (x(t),y(t),z(t)) inM with c(0) = p and c′(0) = Xp (such a curve always
exists, for example by [21, Proposition 8.16]). Since c(t) lies in M, f (c(t)) = 0 for
all t. By the chain rule,

0=
d
dt

∣
∣
∣
∣
t=0

f (c(t)) = fx(p)x
′(0)+ fy(p)y

′(0)+ fz(p)z
′(0).

Hence,

〈Np,Xp〉= 〈grad f (p),c′(0)〉= 0. ��

By dividing grad f by its magnitude, we obtain a smooth unit normal vector field
along the hypersurfaceM. Since a smooth surface in R3, orientable or not, is locally
the zero set of a coordinate function, it follows from this proposition that a smooth
unit normal vector field exists locally along any smooth surface in R

3.
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p

N

M

Fig. 5.1. A normal vector field near p.

5.2 The Shape Operator

Let p be a point on a surface M in R
3 and let N be a C∞ unit normal vector field on

M (Figure 5.1). For any tangent vector Xp ∈ TpM, define

Lp(Xp) =−DXpN.

This directional derivative makes sense, since N is defined along some curve with
initial vector Xp. We put a negative sign in the definition of Lp so that other formulas
such as Lemma 5.2 and Proposition 5.5 will be sign-free. Applying the vector Xp to
〈N,N〉 ≡ 1 gives

0= Xp〈N,N〉
= 〈DXpN,Np〉+ 〈Np,DXpN〉 (compatibility with the metric, Proposition 4.3)

= 2〈DXpN,Np〉.

Thus, DXpN is perpendicular to Np at p and is therefore in the tangent plane TpM. So
Lp is a linear map TpM → TpM. It is called the shape operator or the Weingarten
map of the surface M at p. Note that the shape operator depends on the unit normal
vector field N and the point p. With the unit normal vector field N on M fixed, as
the point p varies in M, there is a different shape operator Lp at each p. To avoid
cumbersome notation, we will usually omit the subscript p.

The shape operator, being the directional derivative of a unit normal vector field
on a surface, should encode in it information about how the surface bends at p.

Lemma 5.2. Let M be a surface in R
3 having a C∞ unit normal vector field N. For

X ,Y ∈ X(M),
〈L(X),Y 〉= 〈DXY,N〉.

Proof. Since Y is tangent to M, the inner product 〈Y,N〉 is identically zero on U .
Differentiating the equation 〈Y,N〉 ≡ 0 with respect to X yields

0= X〈Y,N〉= 〈DXY,N〉+ 〈Y,DXN〉
= 〈DXY,N〉−〈Y,L(X)〉.

Hence,
〈L(X),Y 〉= 〈DXY,N〉. ��
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In general, if e1, . . . ,en is a basis for a vector space V and

v=∑
i
viei ∈V, with vi ∈ R, (5.1)

then vi is called the component of v in the ei-direction. In case e1, . . . ,en is an ortho-
normal basis in an inner product space (V,〈 , 〉), by taking the inner product of both
sides of (5.1) with e j, one obtains

〈v,e j〉=∑
i
vi〈ei,e j〉=∑

i
viδi j = v j.

Thus, the component v j of v in the e j-direction is simply the inner product of v
with e j. In view of this, the right-hand side of Lemma 5.2 is the normal component
of the directional derivative DXpY .

Note that any tangent vector Xp ∈ TpM can be extended to a C∞ vector field in
a neighborhood of p: if (U,x1, . . . ,xn) is a chart containing p and Xp = ∑ai ∂/∂xi|p
for some ai ∈ R, then X = ∑ai ∂/∂xi is such a vector field onU .

Proposition 5.3. The shape operator is self-adjoint: for any Xp,Yp ∈ TpM,

〈L(Xp),Yp〉= 〈Xp,L(Yp)〉.

Proof. Suppose the C∞ unit normal vector field N is defined on a neighborhood U
of p. Let X ,Y be vector fields onU that extend the vectors Xp,Yp at p. By Lemma 5.2,

〈L(X),Y 〉= 〈DXY,N〉. (5.2)

Similarly, reversing the roles of X and Y , we have

〈L(Y ),X〉= 〈DYX ,N〉. (5.3)

By Problem 4.3(b),

DXY −DYX = [X ,Y ]. (5.4)

Combining the three preceding equations (5.2), (5.3), and (5.4), we get

〈L(X),Y 〉−〈L(Y ),X〉
= 〈DXY,N〉−〈DYX ,N〉
= 〈DXY −DYX ,N〉
= 〈[X ,Y ],N〉 (by (5.4))

= 0 (since [X ,Y ] is a tangent vector field on M).

Hence,

〈L(X),Y 〉= 〈L(Y ),X〉= 〈X ,L(Y )〉. ��
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If T : V → W is a linear map between two vector spaces V and W , BV =
{v1, . . . ,vn} a basis for V , and BW = {w1, . . . ,wm} a basis forW , then

T (v j) =
m

∑
i=1

aijwi, j = 1, . . . ,n,

for a unique matrix [aij], called the matrix of the linear map T with respect to the
bases BV and BW .

It follows from Proposition 5.3 that the matrix of the shape operator with respect
to an orthonormal basis for TpM is symmetric, for if e1,e2 is an orthonormal basis
for TpM and

L(e1) = ae1+be2,

L(e2) = he1+ ce2,

then
b= 〈L(e1),e2〉= 〈e1,L(e2)〉= h.

Since the eigenvalues of a symmetric matrix are real (Problem 5.1), the shape
operator has real eigenvalues. We will see shortly the meaning of these eigenvalues.

5.3 Curvature and the Shape Operator

Consider as before a surface M in R
3 having a C∞ unit normal vector field N.

Lemma 5.2 on the shape operator has a counterpart for vector fields along a curve.

Proposition 5.4. Let c : [a,b]→M be a curve in M and let V be a vector field in M
along c. Then

〈L(c′(t)),V 〉=
〈
dV
dt

,Nc(t)

〉

.

Remark. When we write V or dV/dt, we mean V (t) and dV (t)/dt, respectively.

Proof. Since V (t) is tangent to M, the inner product 〈V (t),Nc(t)〉 is identically zero.
By Proposition 4.7, differentiating with respect to t yields

0=
d
dt

〈V (t),Nc(t)〉

=

〈
dV
dt

,Nc(t)

〉

+

〈

V (t),
d
dt
Nc(t)

〉

=

〈
dV
dt

,Nc(t)

〉

+ 〈V (t),Dc′(t)N〉 (by Proposition 4.11).

Thus,

〈V (t),L(c′(t))〉= 〈V (t),−Dc′(t)N〉=
〈
dV
dt

,Nc(t)

〉

. ��
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Proposition 5.5. Suppose γ(s) is a normal section, parametrized by arc length, det-
ermined by a unit tangent vector Xp ∈ TpM and the unit normal vector Np. Then the
normal curvature of γ(s) with respect to Np at p is given by the second fundamental
form:

κ(Xp) = 〈L(Xp),Xp〉= II(Xp,Xp).

Proof. By definition, γ(0) = p and γ ′(0) = Xp. Let T (s) := γ ′(s) be the unit tangent
vector field along γ(s). Then the curvature of the normal section γ(s) is

κ
(
γ ′(s)

)
= 〈γ ′′(s),Nγ(s)〉
= 〈dT/ds,Nγ(s)〉
= 〈L(γ ′(s)),T 〉 (by Proposition 5.4)

= 〈L(T ),T 〉.
Evaluating at s= 0 gives

κ(Xp) = 〈L(Xp),Xp〉= II(Xp,Xp). ��
Proposition 5.6. The principal directions of the surface M in R

3 at p are the unit
eigenvectors of the shape operator L; the principal curvatures are the eigenvalues
of L.

Proof. The principal curvatures at p are the maximum and minimum values of the
function

κ(Xp) = II(Xp,Xp) = 〈L(Xp),Xp〉
for Xp ∈ TpM satisfying 〈Xp,Xp〉 = 1. This type of optimization problem with a
constraint lends itself to the method of the Lagrange multiplier from vector calculus.

Choose an orthonormal basis e1,e2 for TpM so that

Xp = xe1+ ye2 =

[
x
y

]

.

By Proposition 5.3 the matrix of L relative to the basis e1,e2 is a symmetric matrix

A=

[
a b
b c

]

,

meaning

L(e1) = ae1+be2,

L(e2) = be1+ ce2.

In matrix notation,

L(Xp) = L(xe1+ ye2) = (ax+by)e1+(bx+ cy)e2

=

[
ax+by
bx+ cy

]

=

[
a b
b c

][
x
y

]

= AXp,
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and

κ(Xp) = 〈L(Xp),Xp〉= 〈AXp,Xp〉= XT
p AXp

= ax2+2bxy+ cy2.

The problem of finding the principal curvatures becomes a standard calculus
problem: find the maximum and minimum of the function

κ(Xp) = ax2+2bxy+ cy2 = XT
p AXp

subject to the constraint

g(Xp) = 〈Xp,Xp〉= x2+ y2 = 1.

Now

grad κ =

[
2ax+2by
2bx+2cy

]

= 2AXp

and
grad g= 2Xp.

By the method of the Lagrange multiplier, at the maximum or minimum of κ , there
is a scalar λ such that

grad κ = λgrad g, or AXp = λXp.

Thus, the maximum and minimum of κ occur at unit eigenvectors of A. These are
the principal directions at p.

Let Xp be a principal direction at p. Then the corresponding principal curvature
is the normal curvature

κ(Xp) = 〈L(Xp),Xp〉= 〈AXp,Xp〉= 〈λXp,Xp〉= λ 〈Xp,Xp〉= λ ,
the eigenvalue associated to the eigenvector Xp. ��
Corollary 5.7. (i) The Gaussian curvature of a surface M in R

3 is the determinant
of the shape operator.

(ii) If e1,e2 is an orthonormal basis for the tangent space TpM of the surface M, then
the Gaussian curvature at p is

K = 〈L(e1),e1〉〈L(e2),e2〉−〈L(e1),e2〉〈L(e2),e1〉.
Proof. (i) The determinant of a linear map is the product of its eigenvalues (Prob-
lem 5.2). For the shape operator L the eigenvalues are the principal curvatures κ1,κ2.
So detL= κ1κ2 = K, the Gaussian curvature.

(ii) If
L(e1) = ae1+be2 and L(e2) = be1+ ce2,

then
a= 〈L(e1),e1〉, b= 〈L(e1),e2〉= 〈L(e2),e1〉, c= 〈L(e2),e2〉.
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The matrix of L relative to the orthonormal basis e1,e2 is
[
a b
b c

]

.

Hence,

detL= ac−b2

= 〈L(e1),e1〉〈L(e2),e2〉−〈L(e1),e2〉〈L(e2),e1〉. ��

5.4 The First and Second Fundamental Forms

A point p of a smooth surface M in R
3, the Euclidean Riemannian metric is a sym-

metric bilinear form on the tangent space TpM. It is called the first fundamental
form ofM at p. If L : TpM → TpM is the shape operator, the symmetric bilinear form
on TpM

II(Xp,Yp) = 〈L(Xp),Yp〉
is called the second fundamental form of the surface M at p. The first fundamental
form is the metric and the second fundamental form is essentially the shape operator.
These two fundamental forms encode in themmuch of the geometry of the surfaceM.

Let e1,e2 be a basis for the tangent space TpM. We set

E := 〈e1,e1〉, F := 〈e1,e2〉, G := 〈e2,e2〉.

If Xp = x1e1+ x2e2 and Yp = y1e1+ y2e2, then

〈Xp,Yp〉= 〈e1,e1〉x1y1+ 〈e1,e2〉x1y2
+ 〈e2,e1〉x2y1+ 〈e2,e2〉x2y2

= Ex1y1+Fx1y2+Fx2y1+Gx2y2

=
[x1 x2]

[
E F
F G

][
y1

y2

]

.

Thus, the three numbers E,F,G determine completely the first fundamental form of
M at p. They are called the coefficients of the first fundamental form relative to
e1,e2.

Similarly, the three numbers

e := II(e1,e1), f := II(e1,e2), g := II(e2,e2)

determine completely the second fundamental form of M at p:

II(Xp,Yp) =
[x1 x2]

[
e f
f g

][
y1

y2

]

.



36 §5 The Shape Operator

They are called the coefficients of the second fundamental form relative to e1,e2.
As p varies in an open set U , if e1,e2 remain a basis of TpM at each point, these
coefficients are six functions on U . Classically, M is taken to be a coordinate patch
(U,u,v) with e1 = ∂/∂u and e2 = ∂/∂v, and the differential geometry of M is done
in terms of the six functions E,F,G,e, f ,g.

Theorem 5.8. Suppose M and M′ are two smooth Riemannian manifolds of dimen-
sion 2, and ϕ : M→M′ is a diffeomorphism. Let E,F,G be the coefficients of the first
fundamental form relative to a frame e1,e2 on M, and E ′,F ′,G′ the corresponding
coefficients relative to e′1 := ϕ∗e1, e′2 := ϕ∗e2 on M′. Then ϕ is an isometry if and
only if E,F,G at p are equal to E ′,F ′,G′ at ϕ(p), respectively, for all p ∈M.

Proof. The diffeomorphism ϕ is an isometry if and only if

〈ϕ∗Xp,ϕ∗Yp〉ϕ(p) = 〈Xp,Yp〉p.

This condition holds if and only if

〈ϕ∗ei,ϕ∗e j〉ϕ(p) = 〈ei,e j〉p.

for all i= 1,2 and j = 1,2, i.e.,

E ′(ϕ(p)
)
= E(p), F ′(ϕ(p)

)
= F(p), G′(ϕ(p)

)
= G(p). ��

5.5 The Catenoid and the Helicoid

The graph of the hyperbolic cosine function

y= coshx :=
ex+ e−x

2

is called a catenary (Figure 5.2).

1

1−1

y= coshx

x

y

1

−1

1−1

r = coshz

r

z

Fig. 5.2. Catenaries
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Fig. 5.3. A hanging chain

Using physics, it can be shown that a hanging chain naturally assumes the shape
of a catenary (Figure 5.3).

The surface of revolution obtained by rotating the catenary r = coshz about the
z-axis is called a catenoid (Figure 5.4). It has parametrization

(r cosθ ,r sinθ ,z) =
(
(coshu)cosθ ,(coshu)sinθ ,u),

where we set z= u.

Fig. 5.4. A catenoid

The helicoid is the surface with parametrization

(r cosθ ,r sinθ ,θ), −∞< r,θ < ∞;
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it is the surface traced out by a horizontal stick moving upward with constant speed
while rotating about a vertical axis through its midpoint (Figure 5.5).

Fig. 5.5. A helicoid

The catenoid shown in Figure 5.4 has

−1≤ u≤ 1 0≤ θ ≤ 2π.

If we remove from this catenoid the points with u=−1,1 and θ = 0,2π , then what
is left is a coordinate chartU .

Similarly, the helicoid in Figure 5.5 has

−a≤ r ≤ a, 0≤ θ ≤ 2π

for some positive real number a. We remove from it points with r= 0,a and θ = 0,2π
to obtain a coordinate chartU ′.
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As coordinate charts, there are diffeomorphismsU � (−1,1)× (0,2π) andU ′ �
(−a,a)× (0,2π). Since (−1,1) is diffeomorphic to (−sinh1,sinh1) via the map
u �→ sinhh, there is a diffeomorphism ϕ : U →U ′ given by

(
(coshu)cosθ ,(coshu)sinθ ,u

) �→ (
(sinhu)cosθ ,(sinhu)sinθ ,θ

)
.

By computing the three functions E,F,G relative to the frame e1 = ∂/∂u,
e2 = ∂/∂θ on the catenoid and the frame e′1 = ϕ∗e1, e′2 = ϕ∗e2 on the helicoid,
respectively, one can show that ϕ : U →U ′ is an isometry (Problem 5.11). Physi-
cally, what this means is that if one cuts the catenoid in Figure 5.4 along a meridian,
straighten out the meridian, and let the catenoid hang, it will assume the shape of the
helicoid in Figure 5.5.

Problems

5.1. Eigenvalues and eigenvectors of a symmetric matrix
Suppose A is an n× n real symmetric matrix with complex eigenvector X and corresponding
complex eigenvalue λ . Think of X as a column vector and consider the complex number
X̄TAX , where X̄ is the complex conjugate of X and the superscript T means the transpose.

(a) Show that X̄TA= λ̄ X̄T.
(b) By computing the complex number X̄TAX in two ways, as (X̄TA)X and as X̄T(AX), show

that λ = λ̄ . This proves that the eigenvalues of a real symmetric matrix are always real.
(c) Show that A has n independent real eigenvectors.
(d) Show that eigenvectors of A corresponding to distinct eigenvalues are orthogonal. (Hint:

Let X and Y be eigenvectors corresponding to distinct eigenvalues λ and μ , respectively.
Note that 〈X ,Y 〉= XTY . Compute XTAY two different ways.)

Part (d) shows that if the principal curvatures at a point of a surface in R3 are distinct, then the
principal directions are orthogonal.

5.2. Determinant and eigenvalues
Prove that the determinant of any n×n matrix, real or complex, is the product of its eigenval-
ues. (Hint: Triangularize the matrix.)

5.3. The Gauss map
Let M be a smooth oriented surface in R

3, with a smooth unit normal vector field N. The
Gauss map of M is the map

ν : M → S2 ⊂ R
3, ν(p) = Np,

where Np is considered to be a unit vector starting at the origin. Show that the differential of
the Gauss map at p is the negative of the Weingarten map:

ν∗,p(Xp) =−L(Xp)

for any Xp ∈ TpM. (Hint: Compute the differential by using curves. See [21, Section 8.7].)
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5.4. Total curvature
The total curvature of a smooth oriented surface M in R

3 is defined to be the integral
∫
M K,

if it exists, of the Gaussian curvature K. Prove that the total curvature of M is, up to sign, the
area of the image of the Gauss map:

∫

M
K = Area of ν(M).

5.5. Shape operator of a cylinder
Let M be the cylinder of radius a in R

3 defined by x2 + y2 = a2. At p = (x,y,z) ∈ M, the
vectors

e1 =
1
a

(

−y
∂
∂x

+ x
∂
∂y

)

, e2 =
∂
∂ z

form an orthonormal basis for the tangent space TpM. Let N be the unit normal vector field

N =
1
a

(

x
∂
∂x

+ y
∂
∂y

)

.

(a) Find the matrix of the shape operator with respect to the basis e1,e2 at p. (Compute
L(e j) =−DejN and find the matrix [aij] such that L(e j) = ∑aijei.)

(b) Compute the mean and Gaussian curvatures of the cylinder M.

5.6. Shape operator of a sphere
Let M be the sphere of radius a in R3 defined by

x2+ y2+ z2 = a2.

Parametrize the sphere using spherical coordinates:

x= asinφ cosθ
y= asinφ sinθ
z= acosφ , 0≤ φ < π, 0≤ θ < 2π.

Then for each p ∈M, e1 = ∂/∂φ , e2 = ∂/∂θ is a basis for the tangent space TpM for p ∈M.
Let Np be the unit outward normal vector at p on the sphere.

(a) Find the matrix of the shape operator of the sphere with respect to the basis e1,e2 at p.
(b) Compute the mean and Gaussian curvatures of the sphere M at p using (a).

5.7. Surface of revolution in R
3

Let
(
f (u),g(u)

)
be a unit-speed curve without self-intersection in the (y,z)-plane. Assume

f (u) > 0, so that
(
f (u),g(u)

)
can be rotated about the z-axis to form a surface of revolution

M in R3. A parametrization of the surface of revolution is

ψ(u,v) =

⎡

⎣
f (u)cosv
f (u)sinv
g(u)

⎤

⎦ , 0< v< 2π.

Assume that ψ is a diffeomorphism onto its image, so that u,v are coordinates on a chart U
inM. Then e1 = ∂/∂u, e2 = ∂/∂v is a basis for the tangent space Tp(M) for p ∈U .
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(a) Find the matrix of the shape operator of the surface of revolution with respect to the basis
e1,e2 at p.

(b) Compute the mean and Gaussian curvature of the surface of revolution M at p.

5.8. The average value of normal curvature
Let M be an oriented surface in R

3 with a unit normal vector field N, and let p be a point
in M. Each unit tangent vector Xp ∈ TpM determines a normal section with curvature κ(Xp)
at p. The unit tangent vectors in TpM form a circle S1 and the normal curvature κ is a function
on this circle. Show that the average value (1/2π)

∫
S1 κ of the normal curvature at p is the

mean curvature at p. (In general, the average value of a function f on the unit circle S1 is
(1/2π)

∫
S1 f .)

5.9. The coefficients of the two fundamental forms
SupposeM is an oriented surface inR3, p∈M, and e1,e2 is a basis for TpM. Let E,F,G,e, f ,g
be the coefficients of the first and second fundamental forms of M at p relative to e1,e2.

(a) Show that the matrix of the shape operator L : TpM → TpM relative to e1,e2 is

[
E F
F G

]−1 [
e f
f g

]

.

(b) Compute the Gaussian curvature K and the mean curvature H of M at p in terms of
E,F,G,e, f ,g.

5.10. The first and second fundamental forms of a graph
Let M be the graph of a C∞ function z = h(x,y) in R

3. Then M can be parametrized by
σ(x,y) =

(
x,y,h(x,y)

)
. Let e1 = σ∗(∂/∂x) and e2 = σ∗(∂/∂y).

(a) Show that the coefficients of the first fundamental form relative to e1,e2 are

E = 1+h2x , F = hxhy, G= 1+h2y .

(Here hx = ∂h/∂x.)
(b) Compute the coefficients of the second fundamental forms relative to e1,e2.
(c) Show that the Gaussian curvature of the graph z= h(x,y) is

K =
hxxhyy−h2xy
(h2x +h2y +1)2

.

5.11. Isometry between a catenoid and a helicoid
LetU be the open set in the catenoid with parametrization

(x,y,z) =
(
(coshu)cosθ ,(coshu)sinθ ,u

)
, −1< u< 1, 0< θ < 2π,

and letU ′ be the open set in the helicoid with parametrization

(x,y,z) = (u′ cosθ ,u′ sinθ ,θ), −sinh1< u′ < sinh1, 0< θ < 2π.

Define ϕ : U →U ′ by

ϕ
(
(coshu)cosθ ,(coshu)sinθ ,u

)
=
(
(sinhu)cosθ ,(sinhu)sinθ ,θ

)
.

As explained in Section 5.5, ϕ is a diffeomorphism.
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Viewing u,θ as coordinate functions onU , we let e1 = ∂/∂u, e2 = ∂/∂θ , which are then
tangent vector fields onU .

(a) Compute e1,e2 in terms of ∂/∂x,∂/∂y,∂/∂ z.
(b) Compute E,F,G relative to the frame e1,e2 at p ∈U of the catenoid.
(c) Let e′1 = ϕ∗e1,e

′
2 = ϕ∗e2 on the open set U ′ of the helicoid. Compute e′1,e

′
2 in terms of

∂/∂x,∂/∂y,∂/∂ z at ϕ(p) ∈U ′.
(d) Compute E ′,F ′,G′ relative to the frame e′1,e

′
2.

(e) Prove that ϕ : U →U ′ is an isometry.
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§6 Affine Connections
Consider a smooth vector field Y on a manifold M and a tangent vector Xp ∈ TpM
at a point p in M. To define the directional derivative of Y in the direction Xp, it is
necessary to compare the values of Y in a neighborhood of p. If q is a point near p,
in general it is not possible to compare the vectors Yq and Yp by taking the difference
Yq −Yp, since they are in distinct tangent spaces. For this reason, the directional
derivative of a vector field on an arbitrary manifoldM cannot be defined in the same
way as in Section 4. Instead, we extract from the directional derivative in R

n certain
key properties and call any map D : X(M)×X(M)→X(M) with these properties an
affine connection. Intuitively, an affine connection on a manifold is simply a way of
differentiating vector fields on the manifold.

Mimicking the directional derivative in R
n, we define the torsion and curvature

of an affine connection on a manifold M. Miraculously, both torsion and curvature
are linear over C∞ functions in every argument.

We will see in a later section that there are infinitely many affine connections on
any manifold. On a Riemannian manifold, however, there is a unique torsion-free
affine connection compatible with the metric, called the Riemannian or Levi-Civita
connection. As an example, we describe the Riemannian connection on a surface
in R3.

6.1 Affine Connections

On an arbitrary manifoldM, which is not necessarily embedded in a Euclidean space,
we can define the directional derivative of aC∞ function f in the direction Xp ∈ TpM
in the same way as before:

∇Xp f = Xp f .

However, there is no longer a canonical way to define the directional derivative of a
vector field Y . Formula (4.2) fails because unlike in R

n, there is no canonical basis
for the tangent space TpM.

Whatever definition of directional derivative of a vector field one adopts, it should
satisfy the properties in Proposition 4.2. This motivates the following definition.

Definition 6.1. An affine connection on a manifold M is an R-bilinear map

∇ : X(M)×X(M)→ X(M),

written ∇XY for ∇(X ,Y ), satisfying the two properties below: if F is the ringC∞(M)
of C∞ functions on M, then for all X ,Y ∈ X(M),

(i) ∇XY is F-linear in X ,
(ii) (Leibniz rule) ∇XY satisfies the Leibniz rule in Y : for f ∈ F,

∇X ( fY ) = (X f )Y + f∇XY.
Example 6.2. The directional derivative DX of a vector field Y on R

n is an affine
connection on R

n, sometimes called the Euclidean connection on R
n.
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6.2 Torsion and Curvature

Given an affine connection ∇ on a manifold M, one might ask whether it satisfies
the same properties as Proposition 4.3 for the Euclidean connection on R

n. For
X ,Y ∈ X(M), set

T (X ,Y ) = ∇XY −∇YX − [X ,Y ] ∈ X(M),

R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ]
= ∇X∇Y −∇Y∇X −∇[X ,Y ] ∈ End(X(M)).

We call T the torsion and R the curvature of the connection. There does not seem
to be a good reason for calling T (X ,Y ) the torsion, but as we shall see in Section 8,
R(X ,Y ) is intimately related to the Gaussian curvature of a surface.

An affine connection ∇ on a manifoldM gives rise to a linear map

X(M)→ EndR(X(M)), X �→ ∇X .
Here both vector spaces X(M) and EndR(X(M)) are Lie algebras. The curvature
measures the deviation of the map X �→∇X from being a Lie algebra homomorphism.

Recall that F is the ring C∞(M) of C∞ functions on the manifold M. Although
∇XY is not F-linear in Y , it turns out, amazingly, that both torsion and curvature are
F-linear in all their arguments.

Proposition 6.3. Let X ,Y,Z be smooth vector fields on a manifold M with affine
connection ∇.
(i) The torsion T (X ,Y ) is F-linear in X and in Y .
(ii) The curvature R(X ,Y )Z is F-linear in X, Y , and Z.

Proof. We will first check the F-linearity of R(X ,Y )Z in X . For this, it is useful to
recall the following formula from the theory of manifolds (Problem 4.1): if f ,g ∈
F =C∞(M), then

[ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X . (6.1)

By the definition of curvature,

R( f X ,Y )Z = ∇ f X∇YZ−∇Y∇ f XZ−∇[ f X ,Y ]Z. (6.2)

By the F-linearity of ∇ in X , the first term in (6.2) is f∇X∇YZ, and by the Leibniz
rule, the second term is

∇Y ( f∇XZ) = (Y f )∇XZ+ f∇Y∇XZ.
Applying (6.1), the last term in (6.2) is

∇[ f X ,Y ]Z = ∇ f [X ,Y ]−(Y f )XZ

= f∇[X ,Y ]Z− (Y f )∇XZ,
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since X(1) = 0. Combining the three terms gives

R( f X ,Y )Z = f (∇X∇YZ−∇Y∇XZ−∇[X ,Y ]Z)
= f R(X ,Y )Z.

Because R(X ,Y ) is skew-symmetric in X and Y , F-linearity in Y follows from
F-linearity in the first argument:

R(X , fY ) =−R( fY,X) =− f R(Y,X) = f R(X ,Y ).

We leave the F-linearity of T (X ,Y ) as well as that of R(X ,Y )Z in Z as exercises
(Problems 6.2 and 6.3). ��

6.3 The Riemannian Connection

Tullio Levi-Civita

(1873–1941)

To narrow down the number of affine connections
on a manifold, we impose additional conditions on a
connection. On any manifold, we say that a connec-
tion is torsion-free if its torsion is zero. On a Rieman-
nian manifold, we say that a connection is compatible
with the metric if for all X ,Y,Z ∈ X(M),

Z〈X ,Y 〉= 〈∇ZX ,Y 〉+ 〈X ,∇ZY 〉.
It turns out that these two additional conditions are
enough to determine a connection uniquely on a Rie-
mannian manifold.

Definition 6.4. On a Riemannian manifold a Rie-
mannian connection, sometimes called a Levi-Civita
connection, is an affine connection that is torsion-
free and compatible with the metric.

Lemma 6.5. A C∞ vector field X on a Riemannian
manifold (M,〈 , 〉) is uniquely determined by the val-
ues 〈X ,Z〉 for all Z ∈ X(M).

Proof. We need to show that if X ′ ∈ X(M) and 〈X ,Z〉 = 〈X ′,Z〉 for all Z ∈ X(M),
then X = X ′. With Y = X−X ′, this is equivalent to showing that if 〈Y,Z〉= 0 for all
Z ∈X(M), then Y = 0. Take Z =Y . By the positive-definiteness of the inner product
at each point p ∈M,

〈Y,Y 〉= 0 ⇒ 〈Yp,Yp〉= 0 for all p ∈M

⇒ Yp = 0 for all p ∈M

⇒ Y = 0. ��
Theorem 6.6. On a Riemannian manifold there is a unique Riemannian connection.
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Proof. Suppose ∇ is a Riemannian connection on M. By Lemma 6.5, to specify
∇XY , it suffices to know 〈∇XY,Z〉 for every vector field Z ∈ X(M). So we will try
to find a formula for 〈∇XY,Z〉 involving only the Riemannian metric and canonical
operations on vector fields such as the Lie bracket.

A Riemannian connection satisfies the two formulas

∇XY −∇YX− [X ,Y ] = 0 (6.3)

and
X〈Y,Z〉= 〈∇XY,Z〉+ 〈Y,∇XZ〉. (6.4)

Cyclically permuting X , Y , Z in (6.4) gives two other formulas:

Y 〈Z,X〉= 〈∇YZ,X〉+ 〈Z,∇YX〉, (6.5)

Z〈X ,Y 〉= 〈∇ZX ,Y 〉+ 〈X ,∇ZY 〉. (6.6)

Using (6.3) we can rewrite ∇YX in (6.5) in terms of ∇XY :
Y 〈Z,X〉= 〈∇YZ,X〉+ 〈Z,∇XY 〉−〈Z, [X ,Y ]〉. (6.7)

Subtracting (6.6) from (6.4) and then adding (6.7) to it will create terms involving
∇XZ−∇ZX and ∇YZ−∇ZY , which are equal to [X ,Z] and [Y,Z] by torsion-freeness:

X〈Y,Z〉+Y 〈Z,X〉−Z〈X ,Y 〉
=2〈∇XY,Z〉+ 〈Y,∇XZ−∇ZX〉+ 〈X ,∇YZ−∇ZY 〉−〈Z, [X ,Y ]〉
=2〈∇XY,Z〉+ 〈Y, [X ,Z]〉+ 〈X , [Y,Z]〉−〈Z, [X ,Y ]〉.

Solving for 〈∇XY,Z〉, we get
2〈∇XY,Z〉= X〈Y,Z〉+Y 〈Z,X〉−Z〈X ,Y 〉

−〈X , [Y,Z]〉+ 〈Y, [Z,X ]〉+ 〈Z, [X ,Y ]〉. (6.8)

This formula proves that a Riemannian connection, if it exists, is unique.
Define ∇XY by the formula (6.8). It is a straightforward exercise to check

that so defined, ∇ is a torsion-free affine connection compatible with the metric
(Problem 6.4). This proves the existence of a Riemannian connection on a Rie-
mannian manifold. ��
Example 6.7. By Proposition 4.3, the Riemannian connection on R

n with its usual
Euclidean metric is the directional derivative DXY on R

n.

6.4 Orthogonal Projection on a Surface in R
3

Suppose M is a smooth surface in R
3, which we do not assume to be orientable. At

each point p ∈ M, let νp be the normal line through p. It is perpendicular to the
tangent space TpM, so there is an orthogonal decomposition

TpR
3 � TpM⊕νp.

Let prp : TpR
3 → TpM be the projection to the tangent space of M at p.
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If X is aC∞ vector field alongM, then Xp ∈ TpR3. Define a vector field pr(X) on
M by

pr(X)p = prp(Xp) ∈ TpM.

Proposition 6.8. If X is a C∞ vector field along M in R
3, then the vector field pr(X)

on M defined above is C∞.

Proof. For each p ∈M, there is a neighborhoodU of p in M on which there is a C∞

unit normal vector field N (by Section 5.1). For q ∈U ,

prq(Xq) = Xq−〈Xq,Nq〉Nq.

Note that prq does not depend on the choice of the unit normal vector field; −Nq

would have given the same answer. As q varies inU ,

pr(X) = X −〈X ,N〉N,

which shows that pr(X) isC∞ onU . Hence, pr(X) isC∞ at p. Since p is an arbitrary
point of M, the vector field pr(X) isC∞ on M. ��

According to this proposition, the projection operator is a map

pr : Γ(TR3|M)→ X(M).

6.5 The Riemannian Connection on a Surface in R
3

We continue to consider a smooth, not necessarily orientable surfaceM in R3. Given
two C∞ vector fields X and Y on M and a point p ∈ M, the directional derivative
DXpY is not in general tangent toM. Define

(∇XY )p := ∇XpY = prp(DXpY ) ∈ TpM, (6.9)

where prp : TpR
3 → TpM is the orthogonal projection defined in Section 6.4. As p

varies over M,

∇XY = pr(DXY ),

which, by Proposition 6.8, shows that ∇XY is a C∞ vector field on M. So we have a
map

∇ : X(M)×X(M)→ X(M).

Proposition 6.9. The Riemannian connection on a smooth, not necessarily ori-
entable surface M in R

3 is given by ∇XY = pr(DXY ).

Proof. Problem 6.6. ��
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Problems

6.1. Convex linear combination of connections
Show that if ∇ and ∇′ are connections on a manifold, then their sum∇+∇′ is not a connection.
However, a convex linear combination t∇+ (1− t)∇′ for any t ∈ R is a connection. More
generally, show that if ∇1, . . . ,∇n are connections on a manifold, then the linear combination
∑n
i=1 ai∇i is a connection provided ∑n

i=1 ai = 1.

6.2. F-linearity of the torsion
Prove that the torsion T (X ,Y ) is F-linear in X and in Y .

6.3. F-linearity of the curvature
Prove that the curvature R(X ,Y )Z is F-linear in Z.

6.4. Existence of a Riemannian connection
Prove that formula (6.8) defines a torsion-free affine connection ∇ that is compatible with the
metric.

6.5. Orthogonal projection
LetM be a smooth surface inR3. Show that the orthogonal projection pr : Γ(TR3|M)→X(M)
is F-linear.

6.6. Riemannian connection on a surface in R
3

Prove Proposition 6.9. ��
6.7. Lie derivative
On any manifold M, let L : X(M)×X(M)→ X(M), L(X ,Y ) =LXY , be the Lie derivative.
Show thatLXY satisfies the Leibniz rule in Y , but is notF-linear in X . (Hint: LXY = [X ,Y ].)

6.8. Riemannian connection of a submanifold
Let S ⊂ M be an immersed submanifold of a Riemannian manifold M and let ∇ be the
Riemannian connection onM. Show that the Riemannian connection ∇′ on S is given by

∇′XY = (∇XY )tan.
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§7 Vector Bundles

The set X(M) of all C∞ vector fields on a manifold M has the structure of a real
vector space, which is the same as a module over the field R of real numbers. Let
F =C∞(M) again be the ring of C∞ functions on M. Since we can multiply a vector
field by a C∞ function, the vector space X(M) is also a module over F. Thus the set
X(M) has two module structures, over R and over F. In speaking of a linear map:
X(M) → X(M) one should be careful to specify whether it is R-linear or F-linear.
An F-linear map is of course R-linear, but the converse is not true.

The F-linearity of the torsion T (X ,Y ) and the curvature R(X ,Y )Z from the pre-
ceding section has an important consequence, namely that these two constructions
make sense pointwise. For example, if Xp,Yp, and Zp are tangent vectors to a mani-
foldM at p, then one can define R(Xp,Yp)Zp to be (R(X ,Y )Z)p ∈ TpM for any vector
fields X , Y , and Z on M that extend Xp, Yp, and Zp, respectively. While it is possible
to explain this fact strictly within the framework of vector fields, it is most natural to
study it in the context of vector bundles. For this reason, we make a digression on
vector bundles in this section.

We will try to understand F-linear maps from the point of view of vector bundles.
The main result (Theorem 7.26) asserts the existence of a one-to-one correspondence
between F-linear maps α : Γ(E) → Γ(F) of sections of vector bundles and bundle
maps ϕ : E → F .

7.1 Definition of a Vector Bundle

Given an open subset U of a manifold M, one can think of U ×R
r as a family

of vector spaces Rr parametrized by the points in U . A vector bundle, intuitively
speaking, is a family of vector spaces that locally “looks” likeU×R

r.

Definition 7.1. A C∞ surjection π : E →M is aC∞ vector bundle of rank r if

(i) For every p ∈M, the set Ep := π−1(p) is a real vector space of dimension r;
(ii) every point p ∈ M has an open neighborhood U such that there is a fiber-

preserving diffeomorphism

φU : π−1(U)→U×R
r

that restricts to a linear isomorphism Ep →{p}×R
r on each fiber.

The space E is called the total space, the space M the base space, and the space
Ep the fiber above p of the vector bundle. We often say that E is a vector bundle
over M. A vector bundle of rank 1 is also called a line bundle.

Condition (i) says that π : E → M is a family of vector spaces, while condition
(ii) formalizes the fact that this family is locally looks like Rn. We call the open set
U in (ii) a trivializing open subset for the vector bundle, and φU a trivialization of
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π−1(U). A trivializing open cover for the vector bundle is an open cover {Uα} ofM
consisting of trivializing open sets Uα together with trivializations φα : π−1(Uα)→
Uα ×R

r.

Example 7.2 (Product bundle). If V is a vector space of dimension r, then the pro-
jection π : M×V →M is a vector bundle of rank r, called a product bundle. Via the
projection π : S1×R→ S1, the cylinder S1×R is a product bundle over the circle S1.

Example 7.3 (Möbius strip). The open Möbius strip is the quotient of [0,1]×R by
the identification

(0, t)∼ (1,−t).

It is a vector bundle of rank 1 over the circle (Figure 7.1).

Fig. 7.1. A Möbius strip

Example 7.4 (Restriction of a vector bundle). Let S be a submanifold of a manifold
M, and π : E →M aC∞ vector bundle. Then πS : π−1(S)→ S is also a vector bundle,
called the restriction of E to S, written E|S := π−1(S) (Figure 7.2).

E

E|S

MS

π

Fig. 7.2. A vector bundle onM restricted to S
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Definition 7.5. Let πE : E →M and πF : F →N beC∞ vector bundles. AC∞ bundle
map from E to F is a pair of C∞ maps (ϕ : E → F,ϕ : M → N) such that

(i) the diagram

E

πE
��

ϕ �� F

πF
��

M ϕ
�� N,

commutes,
(ii) ϕ restricts to a linear map ϕp : Ep → Fϕ(p) of fibers for each p ∈M.

Abusing language, we often call the map ϕ : E → F alone the bundle map.
An important special case of a bundle map occurs when E and F are vector

bundles over the same manifold M and the base map ϕ is the identity map 1M . In
this case we call the bundle map (ϕ : E → F,1M) a bundle map over M.

If there is a bundle map ψ : F → E overM such that ψ ◦ ϕ = 1E and ϕ ◦ψ = 1F ,
then ϕ is called a bundle isomorphism over M, and the vector bundles E and F are
said to be isomorphic over M.

Definition 7.6. A vector bundle π : E →M is said to be trivial if it is isomorphic to
a product bundle M×R

r →M over M.

Example 7.7 (Tangent bundle). For any manifold M, define TM to be the set of all
tangent vectors of M:

TM = {(p,v) | p ∈M, v ∈ TpM}.

If U is a coordinate open subset of M, then TU is bijective with the product bundle
U ×R

n. We give TM the topology generated by TU as U runs over all coordinate
open subsets of M. In this way TM can be given a manifold structure so that TM →
M becomes a vector bundle. It is called the tangent bundle ofM (for details, see [21,
Section 12]).

Example 7.8. If f : M → N is a C∞ map of manifolds, then its differential gives rise
to a bundle map f∗ : TM → TN defined by

f∗(p,v) = ( f (p), f∗,p(v)) .

7.2 The Vector Space of Sections

A section of a vector bundle π : E → M over an open set U is a function s : U → E
such that π ◦ s= 1U , the identity map onU . For each p ∈U , the section s picks out
one element of the fiber Ep. The set of all C∞ sections of E over U is denoted by
Γ(U,E). IfU is the manifold M, we also write Γ(E) instead of Γ(M,E).
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The set Γ(U,E) ofC∞ sections of E overU is clearly a vector space over R. It is
in fact a module over the ring C∞(U) of C∞ functions, for if f is a C∞ function over
U and s is a C∞ section of E overU , then the definition

( f s)(p) := f (p)s(p) ∈ Ep, p ∈U,

makes f s into aC∞ section of E overU .

Example 7.9 (Sections of a product line bundle). A section s of the product bundle
M×R→M is a map s(p) = (p, f (p)). So there is a one-to-one correspondence

{sections of M×R→M} ←→ {functions f : M → R}.
In particular, the space of C∞ sections of the product line bundle M×R → M may
be identified withC∞(M).

Example 7.10 (Sections of the tangent bundle). A vector field on a manifold M as-
signs to each point p ∈ M a tangent vector Xp ∈ TpM. Therefore, it is precisely a
section of the tangent bundle TM. Thus, X(M) = Γ(TM).

Example 7.11 (Vector fields along a submanifold). If M is a regular submanifold of
R
n, then a C∞ vector field along M is precisely a section of the restriction TRn|M of

TRn to M. This explains our earlier notation Γ(TR3|M) for the space of C∞ vector
fields along M in R3.

Definition 7.12. A bundle map ϕ : E → F over a manifold M (meaning that the
base map is the identity 1M) induces a map on the space of sections:

ϕ# : Γ(E)→ Γ(F),
ϕ#(s) = ϕ ◦ s.

This induced map ϕ# is F-linear because if f ∈ F, then
(
ϕ#( f s)

)
(p) =

(
ϕ ◦ ( f s)

)
(p) = ϕ

(
f (p)s(p)

)

= f (p)ϕ
(
s(p)

)
(because ϕ is R-linear on each fiber)

=
(
fϕ#(s)

)
(p).

Our goal in the rest of this chapter is to prove that conversely, every F-linear map
α : Γ(E)→ Γ(F) comes from a bundle map ϕ : E → F , i.e., α = ϕ#.

7.3 Extending a Local Section to a Global Section

Consider the interval (−π/2,π/2) as an open subset of the real line R. The example
of the tangent function tan : (−π/2,π/2) → R shows that it may not be possible to
extend the domain of a C∞ function f : U → R from an open subset U ⊂ M to the
manifold M. However, given a point p ∈U , it is always possible to find a C∞ global
function f̄ : M → R that agrees with f on some neighborhood of p. More generally,
this is also true for sections of a vector bundle.



7.4 Local Operators 53

1

( )( )
W

p

U

Fig. 7.3. A bump function supported inU

Proposition 7.13. Let E →M be a C∞ vector bundle, s a C∞ section of E over some
open set U in M, and p a point in U. Then there exists a C∞ global section s̄ ∈
Γ(M,E) that agrees with s over some neighborhood of p.

Proof. Choose aC∞ bump function f onM such that f ≡ 1 on a neighborhoodW of
p contained inU and supp f ⊂U (Figure 7.3). Define s̄ : M → E by

s̄(q) =

{
f (q)s(q) for q ∈U ,

0 for q �∈U .

OnU the section s̄ is clearlyC∞ for it is the product of aC∞ function f and aC∞

section s.
If p �∈U , then p �∈ supp f . Since supp f is a closed set, there is a neighborhood V

of p contained in its complement M \ supp f . On V the section s̄ is identically zero.
Hence, s̄ isC∞ at p. This proves that s̄ isC∞ on M.

OnW , since f ≡ 1, the section s̄ agrees with s. ��

7.4 Local Operators

In this section, E and F are C∞ vector bundles over a manifold M, and F is the ring
C∞(M) of C∞ functions on M.

Definition 7.14. Let E and F be vector bundles over a manifold M. An R-linear
map α : Γ(E) → Γ(F) is a local operator if whenever a section s ∈ Γ(E) vanishes
on an open set U in M, then α(s) ∈ Γ(F) also vanishes on U . It is a point operator
if whenever a section s ∈ Γ(E) vanishes at a point p in M, then α(s) ∈ Γ(F) also
vanishes at p.

Example 7.15. By Example 7.9, the vector space C∞(R) of C∞ functions on R may
be identified with the vector space Γ(R×R) ofC∞ sections of the product line bundle
over R. The derivative

d
dt

: C∞(R)→C∞(R)

is a local operator since if f (t)≡ 0 onU , then f ′(t)≡ 0 onU . However, d/dt is not
a point operator.
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Fig. 7.4. The product f s of a bump function f and a section s is zero.

Example 7.16. Let Ωk(M) denote the vector space of C∞ k-forms on a manifold M.
Then the exterior derivative d : Ωk(M)→Ωk+1(M) is a local operator.

Proposition 7.17. Let E and F be C∞ vector bundles over a manifold M, and
F =C∞(M). If a map α : Γ(E)→ Γ(F) is F-linear, then it is a local operator.

Proof. Suppose the section s ∈ Γ(E) vanishes on the open set U . Let p ∈U and let
f be a C∞ bump function such that f (p) = 1 and supp f ⊂ U (Figure 7.3). Then
f s ∈ Γ(E) and f s≡ 0 on M (Figure 7.4). So α( f s)≡ 0. By F-linearity,

0= α( f s) = fα(s).

Evaluating at p gives α(s)(p) = 0. Since p is an arbitrary point ofU , α(s)≡ 0 onU .
��

Example 7.18. On a C∞ manifold M, a derivation D : C∞(M) →C∞(M) is R-linear,
but not F-linear since by the Leibniz rule,

D( f g) = (Df )g+ fDg, for f ,g ∈ F.

However, by Problem 7.1, D is a local operator.

Example 7.19. Fix a C∞ vector field X ∈ X(M). Then a connection ∇ on M induces
a map

∇X : X(M)→ X(M)

that satisfies the Leibniz rule. By Problem 7.2, ∇X is a local operator.

7.5 Restriction of a Local Operator to an Open Subset

A continuous global section of a vector bundle can always be restricted to an open
subset, but in general a section over an open subset cannot be extended to a contin-
uous global section. For example, the tangent function defined on the open interval
(−π/2,π/2) cannot be extended to a continuous function on the real line. Nonethe-
less, a local operator, which is defined on global sections of a vector bundle, can
always be restricted to an open subset.
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Theorem 7.20. Let E and F be vector bundles over a manifold M. If α : Γ(E) →
Γ(F) is a local operator, then for each open subset U of M there is a unique linear
map, called the restriction of α to U,

αU : Γ(U,E)→ Γ(U,F)

such that for any global section t ∈ Γ(E),

αU (t|U ) = α(t)|U . (7.1)

Proof. Let s ∈ Γ(U,E) and p ∈U . By Proposition 7.13, there exists a global section
s̄ of E that agrees with s in some neighborhood W of p in U . We define αU (s)(p)
using (7.1):

αU (s)(p) = α(s̄)(p).

Suppose s̃ ∈ Γ(E) is another global section that agrees with s in the neighborhood
W of p. Then s̄ = s̃ in W . Since α is a local operator, α(s̄) = α(s̃) on W . Hence,
α(s̄)(p) = α(s̃)(p). This shows that αU (s)(p) is independent of the choice of s̄, so
αU is well defined and unique. Fix p ∈U . If s ∈ Γ(U,E) and s̄ ∈ Γ(M,E) agree on
a neighborhoodW of p, then αU (s) = α(s̄) onW . Hence, αU (s) is C∞ as a section
of F .

If t ∈ Γ(M,E) is a global section, then it is a global extension of its restriction
t|U . Hence,

αU (t|U )(p) = α(t)(p)
for all p ∈U . This proves that αU (t|U ) = α(t)|U . ��

Proposition 7.21. Let E and F be C∞ vector bundles over a manifold M, let U be
an open subset of M, and let F(U) = C∞(U), the ring of C∞ functions on U. If
α : Γ(E)→ Γ(F) is F-linear, then the restriction αU : Γ(U,E)→ Γ(U,F) is F(U)-
linear.

Proof. Let s∈ Γ(U,E) and f ∈F(U). Fix p∈U and let s̄ and f̄ be global extensions
of s and f that agree with s and f , respectively, on a neighborhood of p (Proposition
7.13). Then

αU ( f s)(p) = α( f̄ s̄)(p) (definition of αU )
= f̄ (p)α(s̄)(p) (F-linearity of α)
= f (p)αU (s)(p).

Since p is an arbitrary point ofU ,

αU ( f s) = fαU (s),

proving that αU is F(U)-linear. ��
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7.6 Frames

A frame for a vector bundle E of rank r over an open setU is a collection of sections
e1, . . . ,er of E over U such that at each point p ∈U , the elements e1(p), . . . ,er(p)
form a basis for the fiber Ep.

Proposition 7.22. A C∞ vector bundle π : E →M is trivial if and only if it has a C∞

frame.

Proof. Suppose E is trivial, with C∞ trivialization

φ : E →M×R
r.

Let v1, . . . ,vr be the standard basis for Rr. Then the elements (p,vi), i = 1, . . . ,r,
form a basis for {p}×R

r for each p ∈M, and so the sections of E

ei(p) = φ−1(p,vi), i= 1, . . . ,r,

provide a basis for Ep at each point p ∈M.
Conversely, suppose e1, . . . ,er is a frame for E →M. Then every point e ∈ E is a

linear combination e= ∑aiei. The map

φ(e) = (π(e),a1, . . . ,ar) : E →M×R
r

is a bundle map with inverse

ψ : M×R
r → E,

ψ(p,a1, . . . ,ar) =∑ai(p)ei(p). ��

It follows from this proposition that over any trivializing open set U of a vector
bundle E, there is always a frame.

7.7 F-Linearity and Bundle Maps

Throughout this subsection, E and F are C∞ vector bundles over a manifold M, and
F = C∞(M) is the ring of C∞ real-valued functions on M. We will show that an
F-linear map α : Γ(E) → Γ(F) can be defined pointwise and therefore corresponds
uniquely to a bundle map E → F .

Lemma 7.23. An F-linear map α : Γ(E)→ Γ(F) is a point operator.

Proof. We need to show that if s∈ Γ(E) vanishes at a point p inM, then α(s)∈ Γ(F)
also vanishes at p. LetU be an open neighborhood of p over which E is trivial. Thus,
overU it is possible to find a frame e1, . . . ,er for E. We write

s|U =∑aiei, ai ∈C∞(U) = F(U).
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Because s vanishes at p, all ai(p) = 0. Since α is F-linear, it is a local operator
(Proposition 7.17) and by Theorem 7.20 its restriction αU : Γ(U,E) → Γ(U,F) is
defined. Then

α(s)(p) = αU (s|U )(p) (Theorem 7.20)

= αU
(
∑aiei

)
(p)

=
(
∑aiαU (ei)

)
(p) (αU is F(U)-linear (Proposition 7.21))

=∑ai(p)αU (ei)(p) = 0. ��
Lemma 7.24. Let E and F be C∞ vector bundles over a manifold M. A fiber-
preserving map ϕ : E → F that is linear on each fiber is C∞ if and only if ϕ# takes
C∞ sections of E to C∞ sections of F.

Proof. (⇒) If ϕ is C∞, then ϕ#(s) = ϕ ◦ s clearly takes a C∞ section s of E to a C∞

section of F .
(⇐) Fix p ∈M and let (U,x1, . . . ,xn) be a chart about p over which E and F are both
trivial. Let e1, . . . ,er ∈ Γ(E) be a frame for E overU . Likewise, let f1, . . . , fm ∈ Γ(F)
be a frame for F overU . A point of E|U can be written as a unique linear combination
∑a je j. Suppose

ϕ ◦ e j =∑
i
bij fi.

In this expression the bij’s are C
∞ functions on U , because by hypothesis ϕ ◦ e j =

ϕ#(e j) is a C∞ section of F . Then

ϕ ◦
(

∑
j
a je j

)
=∑

i, j
a jbij fi.

One can take local coordinates on E|U to be (x1, . . . ,xn,a1, . . . ,ar). In terms of these
local coordinates,

ϕ(x1, . . . ,xn,a1, . . . ,ar) =
(
x1, . . . ,xn,∑

j
a jb1j , . . . ,∑

j
a jbmj

)
,

which is a C∞ map. ��
Proposition 7.25. If α : Γ(E) → Γ(F) is F-linear, then for each p ∈ M, there is a
unique linear map ϕp : Ep → Fp such that for all s ∈ Γ(E),

ϕp
(
s(p)

)
= α(s)(p).

Proof. Given e∈ Ep, to define ϕp(e), choose any section s∈ Γ(E) such that s(p) = e
(Problem 7.4) and define

ϕp(e) = α(s)(p) ∈ Fp.

This definition is independent of the choice of the section s, because if s′ is another
section of E with s′(p) = e, then (s− s′)(p) = 0 and so by Lemma 7.23, we have
α(s− s′)(p) = 0, i.e.,

α(s)(p) = α(s′)(p).
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Let us show that ϕp : Ep → Fp is linear. Suppose e1,e2 ∈ Ep and a1,a2 ∈ R.
Let s1,s2 be global sections of E such that si(p) = ei. Then (a1s1 + a2s2)(p) =
a1e1+a2e2, so

ϕp(a1e1+a2e2) = α(a1s1+a2s2)(p)

= a1α(s1)(p)+a2α(s2)(p)
= a1ϕp(e1)+a2ϕp(e2). ��

Theorem 7.26. There is a one-to-one correspondence

{bundle maps ϕ : E → F} ←→ {F-linear maps α : Γ(E)→ Γ(F)},
ϕ �−→ ϕ# .

Proof. We first show surjectivity. Suppose α : Γ(E) → Γ(F) is F-linear. By the
preceding proposition, for each p ∈ M there is a linear map ϕp : Ep → Fp such that
for any s ∈ Γ(E),

ϕp(s(p)) = α(s)(p).

Define ϕ : E → F by ϕ(e) = ϕp(e) if e ∈ Ep.
For any s ∈ Γ(E) and for every p ∈M,

(
ϕ#(s)

)
(p) = ϕ

(
s(p)

)
= α(s)(p),

which shows that α = ϕ#. Since ϕ# takes C∞ sections of E to C∞ sections of F , by
Lemma 7.24 the map ϕ : E → F isC∞. Thus, ϕ is a bundle map.

Next we prove the injectivity of the correspondence. Suppose ϕ , ψ : E → F are
two bundle maps such that ϕ# =ψ# : Γ(E)→ Γ(F). For any e∈ Ep, choose a section
s ∈ Γ(E) such that s(p) = e. Then

ϕ(e) = ϕ
(
s(p)

)
=
(
ϕ#(s)

)
(p) =

(
ψ#(s)

)
(p)

= (ψ ◦ s)(p) = ψ(e).

Hence, ϕ = ψ . ��

Corollary 7.27. An F-linear map ω : X(M)→C∞(M) is a C∞ 1-form on M.

Proof. By Proposition 7.25, one can define for each p∈M, a linear map ωp : TpM→
R such that for all X ∈ X(M),

ωp(Xp) = ω(X)(p).

This shows that ω is a 1-form on M.
For every C∞ vector field X on M, ω(X) is a C∞ function on M. This shows that

as a 1-form, ω isC∞. ��
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7.8 Multilinear Maps over Smooth Functions

By Proposition 7.25, if α : Γ(E) → Γ(F) is an F-linear map of sections of vector
bundles overM, then at each p∈M, it is possible to define a linear map ϕp : Ep → Fp
such that for any s ∈ Γ(E),

ϕp(s(p)) = α(s)(p).

This can be generalized to F-multilinear maps.

Proposition 7.28. Let E, E ′, F be vector bundles over a manifold M. If

α : Γ(E)×Γ(E ′)→ Γ(F)

is F-bilinear, then for each p ∈M there is a unique R-bilinear map

ϕp : Ep×E ′
p → Fp

such that for all s ∈ Γ(E) and s′ ∈ Γ(E ′),

ϕp(s(p),s′(p)) = (α(s,s′))(p).

Since the proof is similar to that of Proposition 7.25, we leave it as an exercise.
Of course, Proposition 7.28 generalizes to F-linear maps with k arguments. Just

as in Corollary 7.27, we conclude that if an alternating map

ω : X(M)×·· ·×X(M)(k times)→C∞(M)

is F-linear in each argument, then ω induces a k-form ω̃ on M such that for
X1, . . . ,Xk ∈ X(M),

ω̃p(X1,p, . . . ,Xk,p) = (ω(X1, . . . ,Xk))(p).

It is customary to write the k-form ω̃ as ω .

Problems

7.1. Derivations are local operators
LetM be a smooth manifold. Show that a derivation D : C∞(M)→C∞(M) is a local operator.

7.2. The Leibniz rule and local operators
Let π : E → M be a vector bundle and let X ∈ X(M). A map αX : Γ(E)→ Γ(E) satisfies the
Leibniz rule if for any f ∈C∞(M) and s ∈ Γ(E),

αX ( f s) = (X f )s+ fαX (s).

Such a map αX is of course not F-linear, but show that it is a local operator.
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7.3. The Lie bracket and the Leibniz rule
Let X be a smooth vector field on a smooth manifold M. Define a linear map αX : X(M) →
X(M) by αX (Y ) = [X ,Y ]. Show that αX satisfies the Leibniz rule.

7.4. Section with a prescribed value
Suppose π : E → M is a C∞ vector bundle. Let p ∈ M and e ∈ Ep. Show that E has a C∞

section s with s(p) = e.

7.5. Coefficients relative to a frame
Suppose the vector bundle π : E →M has a C∞ global frame e1, . . . ,ek. Then every point v in
E can be written uniquely in the form ∑a j(v)e j. Prove that the functions a j : E → R areC∞.

7.6. F-bilinear maps
Prove Proposition 7.28.
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§8 Gauss’s Theorema Egregium

For a surface inR3 we defined its Gaussian curvature K at a point p by taking normal
sections of the surface, finding the maximum κ1 and the minimum κ2 of the curvature
of the normal sections, and setting K to be the product of κ1 and κ2. So defined, the
Gaussian curvature evidently depends on how the surface is isometrically embedded
in R3.

On the other hand, an abstract Riemannian manifold has a unique Riemannian
connection. The curvature tensor R(X ,Y ) of the Riemannian connection is then com-
pletely determined by the Riemannian metric and so is an intrinsic invariant of the
Riemannian manifold, independent of any embedding. We think of a surface inR3 as
a particular isometric embedding of an abstract Riemannian manifold of dimension
2. For example, both a plane and a cylinder are locally isometric embeddings of the
same abstract surface, as one sees by simply bending a piece of paper. We will show
in this chapter that the Gaussian curvature of a surface in R

3 is expressible in terms
of the curvature tensor R(X ,Y ) and the metric. Hence, it too depends only on the
metric, not on the particular embedding into R

3.

8.1 The Gauss and Codazzi–Mainardi Equations

Suppose M is a regular submanifold of Rn. For X a tangent vector field on M and
Z a vector field along M in R

n, we defined in Section 4.5 the directional derivative
DXZ. It is a vector field along M in Rn.

For X ,Y ∈X(M) and Z ∈ Γ(TRn|M), we verified in Proposition 4.10 the equation
R(X ,Y )Z := DXDYZ−DYDXZ−D[X ,Y ]Z = 0. (8.1)

Note that this is not the same curvature operator as the curvature operator of the
directional derivative on R

n. The earlier curvature operator was a map

R : X(Rn)×X(Rn)×X(Rn)→ X(Rn);

the current curvature operator is a map

R : X(M)×X(M)×X(TRn|M)→ X(TRn|M).

Since the Riemannian connection ∇ of a surface M in R
3 is defined in terms

of the directional derivative D on M, it is easy to compare the curvature tensors of
∇ and D. This will lead to a formula for the curvature R of ∇, called the Gauss
curvature equation.

A vector field Y ∈ X(M) is also a vector field along M in R
3. Hence, if X ,Y ∈

X(M), the directional derivative DXY makes sense. Assume thatM is oriented with a
unit normal vector field N. At any point p ∈M, the normal component of the vector
DXpY is 〈DXpY,Np〉Np, and therefore the tangent component is
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pr(DXpY ) = DXpY −〈DXpY,Np〉Np.

By (6.9), this is the definition of the Riemannian connection ∇XpY on M. Hence,

DXpY = ∇XpY + 〈DXpY,Np〉Np

= ∇XpY + 〈Lp(Xp),Yp〉Np (by Lemma 5.2). (8.2)

Globalizing this equation, we have, for X ,Y ∈ X(M),

DXY = ∇XY + 〈L(X),Y 〉N, (8.3)

which decomposes the vector field DXY into its tangential and normal components.

Theorem 8.1. Let M be an oriented surface in R
3, ∇ its Riemannian connection, R

the curvature operator of ∇, and L the shape operator on M. For X ,Y,Z ∈ X(M),

(i) (Gauss curvature equation)

R(X ,Y )Z = 〈L(Y ),Z〉L(X)−〈L(X),Z〉L(Y );
(ii) (Codazzi–Mainardi equation)

∇XL(Y )−∇YL(X)−L([X ,Y ]) = 0.

Proof. (i) Decomposing DYZ into its tangential and normal components, one has

DYZ = (DYZ)tan+(DYZ)nor
= ∇YZ+ 〈L(Y ),Z〉N. (8.4)

Hence,

DXDYZ = DX∇YZ+DX
(〈L(Y ),Z〉N)

= ∇X∇YZ+ 〈L(X),∇YZ)N+X〈L(Y ),Z〉N+ 〈L(Y ),Z〉DXN.

(by (8.4) and Leibniz rule)

= ∇X∇YZ−〈L(X),Z〉L(X)+ 〈L(X),∇YZ〉N+X〈L(Y ),Z〉N. (8.5)

Interchanging X and Y gives

DYDxZ = ∇Y∇XZ−〈L(X),Z〉L(Y )+ 〈L(Y ),∇XZ〉N+Y 〈L(X),Z〉N. (8.6)

By (8.4),

D[X ,Y ]Z = ∇[X ,Y ]Z+ 〈L([X ,Y ]),Z〉N. (8.7)

Subtracting (8.6) and (8.7) from (8.5) gives

0= RD(X ,Y )Z = R(X ,Y )Z−〈L(Y ),Z〉L(X)+ 〈L(X),Z〉L(Y )
+normal component. (8.8)

The tangential component of (8.8) gives

R(X ,Y ) = 〈L(Y ),Z〉L(X)−〈L(X),Z〉L(Y ),
which is the Gauss curvature equation.
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(ii) The normal component of (8.8) is
(〈L(X),∇YZ〉+X〈L(Y ),Z〉
−〈L(Y ),∇XZ〉−Y 〈L(X),Z〉−〈L([X ,Y ]),Z〉)N = 0.

By the compatibility of ∇ with the metric, this simplifies to

〈∇XL(Y ),Z〉−〈∇YL(X),Z〉−〈L([X ,Y ]),Z〉= 0.

Since the equation above is true for all Z, by the nondegeneracy of the inner
product,

∇XL(Y )−∇YL(X)−L([X ,Y ]) = 0. ��
Remark 8.2. By the generalization of Proposition 7.28 to F-trilinear maps, because
R(X ,Y )Z is F-trilinear in X , Y , and Z, for each p ∈ M, there is a unique R-trilinear
map

Rp : TpM×TpM×TpM → TpM

such that Rp(Xp,Yp)Zp = (R(X ,Y )Z)p. Thus, although we have stated the Gauss
curvature equation for vector fields, it is also true for vectors Xp,Yp,Zp ∈ TpM at a
point p.

8.2 A Proof of the Theorema Egregium

Suppose for every Riemannian manifold M, there is defined a function fM : M → R.
The function fM is said to be an isometric invariant if for every isometry ϕ : M→ M̃
of Riemannian manifolds, we have fM(p) = fM̃(ϕ(p)) for all p ∈M.

Theorem 8.3 (Theorema Egregium). Let M be a surface in R3 and p a point in M.

(i) If e1,e2 is an orthonormal basis for the tangent plane TpM, then the Gaussian
curvature Kp of M at p is

Kp = 〈Rp(e1,e2)e2,e1〉. (8.9)

(ii) The Gaussian curvature is an isometric invariant of smooth surfaces in R3.

Proof. (i) In Corollary 5.7 we found a formula for the Gaussian curvature Kp in
terms of the shape operator L and an orthonormal basis e1,e2 for TpM:

Kp = 〈L(e1),e1〉〈L(e2),e2〉−〈L(e1),e2〉〈L(e2),e1〉.
By the Gauss curvature equation,

Rp(e1,e2)e2 = 〈L(e2),e2〉L(e1)−〈L(e1),e2〉L(e2).
Taking the inner product with e1 gives

〈Rp(e1,e2)e2,e1〉= 〈L(e2),e2〉〈L(e1),e1〉−〈L(e1),e2〉〈L(e2),e1〉
= Kp.

(ii) Since Rp(e1,e2) is determined completely by the metric, by Formula (8.9) the
same can be said of Kp. A detailed proof is left to Problem 8.3. ��
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Gauss’s Theorema Egregium has some practical implications. For example, since

a sphere and a plane have different Gaussian curvatures, it is not possible to map any
open subset of the sphere isometrically to an open subset of the plane. Since the
earth is spherical, this proves the impossibility of making a truly accurate map of
any region of the earth, no matter how small.

8.3 The Gaussian Curvature in Terms of an Arbitrary Basis

The Theorema Egregium gives a formula for the Gaussian curvature of a surface in
terms of an orthonormal basis for the tangent plane at a point. From it, one can derive
a formula for the Gaussian curvature in terms of an arbitrary basis.

Proposition 8.4. Let M be a smooth surface in R3 and p ∈M. If u,v is any basis for
the tangent plane TpM, then the Gaussian curvature at p is

Kp =
〈Rp(u,v)v,u〉

〈u,u〉〈v,v〉−〈u,v〉2 .

Proof. Let e1,e2 be an orthonormal basis for TpM and suppose

u= ae1+be2,

v= ce1+de2.

By the skew-symmetry of the curvature tensor,

Rp(u,v) = (ad−bc)Rp(e1,e2),

so that
〈Rp(u,v)v,u〉= (ad−bc)2〈Rp(e1,e2)e2,e1〉.

On the other hand,

〈u,u〉〈v,v〉−〈u,v〉2
= (a2+b2)(c2+d2)− (ac+bd)2 = (ad−bc)2.

Hence,

Kp = 〈Rp(e1,e2)e2,e1〉= 〈Rp(u,v)v,u〉
〈u,u〉〈v,v〉−〈u,v〉2 . ��

Problems

8.1. Affine connection under a diffeomorphism
A diffeomorphism ϕ : M → M̃ of smooth manifolds induces an isomorphism

ϕ∗ : X(M)→ X(M̃)

of their Lie algebras of vector fields. (In particular, ϕ∗([X ,Y ]) = [ϕ∗X ,ϕ∗Y ].) Suppose M̃ has
an affine connection ∇̃. For X ,Y ∈ X(M), define the vector field ∇XY ∈ X(M) by

ϕ∗(∇XY ) = ∇̃ϕ∗X (ϕ∗Y ).
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(a) Show that for all f ∈C∞(M), ϕ∗( f X) = ( f ◦ ϕ−1)ϕ∗X .
(b) Show that ∇ : X(M)×X(M)→ X(M) is an affine connection on M.

8.2. Riemannian connection and curvature under an isometry

(a) Now suppose that ϕ : M → M̃ is an isometry of Riemannian manifolds. Show that if ∇̃
is the Riemannian connection on M̃, then the connection defined in Problem 8.1 is the
Riemannian connection onM.

(b) Let R and R̃ be the curvature tensors of ∇ and ∇̃, respectively. Show that for all X ,Y,
Z ∈ X(M),

ϕ∗(R(X ,Y )Z) = R̃(ϕ∗X ,ϕ∗Y )ϕ∗Z.

8.3. Gaussian curvature is an isometric invariant
Suppose ϕ : M → M̃ is an isometry of smooth surfaces in R

3. Show that the Gaussian curva-
ture ofM at a point p ∈M is equal to the Gaussian curvature K̃ of M̃ at ϕ(p): Kp = K̃ϕ(p).
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§9 Generalizations to Hypersurfaces in R
n+1

Much of what we have done for surfaces in R
3 in the preceding sections generalizes

readily to higher dimensions. We now carry this out.

9.1 The Shape Operator of a Hypersurface

A hypersurface M in R
n+1 is a submanifold of codimension 1. Although all of our

hypersurfaces are by definition smooth, sometimes for emphasis we adopt the red-
undant locution “smooth hypersurface.” Assume that there is a smooth unit normal
vector field N onM; note that this is always possible locally on any hypersurface. By
Proposition 4.3 we know that the directional derivative D on Rn+1 is the Riemannian
connection of Rn+1.

For any point p ∈M and tangent vector Xp ∈ TpM, since 〈N,N〉 ≡ 1,

0= Xp〈N,N〉= 2〈DXpN,N〉.
Therefore, DXpN is tangent to M. The shape operator Lp : TpM → TpM is defined
to be

Lp(Xp) =−DXpN for Xp ∈ TpM.

Recall that X(M) is the vector space ofC∞ vector fields and F =C∞(M) the ring
ofC∞ functions onM. As the point p varies overM, the shape operator globalizes to
an F-linear map L : X(M)→ X(M) given by L(X)p = Lp(Xp).

Proposition 9.1. Let X ,Y ∈ X(M) be C∞ vector fields on an oriented hypersurface
M in Rn+1. Then

(i) 〈L(X),Y 〉= 〈DXY,N〉.
(ii) the shape operator is self-adjoint with respect to the Euclidean metric inherited

from R
n+1:

〈L(X),Y 〉= 〈X ,L(Y )〉.
Proof. Since 〈Y,N〉= 0, by the compatibility of D with the metric,

0= X〈Y,N〉= 〈DXY,N〉+ 〈Y,DXN〉.
Hence,

〈DXY,N〉= 〈Y,−DXN〉= 〈Y,L(X)〉. (9.1)

Reversing the roles of X and Y gives

〈DYX ,N〉= 〈X ,L(Y )〉. (9.2)

Since [X ,Y ] is tangent toM,
〈[X ,Y ],N〉= 0. (9.3)

By torsion-freeness, subtracting (9.2) and (9.3) from (9.1) gives

0= 〈DXY −DYX− [X ,Y ],N〉= 〈Y,L(X)〉−〈X ,L(Y )〉. ��
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Since the shape operator Lp : TpM → TpM is self-adjoint, all of its eigenvalues
λ1, . . . ,λn are real. These are the principal curvatures of the hypersurface M at p.
We define themean curvature ofM at p to be the average of the principal curvatures:

H(p) =
1
n

n

∑
i=1
λi =

1
n
tr(Lp),

and the Gaussian curvature at p to be the determinant of the shape operator:

K(p) =
n

∏
i=1
λi = det(Lp).

9.2 The Riemannian Connection of a Hypersurface

We learned earlier that the unique Riemannian connection of Rn+1 is the directional
derivative D.

Theorem 9.2. Let M be a smooth hypersurface inRn+1 and D the directional deriva-
tive on R

n+1. For X ,Y ∈ X(M), the tangential component of DXY defines the
Riemannian connection ∇ of M:

∇XY = (DXY )tan.

Proof. Since it is evident that ∇ satisfies the two defining properties of a connection,
it suffices to check that ∇XY is torsion-free and compatible with the metric.

1) Torsion-freeness: Let TD and T∇ be the torsions of D and ∇, respectively. By
definition, for X ,Y ∈ X(M),

DXY = ∇XY +(DXY )nor, (9.4)

DYX = ∇YX+(DYX)nor. (9.5)

Since D is torsion-free,
DXY −DYX = [X ,Y ].

Equating the normal components of both sides, we get (DXY )nor−(DYX)nor = 0.
Therefore, by (9.4) and (9.5),

0= TD(X ,Y ) = DXY −DYX− [X ,Y ]

=
(∇XY −∇YX− [X ,Y ]

)
+(DXY )nor− (DYX)nor

= ∇XY −∇YX− [X ,Y ] = T∇(X ,Y ).

2) Compatibility with the metric: For X ,Y,Z ∈ X(M),

X〈Y,Z〉= 〈DXY,Z〉+ 〈Y,DXZ〉
= 〈∇XY +(DXY )nor,Z〉+ 〈Y,∇XZ+(∇XY )nor〉
= 〈∇XY,Z〉+ 〈Y,∇XZ〉.

Therefore, ∇XY is the Riemannian connection on E. ��
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9.3 The Second Fundamental Form

At each point p of an oriented hypersurface M ⊂ R
n+1, there is a sequence of sym-

metric bilinear maps on TpM, called the first, second, and third fundamental forms,
and so on:

I(Xp,Yp) = 〈Xp,Yp〉,
II(Xp,Yp) = 〈L(Xp),Yp〉= 〈Xp,L(Yp)〉,
III(Xp,Yp) = 〈L2(Xp),Yp〉= 〈L(Xp),L(Yp)〉= 〈Xp,L

2(Yp)〉, . . . .
For X ,Y ∈ X(M), the directional derivative DXY decomposes into the sum of a

tangential component and a normal component. The tangential component (DXY )tan
is the Riemannian connection on M; the normal component (DXY )nor is essentially
the second fundamental form.

Proposition 9.3. If N is a smooth unit normal vector field on the hypersurface M in
R
n+1 and X ,Y ∈ X(M) are smooth vector fields on M, then

(DXY )nor = II(X ,Y )N.

Proof. The normal component (DXY )nor is a multiple of N, so

DXY = (DXY )tan+(DXY )nor
= ∇XY +λN

for some λ ∈ R. Taking the inner product of both sides with N gives

〈DXY,N〉= λ 〈N,N〉= λ .
Hence,

(DXY )nor = 〈DXY,N〉N
= 〈L(X),Y 〉N
= II(X,Y)N. ��

9.4 The Gauss Curvature and Codazzi–Mainardi Equations

LetM be an oriented, smooth hypersurface inRn+1, with a smooth unit normal vector
field N. The relation between the Riemannian connection D on R

n+1 and the Rie-
mannian connection on M implies a relation between the curvature RD(X ,Y )Z = 0
on Rn+1 and the curvature R(X ,Y )Z onM. The tangential component of this relation
gives the Gauss curvature equation, and the normal component gives the Codazzi-
Mainardi equation.

Theorem 9.4. If M is an oriented, smooth hypersurface in Rn+1 and X ,Y,Z ∈X(M),
then
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(i) (the Gauss curvature equation)

R(X ,Y ) = 〈L(Y ),Z〉L(X)−〈L(X),Z〉L(Y ).

(ii) (the Codazzi–Mainardi equation)

∇XL(Y )−∇YL(X)−L([X ,Y ]) = 0.

Proof. The proof is identical to that of Theorem 8.1. ��
Corollary 9.5. If M is a smooth oriented hypersurface in Rn+1 with curvature R and
X ,Y ∈ X(M), then

〈R(X ,Y )Y,X〉= II(X ,X) II(Y,Y )− II(X ,Y )2.

Proof. By the Gauss curvature equation,

〈R(X ,Y )Y,X〉= 〈L(Y ),Y 〉〈L(X),X〉−〈L(X),Y 〉〈L(Y ),X〉
= II(X ,X) II(Y,Y )− II(X ,Y )2. ��

When M is a surface in R
3 and Xp and Yp form an orthonormal basis for TpM,

the quantity on the right of the corollary is the Gaussian curvature of the surface at p
(see Corollary 5.7(ii) and Theorem 8.3(i)).



Chapter 2

Curvature and Differential Forms

In Chapter 1 we developed, in terms of vector fields, the classical theory of curvature
for curves and surfaces in R

3. There is a dual approach using differential forms.
Differential forms arise naturally even if one is interested only in vector fields. For
example, the coefficients of tangent vectors relative to a frame on an open set are
differential 1-forms on the open set. Differential forms are more supple than vector
fields: they can be differentiated and multiplied, and they behave functorially under
the pullback by a smooth map. In the 1920s and 30s Élie Cartan pioneered the use
of differential forms in differential geometry [4], and these have proven to be tools
of great power and versatility.

In this chapter, we redevelop the theory of connections and curvature in terms
of differential forms. First, in Section 10 we generalize the notion of a connection
from the tangent bundle to an arbitrary vector bundle. Then in Section 11 we show
how to represent connections, curvature, and torsion by differential forms. Finally,
in a demonstration of their utility, in Section 12 we use differential forms to reprove
Gauss’s Theorema Egregium.

§10 Connections on a Vector Bundle

The affine connection generalizes the directional derivative from R
n to an arbitrary

manifold, but does not include the case of the directional derivative of a vector field
along a submanifold of Rn. For that, we need the notion of a connection on a vector
bundle. An affine connection on a manifold is simply a connection on the tangent
bundle. Because of the asymmetry of the two arguments in a connection ∇Xs on a
vector bundle, the torsion is no longer defined, but the curvature still makes sense.

We define a Riemannian metric on a vector bundle, so that a Riemannian metric
on a manifold becomes a Riemannian metric on the tangent bundle. Compatibility
of a connection with the metric again makes sense. However, the lack of a concept

© Springer International Publishing AG 2017
L.W. Tu, Differential Geometry, Graduate Texts in Mathematics 275,
DOI 10.1007/978-3-319-55084-8 2

71



72 §10 Connections on a Vector Bundle

of torsion means that it is no longer possible to single out a unique connection on a
vector bundle such as the Riemannian connection on a Riemannian manifold.

A connection on a vector bundle turns out to be a local operator, and like all local
operators, it restricts to any open subset (Theorem 7.20).

10.1 Connections on a Vector Bundle

Definition 10.1. Let E →M be aC∞ vector bundle overM. A connection on E is a
map

∇ : X(M)×Γ(E)→ Γ(E)

such that for X ∈ X(M) and s ∈ Γ(E),
(i) ∇Xs is F-linear in X and R-linear in s;
(ii) (Leibniz rule) if f is a C∞ function on M, then

∇X ( f s) = (X f )s+ f∇Xs.
Since X f = (d f )(X), the Leibniz rule may be written as

∇X ( f s) = (d f )(X)s+ f∇Xs,
or, suppressing X ,

∇( f s) = d f · s+ f∇s.

Example. An affine connection on a manifold M is a connection on the tangent
bundle TM →M.

Example 10.2. Let M be a submanifold of Rn and E = TRn|M the restriction of the
tangent bundle of Rn to M. In Section 4.5, we defined the directional derivative

D : X(M)×Γ(TRn|M)→ Γ(TRn|M).
By Proposition 4.9, it is a connection on the vector bundle TRn|M .

We say that a section s ∈ Γ(E) is flat if ∇Xs= 0 for all X ∈ X(M).

Example 10.3 (Induced connection on a trivial bundle). Let E be a trivial bundle
of rank r over a manifold M. Thus, there is a bundle isomorphism φ : E →M×R

r,

called a trivialization for E over M. The trivialization φ : E ∼→ M×R
r induces

a connection on E as follows. If v1, . . . ,vr is a basis for Rr, then si : p �→ (p,vi),
i = 1, . . . ,r, define a global frame for the product bundle M ×R

r over M, and
ei = φ−1 ◦ si, i= 1, . . . ,r, define a global frame for E over M:

E M×R
rφ−1

M

ei
si
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So every section s ∈ Γ(E) can be written uniquely as a linear combination

s=∑hiei, hi ∈ F.

We can define a connection ∇ on E by declaring the sections ei to be flat and
applying the Leibniz rule and R-linearity to define ∇Xs:

∇Xs= ∇X
(

∑hiei
)
=∑(Xhi)ei. (10.1)

Exercise 10.4. Check that (10.1) defines a connection on the trivial bundle E.

The connection ∇ on a trivial bundle induced by a trivialization depends on the
trivialization, for the flat sections for ∇ are precisely the sections of E corresponding
to the constant sections of M×R

r under the trivialization.

10.2 Existence of a Connection on a Vector Bundle

In Section 10.1 we defined a connection on a vector bundle and exhibited a con-
nection on a trivial bundle. We will now show the existence of a connection on an
arbitrary vector bundle.

Let ∇0 and ∇1 be two connections on a vector bundle E over M. By the Leibniz
rule, for any vector field X ∈ X(M), section s ∈ Γ(E), and function f ∈C∞(M),

∇0X ( f s) = (X f )s+ f∇0Xs, (10.2)

∇1X ( f s) = (X f )s+ f∇1Xs. (10.3)

Hence,
(∇0X +∇1X )( f s) = 2(X f )s+ f (∇0X +∇1X )s. (10.4)

Because of the extra factor of 2 in (10.4) the sum of two connections does not satisfy
the Leibniz rule and so is not a connection. However, if we multiply (10.2) by 1− t
and (10.3) by t, then (1− t)∇0X + t∇1X satisfies the Leibniz rule. More generally, the
same idea can be used to prove the following proposition.

Proposition 10.5. Any finite linear combination∑ ti∇i of connections ∇i is a connec-
tion provided the coefficients add up to 1, that is, ∑ ti = 1.

A finite linear combination whose coefficients add up to 1 is called a convex
linear combination. Using Proposition 10.5, we now prove the existence of a
connection.

Theorem 10.6. Every C∞ vector bundle E over a manifold M has a connection.

Proof. Fix a trivializing open cover {Uα} for E and a partition of unity {ρα} subor-
dinate to {Uα}. On eachUα , the vector bundle E|Uα is trivial and so has a connection
∇α by Example 10.3. For X ∈ X(M) and s ∈ Γ(E), denote by sα the restriction of s
toUα and define ∇Xs=∑ρα∇αX sα .
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Although this looks like an infinite sum, it is in fact a finite sum in a neighbor-
hood of each point p in M, for by the local finiteness of {suppρα}, there is an open
neighborhood U of p that intersects only finitely many of the sets suppρα . This
means that on U all except finitely many of the ρα ’s are zero and so ∑ρα∇αXsα is a
finite sum onU with ∑ρα = 1.

By checking on the open set U , it is easy to show that ∇Xs is F-linear in X , is
R-linear in s, and satisfies the Leibniz rule. Hence, ∇ is a connection on E. ��

Note the similarity of this proof to the proof for the existence of a Riemannian
metric on a vector bundle (Theorem 10.8). For a linear combination of connections
to be a connection, we require the coefficients to sum to 1. On the other hand, for
a linear combination of Riemannian metrics to be a Riemannian metric, the require-
ment is that all the coefficients be nonnegative with at least one coefficient positive.

10.3 Curvature of a Connection on a Vector Bundle

The concept of torsion does not make sense for a connection on an arbitrary vector
bundle, but curvature still does. It is defined by the same formula as for an affine
connection: for X ,Y ∈ X(M) and s ∈ Γ(E),

R(X ,Y )s= ∇X∇Y s−∇Y∇Xs−∇[X ,Y ]s ∈ Γ(E).
So R is an R-multilinear map

X(M)×X(M)×Γ(E)→ Γ(E).

As before, R(X ,Y )s is F-linear in all three arguments and so it is actually defined
pointwise. Moreover, because Rp(Xp,Yp) is skew-symmetric in Xp and Yp, at every
point p there is an alternating bilinear map

Rp : TpM×TpM → Hom(Ep,Ep) =: End(Ep)

into the endomorphism ring of Ep. We call this map the curvature tensor of the
connection ∇.

10.4 Riemannian Bundles

We can also generalize the notion of a Riemannian metric to vector bundles. Let
E → M be a C∞ vector bundle over a manifold M. A Riemannian metric on E
assigns to each p ∈ M an inner product 〈 , 〉p on the fiber Ep; the assignment is
required to beC∞ in the following sense: if s and t areC∞ sections of E, then 〈s, t〉 is
aC∞ function on M.

Thus, a Riemannian metric on a manifold M is simply a Riemannian metric on
the tangent bundle TM. A vector bundle together with a Riemannian metric is called
a Riemannian bundle.
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Example 10.7. Let E be a trivial vector bundle of rank r over a manifold M, with
trivialization φ : E ∼−→ M×R

r. The Euclidean inner product 〈 , 〉Rr on R
r induces

a Riemannian metric on E via the trivialization φ : if u,v ∈ Ep, then the fiber map
φp : Ep → R

r is a linear isomorphism and we define

〈u,v〉= 〈φp(u),φp(v)〉Rr .

It is easy to check that 〈 , 〉 is a Riemannian metric on E.

The proof of Theorem 1.12 generalizes to prove the existence of a Riemannian
metric on a vector bundle.

Theorem 10.8. On any C∞ vector bundle π : E →M, there is a Riemannian metric.

Proof. Let {Uα ,ϕα : E|Uα ∼→Uα ×R
k} be a trivializing open cover for E. On E|Uα

there is a Riemannian metric 〈 , 〉α induced from the trivial bundle Uα ×R
k. Let

{ρα} be a partition of unity on M subordinate to the open cover {Uα}. By the same
reasoning as in Theorem 1.12, the sum

〈 , 〉 :=∑ρα〈 , 〉α
is a finite sum in a neighborhood of each point of M and is a Riemannian metric
on E. ��

10.5 Metric Connections

We say that a connection ∇ on a Riemannian bundle E is compatible with the metric
if for all X ∈ X(M) and s, t ∈ Γ(E),

X〈s, t〉= 〈∇Xs, t〉+ 〈s,∇Xt〉.
A connection compatible with the metric on a Riemannian bundle is also called a
metric connection.

Example. Let E be a trivial vector bundle of rank r over a manifold M, with trivial-
ization φ : E ∼−→M×R

r. We showed in Example 10.3 that the trivialization induces a
connection ∇ on E and in Example 10.7 that the trivialization induces a Riemannian
metric 〈 , 〉 on E.

Proposition 10.9. On a trivial vector bundle E over a manifold M with trivialization
φ : E ∼−→M×R

r, the connection ∇ on E induced by the trivialization φ is compatible
with the Riemannian metric 〈 , 〉 on E induced by the trivialization.

Proof. Let v1, . . . ,vr be an orthonormal basis for Rr and e1, . . . ,er the corresponding
global frame for E, where ei(p) = φ−1(p,vi). Then e1, . . . ,er is an orthonormal flat
frame for E with respect to the Riemannian metric and the connection on E induced
by φ . If s= ∑aiei and t = ∑b je j areC∞ sections of E, then

X〈s, t〉= X
(
∑aibi

)
(because e1, . . . ,er are orthonormal)

=∑(Xai)bi+∑aiXbi

= 〈∇Xs, t〉+ 〈s,∇Xt〉 (see (10.1)). ��
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Example 10.10 (Connection on TRn|M). If M is a submanifold of Rn, the Euclidean
metric on Rn restricts to a Riemannian metric on the vector bundle TRn|M . Sections
of the vector bundle TRn|M are vector fields along M in R

n. As noted in Example
10.2, the directional derivative in R

n induces a connection

D : X(M)×Γ(TRn|M)→ Γ(TRn|M).
Proposition 4.10 asserts that the connection D on TRn|M has zero curvature and is
compatible with the metric.

The Gauss curvature equation for a surfaceM inR3, a key ingredient of the proof
of Gauss’s Theorema Egregium, is a consequence of the vanishing of the curvature
tensor of the connection D on the bundle TR3|M (Theorem 8.1).

Lemma 10.11. Let E → M be a Riemannian bundle. Suppose ∇1, . . . ,∇m are con-
nections on E compatible with the metric and a1, . . . ,am are C∞ functions on M that
add up to 1. Then ∇= ∑i ai∇i is a connection on E compatible with the metric.

Proof. By Proposition 10.5, ∇ is a connection on E. It remains to check that ∇ is
compatible with the metric. If X ∈ X(M) and s, t ∈ Γ(E), then

X〈s, t〉= 〈∇iX s, t〉+ 〈s,∇iXt〉 (10.5)

for all i because ∇i is compatible with the metric. Now multiply (10.5) by ai and
sum:

X〈s, t〉=∑aiX〈s, t〉
=
〈
∑ai∇iX s, t

〉
+
〈
s,∑ai∇iX t

〉

= 〈∇Xs, t〉+ 〈s,∇Xt〉. ��
Proposition 10.12. On any Riemannian bundle E → M, there is a connection com-
patible with the metric.

Proof. Choose a trivializing open cover {Uα} for E. By Proposition 10.9, for each
trivializing open setUα of the cover, we can find a connection∇α on E|Uα compatible
with the metric. Let {ρα} be a partition of unity subordinate to the open cover {Uα}.
Because the collection {suppρα} is locally finite, the sum ∇ = ∑ρα∇α is a finite
sum in a neighborhood of each point. Since ∑ρα ≡ 1, by Lemma 10.11, ∇ is a
connection on E compatible with the metric. ��

10.6 Restricting a Connection to an Open Subset

A connection ∇ on a vector bundle E over M,

∇ : X(M)×Γ(E)→ Γ(E)

is F-linear in the first argument, but not F-linear in the second argument. However, it
turns out that the F-linearity in the first argument and the Leibniz rule in the second
argument are enough to imply that ∇ is a local operator.
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Proposition 10.13. Let ∇ be a connection on a vector bundle E over a manifold M,
X be a smooth vector field on M, and s a smooth section of E. If either X or s
vanishes identically on an open subset U, then ∇Xs vanishes identically on U. (see
Problem 7.2.)

Proof. Suppose X vanishes identically on U . Since ∇Xs is F-linear in X , by Propo-
sition 7.17, for any s ∈ Γ(E), ∇Xs vanishes identically onU .

Next, suppose s ≡ 0 on U and p ∈U . Choose a C∞ bump function f such that
f ≡ 1 in a neighborhood of p and supp f ⊂U . By our choice of f , the derivative
Xp f is zero. Since s vanishes on the support of f , we have f s ≡ 0 on M and so
∇X ( f s)≡ 0. Evaluating at p gives

0= (∇X ( f s))p = (X f )psp+ f (p)(∇Xs)p = (∇Xs)p.
Because p is an arbitrary point ofU , we conclude that ∇Xs vanishes identically onU .

��
In the same way that a local operator : Γ(E)→ Γ(F) can be restricted to any open

subset (Theorem 7.20), a connection on a vector bundle can be restricted to any open
subset. More precisely, given a connection ∇ on a vector bundle E, for every open
setU there is a connection

∇U : X(U)×Γ(U,E)→ Γ(U,E)

such that for any global vector field X̄ ∈ X(M) and global section s̄ ∈ Γ(E),

∇UX̄ |U (s̄|U ) = (∇X̄ s̄)|U .

Suppose X ∈ X(U) and s ∈ Γ(U,E). For any p ∈U , to define ∇UX s ∈ Γ(U,E)
first pick a global vector field X̄ and a global section s̄ ∈ Γ(E) that agree with X and
s in a neighborhood of p. Then define

(∇UX s)(p) = (∇X̄ s̄)(p). (10.6)

Because ∇X̄ s̄ is a local operator in X̄ and in s̄, this definition is independent of the
choice of X̄ and s̄. It is a routine matter to show that ∇U satisfies all the properties of
a connection on E|U (Problem 10.1).

10.7 Connections at a Point

Suppose ∇ is a connection on a vector bundle E over a manifold M. For X ∈ X(M)
and s ∈ Γ(E), since ∇Xs is F-linear in X , it is a point operator in X and Proposi-
tion 7.25 assures us that it can be defined pointwise in X : there is a unique map, also
denoted by ∇,

∇ : TpM×Γ(E)→ Ep
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such that if X ∈ X(M) and s ∈ Γ(E), then

∇Xps= (∇Xs)p.
It is easy to check that ∇Xps has the following properties: for Xp ∈ TpM and

s ∈ Γ(E),
(i) ∇Xps is R-linear in Xp and in s;
(ii) if f is aC∞ function onM, then

∇Xp( f s) = (Xp f )s(p)+ f (p)∇Xps.

Problems

10.1. Restriction of a connection to an open subset
Show that the restriction of a connection to an open subset U given by (10.6) defines a con-
nection on E|U .

10.2. Restriction of a Riemannian connection
Let U be an open subset of a Riemannian manifold M. Prove that if ∇ is the Riemannian
connection on M, then the restriction ∇U is the Riemannian connection onU .

10.3. Agreement on a curve
Given a connection ∇ on a vector bundle E → M, a point p in M, and a tangent vector Xp in
TpM, show that if two sections s and t of E agree on a curve through p inM with initial vector
Xp, then ∇Xps= ∇Xpt.
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§11 Connection, Curvature, and Torsion Forms

According to Gauss’s Theorema Egregium, if Rp is the curvature tensor at a point p
of a surface M in R

3 and u,v is any orthonormal frame for the tangent plane TpM,
then the Gaussian curvature of the surface at p is

Kp = 〈Rp(u,v)v,u〉. (11.1)

Since this formula does not depend on the embedding of the surface in R
3, but only

on the Riemannian structure of the surface, it makes sense for an abstract Riemannian
2-manifold and can be taken as the definition of the Gaussian curvature at a point of
such a surface, for example, the hyperbolic upper half-plane H2 (Problem 1.7). To
compute the Gaussian curvature from (11.1), one would need to compute first the
Riemannian connection ∇ using the six-term formula (6.8) and then compute the
curvature tensor Rp(u,v)v—a clearly nontrivial task.

One of the great advantages of differential forms is its computability, and so in
this section we shall recast connections, curvature, and torsion in terms of differen-
tial forms. This will lead to a simple computation of the Gaussian curvature of the
hyperbolic upper half-plane in the next section.

Relative to a frame for a vector bundle, a connection on the bundle can be repre-
sented by a matrix of 1-forms, and the curvature by a matrix of 2-forms. The relation
between these two matrices is the structural equation of the connection.

The Gram–Schmidt process in linear algebra turns anyC∞ frame of a Riemannian
bundle into an orthonormal frame. Relative to an orthonormal frame, the connection
matrix of a metric connection is skew-symmetric. By the structural equation, the cur-
vature matrix is also skew-symmetric. The skew-symmetry of the curvature matrix
of a metric connection will have important consequences in a later chapter.

On a tangent bundle, the torsion of a connection can also be represented by a
vector of 2-forms called the torsion forms. There is a structural equation relating the
torsion forms to the dual forms and the connection forms.

11.1 Connection and Curvature Forms

Let ∇ be a connection on a C∞ rank r vector bundle π : E → M. We are interested
in describing ∇ locally. Section 10.6 shows how on every open subset U of M, ∇
restricts to a connection on E|U →U :

∇U : X(U)×Γ(U,E)→ Γ(U,E).

We will usually omit the superscriptU and write ∇U as ∇.
Suppose U is a trivializing open set for E and e1, . . . ,er is a frame for E over

U (Proposition 7.22), and let X ∈ X(U) be a C∞ vector field on U . On U , since
any section s ∈ Γ(U,E) is a linear combination s = ∑a je j, the section ∇Xs can be
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computed from ∇Xe j by linearity and the Leibniz rule. As a section of E over U ,
∇Xe j is a linear combination of the ei’s with coefficients ω i

j depending on X :

∇Xe j =∑ω i
j(X)ei.

The F-linearity of ∇Xe j in X implies that ω i
j is F-linear in X and so ω i

j is a 1-form
on U (Corollary 7.27). The 1-forms ω i

j on U are called the connection forms, and
the matrix ω = [ω i

j] is called the connection matrix, of the connection ∇ relative to
the frame e1, . . . ,er onU .

Similarly, for X ,Y ∈ X(U), the section R(X ,Y )e j is a linear combination of
e1, . . . ,er:

R(X ,Y )e j =∑Ωi
j(X ,Y )ei.

Since
R(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ]

is alternating and is F-bilinear, so is Ωi
j. By Section 7.8, Ωi

j is a 2-form on U . The
2-forms Ωi

j are called the curvature forms, and the matrix Ω = [Ωi
j] is called the

curvature matrix, of the connection ∇ relative to the frame e1, . . . ,er onU .
Recall that if α and β are C∞ 1-forms and X and Y are C∞ vector fields on a

manifold, then
(α ∧β )(X ,Y ) = α(X)β (Y )−α(Y )β (X) (11.2)

and
(dα)(X ,Y ) = Xα(Y )−Yα(X)−α([X ,Y ]) (11.3)

([21, Section 3.7] and [21, Prop. 20.13]).

Theorem 11.1. Let ∇ be a connection on a vector bundle E →M of rank r. Relative
to a frame e1, . . . ,er for E over a trivializing open set U, the curvature forms Ωi

j are

related to the connection forms ω i
j by the second structural equation:

Ωi
j = dω i

j+∑
k

ω i
k ∧ωk

j .

Remark 11.2 (The Einstein summation convention). In classical differential geome-
try, it is customary to omit the summation sign∑whenever there is a pair of repeating
indices, one a superscript and the other a subscript. This is called the Einstein sum-
mation convention. For example, in the Einstein summation convention, aiei means
∑i a

iei. We will sometimes adopt this convention if it simplifies the appearance of a
proof without creating confusion.

Proof (of Theorem 11.1). Let X and Y be smooth vector fields onU . Then

∇X∇Y e j = ∇X∑
k

(ωk
j (Y )ek) (definition of connection forms)

=∑
k

Xωk
j (Y )ek+∑

k

ωk
j (Y )∇Xek (Leibniz rule)

=∑
i
Xω i

j(Y )ei+∑
i,k

ωk
j (Y )ω i

k(X)ei.
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Interchanging X and Y gives

∇Y∇Xe j =∑
i
Yω i

j(X)ei+∑
i,k

ωk
j (X)ω i

k(Y )ei.

Furthermore,

∇[X ,Y ]e j =∑
i
ω i

j([X ,Y ])ei.

Hence, in Einstein notation,

R(X ,Y )e j = ∇X∇Y e j −∇Y∇Xe j −∇[X ,Y ]e j
= (Xω i

j(Y )−Yω i
j(X)−ω i

j([X ,Y ]))ei

+(ω i
k(X)ω

k
j (Y )−ω i

k(Y )ω
k
j (X))ei

= dω i
j(X ,Y )ei+ω i

k ∧ωk
j (X ,Y )ei (by (11.3) and (11.2))

= (dω i
j+ω i

k ∧ωk
j )(X ,Y )ei.

Comparing this with the definition of the curvature form Ωi
j gives

Ωi
j = dω i

j+∑
k

ω i
k ∧ωk

j . ��

11.2 Connections on a Framed Open Set

Suppose E is a C∞ vector bundle over a manifold M and U is an open set on which
there is a C∞ frame e1, . . . ,er for E. We call U a framed open set for E for short.
A connection ∇ on E|U determines a unique connection matrix [ω i

j] relative to the
frame e1, . . . ,er. Conversely, any matrix of 1-forms [ω i

j] on U determines a connec-
tion on E|U as follows.

Given a matrix [ω i
j] of 1-forms onU , and X ,Y ∈ X(U), we set

∇Xe j =∑ω i
j(X)ei,

and define ∇XY by applying the Leibniz rule to Y = ∑h je j:

∇XY = ∇X (h je j) = (Xhj)e j+h jω i
j(X)ei

= ((Xhi)+h jω i
j(X))ei. (11.4)

With this definition, ∇ is a connection on E|U (Problem 11.2).

11.3 The Gram–Schmidt Process

The Gram–Schmidt process in linear algebra turns any linearly independent set of
vectors v1, . . . ,vn in an inner product space V into an orthonormal set with the same
span. Denote by proja b the orthogonal projection of b to the linear span of a. Then
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proja b=
〈b,a〉
〈a,a〉a.

To carry out the Gram–Schmidt process, we first create an orthogonal set
w1, . . . ,wn:

w1 = v1,

w2 = v2−projw1
v2

= v2− 〈v2,w1〉
〈w1,w1〉w1,

w3 = v3−projw1
v3−projw2

v3 (11.5)

= v3− 〈v3,w1〉
〈w1,w1〉w1− 〈v3,w2〉

〈w2,w2〉w2,

and so on.

Proposition 11.3. In the Gram–Schmidt process (11.5), for each k, the set w1, . . . ,wk

span the same linear subspace of V as v1, . . . ,vk.

Proof. Let 〈w1, . . . ,wk〉 be the linear subspace of V spanned by w1, . . . ,wk. From
(11.5), it is clear that each vi is a linear combination of w1, . . . ,wi. Hence, we have
〈v1, . . . ,vk〉 ⊂ 〈w1, . . . ,wk〉.

We prove the reverse inequality by induction. The base case 〈w1〉 ⊂ 〈v1〉 is triv-
ially true. Suppose 〈w1, . . . ,wk−1〉 ⊂ 〈v1, . . . ,vk−1〉. Then (11.5) shows that

wk = vk−
k−1

∑
i=1

〈vk,wi〉
〈wi,wi〉wi ∈ 〈v1, . . . ,vk〉.

Hence, 〈w1, . . . ,wk〉 ⊂ 〈v1, . . . ,vk〉. ��
Since v1, . . . ,vk are linearly independent, the subspace 〈v1, . . . ,vk〉 has dimen-

sion k. Thus, w1, . . . ,wk is a basis for 〈v1, . . . ,vk〉= 〈w1, . . . ,wk〉. In particular, none
of the vectors w1, . . . ,wk is 0. It is easy to check that w1, . . . ,wn is an orthogonal set.
To get an orthonormal set e1, . . . ,en, define

ei =
wi

‖wi‖ . (11.6)

The Gram–Schmidt process can also be applied to a frame v1, . . . ,vn for a vector
bundle over an open set U . We see from (11.5) and (11.6) that it is a C∞ process: if
the sections v1, . . . ,vn of E areC∞ overU , so are the orthonormal sections e1, . . . ,en.

11.4 Metric Connection Relative to an Orthonormal Frame

In the preceding subsections we saw that on a framed open setU for a vector bundle
E → M, a connection is completely specified by a matrix [ω i

j] of 1-forms on U .
Suppose now that the vector bundle E → M is endowed with a Riemannian metric.
The defining property of a metric connection can be translated into a condition on
the connection matrix [ω i

j] relative to an orthonormal frame.



11.4 Metric Connection Relative to an Orthonormal Frame 83

Proposition 11.4. Let E →M be a Riemannian bundle and ∇ a connection on E.

(i) If the connection ∇ is compatible with the metric, then its connection matrix [ω i
j]

relative to any orthonormal frame e1, . . . ,er for E over a trivializing open set
U ⊂M is skew-symmetric.

(ii) If every point p ∈M has a trivializing neighborhood U for E such that the con-
nection matrix [ω i

j] relative to an orthonormal frame e1, . . . ,er for E over U is
skew-symmetric, then the connection ∇ is compatible with the metric.

Proof. (i) Suppose ∇ is compatible with the metric. For all X ∈ X(U) and i, j,

0= X〈ei,e j〉= 〈∇Xei,e j〉+ 〈ei,∇Xe j〉
= 〈ωk

i (X)ek,e j〉+ 〈ei,ωk
j (X)ek〉

= ωk
i (X)δk j+ωk

j (X)δik (δi j = Kronecker delta)

= ω j
i (X)+ω

i
j(X).

Hence,
ω j
i =−ω i

j.

(ii) We note first that compatibility with the metric is a local condition, so ∇
is compatible with the metric if and only if its restriction ∇U to any open set U is
compatible with the metric. Suppose ω j

i =−ω i
j. Let s= ∑aiei and t = ∑b je j, with

ai,b j ∈C∞(U). Then

X〈s, t〉= X
(
∑aibi

)
=∑(Xai)bi+∑aiXbi.

∇Xs= ∇X (aiei) = (Xai)ei+ai∇Xei
= (Xai)ei+aiωk

i (X)ek,

〈∇Xs, t〉=∑(Xai)bi+∑aiω j
i (X)b

j, (11.7)

〈s,∇Xt〉=∑(Xbi)ai+∑biω j
i (X)a

j

=∑(Xbi)ai+∑aib jω i
j(X). (11.8)

But by the skew-symmetry of ω ,

∑aib jω j
i (X)+∑aib jω i

j(X) = 0.

Hence, adding (11.7) and (11.8) gives

〈∇Xs, t〉+ 〈s,∇Xt〉=∑(Xai)bi+∑(Xbi)ai

= X〈s, t〉. ��

Proposition 11.5. If the connection matrix [ω i
j] relative to a frame e1, . . . ,en of

an affine connection on a manifold is skew-symmetric, then so is the curvature
matrix [Ωi

j].
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Proof. By the structural equation (Theorem 11.1),

Ω j
i = dω j

i +ω
j
k ∧ωk

i

=−dω i
j+(−ωk

j )∧ (−ω i
k) (skew-symmetry of [ω i

j])

=−dω i
j −ω i

k ∧ωk
j (anticommutativity of ∧)

=−Ωi
j. ��

By Propositions 11.4 and 11.5, if a connection on a Riemannian bundle is com-
patible with the metric, then its curvature matrix Ω relative to an orthonormal frame
is skew-symmetric.

11.5 Connections on the Tangent Bundle

A connection on the tangent bundle TM of a manifoldM is simply an affine connec-
tion on M. In addition to the curvature tensor R(X ,Y )Z, an affine connection has a
torsion tensor T (X ,Y ).

Let U be an open set in M on which the tangent bundle TM has a smooth
frame e1, . . . ,en. If U is a coordinate open set with coordinates x1, . . . ,xn, then
∂/∂x1, . . . ,∂/∂xn is such a frame, but we will consider the more general setting
where U need not be a coordinate open set. Let θ 1, . . . ,θ n be the dual frame of
1-forms onU ; this means

θ i(e j) = δ ij.

Proposition 11.6. If X is a smooth vector field on the open setU, then X =∑θ i(X)ei.

Proof. Since e1, . . . ,en is a frame for the tangent bundle TM overU ,

X =∑a je j

for some C∞ functions a j ∈C∞(U). Applying θ i to both sides gives

θ i(X) =∑
j
θ i(a je j) =∑

j
a jδ ij = ai.

Therefore,
X =∑θ i(X)ei. ��

For X ,Y ∈ X(U), the torsion T (X ,Y ) is a linear combination of the vector fields
e1, . . . ,en, so we can write

T (X ,Y ) =∑τ i(X ,Y )ei.
Since T (X ,Y ) is alternating and F-bilinear, so are the coefficients τ i. Therefore, the
τ i’s are 2-forms onU , called the torsion forms of the affine connection ∇ relative to
the frame e1, . . . ,en onU .

Since the torsion and curvature forms are determined completely by the frame
e1, . . . ,en and the connection, there should be formulas for τ i and Ωi

j in terms of the
dual forms and the connection forms. Indeed, Theorem 11.1 expresses the curvature
forms in terms of the connection forms alone.
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Theorem 11.7 (Structural equations). Relative to a frame e1, . . . ,en for the tangent
bundle over an open set U of a manifold M, the torsion and curvature forms of an
affine connection on M can be given in terms of the dual 1-forms and the connection
forms:

(i) (the first structural equation) τ i = dθ i+∑ jω i
j ∧θ j;

(ii) (the second structural equation) Ωi
j = dω i

j+∑kω i
k ∧ωk

j .

Proof. The second structural equation (ii) is a special case of Theorem 11.1, which
is true more generally for any vector bundle. The proof of the first structural equation
(i) is a matter of unraveling the definition of torsion. Let X and Y be smooth vector
fields onU . By Proposition 11.6, we can write

Y =∑θ j(Y )e j.

Then

∇XY = ∇X (θ j(Y )e j)

= (Xθ j(Y ))e j+θ j(Y )∇Xe j (Leibniz rule)

= (Xθ j(Y ))e j+θ j(Y )ω i
j(X)ei (definition of connection form).

By symmetry,
∇YX =

(
Yθ j(X)

)
e j+θ j(X)ω i

j(Y )ei.

Finally, by Proposition 11.6 again,

[X ,Y ] = θ i([X ,Y ])ei.

Thus,

T (X ,Y ) = ∇XY −∇YX− [X ,Y ]

=
((

(Xθ i(Y )−Yθ i(X)−θ i([X ,Y ]))+ (ω i
j(X)θ j(Y )−ω i

j(Y )θ j(X)
))

ei

= (dθ i+ω i
j ∧θ j)(X ,Y )ei,

where the last equality follows from (11.3) and (11.2). Hence,

τ i = dθ i+∑ω i
j ∧θ j. ��

We can now translate the two defining properties of the Riemannian connection
into conditions on the matrix [ω i

j].

Proposition 11.8. Let M be a Riemannian manifold and U an open subset on which
there is an orthonormal frame e1, . . . ,en. Let θ 1, . . . ,θ n be the dual frame of 1-forms.
Then there exists a unique skew-symmetric matrix [ω i

j] of 1-forms such that

dθ i+∑
j
ω i

j ∧θ j = 0 for all i= 1, . . . ,n. (11.9)



86 §11 Connection, Curvature, and Torsion Forms

Proof. In Theorem 6.6 we showed the existence of a Riemannian connection ∇ on
any manifold. Let [ω i

j] be the connection matrix of ∇ relative to the orthonormal
frame e1, . . . ,en onU . Because ∇ is compatible with the metric, by Proposition 11.4,
the matrix [ω i

j] is skew-symmetric. Because ∇ is torsion-free, by Theorem 11.7, it
satisfies

dθ i+∑
j
ω i

j ∧θ j = 0.

This proves the existence of the matrix [ω i
j] with the two required properties.

To prove uniqueness, suppose [ω i
j] is any skew-symmetric matrix of 1-forms on

U satisfying (11.9). In Section 11.2, taking the vector bundle E to be the tangent bun-
dle TM, we showed that [ω i

j] defines an affine connection ∇ on U of which it is the
connection matrix relative to the frame e1, . . . ,en. Because [ω i

j] is skew-symmetric,
∇ is compatible with the metric (Proposition 11.4), and because [ω i

j] satisfies the
equations (11.9), ∇ is torsion-free (Theorem 11.7). Thus, ∇ is the unique Rieman-
nian connection onU . ��

If A= [α i
j] and B= [β i

j] are matrices of differential forms onM with the number
of columns of A equal to the number of rows of B, then their wedge product A∧B is
defined to be the matrix of differential forms whose (i, j)-entry is

(A∧B)ij =∑
k

α i
k ∧β k

j ,

and dA is defined to be [dα i
j]. In matrix notation, we write

τ =

⎡

⎢
⎣

τ1
...
τn

⎤

⎥
⎦ , θ =

⎡

⎢
⎣

θ 1
...
θ n

⎤

⎥
⎦ , ω = [ω i

j], Ω= [Ωi
j].

Then the first structural equation becomes

τ = dθ +ω ∧θ

and the second structural equation becomes

Ω= dω+ω ∧ω.

Problems

11.1. Connection and curvature forms on the Poincaré disk
The Poincaré disk is the open unit disk

D= {z= x+ iy ∈ C | |z|< 1}
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in the complex plane with Riemannian metric

〈 , 〉z = 4(dx⊗dx+dy⊗dy)

(1−|z|2)2 =
4(dx⊗dx+dy⊗dy)

(1− x2− y2)2
.

An orthonormal frame for D is

e1 =
1
2
(1−|z|2) ∂

∂x
, e2 =

1
2
(1−|z|2) ∂

∂y
.

Find the connection matrix ω = [ω i
j] and the curvature matrix Ω = [Ωi

j] relative to the ort-
honormal frame e1,e2 of the Riemannian connection ∇ on the Poincaré disk. (Hint: First find
the dual frame θ1, θ2. Then solve for ω i

j in (11.9).)

11.2. Connection defined by a matrix of 1-forms
Show that (11.4) defines a connection on a vector bundle E over a framed open setU .
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§12 The Theorema Egregium Using Forms

In Section 8 we proved Gauss’s Theorema Egregium using vector fields. In this
section we reprove the theorem, but using differential forms. An essential step is
the derivation of a differential-form analogue of the Gauss curvature equation. The
Theorema Egregium gives an intrinsic characterization of the Gaussian curvature of
a surface, dependent only on the metric and independent of the embedding of the
surface in a Euclidean space. This characterization can be taken as the definition of
the Gaussian curvature of an abstract Riemannian 2-manifold. As an example, we
compute the Gaussian curvature of the Poincaré half-plane.

12.1 The Gauss Curvature Equation

The Gauss curvature equation (Theorem 8.1) for an oriented surfaceM in R3 relates
the curvature tensor to the shape operator. It has an analogue in terms of differential
forms.

Consider a smooth surface M in R
3 and a point p in M. Let U be an open

neighborhood of p inM on which there is an orthonormal frame e1,e2. This is always
possible by the Gram–Schmidt process, which turns any frame into an orthonormal
frame. Let e3 be the cross product e1 × e2. Then e1,e2,e3 is an orthonormal frame
for the vector bundle TR3|U overU .

For the connectionD on the bundle TR3|M , let [ω i
j] be the connection matrix of 1-

forms relative to the orthonormal frame e1,e2,e3 overU . Since D is compatible with
the metric and the frame e1,e2,e3 is orthonormal, the matrix [ω i

j] is skew-symmetric
(Proposition 11.4). Hence, for X ∈ X(M),

DXe1 = − ω1
2 (X)e2 − ω1

3 (X)e3, (12.1)

DXe2 = ω1
2 (X)e1 − ω2

3 (X)e3, (12.2)

DXe3 = ω1
3 (X)e1 + ω2

3 (X)e2. (12.3)

Let ∇ be the Riemannian connection on the surface M. Recall that for X ,Y ∈
X(M), the directional derivative DXY need not be tangent to the surfaceM, and ∇XY
is simply the tangential component (DXY )tan of DXY . By (12.1) and (12.2),

∇Xe1 = (DXe1)tan =−ω1
2 (X)e2,

∇Xe2 = (DXe2)tan = ω1
2 (X)e1.

It follows that the connection matrix of the Riemannian connection ∇ on M is

ω =

[
0 ω1

2
−ω1

2 0

]

=

[
0 1

−1 0

]

ω1
2 .
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Since

ω ∧ω =

[
0 ω1

2
−ω1

2 0

]

∧
[

0 ω1
2

−ω1
2 0

]

=

[−ω1
2 ∧ω1

2 0
0 −ω1

2 ∧ω1
2

]

=

[
0 0
0 0

]

,

the curvature matrix of ∇ is

Ω= dω+ω ∧ω = dω =

[
0 dω1

2
−dω1

2 0

]

=

[
0 1

−1 0

]

dω1
2 .

So the curvature matrix of ∇ is completely described by

Ω1
2 = dω1

2 . (12.4)

Set the unit normal vector field N on U to be N = −e3. By (12.3), the shape
operator L is described by

L(X) =−DXN = DXe3 = ω1
3 (X)e1+ω2

3 (X)e2, X ∈ X(M). (12.5)

Theorem 12.1 (Gauss curvature equation). Let e1,e2 be an orthonormal frame of
vector fields on an oriented open subset U of a surface M in R

3, and let e3 be a
unit normal vector field on U. Relative to e1,e2,e3, the curvature form Ω1

2 of the
Riemannian connection on M is related to the connection forms of the directional
derivative D on the bundle TR3|M by

Ω1
2 = ω1

3 ∧ω2
3 . (12.6)

We call formula (12.6) the Gauss curvature equation, because on the left-hand
side, Ω1

2 describes the curvature tensor of the surface, while on the right-hand side,
ω1
3 and ω2

3 describe the shape operator.

Proof. Let Ω̃i
j be the curvature forms of the connection D on TR3|M . Because the

curvature tensor of D is zero, the second structural equation for Ω̃ gives

Ω̃i
j = dω i

j+∑
k

ω i
k ∧ωk

j = 0. (12.7)

In particular,
dω1

2 +ω1
1 ∧ω1

2 +ω1
2 ∧ω2

2 +ω1
3 ∧ω3

2 = 0.

Since ω1
1 = ω2

2 = 0, this reduces to

dω1
2 +ω1

3 ∧ω3
2 = 0.

Since the matrix [ω i
j] is skew-symmetric,

dω1
2 = ω1

3 ∧ω2
3 .

The Gauss curvature equation now follows from (12.4).
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12.2 The Theorema Egregium

Keeping the same notations as in the preceding subsection, we will derive formulas
for the Gaussian curvature of a surface in R

3, first in terms of the connection forms
for the directional derivative and then in terms of the curvature form Ω1

2.

Proposition 12.2. For a smooth surface in R3, if e1,e2 is an orthonormal frame over
an oriented open subset U of the surface and e3 is a unit normal vector field on U,
then the Gaussian curvature K on U is given by

K = det

[
ω1
3 (e1) ω1

3 (e2)
ω2
3 (e1) ω2

3 (e2)

]

= (ω1
3 ∧ω2

3 )(e1,e2).

Proof. From (12.5),

L(e1) = ω1
3 (e1)e1+ω2

3 (e1)e2,

L(e2) = ω1
3 (e2)e1+ω2

3 (e2)e2.

So the matrix of L relative to the frame e1,e2 is
[
ω1
3 (e1) ω1

3 (e2)
ω2
3 (e1) ω2

3 (e2)

]

.

Therefore,

K = detL= det

[
ω1
3 (e1) ω1

3 (e2)
ω2
3 (e1) ω2

3 (e2)

]

= ω1
3 (e1)ω2

3 (e2)−ω1
3 (e2)ω2

3 (e1) = (ω1
3 ∧ω2

3 )(e1,e2). ��

Theorem 12.3 (Theorema Egregium). For a smooth surface in R
3, if e1,e2 is an

orthonormal frame over an open subset U of the surface with dual frame θ 1,θ 2, then
the Gaussian curvature K on U is given by

K =Ω1
2(e1,e2) (12.8)

or by
dω1

2 = Kθ 1∧θ 2. (12.9)

Proof. Formula (12.8) is an immediate consequence of Proposition 12.2 and the
Gauss curvature equation (12.6).

As for (12.9), since

K = K(θ 1∧θ 2)(e1,e2) =Ω1
2(e1,e2)

and a 2-form on U is completely determined by its value on e1,e2, we have Ω1
2 =

Kθ 1∧θ 2. By (12.4),
dω1

2 = Kθ 1∧θ 2. ��
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Since Ω1
2 depends only on the metric and not on the embedding of the surface

in R
3, formula (12.8) shows that the same is true of the Gaussian curvature. We

can therefore take this formula to be the definition of the Gaussian curvature of an
abstract Riemannian 2-manifold. It is consistent with the formula in the first version
(Theorem 8.3) of the Theorema Egregium, for by the definition of the curvature
matrix, if e1,e2 is an orthonormal frame on an open subsetU ofM, then

R(X ,Y )e2 =Ω1
2(X ,Y )e1 for all X ,Y ∈ X(U).

so that
〈R(e1,e2)e2,e1〉= 〈Ω1

2(e1,e2)e1,e1〉=Ω1
2(e1,e2).

Definition 12.4. The Gaussian curvature K at a point p of a Riemannian 2-
manifold M is defined to be

Kp = 〈Rp(u,v)v,u〉 (12.10)

for any orthonormal basis u,v for the tangent plane TpM.

For the Gaussian curvature to be well defined, we need to show that for-
mula (12.10) is independent of the choice of orthonormal basis. This we do in the
next section.

12.3 Skew-Symmetries of the Curvature Tensor

Recall that the curvature of an affine connection ∇ on a manifold M is defined to be

R : X(M)×X(M)×X(M)→ X(M),

R(X ,Y )Z = ∇X∇YZ−∇Y∇XZ−∇[X ,Y ]Z.
We showed that R(X ,Y )Z is F-linear in every argument; therefore, it is a point oper-
ator. A point operator is also called a tensor. It is immediate from the definition that
the curvature tensor R(X ,Y )Z is skew-symmetric in X and Y .

Proposition 12.5. If an affine connection ∇ on a Riemannian manifold M is com-
patible with the metric, then for vector fields X, Y , Z, W ∈ X(M), the tensor
〈R(X ,Y )Z,W 〉 is skew-symmetric in Z and W.

Proof. Because 〈R(X ,Y )Z,W 〉 is a tensor, it is enough to check its skew-symmetry
locally, for example, on an open set U on which there is a frame e1, . . . ,en. By
Gram–Schmidt, we may assume that the frame e1, . . . ,en is orthonormal. Then

〈R(X ,Y )e j,ei〉=Ωi
j(X ,Y ).

Since ∇ is compatible with the metric, its curvature matrix Ω = [Ωi
j] relative to an

orthonormal frame is skew-symmetric. Therefore,

〈R(X ,Y )e j,ei〉=Ωi
j(X ,Y ) =−Ω j

i (X ,Y ) =−〈R(X ,Y )ei,e j〉.
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OnU , we can write Z=∑ziei andW =∑wje j for someC∞ functions zi, wj ∈C∞(U).
Then

〈R(X ,Y )Z,W 〉=∑ziw j〈R(X ,Y )ei,e j〉=−∑ziw j〈R(X ,Y )e j,ei〉
=−〈R(X ,Y )W,Z〉. ��

We now show that 〈R(u,v)v,u〉 is independent of the orthonormal basis u,v for
TpM. Suppose ū, v̄ is another orthonormal basis. Then

ū= au+bv,

v̄= cu+dv

for an orthogonal matrix A=

[
a b
c d

]

, and

〈R(ū, v̄)v̄, ū〉= 〈(detA)R(u,v)(cu+dv),au+dv〉
= (detA)2〈R(u,v)v,u〉

by the skew-symmetry of 〈R(u,v)z,w〉 in z and w. Since A ∈ O(2), detA = ±1.
Hence,

〈R(ū, v̄)v̄, ū〉= 〈R(u,v)v,u〉.

12.4 Sectional Curvature

LetM be a Riemannian manifold and p a point inM. If P is a 2-dimensional subspace
of the tangent space TpM, then we define the sectional curvature of P to be

K(P) = 〈R(e1,e2)e2,e1〉 (12.11)

for any orthonormal basis e1,e2 of P. Just as in the definition of the Gaussian cur-
vature, the right-hand side of (12.11) is independent of the orthonormal basis e1,e2
(cf§12.3).

If u,v is an arbitrary basis for the 2-plane P, then a computation similar to that in
§8.3 shows that the sectional curvature of P is also given by

K(P) =
〈R(u,v)v,u〉

〈u,u〉〈v,v〉−〈u,v〉2 .

12.5 Poincaré Half-Plane

Example 12.6 (The Gaussian curvature of the Poincaré half-plane). The Poincaré
half-plane is the upper half-plane

H
2 = {(x,y) ∈ R

2 | y> 0}
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with the metric:

〈 , 〉(x,y) =
dx⊗dx+dy⊗dy

y2
.

Classically, the notation for a Riemannian metric is ds2. Hence, the metric on the
Poincaré half-plane is

ds2 =
dx⊗dx+dy⊗dy

y2
.

With this metric, an orthonormal frame is

e1 = y
∂
∂x

, e2 = y
∂
∂y

.

So the dual frame is

θ 1 =
1
y
dx, θ 2 =

1
y
dy.

Hence,

dθ 1 =
1
y2

dx∧dy, dθ 2 = 0. (12.12)

On the Poincaré half-plane the connection form ω1
2 is a linear combination of dx

and dy, so we may write
ω1
2 = adx+bdy. (12.13)

We will determine the coefficients a and b from the first structural equation:

dθ 1 =−ω1
2 ∧θ 2, (12.14)

dθ 2 =−ω2
1 ∧θ 1 = ω1

2 ∧θ 1. (12.15)

By (12.12), (12.13), and (12.14),

1
y2

dx∧dy= dθ 1 =−(adx+bdy)∧ 1
y
dy=−a

y
dx∧dy.

So a=−1/y. By (12.12), (12.13), and (12.15),

0= dθ 2 = (−1
y
dx+bdy)∧ 1

y
dx=−b

y
dx∧dy.

So b= 0. Therefore,

ω1
2 =−1

y
dx,

dω1
2 =

1
y2

dy∧dx

=− 1
y2

dx∧dy.
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By definition, the Gaussian curvature of the Poincaré half-plane is

K =Ω1
2(e1,e2) =− 1

y2
(dx∧dy)

(
y
∂
∂x

,y
∂
∂y
)

=−(dx∧dy)
( ∂
∂x

,
∂
∂y
)
=−1.

Problems

12.1. The orthogonal group O(2)

(a) Show that an element A of the orthogonal group O(2) is either

A=

[
a −b
b a

]

or

[
a b
b −a

]

,

where a2+b2 = 1, a,b ∈ R.
(b) Let SO(2) = {A ∈ O(2) | detA= 1}. Show that every element A of SO(2) is of the form

A=

[
cos t −sin t
sin t cos t

]

, t ∈ R.

Thus, SO(2) is the group of rotations about the origin in R
2.

Let J =

[
1 0
0 −1

]

. Then O(2) = SO(2)∪ SO(2)J. This proves that O(2) has two connected

components, each diffeomorphic to the circle S1.

12.2. Gaussian curvature of the Euclidean plane
Let e1 = ∂/∂x,e2 = ∂/∂y be the standard orthonormal frame on R2. Compute the connection
formω1

2 relative to e1,e2 of the Riemannian connection onR2, and then compute the Gaussian
curvatureC.

12.3. Gaussian curvature of a non-Euclidean plane
Let h(x) be a C∞ positive function on R; thus, h(x) > 0 for all x ∈ R. At each (x,y) ∈ R

2,
define

〈 , 〉(x,y) = dx⊗dx+h(x)2 dy⊗dy.

(a) Show that 〈 , 〉 is a Riemannian metric on R2.
(b) Compute the Gaussian curvature of R2 with this metric.

12.4. Gaussian curvature of the Poincaré disk
Compute the Gaussian curvature of the Poincaré disk defined in Problem 11.1.

12.5. Gaussian curvature under a conformal map
Let T : M → M′ be a diffeomorphism of Riemannian manifolds of dimension 2. Suppose at
each point p ∈M, there is a positive number a(p) such that

〈T∗v,T∗w〉M′,T (p) = a(p)〈v,w〉M,p

for all u,v ∈ Tp(M). Find the relation between the Gaussian curvatures ofM andM′.



Chapter 3

Geodesics

A geodesic on a Riemannian manifold is the analogue of a line in Euclidean space.
One can characterize a line in Euclidean space in several equivalent ways, among
which are the following:

(1) A line is “straight” in the sense that it has a parametrization with a constant
velocity vector field.

(2) A line connecting two points gives the shortest distance between the two points.

These two properties are not necessarily equivalent on a Riemannian manifold. We
define a geodesic by generalizing the notion of “straightness.” For this, it is not
necessary to have a metric, but only a connection. On a Riemannian manifold, of
course, there is always the unique Riemannian connection, and so one can speak of
geodesics on a Riemannian manifold.

§13 More on Affine Connections

This chapter is a compilation of some properties of an affine connection that will
prove useful later. First we discuss how an affine connection on a manifold M ind-
uces a unique covariant derivative of vector fields along a smooth curve in M. This
generalizes the derivative dV/dt of a vector field V along a smooth curve in R

n.
Secondly, we present a way of describing a connection in local coordinates, using
the so-called Christoffel symbols.

13.1 Covariant Differentiation Along a Curve

Let c : [a,b] → M be a smooth parametrized curve in a manifold M. Recall that a
vector field along the curve c in M is a function

V : [a,b]→
∐

t∈[a,b]
Tc(t)M,

© Springer International Publishing AG 2017
L.W. Tu, Differential Geometry, Graduate Texts in Mathematics 275,
DOI 10.1007/978-3-319-55084-8 3
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where
∐

stands for the disjoint union, such that V (t) ∈ Tc(t)M (Figure 13.1). Such a
vector field V (t) is C∞ if for any C∞ function f on M, the function V (t) f is C∞ as a
function of t. We denote the vector space of all C∞ vector fields along the curve c(t)
by Γ(TM|c(t)).

p
c(t)

V

Fig. 13.1. Vector field along a curve c(t) in M.

For a smooth vector field V (t) = ∑vi(t)∂/∂xi along a smooth curve c(t) in R
n,

we defined its derivative dV/dt by differentiating the components vi(t) with respect
to t. Then dV/dt = ∑ v̇i∂/∂xi satisfies the following properties:

(i) dV/dt is R-linear in V ;
(ii) for any C∞ function f on [a,b],

d( fV )
dt

=
d f
dt

V + f
dV
dt

;

(iii) (Proposition 4.11) if V is induced from a C∞ vector field Ṽ on R
n, in the sense

that V (t) = Ṽc(t) and D is the directional derivative in Rn, then

dV
dt

= Dc′(t)Ṽ .

It turns out that to every connection ∇ on a manifold M one can associate a way
of differentiating vector fields along a curve satisfying the same properties as the
derivative above.

Theorem 13.1. Let M be a manifold with an affine connection ∇, and c : [a,b]→M
a smooth curve in M. Then there is a unique map

D
dt

: Γ(TM|c(t))→ Γ(TM|c(t))

such that for V ∈ Γ(TM|c(t)),
(i) (R-linearity) DV/dt is R-linear in V;
(ii) (Leibniz rule) for any C∞ function f on the interval [a,b],

D( fV )
dt

=
d f
dt

V + f
DV
dt

;
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(iii) (Compatibility with ∇) if V is induced from a C∞ vector field Ṽ on M, in the
sense that V (t) = Ṽc(t), then

DV
dt

(t) = ∇c′(t)Ṽ .

We call DV/dt the covariant derivative (associated to ∇) of the vector field V
along the curve c(t) in M.

Proof. Suppose such a covariant derivative D/dt exists. On a framed open set
(U,e1, . . . ,en), a vector field V (t) along c can be written as a linear combination

V (t) =∑vi(t)ei,c(t).

Then

DV
dt

=∑ D
dt

(
vi(t)ei,c(t)

)
(by property (i))

=∑ dvi

dt
ei+ vi

Dei
dt

(by property (ii))

=∑ dvi

dt
ei+ vi∇c′(t)ei (by property (iii)), (13.1)

where we abuse notation and write ei instead of ei,c(t). This formula proves the
uniqueness of D/dt if it exists.

As for existence, we define DV/dt for a curve c(t) in a framed open setU by the
formula (13.1). It is easily verified that DV/dt satisfies the three properties (i), (ii),
(iii) (Problem 13.1). Hence,D/dt exists for curves inU . If ē1, . . . , ēn is another frame
on U , then V (t) is a linear combination ∑ v̄i(t)ēi,c(t) and the covariant derivative
D̄V/dt defined by

D̄V
dt

=∑
i

dv̄i

dt
ēi+ v̄i∇c′(t)ēi

also satisfies the three properties of the theorem. By the uniqueness of the covariant
derivative, DV/dt = D̄V/dt. This proves that the covariant derivative DV/dt is ind-
ependent of the frame. By covering M with framed open sets, (13.1) then defines a
covariant derivative DV/dt for the curve c(t) in M. ��
Theorem 13.2. Let M be a Riemannian manifold, ∇ an affine connection on M, and
c : [a,b]→M a smooth curve in M. If ∇ is compatible with the metric, then for any
smooth vector fields V,W along c,

d
dt

〈V,W 〉=
〈
DV
dt

,W

〉

+

〈

V,
DW
dt

〉

.

Proof. It suffices to check this equality locally, so let U be an open set on which an
orthonormal frame e1, . . . ,en exists. With respect to this frame,

V =∑vi(t)ei,c(t), W =∑wj(t)e j,c(t)
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for some C∞ functions vi,wj on [a,b]. Then

d
dt

〈V,W 〉= d
dt∑viwi =∑ dvi

dt
wi+∑vi

dwi

dt
.

By the defining properties of a covariant derivative,

DV
dt

=∑
i

dvi

dt
ei+ vi

Dei
dt

=∑
i

dvi

dt
ei+ vi∇c′(t)ei,

where we again abuse notation and write ei instead of ei ◦ c. Similarly,

DW
dt

=
dwj

dt
e j+wj∇c′(t)e j.

Hence,

〈
DV
dt

,W

〉

+

〈

V,
DW
dt

〉

=∑
i

dvi

dt
wi+∑

i, j
viw j〈∇c′(t)ei,e j〉

+∑
i
vi
dwi

dt
+∑

i, j
viw j〈ei,∇c′(t)e j〉.

Since e1, . . . ,en are orthonormal vector fields onU and ∇ is compatible with the
metric,

〈∇c′(t)ei,e j〉+ 〈ei,∇c′(t)e j〉= c′(t)〈ei,e j〉= c′(t)δi j = 0.

Therefore,
〈
DV
dt

,W

〉

+

〈

V,
DW
dt

〉

=∑ dvi

dt
wi+ vi

dwi

dt
=

d
dt

〈V,W 〉. ��

Example 13.3. If ∇ is the directional derivative on R
n and V (t) = ∑vi(t)∂/∂xi is a

vector field along a smooth curve c(t) in Rn, then the covariant derivative is

DV
dt

=∑ dvi

dt
∂
∂xi

+∑viDc′(t)
∂
∂xi

=∑ dvi

dt
∂
∂xi

=
dV
dt

,

since Dc′(t)∂/∂xi = 0 by (4.2).

13.2 Connection-Preserving Diffeomorphisms

Although it is in general not possible to push forward a vector field except under a
diffeomorphism, it is always possible to push forward a vector field along a curve
under any C∞ map. Let f : M → M̃ be a C∞ map (not necessarily a diffeomorphism)
of manifolds, and c : [a,b]→M a smooth curve inM. The pushforward of the vector
field V (t) along c in M is the vector field ( f∗V )(t) along the image curve f ◦ c in M̃
defined by

( f∗V )(t) = f∗,c(t)
(
V (t)

)
.
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Denote by (M,∇) a C∞ manifold with an affine connection ∇. We say that a
C∞ diffeomorphism f : (M,∇)→ (M̃, ∇̃) preserves the connection or is connection-
preserving if for all X ,Y ∈ X(M),

f∗(∇XY ) = ∇̃ f∗X f∗Y.

In this terminology, an isometry of Riemannian manifolds preserves the Riemannian
connection (Problem 8.2).

We now show that a connection-preserving diffeomorphism also preserves the
covariant derivative along a curve.

Proposition 13.4. Suppose f : (M,∇) → (M̃, ∇̃) is a connection-preserving diffeo-
morphism, c(t) a smooth curve in M, and D/dt, D̃/dt the covariant derivatives
along c in M and f ◦ c in M̃, respectively. If V (t) is a vector field along c in M,
then

f∗
(
DV
dt

)

=
D̃( f∗V )

dt
.

Proof. Choose a neighborhood U of c(t) on which there is a frame e1, . . . ,en, and
write V (t) = ∑vi(t)ei,c(t). Then ẽ1 := f∗e1, . . . , ẽn := f∗en is a frame on the neigh-
borhood f (U) of f (c(t)) in M̃ and

( f∗V )(t) =∑vi(t)ẽi,( f◦c)(t).

By the definition of the covariant derivative,

DV
dt

(t) =∑ dvi

dt
(t)ei,c(t) + vi(t)∇c′(t)ei.

Because f preserves the connection,

(

f∗
DV
dt

)

(t) =∑ dvi

dt
f∗,c(t)(ei,c(t))+ vi(t)∇̃ f∗c′(t) f∗ei

=∑ dvi

dt
ẽi,( f◦c)(t) + vi(t)∇̃( f◦c)′(t)ẽi

=

(
D̃
dt

f∗V
)

(t). ��

13.3 Christoffel Symbols

One way to describe a connection locally is by the connection forms relative to a
frame. Another way, which we now discuss, is by a set of n3 functions called the
Christoffel symbols.
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Elwin Bruno Christoffel

(1829–1900)

The Christoffel symbols are defined relative to a
coordinate frame. Let ∇ be an affine connection on
a manifold M and let (U,x1, . . . ,xn) be a coordinate
open set in M. Denote by ∂i the coordinate vector
field ∂/∂xi. Then ∇∂i∂ j is a linear combination of
∂1, . . . ,∂n, so there exist numbers Γki j at each point
such that

∇∂i∂ j =
n

∑
k=1

Γki j∂k.

These n3 functions Γki j are called the Christoffel sym-
bols of the connection ∇ on the coordinate open set
(U,x1, . . . ,xn). By the Leibniz rule and F-linearity
in the first argument of a connection, the Christoffel
symbols completely describe a connection onU .

Proposition 13.5. An affine connection ∇ on a manifold is torsion-free if and only if
in every coordinate chart (U,x1, . . . ,xn) the Christoffel symbol Γki j is symmetric in i
and j:

Γki j = Γ
k
ji.

Proof. (⇒) Let (U,x1, . . . ,xn) be a coordinate open set. Since partial differentiation
is independent of the order of differentiation,

[∂i,∂ j] =
[
∂
∂xi

,
∂
∂x j

]

= 0.

By torsion-freeness,

∇∂i∂ j −∇∂ j∂i = [∂i,∂ j] = 0.

In terms of Christoffel symbols,

∑
k

Γki j∂k−∑
k

Γkji∂k = 0.

Since ∂1, . . . ,∂n are linearly independent at each point, Γki j = Γkji.

(⇐) Conversely, suppose Γki j = Γkji in the coordinate chart (U,x1, . . . ,xn). Then
∇∂i∂ j = ∇∂ j∂i. Hence,

T (∂i,∂ j) = ∇∂i∂ j −∇∂ j∂i = 0.

Since T ( , ) is a bilinear function on TpM, this proves that T (X ,Y )p := T (Xp,Yp) = 0
for all Xp,Yp ∈ TpM. Thus, for all X ,Y ∈ X(M), we have T (X ,Y ) = 0. ��
Remark 13.6. Because of this proposition, a torsion-free connection is also called a
symmetric connection.
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Example 13.7 (Christoffel symbols for the Poincaré half-plane). The Poincaré half-
plane (Example 12.6) is covered by a single coordinate open set (U,x,y). Let ∂1 =
∂/∂x, ∂2 = ∂/∂y be the coordinate frame. We showed in Example 12.6 that its
connection form ω1

2 relative to the orthonormal frame e1 = y∂1,e2 = y∂2 is

ω1
2 =−1

y
dx.

Then

∂1 =
1
y
e1, ∂2 =

1
y
e2,

and for any smooth vector field X on the Poincaré half-plane,

∇X∂1 = ∇X
(
1
y
e1

)

= X

(
1
y

)

e1+
1
y
∇Xe1

=− 1
y2
(Xy)y∂1+

1
y
ω2
1 (X)e2

=−1
y
(Xy)∂1+

1
y2
dx(X)y∂2

=−1
y
(Xy)∂1+

1
y
(Xx)∂2 (13.2)

Similarly,

∇X∂2 =−1
y
(Xx)∂1− 1

y
(Xy)∂2. (13.3)

By (13.2) and (13.3), relative to the coordinate frame ∂1,∂2, the connection is
given by

∇∂1∂1 =
1
y
∂2, ∇∂2∂1 =−1

y
∂1,

∇∂1∂2 =−1
y
∂1, ∇∂2∂2 =−1

y
∂2.

Therefore, the Christoffel symbols Γki j for the Poincaré half-plane are

k
i j

1 2

11 0 1/y

12 −1/y 0

21 −1/y 0

22 0 −1/y
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Problems

13.1. Covariant derivative along a curve
Verify that if DV/dt is defined by (13.1), then it satisfies the three properties (i), (ii), and (iii)
of Theorem 13.1.

13.2. Covariant derivative on a surface in R
3

Let M be a surface in R
3 with its Riemannian connection: for X ,Y ∈ X(M),

∇XY = pr(DXY ).

If V (t) is a vector field along a curve c(t) in M, show that DV/dt = pr(dV/dt). (Hint: Show
that pr(dV/dt) verifies the three properties of the covariant derivative.)

13.3. Chain rule for the covariant derivative
Suppose M is a manifold with a connection and DV/dt is the covariant derivative of a vector
field V along a curve c(t) in M. If t is a C∞ function of another variable u, then V gives rise
to a vector field V (t(u)) along the curve c̄(u) = c(t(u)). We will write V̄ (u) =V

(
t(u)

)
. Show

that
DV̄
du

=
DV
dt

dt
du

.

13.4. Christoffel symbols of a surface of revolution
Let M be a surface of revolution in R

3 with parametrization

ψ(u,v) =

⎡

⎣
f (u)cosv
f (u)sinv
g(u)

⎤

⎦ , 0< v< 2π

as in Problem 5.7. Let ∇ be the Riemannian connection on M. Find the Christoffel symbols
of ∇ with respect to u,v.

13.5. Christoffel symbols of the Poincaré disk
Compute the Christoffel symbols of the Riemannian connection on the Poincaré disk D in
Problem 11.1.
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§14 Geodesics

In this section we prove the existence and uniqueness of a geodesic with a specified
initial point and a specified initial velocity. As an example, we determine all the
geodesics on the Poincaré half-plane. These geodesics played a pivotal role in the
history of non-Euclidean geometry, for they proved for the first time that the parallel
postulate is independent of Euclid’s first four postulates.

14.1 The Definition of a Geodesic

A straight line in R
n with parametrization

c(t) = p+ tv, p,v ∈ R
n,

is characterized by the property that its acceleration c′′(t) is identically zero. If
T (t) = c′(t) is the tangent vector of the curve at c(t), then c′′(t) is also the covariant
derivative DT/dt associated to the Euclidean connection D on R

n. This example
suggests a way to generalize the notion of “straightness” to an arbitrary manifold
with a connection.

Definition 14.1. Let M be a manifold with an affine connection ∇ and I an open,
closed, or half-open interval in R. A parametrized curve c : I → M is a geodesic if
the covariant derivative DT/dt of its velocity vector field T (t) = c′(t) is zero. The
geodesic is said to bemaximal if its domain I cannot be extended to a larger interval.

Remark 14.2. The notion of a geodesic depends only on a connection and does not
require a metric on the manifold M. However, if M is a Riemannian manifold, then
we will always take the connection to be the unique Riemannian connection. On a
Riemannian manifold, the speed of a curve c(t) is defined to be the magnitude of its
velocity vector:

‖c′(t)‖=
√

〈c′(t),c′(t)〉.

Proposition 14.3. The speed of a geodesic on a Riemannian manifold is constant.

Proof. Let T = c′(t) be the velocity of the geodesic. The speed is constant if and
only if its square f (t) = 〈T,T 〉 is constant. But

f ′(t) =
d
dt

〈T,T 〉

= 2

〈
DT
dt

,T

〉

= 0.

So f (t) is constant. ��
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Let M be a smooth surface in R
3. Recall that its Riemannian connection is

given by

∇XY = (DXY )tan,

the tangential component of the directional derivative DXY . If N is a unit normal
vector field on an open subset U of M, then the tangential component of a vector
field Z along M is

Ztan = Z−〈Z,N〉N.
By Problem 13.2, for a vector fieldV along a curve c(t) inM, the covariant derivative
associated to the Riemannian connection ∇ onM is

DV
dt

=

(
dV
dt

)

tan
.

Example 14.4 (Geodesics on a sphere). On a 2-sphere M of radius a in R
3, let γ(t)

be a great circle parametrized by arc length. Then γ(t) has unit speed. Differentiating

〈γ ′(t),γ ′(t)〉= 1

with respect to t gives

2〈γ ′′(t),γ ′(t)〉= 0.

This shows that the acceleration γ ′′(t) of a unit-speed curve in R3 is perpendicular to
the velocity.

Since γ(t) lies in the plane of the circle, so do γ ′(t) and γ ′′(t). Being perpendic-
ular to γ ′(t), the acceleration γ ′′(t) must point in the radial direction (Figure 14.1).
Hence, because γ ′′(t) is perpendicular to the tangent plane at γ(t),

DT
dt

=

(
dT
dt

)

tan
= γ ′′(t)tan = 0.

This shows that every great circle is a geodesic on the sphere.

γ (t)
γ (t)

Fig. 14.1. Velocity and acceleration vectors of a great circle.
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14.2 Reparametrization of a Geodesic

In this section we show that a geodesic can be reparametrized as long as the
reparametrization is a linear function.

Proposition 14.5. Suppose γ(u) is a nonconstant geodesic on a manifold with a con-
nection and γ̄(t) := γ(u(t)) is a reparametrization of γ(u). Then γ̄(t) is a geodesic if
and only if u= αt+β for some real constants α and β .

Proof. Let T (u) = γ ′(u) and T̄ (t) = γ̄ ′(t) be the tangent vector fields of the two
curves γ(u) and γ̄(t). By the chain rule,

T̄ (t) =
d
dt
γ(u(t)) = γ ′(u(t))u′(t)

= u′(t)T (u(t)).

By property (ii) of a covariant derivative,

DT̄
dt

= u′′(t)T (u(t))+u′(t)
DT (u(t))

dt

= u′′(t)T (u(t))+u′(t)
DT
du

du
dt

(by the chain rule, Problem 13.3)

= u′′(t)T (u(t)),

where DT/du = 0 because γ(u) is a geodesic. Since T (u) has constant length, it is
never zero. Therefore,

DT̄
dt

= 0 ⇐⇒ u′′ = 0 ⇐⇒ u= αt+β

for some α,β ∈ R. ��
Corollary 14.6. Let (a,b) be an interval containing 0. For any positive constant
k ∈R

+, the curve γ(u) is a geodesic on (a,b) with initial point q and initial vector v
if and only if γ̄(t) := γ(kt) is a geodesic on (a/k,b/k) with initial point q and initial
vector kv.

Proof. Since
a
k
< t <

b
k

⇐⇒ a< kt < b,

the curve γ̄(t) := γ(kt) is defined on (a/k,b/k) if and only if γ(t) is defined on (a,b).
By the chain rule,

γ̄ ′(t) = kγ ′(kt). (14.1)

Equivalently,

T̄ (t) = kT (kt),

so that
DT̄
dt

(t) = k2
DT
dt

(kt).

Thus, γ̄ is a geodesic if and only if γ is a geodesic. They have the same initial point
γ̄(0) = γ(0). By (14.1), their initial vectors are related by

γ̄ ′(0) = kγ ′(0). ��
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14.3 Existence of Geodesics

SupposeM is a manifold with a connection ∇, and (U,φ) = (U,x1, . . . ,xn) is a chart
relative to which the Christoffel symbols are Γki j. Let c : [a,b] → M be a smooth
curve. In the chart (U,φ) the curve c has coordinates

(φ ◦ c)(t) = (x1(c(t)), . . . ,xn(c(t))).

We will write y(t) = (φ ◦ c)(t) and yi(t) = (xi ◦ c)(t), and say that c is given inU by

y(t) = (y1(t), . . . ,yn(t)).

In this section we will determine a set of differential equations on yi(t) for the curve
to be a geodesic.

Denote by ẏi the first derivative dyi/dt and by ÿi the second derivative d2yi/dt2.
Let ∂i = ∂/∂xi. Then

T (t) = c′(t) =∑ ẏ j∂ j,c(t)
and

DT
dt

(t) =∑
j
ÿ j∂ j,c(t) +∑

j
ẏ j∇c′(t)∂ j

=∑
j
ÿ j∂ j,c(t) +∑

i, j
ẏ j∇ẏi∂i,c(t)∂ j. (14.2)

To simplify the notation, we sometimes write ∂ j to mean ∂ j,c(t) and Γki j to mean

Γki j(c(t)). Then (14.2) becomes

DT
dt

=∑
j
ÿ j∂ j+∑

i, j
ẏ j∇ẏi∂i∂ j

=∑
k

ÿk∂k+∑
i, j,k

ẏiẏ jΓki j∂k

=∑
k

(
ÿk+∑

i, j
ẏiẏ jΓki j

)
∂k.

So c(t) is a geodesic if and only if

ÿk+∑
i, j
Γki j ẏ

iẏ j = 0, k = 1, . . . ,n.

We summarize this discussion in the following theorem.

Theorem 14.7. On a manifold with a connection, a parametrized curve c(t) is a
geodesic if and only if relative to any chart (U,φ) = (U,x1, . . . ,xn), the components
of (φ ◦ c)(t) = (y1(t), . . . ,yn(t)) satisfy the system of differential equations

ÿk+∑
i, j
Γki j ẏ

iẏ j = 0, k = 1, . . . ,n, (14.3)

where the Γki j’s are evaluated on c(t).
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This is a system of second-order ordinary differential equations on the real line,
called the geodesic equations. By an existence and uniqueness theorem of ordinary
differential equations, we have the following theorem.

Theorem 14.8. Let M be a manifold with a connection ∇. Given any point p ∈ M
and tangent vector v ∈ TpM, there is a geodesic c(t) in M with initial point c(0) = p
and initial velocity c′(0) = v. Moreover, this geodesic is unique in the sense that
any other geodesic satisfying the same initial conditions must agree with c(t) on the
intersection of their domains.

Example 14.9 (Geodesics on a sphere). Suppose γ : [a,b] → S2 is a geodesic. For
t0 ∈ [a,b], there is a great circle through γ(t0) with velocity γ ′(t0). From Exam-
ple 14.4, we know that this great circle is a geodesic. Since a geodesic with a given
point and a given velocity vector at the point is unique (Theorem 14.8), γ(t)must co-
incide with a great circle wherever it is defined. This proves the converse of Example
14.4 that all geodesics on S2 lie on great circles.

Let γv(t,q) be the unique maximal geodesic with initial point q and initial vector
v ∈ TqM. We also write γv(t). By Corollary 14.6,

γv(kt) = γkv(t)

for any positive real number k.
On a Riemannian manifold we always use the unique Riemannian connection to

define geodesics. In this case, tangent vectors have lengths and the theory of ordinary
differential equations gives the following theorem.

Theorem 14.10. For any point p of a Riemannian manifold M, there are a neighbor-
hood U of p and numbers δ ,a> 0 so that for any q ∈U and v ∈ TqM with ‖v‖< δ ,
there is a unique geodesic γ : (−a,a)→M with γ(0) = q and γ ′(0) = v.

A priori the interval of definition (−a,a) of the geodesic in this theorem may be
quite small. However, by rescaling the interval by a constant factor (Corollary 14.6),
one can expand the interval to any finite length, at the expense of making the initial
vector shorter.

Theorem 14.11. For any point p of a Riemannian manifold M, there are a neigh-
borhood U of p and a real number ε > 0 so that for any q ∈U and v̄ ∈ TqM with
‖v̄‖< ε , there is a unique geodesic γ̄ : (−2,2)→M with γ̄(0) = q and γ̄ ′(0) = v̄.

Proof. Fix p ∈ M and find a neighborhood U of p and positive numbers δ and a as
in Theorem 14.10. Set k = a/2. By Corollary 14.6, γ(t) is a geodesic on (−a,a)
with initial point q and initial vector v if and only if γ̄(t) := γ(kt) is a geodesic on
(−a/k,a/k) = (−2,2) with initial point q and initial vector v̄ := kv. Moreover,

‖v‖= ‖γ ′(0)‖< δ ⇐⇒ ‖v̄‖= ‖γ̄ ′(0)‖= k‖v‖< kδ =
aδ
2
.

Choose ε = aδ/2. Then Theorem 14.10 translates into this one. ��
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Proposition 14.12. A connection-preserving diffeomorphism f : (M,∇) → (M̃, ∇̃)
takes geodesics to geodesics.

Proof. Suppose c(t) is a geodesic in M, with tangent vector field T (t) = c′(t). If
T̃ (t) = ( f ◦ c)′(t) is the tangent vector field of f ◦ c, then

T̃ (t) = f∗
(

c∗
d
dt

)

= f∗(c′(t)) = f∗T.

LetD/dt and D̃/dt be the covariant derivatives along c(t) and ( f ◦ c)(t), respectively.
Then DT/dt ≡ 0, because c(t) is a geodesic. By Proposition 13.4,

D̃T̃
dt

= f∗
(
DT
dt

)

= f∗0= 0.

Hence, f ◦ c is a geodesic in M̃. ��

Because an isometry of Riemannian manifolds preserves the Riemannian con-
nection (Problem 8.2), by Proposition 14.12 it carries geodesics to geodesics.

14.4 Geodesics in the Poincaré Half-Plane

The Poincaré half-plane is covered by a single coordinate open set with coordinates
x,y (Figure 14.2). In Example 13.7 we calculated its Christoffel symbols. The

x

y

Fig. 14.2. The Poincaré half-plane.

system of geodesic equations (14.3) for the geodesic c(t) =
(
x(t),y(t)

)
consists of

two equations:

ẍ− 2
y
ẋẏ= 0, (14.4)

ÿ+
1
y
ẋ2− 1

y
ẏ2 = 0. (14.5)

There is a third equation arising from the fact that a geodesic has constant speed
(Proposition 14.3):

〈ċ(t), ċ(t)〉= constant. (14.6)
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This equation is a consequence of the first two, because any curve satisfying Equa-
tions (14.4) and (14.5) will be a geodesic and hence will have constant speed. We
include it because of its simplicity. In fact, by a simple reparametrization, we may
even assume that the speed is 1. Hence, (14.6) becomes

ẋ2+ ẏ2

y2
= 1

or

ẋ2+ ẏ2 = y2. (14.7)

Assuming ẋ not identically zero, we can divide (14.4) by ẋ and solve it by sepa-
ration of variables:

ẍ
ẋ
= 2

ẏ
y
.

Integrating both sides with respect to t gives

ln ẋ= 2(lny)+ constant= ln(y2)+ constant.

Hence,
ẋ= ky2 (14.8)

for some constant k
Plugging this into (14.7) and solving for ẏ gives

k2y4+ ẏ2 = y2, (14.9)

ẏ=±y
√

1− k2y2. (14.10)

Dividing (14.8) by (14.10), we get

dx
dy

=± ky2

y
√
1− k2y2

=± ky
√
1− k2y2

.

Integrate with respect to y to get

x=∓1
k

√
1− k2y2+ constant d.

This equation can be put in the form

(x−d)2+ y2 =
1
k2

,

which is the equation of a circle centered on the x-axis (Figure 14.3).
In our derivation so far, we assumed that the first derivative ẋ is not identically

zero. It remains to consider the case ẋ≡ 0. If ẋ≡ 0, then x= constant, so the curve
is a vertical line. Thus, the geodesics in the Poincaré half-plane are either vertical
lines or semicircles centered on the x-axis.
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0 d

1
k

Fig. 14.3. A geodesic in the Poincaré half-plane.

given line
given point

Fig. 14.4. Geodesics in the Poincaré half-plane.

In this calculation we never used (14.5). It is in fact a redundant equation
(Problem 14.1).

The Poincaré half-plane is important historically, since it provides a model of
a non-Euclidean geometry. In Euclid’s axiomatic development of plane geometry,
the first four postulates are usually considered self-evident [10, pp. 14–18]. The
fifth postulate, called the parallel postulate, was a source of controversy. Two lines
in the plane are said to be parallel if they do not intersect. One form of the fifth
postulate states that given a line and a point not on the line, there is a unique parallel
line through the given point. For hundreds of years, heroic efforts were made to
deduce the fifth postulate from the other four, to derive a contradiction, or to prove
its independence. If we interpret the geodesics of the Poincaré half-plane as lines,
then the Poincaré half-plane satisfies Euclid’s first four postulates, but not the parallel
postulate: given a geodesic, say a vertical line, and a point not on the line, there are
infinitely many geodesics through the point and not intersecting the given line (see
Figure 14.4). In this way the Poincaré half-plane proves conclusively that the parallel
postulate is independent of Euclid’s first four postulates.

14.5 Parallel Translation

Closely related to geodesics is the notion of parallel translation along a curve. A par-
allel vector field along a curve is an analogue of a constant vector field in R

n.
Throughout the rest of this chapter we assume thatM is a manifold with a connection
∇ and c : I →M is a smooth curve inM defined on some interval I.

Definition 14.13. A smooth vector field V (t) along c is parallel if DV/dt ≡ 0 on I.

In this terminology a geodesic is simply a curve c whose tangent vector field
T (t) = c′(t) is parallel along c.
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Fix a point p = c(t0) and a frame e1, . . . ,en in a neighborhood U of p in M.
Let [ω i

j] be the matrix of connection forms of ∇ relative to this frame. If V (t) =

∑vi(t)ei,c(t) for c(t) ∈U , then

DV
dt

=∑
i
v̇iei,c(t) +∑

i
vi
Dei,c(t)
dt

=∑
i
v̇iei,c(t) +∑

j
v j∇c′(t)e j

=∑
i
v̇iei,c(t) +∑

i, j
v jω i

j(c
′(t))ei,c(t)

=∑
i

(
v̇i+∑

j
ω i

j(c
′(t))v j

)
ei,c(t).

Thus DV/dt = 0 if and only if

v̇i+
n

∑
j=1
ω i

j(c
′(t))v j = 0, i= 1, . . . ,n. (14.11)

This is a system of linear first-order ordinary differential equations. By the existence
and uniqueness theorem of ordinary differential equations, there is always a unique
solution V (t) on a small interval about t0 with a given V (t0). In the next subsection
we show that in fact the solution exists not only over a small interval, but also over
the entire curve c.

If V (t) is parallel along a curve c : [a,b]→M, then we say that V (b) is obtained
from V (a) by parallel translation along c or that V (b) is the parallel translate or
parallel transport of V (a) along c. By the uniqueness theorem of ordinary differen-
tial equations,V (t) is uniquely determined by the initial conditionV (a), so if parallel
translation exists along c, then it is well defined.

14.6 Existence of Parallel Translation Along a Curve

While a geodesic is guaranteed to exist only locally, parallel translation is possible
along the entire length of a curve.

Theorem 14.14. Let M be a manifold with a connection ∇ and let c : [a,b] → M be
a smooth curve in M. Parallel translation is possible from c(a) to c(b) along c, i.e.,
given a vector v0 ∈ Tc(a), there exists a parallel vector field V (t) along c : [a,b] →
M such that V (a) = v0. Parallel translation along c induces a linear isomorphism

ϕa,b : Tc(a)(M) ∼→ Tc(b)(M).

Proof. Because the parallel transport equation DV/dt = 0 is R-linear in V , a lin-
ear combination with constant coefficients of parallel vector fields along c is again
parallel along c.

Let w1, . . . ,wn be a basis for Tc(t0)M. For each i = 1, . . . ,n, there is an interval
inside [a,b] of length εi about t0 such that a parallel vector field Wi(t) exists along
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c : (t0 − εi, t0 + εi) → M whose value at t0 is wi. For ε equal to the minimum of
ε1, . . . ,εn, the n basis vectors w1, . . . ,wn for Tc(t0)M can be parallel translated along
c over the interval (t0 − ε , t0+ ε). By taking linear combinations as in the remark
above, we can parallel translate every tangent vector in Tc(t0)M along c over the
interval (t0− ε , t0+ ε).

For t1 ∈ (t0− ε , t0+ ε) parallel translation along c produces a linear map ϕt0,t1 :
Tc(t0)M → Tc(t1)M. Note that a vector field V (t) is parallel along a curve c(t) if and
only if V (−t) is parallel along c(−t), the curve c reparametrized with the opposite
orientation. This shows that the linear map ϕt0,t1 has an inverse ϕt1,t0 and is therefore
an isomorphism.

Thus for each t ∈ [a,b] there is an open interval about t over which parallel trans-
lation along c is possible. Since [a,b] is compact, it is covered by finitely many such
open intervals. Hence, it is possible to parallel translate along c from c(a) to c(b).

��
While a geodesic with a given initial point and initial velocity exists only locally,

parallel translation is always possible along the entire length of a smooth curve. In
fact, the curve need not even be smooth.

Definition 14.15. A curve c : [a,b]→M is piecewise smooth if there exist numbers

a= t0 < t1 < · · ·< tr = b

such that c is smooth on [ti, ti+1] for i= 0, . . . ,r−1.

By parallel translating over each smooth segment in succession, one can parallel
translate over any piecewise smooth curve.

14.7 Parallel Translation on a Riemannian Manifold

Parallel translation is defined on any manifold with a connection; it is not necessary
to have a Riemannian metric. On a Riemannian manifold we will always assume that
parallel translation is with respect to the Riemannian connection.

Proposition 14.16. On a Riemannian manifold M parallel translation preserves
length and inner product: if V (t) andW (t) are parallel vector fields along a smooth
curve c : [a,b] → M, then the length ‖V (t)‖ and the inner product 〈V (t),W (t)〉 are
constant for all t ∈ [a,b].

Proof. Since ‖V (t)‖ =
√〈V (t),V (t)〉, it suffices to prove that 〈V (t),W (t)〉 is con-

stant. By the product rule for the covariant derivative of a connection compatible
with the metric (Theorem 13.2),

d
dt

〈V,W 〉=
〈
DV
dt

,W

〉

+

〈

V,
DW
dt

〉

= 0,

since DV/dt = 0 and DW/dt = 0. Thus 〈V (t),W (t)〉 is constant as a function of t.
��
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Since the angle θ between two vectors u and v can be defined in terms of length
and inner product by

cosθ =
〈u,v〉
‖u‖‖v‖ , 0≤ θ ≤ π,

parallel translation also preserves angles.

θ
v

γ1 γ2

Fig. 14.5. Parallel translating v along a closed piecewise smooth geodesic.

Example 14.17 (Parallel translation on a sphere). Let γ1 and γ2 be two meridians
through the north pole p of a sphere S2 making an angle θ with each other, and let
v be a vector at p tangent to γ1 (Figure 14.5). As great circles, both γ1 and γ2 are
geodesics on the sphere. We will parallel translate v along γ1 to the equator, along
the equator to γ2, and then along γ2 back to the north pole p.

Since γ1 is a geodesic, its tangent vector field is parallel, so the parallel translate
of v to the equator remains parallel to γ1 and perpendicular to the equator. Since
parallel translation preserves angles, as v is parallel translated along the equator to
γ2, it remains perpendicular to the equator at all times. When it reaches γ2 along the
equator, it will be tangent to γ2. Parallel translating this vector along γ2 back to p
results in a tangent vector to γ2 at p. Figure 14.5 shows the position of v at various
points of its journey. From this example we see that parallel translating a tangent
vector of a manifold around a closed loop need not end in the original vector. This
phenomenon is called holonomy.

Problems

14.1.∗ Geodesic equations
Show that if we differentiate (14.10) with respect to t, we end up with (14.5). Hence, (14.5) is
redundant.

14.2. Surface of revolution in R
3

In Problem 5.7 you compute the mean and Gaussian curvatures of a surface of revolution M
in R3.
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(a) Using the notations of Problem 5.7, find the geodesic equations of the surface of revolution.
(b) Prove that the meridians of the surface of revolution are geodesics.
(c) Find a necessary and sufficient condition on f (u) and g(u) for a latitude circle to be a

geodesic.

14.3. Poincaré disk
Let D be the Poincaré disk (Problem 11.1).

(a) Show that in polar coordinates (r,θ), the Poincaré metric is given by

〈 , 〉(r,θ) =
4(dr⊗dr+ r2 dθ ⊗dθ)

(1− r2)2
.

Using polar coordinates, compute for D

(b) the Gaussian curvature,
(c) the Christoffel symbols,
(d) the geodesic equations.
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§15 Exponential Maps

There are two exponential maps in geometry: the exponential map of a connection
and the exponential map for a Lie group. While these are two independent notions,
when a Lie group has a bi-invariant Riemannian metric, as all compact Lie groups
do, the exponential map for the Lie group coincides with the exponential map of the
Riemannian connection.

On a manifold M with a connection, a geodesic is locally defined by a system
of second-order ordinary differential equations. By the existence and uniqueness
theorems of ordinary differential equations there is a unique geodesic through any
given point q with any given direction v. However, this geodesic may be very short,
defined only on a small interval (−a,a) about 0. By reparametrizing the geodesic
by a constant factor, one can expand the domain of definition of the geodesic at the
expense of shortening the initial vector.

On a Riemannian manifold every point p has a neighborhood U in which there
is a uniform bound such that all geodesics starting inU with initial vectors of length
less than the bound will be defined on an interval including [−1,1] (Theorem 14.11).
For any q ∈U this leads to the definition of the exponential map Expq from a small
neighborhood of the origin in TqM to the manifold M. This exponential map derives
its importance from, among other things, providing coordinate charts in which any
isometry is represented by a linear map (see Section 15.2).

The exponential map for a Lie group G is defined in terms of the integral curves
of the left-invariant vector fields on G. Unlike the exponential map of a connection,
the Lie group exponential is defined on the entire Lie algebra g. It shares some of
the properties of the exponential map of a connection. The problems at the end of
the chapter explore the relationship between the two notions of exponential map.

15.1 The Exponential Map of a Connection

Suppose M is a manifold with an affine connection. For any point q ∈M and vector
v ∈ TqM, denote by γv(t,q) or simply γv(t) the unique maximal geodesic with initial
point γv(0) = q and initial vector γ ′v(0) = v. If γv(1) is defined, we set

Expq(v) = γv(1).

Now assume thatM is endowed with a Riemannian metric. For any point p ∈M,
Theorem 14.11 guarantees a neighborhoodU of p and a real number ε > 0 such that
for all q ∈U the exponential map Expq is defined on the open ball B(0,ε) in TqM:

Expq : TqM ⊃ B(0,ε)→M.

Let s : M → TM be the zero section of the tangent bundle TM, and let s(U) be the
image ofU ⊂M under s. Viewed as a function of two variables (q,v), the exponential
map Expq(v) is defined on an ε-tube around s(U) in TM (see Figure 15.1).
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p

U

q

v

γv(1)

( )

ε

U

s(U) ⊂ TM

p

Fig. 15.1.A neighborhoodU of p and the domain of the exponential map in the tangent bundle
TM.

Proposition 15.1. On a manifold with a connection the maximal geodesic with initial
point q and initial vector v is γv(t,q) = Expq(tv).

Proof.

Expq(tv) = γtv(1) (definition of Expq)

= γv(t) (Corollary 14.6). ��

Theorem 15.2 (Naturality of the exponential map). Let f : N →M be an isometry
of Riemannian manifolds, and p ∈ N. Suppose V ⊂ TpN and U ⊂ Tf (p)M are neigh-
borhoods of the origin on which the exponential maps Expp and Exp f (p) are defined.
If the differential f∗,p maps V into U, then the following diagram is commutative:

V
f∗,p

Expp

U
Exp f (p)

N
f

M.

Proof. For v ∈ V ⊂ TpN, let γv(t, p) be the maximal geodesic in N with initial
point p and initial vector v. Since an isometry takes geodesics to geodesics,
( f ◦ γv)(t, p) is the maximal geodesic in M with initial point f (p) and initial vec-
tor f∗v. By the uniqueness of the geodesic,

( f ◦ γv)(t, p) = γ f∗v(t, f (p)).

Setting t = 1 gives

f (Expp v) = Exp f (p)( f∗v). ��
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15.2 The Differential of the Exponential Map

Suppose p is a point in a Riemannian manifold N and V ⊂ TpN is a neighborhood
of 0 on which the exponential map Expp is defined. Since TpN is a vector space, its
tangent space T0(TpN) at the origin can be canonically identified with TpN.

Proposition 15.3. The differential (Expp)∗,0 at the origin of the exponential map
Expp : V ⊂ TpN → N is the identity map 1TpN : TpN → TpN.

Proof. For v ∈ TpN, a curve c(t) in TpN with c(0) = 0 and c′(0) = v is c(t) = tv.
Using this curve to compute the differential of Expp, we have

(Expp)∗,0(v) =
d
dt

∣
∣
∣
∣
t=0

Expp
(
c(t)
)
=

d
dt

∣
∣
∣
∣
t=0

Expp(tv)

=
d
dt

∣
∣
∣
∣
t=0
γv(t) (Proposition 15.1)

= γ ′v(0) = v,

where γv(t) is the unique geodesic with initial point p and initial vector v. ��

By the inverse function theorem, the map Expp : V ⊂ TpN → N is a local diffeo-
morphism at 0 ∈ TpN. Thus, there are neighborhoods V ′ of 0 in TpN and V ′′ of p in
N such that Expp : V

′ →V ′′ is a diffeomorphism.
Now suppose f : N → M is an isometry of Riemannian manifolds. As above,

there are neighborhoodsU ′ of 0 in Tf (p)M andU ′′ of f (p) inM such that Exp f (p) : U
′

→U ′′ is a diffeomorphism. Since f∗,p is continuous, one may choose V ′ sufficiently
small so that f∗,p maps V ′ toU ′. By the naturality of the exponential map (Theorem
15.2) there is a commutative diagram

N ⊃ V U ⊂ M.

TpN ⊃ V U ⊂ Tf (p)M

f

f∗,p

Expp Exp f (p)

This diagram may be interpreted as follows: relative to the coordinate charts
given by the inverse of the exponential map, an isometry of Riemannian manifolds
is locally a linear map; more precisely, it is the linear map given by its differential.
This is in contrast to the usual statement about the differential f∗,p at a point p being
the best linear approximation to a C∞ map in a neighborhood of the point. Here the
isometry f is equal to its differential right on the nose.
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15.3 Normal Coordinates

Fix a point p in a Riemannian manifold M. By the preceding section, there is a
neighborhood V of 0 in TpM and a neighborhood U of p in M such that the expo-
nential map Expp : V →U is a diffeomorphism. Using the exponential map we can
transfer coordinates on TpM to M. Choose an orthonormal basis e1, . . . ,en for TpM
and let r1, . . . ,rn be the coordinates with respect to the orthonormal basis e1, . . . ,en
on TpM. Then x1 := r1 ◦ Exp−1

p , . . . ,xn := rn ◦ Exp−1
p is a coordinate system on U

such that the tangent vectors ∂/∂x1, . . . ,∂/∂xn are orthonormal at p. The coordinate
neighborhood (U,x1, . . . ,xn) is called a normal neighborhood of p and x1, . . . ,xn are
called normal coordinates onU .

In a normal neighborhood of p, the geodesics through p have a particularly sim-
ple expression, for the coordinate expression for the geodesic γ(t) = Expp(at) for
a= ∑aiei ∈ TpM is

x(γ(t)) = r ◦ Exp−1
p

(
γ(t)
)
= at.

We write this as (x1, . . . ,xn) = (a1t, . . . ,ant).

Theorem 15.4. In a normal neighborhood (U,x1, . . . ,xn) of p, all the partial deriva-
tives of gi j and all the Christoffel symbols Γki j vanish at p.

Proof. Let (x1, . . . ,xn) = (a1t, . . . ,ant) be a geodesic through p. It satisfies the
geodesic equations

ẍk+∑
i, j
Γki jẋ

iẋ j = 0, k = 1, . . . ,n,

or

∑Γki jaia j = 0.

Since this is true for all (a1, . . . ,an) at p, setting (a1, . . . ,an)= (0, . . . ,1,0, . . . ,0,1, . . . ,0)
with ai = a j = 1 and all other entries 0, we get

Γki j+Γ
k
ji = 0.

By the symmetry of the connection, Γki j = 0 at the point p. (At other points, not all

of (x1, . . . ,xn) = (a1t, . . . ,ant) will be geodesics.)
Write ∂i for ∂/∂xi. By the compatibility of the connection ∇ with the metric,

∂kgi j = ∂k〈∂i,∂ j〉= 〈∇∂k∂i,∂ j〉+ 〈∂i,∇∂k∂ j〉.

At p, ∇∂k∂i = 0 and ∇∂k∂ j = 0 since all the Christoffel symbols vanish. Therefore,
(∂kgi j)(p) = 0. ��

Normal coordinates are especially useful for computation, because at the point
p, all ∇∂k∂i = 0.
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15.4 Left-Invariant Vector Fields on a Lie Group

Let G be a Lie group and g = TeG its Lie algebra. Any element Xe ∈ g determines
a left-invariant vector field X on G by Xg := (�g)∗(Xe). This establishes a one-to-
one correspondence between TeG and the vector space of left-invariant vector fields
on G. Sometimes we adopt an alternate notation for a left-invariant vector field on a
Lie group: if A ∈ g, then the left-invariant vector field on G generated by A is Ã, with
Ãg = �g∗A.

Proposition 15.5. If ϕt(p) is an integral curve starting at p of a left-invariant vector
field X on a Lie group G, then for any g ∈ G, the left translate gϕt(p) is the integral
curve of X starting at gp.

Proof. We compute the velocity of gϕt(p):

d
dt
(gϕt(p)) = (�g)∗

d
dt
ϕt(p) (definition of d/dt and the chain rule)

= (�g)∗Xϕt (p) (ϕt(p) is an integral curve of X)

= Xgϕt (p) (X is left-invariant).

This proves that gϕt(p) is also an integral curve of X . At t = 0, gϕt(p) =
gϕ0(p) = gp. ��

Corollary 15.6. The local flow ϕt of a left-invariant vector field X on a Lie group
G commutes with left multiplication: �g ◦ ϕt = ϕt ◦ �g for all g ∈ G, whenever both
sides are defined.

Proof. By Proposition 15.5, both gϕt(p) and ϕt(gp) are integral curves of X starting
at gp. By the uniqueness of the integral curve, gϕt(p) = ϕt(gp). This can be rewrit-
ten as (�g ◦ ϕt)(p) = (ϕt ◦ �g)(p). ��

Proposition 15.7. The maximal integral curve ϕt(p) of a left-invariant vector field
X on a Lie group G, where p is a point of G, is defined for all t ∈ R.

Proof. By an existence theorem of ordinary differential equations, there are a real
number ε > 0 and an integral curve ϕt(e) : [−ε ,ε ] → G of X through e. By Propo-
sition 15.5, pϕt(e) = ϕt(p) is an integral curve of X defined on [−ε ,ε ] through any
point p ∈ G. Let q = ϕε(p) be the endpoint of ϕt(p) on [−ε ,ε ]. Then ϕt(q) is an
integral curve of X defined on [−ε ,ε ]. The two integral curves ϕt(p) and ϕt(q) agree
on their overlap and so the domain of ϕt(p) can be extended to [−ε ,2ε ]. Thus, the
domain of an integral curve of X through any point can always be extended an extra
ε unit. By induction, the maximal integral curve of X through any point is defined
for all t ∈ R. ��

It follows from this proposition that a left-invariant vector field X on a Lie group
G has a global flow ϕ : R×G→ G.
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15.5 Exponential Map for a Lie Group

For a Lie group G there is also a notion of an exponential map. Unlike the expo-
nential map of a connection, which is a priori defined only on a small neighborhood
of 0 in the tangent space TpM of each point p in a manifold with a connection, the
exponential map for a Lie group is defined on the entire tangent space TeG, but only
for the tangent space at the identity. When the Lie group has a bi-invariant Rieman-
nian metric (Section 15.8), the exponential map for the Lie group coincides with the
exponential map of the Riemannian connection.

For Xe ∈ g := TeG, denote by X the left-invariant vector field on G generated
by Xe. In this section we consider primarily integral curves starting at the identity e.
To show the dependence on X , we write cX (t) = ϕt(e) for the integral curve through
e of the left-invariant vector field X on G.

If s is a real number, then

d
dt
cX (st) = sc′X (st) (chain rule)

= sXcX (st) (cX is an integral curve of X).

This shows that cX (st) as a function of t is an integral curve through e of the left-
invariant vector field sX . Hence,

cX (st) = csX (t). (15.1)

Definition 15.8. The exponential map for a Lie group G with Lie algebra g is the
map exp: g→ G defined by exp(Xe) = cX (1) for Xe ∈ g.

To distinguish the exponential map of a connection from the exponential map for
a Lie group, we denote the former as Expp and the latter as exp.

Proposition 15.9. (i) For Xe ∈ g, the integral curve starting at e of the left-invariant
vector field X is exp(tXe) = cX (t) = ϕt(e).

(ii) For Xe ∈ g and g ∈G, the integral curve starting at g of the left-invariant vector
field X is gexp(tXe).

(iii) For s, t ∈ R and Xe ∈ g, exp
(
(s+ t)Xe

)
= (expsXe)(exp tXe).

(iv) The exponential map exp: g→ G is a C∞ map.
(v) The differential at 0 of the exponential map, exp∗,0 : T0(g) = g→ TeG= g is the

identity map.
(vi) For the general linear group GL(n,R),

expA=
∞

∑
k=0

Ak

k!
for A ∈ gl(n,R).

Proof. (i) By the definition of exp and by (15.1),

exp(tXe) = ctX (1) = cX (t).
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(ii) This follows from (i) and Proposition 15.5.
(iii) View s as a constant and differentiate with respect to t:

d
dt
cX (s+ t) = c′X (s+ t) = XcX (s+t).

This shows that cX (s+t) as a function of t is an integral curve with initial point cX (s)
of the left-invariant vector field X . With s fixed, cX (s)cX (t) is also an integral curve
of X with initial point cX (s). By the uniqueness of integral curves,

cX (s+ t) = cX (s)cX (t).

Using (i), we can rewrite this equation as exp((s+ t)Xe) = (exp sXe)(exp tXe).
(iv) (following [22], p. 103) The proof is based on the fact from the theory of ordinary
differential equations that the flow of a C∞ vector field is C∞. Recall that for each
Xe ∈ g, X is the left-invariant vector field generated by Xe. Define a vector field V on
G×g by

V(g,Xe) = (Xg,0) = (�g∗(Xe),0).

By (ii), the integral curve of V starting at (g,Xe) is c(t) = (gexp tXe,Xe). The global
flow of V is

ϕ : R× (G×g)→ G×g,

ϕ(t,(g,Xe)) = (gexp tXe,Xe).

Let π : G×g→ G be the projection to the first factor. Then

exp(Xe) = (π ◦ ϕ)
(
1,(e,Xe)

)
.

As a composite of C∞ maps, exp: g→ G isC∞.
(v) For Xe ∈ g, a C∞ curve starting at 0 in g with initial vector Xe is c(t) = tXe.
Computing the differential exp∗,0 using this curve, we get by (i) that

exp∗,0(Xe) =
d
dt

∣
∣
∣
∣
t=0

exp c(t) =
d
dt

∣
∣
∣
∣
t=0

exp(tXe) = Xe.

(vi) We know from ([21], Sect. 15.3, p. 170) that c(t) = ∑∞k=0A
ktk/k! is absolutely

convergent for A ∈ gl(n,R). Denote by Ã the left-invariant vector field on GL(n,R)
generated by A. By [21, Example 8.19],

Ãg = (�g)∗A= gA.

Now c(0) = I, the identity matrix, and

c′(t) =
∞

∑
k=1

kAktk−1

k!

=
∞

∑
k=1

Ak−1tk−1

(k−1)!
A

= c(t)A= Ãc(t).
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Hence c(t) is the integral curve of Ã through I. By (i),

exp tA= c(t) =
∞

∑
k=0

Aktk

k!
.

Setting t = 1 gives the desired identity. ��

Definition 15.10. A 1-parameter subgroup of a Lie group G is a group homomor-
phism ϕ : R→ G.

In this terminology, Proposition 15.9(iii) says that if X is a left-invariant vector
field on a Lie group G, then its integral curve cX (t) = exp(tXe) through the identity
e is a 1-parameter subgroup of G.

Corollary 15.11. The diffeomorphism ϕt : G → G induced from the flow of a left-
invariant vector field X on a Lie group G is right multiplication by exp tXe:

ϕt(g) = rexp tXe(g).

Proof. Applying Corollary 15.6 to e, we get

ϕt(g) = ϕt(ge) = gϕt(e) = rϕt (e)(g) = rexp tXe(g). ��

15.6 Naturality of the Exponential Map for a Lie Group

Just as the exponential map for a Riemannian manifold is natural with respect to
isometries, so the exponential map for a Lie group is natural with respect to Lie
group homomorphisms.

Theorem 15.12. Let H and G be Lie groups with Lie algebras h and g, respectively.
If f : H → G is a Lie group homomorphism, then the diagram

exp

f∗

exp

H
f

G

commutes.

Lemma 15.13. If f : H → G is a group homomorphism, then for any h ∈ H,

f ◦ �h = � f (h) ◦ f . (15.2)

Proof (of lemma). For x ∈ H,

( f ◦ �h)(x) = f (hx) = f (h) f (x) = (� f (h) ◦ f )(x). ��
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Proof (of theorem). For A ∈ h, denote by Ã the left-invariant vector field on the Lie
group H generated by A. If c(t) is an integral curve of Ã through e, then

c′(t) = Ãc(t) = (�c(t))∗A (15.3)

We will now show that ( f ◦ c)(t) is an integral curve of f̃∗A, the left-invariant
vector field on G generated by f∗A ∈ g. Taking the differential of (15.2), we get

f∗ ◦ �h∗ = � f (h)∗ ◦ f∗. (15.4)

Then

( f ◦ c)′(t) = f∗c′(t) (by the chain rule again)

= f∗�c(t)∗A (by (15.3))

= � f (c(t))∗( f∗A) (by (15.4))

= f̃∗A( f◦c)(t).

By the definition of the exponential map for a Lie group,

exp( f∗A) = ( f ◦ c)(1) = f (c(1)) = f (expA). ��

15.7 Adjoint Representation

Let G be a Lie group with Lie algebra g. For g ∈ G, define cg : G→ G to be conju-
gation by g:

cg(x) = gxg−1.

The differential at the identity of cg is denoted by

Ad(g) = (cg)∗,e : g→ g.

For g,h ∈ G,
cgh = cg ◦ ch,

so that by the chain rule,
(cgh)∗ = (cg)∗ ◦ (ch)∗,

or
Ad(gh) = Ad(g) ◦ Ad(h).

Thus, Ad: G→ GL(g) is a group homomorphism; it is called the adjoint represen-
tation of the Lie group G.

Proposition 15.14. Let G be a Lie group. The adjoint representation Ad: G →
GL(g) is a C∞ map.
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Proof. By the definition of a Lie group, the Lie group multiplication μ : G×G→G
and inversion g �→ g−1 are C∞ maps. In terms of μ ,

cg(x) = μ(g,μ(x,g−1)), g,x ∈ G,

which shows that as a function of g and x, the conjugation cg(x) is alsoC∞.
Let x1, . . . ,xn be a coordinate system in a neighborhood of the identity e. Then

Ad(g) = (cg)∗,e is represented by the Jacobian matrix [(∂ (xi ◦ cg)/∂x j)(e)]. Since all
the partial derivatives ∂ (xi ◦ cg)/∂x j(e) areC∞ in g, Ad(g) is aC∞ function of g. ��

The differential of Ad at the identity is a Lie algebra homomorphism

ad := (Ad)∗,e : g→ gl(g),

called the adjoint representation of the Lie algebra g. We usually write ad(A)(B) as
adA B.

Proposition 15.15. For A,B ∈ g, adA B= [A,B].

Proof. For A∈ g, let Ã be the left-invariant vector field generated by A. We will write
the exponential exp(A) as eA. By Proposition 15.9(i), the integral curve through e of
Ã is ϕt(e) = etA, and by Corollary 15.11 the diffeomorphism ϕt : G → G induced
from the flow of Ã is right multiplication by etA. For A,B ∈ g,

adA B= (Ad∗,e A)(B) (definition of ad)

=
d
dt

∣
∣
∣
∣
t=0

Ad(etA)(B) (computing Ad∗ using the curve ϕt(e) = etA)

=
d
dt

∣
∣
∣
∣
t=0

(cetA)∗ (B) (definition of Ad)

=
d
dt

∣
∣
∣
∣
t=0

(re−tA)∗ (�etA)∗B (definition of conjugation c(etA))

=
d
dt

∣
∣
∣
∣
t=0

(re−tA)∗ B̃etA (definition of B̃)

=
d
dt

∣
∣
∣
∣
t=0

(ϕ−t)∗(B̃etA) (ϕt = retA ,ϕt(e) = etA)

= (LÃB̃)e (definition of the Lie derivative LÃB̃)

= [Ã, B̃]e ([21, Th. 20.4, p. 225])

= [A,B] (definition of [A,B]). ��

15.8 Associativity of a Bi-Invariant Metric on a Lie Group

A Riemannian metric 〈 , 〉 on a Lie group G is said to be left-invariant if for all C∞

vector fields X ,Y on G and g ∈ G,

〈�g∗X , �g∗Y 〉= 〈X ,Y 〉.
A right-invariant metric is defined similarly with rg in place of �g. A metric that is
both left- and right-invariant is said to be bi-invariant.
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Proposition 15.16. If 〈 , 〉 is a bi-invariant metric on a Lie group G, then for all
left-invariant vector fields X ,Y,Z on G,

〈[X ,Y ],Z〉= 〈X , [Y,Z]〉.
Proof. Since 〈 , 〉 is bi-invariant, for any g ∈ G and Xe,Ze ∈ g,

〈Xe,Ze〉= 〈�g∗rg−1∗Xe, �g∗rg−1∗Ze〉
= 〈(Adg)Xe,(Adg)Ze〉.

If c(t) is the integral curve through e of the left-invariant vector field Y , then

〈Xe,Ze〉= 〈(Adc(t))Xe,
(
Adc(t)

)
Ze〉 for all t. (15.5)

Differentiating (15.5) with respect to t and evaluating at t = 0 gives

0=
d
dt

∣
∣
∣
∣
t=0

〈(Adc(t))Xe,
(
Adc(t)

)
Ze〉

= 〈(Ad∗ c′(0)
)
Xe,
(
Adc(0)

)
Ze〉+ 〈(Adc(0))Xe,

(
Ad∗ c′(0)

)
Ze〉

= 〈adYe Xe,Ze〉+ 〈Xe,adYe Ze〉
= 〈[Ye,Xe],Ze〉+ 〈Xe, [Ye,Ze]〉 (by Proposition 15.15)

=−〈[Xe,Ye],Ze〉+ 〈Xe, [Ye,Ze]〉.
Since 〈 , 〉 is left-invariant and �g,∗[Xe,Ye] = [�g,∗(Xe), �g,∗(Ye)] = [Xg,Yg] for all g∈G
(see [21, Proposition 16.14, p. 185]), left-translating the equation above by g gives
the proposition. ��

Problems

15.1. Exponential maps on R
2

Give R2 its usual Euclidean metric.

(a) At any point p ∈ R
2, the tangent space TpR2 can be canonically identified with R

2. Show
that under this identification TpR2 � R

2, the exponential map Expp : TpR
2 → R

2 is the
identity map.

(b) Viewed as a Lie group under addition, R2 has Lie algebra R2. Show that the exponential
map exp: R2 → R

2 is also the identity map.

15.2. Exponentials as generators
Prove that a connected Lie group G with Lie algebra g is generated by expA for all A ∈ g; i.e.,
every element g ∈ G is a product of finitely many exponentials: g= (expA1) · · ·(expAr).

15.3. Invariant Riemannian metrics on a Lie group
Let G be a Lie group and g its Lie algebra. Suppose 〈 , 〉e is an inner product on g. For
any g ∈ G and Xg,Yg ∈ TgG, define

〈Xg,Yg〉= 〈�g−1∗Xg, �g−1∗Yg〉e.
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(a) Show that 〈 , 〉 is a left-invariant Riemannian metric on G.
(b) Show that this sets up a bijection

{inner products on g} ←→ {left-invariant Riemannian metrics on G}.

(c) Show that under the bijection in (b), Ad(G)-invariant inner products on g correspond to
bi-invariant Riemannian metrics on G.

15.4. Riemannian connection on a Lie group with a bi-invariant metric
Let G be a Lie group with a bi-invariant Riemannian metric. Prove that if ∇ is its Rieman-
nian connection, then ∇XY = 1

2 [X ,Y ] for all left-invariant vector fields X and Y on G. (Hint:
Use (6.8) and Proposition 15.16.)

15.5. Geodesics on a Lie group with a bi-invariant metric

(a) Let G be a Lie group with a bi-invariant Riemannian metric. Prove that the geodesics on G
are precisely the integral curves of left-invariant vector fields. (Hint: Let c(t) be an integral
curve through e of a left-invariant vector field X . Apply Problem 15.4 to show that c(t) is
a geodesic.)

(b) Show that if a Lie group has a bi-invariant Riemannian metric, then the exponential map
for the Lie group coincides with the exponential map Expe of the Riemannian connection.

15.9 Addendum. The Exponential Map as a Natural
Transformation

The naturality of the exponential map for a Riemannian manifold says in fact that
the exponential map is a natural transformation between two functors. There are two
functors lurking in the background in Theorem 15.2, and in this addendum we will
ferret them out.

Let F and G be two functors from a category A to a category B. A natural
transformation from F to G is a collection of morphisms ϕA : F(A) → G(A) in B,
one for each object A inA, such that for each morphism f : A→ A′ inA the diagram

F(A)
F( f )

A

F(A )

A

G(A)
G( f )

G(A )

j j

is commutative.
Let A be the category in which the objects are pointed Riemannian manifolds

(M, p) and for any two objects (N,q) and (M, p), a morphism (N,q)→ (M, p) is an
isometry f : N →M such that f (q) = p.

Next, we define the category B. Consider the set of all pairs (U, p), where U is
an open subset of a manifold M and p ∈U . We say that two pairs (U, p) and (V,q)
are equivalent, written (U, p)∼ (V,q), if p= q andU and V are open subsets of the
same manifold. This is clearly an equivalence relation. An equivalence class of such
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pairs (U, p) withU ⊂M is called a germ of neighborhoods of p inM. A morphism
f : [(U, p)]→ [(V,q)] from the germ of (U, p) to the germ of (V,q) is a collection of
C∞ maps fU ′,V ′ : (U ′, p)→ (V ′,q) such that

(U ′, p)∼ (U, p), (V ′,q)∼ (V,q),

and for any overlapping (U ′, p) and (U ′′, p) on which fU ′,V ′ and fU ′′,V ′′ are defined,

fU ′,V ′
∣
∣
U ′∩U ′′ = fU ′′,V ′′

∣
∣
U ′∩U ′′ .

This collection { fU ′,V ′} need not be defined on all (U ′, p)∈ [(U, p)]; it is enough that
fU ′,V ′ be defined on some neighborhood U ′ of p in M. As the category B, we take
the objects to be all germs of neighborhoods and the morphisms to be morphisms of
germs of neighborhoods.

The functor F : A→B takes a pointed Riemannian manifold (M, p) to the germ
[(TpM,0)] of neighborhoods of the origin in the tangent space TpM, and takes an
isometry f : (N,q) → (M, p) of pointed Riemannian manifolds to the morphism of
germs of neighborhoods induced by the differential f∗,q : (TqN,0)→ (TpM,0).

The functor G : A→ B takes a pointed Riemannian manifold (M, p) to its germ
[(M, p)] of neighborhoods, and takes an isometry f : (N,q) → (M, p) to the mor-
phism of germs of neighborhoods induced by f .

The exponential map Expq of a Riemannian manifold N at q induces a morphism
Expq : [(TqN,0)]→ [(N,q)] of germs of neighborhoods. In the language of categories
and functors, Theorem 15.2 is equivalent to the statement that the exponential map
is a natural transformation from the functor F to the functor G.
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§16 Distance and Volume

In differential topology, where two manifolds are considered the same if they are
diffeomorphic, the concepts of length and volume do not make sense, for length
and volume are clearly not invariant under diffeomorphisms. In differential geome-
try, where two Riemannian manifolds are considered the same if they are isometric,
length and volume do make sense, for they are invariant under isometries. In this
chapter we define length and distance on a Riemannian manifold and construct a
volume form on an oriented Riemannian manifold.

16.1 Distance in a Riemannian Manifold

In a Riemannian manifold we defined the length of a tangent vector Xp ∈ TpM to be

‖Xp‖=
√

〈Xp,Xp〉.

If c : [a,b]→M is a parametrized curve inM, its arc length is given by

�(c) =
∫ b

a
‖c′(t)‖dt.

We can reparametrize c(t) via a diffeomorphism t(u) : [a1,b1] → [a,b]; the
reparametrization of c(t) is then c(t(u)) : [a1,b1]→M. We say that the reparametriza-
tion is orientation-preserving if it preserves the order of the endpoints: t(a1) = a
and t(b1) = b; it is orientation-reversing if it reverses the order of the endpoints.
Since a diffeomorphism t(u) : [a1,b1]→ [a,b] is one-to-one, it is either increasing or
decreasing. Let u(t) be its inverse. Because u(t(u)) = u, by the chain rule,

dt
du

· du
dt

= 1,

which shows that dt/du is never zero. So dt/du is either always positive or always
negative, depending on whether the reparametrization t(u) preserves or reverses the
orientation.

Proposition 16.1. The arc length of a curve c : [a,b]→M in a Riemannian manifold
M is independent of its parametrization.

Proof. Suppose c(t(u)),a1 ≤ u ≤ b1 is an orientation-preserving reparametrization.
Then dt/du> 0. By the chain rule,

d
du

c(t(u)) = c′(t(u))
dt
du

. (16.1)

It follows that



16.1 Distance in a Riemannian Manifold 129

∫ b1

a1

∥
∥
∥
∥
d
du

c(t(u))

∥
∥
∥
∥du=

∫ b1

a1
‖c′(t(u))‖

∣
∣
∣
∣
dt
du

∣
∣
∣
∣ du

=
∫ b1

a1
‖c′(t(u))‖ dt

du
du

=
∫ b

a
‖c′(t)‖dt (change of variables formula).

If c(t(u)) is an orientation-reversing parametrization, the calculation is the same
except that (i) |dt/du|=−dt/du, because dt/du< 0, and (ii) the limits of integration
in the last line are reversed. These two changes cancel out:

∫ b1

a1

∥
∥
∥
∥
d
du

c
(
t(u)

)
∥
∥
∥
∥du=

∫ b1

a1
‖c′(t(u))‖

∣
∣
∣
∣
dt
du

∣
∣
∣
∣ du

=−
∫ b1

a1
‖c′(t(u))‖ dt

du
du=

∫ a1

b1
‖c′(t(u))‖ dt

du
du

=
∫ b

a
‖c′(t)‖dt (change of variables formula).

So the arc length is still independent of the parametrization. ��
Given two points p and q on a connected Riemannian manifold, we define the

distance between them to be

d(p,q) = inf
c
�(c),

where the infimum is taken over all piecewise smooth curves c from p to q and �(c)
is the length of the curve c.

For the distance d(p,q) to be defined, there must be a curve joining p and q.
Hence, in order to have a distance function, the Riemannian manifold should be
path-connected. By a theorem of general topology, a locally path-connected space is
path-connected if and only if it is connected (Problem A.2). Being locally Euclidean,
a manifold is locally path-connected. Thus, for a manifold, path-connectedness is
equivalent to connectedness. Whenever we speak of the distance function on a Rie-
mannian manifold M, we will assumeM to be connected.

It is easily verified that the distance function on a Riemannian manifold satisfies
the three defining properties of a metric on a metric space: for all p,q,r ∈M,

(i) positive-definiteness: d(p,q)≥ 0 and equality holds if and only if p= q;
(ii) symmetry: d(p,q) = d(q, p);
(iii) triangle inequality: d(p,r)≤ d(p,q)+d(q,r).

Therefore, with the distance as a metric, the Riemannian manifold M becomes a
metric space.

Remark 16.2. This metric is not the Riemannian metric, which is an inner product on
the tangent space TpM at each point p of the manifold. In the literature a “Rieman-
nian metric” is sometimes shortened to a “metric.” So the word “metric” can have
two different meanings in Riemannian geometry.
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Example 16.3. LetM be the punctured plane R2−{(0,0)}with the Euclidean metric
as the Riemannian metric. There is no geodesic from (−1,−1) to (1,1), because
the origin is missing from the manifold, but the distance between the two points is
defined and is equal to 2

√
2 (Figure 16.1). This example shows that the distance

between two points need not be realized by a geodesic.

(0,0)

(−1,−1)

(1,1)

Fig. 16.1. Punctured plane.

16.2 Geodesic Completeness

In differential topology, a curve c : (a,b)→M in a manifoldM can be reparametrized
so that its domain is R, because the interval (a,b) is diffeomorphic to R. Now sup-
pose the manifoldM is Riemannian and the curve is a geodesic. By Proposition 14.5,
any reparametrization of the geodesic which keeps it a geodesic must have the form
t = αu+β , for α,β ∈ R. Such a linear change of variables maps a finite interval to
another finite interval. Thus, whether or not a geodesic has the entire real line R as
its domain is independent of the parametrization.

Definition 16.4. A Riemannian manifold is said to be geodesically complete if the
domain of every geodesic in it can be extended to R.

Example. The Euclidean space Rn is geodesically complete.

Example. The sphere S2 is geodesically complete.

Example. The punctured Euclidean plane R
2 −{(0,0)} is not geodesically com-

plete, since the domain of the geodesic c(t) = (t, t), 1< t <∞ cannot be extended to
−∞< t < ∞.

Definition 16.5. A geodesic defined on [a,b] is said to be minimal if its length is
minimal among all piecewise smooth curves joining its two endpoints.

A proof of the following fundamental theorem on geodesic completeness may be
found in [19, Volume 1, Theorem 18, p. 342].
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Heinz Hopf (1894–1971) and Willi Rinow (1907–1979)

Theorem 16.6 (Hopf–Rinow theorem). A Riemannian manifold is geodesically
complete if and only if it is complete as a metric space in the distance metric d
defined above. Moreover, in a geodesically complete Riemannian manifold, any two
points may be joined by a minimal geodesic.

16.3 Dual 1-Forms Under a Change of Frame

Many of the constructions in differential geometry are local, in terms of a frame
of vector fields and its dual frame of 1-forms, for example, the connection matrix
and the curvature matrix of an affine connection. To see how the construction trans-
forms under a change of frame, it is useful to know how the dual frame of 1-forms
transforms.

If e1, . . . ,en and ē1, . . . , ēn are two C∞ frames on an open set U in a manifold M,
then

ē j =∑
i
aijei (16.2)

for someC∞ function [aij] : U →GL(n,R). Let θ 1, . . . ,θ n and θ̄ 1, . . . , θ̄ n be the dual
frames of 1-forms, respectively, meaning

θ i(e j) = δ ij and θ̄ i(ē j) = δ ij,

where δ ij is the Kronecker delta. To write θ̄ 1, . . . , θ̄ n in terms of θ 1, . . . ,θ n, it is best
to use matrix notation.

In matrix notation we write the frame e1, . . . ,en as a row vector

e= [e1 · · · en]
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and the dual frame θ 1, . . . ,θ n as a column vector

θ =

⎡

⎢
⎣

θ 1
...
θ n

⎤

⎥
⎦ .

The duality is expressed in matrix notation as a matrix product:

θe=

⎡

⎢
⎣

θ 1
...
θ n

⎤

⎥
⎦ [e1 · · · en] = [θ i(e j)] = [δ ij] = I.

Equation (16.2) translates into

ē= [ē1 · · · ēn] = [e1 · · · en][aij] = eA.

Proposition 16.7. Let e = [e1 · · · en] and ē = [ē1 · · · ēn] be two frames on an open
set U. If ē = eA for A : U → GL(n,R), then the dual frames θ̄ and θ are related by
θ̄ = A−1θ .

What this means is that if θ̄ i = ∑bijθ j, then B= [bij] = A−1.

Proof. Since

(A−1θ)ē= A−1θeA= A−1IA= I,

we have θ̄ = A−1θ . ��
Next we study how θ̄ 1∧·· ·∧ θ̄ n is related to θ 1∧·· ·∧θ n.

Proposition 16.8 (Wedge product under a change of frame). Let V be a vector
space of dimension n and θ 1, . . . ,θ n a basis for the dual space V∨. If the 1-covectors
θ̄ 1, . . . , θ̄ n and θ 1, . . . ,θ n are related by θ̄ i = ∑bijθ j, then with B= [bij],

θ̄ 1∧·· ·∧ θ̄ n = (detB)θ 1∧·· ·∧θ n.
Proof. Problem 16.3. ��

16.4 Volume Form

On an oriented manifold of dimension n there are many nowhere-vanishing n-forms.
If ω is a nowhere-vanishing n-form, so is any nonzero multiple of ω . In general, it is
not possible to single out one of them as the volume form. If the oriented manifold is
Riemannian, however, we will show that there is a canonically defined volume form.

Let (U,x1, . . . ,xn) be an arbitrary chart on an oriented Riemannian manifold M.
Applying the Gram–Schmidt process to the coordinate frame ∂1, . . . ,∂n, we can con-
struct an orthonormal frame e1, . . . ,en on U . Let θ 1, . . . ,θ n be the dual frame of
1-forms and define

ω = θ 1∧·· ·∧θ n.
Then ω is a nowhere-vanishing n-form onU .
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To see how ω depends on the choice of an orthonormal frame, let ē1, . . . , ēn be
another orthonormal frame onU . Then there areC∞ functions aij : U → R such that

ē j =∑aijei. (16.3)

Since both e1, . . . ,en and ē1, . . . , ēn are orthonormal, the change of basis matrix A =
[aij] is a function from U to the orthogonal group O(n). Let θ̄ 1, . . . , θ̄ n be the dual

frame of ē1, . . . , ēn. By Proposition 16.7, θ̄ i = ∑(A−1)ijθ j. It then follows from
Proposition 16.8 that

θ̄ 1∧·· ·∧ θ̄ n = det(A−1)θ 1∧·· ·∧θ n.
We now assume that e and ē are both positively oriented. Then the matrix function
A : U → SO(n) assumes values in the special orthogonal group. Since A−1 ∈ SO(n),
det(A−1) = 1, and so

θ̄ 1∧·· ·∧ θ̄ n = θ 1∧·· ·∧θ n.
This proves that ω = θ 1 ∧ ·· · ∧ θ n is independent of the choice of the positively
oriented orthonormal frame. It is a canonically defined n-form on an oriented Rie-
mannian manifold M. We call ω the volume form of M. In case the integral

∫
Mω is

finite, we call
∫
Mω the volume of the oriented Riemannian manifold M.

Example 16.9 (Volume form on R
2). On R

2, an orthonormal basis is ∂/∂x,∂/∂y,
with dual basis θ 1 = dx,θ 2 = dy. Hence, the volume form on R

2 is dx∧dy.

Example 16.10 (Volume form on H2). By Section 12.5, an orthonormal frame on the
Poincaré half-plane H

2 is e1 = y∂/∂x, e2 = y∂/∂y, with dual frame θ 1 = (dx)/y,
θ 2 = (dy)/y. Hence, the volume form on H

2 is dx∧dy/y2.

The notion of a tangent bundle extends to a manifold M with boundary ∂M (see
[21, Section 22.4, pp. 253–254]); hence so does the notion of a Riemannian metric:
a Riemannian metric on a manifoldM with boundary is a positive-definite symmet-
ric bilinear form on the tangent bundle TM. If M is a Riemannian manifold with
boundary, then ∂M inherits naturally a Riemannian metric from M.

Theorem 16.11. Let volM and vol∂M be the volume forms on an oriented Riemannian
manifold M and on its boundary ∂M. Assume that the boundary is given the
boundary orientation [21, §22.6]. If X is the outward unit normal along ∂M, then
vol∂M = ιX (volM), where ιX is the interior multiplication with X. (For the basic
properties of interior multiplication, see [21, Section 20.4, pp. 227–229].)

Proof. Let p be a point in the boundary ∂M. If (X ,e2, . . . ,en) is a positively oriented
orthonormal frame field for M in a neighborhood U of p, then by the definition of
the boundary orientation, (e2, . . . ,en) is a positively oriented orthonormal frame for
∂M inU ∩∂M. Let θ 1, . . . ,θ n be the dual frame to X ,e2, . . . ,en. Clearly, θ 2, . . . ,θ n
is dual to e2, . . . ,en onU ∩∂M. So

volM = θ 1∧·· ·∧θ n and vol∂M = θ 2∧·· ·∧θ n.
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At a point of ∂M,

ιX (volM) = ιX (θ 1∧·· ·∧θ n)
=∑

j
(−1) j−1θ j(X) θ 1∧·· ·∧ θ̂ j ∧·· ·∧θ n

= θ 1(X) θ 2∧·· ·∧θ n
= θ 2∧·· ·∧θ n = vol∂M . ��

Example 16.12 (The volume form on a circle). The volume form on the unit disk

D= {(x,y) ∈ R
2 | x2+ y2 ≤ 1}

is dx∧dy. The unit outward normal X along its boundary ∂D= S1 is

X = x
∂
∂x

+ y
∂
∂y

.

By Theorem 16.11, the volume form on the unit circle oriented counterclockwise is

ωS1 = ιX (dx∧dy) = (ιXdx)dy−dx(ιXdy)
= (Xx)dy−dx(Xy) = xdy− ydx.

16.5 The Volume Form in Local Coordinates

On a coordinate chart (U,x1, . . . ,xn) of a Riemannian manifold M, the volume form
volM , being a nowhere-vanishing top form, is a multiple f dx1 ∧ ·· · ∧ dxn of dx1 ∧
·· ·∧dxn for some nonvanishing function f onU . The next theorem determines f in
terms of the Riemannian metric.

Theorem 16.13. Let (U,x1, . . . ,xn) be a coordinate chart on a Riemannian manifold
M, and let gi j = 〈∂i,∂ j〉 = 〈∂/∂xi,∂/∂x j〉. Then the volume form of M on U is
given by

volM =
√

detg dx1∧·· ·∧dxn,

where g is the matrix [gi j].

Proof. Let e1, . . . ,en be an orthonormal frame on U , with dual frame of 1-forms
θ 1, . . . ,θ n. Then ∂ j = ∑i a

i
jei for some matrix-valued function A = [aij] : U →

GL(n,R). The dual frame to ∂1, . . . ,∂n is dx1, . . . ,dxn. By Proposition 16.7,
dxi = ∑ j b

i
jθ j with B= [bij] = A−1. By Proposition 16.8,

dx1∧·· ·∧dxn = (detB)θ 1∧·· ·∧θ n.
Hence,

volM = θ 1∧·· ·∧θ n = (detB)−1dx1∧·· ·∧dxn

= (detA)dx1∧·· ·∧dxn.
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To find detA, note that

gi j = 〈∂i,∂ j〉= 〈∑aki ek,a
�
je�〉=∑aki a

�
j〈ek,e�〉

=∑aki a
�
jδk� =∑

k

aki a
k
j = (ATA)ij.

Therefore,

g= [gi j] = ATA,

so that

detg= det(ATA) = (detA)2.

It follows that

detA=
√

detg

and

volM = (detA)dx1∧·· ·∧dxn =
√

detg dx1∧·· ·∧dxn. ��

Problems

16.1. Transition matrix for orthonormal bases
Suppose e1, . . . ,en and ē1, . . . , ēn are two orthonormal bases in an inner product spaceV . Prove
that if ē j = ∑aijei, then the matrix A= [aij] is orthogonal, i.e., A

TA= I.

16.2. The triangle inequality
Prove the triangle inequality for the distance function on a Riemannian manifold M: for all
p,q,r ∈M,

d(p,r)≤ d(p,q)+d(q,r).

16.3. Wedge product under a change of frame
Prove Proposition 16.8.

16.4. Volume form of a sphere in Cartesian coordinates
Let Sn−1(a) be the sphere of radius a centered at the origin in R

n. Orient Sn−1(a) as the
boundary of the solid ball of radius a. Prove that if x1, . . . ,xn are the Cartesian coordinates on
R
n, then the volume form on Sn−1(a) is

volSn−1(a) =
1
a

n

∑
i=1

(−1)i−1xidx1∧· · ·∧ d̂xi∧· · ·∧dxn.

(Hint: Instead of finding an orthonormal frame on the sphere, use Theorem 16.11.)

16.5. Volume form of a 2-sphere in spherical coordinates
Parametrize the 2-sphere M of radius a in R

3 by spherical coordinates θ ,φ , where θ is the
angle in the (x,y)-plane relative to the positive x-axis and φ is the angle relative to the positive
z-axis (Figure 16.2). Then

⎡

⎣
x
y
z

⎤

⎦=

⎡

⎣
asinφ cosθ
asinφ sinθ
acosφ

⎤

⎦ , 0≤ θ < 2π, 0< φ < π.
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θ

φ a

x

y

z

Fig. 16.2. Spherical coordinates in R3.

(a) Compute ∂/∂φ and ∂/∂θ and show that they are orthogonal to each other. (Hint: Use
[21, Prop. 8.10, p. 90] to write ∂/∂φ and ∂/∂θ in terms of ∂/∂x, ∂/∂y, ∂/∂ z.)

(b) Let e1 = (∂/∂φ)/‖∂/∂φ‖, e2 = (∂/∂θ)/‖∂/∂θ‖. Calculate the dual basis α1, α2 of
1-forms and the volume form on the 2-sphere of radius a in terms of a,φ ,θ .

(c) Calculate the volume ofM. (SinceM is a surface, by its volumewe mean its surface area.)

16.6. Volume form of an n-sphere in spherical coordinates
For n ≥ 3 we define the spherical coordinates on R

n as follows (see Figure 16.3). Let rk be
the distance of the point (x1, . . . ,xk) from the origin in R

k:

rk =
√
x21+ · · ·+ x2k .

(In this problem we use subscripts instead of superscripts on coordinate functions so that x21
means the square of x1.) The spherical coordinates on R

2 are the usual polar coordinates
r = r2, θ , 0≤ θ < 2π . For n≥ 3, if x= (x1, . . . ,xn), then the angle φn is the angle the vector
x makes relative to the xn-axis; it is determined uniquely by the formula

cosφn =
xn
rn
, 0≤ φn ≤ π.

Project x to R
n−1 along the xn-axis. By induction the spherical coordinates rn−1,θ , φ3, . . .,

φn−1 of the projection (x1, . . . ,xn−1) in R
n−1 are defined. Then the spherical coordinates

of (x1, . . . ,xn) in R
n are defined to be rn,θ ,φ3, . . . ,φn−1,φn. Thus for k = 3, . . . ,n, we have

cosφk = xk/rk. Let Sn−1(a) be the sphere rn = a.

(a) Find the length of the vectors ∂/∂θ , ∂/∂φk for k = 3, . . . ,n.
(b) Normalize the vectors in part (a) to obtain an orthonormal frame e2, . . . ,en on the sphere

Sn−1(a).
(c) Give the sphere Sn−1(a) the boundary orientation of the closed solid ball of radius a. (For

a discussion of boundary orientation, see [21, Section 21.6, p. 255].) Show that the volume
form on Sn−1(a) in spherical coordinates is up to sign

ω = an−1(sinn−2 φn)(sinn−3 φn−1) · · ·(sinφ3)dθ ∧dφ3∧· · ·∧dφn.

16.7. Surface area of a sphere
Because the “volume of a sphere” usually means the volume of the ball enclosed by the sphere,
we will call the integral of the volume form on a sphere the surface area of the sphere.
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xk−1

xk

xk

rk−1

φk
rk

Fig. 16.3. Spherical coordinates in Rn.

(a) By integration by parts, show that
∫ π

0
sinn φ dφ =

n−1
n

∫ π

0
sinn−2 φ dφ .

(b) Give a numerical expression for
∫ π
0 sin2k φ dφ and

∫ π
0 sin2k−1 φ dφ .

(c) Compute the surface area of a sphere of radius a. Treat the even-dimensional case and the
odd-dimensional case separately.

16.8. Volume form on a smooth hypersurface in R
n

Let f : Rn → R be a C∞ function whose partial derivatives ∂ f/∂xi are not simultaneously
zero at any point of the zero locus Z( f ) of f . By the regular level set theorem, Z( f ) is a
smooth manifold of dimension n− 1 (see [21, Th. 9.9, p. 105]). It inherits a Riemannian
metric from R

n.

(a) Show that the gradient vector field grad f = ∑(∂ f/∂xi)∂/∂xi is a nowhere-vanishing
normal vector field along Z( f ).

(b) The unit normal vector field X = grad f/‖grad f‖ on Z( f ) defines an orientation on Z( f ):
an orthonormal frame (e2, . . . ,en) at p ∈ Z( f ) is said to be positive for Tp(Z( f )) if and
only if (X ,e2, . . . ,en) is positive for Tp(Rn). Compute the volume form on Z( f ) with this
orientation.
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§17 The Gauss–Bonnet Theorem

According to an elementary theorem in Euclidean geometry, the three angles of a
triangle in the plane add up to 180◦. This simple fact has a beautiful generalization
to any polygon on a Riemannian 2-manifold. The formula, called the Gauss–Bonnet
formula for a polygon, relates the sum of the angles of a polygon to the geodesic
curvature of the edges of the polygon and the Gaussian curvature of the surface.
As a corollary, the angles of a geodesic triangle on a Riemannian 2-manifold can
add up to more or less than 180◦, depending on whether the Gaussian curvature is
everywhere positive or everywhere negative.

The Gauss–Bonnet formula for a polygon leads to the Gauss–Bonnet theorem
for an oriented Riemannian 2-manifold, according to which the total Gaussian cur-
vature

∫
MK vol of an oriented Riemannian 2-manifold M is equal to 2π times the

Euler characteristic χ(M). The most striking feature of this theorem is that while the
Gaussian curvature K depends on the Riemannian metric, the Euler characteristic
does not. Thus, although the Gaussian curvature depends on the metric, its integral
does not. Read another way, the Gauss–Bonnet theorem also implies that although
the Euler characteristic by definition depends on a polygonal decomposition of the
surface, because the total curvature does not, the Euler characteristic is in fact inde-
pendent of the polygonal decomposition.

It follows that two homeomorphic compact orientable surfaces have the same
Euler characteristic, since a homeomorphism carries a polygonal decomposition
from one surface to the other and preserves the number of vertices, edges, and faces.
Thus, at least for compact orientable surfaces, the Euler characteristic is a topologi-
cal invariant. It is the first instance of a topological invariant that can be constructed
using curvature.

17.1 Geodesic Curvature

In the same way the curvature of a curve in Euclidean space is defined using the
usual derivative (Problem 2.7), we can define the geodesic curvature of a curve in a
Riemannian manifold using the covariant derivative along the curve.

Consider a unit-speed curve γ(s) : [a,b]→M in a Riemannian manifold M. The
Riemannian connection of M induces a covariant derivative D/ds along the curve.
Let T (s) = γ ′(s). The curve γ(s) is a geodesic if and only if DT/ds vanishes iden-
tically. Thus, the magnitude ‖DT/ds‖ gives a measure of the extent to which γ(s)
fails to be a geodesic. It is called the geodesic curvature κ̃g of the curve γ(s):

κ̃g =
∥
∥
∥
∥
DT
ds

∥
∥
∥
∥ .

So defined, the geodesic curvature is always nonnegative.
It follows directly from the definition that a unit-speed curve is a geodesic if and

only if its geodesic curvature is zero.
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17.2 The Angle Function Along a Curve

At a point p of an oriented Riemannian manifoldM, the angle ζ between two vectors
u and v in the tangent space TpM is given by the formula

cosζ =
〈u,v〉

‖u‖ ‖v‖ .

In general, the angle ζ is defined only up to an integer multiple of 2π .
Suppose now that (U,e1,e2) is a framed open set on which there is a positively

oriented orthonormal frame e1,e2. If c : [a,b] → U is a C∞ curve, let ζ (t) be the
angle from e1,c(t) to c′(t) in Tc(t)M. Because ζ (t) is defined only up to an integer
multiple of 2π , ζ is a function from [a,b] to R/2πZ. It is a C∞ function, since it is
locally a branch of cos−1〈c′(t),e1,c(t)〉/‖c′(t)‖. Let ζ0 be a real number such that

cosζ0 =
〈c′(a),e1,c(a)〉

‖c′(a)‖ .

Since R is a covering space of R/2πZ and the interval [a,b] is simply connected, we
know from the theory of covering spaces that there is a uniqueC∞ map ζ : [a,b]→R

with a specified initial value ζ (a) = ζ0 that covers ζ :

R

[a,b]

ζ

ζ
R/2πZ.

We call ζ : [a,b]→R the angle function with initial value ζ0 along the curve c rela-
tive to the frame e1,e2. Since an angle function along a curve is uniquely determined
by its initial value, any two angle functions along the curve c relative to e1,e2 differ
by a constant integer multiple of 2π .

17.3 Signed Geodesic Curvature on an Oriented Surface

Mimicking the definition of the signed curvature for a plane curve, we can give
the geodesic curvature a sign on an oriented Riemannian 2-manifold. Given a unit-
speed curve γ(s) : [a,b] → M on an oriented Riemannian 2-manifold M, choose a
unit vector field n along the curve so that T,n is positively oriented and orthonormal.
Since 〈T,T 〉 ≡ 1 on the curve,

d
ds

〈T,T 〉= 0.

By Theorem 13.2,

2

〈
DT
ds

,T

〉

= 0.

Since the tangent space ofM at γ(s) is 2-dimensional and DT/ds is perpendicular to
T , DT/ds must be a scalar multiple of n.
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Definition 17.1. The signed geodesic curvature at a point γ(s) of a unit-speed curve
in an oriented Riemannian 2-manifold is the number κg(s) such that

DT
ds

= κgn.

The signed geodesic curvature κg can also be computed as

κg =
〈
DT
ds

,n
〉

.

LetU be an open subset of the oriented Riemannian 2-manifoldM such that there
is an orthonormal frame e1,e2 on U . We assume that the frame e1,e2 is positively
oriented. Suppose γ : [a,b]→U is a unit-speed curve. Let ζ : [a,b]→U be an angle
function along the curve γ relative to e1,e2. Thus, ζ (s) is the angle that the velocity
vector T (s) makes relative to e1 at γ(s) (Figure 17.1). In terms of the angle ζ ,

T = (cosζ )e1+(sinζ )e2, (17.1)

n=−(sinζ )e1+(cosζ )e2, (17.2)

where e1,e2 are evaluated at c(t).

γ(s)
ζ

e1

e2
T

Fig. 17.1. The angle ζ .

Proposition 17.2. Let ω1
2 be the connection form of an affine connection on a Rie-

mannian 2-manifold relative to the positively oriented orthonormal frame e1,e2
on U. Then the signed geodesic curvature of the unit-speed curve γ is given by

κg =
dζ
ds

−ω1
2 (T ).

Proof. Differentiating (17.1) with respect to s gives

DT
ds

=

(
d
ds

cosζ
)

e1+(cosζ )
De1
ds

+

(
d
ds

sinζ
)

e2+(sinζ )
De2
ds

.
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In this sum, ei really means ei,c(t) and Dei,c(t)/ds = ∇T ei by Theorem 13.1(iii), so
that by Proposition 11.4,

De1
ds

= ∇T e1 = ω2
1 (T )e2 =−ω1

2 (T )e2,

De2
ds

= ∇T e2 = ω1
2 (T )e1.

Hence,

DT
ds

=−(sinζ )
dζ
ds

e1− (cosζ )ω1
2 (T )e2

+(cosζ )
dζ
ds

e2+(sinζ )ω1
2 (T )e1

=

(
dζ
ds

−ω1
2 (T )

)

n.

So

κg =
dζ
ds

−ω1
2 (T ). ��

Since κg is a C∞ function on the interval [a,b], it can be integrated. The integral
∫ b
a κg ds is called the total geodesic curvature of the unit-speed curve γ : [a,b]→M.

Corollary 17.3. Let M be an oriented Riemannian 2-manifold. Assume that the
image of the unit-speed curve γ : [a,b] → M is a 1-dimensional submanifold C with
boundary. If C lies in an open setU with positively oriented orthonormal frame e1,e2
and connection form ω1

2 , then its total geodesic curvature is

∫ b

a
κg ds= ζ (b)−ζ (a)−

∫

C
ω1
2 .

Proof. Note that γ−1 :C → [a,b] is a coordinate map on C, so that

∫

C
ω1
2 =

∫ b

a
γ∗ω1

2 .

Let s be the coordinate on [a,b]. Then

γ∗ω1
2 = f (s)ds (17.3)

for some C∞ function f (s). To find f (s), apply both sides of (17.3) to d/ds:

f (s) = (γ∗ω1
2 )

(
d
ds

)

= ω1
2

(

γ∗
d
ds

)

= ω1
2 (γ ′(s)) = ω1

2 (T ).
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Hence, γ∗ω1
2 = ω1

2 (T )ds. By Proposition 17.2,
∫ b

a
κg ds=

∫ b

a

dζ
ds

ds−
∫ b

a
ω1
2 (T )ds

= ζ (b)−ζ (a)−
∫ b

a
ω1
2 (T )ds

= ζ (b)−ζ (a)−
∫ b

a
γ∗ω1

2

= ζ (b)−ζ (a)−
∫

C
ω1
2 . ��

17.4 Gauss–Bonnet Formula for a Polygon

A polygon on a surfaceM is a piecewise smooth simple closed curve γ : [a,b]→M;
here “closed” means that γ(a) = γ(b) and “simple” means that the curve has no other
self-intersections. We say that a polygon is unit-speed if it has unit speed everywhere
except at the nonsmooth points. Suppose now that M is an oriented Riemannian 2-
manifold and that γ : [a,b] → M is a unit-speed polygon that lies in an open set U
on which there is an oriented orthonormal frame e1,e2. Let γ(s0),γ(s1), . . . ,γ(sm)
be the vertices of the curve, where a = s0,b = sm, and γ(a) = γ(b). Denote by C
the image of γ , and by R the region enclosed by the curve C (Figure 17.2). Let K
be the Gaussian curvature of the oriented Riemannian 2-manifoldM.

In a neighborhood of a vertex γ(si), the curve is the union of two 1-dimensional
manifolds with boundary. Let γ ′(s−i ) be the outward-pointing tangent vector at γ(si)
of the incoming curve, and let γ ′(s+i ) be the inward-pointing tangent vector at γ(si)
of the outgoing curve. The angle εi in ]− π,π[ from the incoming tangent vector
γ ′(s−i ) to the outgoing tangent vector γ ′(s+i ) is called the jump angle at γ(si). The
interior angle at γ(si) is defined to be

βi := π− εi.
Along each edge γ([si−1,si]) of a polygon, the velocity vector T changes its angle

by Δζi = ζ (si)−ζ (si−1). At the vertex γ(si), the angle jumps by εi. Thus, the total
change in the angle of T around a polygon is

m

∑
i=1
Δζi+

m

∑
i=1
εi.

In Figure 17.2, it appears that the total change in the angle is 2π . This is the content
of the Hopf Umlaufsatz (circulation theorem), which we state below. On an oriented
surface, a polygon is positively oriented if it has the boundary orientation of the
oriented region it encloses. In the plane, positive orientation is counterclockwise.

Theorem 17.4 (Hopf Umlaufsatz). Let (U,e1,e2) be a framed open set on an ori-
ented Riemannian 2-manifold, and γ : [a,b] → U a positively oriented piecewise
smooth simple closed curve. Then the total change in the angle of T (s) = γ ′(s)
around γ is
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s0 s1 s2 sm

γ (s+2 ) γ (s−2 )

γ(sm) = γ(s0)

γ(s1)

γ(s2)

βm

β1

β2

ε2
γ

R

Fig. 17.2. A polygonal region on a surface.

m

∑
i=1
Δζi+

m

∑
i=1
εi = 2π.

The Hopf Umlaufsatz is also called the rotation index theorem or the rotation
angle theorem. A proof may be found in [11] or [16, Th. 2.9, pp. 56–57]. In the
Addendum we give a proof for the case of a plane curve.

Theorem 17.5 (Gauss–Bonnet formula for a polygon). Under the hypotheses
above,

∫ b

a
κg ds= 2π−

m

∑
i=1
εi−

∫

R
K vol .

Proof. The integral
∫ b
a κgds is the sum of the total geodesic curvature on each edge

of the simple closed curve. As before, we denote by Δζi the change in the angle ζ
along the ith edge of γ . By Corollary 17.3,

∫ b

a
κg ds=

m

∑
i=1

∫ si

si−1

κg ds

=∑
i
Δζi−

∫

C
ω1
2 . (17.4)

By the Hopf Umlaufsatz,

∑Δζi = 2π−∑εi. (17.5)

Recall from Section 12 that on a framed open set (U,e1,e2) of a Riemannian
2-manifold with orthonormal frame e1,e2 and dual frame θ 1,θ 2, if [Ωi

j] is the curva-
ture matrix relative to the frame e1,e2, then

Ω1
2 = dω1

2 = K θ 1∧θ 2.
Therefore,

∫

C
ω1
2 =

∫

∂R
ω1
2

=
∫

R
dω1

2 (by Stokes’ theorem)

=
∫

R
Kθ 1∧θ 2 =

∫

R
K vol . (17.6)

Combining (17.4), (17.5), and (17.6) gives the Gauss–Bonnet formula for a polygon.
��
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17.5 Triangles on a Riemannian 2-Manifold

A geodesic polygon is a polygon whose segments are geodesics. We will deduce
from the Gauss–Bonnet formula a famous result on the sum of the angles of a
geodesic triangle on a Riemannian 2-manifold.

Proposition 17.6. Suppose a geodesic m-gon γ lies in a framed open set of an ori-
ented Riemannian 2-manifold. If βi is the interior angle at vertex i of the geodesic
m-gon, R is the closed region enclosed by γ , and K is the Gaussian curvature on R,
then

m

∑
i=1
βi = (m−2)π+

∫

R
K vol .

Proof. Along a geodesic m-gon, the geodesic curvature κg is identically zero. The
exterior angle εi at vertex i is

εi = π−βi.
Hence, the Gauss–Bonnet formula becomes

0= 2π−
m

∑
i=1

(π−βi)−
∫

R
K vol,

or
m

∑
i=1
βi = (m−2)π+

∫

R
K vol . ��

The following corollary is immediate.

Corollary 17.7. Suppose a geodesic triangle lies in a framed open set of an oriented
Riemannian 2-manifold M.

(i) If M has zero Gaussian curvature, the angles of the geodesic triangle add up to
π radians.

(ii) If M has everywhere positive Gaussian curvature, the angles of the geodesic
triangle add up to more than π radians.

(iii) If M has everywhere negative Gaussian curvature, the angles of the geodesic
triangle add up to less than π radians.

By Section 12.5, the Poincaré half-plane has constant Gaussian curvature −1.
It is also known as the hyperbolic plane. We will call a geodesic triangle in the
Poincaré half-plane a hyperbolic triangle.

Corollary 17.8. The area enclosed by a hyperbolic triangle is π minus the sum of its
interior angles.

Proof. If R is the region enclosed by the hyperbolic triangle, then by Proposi-
tion 17.6,

Area(R) =
∫

R
1vol=−

∫

R
K vol

= π−
3

∑
i=1
βi. ��
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17.6 Gauss–Bonnet Theorem for a Surface

Let M be a compact oriented Riemannian 2-manifold. Suppose M has been cut up
into polygonal regions, each of which is bounded by a piecewise smooth simple
closed curve and lies in a framed open set. We call such a polygonal decomposition
sufficiently fine. LetV,E,F be the number of vertices, edges, and faces, respectively,
of this polygonal decomposition. The Euler characteristic of the decomposition is
defined to be

χ =V −E+F.

Theorem 17.9 (Gauss–Bonnet theorem). For a compact oriented Riemannian 2-
manifold M,

∫

M
K vol= 2πχ(M).

Proof. Decompose the surface M into a sufficiently fine polygonal decomposition.
The orientation on the surface will orient each face in such a way that each edge is
oriented in two opposite ways, depending on which of the two adjacent faces it is a
boundary of (see Figure 17.3).

Fig. 17.3. Orienting a triangulated surface.

Denote the polygonal regions by Rj. If we sum up
∫
κg ds over the boundaries of

all the regions Rj, the result is zero because each edge occurs twice, with opposite

orientations. Let β ( j)
i , 1≤ i≤ n j, be the interior angles of the jth polygon. Then by

the Gauss–Bonnet formula for a polygon (Theorem 17.5),

0=∑
j

∫

∂Rj

κg ds= 2πF−∑
j

n j

∑
i=1

(π−β ( j)
i )−∑

j

∫

Rj

K vol .

In the sum ∑ j∑i(π − β ( j)
i ), the term π occurs 2E times because each edge occurs

twice. The sum of all the interior angles is 2π at each vertex; hence,

∑
i, j
β ( j)
i = 2πV.



146 §17 The Gauss–Bonnet Theorem

Therefore,

0= 2πF−2πE+∑
i, j
β ( j)
i −

∫

M
K vol,

or
∫

M
K vol= 2πV −2πE+2πF

= 2πχ(M). ��

In the Gauss–Bonnet theorem the total curvature
∫
MK vol on the left-hand side

is independent of the polygonal decomposition while the Euler characteristic 2πχ
on the right-hand side is independent of the Riemannian structure. This theorem
shows that the Euler characteristic of a sufficiently fine polygonal decomposition
is independent of the decomposition and that the total curvature is a topological
invariant, independent of the Riemannian structure.

By the classification theorem for surfaces, a compact orientable surface is classi-
fied by an integer g called its genus, which is essentially the number of holes in the
surface (Figure 17.4).

genus 0 genus 1 genus 2

Fig. 17.4. Compact orientable surfaces.

Any two compact orientable surfaces of the same genus are diffeomorphic and
moreover, ifM is a compact orientable surface of genus g, then

χ(M) = 2−2g.

Theorem 17.10. If a compact orientable Riemannian manifold of dimension 2 has
positive Gaussian curvature K everywhere, then it is diffeomorphic to a sphere.

Proof. By the Gauss–Bonnet theorem,

2πχ(M) =
∫

M
K vol> 0.

So χ(M) = 2−2g> 0, which is equivalent to g< 1. Hence, g= 0 and M is diffeo-
morphic to a sphere. ��
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17.7 Gauss–Bonnet Theorem for a Hypersurface in R
2n+1

If M is an even-dimensional smooth, compact, oriented hypersurface in R
2n+1, we

defined its Gaussian curvature K in Section 9.1. The Gauss–Bonnet theorem for a
hypersurface states that

∫

M
KvolM =

vol(S2n)
2

χ(M).

For a proof, see [19, Vol. 5, Ch. 13, Th. 26, p. 442]. For n= 1, vol(S2) = 4π and this
theorem agrees with Theorem 17.9.

Problems

17.1. Interior angles of a polygon
Use the Gauss–Bonnet formula to find the sum of the interior angles of a geodesic m-gon in
the Euclidean plane.

17.2. Total curvature of a plane curve
Let C be a smooth, simple closed plane curve parametrized counterclockwise by γ(s), where
s ∈ [0, �] is the arc length. If k(s) is the signed curvature of the curve at γ(s), prove that

∫ �

0
k(s)ds= 2π.

This is a restatement of Hopf’s Umlaufsatz, since if θ is the angle of the tangent vector γ ′(s)
relative to the positive x-axis, then

∫ �

0
k(s)ds=

∫ �

0

dθ
ds

ds= θ(�)−θ(0),

is the change in the angle θ from s= 0 to s= �.

17.3. The Gauss map and volume
Let M be a smooth, compact, oriented surface in R

3. The Gauss map ν : M → S2 of M is
defined in Problem 5.3. If volM and volS2 are the volume forms on M and on S2 respectively,
prove that

ν∗(volS2) = K volM ,

where K is the Gaussian curvature onM.

17.4. Degree of the Gauss map of a surface
If f : M → N is a map of compact oriented manifolds of the same dimension, the degree of f
is defined to be the number

deg f =
∫

M
f ∗ω

where ω is a top form on N with
∫
N ω = 1 [3, p. 40]. Prove that for a smooth, compact,

oriented surface M in R3, the degree of the Gauss map ν : M → S2 is

degν =
1
2
χ(M).

(Hint: Take ω to be volS2 /4π . Then degν =
∫
M ν∗(volS2)/4π . Use Problem 17.3 and the

Gauss–Bonnet theorem.)
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17.5. Degree of the Gauss map of a hypersurface
Let M be a smooth, compact, oriented 2n-dimensional hypersurface in R

2n+1. Let N be the
unit outward normal vector field on M. The Gauss map ν : M → S2n assigns to each point
p ∈ M the unit outward normal Np. Using the Gauss–Bonnet theorem for a hypersurface,
prove that the degree of the Gauss map is

degν =
1
2
χ(M).

Addendum. Hopf Umlaufsatz in the Plane

In this Addendum we give a proof of the Hop Umlaufsatz in the plane, more or less
along the line of Hopf’s 1935 paper [11].

Let c : [a,b]→R
2 be a regular curve (Recall that “regular” means that c′ is never

zero). Let ζ̄ : [a,b] → R/2πZ be the angle that the unit tangent vector makes with
respect to the positive x-axis. Because angles are defined up to an integral multiple
of 2π , it is a C∞ function with values in R/2πZ. Since the interval [a,b] is sim-
ply connected, ζ̄ has a C∞ lift ζ : [a,b] → R, which is unique if we fix the initial
value ζ (a) ∈ R. If c is piecewise smooth with vertices at s0 < s1 < · · · < sr, then at
each vertex c(si), the angle at the endpoint of one segment and the jump angle there
determines uniquely the angle at the initial point of the next segment. Thus, on a
piecewise smooth curve there is a well-defined C∞ angle function on each segment
once the initial angle ζ (a) ∈ R is specified.

Theorem 17.1 (Hopf Umlaufsatz for a plane curve). Let γ : [0, �]→R
2 be a piece-

wise smooth simple closed curve oriented counterclockwise and parametrized by arc
length. Then the change in the angle around γ is

ζ (�)−ζ (0) = 2π.

γ(0)

γ(t1)

γ(t2)

Fig. 17.5. A simple closed curve.

Proof. Let C = γ([0, �]) be the image of the parametrized curve. First consider the
case when C is smooth. Since C is compact, it is bounded and therefore lies above
some horizontal line. Parallel translate this horizontal line upward until it is tangent
to C. Translate the coordinate system so that the origin O = (0,0) is a point of
tangency with a horizontal tangent (Figure 17.5).
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For any two points γ(t1),γ(t2) on C with t1 < t2, let ζ̄ (t1, t2) be the angle that

the unit secant vector
−−−−−−→
γ(t1)γ(t2)/‖

−−−−−−→
γ(t1)γ(t2)‖makes relative to the positive x-axis. If

t1 = t2, let ζ̄ (t1, t2) be the angle that the unit tangent vector at γ(t1) makes relative to
the positive x-axis.

Let T be the closed triangle in R
2 with vertices O = (0,0), A = (0, �), and L =

(�,�) (Figure 17.6). The angle function ζ̄ : T → R/2πZ is continuous on the closed
rectangle T and C∞ on the open rectangle. Since T is simply connected, ζ̄ lifts to a
continuous function ζ : T → R that isC∞ in the interior of T .

T

O(0,0)

L( )A(0 )

Fig. 17.6. Domain of the secant angle function.

Then dζ is a well-defined 1-form on T , and the change in the angle ζ around the
curve γ is given by the integral

∫

OL
dζ = ζ (L)−ζ (O) = ζ (�)−ζ (0).

By Stokes’ theorem,
∫

∂T
dζ =

∫

T
d(dζ ) = 0,

where ∂T = OL+LA+AO= OL−AL−OA. Hence,
∫

OL
dζ =

∫

OA
dζ +

∫

AL
dζ . (17.7)

On the right the first integral
∫
OA dζ = ζ (0, �)− ζ (0,0) is the change in the angle

as the secant moves from (0,0) to (0, �), i.e., the initial point of the secant is fixed
at O while the endpoint moves from O to O counterclokwise along the curve (Fig-
ure 17.7). Thus, ∫

OA
dζ = ζ (0, �)−ζ (0,0) = π−0= π.

The second integral on the right in (17.7),
∫

AL
dζ = ζ (�,�)−ζ (0, �),

is the change in the angle of the secant if the initial point of the secant moves from O
to O counterclockwise along the curve while the endpoint is fixed at O (Figure 17.8).
Thus,
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γ(0) ζ (0,0)ζ (0 )

Fig. 17.7. Change in the secant angle from (0,0) to (0, �).

γ(0) ζ ( )ζ (0 )

Fig. 17.8. Change in the secant angle from (0, �) to (�,�).

∫

AL
dζ = ζ (�,�)−ζ (0, �) = 2π−π = π.

So in (17.7),

ζ (�)−ζ (0) =
∫

OL
dζ =

∫

OA
dζ +

∫

AL
dζ = π+π = 2π.

This proves the Hopf Umlaufsatz for a smooth curve γ .
If γ : [0, �] → R

2 is piecewise smooth so that C has corners, we can “smooth
a corner” by replacing it by a smooth arc and thereby removing the singularity
(Figure 17.9).

In a neighborhood of each corner, the change in the angle is the change in the
angle over the smooth pieces plus the jump angle at the corner. It is the same as the
change in the angle of the smoothed curve. Hence,

Fig. 17.9. Smoothing a corner.

ζ (�)−ζ (0) =∑Δζi+∑εi = 2π.



Chapter 4

Tools from Algebra and Topology

This chapter is a digression in algebra and topology. We saw earlier that the tangent
space construction gives rise to a functor from the category of C∞ manifolds (M, p)
with a marked point to the category of vector spaces. Much of differential topology
and differential geometry consists of trying to see how much of the geometric infor-
mation is encoded in the linear algebra of tangent spaces. To this end, we need a
larger arsenal of algebraic techniques than linear spaces and linear maps.

In Sections 18 and 19, we introduce the tensor product, the dual, the Hom functor,
and the exterior power. These functors are applied in Section 20 to the fibers of
vector bundles in order to form new vector bundles. In Section 21, we generalize
differential forms with values in R to differential forms with values in a vector space
or even in a vector bundle. The curvature form of a connection on a vector bundle E
is an example of a 2-form with values in a vector bundle, namely, the endomorphism
bundle End(E).

Although we are primarily interested in the tensor product of vector spaces, it is
not any more difficult to define the tensor product of modules. This could come in
handy in algebraic topology, where one might want to tensor two abelian groups, or
in the theory of vector bundles, where the space of C∞ sections of a bundle over a
manifold is a module over the ring ofC∞ functions on the manifold. All the modules
in this book will be left modules over a commutative ring R with identity. When
the ring R is a field, the R-modules are vector spaces. The vector spaces may be
infinite-dimensional, except where explicitly stated otherwise.

§18 The Tensor Product and the Dual Module

Some of the basic operations on a vector space are not linear. For example, any
inner product on a vector spaceV is by definition bilinear, hence not linear onV ×V .
In general, linear maps are easier to deal with than multilinear maps. The tensor
product is a way of converting multilinear maps to linear maps. The main theorem
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(Theorem 18.3) states that bilinear maps on a Cartesian product V ×W of vector
spaces V and W correspond in a one-to-one manner to linear maps on the tensor
product V ⊗W .

18.1 Construction of the Tensor Product

Let R be a commutative ring with identity. A subset B of a left R-module V is called
a basis if every element of V can be written uniquely as a finite linear combination
∑ribi, where ri ∈ R and bi ∈ B. An R-module is said to be free if it has a basis, and
if the basis is finite with n elements, then the free R-module is said to be of rank n.

Example 18.1. The Z-module Z/2 has no basis, for the only possible candidate for
a basis element is 1, yet 0= 0 ·1= 2 ·1, which shows that 0 is not uniquely a linear
combination of 1.

Let V andW be left R-modules. To define their tensor product, first construct the
free R-module Free(V×W )whose basis is the set of all ordered pairs (v,w)∈V×W .
This means an element of Free(V ×W ) is uniquely a finite linear combination of
elements of V ×W :

∑ri(vi,wi), ri ∈ R, (vi,wi) ∈V ×W.

In Free(V ×W ), consider the R-submodule S spanned by all elements of the form:

(v1+ v2,w)− (v1,w)− (v2,w),

(v,w1+w2)− (v,w1)− (v,w2),

(rv,w)− r(v,w),

(v,rw)− r(v,w)

(18.1)

for all v1,v2,v ∈V , w1,w2,w ∈W , and r ∈ R.

Definition 18.2. The tensor product V ⊗RW of two R-modules V and W is the
quotient R-module Free(V×W )/S, where S is the R-submodule spanned by elements
of the form (18.1). When it is understood that the coefficient ring is R, we write
simply V ⊗W .

We denote the equivalence class of (v,w) by v⊗w and call it the tensor product
of v and w. By construction, v⊗w is bilinear in its arguments:

(v1+ v2)⊗w= v1⊗w+ v2⊗w, (18.2)

v⊗ (w1+w2) = v⊗w1+ v⊗w2, (18.3)

(rv)⊗w= r(v⊗w) = v⊗ rw. (18.4)

In other words, the canonical map

⊗ : V ×W →V ⊗W

(v,w) �→ v⊗w

is bilinear.
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Elements of the form v⊗w are said to be decomposable in V ⊗W . By construc-
tion every element in V ⊗W is a finite sum of decomposable elements:

∑ri(vi⊗wi) =∑(rivi)⊗wi.

The decomposition into a finite sum of decomposable elements is not unique; for
example,

v1⊗w+ v2⊗w= (v1+ v2)⊗w.

18.2 Universal Mapping Property for Bilinear Maps

The tensor product satisfies the following universal mapping property.

Theorem 18.3. Let V,W,Z be left modules over a commutative ring R with identity.
Given any R-bilinear map f : V ×W → Z, there is a unique R-linear map f̃ : V ⊗
W → Z such that the diagram

V ⊗W
f̃

V ×W

⊗

f
Z

(18.5)

commutes.

The commutativity of the diagram means that f̃ ◦ ⊗= f , or

f̃ (v⊗w) = f (v,w) for all (v,w) ∈V ×W.

Proof (of Theorem 18.3). In general there is a one-to-one correspondence between
linear maps on a free modules and set maps on a basis of the free module. We define

F : Free(V ×W )→ Z

by setting
F(v,w) = f (v,w)

and extending the definition by linearity:

F
(

∑ri(vi,wi)
)
=∑ri f (vi,wi).

Because f is bilinear, F vanishes on all the generators (18.1) of the subspace S. For
example,

F
(
(v1+ v2,w)− (v1,w)− (v2,w)

)
= F(v1+ v2,w)−F(v1,w)−F(v2,w)

= f (v1+ v2,w)− f (v1,w)− f (v2,w)

= 0.
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So the linear map F induces a linear map of the quotient module

f̃ : V ⊗W =
Free(V ×W )

S
→ Z

such that
f̃ (v⊗w) = F(v,w) = f (v,w).

This proves the existence of the linear map f̃ .
To prove uniqueness, suppose g̃ : V ⊗W → Z is another linear map that makes

the diagram (18.5) commutative. Then

g̃(v⊗w) = f (v,w) = f̃ (v⊗w)

for all (v,w)∈V×W , so g̃ and f̃ agree on decomposable elements. Since the decom-
posable elements spanV ⊗W and both g̃ and f̃ are linear, g̃= f̃ on all ofV ⊗W . ��

18.3 Characterization of the Tensor Product

Let V andW be left modules over a commutative ring R with identity. We say that a
left R-module T and an R-bilinear map φ : V ×W → T have the universal mapping
property for bilinear maps onV×W if given any left R-module Z and any R-bilinear
map f : V ×W → Z there is a unique R-linear map f̃ : T → Z making the diagram

T
f̃

V ×W

φ

f
Z

commutative. The universal mapping property characterizes the tensor product in
the following sense.

Proposition 18.4. Suppose V , W, and T are left R-modules and φ : V ×W → T an
R-bilinear map satisfying the universal mapping property for bilinear maps. Then T
is isomorphic to the tensor product V ⊗W via the linear map ⊗̃ : T →V ⊗W.

Proof. By the universal mapping property of T , there is a unique linear map ⊗̃ : T →
V ⊗W such that the diagram

T
⊗̃

V ×W

φ

⊗ V ⊗W
φ̃

commutes. Algebraically,
⊗̃(φ(v,w)) = v⊗w

for all (v,w) ∈V ×W .
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Similarly, by the universal mapping property of V ⊗W , there is a map φ̃ : V ⊗
W → T such that φ̃(v⊗w) = φ(v,w). Thus,

(φ̃ ◦ ⊗̃)(φ(v,w)) = φ̃(v⊗w) = φ(v,w),

so φ̃ ◦ ⊗̃ : T → T is a linear map that makes the diagram

T
φ̃◦⊗̃

V ×W

φ

φ
T

commute.
On the other hand, the identity map 1T : T → T also makes the diagram com-

mute. By the uniqueness statement of the universal mapping property,

φ̃ ◦ ⊗̃= 1T .

Similarly,

⊗̃ ◦ φ̃ = 1V⊗W .

Therefore, ⊗̃ : T →V ⊗W is a linear isomorphism of R-modules. ��
As an example of the universal mapping property, we prove the following propo-

sition.

Proposition 18.5. Let V and W be left R-modules. There is a unique R-linear iso-
morphism

f̃ : V ⊗W →W ⊗V

such that

f̃ (v⊗w) = w⊗ v

for all v ∈V and w ∈W.

Proof. Define
f : V ×W →W ⊗V

by
f (v,w) = w⊗ v.

Since f is bilinear, by the universal mapping property, there is a unique linear map
f̃ : V ⊗W →W ⊗V such that

( f̃ ◦ ⊗)(v,w) = w⊗ v,

or
f̃ (v⊗w) = w⊗ v.
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Similarly, one can construct a unique linear map g̃ : W ⊗V →V ⊗W such that

g̃(w⊗ v) = v⊗w.

Then f̃ and g̃ are inverses to each other on decomposable elements v⊗w. Since
V ⊗W is generated by decomposable elements, g̃ ◦ f̃ = 1V⊗W and f̃ ◦ g̃= 1W⊗V .

��
Remark 18.6. In general, one cannot define a linear map on V ⊗W by simply defin-
ing it on the decomposable elements v⊗w and then extending it by linearity. This is
because an element of the tensor product V ⊗W can have many different representa-
tions as a sum of decomposable elements; for example,

2v⊗w= v⊗2w= v⊗w+ v⊗w.

There is no assurance that the definition of a map on the decomposable elements will
be consistent. One must always start with a bilinear map f on the Cartesian product
V ×W . Then the universal mapping property guarantees the existence of a unique
linear map f̃ on V ⊗W with the property that f̃ (v⊗w) = f (v,w).

18.4 A Basis for the Tensor Product

In this section we assume V and W to be free R-modules of finite rank with bases
v1, . . . ,vn and w1, . . . ,wm, respectively.

Lemma 18.7. For 1 ≤ k ≤ n and 1 ≤ � ≤ m, there exist linear functions f k� : V ⊗
W → R such that

f k�(vi⊗wj) = δ
(k,�)
(i, j)

for all 1≤ i≤ n and 1≤ j ≤ m

Proof. Define hk� : V ×W → R by setting

hk�(vi,wj) = δ
(k,�)
(i, j)

on the basis elements vi of V and wj of W and extending to V ×W by bilinearity.
As defined, hk� : V ×W → R is bilinear, and so by the universal mapping property it
corresponds to a unique linear map

h̃k� : V ⊗W → R

such that

h̃k�(vi⊗wj) = hk�(vi,wj) = δ
(k,�)
(i, j) .

Set f k� = h̃k�. ��
Theorem 18.8. If v1, . . . ,vn is a basis for V and w1, . . . ,wm is a basis for W, then

{vi⊗wj | 1≤ i≤ n, 1≤ j ≤ m}
is a basis for V ⊗W.
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Proof. Every decomposable element v⊗w can be written as a linear combination of
vi⊗wj, for if v= ∑aivi and w= ∑b jw j, then

v⊗w=∑aib jvi⊗wj.

Since every element of V ⊗W is a sum of decomposable elements, we see that the
set {vi⊗wj}i, j spans V ⊗W .

It remains to show that the set {vi⊗wj}i, j is linearly independent. Suppose there
is a linear relation

∑
i, j
ci jvi⊗wj = 0, ci j ∈ R.

Applying the linear function f k� of Lemma 18.7 gives

0= f k�
(

∑
i, j
ci jvi⊗wj

)
=∑

i, j
ci j f k�(vi⊗wj)

=∑
i, j
ci jδ (k,�)

(i, j)

= ck�.

This proves that the set {vi⊗wj}i, j is linearly independent. ��
Corollary 18.9. If V and W are free R-modules of finite rank, then

rk(V ⊗W ) = (rkV )(rkW ).

18.5 The Dual Module

As before, R is a commutative ring with identity. For two left R-modules V andW ,
define HomR(V,W ) to be the set of all R-linear maps f : V →W . Under pointwise
addition and scalar multiplication:

( f +g)(v) = f (v)+g(v),

(r f )(v) = r
(
f (v)

)
, f ,g ∈ HomR(V,W ),v ∈V,r ∈ R,

the set HomR(V,W ) becomes a left R-module. If the ring R is understood from the
context, we may also write Hom(V,W ) instead of HomR(V,W ). The dual V∨ of a
left R-module V is defined to be HomR(V,R).

Proposition 18.10. Suppose V is a free R-module of rank n with basis e1, . . . ,en.
Define α i : V → R by

α i(e j) = δ ij.

Then the dual V∨ is a free R-module of rank n with basis α1, . . . ,αn.
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Proof. Problem 18.2. ��

Corollary 18.11. If V and W are free R-modules of rank n and m, with bases {vi}
and {wj}, respectively, then the functions

f k� : V ⊗W → R,

f k�(vi⊗wj) = δ
(k,�)
(i, j) , 1≤ k ≤ n, 1≤ �≤ m,

of Lemma 18.7 constitute the dual basis for (V ⊗W )∨ dual to the basis {vi⊗wj}i, j
for V ⊗W.

18.6 Identities for the Tensor Product

This section contains a few important identities involving the tensor product. We
leave some of the proofs as exercises.

Proposition 18.12. Let V be a left R-module. Scalar multiplication

f : R×V →V,

(r,v) �→ rv

is an R-bilinear map that induces an R-linear isomorphism f̃ : R⊗RV →V.

Proof. The bilinear map f : R×V →V induces a linear map f̃ : R⊗V →V . Define
g : V → R⊗V by g(v) = 1⊗ v. Then g is R-linear and

g ◦ f̃ = 1R⊗V and f̃ ◦ g= 1V .

Therefore, f̃ is an isomorphism. ��

Example 18.13. For any positive integer m, it follows from the proposition that there
is a Z-isomorphism

Z⊗Z (Z/mZ)� Z/mZ.

For α ∈ V∨ and w ∈W , denote by α( )w ∈ HomR(V,W ) the R-linear map that
send v ∈V to α(v)w ∈W .

Proposition 18.14. Let V and W be free left R-modules of finite rank. There is a
unique R-linear isomorphism

f̃ : V∨⊗W → HomR(V,W )

such that
f̃ (α⊗w) = α( )w.
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Proof. Define f : V∨×W → HomR(V,W ) by

f (α,w) = α( )w.

Since f is R-bilinear, it induces a unique R-linear map f̃ : V∨ ⊗W → Hom(R,W )
such that

f̃ (α⊗w) = α( )w.
Let {vi}, {wj}, and {α i} be bases for V , W , and V∨ respectively. Then a basis for
V∨ ⊗W is {α i ⊗wj} and a basis for HomR(V,W ) is {α i( )wj} (Show this). Since
f̃ : V∨⊗W → HomR(V,W ) takes a basis to a basis, it is an R-linear isomorphism.

��
Proposition 18.15. Let V and W be free left R-modules of finite rank. There is a
unique R-linear isomorphism

f̃ : V∨⊗W∨ → (V ⊗W )∨

such that f̃ (α⊗β ) is the linear map that sends v⊗w to α(v)β (w).

Proof. Problem 18.4. ��
Example 18.16 (Tensor product of finite cyclic groups). For any two positive integers
m,n, there is a group isomorphism

Z/mZ⊗Z/nZ� Z/(m,n)Z,

where (m,n) is the greatest common divisor of m and n.

Proof. Define a Z-linear map Z → Z/(m,n)Z by a �→ a (mod (m,n)). Since mZ
is in the kernel of this map, there is an induced Z-linear map Z/mZ → Z/(m,n)Z.
Similarly, there is a Z-linear map Z/nZ → Z/(m,n)Z. We can therefore define a
map f : Z/mZ×Z/nZ→ Z/(m,n)Z by

f (a,b) = ab (mod (m,n)).

Clearly, f is bilinear overZ. By the universal mapping property of the tensor product,
there is a unique Z-linear map f̃ : Z/mZ⊗Z/nZ→ Z/(m,n)Z such that f̃ (a⊗b) =
ab (mod (m,n)).

By the third defining property of the tensor product (18.4), a⊗ b = ab(1⊗ 1).
Thus, the Z-module Z/mZ⊗Z/nZ is cyclic with generator 1⊗ 1. It remains to
determine its order. It is well known from number theory that there exist integers x
and y such that

(m,n) = mx+ny.

Since

(m,n)(1⊗1) = mx(1⊗1)+ny(1⊗1)

= mx⊗1+1⊗ny= 0,

the order of 1⊗1 is a factor of (m,n).
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Suppose d is a positive factor of (m,n), but d < (m,n). Then f
(
d(1⊗ 1)

)
=

f (d⊗ 1) = d �= 0 in Z/(m,n)Z. Hence, d(1⊗ 1) �= 0. This proves that 1⊗ 1 has
order (m,n) in Z/mZ⊗Z/nZ. Thus, Z/mZ⊗Z/nZ is cyclic of order (m,n). ��

In particular, if m and n are relatively prime, then

Z/mZ⊗Z/nZ� Z/Z= 0.

18.7 Functoriality of the Tensor Product

In this section we show that the tensor product gives rise to a functor.

Proposition 18.17. Let f : V →V ′ and g : W →W ′ be linear maps of left R-modules.
Then there is a unique R-linear map

f ⊗g : V ⊗W →V ′ ⊗W ′

such that ( f ⊗g)(v⊗w) = f (v)⊗g(w).

Proof. Define
h : V ×W →V ′ ⊗W ′

by
h(v,w) = f (v)⊗g(w).

This h is clearly an R-bilinear map. By the universal mapping property
(Theorem 18.3), there is a unique R-linear map

h̃ : V ⊗W →V ′ ⊗W ′

such that

h̃(v⊗w) = h(v,w) = f (v)⊗g(w).

The map h̃ is our f ⊗g. ��
Thus, the tensor product construction associates to a pair of left R-modules

(V,W ) their tensor productV⊗W , and to a pair of R-linear maps ( f : V →V ′,g : W →
W ′) the R-linear map

f ⊗g : V ⊗W →V ′ ⊗W ′.
It is not difficult to check that this construction satisfies the two properties of a
functor:

(i) If 1V : V →V and 1W : W →W are identity maps, then

1V ⊗1W : V ⊗W →V ⊗W

is the identity map on V ⊗W .
(ii) If ( f : V → V ′,g : W → W ′) and ( f ′ : V ′ → V ′′,g′ : W ′ → W ′′) are pairs of

R-linear maps, then

( f ′ ⊗g′) ◦ ( f ⊗g) = ( f ′ ◦ f )⊗ (g′ ◦ g).

So the tensor product is a functor from the category of pairs of R-modules and
pairs of linear maps to the category of R-modules and linear maps.
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18.8 Generalization to Multilinear Maps

The tensor product construction can be generalized to an arbitrary number of factors.
For example, ifU , V , andW are left R-modules, we can construct the tensor product
U⊗V ⊗W by following the same procedure as before. First, form the free R-module
Free(U ×V ×W ) with basis elements all (u,v,w) ∈U ×V ×W . Then let S be the
R-submodule of Free(U×V ×W ) spanned by all “trilinear relations”:

(u1+u2,v,w)− (u1,v,w)− (u2,v,w),

(ru,v,w)− r(u,v,w), and so on.

The tensor product U ⊗V ⊗W is defined to be the quotient module Free(U ×V ×
W )/S. The natural map

⊗ : U×V ×W →U⊗V ⊗W

(u,v,w) �→ u⊗ v⊗w

is trilinear and satisfies the universal mapping property for trilinear maps on
U×V ×W .

18.9 Associativity of the Tensor Product

Proposition 18.18. IfU, V , andW are left R-modules, then there is a unique R-linear
isomorphism

U⊗ (V ⊗W )→U⊗V ⊗W

that sends u⊗ (v⊗w) to u⊗ v⊗w for all u ∈U, v ∈V and w ∈W.

Proof. It suffices to prove thatU⊗ (V ⊗W ) together with the trilinear map

φ : U×V ×W →U⊗ (V ⊗W )

(u,v,w) �→ u⊗ (v⊗w)

satisfies the universal mapping property for trilinear maps on U ×V ×W . As in
Proposition 18.4, any two spaces satisfying the universal mapping property for tri-
linear maps onU×V ×W are isomorphic.

Let Z be any vector space and f : U ×V ×W → Z a trilinear map. Fix u ∈U .
Since f (u,v,w) is bilinear in v and w, there is a unique linear map f̃ (u, ) : V⊗W → Z
such that

f̃ (u,v⊗w) = f (u,v,w).

Thus, there is a commutative diagram

U × (V ⊗W)
f̃

U ×V ×W

1×⊗

f
Z.
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Now f̃ is bilinear in its two arguments, so there is a unique linear map

˜̃f : U⊗ (V ⊗W )→U⊗V ⊗W

such that
˜̃f (u⊗ (v⊗w)) = f̃ (u,v⊗w) = f (u,v,w).

Hence, φ : U ×V ×W →U ⊗ (V ⊗W ) satisfies the universal mapping property for
trilinear maps onU×V ×W , and there is a commutative diagram

U ⊗ (V ⊗W)

˜̃fU ×V ⊗W

f̃

U ×V ×W

1×⊗

f
Z.

Taking Z =U⊗V ⊗W and f =⊗ : U×V ×W →U⊗V ⊗W , we get

˜̃f : U⊗ (V ⊗W )→U⊗V ⊗W

such that
˜̃f (u⊗ (v⊗w)) = f (u,v,w) = u⊗ v⊗w.

By the trilinear analogue of Proposition 18.4, ˜̃f is an isomorphism. ��
In the same way we see that there is an isomorphism

(U⊗V )⊗W →U⊗V ⊗W

that takes (u⊗ v)⊗w to u⊗ v⊗w.

Corollary 18.19. If U, V , and W are left R-modules, then there is a unique R-linear
isomorphism

U⊗ (V ⊗W ) ∼→ (U⊗V )⊗W

such that

u⊗ (v⊗w) �→ (u⊗ v)⊗w

for all u ∈U, v ∈V and w ∈W.

18.10 The Tensor Algebra

For a left R-module V , we define

T 0(V ) = R, T 1(V ) =V, T 2(V ) =V ⊗V, . . . ,

Tk(V ) =V ⊗·· ·⊗V
︸ ︷︷ ︸

k

, . . . ,
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and

T (V ) =
∞⊕

k=0

Tk(V ).

Here the direct sum
⊕

means that each element v in T (V ) is uniquely a finite sum
v = ∑i vki , where vki ∈ Tki(V ). Elements of Tk(V ) are said to be homogeneous of
degree k. There is a multiplication map on T (V ): first define

μ : Tk(V )×T �(V )→ Tk+�(V ),

(x,y) �→ x⊗ y,

and then extend μ to T (V )× T (V ) → T (V ) by R-bilinearity. In this way, T (V )
becomes a graded R-algebra, called the tensor algebra ofV . By Corollary 18.19, the
tensor algebra T (V ) is associative.

Problems

In the following problems, R is a commutative ring with identity.

18.1. Free R-modules of rank n
Show that a free R-module of rank n is isomorphic to R⊕·· ·⊕R (n copies).

18.2. The dual of a free module
Prove Proposition 18.10.

18.3. Hom of free modules
Prove that if V andW are free left R-modules of rank n and m, respectively, then HomR(V,W )
is a free R-module of rank mn.

18.4. Dual of a tensor product
Prove Proposition 18.15.

18.5. Tensor product of finite cyclic groups
Let m and n be two positive integers. Identify Z/mZ⊗Z Z/nZ as a finite abelian group.
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§19 The Exterior Power

In this section, R denotes a commutative ring with identity and all R-modules are
left R-modules. Let V be a left R-module and let Vk = V ×·· ·×V be the Cartesian
product of k copies of V . An alternating k-linear map from V to R is a k-linear map
f : Vk → R that vanishes whenever two of the arguments are equal, i.e.,

f (· · · ,v, · · · ,v, · · ·) = 0.

Just as the tensor product solves the universal mapping problem for multilinear maps
over R, so we will now construct a module that solves the universal mapping problem
for alternating multilinear maps over R. The question is, given an R-module V ,
does there exist an R-module W such that alternating k-linear maps from Vk to an
R-module Z correspond canonically in a one-to-one way to linearmaps fromW to Z?
The construction of the exterior power

∧kV answers the question in the affirmative.

19.1 The Exterior Algebra

For a left R-module V , let I(V ) be the two-sided ideal generated by all elements of
the form v⊗v in the tensor algebra T (V ), for v ∈V . So I(V ) includes elements such
as a⊗ v⊗ v⊗b for a,b ∈ T (V ).

Definition 19.1. The exterior algebra
∧
(V ) is defined to be the quotient algebra

T (V )/I(V ). We denote the image of v1⊗·· ·⊗ vk by

v1∧·· ·∧ vk.

Such an element is said to be decomposable and the operation ∧ is called the wedge
product.

Define
∧k(V ), the kth exterior power of V , to be the image of Tk(V ) in

∧
(V )

under the projection T (V )→∧
(V ). Then there is a canonical module isomorphism

∧k
(V )� Tk(V )

Tk(V )∩ I(V )
=

Tk(V )
Ik(V )

,

where Ik(V ) := Tk(V )∩ I(V ) consists of the homogeneous elements of degree k in
I(V ). In this way the exterior algebra

∧
(V ) inherits a grading from the tensor algebra

and itself becomes a graded R-algebra. We often write
∧kV for

∧k(V ).

19.2 Properties of the Wedge Product

Let R be a commutative ring with identity and V a left R-module. In this subsection,
we derive properties of the wedge product on the exterior algebra

∧
(V ).
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Lemma 19.2. Let V be an R-module. In the exterior algebra
∧
(V ),

u∧ v=−v∧u

for all u,v ∈V.

Proof. For any w ∈ V , we have by definition w⊗w ∈ I(V ), so that in the exterior
algebra

∧
(V ), the wedge product w∧w is 0. Thus, for all u,v ∈V ,

0= (u+ v)∧ (u+ v)

= u∧u+u∧ v+ v∧u+ v∧ v

= u∧ v+ v∧u.

Hence, u∧ v=−v∧u. ��
Proposition 19.3. If u ∈∧kV and v ∈∧�V, then u∧ v ∈∧k+�V and

u∧ v= (−1)k�v∧u. (19.1)

Proof. Since both sides of (19.1) are linear in u and in v, it suffices to prove the
equation for decomposable elements.

So suppose
u= u1∧·· ·∧uk and v= v1∧·· ·∧ v�.

By Lemma 19.2, v1∧ui =−ui∧ v1. In u∧ v, to move v1 across u1∧·· ·∧uk requires
k adjacent transpositions and introduces a sign of (−1)k. Similarly, moving v2 across
u1∧·· ·∧uk also introduces a sign of (−1)k. Hence,

u∧ v= (−1)kv1∧u1∧·· ·∧uk ∧ v2∧·· ·∧ v�

= (−1)k(−1)kv1∧ v2∧u1∧·· ·∧uk ∧ v3∧·· ·∧ v�
...

= (−1)k�v1∧·· ·∧ v�∧u1∧·· ·∧uk

= (−1)k�v∧u. ��

Lemma 19.4. In a decomposable element v1 ∧ ·· · ∧ vk ∈ ∧kV , with each vi ∈ V, a
transposition of vi and v j introduces a minus sign:

v1∧·· ·∧ v j ∧·· ·∧ vi∧·· ·∧ vk =−v1∧·· ·∧ vi∧·· ·∧ v j ∧·· ·∧ vk.

Proof. Without loss of generality, we may assume i< j. Let a= vi+1∧·· ·∧ v j−1. It
suffices to prove that

vi∧a∧ v j =−v j ∧a∧ vi.

By Proposition 19.3,

(vi∧a)∧ v j = (−1)dega+1v j ∧ (vi∧a)

= (−1)dega+1(−1)degav j ∧ (a∧ vi). ��
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Proposition 19.5. If π is a permutation on k letters and vi ∈V, then

vπ(1)∧·· ·∧ vπ(k) = (sgnπ)v1∧·· ·∧ vk.

Proof. Suppose π can be written as a product of � transpositions. Then sgn(π) =
(−1)�. Since each transposition of the subscripts introduces a minus sign,

vπ(1)∧·· ·∧ vπ(k) = (−1)�v1∧·· ·∧ vk = (sgnπ)v1∧·· ·∧ vk. ��

19.3 Universal Mapping Property for Alternating k-Linear Maps

If V is a left R-module, Vk is the Cartesian product V ×·· ·×V of k copies of V , and
∧kV is the kth exterior power of V , then there is a natural map ∧ : Vk →∧kV ,

∧(v1, . . . ,vk) = v1∧·· ·∧ vk.

This map is clearly k-linear. By Proposition 19.5, it is also alternating.

Theorem 19.6 (Universal mapping property for alternating k-linear maps). For
any R-module Z and any alternating k-linear map f : Vk → Z over R, there is a
unique linear map f̃ :

∧kV → Z over R such that the diagram

kV
f̃

V k

∧

f
Z

commutes.

The commutativity of the diagram is equivalent to

f̃ (v1∧·· ·∧ vk) = f (v1, . . . ,vk) (19.2)

for all v1, . . . ,vk in V .

Proof. Since f is k-linear, by the universal mapping property of the tensor product,
there is a unique linear map h : TkV → Z such that

h(v1⊗·· ·⊗ vk) = f (v1, . . . ,vk).

Since f is alternating,

h(· · ·⊗ v⊗ v⊗·· ·) = f (. . . ,v,v, . . .) = 0 for all v ∈V.

So h vanishes on the submodule Ik(V ), and therefore h induces a linear map on the
quotient module

f̃ :
TkV
IkV

=
∧k

V → Z
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such that

f̃ (v1∧·· ·∧ vk) = h(v1⊗·· ·⊗ vk) = f (v1, . . . ,vk).

This proves the existence of f̃ :
∧kV → Z.

To prove its uniqueness, note that (19.2) defines f̃ on all decomposable elements
in
∧kV . Since every element of

∧kV is a sum of decomposable elements and f̃ is
linear, (19.2) determines uniquely the value of f̃ on all of

∧kV . ��
For a module V over a commutative ring R with identity, denote by Lk(V ) the

R-module of k-linear maps from Vk to R, and Ak(V ) the R-module of alternating k-
linear maps from Vk to R. By the universal mapping property for the tensor product,
k-linear maps on Vk may be identified with linear maps on the tensor power TkV :

Lk(V )�
(
TkV

)∨
,

f �→ f̃ ,

where
f (v1, . . . ,vk) = f̃ (v1⊗·· ·⊗ vk).

Similarly, by the universal mapping property for the exterior power, alternating
k-linear maps on V may be identified with linear maps on

∧kV :

Ak(V )�
(∧k

V
)∨

, (19.3)

f �→ f̃ ,

where
f (v1, . . . ,vk) = f̃ (v1∧·· ·∧ vk).

19.4 A Basis for
∧kV

Let R be a commutative ring with identity. We prove in this section that if V is a
free R-module of finite rank, then for any k the exterior power

∧kV is also a free
R-module of finite rank. Moreover, from a basis forV , we construct a basis for

∧kV .

Lemma 19.7. If B= {e1, . . . ,en} is a basis for the free R-module V , then

e1∧·· ·∧ en �= 0.

It follows that for 1≤ i1 < · · ·< ik ≤ n, we have ei1 ∧·· ·∧ eik �= 0.

Proof. It will be enough to define a linear map
∧nV →V that takes e1∧·· ·∧ en to a

nonzero element. First define an alternating set map f : Bn → R by

f (eπ(1), . . . ,eπ(n)) = sgn(π),

where π is a permutation of {1, . . . ,n}. Next extend f to an n-linear map f : Vn → R,
which is also alternating because it is alternating on basis elements. Indeed,
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f
(
. . . ,∑aiei, . . . ,∑b je j, . . .

)

=∑aib j f (. . . ,ei, . . . ,e j, . . .) (by n-linearity)

=−∑aib j f (. . . ,e j, . . . ,ei, . . .) (by definition of f )

=− f
(
. . . ,∑b je j, . . . ,∑aiei, . . .

)
(by n-linearity)

By the universal mapping property for alternating n-linear maps, there is a unique
linear map

f̃ :
∧n

V → R

such that the diagram
nV

f̃

V n

∧

f
R

commutes. In particular,

f̃ (e1∧·· ·∧ en) = f (e1, . . . ,en) = 1.

This shows that e1∧·· ·∧ en �= 0. ��
Theorem 19.8. If {e1, . . . ,en} is a basis for V , then

S := {ei1 ∧·· ·∧ eik | 1≤ i1 < · · ·< ik ≤ n}

is a basis for
∧kV .

Proof. Since the exterior power
∧kV is a quotient of the tensor power TkV and

{ei1 ⊗·· ·⊗ eik | 1≤ i1, . . . , ik ≤ n}

is a basis for TkV , the set S spans
∧kV .

It remains to show that the set S is linearly independent. We introduce the multi-
index notation I = (1≤ i1 < · · ·< ik ≤ n) and

eI = ei1 ∧·· ·∧ eik .

Suppose there is a linear relation

∑aIeI = 0, (19.4)

where I runs over all multi-indices 1≤ i1 < · · ·< ik ≤ n of length k. If J= ( j1 < · · ·<
jk) is one particular multi-index in this sum, let J′ be its complement, also arranged
in increasing order. By definition, eJ and eJ′ have no factor in common, but if I and
J both have length k and I �= J, then there is an ei in eI that is not in eJ , so that eI and
eJ′ will have ei in common. Hence,
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{
eJ ∧ eJ′ =±e1∧·· ·∧ en,

eI ∧ eJ′ = 0, if I �= J.

Taking the wedge product of (19.4) with eJ′ gives

0=
(
∑aIeI

)∧ eJ′ = aJeJ ∧ eJ′ =±aJe1∧·· ·∧ en.

Since e1 ∧ ·· · ∧ en �= 0 (Lemma 19.7), aJ = 0. So the set S is linearly independent
and hence is a basis for the exterior power

∧kV . ��

Corollary 19.9. If V is a free R-module of rank n, then
∧kV is a free R-module of

rank
(n
k

)
.

19.5 Nondegenerate Pairings

Let R be a commutative ring with identity. A pairing of two R-modules V andW is
a bilinear map

〈 , 〉 : V ×W → R.

The pairing is said to be nondegenerate if

〈v,w〉= 0 for all w ∈W ⇒ v= 0,

and

〈v,w〉= 0 for all v ∈V ⇒ w= 0.

Example 19.10. An inner product on a real vector spaceV is a nondegenerate pairing
of V with itself, since if 〈v,w〉 = 0 for all w ∈ V , then 〈v,v〉 = 0 and hence v = 0.
Similarly, 〈v,w〉= 0 for all v ∈V implies that 〈w,w〉= 0 and hence w= 0.

If there is a pairing 〈 , 〉 between two left R-modules V andW , then each v in V
defines a linear map

〈v, 〉 : W → R.

So the pairing induces a map V →W∨, given by

v �→ 〈v, 〉.

This map is clearly R-linear. Similarly, the pairing also induces an R-linear map
W → V∨ via w �→ 〈 ,w〉. The definition of nondegeneracy says precisely that the
two induced linear maps V →W∨ andW →V∨ are injective. For finite-dimensional
vector spaces this is enough to imply isomorphism.

Lemma 19.11. Let V and W be finite-dimensional vector spaces over a field R. If
〈 , 〉 : V ×W → R is a nondegenerate pairing, then the induced maps V →W∨ and
W →V∨ are isomorphisms.
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Proof. By the injectivity of the induced linear maps V →W∨ andW →V∨,

dimV ≤ dimW∨ and dimW ≤ dimV∨.

Since a finite-dimensional vector space and its dual have the same dimension,

dimV ≤ dimW∨ = dimW ≤ dimV∨ = dimV.

Hence, dimV = dimW . So the injections V →W∨ and W → V∨ are both isomor-
phisms. ��

Any finite-dimensional vector spaceV is isomorphic to its dualV∨, because they
have the same dimension, but in general there is no canonical isomorphism between
V and V∨. If V is finite-dimensional and has a nondegenerate pairing, however, then
the pairing induces a canonical isomorphism

V →V∨,
v �→ 〈v, 〉.

19.6 A Nondegenerate Pairing of
∧k(V∨) with

∧kV

Let V be a vector space. In this subsection we establish a canonical isomorphism
between

∧k(V∨) and
(∧kV

)∨
by finding a nondegenerate pairing of of

∧k(V∨)
with

∧kV .

Proposition 19.12. Let V be a module over a commutative ring R with identity. The
multilinear map

(V∨)k×Vk → R,
(
(β 1, . . . ,β k),(v1, . . . ,vk)

)
�→ det[β i(v j)]

induces a pairing
∧k

(V∨)×
∧k

V → R.

Proof. For a fixed (β 1, . . . ,β k) ∈ (V∨)k, the function:Vk → R

(v1, . . . ,vk) �→ det[β i(v j)]

is alternating and k-linear. By the universal mapping property for
∧kV , there is a

unique linear map
∧kV → R such that

v1∧·· ·∧ vk �→ det[β i(v j)].

In this way we have constructed a map

h : (V∨)k →
(∧k

V
)∨
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such that
h(β 1, . . . ,β k)(v1∧·· ·∧ vk) = det[β i(v j)].

Since h(β 1, . . . ,β k) is alternating k-linear in β 1, . . . ,β k, by the universal mapping
property again, there is a linear map

h̃ :
∧k

(V∨)→
(∧k

V
)∨

such that

h̃(β 1∧·· ·∧β k)(v1∧·· ·∧ vk) = det[β i(v j)].

The map h̃ gives rise to a bilinear map

∧k
(V∨)×

∧k
V → R

such that

(β 1∧·· ·∧β k,v1∧·· ·∧ vk) �→ det[β i(v j)]. ��
Theorem 19.13. If V is a free R-module of finite rank n, then for any positive integer
k ≤ n, the linear map

h̃ :
∧k

(V∨)→
(∧k

V
)∨

,

(β 1∧·· ·∧β k) �→ (v1∧·· ·∧ vk �→ det[β i(v j)]), (19.5)

from the proof of Proposition 19.12 is an isomorphism.

Proof. To simplify the notation, we will rename as f the map h̃. Since duality leaves
the rank of a free module unchanged, by Corollary 19.9 both

∧k(V∨) and (
∧kV )∨

are free R-modules of rank
(n
k

)
. We will prove that f maps a basis for

∧k(V∨) to a
basis for (

∧kV )∨, and is therefore an isomorphism.
To this end, let e1, . . . ,en be a basis for V , and α1, . . . ,αn its dual basis for V∨.

Then
{eI := ei1 ∧·· ·∧ eik | 1≤ i1 < · · ·< ik ≤ n}

is a basis for
∧kV , and

{α I := α i1 ∧·· ·∧α ik | 1≤ i1 < · · ·< ik ≤ n}

is a basis for
∧k(V∨). Denote by e∗I the basis for

(∧kV
)∨

dual to {eI}, defined by

e∗I (eJ) = δI,J .

We claim that f (α I) = e∗I . First consider f (α I)(eJ) for I = J:

f (α I)(eI) = f (α i1 ∧·· ·∧α ik)(ei1 ∧·· ·∧ eik)

= det[α ir(eis)] = det[δ rs ] = 1.
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Next, if I �= J, then some iro is different from j1, . . . , jk. Then

f (α I)(eJ) = det[α ir(e js)] = 0,

because the ro-th row is identically zero. Thus, f (α I) = e∗I for all multi-indices I.
Since f maps a basis to a basis, it is an isomorphism of free R-modules. ��

Theorem 19.13 and (19.3) together give a sequence of module isomorphisms

∧k
(V∨)�

(∧k
V
)∨ � Ak(V ). (19.6)

19.7 A Formula for the Wedge Product

In this section, V is a free module of finite rank over a commutative ring R with
identity. According to (19.6), an element β 1∧ ·· ·∧β k in

∧k(V∨) can be interpreted
as a k-linear map V ×·· ·×V → R. Thus, if α ∈∧k(V∨) and β ∈∧�(V∨), then

α ∧β ∈
∧k+�

(V∨)� Ak+�(V )

can be interpreted as a (k+ �)-linear map on V . We will now identify this (k+ �)-
linear map α ∧β : Vk+� → R.

Definition 19.14. A (k, �)-shuffle is a permutation π ∈ Sk+� such that

π(1)< · · ·< π(k) and π(k+1)< · · ·< π(k+ �).

Proposition 19.15. For α ∈∧k(V∨), β ∈∧�(V∨), and vi ∈V,

(α ∧β )(v1, . . . ,vk+�) =∑
π
sgn(π)α

(
vπ(1), . . . ,vπ(k)

)
β
(
vπ(k+1), . . . ,vπ(k+�)

)
,

where π runs over all the (k, �)-shuffles.

Proof. Since both sides are linear in α and in β , we may assume that both α and β
are decomposable, say

α = α1∧·· ·∧αk, β = β 1∧·· ·∧β �.

Given any permutation

ρ =

[
1 · · · k k+1 · · · k+ �
ρ(1) · · · ρ(k) ρ(k+1) · · · ρ(k+ �)

]

∈ Sk+�,

we can turn it into a (k, �)-shuffle as follows. Arrange ρ(1), . . . ,ρ(k) in increasing
order

ρ(i1)< · · ·< ρ(ik)
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and define σ( j) = i j for 1 ≤ j ≤ k. Similarly, arrange ρ(k+ 1), . . . ,ρ(k+ �) in
increasing order

ρ(ik+1)< · · ·< ρ(ik+�)

and define τ( j) = i j for k+1≤ j ≤ k+ �. Then ρ ◦ σ ◦ τ is a (k, �)-shuffle.
Thus, we can get all permutations of 1, . . . ,k+ � by taking all (k, �)-shuffles and

permuting separately the first k elements and the last � elements. Let S� denote the
group of permutations of k+1, . . . ,k+ �. Then using (19.5),

(α1∧·· ·∧αk ∧β 1∧·· ·∧β �)(v1, . . . ,vk+�)

= ∑
ρ∈Sk+�

sgn(ρ)α1 (vρ(1)
) · · · αk (vρ(k)

)
β 1 (vρ(k+1)

) · · · β �
(
vρ(k+�)

)

= ∑
(k,�)-shuffles π

∑
σ∈Sk
∑
τ∈S�

sgn(π)sgn(σ)sgn(τ)

α1 (vπ(σ(1))
) · · · αk (vπ(σ(k))

)
β 1 (vπ(τ(k+1))

) · · · β k (vπ(τ(k+�))

)
. (19.7)

(The sign comes from the fact that ρ = π ◦ τ ◦ σ .)

Now set wi = vπ(i). Then wσ( j) = vπ(σ( j)), so

∑
σ∈Sk

sgn(σ)α1 (vπ(σ(1))
) · · · αk (vπ(σ(k))

)

= ∑
σ∈Sk

sgn(σ)α1 (wσ(1)
) · · · αk (wσ(k)

)

= (α1∧·· ·∧αk)(w1, . . . ,wk)

= (α1∧·· ·∧αk)
(
vπ(1), . . . ,vπ(k)

)
.

Thus, the sum (19.7) is

∑
(k,�)-shuffles π

sgn(π)(α1∧·· ·∧αk)
(
vπ(1), . . . ,vπ(k)

)

· (β 1∧·· ·∧β �)
(
vπ(k+1), . . . ,vπ(k+�)

)

= ∑
(k,�)-shuffles π

sgn(π)α
(
vπ(1), . . . ,vπ(k)

)
β
(
vπ(k+1), . . . ,vπ(k+�)

)
. ��

Problems

In the following problems, let V be a left module over a commutative ring R with identity.

19.1. Symmetric power of an R-module
A k-linear map f : Vk → R is symmetric if

f (vπ(1), . . . ,vπ(k)) = f (v1, . . . ,vk)

for all permutations π ∈ Sk and all vi ∈V .

(a) Mimicking the definition of the exterior power
∧k(V ), define the symmetric power Sk(V ).

(b) State and prove a universal mapping property for symmetric k-linear maps over R.
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§20 Operations on Vector Bundles

On a compact oriented Riemannian manifold M of dimension 2, let Ω be the cur-
vature matrix of the Riemannian connection relative to an orthonormal frame e1,e2
on an open subset of M. In the proof of the Gauss–Bonnet theorem, we saw that
the 2-form K vol on M is locally the entry Ω1

2 of the curvature matrix. The integral
∫
MK vol turns out to be a topological invariant. There are many ways to general-
ize the Gauss–Bonnet theorem; for example, we can (i) replace the 2-manifold M
by a higher-dimensional manifold and replace K vol by some other differential form
constructed from the curvature form of M, or (ii) replace the tangent bundle by an
arbitrary vector bundle. To carry out these generalizations we will need some pre-
liminaries on vector bundles.

In this section, we define subbundles, quotient bundles, and pullback bundles.
Starting from two C∞ vector bundles E and F over the same base manifold M, we
construct their direct sum E⊕F over M; it is a vector bundle whose fiber at a point
x ∈M is the direct sum of the fibers Ex and Fx. This construction can be generalized
to any smooth functor of vector spaces, so that one can obtain similarly C∞ vector
bundles E⊗F , Hom(E,F), E∨, and

∧k E over M (see Section 20.7).

20.1 Vector Subbundles

Definition 20.1. A C∞ subbundle of a C∞ vector bundle π : E →M is a C∞ vector
bundle ρ : F →M such that

(i) F is a regular submanifold of E, and
(ii) the inclusion map i : F → E is a bundle homomorphism.

By composing a section of the subbundle F with the inclusion map i : F → E,
we may view a section of F as a section of the ambient vector bundle E.

Definition 20.2. A k-frame of a C∞ vector bundle π : E → M over an open set U
in a manifold M is a collection of sections s1, . . . ,sk of E over U such that at every
point p inU , the vectors s1(p), . . . ,sk(p) are linearly independent in the fiber Ep. In
this terminology, a frame for a vector bundle of rank r is an r-frame.

Lemma 20.3. Let π : E → M be a C∞ vector bundle of rank r and let p ∈ M. Fix a
positive integer k ≤ r. A C∞ k-frame s1, . . . ,sk for E defined on a neighborhood U of
p can be extended to a C∞ r-frame for E on a possibly smaller neighborhoodW of p.

Proof. Replacing U by a smaller neighborhood of p if necessary, we may assume
that there is a frame e1, . . . ,er for E over U . On U each s j is a linear combination
s j = ∑aijei with a

i
j ∈C∞(U). In matrix notation

[s1 · · · sk] = [e1 · · · er][aij].
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The r× k matrix a = [aij] has rank k at every point in U . By renumbering e1, . . . ,er
we may assume that the top k× k block a′ of a is nonsingular at the point p. Since
nonsingularity is an open condition there is a neighborhood W of p on which the
k× k block a′ is nonsingular pointwise.

We can extend the r× k matrix a =

[
a′
∗
]

to a nonsingular r× r matrix b by

adjoining an r× (r− k) matrix

[
0
I

]

:

b=

[
a′ 0
∗ I

]

.

Then

[s1 · · · sk ek+1 · · · er] = [e1 · · · er]b.
Since b is an n× n nonsingular matrix at every point of W , the sections s1, . . . ,sk,
ek+1, . . ., er form a frame for E overW . ��

20.2 Subbundle Criterion

A vector bundle is a locally trivial family of vector spaces over a base space. The
following theorem gives a sufficient condition for a family of vector subspaces over
the same base space to be locally trivial and therefore to be a subbundle.

Theorem 20.4. Let π : E →M be a C∞ vector bundle of rank r and F :=
∐

p∈M Fp a
subset of E such that for every p in M, the set Fp is a k-dimensional vector subspace
of the fiber Ep. If for every p in M, there exist a neighborhood U of p and m ≥ k
smooth sections s1, . . . ,sm of E over U that span Fq at every point q ∈U, then F is a
C∞ subbundle of E.

Proof. By making a neighborhood W of p in U sufficiently small, one may ensure
the triviality of E overW , so that there exists a local frame e1, . . . ,er for E overW .
On W , each section s j is a linear combination s j = ∑r

i=1 a
i
jei for an r×m matrix

a= [aij] of C
∞ functions. In matrix notation

s := [s1 · · · sm] = [e1 · · · er][aij] = ea.

At every point ofW the matrix a has rank k, because the columns of a are simply
the column vectors of s1, . . . ,sm relative to the basis e1, . . . ,er and s1, . . . ,sm span a
k-dimensional vector space pointwise. In particular, at the point p the matrix a(p) =
[aij(p)] has rank k. It follows that a(p) has a nonsingular k× k submatrix a′(p). By
renumbering s1, . . . ,sm and e1, . . . ,er, we may assume that a′(p) is the left uppermost
k× k submatrix of a(p). Since the nonsingularity of a matrix is an open condition,
a′ is nonsingular on a neighborhoodW ′ of p inW . At every point ofW ′, since a′ has
rank k, so does the matrix [s1 · · · sk]. This proves that s1, . . . ,sk form a frame for F
overW ′.
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By Lemma 20.3, s1, . . . ,sk can be extended to a C∞ frame t1, . . . , tk, . . . , tr for E,
with ti = si for i = 1, . . . ,k, over a possibly smaller neighborhood W ′′ of p in W ′.
For any v ∈ E|W ′′ , let v= ∑r

i=1 c
i(v)ti(π(v)). Then F |W ′′ is defined by ck+1 = 0, . . . ,

cr = 0 on E|W ′′ . This proves that F is a regular submanifold of E, because the C∞

trivialization

φW ′′ : E|W ′′ ∼→W ′′ ×R
r,

v �→ (
π(v),c1(v), . . . ,cr(v)

)
,

induces a bijection ψW ′′ : F |W ′′ →W ′′ ×R
k. (The ci’s are C∞ by Problem 7.5.) As

the restriction of a C∞ map, ψW ′′ isC∞. Its inverse,

ψ−1
W ′′ : (p,c1, . . . ,ck) �→

k

∑
i=1

citi(p) =
k

∑
i=1

cisi(p),

is C∞. Hence, F is a C∞ vector bundle of rank k. The inclusion F ↪→ E, locally
given by

W ′′ ×R
k →W ′′ ×R

r,

(p,c1, . . . ,ck) �→ (p,c1, . . . ,ck,0, . . . ,0)

is clearly a bundle map. Thus, F is a smooth rank-k subbundle of E. ��

20.3 Quotient Bundles

Suppose F is a C∞ subbundle of a C∞ vector bundle π : E → M. At each point p in
M, the fiber Fp is a vector subspace of Ep and so the quotient space Qp := Ep/Fp is
defined. Let

Q :=
∐

p∈M
Qp =

∐

p∈M
(Ep/Fp),

and give Q the quotient topology as a quotient space of E. Let ρ : E → Q be the
quotient map. The projection π : E → M then induces a map πQ : Q → M as in the
commutative diagram

F ⊂ E
ρ

π

Q

πQ

M.

Since F is locally trivial, every point p in M has a coordinate neighborhood
over which one can find a C∞ frame s1, . . . ,sk for F . By Lemma 20.3, s1, . . . ,sk
can be extended to a C∞ frame s1, . . . ,sk,sk+1, . . . ,sr for E over a possibly smaller
neighborhoodW of p. A point v of E|W is uniquely a linear combination
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v=∑ci(v)si
(
π(v)

)
.

The functions ci on E|W are coordinate functions and hence areC∞.
Let s̄k+1, . . . , s̄r : W → Q be the sections sk+1, . . . ,sr followed by the projection

E → Q. Then (s̄k+1, . . . , s̄r) is a continuous frame for Q overW , and every element
v̄ ∈ Q|W := π−1

Q (W ) can be written uniquely as a linear combination

v̄=∑ c̄i(v̄)s̄i
(
πQ(v̄)

)
.

This gives rise to a bijection

φW : Q|W →W ×R
r−k,

v̄ �→
(
p, c̄k+1(v̄), . . . , c̄r(v̄)

)
, p= πQ(v̄).

The maps c̄i are continuous on Q|W because their lifts c̄i ◦ ρ = ci to E|W are contin-
uous. Thus, φW is a continuous map. Since

φ−1
W (p, c̄k+1, . . . , c̄r) =∑ c̄is̄i(p)

is clearly continuous, φW is a homeomorphism. Using the homeomorphisms φW , one
can give Q a manifold structure as well as aC∞ vector bundle structure overM. With
this vector bundle structure, πQ : Q→M is called the quotient bundle of E by F .

20.4 The Pullback Bundle

If π : E →M is a C∞ vector bundle over a manifold M and f : N →M is a C∞ map,
then there is aC∞ vector bundle f ∗E over N, called the pullback of E by f , with the
property that every bundle map covering f factors through the pullback bundle f ∗E
(see Proposition 20.8).

The total space of the pullback bundle of E by f is defined to be the set

f ∗E = {(n,e) ∈ N×E | f (n) = π(e)},
endowed with the subspace topology. The projections to the two factors,

η : f ∗E → N, ζ : f ∗E → E,
η(n,e) = n, ζ (n,e) = e,

fit into a commutative diagram

f ∗E

η

ζ
E

π

N
f

M.

(20.1)

We will show that η : f ∗E → N is a vector bundle. First, we show that the pullback
of a product bundle is a product bundle.
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Proposition 20.5. If f : N → M is a C∞ map of manifolds and π : E =M×V → M
is a product bundle, then the projection η : f ∗E → N is isomorphic to the product
bundle N×V → N.

Proof. As a set,

f ∗E = {(n,(m,v)) ∈ N× (M×V ) | f (n) = π(m,v) = m}
= {(n,( f (n),v)) ∈ N× (M×V )}.

The map

σ : f ∗E → N×V,
(
n,( f (n),v)

) �→ (n,v)

with inverse (n,v) �→ (
n,( f (n),v)

)
is a fiber-preserving homeomorphism. It gives

η : f ∗E → N the structure of aC∞ vector bundle over N. ��
Theorem 20.6. Let π : E → M be a C∞ vector bundle with fiber V and f : N → M
a C∞ map. The projection η : f ∗E → N can be given the structure of a C∞ vector
bundle with fiber V .

For any map π : E → M and open set U ⊂ M, recall that the restriction of E to
U is denoted E|U := π−1(U)→U .

Proof. Since E is locally a product U ×V →U , by Proposition 20.5, the pullback
f ∗E is locally the product f−1(U)×V → f−1(U). ��

Lemma. Suppose π : E →M is a C∞ vector bundle with fiber V and f : N →M is a
C∞ map. Let U be an open subset of M. Then

( f ∗E)| f−1(U) = f ∗(E|U ).

Proof. By definition,

( f ∗E)| f−1(U) = {(n,e) ∈ N×E | n ∈ f−1(U), f (n) = π(e)}
= {(n,e) ∈ f−1(U)×E | f (n) = π(e)}.

f ∗(E|U ) = {(n,e) ∈ f−1(U)×E|U | f (n) = π(e)}.

Comparing the two, we see that they are equal. ��
Proposition 20.7. Suppose π : E → M is a C∞ vector bundle with fiber V and trivi-
alizing open cover {Uα} and f : N →M is a C∞ map. If gαβ : Uα ∩Uβ → GL(V ) is
the transition function for E over Uα ∩Uβ , then f ∗gαβ is the transition function for
f ∗E over f−1(Uα ∩Uβ ).
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Proof. Suppose φα : E|Uα ∼−→Uα ×V is the trivialization for E overUα , with

φα(e) =
(
π(e), φ̄α(e)

)
.

Then
f ∗(E|Uα ) = ( f ∗E)| f−1(Uα

∼−→ f−1(U)×V

is given by
(n,e) �→ (

n, φ̄α(e)
)
.

So the transition function for f ∗E over f−1(Uα)∩ f−1(Uβ ) is

(φ̄α ◦ φ̄−1
β )
(
f (n)

)
= ( f ∗gαβ )(n). ��

Proposition 20.8. Suppose πF : F → N and πE : E → M are vector bundles and
ϕ : F → E is a bundle map that covers f : N →M, i.e., the diagram

F
πF

ϕ
E
πE

N
f

M

(20.2)

commutes. Then there is a unique bundle map ϕ̃ : F → f ∗E over N that makes the
following diagram commute:

F

πF

˜
ϕ

ϕ

f ∗E
ζ

η

E

πE

N
f

M.

(20.3)

Proof. For all q ∈ F , the commutativity of the diagram (20.3) forces ϕ̃(q) =(
πF(q),ϕ(q)

)
. This shows that ϕ̃ is unique if it exists. Because ϕ covers f , f (πF(q))

= πE
(
ϕ(q)

)
. Hence,

(
πF(q),ϕ(q)

) ∈ f ∗E. So the map ϕ̃ as defined above indeed
exists. It is R-linear on each fiber because ϕ is. It is continuous because πF and ϕ
are assumed continuous. ��

This proposition shows that given f and E, the commutative diagram (20.1) of
the pullback bundle f ∗E is a final object among all commutative diagrams of the
form (20.2).
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20.5 Examples of the Pullback Bundle

The pullback construction for vector bundles is indispensable in differential geom-
etry. In this section we give two examples. The first uses the pullback bundle to
convert a bundle map over two different base manifolds to a bundle map over a sin-
gle manifold. This is sometimes desirable in order to obtain an exact sequence of
vector bundles over a manifold (see (27.5)). The second example uses the pullback
bundle to clarify the notion of a vector field along a curve in a manifold, which we
encountered in Sections 4.3 and 13.1.

Example 20.9 (The differential of a map). If f : N →M is aC∞ map of manifolds, its
differentials f∗,p : TpN → Tf (p)M at all points p ∈ N piece together to give a bundle
map f∗ : TN → TM of tangent bundles. By Proposition 20.8, the bundle map f∗
induces a unique bundle map f̃∗ : TN → f ∗TM over N that makes the diagram

TN

πF

f̃∗
f∗

f ∗TM
ζ

η

TM

πE

N
f

M

commutative. The map f̃∗ : TN → f ∗TM is given by

Xp ∈ TpN �→ (p, f∗,pXp ∈ Tf (p)M).

Conversely, f∗ can be obtained from f̃∗ as f∗ = ζ ◦ f̃∗. In this way the bundle map f∗
over two base manifolds is converted to a bundle map f̃∗ over the single manifold N.

Example 20.10 (Vector fields along a curve). If c : I → M is a smooth map from an
open interval I ⊂R into a manifoldM, then the pullback c∗TM of the tangent bundle
TM is a vector bundle over I. A section of the pullback bundle c∗TM assigns to each
t ∈ I an element of the fiber (c∗TM)t � Tc(t)M, i.e., a tangent vector to M at c(t). In
other words, a section of c∗TM is precisely a vector field along the curve c(t) in M
defined in Section 4.3.

Exercise 20.11. Show that a vector field along a curve c in M is smooth if and only if the
corresponding section of c∗TM is smooth.

Thus, we can identify the space of smooth vector fields along c(t) with the space
of smooth sections of the pullback bundle c∗TM:

Γ(TM|c(t)) = Γ(c∗TM).
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20.6 The Direct Sum of Vector Bundles

Suppose π : E → M and π ′ : E ′ → M are two smooth vector bundles of ranks r and
r′, respectively, over a manifold M. For p ∈ M, denote by Ep the fiber π−1(p) of E
over p, and by E ′

p the fiber (π ′)−1(p) of E ′ over p. Define the direct sum E⊕E ′ as
a set to be the disjoint union

E⊕E ′ :=
∐

p∈M
Ep⊕E ′

p :=
⋃

p∈M
{p}× (Ep⊕E ′

p). (20.4)

Let ρ : E⊕E ′ → M be the projection ρ
(
p,(e,e′)

)
= p. We will now need to put a

topology and a manifold structure on E⊕E ′ so that ρ : E⊕E ′ → M becomes a C∞

vector bundle with fibers Ep⊕E ′
p.

Lemma 20.12. If {Uα}α∈A and {Vβ}β∈B are open covers of a topological space M,
then {Uα ∩Vβ}(α ,β )∈A×B is again an open cover of M.

Proof. Since {Vβ} is an open cover of M, for each α ∈ A,

Uα =Uα ∩M =Uα ∩
(⋃

β
Vβ
)
=
⋃

β
(Uα ∩Vβ ).

Thus
M =

⋃

α
Uα =

⋃

α ,β
(Uα ∩Vβ ). ��

If {Uα}α∈A and {V ′
β}β∈B are trivializing open covers for E and E ′, respectively,

then by Lemma 20.12 {Uα ∩V ′
β}α∈A,β∈B is an open cover of M that simultaneously

trivializes both E and E ′.
Choose a coordinate open cover U= {Uα}α∈A of M that simultaneously trivial-

izes both E and E ′, with trivializations

ψα : E|Uα
∼→Uα ×R

r and ψ ′
α : E ′∣∣

Uα
∼→Uα ×R

r′ .

By adding all finite intersectionsUα1 ∩·· ·∩Uαi to the open cover U, we may assume
that ifUα ,Uβ ∈U, thenUα ∩Uβ ∈U. For each p∈Uα , there are linear isomorphisms

ψα ,p : Ep
∼→ {p}×R

r and ψ ′
α ,p : E

′
p
∼→ {p}×R

r′ .

By the functorial property of the direct sum, there is an induced linear isomorphism

φα ,p := ψα ,p⊕ψ ′
α ,p : Ep⊕E ′

p
∼→ {p}×R

r+r′ ,

and hence a bijection

φα :
∐

p∈Uα
Ep⊕E ′

p = ρ−1(Uα)
∼→Uα ×R

r+r′

that is a linear isomorphism on each fiber.
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To simplify the notation we will sometimes writeUαβ =Uα ∩Uβ . For α,β ∈A,
the transition function

φα ◦ φ−1
β : Uαβ ×R

r+r′ → ρ−1(Uαβ )→Uαβ ×R
r+r′

restricts on each fiber to

φα ,p ◦ φ−1
β ,p : {p}×R

r+r′ → Ep⊕E ′
p → {p}×R

r+r′ , p ∈Uαβ .

If we set gαβ (p) = ψα ,p ◦ ψ−1
β ,p and g′αβ (p) = ψ

′
α ,p ◦ (ψ ′

β ,p)
−1, then

(φα ◦ φ−1
β )
(
p,(v,v′)

)
=
(
p,(ψα ,p ◦ ψ−1

β ,p)v,(ψ
′
α ,p ◦ (ψ ′

β ,p)
−1)v′

)

=
(
p,
(
gαβ (p)v,g

′
αβ (p)v

′)
)
.

This shows that φα ◦ φ−1
β is a continuous map, because gαβ : Uαβ → GL(r,R) and

g′αβ : Uαβ → GL(r′,R) are both continuous. As its inverse φβ ◦ φ−1
α is also continu-

ous, φα ◦ φ−1
β is a homeomorphism.

Since Uα ×R
r+r′ has a topology, we can use the trivialization φα to define a

topology on ρ−1(Uα) so that φα becomes a homeomorphism. We now have a col-
lection {ρ−1(Uα)}α∈A of subsets of E⊕E ′ such that

(i) E⊕E ′ =
⋃
α∈Aρ−1(Uα);

(ii) for any α,β ∈ A,

ρ−1(Uα)∩ρ−1(Uβ ) = ρ−1(Uαβ ),

which is again in the collection;
(iii) for each α ∈ A, there is a bijection

φα : ρ−1(Uα)→Uα ×R
r+r′ ;

(iv) for each pair α,β ∈ A, the map

φα ◦ φ−1
β : φβ

(
ρ−1(Uαβ )

)→ φα
(
ρ−1(Uαβ )

)

is a homeomorphism.

We formalize this situation in a topological lemma.

Lemma 20.13. Let C= {Sα}α∈A be a collection of subsets of a set S such that

(i) their union is S;
(ii) C is closed under finite intersections;
(iii) for each α ∈ A, there is a bijection

φα : Sα → Yα ,

where Yα is a topological space;
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(iv) for each pair α,β ∈ A, φα(Sαβ ) is open in Yα , where Sαβ = Sα ∩ Sβ , and the
map

φα ◦ φ−1
β : φβ (Sαβ )→ φα(Sαβ )

is a homeomorphism.

Then there is a unique topology on S such that for each α ∈A, the subset Sα is open
and the bijection φα : Sα → Yα is a homeomorphism.

The proof of this lemma is left as an exercise (Problem 20.1). Applying the
lemma to the collection {ρ−1(Uα)}α∈A of subsets of E⊕E ′, we obtain a topology
on E⊕E ′ in which each ρ−1(Uα) is open and each

φα : ρ−1(Uα)→Uα ×R
r+r′ (20.5)

is a homeomorphism. Since the sets Uα ×R
r+r′ are homeomorphic to open subsets

of Rn+r+r′ and the transition functions φα ◦ φ−1
β are allC∞, {(ρ−1(Uα),φα)} is aC∞

atlas on E⊕E ′. Thus, E⊕E ′ is a C∞ manifold. Moreover, the trivializations (20.5)
show that ρ : E⊕E ′ →M is aC∞ vector bundle of rank r+ r′.

20.7 Other Operations on Vector Bundles

The construction of the preceding section can be applied to the disjoint union∐
p∈M Ep⊗E ′

p of the tensor product of fibers of E and E ′. This produces aC∞ vector
bundle E ⊗E ′ of rank rr′ over M, whose fiber above p ∈ M is the tensor product
Ep⊗E ′

p.
More generally, let V be the category whose objects are finite-dimensional real

vector spaces and whose morphisms are isomorphisms, not merely linear maps, of
vector spaces. In this category, if two vector spaces have different dimensions,
then the set of morphisms between them is the empty set. Denote by V×V the
category whose objects are pairs of finite-dimensional vector spaces and whose
morphisms are pairs of isomorphisms of vector spaces. Let T : V×V → V be a co-
variant functor that associates to a pair of finite-dimensional vector spaces (V,W )
another finite-dimensional vector space T(V,W ), and to a pair of isomorphisms
( f : V →V ′,g : W →W ′) an isomorphism T( f ,g) : T(V,W )→ T(V ′,W ′).

If V and V ′ are finite-dimensional vector spaces of the same dimension n, let
Iso(V,V ′) be the set of all isomorphisms from V to V ′. With respect to fixed bases
for V and V ′, elements of Iso(V,V ′) are represented by nonsingular n× n matrices.
Hence, Iso(V,V ′) is bijective with GL(n,R), and therefore has the structure of a
manifold as an open subset of Rn×n. The functor T : V×V→ V is said to be smooth
or C∞ if for all finite-dimensional vector spaces V , V ′, W , W ′ with dimV = dimV ′
and dimW = dimW ′, the map

T : Iso(V,V ′)× Iso(W,W ′)→ Iso
(
T(V,W ),T(V ′,W ′)

)
,

( f ,g) �→ T( f ,g),

is smooth.
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Example. Let T(V,W ) =V ⊕W . This is a smooth functor because if f : V →V ′ and
g : W →W ′ are isomorphisms represented by matrices Mf and Mg relative to some
bases, then f ⊕g : V ⊕W →V ′ ⊕W ′ is represented by the matrix

[
Mf 0
0 Mg

]

relative to the same bases.
Mimicking the construction of the direct sum of two vector bundles, we obtain

the following result.

Proposition 20.14. If T : V×V→ V is a C∞ covariant functor, then for any two C∞

vector bundles E and F over a manifold M, there is a C∞ vector bundle T(E,F) over
M whose fiber at p ∈M is T(Ep,Fp).

The same construction applies if T has any number of arguments. If a functor
is contravariant, it must be turned into a covariant functor first to apply this con-
struction. For example, consider the dual functor applied to a vector bundle E →M.
Because of its contravariance, it associates to a trivialization

ψp : Ep → {p}×R
r

the map

ψ∨
p : {p}× (Rr)∨ → E∨

p ,

which has the wrong direction. We need to take the inverse of ψ∨
p to get a trivializa-

tion that goes in the right direction,

(ψ∨
p )

−1 : E∨
p → {p}× (Rr)∨.

To construct the dual bundle, the functor T : V → V associates to every finite-
dimensional vector space V its dual space V∨, and to every isomorphism f : V →W
the isomorphism ( f∨)−1 : V∨ →W∨.

In the category V the morphisms are all isomorphisms precisely so that one can
reverse the direction of a map and make a contravariant functor covariant. In this
way, starting from C∞ vector bundles E and F over M, one can construct C∞ vector
bundles E⊕F , E⊗F ,

∧k E, E∨, and Hom(E,F)� E∨⊗F over M.
In Section 10.4 we defined a Riemannian metric on a vector bundle E →M as a

C∞ assignment of an inner product 〈 , 〉p on the fiber Ep to each point p inM. Using
the multilinear algebra and vector bundle theory from the preceding sections, we can
be more precise about the kind of object a Riemannian metric is.

An inner product on a real vector spaceV is first of all a bilinear map:V×V →R.
By the universal mapping property, it can be viewed as a linear map:V ⊗V → R, or
an element of Hom(V ⊗V,R). By Proposition 18.15,

Hom(V ⊗V,R)� (V ⊗V )∨ �V∨⊗V∨.
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Thus, an inner product on V is an element of V∨⊗V∨ which is positive-definite and
symmetric as bilinear maps.

A Riemannian metric on the vector bundle E →M associates to each point p∈M
an element of E∨

p ⊗E∨
p ; in other words, it is a C∞ section of E∨ ⊗E∨ satisfying the

positivity and symmetry conditions.

Problems

20.1.∗ Topology of a union
Prove Lemma 20.13.

20.2. Exterior power of a vector bundle
For a smooth vector bundle E over a manifold M, give the details of the construction of

∧k E
that show it to be a smooth vector bundle over M whose fiber at p ∈M is

∧k(Ep).

20.3. Tensor product of two vector bundles
For two smooth vector bundles E and F over a manifoldM, give the details of the construction
of E⊗F that show it to be a smooth vector bundle over M whose fiber at p ∈M is Ep⊗Fp.
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§21 Vector-Valued Forms

A differential k-form α on a manifold M assigns to each point p ∈M an alternating
k-linear map

αp : TpM×·· ·×TpM → R.

If instead of R, the target space of the map αp is a vector space V , then α is called a
vector-valued form. Vector-valued forms arise naturally in differential geometry, for
example, when one wants to define connections and curvature for a principal bundle
as we do in Chapter 6. In preparation, we gather together in this section some basic
constructions and properties of vector-valued forms.

Even more generally, the target space of αp may be the fiber Ep of a vector
bundle E overM. In this case, α is a differential form with values in a vector bundle.
We have already encountered such an object: from Section 10.3, the curvature of a
connection on a vector bundle E → M can be seen as a 2-form with values in the
endomorphism bundle End(E).

Throughout this section, V , W , and Z denote finite-dimensional real vector
spaces.

21.1 Vector-Valued Forms as Sections of a Vector Bundle

Let M be a manifold and p a point in M. By the universal mapping property for
an exterior power, there is a one-to-one correspondence between alternating k-linear
maps on the tangent space TpM and linear maps from

∧k TpM to R. If Ak(TpM) is
the space of alternating k-linear functions on the tangent space TpM, then by (19.3)
and Theorem 19.13, there are canonical isomorphisms

Ak(TpM)�
(∧k

TpM
)∨ �

∧k
(T ∗

p M).

Thus, aC∞ k-form onM may be viewed as aC∞ section of the vector bundle
∧k T ∗M,

and so the vector space of C∞ k-forms on M is

Ωk(M) = Γ
(∧k

T ∗M
)
.

It is a simple matter to generalize the usual calculus of differential forms on a
manifold to differential forms with values in a finite-dimensional vector space V , or
V -valued forms for short.

Let Tk be the Cartesian product of k copies of a vector space T . A V -valued
k-covector on T is an alternating k-linear function f : Tk → V . By the universal
mapping property of the exterior power

∧k T (Theorem 19.6), to each V -valued
k-covector f : Tk → V there corresponds a unique linear map f̃ :

∧k T → V such
that the diagram
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k T
f̃

T k

∧

f
V

(21.1)

commutes, and conversely. We denote the vector space of V -valued k-covectors on
T by Ak(T,V ). The one-to-one correspondence f �→ f̃ in (21.1) induces a linear
isomorphism

Ak(T,V )
∼→ HomR

(∧k
T,V

)
.

By two standard isomorphisms of multilinear algebra (Proposition 18.14 and Theo-
rem 19.13),

HomR

(∧k
T,V

)
�
(∧k

T
)∨⊗V �

(∧k
T∨
)
⊗V.

It is customary to write T∨ as T ∗. Thus, a V -valued k-covector on T is an element of
the vector space (

∧k T ∗)⊗V .
A V -valued k-form on a manifold M is a function that assigns to each point

p ∈ M a V -valued k-covector on the tangent space TpM; equivalently, it assigns to
each p ∈M an element of (

∧k T ∗
p M)⊗V . If E is a vector bundle over M and V is a

vector space, the notation E⊗V will mean the tensor product of the vector bundle
E with the product bundle M×V → M. Then a V -valued k-form is a section of the
vector bundle (

∧k T ∗M)⊗V . We denote the space of smooth V -valued k-forms on
M by

Ωk(M,V ) := Γ
((∧k

T ∗M
)
⊗V
)
.

Let v1, . . . ,vn be a basis forV , and α aV -valued k-form on a manifoldM. For any
point p ∈M and tangent vectors u1, . . . ,uk ∈ TpM, since αp(u1, . . . ,uk) is an element
ofV , it is uniquely a linear combination of v1, . . . ,vn with real coefficients depending
on p and u1, . . . ,uk. We denote the coefficient of vi by α i

p(u1, . . . ,uk). Then

αp(u1, . . . ,uk) =∑
i
α i
p(u1, . . . ,uk)vi. (21.2)

Because αp is alternating and k-linear, so is α i
p(u1, . . . ,uk) for each i. Thus, α i

p is a
k-covector with values in R. We can rewrite (21.2) as

αp(u1, . . . ,uk) =∑
i
(α i

p⊗ vi)(u1, . . . ,uk).

(This notation is consistent with that of the tensor product of a k-linear function with
0-linear function, i.e., with a constant.) As p varies inM, we see that every V -valued
k-form α on M is a linear combination

α =∑α i⊗ vi,



188 §21 Vector-Valued Forms

where the α i are ordinary k-forms onM. We usually omit the tensor product sign and
write more simply α = ∑α ivi. A k-form is also called a form of degree k. A form
is homogeneous if it is a sum of forms all of the same degree. The V -valued k-form
α is said to be smooth if the coefficients α i are smooth for all i = 1, . . . ,n. It is
immediate that this definition of smoothness is independent of the choice of basis.

21.2 Products of Vector-Valued Forms

Let V ,W , Z be finite-dimensional vector spaces and μ : V ×W → Z a bilinear map.
One can define a product of aV -valued covector and aW -valued covector on a vector
space T ,

Ak(T,V )×A�(T,W )→ Ak+�(T,Z),

by the same formula as the wedge product of two scalar forms, with the bilinear map
μ replacing the multiplication of real numbers:

(α ·β )(t1, . . . , tk+�)

=
1

k!�! ∑σ∈Sk+�

(sgnσ)μ
(
α(tσ(1), . . . , tσ(k)),β (tσ(k+1), . . . , tσ(k+�))

)
(21.3)

for α ∈ Ak(T,V ) and β ∈ A�(T,W ).
This formula generalizes the wedge product of scalar covectors. The same proofs

as in the scalar case [21, Section 3.7, pp. 26–27] show that

(i) α ·β is alternating and multilinear in its argument, and hence is a (k+�)-covector
on T ;

(ii) instead of summing over all permutations in Sk+�, one may sum over (k, �)-
shuffles:

(α ·β )(t1, . . . , tk+�)

= ∑
(k,�)-shuffles

σ

(sgnσ)μ
(
α(tσ(1), . . . , tσ(k)),β (tσ(k+1), . . . , tσ(k+�))

)
. (21.4)

(By Definition 19.14, a (k, �)-shuffle is a permutation σ in Sk+� such that

σ(1)< · · ·< σ(k) and σ(k+1)< · · ·< σ(k+ �).)

This α · β is a product in the sense of being R-linear in α and in β . It is neither
graded-commutative nor associative, even when V =W = Z.

When applied pointwise to a manifold, with T = TpM, the product (21.3) gives
rise to a bilinear map of vector-valued forms

Ωk(M,V )×Ω�(M,W )→Ωk+�(M,Z).
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Proposition 21.1. Let vi be vectors in a vector space V and let w j be vectors in
a vector space W. Suppose μ : V ×W → Z is a bilinear map, and α = ∑α ivi ∈
Ωk(M,V ) and β = ∑β jw j ∈ Ω�(M,W ) are vector-valued forms, where α i and β j

are R-valued forms on a manifold M. Then

α ·β =∑
i, j
(α i∧β j)μ(vi,wj) ∈Ωk+�(M,Z).

Proof. Fix p ∈M and u1, . . . ,uk+� ∈ TpM. Then

(α ·β )p(u1, . . . ,uk+�)

=
1

k!�! ∑σ∈Sk+�

(sgnσ)μ
(
αp(uσ(1), . . . ,uσ(k)),βp(uσ(k+1), . . . ,uσ(k+�))

)

=
1

k!�! ∑σ∈Sk+�

(sgnσ)μ
(

∑
i
α i
p

(
uσ(1), . . . ,uσ(k)

)
vi,∑

j
β j
p

(
uσ(k+1), . . . ,uσ(k+�)

)
wj

)

=∑
i, j

1
k!�!

∑
σ∈Sk+�

(sgnσ)α i
p

(
uσ(1), . . . ,uσ(k)

)
β j
p

(
uσ(k+1), . . . ,uσ(k+�)

)
μ(vi,wj)

=∑
i, j
(α i∧β j)p(u1, . . . ,uk+�)μ(vi,wj).

To show that α ∧β is smooth, we may take {vi} and {wj} to be bases for V and
W , respectively. Then α i and β j are smooth by definition. Let {zk} be a basis for Z
and suppose

μ(vi,wj) =∑
k

cki jzk.

By the formula just proven,

α ·β =∑
k

(

∑
i, j
(α i∧β j)cki j

)
zk,

which shows that α ·β is smooth. ��
Example 21.2. An m× n matrix-valued form is an element of Ω∗(M,Rm×n). Let
ei j ∈ R

m×p be the matrix with 1 in its (i, j)-entry and 0 in all other entries, and let
ēi j ∈ R

p×n and ẽi j ∈ R
m×n be defined similarly. If

μ : Rm×p×R
p×n → R

m×n

is matrix multiplication, then

μ(ei j, ēk�) = ei jēk� = δ jkẽi�.



190 §21 Vector-Valued Forms

For α = ∑α i jei j ∈ Ω∗(M,Rm×p) and β = ∑β k�ēk� ∈ Ω∗(M,Rp×n), by Proposi-
tion 21.1,

α ·β =∑α i j ∧β k�μ(ei j, ēk�)

=∑α i j ∧β k� δ jkẽi�

=∑
i,�

(

∑
k

α ik ∧β k�
)
ẽi� = α ∧β ,

the wedge product of matrices of forms defined in Section 11.1.

21.3 Directional Derivative of a Vector-Valued Function

If f : M →R is a smooth function on the manifoldM and Xp is a tangent vector toM
at p, then we may interpret Xp f as the directional derivative of f at p in the direction
Xp; indeed, for any smooth curve c(t) in M with initial point c(0) = p and initial
vector c′(0) = Xp,

Xp f =
d
dt

∣
∣
∣
∣
t=0

f (c(t)). (21.5)

To extend the definition of Xp f to a smooth vector-valued function f : M → V ,
choose a basis v1, . . . ,vn for V and write f = ∑ f ivi for some smooth real-valued
functions f i : M → R. Define

Xp f =∑(Xp f
i)vi. (21.6)

It is a routine exercise to show that the definition 21.6 is independent of the choice of
basis (Problem 21.2). It follows that for a smooth vector-valued function f : M →V
and the same smooth curve c(t) in M as in (21.5),

Xp f =∑(Xp f
i)vi (by (21.6))

=∑
i

(
d
dt

∣
∣
∣
∣
t=0

f i(c(t))

)

vi (by (21.5))

=
d
dt

∣
∣
∣
∣
t=0
∑
i
f i(c(t))vi (by (21.6))

=
d
dt

∣
∣
∣
∣
t=0

f (c(t)).

This shows that for a vector-valued function f , one can still interpret Xp f as the
directional derivative of f at p in the direction Xp.

21.4 Exterior Derivative of a Vector-Valued Form

As before, M is a manifold and V is a finite-dimensional vector space. To define the
exterior derivative of a V -valued k-form α ∈Ωk(M,V ), choose a basis v1, . . . ,vn for
V , write α = ∑α ivi with α i ∈Ωk(M), and define

dα =∑(dα i)vi. (21.7)
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It is easy to check that so defined, the exterior derivative dα is independent of the
choice of basis (Problem 21.3). This definition is consistent with the definition of the
exterior derivative of a matrix-valued form in Section 11.1.

Proposition 21.3. The exterior derivative on vector-valued forms on a manifold M is
an antiderivation: if α ∈Ωk(M,V ), β ∈Ω�(M,W ), and μ : V ×W → Z is a bilinear
map of vector spaces, then

d(α ·β ) = (dα) ·β +(−1)degαα ·dβ .

Proof. The easiest way to prove this is to write α and β in terms of bases for V and
W , respectively, and to reduce the proposition to the antiderivation property of d on
the wedge product of ordinary forms.

To carry this out, let {vi} be a basis for V and {wj} a basis for W . Then α =

∑α ivi and β = ∑β jw j for ordinary forms α i,β j on M. By Proposition 21.1,

α ·β =∑
i, j
(α i∧β j)μ(vi,wj).

Then

d(α ·β ) =∑
i, j
d(α i∧β j)μ(vi,wj)

(
by (21.7)

)

=∑
i, j

(
(dα i)∧β j)μ(vi,wj)+(−1)degα∑

i, j

(
α i∧dβ j)μ(vi,wj)

(antiderivation property of d on scalar forms)

=∑(dα i)vi ·∑β jw j+(−1)degα∑α ivi ·∑(dβ j)wj

(Proposition 21.1)

= (dα) ·β +(−1)degαα ·dβ . ��

If α and β are matrix-valued forms on a manifold, say of size m× p and p× n,
respectively, and

μ : Rm×p×R
p×n → R

m×n

is matrix multiplication, then by Example 21.2, α ·β = α ∧β , and Proposition 21.3
becomes the antiderivation formula for the matrix wedge product:

d(α ∧β ) = (dα)∧β +(−1)degαα ∧dβ . (21.8)

21.5 Differential Forms with Values in a Lie Algebra

In the cases of special interest to us, V is either a Lie algebra g or more specifically
the matrix algebra gl(n,R). If μ : g×g→ g is the Lie bracket, then we write [α,β ]
instead of α ·β and call it the Lie bracket of the two g-valued forms α and β . For
α ∈Ωk(M,g), β ∈Ω�(M,g), p ∈M and u1, . . . ,uk+� ∈ TpM,
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[α,β ]p(u1, . . . ,uk+�)

= ∑
(k,�)-shuffles

σ

(sgnσ)[αp(uσ(1), . . . ,uσ(k)),βp(uσ(k+1), . . . ,uσ(k+�))]. (21.9)

For example, if α and β are g-valued 1-forms on a manifoldM, and X and Y areC∞

vector fields on M, then by (21.9),

[α,β ](X ,Y ) = [α(X),β (Y )]− [α(Y ),β (X)]. (21.10)

In practice it is usually easier to calculate [α,β ] using a basis. For V = g, Proposi-
tion 21.1 assumes the following form.

Proposition 21.4. Suppose {A1, . . . ,An} is a set of vectors in a Lie algebra g and the
forms α ∈Ωk(M,g) and β ∈Ω�(M,g) can be written as α =∑α iAi and β =∑β jA j.
Then

[α,β ] =∑
i, j
(α i∧β j)[Ai,Aj] ∈Ωk+�(M,g). (21.11)

Note that in this proposition {A1, . . . ,An} is an arbitrary set of vectors in g; it need
not be a basis.

Proposition 21.5. If α is a g-valued k-form and β a g-valued �-form on a manifold,
then

[α,β ] = (−1)k�+1[β ,α].

Proof. Let B1, . . . ,Bn be a basis for g. Then α = ∑α iBi and β = ∑β jB j for some
R-valued forms α i and β j. Then

[α,β ] =∑
i, j
(α i∧β j)[Bi,Bj]

= (−1)k�+1∑
i, j
(β j ∧α i)[Bj,Bi]

(since ∧ is graded commutative and [ , ] is skew)

= (−1)k�+1[β ,α]. ��

Therefore, if α and β are g-valued 1-forms, then [α,β ] is symmetric in α and β
and [α,α] is not necessarily zero. For the Lie bracket of g-valued forms, Proposi-
tion 21.3 can be restated as follows.

Proposition 21.6. The exterior derivative d on Ω∗(M,g) is an antiderivation with
respect to the Lie bracket: if α and β are homogeneous g-valued forms on a manifold
M, then

d[α,β ] = [dα,β ]+ (−1)degα [α,dβ ].
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Differential Forms with Values in gl(n,R)

On the Lie algebra gl(n,R) of n× n real matrices, there are two natural bilinear
products, matrix multiplication and the Lie bracket. They are related by

[A,B] = AB−BA for A,B ∈ gl(n,R).

Let ei j be the n by n matrix with a 1 in the (i, j) entry and 0 everywhere else. Then

ei jek� = δ jkei�,

where δ jk is the Kronecker delta.
For two homogeneous gl(n,R)-valued forms α and β on a manifold M, we de-

note their products induced from matrix multiplication and from the Lie bracket by
α ∧β and [α,β ], respectively. In terms of the basis {ei j} for gl(n,R),

α =∑α i jei j, β =∑β k�ek�

for some real-valued forms α i j and β k� onM. By Proposition 21.1 the wedge product
of α and β is

α ∧β = ∑
i, j,k,�

α i j ∧β k� ei jek� = ∑
i,k,�

α ik ∧β k� ei�,

while their Lie bracket is

[α,β ] =∑α i j ∧β k�[ei j,ek�].

Proposition 21.7. If α and β are homogeneous gl(n,R)-valued forms on a manifold
M, then

[α,β ] = α ∧β − (−1)(degα)(degβ )β ∧α.
Proof. Problem 21.4. ��

Hence, if α is a homogeneous gl(n,R)-valued form on a manifold, then

[α,α] =

{
2 α ∧α if degα is odd,

0 if degα is even.
(21.12)

21.6 Pullback of Vector-Valued Forms

Like scalar-valued forms, vector-valued forms on a manifold can be pulled back by
smooth maps. Suppose V is a vector space, α a C∞ V -valued k-form on a manifold
M, and f : N →M aC∞ map. The pullback f ∗α is theV -valued k-form on N defined
as follows: for any p ∈ N and u1, . . . ,uk ∈ TpN,

( f ∗α)p(u1, . . . ,uk) = α f (p)( f∗u1, . . . , f∗uk).

The pullback of vector-valued differential forms offers no surprises; it satisfies the
same properties as the pullback of scalar-valued differential forms.
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Proposition 21.8. Suppose μ : V ×W → Z is a bilinear map of finite-dimensional
vector spaces, and f : N →M is a smooth map of manifolds.

(i) If {v1, . . . ,vn} is a set in the vector space V and α = ∑α ivi for α i ∈ Ωk(M),
then f ∗α = ∑( f ∗α i)vi.

(ii) The pullback f ∗ of vector-valued forms commutes with the product: if α ∈
Ωk(M,V ) and β ∈Ω�(M,W ), then

f ∗(α ·β ) = ( f ∗α) · ( f ∗β ).
(iii) The pullback f ∗ commutes with the exterior derivative: for α ∈ Ωk(M,V ),

f ∗dα = d f ∗α .

Proof. All three properties are straightforward to prove. We leave the proof as an
exercise (Problem 21.6). ��

In particular, if μ : g×g→ g is the Lie bracket of a Lie algebra g, then

f ∗[α,β ] = [ f ∗α, f ∗β ]

for any g-valued forms α,β onM.

21.7 Forms with Values in a Vector Bundle

For a vector spaceV , aV -valued k-form on a manifoldM assigns to each point p∈M
an alternating k-linear map

TpM×·· ·×TpM →V.

More generally, we may allow the vector space V to vary from point to point. If E
is a vector bundle over M, then an E-valued k-form assigns to each point p in M an
alternating k-linear map

TpM×·· ·×TpM → Ep.

Reasoning as above, we conclude that an E-valued k-form is a section of the vector

bundle
(∧k T ∗M

)
⊗E. The space of smooth E-valued k-forms on M is denoted by

Ωk(M,E) := Γ
((∧k

T ∗M
)
⊗E
)
.

Example 21.9 (The curvature of a connection). Let E → M be a vector bundle with
a connection ∇. In Section 10.3 we saw that the curvature of the connection assigns
to each point p ∈M an alternating bilinear map

TpM×TpM → End(Ep).

Thus, the curvature is a section of the vector bundle (
∧2T ∗M)⊗End(E). It is in fact

aC∞ section (Problem 21.7). As such, it is a smooth 2-form onM with values in the
vector bundle End(E).
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21.8 Tensor Fields on a Manifold

Vector fields and differential forms are examples of tensor fields on a manifold.

Definition 21.10. An (a,b)-tensor field on a manifold M is a section of the vector
bundle

a
TM ⊗ b

T ∗M = TM⊗·· ·⊗TM
a

⊗T ∗M⊗·· ·⊗T ∗M
b

,

where the tangent bundle TM occurs a times and the cotangent bundle T ∗M occurs
b times.

Example. A Riemannian metric on M is a section of T ∗M⊗T ∗M, so it is a (0,2)-
tensor field.

Example. As a section of the tangent bundle TM, a vector field onM is a (1,0)-tensor
field.

Example. A differential k-form on M associates to each point p ∈ M an alternating
k-linear map

TpM×·· ·×TpM → R.

By the universal mapping theorem, a k-linear map on TpM corresponds to a linear
map

TpM⊗·· ·⊗TpM → R.

Hence, a k-form is a section of
⊗k T ∗M corresponding to an alternating map. In

particular, it is a (0,k)-tensor field. (A k-form is also a section of
∧k T ∗M →M.)

More generally, if E is a vector bundle over M, then an E-valued (a,b)-tensor
field is a section of

(⊗a
TM
)
⊗
(⊗b

T ∗M
)
⊗E.

Example. By Example 21.9, the curvature of a connection on a vector bundle E →M
is a section of the vector bundle

Hom(TM⊗TM,End(E))� (TM⊗TM)∨⊗End(E) (by Prop. 18.14)

� T ∗M⊗T ∗M⊗End(E) (by Prop. 18.15).

As such, it is an End(E)-valued (0,2)-tensor field on the manifold M.
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21.9 The Tensor Criterion

A tensor field T ∈ Γ(Ta,b(M)
)
on a manifold M defines an F-multilinear function

Ω1(M)a×X(M)b → F,

(ω1, . . . ,ωa,Y1, . . . ,Yb) �→ T (ω1, . . . ,ωa,Y1, . . . ,Yb).

Conversely, the following proposition gives a condition for a multilinear function to
be a tensor field.

Proposition 21.11 (The tensor criterion). There is a one-to-one correspondence
between

{F -multilinear functions T :Ω1(M)a×X(M)b → F}
and

{ tensor fields T̃ ∈ Γ(Ta,b(M)
)}

such that

T (ω1, . . . ,ωa,Y1, . . . ,Yb)(p) = T̃p(ω1,p, . . . ,ωa,p,Y1,p, . . . ,Yb,p).

Because of this proposition, we often identify an F-multilinear function T with
the tensor field T̃ that it corresponds to.

Proof. We give the proof only for (a,b) = (2,1), since the general case is similar.
Suppose

T : Ω1(M)×Ω1(M)×X(M)→ F

is 3-linear over F. Since Ω1(M) = Γ(T ∗M) and X(M) = Γ(TM), by Proposi-
tion 7.28, for each p ∈M there is a unique R-multilinear map

Tp : T
∗
p M×T ∗

p M×TpM → R

such that for all (ω1,ω2,Y ) ∈ Γ(T ∗M)×Γ(T ∗M)×Γ(TM),

Tp(ω1,p,ω2,p,Yp) = T (ω1,ω2,Y )(p).

By the universal property of the tensor product, the multilinear map Tp corresponds
to a unique linear map T̃p : T ∗

p M⊗T ∗
p M⊗TpM → R such that

T̃p(ω1,p⊗ω2,p⊗Yp) = T (ω1,ω2,Y )(p).

In other words, T̃p is an element of

Hom(T ∗
p M⊗T ∗

p M⊗TpM,R)� (T ∗
p M⊗T ∗

p M⊗TpM)∨

= TpM⊗TpM⊗T ∗
p M (by Prop. 18.15).

Thus, T̃ is a section of T 2,1(M) = TM⊗TM⊗T ∗M. ��
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21.10 Remark on Signs Concerning Vector-Valued Forms

Formulas involving vector-valued forms often have additional signs that their scalar-
valued or constant analogues do not have. For example, the Lie bracket is anticom-
mutative on elements of a Lie algebra g:

[A,B] =−[B,A],

but when applied to g-valued forms,

[α,β ] = (−1)(degα)(degβ )+1[β ,α]. (21.13)

There is a general rule that appears to describe the additional sign or at least to
serve as a useful mnemonic: whenever two graded objects x and y are interchanged,
the additional sign is (−1)degxdegy. This applies to example (21.13) above. It also
applies to Proposition 21.7: For A,B ∈ gl(n,R),

[A,B] = AB−BA,

but for gl(n,R)-valued forms,

[α,β ] = α ∧β − (−1)degα degββ ∧α.
If we assign a degree of 1 to the exterior derivative d, then the antiderivation

property in Proposition 21.3 also fits this pattern.

Problems

21.1. Associativity of the product of vector-valued forms
Suppose μ : V ×W → Z is a bilinear map of vector spaces, λ ∈ Ω�(M), α ∈ Ωa(M,V ), and
β ∈Ωb(M,W ). Prove that

(λ ·α) ·β = λ · (α ·β ) = (−1)�·aα · (λ ·β ).
(Hint: Write α and β in terms of a basis for V and a basis for W , respectively, and apply
Proposition 21.1.)

21.2. Directional derivative of a vector-valued function
Show that the definition (21.6) of the directional derivative is independent of the choice of
basis.

21.3. Exterior derivative of a vector-valued function
Prove that the definition (21.7) of the exterior derivative is independent of the choice of basis.

21.4. Lie bracket in terms of the wedge product
Prove Proposition 21.7.

21.5. Triple product of 1-forms
Show that if α is any g-valued 1-form on a manifold, then

[[α ,α ],α ] = 0.
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21.6. Pullback of vector-valued forms
Prove Proposition 21.8.

21.7. Curvature as a section
Let ∇ be a connection on a smooth vector bundle π : E →M. Show that the curvature of ∇ is
a smooth section of the vector bundle

(∧2 T ∗M
)⊗End(E).

21.8. Exterior derivative of a vector-valued 1-form
Let V be a vector space. Prove that for a C∞ V -valued 1-form ω and C∞ vector fields X ,Y
on M,

(dω)(X ,Y ) = Xω(Y )−Yω(X)−ω([X ,Y ]).
(Hint: See [21, Th. 20.14, p. 233].)

21.9. ∗ Maurer–Cartan equation
TheMaurer–Cartan form on a Lie group G with Lie algebra g is the unique g-valued 1-form
θ onG that is the identity map at the identity element e∈G. Thus, for Xe ∈ TeG and Xg ∈ TgG,

θe(Xe) = Xe ∈ g

and
θg(Xg) = (�∗g−1θe)(Xg) = θe(�g−1∗Xg) = �g−1∗Xg.

Prove that the Maurer–Cartan form satisfies the Maurer–Cartan equation

dθ +
1
2
[θ ,θ ] = 0.

(Hint: By F-linearity, it suffices to check this equation on left-invariant vector fields.)

21.10. Right translation of the Maurer–Cartan form
Prove that under right translation the Maurer–Cartan form θ on a Lie group G satisfies

r∗gθ = (Adg−1)θ for g ∈ G.



Chapter 5

Vector Bundles and Characteristic Classes

The Gauss–Bonnet theorem for a compact oriented Riemannian 2-manifold M may
be stated in the following way:

∫

M

1
2π

K vol= χ(M),

where K is the Gaussian curvature. What is especially significant about this theorem
is that on the left-hand side the 2-form K vol is locally the curvature form Ω1

2 rela-
tive to an orthonormal frame of the Riemannian metric, but on the right-hand side the
Euler characteristic χ(M) is a diffeomorphism invariant, independent of the Rieman-
nian structure. Thus, the Gauss–Bonnet theorem for surfaces raises two interesting
questions about higher-dimensional compact oriented manifolds:

(i) Is there a differential form whose integral overM gives the Euler characteristic?
(ii) Is it possible to construct from the curvature tensor diffeomorphism invariants

other than the Euler characteristic?

Let Hi(M) be the de Rham cohomology vector space of M in degree i. The ith
Betti number bi of M is the dimension of Hi(M). In algebraic topology one learns
that the Euler characteristic of a compact manifold may be computed as the alternat-
ing sum of the Betti numbers [18, Th. 22.2, p. 124]:

χ(M) =
dimM

∑
i=0

(−1)ibi. (*)

If the manifold is not compact, this may be an infinite sum and the Euler character-
istic need not be defined.

Furthermore, the Poincaré duality theorem for a compact orientable manifold
asserts that the integral of the wedge product of forms of complementary dimensions

Hi(M)×Hn−i(M)
∧→ Hn(M)

∫

→ R,

([ω], [τ ]) �→
∫

M
ω ∧ τ ,
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is a nondegenerate pairing [3, p. 44]. Hence, by Lemma 19.11, there is a linear
isomorphism of Hi(M) with the dual of Hn−i(M):

Hi(M)� Hn−i(M)∨

and
bi = bn−i.

Example. If M is a compact orientable manifold of dimension 5, then its Betti num-
bers pair up:

b0 = b5, b1 = b4, b2 = b3
and so

χ(M) = b0−b1+b2−b3+b4−b5
= (b0−b5)+(b2−b3)+(b4−b1)

= 0.

This example generalizes to any odd-dimensional compact orientable manifold.

Proposition. The Euler characteristic of a compact orientable odd-dimensional
manifold is 0.

Proof. If n= dimM is odd, then the Betti numbers bi and bn−i are equal by Poincaré
duality. Moreover, they occur with opposite signs in the alternating sum for the Euler
characteristic. Hence, all the terms in (*) cancel out and χ(M) = 0. ��

Thus, from the point of view of generalizing the Gauss–Bonnet theorem by an-
swering question (i), the only manifolds of interest are compact oriented Riemannian
manifolds of even dimension.

Following Chern and Weil, we will associate to a vector bundle E over M global
differential forms on M constructed from the curvature matrix of a connection E.
These forms turn out to be closed; moreover, their cohomology classes are indepen-
dent of the connection and so are diffeomorphism invariants of the vector bundle E.
They are called characteristic classes of E. Specializing to the tangent bundle TM,
we obtain in this way new diffeomorphism invariants of the manifold M, among
which are the Pontrjagin classes and Pontrjagin numbers of M.

§22 Connections and Curvature Again

This section collects together some facts about connections and curvature on a vector
bundle that will be needed in the construction of characteristic classes. We first
study how connection and curvature matrices transform under a change of frame.
Then we derive the Bianchi identities, which are formulas for the exterior derivative
of the connection and curvature matrices. Just as there are two structural equations,
corresponding to the torsion vector and the curvature matrix, so there are two Bianchi
identities, corresponding to the exterior derivatives of the two structural equations.
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22.1 Connection and Curvature Matrices Under
a Change of Frame

In Section 10.6 we showed that a connection on a vector bundle E → M may be
restricted to a connection over any open subsetU of M:

∇U : X(U)×Γ(U,E)→ Γ(U,E).

We will usually omit the superscriptU and write ∇ for ∇U .
Suppose there is a frame e1, . . . ,er for E over U . Then the connection matrix ω

of ∇ relative to the frame e1, . . . ,er overU is the matrix [ω i
j] of 1-forms defined by

∇Xe j =∑ω i
j(X)ei,

for X ∈X(U). If we write the frame e1, . . . ,er as a row vector e= [e1 · · · er], then in
matrix notation

∇Xe= eω(X).
As a function of X ,

∇e= eω.

Similarly, for C∞ vector fields X ,Y on U , the curvature matrix Ω of the connec-
tion ∇ is the matrix [Ωi

j] of 2-forms defined by

R(X ,Y )e j =∑Ωi
j(X ,Y )ei.

We next study how the connection and curvature matrices ω and Ω transform
under a change of frame. Suppose ē1, . . . , ēr is another frame for E over U . Let
ω̄ = [ω̄ i

j] and Ω̄ = [Ω̄i
j] be the connection and curvature matrices of the connection

∇ relative to this new frame. At each point p, the basis vector ē�(p) is a linear
combination of e1(p), . . . ,er(p):

ē�(p) =∑ak�(p)ek(p).

As sections onU ,
ē� =∑ak�ek.

So we get a matrix of functions a= [ak� ]. As the coefficients of a smooth section with
respect to a smooth frame, the ak� are smooth functions on U . At each point p, the
matrix a(p) = [ak�(p)] is invertible because it is a change of basis matrix. Thus we
can think of a as aC∞ functionU → GL(r,R). As row vectors,

[ē1 · · · ēr] = [e1 · · · er][ak�],
or in matrix notation,

ē= ea. (22.1)

Since in matrix notation (22.1), the matrix of functions aij must be written on the
right of the row vector of sections ei, we will recast the Leibniz rule in this form.
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Suppose s is a C∞ section of the vector bundle E and f is a C∞ function on M. By
the Leibniz rule, for any C∞ vector field X ∈ X(M),

∇X (s f ) = (∇Xs) f + sX( f )

= (∇Xs) f + sd f (X). (22.2)

We may view ∇s as a function X(M) → Γ(E) with (∇s)(X) = ∇Xs. Then we may
suppress the argument X from (22.2) and rewrite the Leibniz rule as

∇(s f ) = (∇s) f + sd f for s ∈ Γ(E), f ∈C∞(M). (22.3)

Theorem 22.1. Suppose e and ē are two frames for the vector bundle E over U such
that ē= ea for some a : U → GL(r,R). If ω and ω̄ are the connection matrices and
Ω and Ω̄ are the curvature matrices of a connection ∇ relative to the two frames,
then

(i) ω̄ = a−1ωa+a−1 da,
(ii) Ω̄= a−1Ωa.

Proof. (i) We use the Leibniz rule (22.3) to derive the transformation rule for the
connection matrix under a change of frame. Since ē= ea, we have e= ēa−1. Recall
that if a= [aij] is a matrix ofC∞ functions, then da is the matrix ofC∞ 1-forms [daij].
Thus,

∇ē= ∇(ea)
= (∇e)a+ eda (Leibniz rule)

= (eω)a+ eda (∇e= eω)

= ēa−1ωa+ ēa−1da (e= ēa−1)

= ē(a−1ωa+a−1da).

Therefore,
ω̄ = a−1ωa+a−1 da.

(ii) Since the structural equation (Theorem 11.1)

Ω̄= dω̄+ ω̄ ∧ ω̄ (22.4)

expresses the curvature Ω̄ in terms of the connection matrix ω , the brute-force way
to obtain the transformation rule for Ω̄ is to plug the formula in part (i) into (22.4),
expand the terms, and try to write the answer in terms of Ω.

Another way is to note that since for any Xp,Yp ∈ TpM, the curvature R(Xp,Yp)
is the linear transformation of Ep to Ep with matrix [Ωi

j(Xp,Yp)] relative to the basis
e1, . . . ,er at p, a change of basis should lead to a conjugate matrix. Indeed, for
X ,Y ∈ X(U),

R(X ,Y )e j =∑
i
Ωi

j(X ,Y )ei,
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or in matrix notation,

R(X ,Y )e= R(X ,Y )[e1, . . . ,er] = [e1, . . . ,er][Ωi
j(X ,Y )] = eΩ(X ,Y ).

Suppressing X ,Y , we get

R(e) = eΩ.
Hence,

R(ē) = R(ea)

= R(e)a (R is F-linear in the argument e)

= eΩa

= ēa−1Ωa.

This proves that Ω̄= a−1Ωa. ��

22.2 Bianchi Identities

Luigi Bianchi

(1856–1928)

When E →M is the tangent bundle, a connection on
E is an affine connection as defined in Section 6.1.
For an affine connection ∇, the torsion

T (X ,Y ) = ∇XY −∇YX− [X ,Y ]

is defined and is a tensor. If e1, . . . ,en is a frame for
the tangent bundle TM overU , then the torsion forms
τ i are given by

T (X ,Y ) =∑τ i(X ,Y )ei.

We collect τ1, . . . ,τn into a column vector τ = [τ i]
of 2-forms. Similarly, if θ 1, . . . ,θ n are the 1-forms
dual to the basis e1, . . . ,en, then θ is the column vec-
tor [θ i]. Recall the two structural equations (Theo-
rem 11.7):

(1) τ = dθ +ω ∧θ ,
(2) Ω= dω+ω ∧ω.

Proposition 22.2 (First Bianchi identity). Let ∇ be a connection on the tangent
bundle TM of a manifold M. Suppose θ and τ are the column vectors of dual
1-forms and torsion forms, respectively, on a framed open set, and ω and Ω are
the connection and curvature matrices respectively. Then

dτ =Ω∧θ −ω ∧ τ .
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Proof. Differentiating the first structural equation gives

dτ = d(dθ)+dω ∧θ −ω ∧dθ
= 0+(Ω−ω ∧ω)∧θ −ω ∧ (τ−ω ∧θ)
(rewriting dω and dθ using the two structural equations)

=Ω∧θ −ω ∧ τ (since ω ∧ω ∧θ cancels out). ��

Like the second structural equation, the next two identities apply more generally
to a connection ∇ on any smooth vector bundle, not just the tangent bundle.

Proposition 22.3 (Second Bianchi identity). Let ∇ be a connection on a smooth
vector bundle E. Suppose ω and Ω are the connection and curvature matrices of ∇
relative to a frame for E over an open set. Then

dΩ=Ω∧ω−ω ∧Ω.

Proof. Differentiating the second structural equation gives

dΩ= d(dω)+(dω)∧ω−ω ∧dω
= 0+(Ω−ω ∧ω)∧ω−ω ∧ (Ω−ω ∧ω)
(rewriting dω using the second structural equation)

=Ω∧ω−ω ∧Ω. ��

We will use the notation Ωk to mean the wedge product Ω∧·· ·∧Ω of the curva-
ture matrix k times.

Proposition 22.4 (Generalized second Bianchi identity). Under the same hypot-
heses as in Proposition 22.3, for any integer k ≥ 1,

d(Ωk) =Ωk ∧ω−ω ∧Ωk.

Proof. Problem 22.3. ��

22.3 The First Bianchi Identity in Vector Form

For a Riemannian connection, the torsion form τ is zero and the first Bianchi identity
(Proposition 22.2) simplifies to

Ω∧θ = 0.

This identity translates into a symmetry property of the curvature tensor.

Theorem 22.5. If X ,Y,Z are C∞ vector fields on a Riemannian manifold M, then the
curvature tensor of the Riemannian connection satisfies

R(X ,Y )Z+R(Y,Z)X+R(Z,X)Y = 0.
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Proof. Let e1, . . . ,en be a frame over an open set U in M, and θ 1, . . . ,θ n the dual
1-forms. OnU , Z = ∑ j θ j(Z)e j. In the notation of the preceding section,

R(X ,Y )Z =∑
j
R(X ,Y )θ j(Z)e j

=∑
i, j
Ωi

j(X ,Y )θ j(Z)ei.

The ith component of Ω∧ θ is ∑ jΩi
j ∧ θ j. Thus, for each i, the first Bianchi

identity gives

0=∑
j
(Ωi

j ∧θ j)(X ,Y,Z)

=∑
j
Ωi

j(X ,Y )θ j(Z)−Ωi
j(X ,Z)θ j(Y )+Ωi

j(Y,Z)θ j(X).

Multiplying by ei and summing over i, we obtain

0= R(X ,Y )Z+R(Z,X)Y +R(Y,Z)X . ��

22.4 Symmetry Properties of the Curvature Tensor

With the first Bianchi identity, we have now proven three symmetry properties of the
curvature tensor: Let X ,Y,Z,W beC∞ vector fields on a Riemannian manifold. Then
the curvature tensor of the Riemannian connection satisfies

(i) (skew-symmetry in X and Y ) R(X ,Y ) =−R(Y,X).
(ii) (skew-symmetry in Z andW , Proposition 12.5)

〈R(X ,Y )Z,W 〉=−〈R(X ,Y )W,Z〉.
(iii) (first Bianchi identity)

R(X ,Y )Z+R(Y,Z)X+R(Z,X)Y = 0.

As an algebraic consequence of these three properties, a fourth symmetry prop-
erty follows.

Theorem 22.6. If X ,Y,Z,W areC∞ vector fields on a Riemannian manifold, then the
curvature tensor of the Riemannian connection satisfies

〈R(X ,Y )Z,W 〉= 〈R(Z,W )X ,Y 〉.
Proof. By the first Bianchi identity,

〈R(X ,Y )Z,W 〉+ 〈R(Y,Z)X ,W 〉+ 〈R(Z,X)Y,W 〉= 0. (22.5)

To cancel out the term 〈R(Y,Z)X ,W 〉 in (22.5), we add to (22.5) the first Bianchi
identity starting with the term 〈R(Y,Z)W,X〉:

〈R(Y,Z)W,X〉+ 〈R(X ,W )Y,X〉+ 〈R(W,Y )Z,X〉= 0. (22.6)
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Similarly, to cancel out the term 〈R(Z,X)Y,W 〉 in (22.5), we add
〈R(Z,X)W,Y 〉+ 〈R(X ,W )Z,Y 〉+ 〈R(W,Z)X ,Y 〉= 0. (22.7)

Finally, to cancel out 〈R(W,Y )Z,X〉 in (22.6), we add
〈R(W,Y )X ,Z〉+ 〈R(Y,X)W,Z〉+ 〈R(X ,W )Y,Z〉= 0. (22.8)

Adding up the four equations (22.5), (22.6), (22.7), (22.8) and making use of the
skew-symmetry properties, we get

2〈R(X ,Y )Z,W 〉−2〈R(Z,W )X ,Y 〉= 0,

which proves the theorem. ��

22.5 Covariant Derivative of Tensor Fields

A connection ∇ on the tangent bundle TM of a manifold M induces a covariant
derivative on all tensor fields. This is the content of the following proposition.

Proposition 22.7. Let ∇ be a connection and X ,Y C∞ vector fields on the mani-
fold M.

(i) If ω is a C∞ 1-form on M, then ∇Xω defined by

(∇Xω)(Y ) := X
(
ω(Y )

)−ω(∇XY )
is a C∞ 1-form on M.

(ii) If T is a C∞ (a,b)-tensor field on M, then ∇XT defined by

(∇XT )(ω1, . . . ,ωa,Y1, . . . ,Yb) :=X
(
T (ω1, . . . ,ωa,Y1, . . . ,Yb)

)

−
a

∑
i=1

T (ω1, . . . ,∇Xωi, . . .ωa,Y1, . . . ,Yb)

−
b

∑
j=1

T (ω1, . . . ,ωa,Y1, . . . ,∇XYj, . . .Yb),

for ωi ∈Ω1(M), Yj ∈ X(M), is a C∞ (a,b)-tensor field on M.

Proof. By the tensor criterion (Proposition 21.11), it suffices to check that ∇Xω and
∇XT are F-linear in its arguments, where F := C∞(M) is the ring of C∞ functions
on M. Let f ∈ F.

(i) By definition and the Leibniz rule in Y of a connection,

(∇Xω)( fY ) = X
(
fω(Y )

)−ω(∇X fY )

= (X f )ω(Y )+ f X
(
ω(Y )

)−ω((X f )Y
)− fω(∇XY )

= f (∇Xω)(Y ).
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(ii) Replace ωi by fωi in the definition of ∇XT . On the right-hand side, we have

X
(
T (ω1, . . . , fωi, . . .ωa,Y1, . . . ,Yb)

)

= (X f )T (ω1, . . . ,ωa,Y1, . . . ,Yb)+ f X
(
T (ω1, . . . ,ωa,Y1, . . . ,Yb)

)
(22.9)

and

T (ω1, . . . ,∇X fωi, . . . ,ωa,Y1, . . . ,Yb)

= T (ω1, . . . ,(X f )ωi, . . . ,ωa,Y1, . . . ,Yb)+ f T (ω1, . . . ,∇Xωi, . . .ωa,Y1, . . . ,Yb).
(22.10)

The first terms of these two expressions cancel out. All the other terms on the
right of (22.9) and (22.10) are F-linear in the ith argument.
Similarly, the right-hand side of the definition of ∇XT is F-linear in the argu-
ment Yj.

��
OnC∞ functions f , we define ∇X f = X f .

Let Ta,b(M) =
(⊗a TM

)
⊗
(⊗b T ∗M

)
be the bundle of (a,b)-tensors on M.

Theorem 22.8. Let ∇ be a connection on a manifold and X ∈ X(M). The covariant
derivative ∇X : Γ

(⊕∞a,b=0 T
a,b(M)

)→ Γ
(⊕∞a,b=0 T

a,b(M)
)
satisfies the product rule

for any two tensor fields T1,T2:

∇X (T1⊗T2) = (∇XT1)⊗T2+T1⊗∇XT2.
Proof. Problem 22.4. ��

22.6 The Second Bianchi Identity in Vector Form

If ∇ is a connection and R(X ,Y ) is its curvature endomorphism on a manifold, then
we define the Riemann curvature tensor or simply the curvature tensor to be

Rm(X ,Y,Z,W ) = 〈R(X ,Y )Z,W 〉, X ,Y,Z,W ∈ X(M).

The second Bianchi identity is obtained by differentiating the curvature. In vector
form, this means taking the covariant derivative of the curvature tensor Rm.

Theorem 22.9 (The second Bianchi identity in vector form). On a Riemannian
manifold, if a connection ∇ is compatible with the metric, then for all X ,Y,Z,V,
W ∈ X(M),

∑
cyclic in X ,Y,Z

(∇X Rm)(Y,Z,V,W ) = 0.

(This notation means we cyclically rotate X ,Y,Z to obtain two other terms.)
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Proof. Since (∇X Rm)(Y,Z,V,W ) is F-linear in all of its argument, it suffices to ver-
ify the identity at a point p ∈M and for X ,Y,Z,V,W a frame ofC∞ vector fields near
p. Such a frame is the coordinate frame ∂1, . . . ,∂n of a normal coordinate neighbor-
hood U of p. The advantage of using a normal coordinate system is that ∇XY = 0
at p and [X ,Y ] = 0 on U for any coordinate vector fields X ,Y , i.e., X = ∂i, Y = ∂ j
for some i, j (Theorem 15.4). This greatly simplifies the expression for the covariant
derivative of a tensor field.

Thus, if X ,Y,Z,V,W are coordinate vector fields on a normal neighborhood of p,
then at the point p

(∇X Rm)(Y,Z,V,W ) = X
(
Rm(Y,Z,V,W )

)−Rm(∇XY,Z,V,W )−·· ·
= X

(
Rm(Y,Z,V,W )

)
since ∇XY (p) = 0

= X〈R(Y,Z)V,W 〉
= 〈∇XR(Y,Z)V,W 〉+ 〈R(Y,Z)V,∇XW 〉

by compatibility of ∇ with the metric

= 〈∇X∇Y∇ZV,W 〉−〈∇X∇Z∇YV,W 〉.
Cyclically permuting X ,Y,Z, we get

(∇Y Rm)(Z,X ,V,W ) = 〈∇Y∇Z∇XV,W 〉−〈∇Y∇X∇ZV,W 〉
and

(∇ZRm)(X ,Y,V,W ) = 〈∇Z∇X∇YV,W 〉−〈∇Z∇Y∇XV,W 〉.
Summing the three equations gives

(∇X Rm)(Y,Z,V,W +(∇Y Rm)(Z,X ,V,W )+(∇ZRm)(X ,Y,V,W

= 〈R(X ,Y )∇ZV,W 〉+ 〈R(Y,Z)∇XV,W 〉+ 〈R(Z,X)∇YV,W 〉.
On the right-hand side, because R(−,−)− is a tensor, we can evaluate the arguments
at a single point p. Since ∇XV , ∇YV , ∇ZV all vanish at p, all three terms are zero.
This establishes the second Bianchi identity in vector form. ��

For the equivalence of the second Bianchi identity (Proposition 22.3) and the
second Bianchi identity in vector form (Theorem 22.9), see [12, Vol. 1, Theorem
5.3, p. 155].

22.7 Ricci Curvature

The curvature tensor 〈R(X ,Y )Z,W 〉 is a complicated object, but from it one can
construct other invariants of a Riemannian manifold M. One such is the sectional
curvature introduced in Section 12.4.

Another is the Ricci curvature, which associates to two tangent vectors u,v ∈
TpM at p the trace of the linear endomorphism

w �→ R(w,u)v.
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Thus, if X ,Y are C∞ vector fields on an open set U in M and E1, . . . ,En is an or-
thonormal frame onU , then

Ric(X ,Y ) = tr
(
R(−,X)Y

)

=
n

∑
i=1

〈R(Ei,X)Y,Ei〉.

By the symmetry properties of R, for the Riemannian connection

Ric(X ,Y ) =∑〈R(Ei,X)Y,Ei〉 (by definition)

=∑〈R(Y,Ei)Ei,X〉 (by Theorem 22.6)

=∑〈R(Ei,Y )X ,Ei〉
= Ric(Y,X).

Thus, the Ricci curvature Ric(X ,Y ) is a symmetric tensor of type (0,2).

22.8 Scalar Curvature

At each point p of a Riemannian manifold M, the Ricci curvature is a symmetric
bilinear form

Ric : TpM×TpM → TpM.

The scalar curvature at p is the trace of the Ricci curvature at p, defined as follows.
By the nondegeneracy of the Riemannian metric 〈 , 〉, there is a unique linear

map ρ : TpM → TpM such that

Ric(u,v) = 〈ρ(u),v〉 for all u,v ∈ TpM.

The scalar curvature S(p) at the point p is defined to be the trace of ρ .
If e1, . . . ,en is an orthonormal basis for TpM, then

S(p) = trρ =∑
j
〈ρ(e j),e j〉

=∑
j
Ric(e j,e j)

=∑
i, j
〈R(ei,e j)e j,ei〉.

22.9 Defining a Connection Using Connection Matrices

In the next section we will describe how a connection on a vector bundle induces a
connection on a pullback bundle. The easiest way to do this is to define a connection
using connection matrices.

If ∇ is a connection on a vector bundle E → M, then relative to each framed
open set (U,e1, . . . ,er) for E, there is a connection matrix ωe. By Theorem 22.1, the
connection matrix relative to another frame ē= ea is related to ωe by the formula
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ωē = a−1ωea+a−1da. (22.11)

For s ∈ Γ(E) and X ∈ X(M), to define ∇Xs ∈ Γ(E), it suffices to define (∇Xs)|U
for the open sets U of an open cover of M. By the definition of the restriction of a
connection,

(∇Xs)|U = ∇UX (s|U ).
Thus, a connection ∇ on E is completely determined by its restrictions ∇U to the
open sets of an open cover for M. Conversely, a collection of connections ∇U on
the open setsU of a trivializing open cover ofM that agree on pairwise intersections
U ∩U ′ defines a connection on E.

Equivalently, since a connection on a trivial bundle is completely specified by its
connection matrix relative to a frame (see Section 11.2), a connection on a vector
bundle can also be given by a collection of connection forms {ωe,(U,e)} satisfying
the compatibility conditions (22.11).

22.10 Induced Connection on a Pullback Bundle

In this section we show that under a C∞ map f : N → M, a connection on a vector
bundle E →M pulls back to a unique connection on f ∗E → N.

Theorem 22.10. Let ∇ be a connection on a vector bundle E → M and f : N → M
a C∞ map. Suppose M is covered by framed open sets (U,e1, . . . ,er) for E and the
connection matrix relative to the frame e is ωe. Then there is a unique connection
on f ∗E whose connection matrix relative to the frame f ∗e1, . . . , f ∗er on f−1(U)
is f ∗(ωe).

Proof. The matrix f ∗(ωe) of 1-forms defines a connection on the trivial bundle
( f ∗E)| f−1(U) relative to the frame f ∗e (Section 11.2). If ē = ea is another frame
onU , then by Theorem 22.1

ωē = a−1ωea+a−1da onU.

Taking the pullback under f ∗ gives

f ∗(ωē) = ( f ∗a)−1 f ∗(ωe) f
∗a+( f ∗a)−1d f ∗a on f−1(U).

Since f ∗ē= ( f ∗e)( f ∗a), the equation above shows that { f ∗(ωe)} satisfies the com-
patibility condition (22.11) and defines a unique connection on f ∗E. ��

Problems

22.1. Differential of the inverse of a matrix of functions
If ω = [ω i

j] is a matrix of differential forms on a manifold, we define dω to be the matrix

whose (i, j)-entry is d(ω i
j). Let a= [aij] be a matrix of functions on a manifold. Prove that

d(a−1) =−a−1(da)a−1.

(Note: Because a and da are matrices, we cannot combine the right-hand side into −(da)a−2

as in calculus.)
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22.2. Matrix of a linear transformation
Let L : V → V be a linear transformation of a finite dimensional vector space V . Suppose
e1, . . . ,er and ē1, . . . , ēr are two bases of V such that ē j = ∑i eia

i
j. If L(e j) = ∑i eiλ ij and

L(ē�) = ∑k ēkλ̄ k� , prove that Λ̄ = a−1Λa, where Λ̄ = [λ̄ k� ] and Λ = [λ ij] are the matrices of L
with respect to the two bases ē and e.

22.3. Generalized second Bianchi identity
Prove Proposition 22.4.

22.4. Product rule for the covariant derivative
Prove Theorem 22.8.
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§23 Characteristic Classes

A connection on a vector bundle E of rank r over a manifoldM can be represented lo-
cally by a matrix ω of 1-forms relative to a frame for E over an open setU . Similarly,
the curvature of the connection can be represented by a matrix Ω of 2-forms overU .
Under a change of frame ē = ea, the curvature matrix transforms by conjugation
Ω̄ = a−1Ωa. Thus, if P(X) is a polynomial in r2 variables invariant under conjuga-
tion by elements of GL(r,R), then the differential form P(Ω) will be independent
of the frame and will define a global form on M. It turns out that this global form
P(Ω) is closed and is independent of the connection. For a fixed vector bundle E, the
cohomology class [P(Ω)] is therefore a well-defined element of H∗(M) depending
only on the invariant polynomial P(X). This gives rise to an algebra homomorphism

cE : Inv
(
gl(r,R)

)→ H∗(M),

called the Chern–Weil homomorphism from the algebra Inv
(
gl(r,R)

)
of invariant

polynomials on gl(r,R) to the de Rham cohomology algebra ofM.
For each homogeneous invariant polynomial P(X) of degree k, the cohomology

class [P(Ω)] ∈ H2k(M) is an isomorphism invariant of the vector bundle: if two
vector bundles of rank r over M are isomorphic, then their cohomology classes ass-
ociated to P(X) are equal. In this sense, the class [P(Ω)] is characteristic of the
vector bundle E and it is called a characteristic class of E. A global form P(Ω)
representing a characteristic class is called a characteristic form.

23.1 Invariant Polynomials on gl(r,R)

Let X = [xij] be an r× r matrix with indeterminate entries xij. A polynomial P(X) on
gl(r,R) =R

r×r is a polynomial in the entries of X . A polynomial P(X) on gl(r,R) is
said to be Ad GL(r,R)-invariant or simply invariant if

P(A−1XA) = P(X) for all A ∈ GL(r,R). (23.1)

By Proposition B.1 in Appendix B, if (23.1) holds for all r× r matrices X of
real numbers, then it holds when X is a matrix of indeterminates, i.e., P(X) is an
invariant polynomial on gl(r,R). Thus, tr(X) and det(X) are examples of invariant
polynomials on gl(r,R).

Example 23.1 (Coefficients of the characteristic polynomial). Let X = [xij] be an
r× r matrix of indeterminates and let λ be another indeterminate. The coefficients
fk(X) of λ r−k in

det(λ I+X) = λ r+ f1(X)λ r−1+ · · · fr−1(X)λ + fr(X)

are polynomials on gl(r,R). For any A ∈ GL(r,R) and any r× r matrix X of real
numbers,
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det(λ I+A−1XA) = det(λ I+X).

Comparing coefficients of λ r−k, we get

fk(A
−1XA) = fk(X) for all A ∈ GL(r,R),X ∈ gl(r,R).

By Proposition B.1, f1(X), . . ., fr(X) are all invariant polynomials on gl(r,R). They
are the coefficients of the characteristic polynomial of−X . (The characteristic poly-
nomial of X is det(λ I−X).)

Example 23.2 (Trace polynomials). For any positive integer k, the polynomial ∑k(X)
:= tr(Xk) is clearly invariant under conjugation for any X ∈ gl(r,R). By Proposi-
tion B.1, ∑k(X) is an invariant polynomial on gl(r,R). It is the kth trace polynomial.

If A is any commutative R-algebra with identity, then the canonical map R→A

induces an algebra homomorphism R[xij] → A[xij]. For any invariant polynomial
P(X) on gl(r,R) and any invertible matrix A ∈ GL(r,R), the polynomial

PA(X) = P(A−1XA)−P(X)

is the zero polynomial in R[xij]. Under the homomorphism R[xij] → A[xij], the zero
polynomial PA(X) maps to the zero polynomial in A[xij]. Thus, PA(X) is identically
zero when evaluated on Ar×r. This means that for any invariant polynomial P(X) on
gl(r,R) and A ∈ GL(r,R), the invariance condition

P(A−1XA) = P(X)

holds not only for r× r matrices X of real numbers, but more generally for r× r
matrices with entries in any R-algebra A with identity.

23.2 The Chern–Weil Homomorphism

Let E → M be a C∞ vector bundle over a manifold M. We assume that there is a
connection ∇ on E; apart from this, there are no restrictions on E orM. Thus, we do
not assume that E is a Riemannian bundle or that M is compact or orientable.

LetΩ= [Ωi
j] be the curvature matrix of ∇ relative to a frame e= [e1 · · · er] onU .

If ē= [ē1 · · · ēr] is another frame onU , then

ē= ea

for a C∞ function a : U → GL(r,R) and by Theorem 22.1, the curvature matrix Ω̄
relative to the frame ē is

Ω̄= a−1Ωa.
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Shiing-Shen Chern

(1911–2004)

Printed with permission of
May Chou.

Let P be a homogeneous invariant polynomial of
degree k on gl(r,R). Fix a point p ∈U . Let A be the
commutative R-algebra of covectors of even degrees
at p,

A=
∞⊕

i=0

∧2i
(T ∗

p M).

If Ω= [Ωi
j] is the curvature matrix of the connection

∇ relative to the frame e for E overU , thenΩp ∈Ar×r

and
Ω̄p = a(p)−1Ωp a(p),

where a(p) ∈ GL(r,R). By the invariance of P(X)
under conjugation,

P(Ω̄p) = P(a(p)−1Ωpa(p)) = P(Ωp) ∈
∧2k

(T ∗
p M).

As p varies overU ,

P(Ω̄) = P(Ω) ∈Ω2k(U). (23.2)

Thus, the 2k-form P(Ω) onU is independent of the frame.

André Weil

(1906–1998)

Let {Uα}α∈A be a trivializing open cover for E. On
eachUα , choose a frame eα = [eα1 · · · eαr ] for E, and let Ωα
be the curvature matrix of the connection ∇ relative to this
frame. If P(X) is a homogeneous invariant polynomial of
degree k on gl(r,R), then P(Ωα) is a 2k-form onUα . On the
overlap Uα ∩Uβ , we have two 2k-forms P(Ωα) and P(Ωβ ).
By (23.2) they are equal. Therefore, the collection of forms
{P(Ωα)}α∈A piece together to give rise to a global 2k-form
on M, which we denote by P(Ω).

There are two fundamental results concerning the
form P(Ω).

Theorem 23.3. Let E be a vector bundle of rank r on a man-
ifold M, ∇ a connection on E, and P an invariant homoge-
neous polynomial of degree k on gl(r,R). Then

(i) the global 2k-form P(Ω) on M is closed;
(ii) the cohomology class of the closed form P(Ω) in H2k(M)

is independent of the connection.

For any vector bundle E of rank r over M and any connection ∇ on E, the map

cE : Inv(gl(r,R))→ H∗(M),

P(X) �→ [P(Ω)],

sends P(X)Q(X) to [P(Ω)∧Q(Ω)] and is clearly an algebra homomorphism. It is
called the Chern–Weil homomorphism.
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23.3 Characteristic Forms Are Closed

In Examples 23.1 and 23.2 we introduced two sets of invariant polynomials on
gl(r,R):

(i) the coefficients fk(X) of the characteristic polynomial det(tI+X),
(ii) the trace polynomials Σk(X) = tr(Xk).

The polynomials fk(X) and the trace polynomials Σk(X) are related by Newton’s
identity (Theorem B.14)

Σk− f1Σk−1+ f2Σk−2−·· ·+(−1)k−1 fk−1Σ1+(−1)kk fk = 0.

These two sets of polynomials play a crucial role in the theory of characteristic
classes, because of the following algebraic theorem. A proof of this theorem can
be found in Appendix B.

Theorem 23.4. The ring Inv
(
gl(r,R)

)
of invariant polynomials on gl(r,R) is gener-

ated as a ring either by the coefficients fk(X) of the characteristic polynomial or by
the trace polynomials Σk:

Inv
(
gl(r,R)

)
= R[ f1, . . . , fr] = R[Σ1, . . . ,Σr].

In particular, every invariant polynomial P on gl(n,R) is a polynomial Q in
Σ1, . . . ,Σr. Thus,

P(Ω) = Q
(
Σ1(Ω), . . . ,Σr(Ω)

)
.

This shows that it is enough to prove Theorem 23.3 for the trace polynomials, for if
the Σk(Ω) are closed, then any polynomial in the Σk(Ω) is closed, and if the coho-
mology classes of the Σk(Ω) are independent of the connection ∇, then the same is
true of any polynomial in the Σk(Ω).

Recall that if A= [α i
j] and B= [β i

j] are matrices ofC∞ forms on a manifold with
the number of columns of A equal to the number of rows of B, then by definition

(i) (A∧B)ij = ∑kα i
k ∧β k

i ,
(ii) (dA)ij = d(α i

j).

The next proposition collects together some basic properties about matrices of dif-
ferential forms, their wedge product, and their trace.

Proposition 23.5. Let A = [α i
j] and B = [β i

j] be matrices of C∞ forms of degrees a
and b, respectively, on a manifold.

(i) If A∧B is defined, then

(A∧B)T = (−1)abBT ∧AT .

(For matrices of functions, (AB)T=BTAT ; for smooth forms, α ∧ β=(−1)ab

β ∧α . Formula (i) generalizes both of these formulas.)
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(ii) If A∧B and B∧A are both defined, then

tr(A∧B) = (−1)ab tr(B∧A).

(iii) If A= [aij] is a square matrix of differential forms on M, then

d trA= trdA.

Proof. (i) It suffices to compute the (i, j)-entry of both sides:

(
(A∧B)T

)i
j = (A∧B) ji =∑

k

α j
k ∧β k

i ,

(
BT ∧AT )i

j =∑
k

(BT )ik ∧ (AT )kj =∑
k

β k
i ∧α j

k .

Since α j
k is an a-form and β k

i is a b-form, the proposition follows.
(ii)

tr(A∧B) =∑
i
(A∧B)ii =∑

i
∑
k

α i
k ∧β k

i ,

tr(B∧A) =∑
k

(B∧A)kk =∑
k
∑
i
β k
i ∧α i

k.

(iii)

d trA= d
(

∑
i
aii
)
=∑

i
daii = trdA. ��

Proof (of Theorem 23.3(i) for trace polynomials). Let ω and Ω be the connection
and curvature matrices relative to a frame e onU . Then

d tr(Ωk) = trd(Ωk)
(
Proposition 23.5 (iii)

)

= tr(Ωk ∧ω−ω ∧Ωk) (Generalized second Bianchi identity)

= tr(Ωk ∧ω)− tr(ω ∧Ωk)

= 0
(
Proposition 23.5 (ii)

) ��

23.4 Differential Forms Depending on a Real Parameter

If ωt is a C∞ k-form on a manifold M depending on a real parameter t ∈ J for some
open interval J ⊂ R, then locally, on a chart (U,x1, . . . ,xn) for the manifold, ωt is a
linear combination

ωt =∑
I
aI(x, t)dx

I ,

where I = (i1 < · · · < ik) is a multi-index. We say that ωt depends smoothly on
t or varies smoothly with t if for every U in an atlas {(U,x1, . . . ,xn)} for M, the
coefficients aI(x, t) are all C∞ functions on U × J. In this case, we also say that
{ωt}t∈J is a smoothly varying family of C∞ k-forms on M.
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Suppose {ωt}t∈J is such a family. For each p ∈ M, the map t �→ ωt,p is a map
from J to the vector space

∧k(T ∗
p M). We define dωt/dt, also written ω̇t , to be the

k-form on M such that at each p ∈M,

(
dωt

dt

)

p
=

d
dt
ωt,p.

This definition makes sense because the vector space
∧k(T ∗

p M) is finite-dimensional.
Locally,

d
dt
ωt =∑

I

∂aI
∂ t

(x, t)dxI .

Similarly, for a < b in J, we define
∫ b
a ωt dt to be the k-form on M such that at

each p ∈M,
(∫ b

a
ωt dt

)

p
=
∫ b

a
ωt,p dt.

Locally,
∫ b

a
ωt dt =∑

I

(∫ b

a
aI(x, t)dt

)

dxI . (23.3)

All of these notions — C∞ dependence on t and differentiation and integration with
respect to t — extend entry by entry to a matrix of forms depending on a real
parameter t.

Proposition 23.6. Suppose ω = ωt and τ = τt are matrices of C∞ differential forms
on a manifold M depending smoothly on a real parameter t. Assume that the wedge
product ω ∧ τ makes sense, i.e., the number of columns of ω is equal to the number
of rows of τ .

(i) If ω = [ω i
j(t)] is a square matrix, then

d
dt
(trω) = tr

(
dω
dt

)

.

(ii) (Product rule)
d
dt
(ω ∧ τ) = ω̇ ∧ τ+ω ∧ τ̇.

(iii) (Commutativity of d/dt with d)
d
dt
(dωt) = d

(
d
dt
ωt

)

.

(iv) (Commutativity of integration with respect to t with d) If [a,b]⊂ J, then

∫ b

a
dωt dt = d

(∫ b

a
ωt dt

)

.
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Proof. (i)

d
dt
(trω) =

d
dt∑ω

i
i (t) =∑ dω i

i

dt
= tr

(
dω
dt

)

.

The proofs of (ii) and (iii) are straightforward. We leave them as exercises (Prob-
lems 23.1 and 23.2).

Since both sides of (iv) are matrices of differential forms onM, it suffices to prove
the equality locally and for each entry. On a coordinate open set (U,x1, . . . ,xn),

ωt =∑
I
aI(x, t)dx

I and dωt =∑
i,I

∂aI
∂xi

dxi∧dxI .

By (23.3),
∫ b

a
(dωt)dt =∑

i,I

(∫ b

a

∂aI
∂xi

dt

)

dxi∧dxI . (23.4)

By (23.3) and the definition of the exterior derivative onU ,

d
∫ b

a
ωt dt =∑

I
d

((∫ b

a
aI(x, t)dt

)
dxI
)

=∑
I,i

∂
∂xi

(∫ b

a
aI(x, t)dt

)

dxi∧dxI . (23.5)

Comparing (23.5) and (23.4), we see that the proposition is equivalent to differ-
entiation under the integral sign:

∂
∂xi

∫ b

a
aI(x, t)dt =

∫ b

a

∂
∂xi

aI(x, t)dt.

By a theorem of real analysis [15, §9.7, Proposition, p. 517], this is always possible
for an integral over a finite interval [a,b] provided that aI and ∂aI/∂xi are continuous
onU× [a,b]. ��

23.5 Independence of Characteristic Classes of a Connection

Recall from Proposition 10.5 that a convex linear combination of connections on a
vector bundle is again a connection. Given two connections ∇0 and ∇1 on a smooth
vector bundle π : E →M, we define for each t ∈ R the convex linear combination

∇t = (1− t)∇0+ t∇1,
and then ∇t is a connection on E.

Let ωt and Ωt be the connection and curvature matrices of ∇t relative to a frame
e1, . . . ,er for E over an open setU . For X ∈ X(U),

∇tX e j = (1− t)∇0Xe j+ t∇1Xe j
=∑

i

(
(1− t)(ω0)

i
j+ t(ω1)

i
j

)
(X)ei.
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Hence,

ωt = (1− t)ω0+ tω1.

This proves that the connection matrix ωt depends smoothly on t. By the second
structural equation, the curvature matrix Ωt also depends smoothly on t.

To show that the cohomology class of tr(Ωk
t ) is independent of t, it is natural

to differentiate tr(Ωk
t ) with respect to t and hope that the derivative will be a global

exact form on M. In the following proof, in order to simplify the notation, we often
suppress the wedge product.

Proposition 23.7. If ∇t is a family of connections on a vector bundle E whose con-
nection and curvature matrices ωt and Ωt on a framed open set U depend smoothly
on a real parameter t, then

d
dt
(trΩk) = d(k tr(Ωk−1ω̇)),

where Ω=Ωt .

Proof.

d
dt
(trΩk) = tr

(
d
dt
Ωk
)

(Proposition 23.6 (i))

= tr(Ω̇Ωk−1+ΩΩ̇Ωk−2+ · · ·+Ωk−1Ω̇) (product rule)

= k tr(Ωk−1Ω̇)
(
Proposition 23.5 (ii)

)

To show that tr(Ωk−1Ω̇) is an exact form, we differentiate the structural equation
Ω= dω+ω ∧ω with respect to t:

Ω̇=
d
dt
dω+

d
dt
(ω ∧ω)

= dω̇+ ω̇ ∧ω+ω ∧ ω̇,
by the commutativity of d/dt with d (Proposition 23.6(iii)) and the product rule
(Proposition 23.6(ii)). Hence,

tr(Ωk−1Ω̇) = tr(Ωk−1dω̇+Ωk−1ω̇ω+Ωk−1ωω̇)

= tr(Ωk−1dω̇−ωΩk−1ω̇+Ωk−1ωω̇)
(by Proposition 23.5(ii), there is a sign change

because both Ωk−1ω̇ and ω have odd degree)

= tr
(
Ωk−1dω̇+(dΩk−1)ω̇

)

(generalized second Bianchi identity)

= tr
(
d(Ωk−1ω̇)

)
= d
(
tr(Ωk−1ω̇)

)
(Proposition 23.5 (iii)). ��

Remark 23.8. Under a change of frame ē= ea,

ω̄t = a−1ωta+a−1da.
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Differentiating with respect to t kills a−1da, since a does not depend on t, hence

˙̄ω = a−1ω̇a.

Thus,

tr(Ω̄k−1 ˙̄ω) = tr(a−1Ωk−1aa−1ω̇a) = tr(a−1Ωk−1ω̇a) = tr(Ωk−1ω̇).

This shows that tr(Ωk−1ω̇) is independent of the frame and so can be pieced together
into a global form on M.

Proof (of Theorem 23.3(ii)). Suppose ∇0 and ∇1 are two connections on the vector
bundle E. Define a family of connections

∇t = (1− t)∇0+ t∇1, t ∈ R,

as before, with connection matrix ωt and curvature matrix Ωt on a framed open set.
By Proposition 23.7,

d
dt
(trΩk

t ) = d(k tr(Ωk−1
t ω̇t)).

Integrating both sides with respect to t from 0 to 1 gives

∫ 1

0

d
dt
(trΩk

t )dt = tr(Ωk
t )
]1

0
= tr(Ωk

1)− tr(Ωk
0)

and
∫ 1

0
d(k tr(Ωk−1ω̇))dt = d

∫ 1

0
k tr(Ωk−1ω̇)dt

by Proposition 23.6(iv).
Thus,

tr(Ωk
1)− tr(Ωk

0) = d
∫ 1

0
k tr(Ωk−1ω̇)dt

In this equation, both tr(Ωk
1) and tr(Ωk

0) are global forms on M. As noted in Re-
mark 23.8, so is tr(Ωk−1ω̇). Passing to cohomology classes, we get [tr(Ωk

1)] =
[tr(Ωk

0)]. This proves that the cohomology class of tr(Ωk) is independent of the
connection. ��
For any invariant homogeneous polynomial P(X) of degree k on gl(r,R), since P(Ω)
is a polynomial in tr(Ω), tr(Ω2), . . . , tr(Ωk), the characteristic form P(Ω) is closed
and the cohomology class of P(Ω) is independent of the connection.

23.6 Functorial Definition of a Characteristic Class

A characteristic class on real vector bundles associates to each manifold M a map

cM :
{
isomorphism classes of real
vector bundles over M

}
→ H∗(M).
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such that if f : N →M is a map ofC∞ manifolds and E →M is a vector bundle over
M, then

cN( f
∗E) = f ∗cM(E). (23.6)

Let Vectk(M) be the set of all isomorphism classes of rank k vector bundles
overM. Both Vectk( ) andH∗( ) are functors on the category of smooth manifolds. In
functorial language a characteristic class is a natural transformation c : Vectk( ) →
H∗( ). By the definition of a natural transformation, if f : N → M is a C∞ map of
manifolds, then there is a commutative diagram

Vectk(N)
cN

f ∗

H∗(N)

f ∗

Vectk(M) cM
H∗(M),

which is precisely (23.6). For this reason, property (23.6) is often called the natu-
rality property of the characteristic class c.

23.7 Naturality

We will now show that if E → M is a vector bundle of rank r and P is an
Ad
(
GL(r,R)

)
-invariant polynomial on gl(r,R), then the cohomology class [P(Ω)]

satisfies the naturality property and therefore defines a characteristic class.
If ∇ is a connection on E, with connection matrices ωe relative to frames e for E,

by Theorem 22.10 there is a unique connection ∇′ on f ∗E → N whose connection
matrix relative to the frame f ∗e is f ∗(ωe).

The induced curvature form on f ∗E is therefore

f ∗ωe+
1
2
[ f ∗ωe, f

∗ωe] = f ∗Ωe.

Since f ∗ is an algebra homomorphism,

P( f ∗Ωe) = f ∗P(Ωe),

which proves the naturality of the characteristic class [P(Ω)].

Problems

23.1. Product rule for forms depending on t

(a) Suppose ω = ωt and τ = τt are C∞ differential forms on M depending smoothly on a real
parameter t. Denote the derivative of ω by dω/dt or ω̇ . Prove the product rule

d
dt

(ω ∧ τ) = ω̇ ∧ τ+ω ∧ τ̇.
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(b) Prove the same formula if ω and τ are matrices of k-forms and �-forms on M depending
smoothly on t.

(c) If α , β , γ are matrices of differential forms on M depending smoothly on t ∈ J for which
α ∧β ∧ γ is defined, prove that

d
dt

(αβγ) = α̇βγ+αβ̇γ+αβ γ̇.

23.2. Commutativity of d/dt with the exterior derivative
Suppose ωt is a C∞ k-form on a manifold M depending smoothly on t in some open interval
J ⊂ R. Prove that

d
dt

(dωt) = d(ω̇t).

(Hint: Write out ωt in terms of local coordinates x1, . . . ,xn near p.)
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§24 Pontrjagin Classes

Lev Pontrjagin

(1908–1988)

Suppose E is a smooth vector bundle of rank
r over a manifold M. In the preceding section
we showed that starting with any connection
∇ on E, if P(X) is a homogeneous invari-
ant polynomial of degree k on gl(r,R) and Ω
is the curvature matrix of ∇ relative to any
frame for E, then P(Ω) defines a closed global
2k-form onM, whose cohomology class is in-
dependent of the connection. The cohomol-
ogy class [P(Ω)] is called the characteristic
class associated to P of the vector bundle E.
This construction gives rise to the Chern–Weil
homomorphism,

cE : Inv
(
gl(r,R)

)→ H∗(M)

from the algebra of invariant polynomials on
gl(r,R) to the de Rham cohomology algebra
of M. The image of the Chern–Weil homo-
morphism is precisely the subalgebra of char-
acteristic classes of E associated to invariant
polynomials.

Since the algebra Inv
(
gl(r,R)

)
of invari-

ant polynomials on gl(r,R) is generated by the
coefficients fk(X) of the characteristic polynomials and by the trace polynomials
tr(Xk) (Appendix B, Theorem B.17), to determine all the characteristic classes of E,
it suffices to calculate the characteristic classes associated to either set of polynomi-
als. The characteristic classes arising from the fk(X) are called Pontrjagin classes.

24.1 Vanishing of Characteristic Classes

In Section 11.4, we learned that on a Riemannian bundle E over a manifold M the
curvature matrix of a metric connection relative to an orthonormal frame is skew-
symmetric:

Ω=

⎡

⎢
⎢
⎢
⎣

0 Ω1
2 · · · Ω1

r
−Ω1

2 0 · · ·
...

. . .
...

−Ω1
r · · · 0

⎤

⎥
⎥
⎥
⎦
.

From the skew-symmetry of the curvature matrix, we see that f1(Ω) = tr(Ω) = 0.
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This example is an instance of a general phenomenon: if k is odd, then the coho-
mology class [tr(Ωk)] = 0 for any connection on any vector bundle. To see this, we
begin with two simple algebraic lemmas.

Lemma 24.1. If A is a skew-symmetric matrix of 2-forms on a manifold, then Ak is
symmetric for k even and skew-symmetric for k odd.

Proof. By Proposition 23.5(i),

(A∧A)T = AT ∧AT = (−A)∧ (−A) = A∧A

and

((A∧A)∧A)T = AT ∧ (AT ∧AT ) = (−A)∧ (−A)∧ (−A) =−A∧A∧A.

Hence, A2 is symmetric and A3 is skew-symmetric. The general case proceeds by
induction. ��
Lemma 24.2. Suppose 2 is not a zero divisor in a ring R. Then the diagonal entries
of a skew-symmetric matrix over R are all zero.

Proof. A skew-symmetric matrix is a square matrix A = [aij] such that AT = −A.
This implies that aii = −aii. Hence, 2a

i
i = 0. Since 2 is not a zero divisor in R, one

has aii = 0 for all i. ��
Next, we recall a few facts about Riemannian metrics, connections, and curvature

on a vector bundle.

(i) It is possible to construct a Riemannian metric on any smooth vector bundle
(Theorem 10.8).

(ii) On any Riemannian bundle there is a metric connection, a connection compati-
ble with the metric (Proposition 10.12).

(iii) Relative to an orthonormal frame, the curvature matrixΩ of a metric connection
is skew-symmetric (Propositions 11.4 and 11.5).

By Lemma 24.1, if Ω is the curvature matrix of a metric connection relative to
an orthonormal frame, then for an odd k the matrix Ωk is skew-symmetric. Since the
diagonal entries of a skew-symmetric matrix are all zero, tr(Ωk) = 0 for all odd k.

Even if the frame ē is not orthonormal, the same result holds for the curvature
matrix of a metric connection. This is because the curvature matrix relative to ē is
Ω̄= a−1Ωa, where a is the change of basis matrix defined by ē= ea. Since the trace
polynomial tr(Xk) is invariant under conjugation, ifΩ is the curvature matrix relative
to an orthonormal frame e, then

tr(Ω̄k) = tr(a−1Ωka) = tr(Ωk) = 0 for k odd.

If the connection ∇ on E is not compatible with a metric on E, then tr(Ωk) need
not be zero. However, by Theorem 23.3(ii) the cohomology class [tr(Ωk)] is still
zero, because the cohomology class is independent of the connection.
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Example. Let E be any smooth vector bundle overM. Put a Riemannian metric on E
and let ∇ be a metric connection on E, with curvature matrixΩ on a framed open set.
Suppose P(X) is a homogeneous invariant polynomial of degree 3 on gl(r,R). Since
the trace polynomials Σ1, Σ2, Σ3, . . . generate the ring of invariant polynomials, P is
a linear combination of monomials of degree 3 in the trace polynomials. There are
only three such monomials, Σ31, Σ1Σ2 and Σ3. Hence,

P(X) = aΣ1(X)3+bΣ1(X)Σ2(X)+ cΣ3(X)

for some constants a,b,c∈R. Since the odd trace polynomials Σ1(Ω) and Σ3(Ω) are
both zero, P(Ω) = 0. Thus, the characteristic class of a vector bundle associated to
any homogeneous invariant polynomial of degree 3 is zero.

Clearly, there is nothing special about degree 3 except that it is odd.

Theorem 24.3. If a homogeneous invariant polynomial P(X) on gl(r,R) has odd
degree k, then for any connection ∇ on any vector bundle E → M with curvature
matrix Ω, the cohomology class [P(Ω)] is zero in H2k(M).

Proof. Put a Riemannian metric on E and let ∇′ be a metric connection on E, with
curvature matrix Ω′ on a framed open set. By Theorem 23.4, P(X) is a linear combi-
nation with real coefficients of monomials Σi11 · · ·Σirr in the trace polynomials. Since
k is odd, every monomial term of P(X) has odd degree and so must contain a trace
polynomial Σ j of odd degree j as a factor. The vanishing of the odd trace polynomi-
als Σ j(Ω′) implies that P(Ω′) = 0. By Theorem 23.3(ii), if ∇ is any connection on E
with curvature matrix Ω, then [P(Ω)] = [P(Ω′)] = 0. ��

24.2 Pontrjagin Classes

To calculate the characteristic classes of a vector bundle E →M, we can always use
a metric connection ∇ compatible with some Riemannian metric on E. Let Ω be the
curvature matrix of such a connection ∇ on a framed open set. From the proof of
Theorem 24.3, we see that for k odd, the polynomials tr(Ωk) and fk(Ω) are all zero.
Thus, the ring of characteristic classes of E has two sets of generators:

(i) the trace polynomials of even degrees

[tr(Ω2)], [tr(Ω4)], [tr(Ω6)], . . .

and
(ii) the coefficients of even degrees of the characteristic polynomial det(λ I+Ω)

[ f2(Ω)], [ f4(Ω)], [ f6(Ω)], . . . .

Definition 24.4. The kth Pontrjagin class pk(E) of a vector bundle E over M is
defined to be
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pk(E) =

[

f2k

(
i
2π
Ω
)]

∈ H4k(M). (24.1)

In this definition the factor of i is to ensure that other formulas will be sign-free.
Since f2k is homogeneous of degree 2k, the purely imaginary number i disappears in
f2k
(
(i/2π)Ω

)
. A closed differential q-form on M is said to be integral if it gives an

integer when integrated over any compact oriented submanifold of dimension q of
M. The factor of 1/2π in the definition of the Pontrjagin class in (24.1) ensures that
pk(E) is the class of an integral form. If the rank of E is r, then Ω is an r× r matrix
of 2-forms. For any real number x ∈ R, let  x! be the greatest integer ≤ x. Then one
can collect together all the Pontrjagin classes in a single formula:

det

(

λ I+
i
2π
Ω
)

= λ r+ f1

(
i
2π
Ω
)

λ r−1+ f2

(
i
2π
Ω
)

λ r−2+ · · ·+ fr

(
i
2π
Ω
)

= λ r+ p1λ r−2+ · · ·+ p r
2 !λ

r−2 r
2 !,

where r is the rank of the vector bundle E. Setting λ = 1, we get

det

(

I+
i
2π
Ω
)

= 1+ p1+ · · ·+ p r
2 !.

We call this expression the total Pontrjagin class of E and denote it by p(E). Note
that pk = f2k

(
i
2π Ω

) ∈ H4k(M).
Let E be a vector bundle of rank r over a compact oriented manifold M of di-

mension 4m. A monomial pa11 pa22 · · · pa r/2! r/2! of weighted degree

4
(
a1+2a2+ · · ·+

⌊ r
2

⌋
a r

2 !
)
= 4m

represents a cohomology class of degree 4m onM and can be integrated overM; the
resulting number

∫
M pa11 pa22 · · · pa r/2! r/2! is called a Pontrjagin number of E. The Pon-

trjagin numbers of a manifold M of dimension 4m are defined to be the Pontrjagin
numbers of its tangent bundle TM.

Example 24.5. For a compact oriented manifoldM of dimension 4, the only Pontrja-
gin number is

∫
M p1. For a compact oriented manifold of dimension 8, there are two

Pontrjagin numbers
∫
M p21 and

∫
M p2.

24.3 The Whitney Product Formula

The total Pontrjagin class of a direct sum of vector bundles can be easily computed
using the Whitney product formula.

Theorem 24.6 (Whitney product formula). If E ′ and E ′′ are vector bundles over
M, then

p(E ′ ⊕E ′′) = p(E ′)p(E ′′).
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Proof. Let ∇′ and ∇′′ be connections on the vector bundles E ′ and E ′′, respectively.
We define a connection ∇ := ∇′ ⊕∇′′ on E := E ′ ⊕E ′′ by

∇X
[
s′
s′′

]

=

[∇′
Xs

′
∇′′
Xs

′′

]

for X ∈ X(M),s′ ∈ Γ(E ′),s′′ ∈ Γ(E ′′).

Hassler Whitney

(1907–1989)

For f ∈C∞(M),

∇ f X

[
s′
s′′

]

=

[∇′
f X s

′

∇′′
f X s

′′

]

= f∇X
[
s′
s′′

]

and

∇X
[
f s′
f s′′

]

= (X f )

[
s′
s′′

]

+ f∇′′
X

[
s′
s′′

]

.

Therefore, ∇ is a connection on E.
Let e′ = [e′1 · · · e′r] and e′′ = [e′′1 · · · e′′s ] be frames

for E ′ and E ′′, respectively, over an open setU . Then
e= [e′ e′′] is a frame of E ′ ⊕E ′′ overU . Suppose the
connection matrices of ∇′ and ∇′′ relative to e′ and
e′′ are ω ′ and ω ′′ and the curvature matrices are Ω′
and Ω′′, respectively. Then the connection matrix of
∇ relative to the frame e is

ω =

[
ω ′ 0
0 ω ′′

]

and the curvature matrix is

Ω= dω+ω ∧ω =

[
dω ′ 0
0 dω ′′

]

+

[
ω ′ ∧ω ′ 0

0 ω ′′ ∧ω ′′

]

=

[
Ω′ 0
0 Ω′′

]

.

Therefore, the total Pontrjagin class of E ′ ⊕E ′′ is

p(E ′ ⊕E ′′) = det

(

I+
i
2π

[
Ω′ 0
0 Ω′′

])

= det

[
I+ i

2π Ω
′ 0

0 I+ i
2π Ω

′′

]

= det

(

I+
i
2π
Ω′
)

det

(

I+
i
2π
Ω′′
)

= p(E ′)p(E ′′). ��
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For dimension reasons alone, we cannot expect the Pontrjagin classes to give a gener-
alized Gauss–Bonnet theorem. A Pontrjagin number makes sense only on a compact
oriented manifold of dimension 4m, whereas a generalized Gauss–Bonnet theorem
should hold for a compact oriented manifold of any even dimension.

We used a Riemannian structure on a vector bundle E to show that the char-
acteristic classes defined by Ad

(
GL(r,R)

)
-invariant polynomials of odd degree all

vanish, and we used the orientability of the manifold M to integrate a top form, but
we have not used the orientability assumption on the bundle E. This is the final
ingredient for a generalized Gauss–Bonnet theorem.

A C∞ complex vector bundle is a smooth map π : E → M of manifolds that is
locally of the formU×C

r →U . Just as complex numbers are necessary in the theory
of polynomial equations, so complex vector bundles play an essential role in many
areas of geometry. Examples abound: the tangent bundle of a complex manifold,
the tautological subbundle on a complex Grassmannian, the hyperplane bundle of a
complex projective variety.

Most of the concepts we developed for real vector bundles have obvious counter-
parts for complex vector bundles. In particular, the analogues of Pontrjagin classes
for complex vector bundles are the Chern classes.

In this section we define the Euler class of a real oriented vector bundle of even
rank and the Chern classes of a complex vector bundle.

25.1 Orientation on a Vector Bundle

Recall that an orientation on a vector space V of dimension r is an equivalent class
of ordered bases, two ordered bases [u1 . . . ur] and [v1 . . . vr] being equivalent if and
only if they are related to each other by multiplication by a nonsingular r× r matrix
of positive determinant:

[v1 · · · vr] = [u1 · · · ur]A, detA> 0.

Thus, every vector space has exactly two orientations.
Each ordered basis v1, . . . ,vr determines a nonzero element v1∧·· ·∧vr in the rth

exterior power
∧rV (Lemma 19.7). If

[v1 · · · vr] = [u1 · · · ur]A,
then by the same calculation as in Proposition 16.8,

v1∧·· ·∧ vr = (detA)u1∧·· ·∧ur.

Thus, an orientation onV can also be represented by a nonzero element in
∧rV �R,

with two nonzero elements representing the same orientation if and only if they are
positive multiples of each other.
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This suggests how to define orientation on a vector bundle.

Definition 25.1. An orientation on a vector bundle E → M of rank r is an equiv-
alence class of nowhere-vanishing C∞ sections of the line bundle

∧r E, two such
sections s,s′ being equivalent if and only if they are related by multiplication by a
positive function onM: s′ = f s, f > 0.

Intuitively this means that each fiber Ep has an orientation which varies with
p ∈ M in a C∞ way. By Problem 25.1, a line bundle has a nowhere-vanishing C∞

section if and only if it is a trivial bundle, so we have the following proposition.

Proposition 25.2. A vector bundle E of rank r has an orientation if and only if the
line bundle

∧r E is trivial.

If a vector bundle has an orientation, we say that it is orientable. On a connected
manifold M an orientable vector bundle E of rank r has exactly two orientations,
corresponding to the two connected components of

∧r E. An orientable vector bun-
dle together with a choice of orientation is said to be oriented. In this language, a
manifold is orientable if and only if its tangent bundle is an orientable vector bundle.

25.2 Characteristic Classes of an Oriented Vector Bundle

Let E → M be an oriented Riemannian bundle of rank r, and ∇ a connection on E
compatible with the metric. A frame e= [e1 · · · er] for E over an open setU is said to
be positively oriented if at each point p inM it agrees with the orientation on E. We
agree to use only positively oriented orthonormal frames to compute the connection
matrix ω and the curvature matrix Ω of ∇. By Propositions 11.4 and 11.5, relative to
the orthonormal frame e, both ω and Ω are skew-symmetric.

If ē is another positively oriented frame for E overU , then

ē= ea (25.1)

for a C∞ function a : U → SO(r). Let Ω̄ be the curvature matrix relative to the
frame ē. Under the change of frame (25.1) the curvature matrix Ω transforms as in
Theorem 22.1(ii):

Ω̄= a−1Ωa,

but now a is a special orthogonal matrix at each point.
Hence, to get a global form P(Ω) on M, we do not need the polynomial P(X) to

be invariant under conjugation by all elements of the general linear group GL(r,R),
but only by elements of the special orthogonal group SO(r). A polynomial P(X) for
X ∈ R

r×r is Ad
(
SO(r)

)
-invariant if

P(A−1XA) = P(X) for all A ∈ SO(r).

Of course, every Ad
(
GL(r,R)

)
-invariant polynomial is also Ad

(
SO(r)

)
-invariant,

but might there be an Ad
(
SO(r)

)
-invariant polynomial that is not Ad

(
GL(r,R)

)
-

invariant? Such a polynomial P would give us a new characteristic class. Note that
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for an oriented Riemannian bundle, the curvature matrixΩ relative to an orthonormal
frame is skew-symmetric, so the polynomial P need not be defined on all of gl(r,R),
but only on the subspace of skew-symmetric matrices. The space of all r× r skew-
symmetric matrices is the Lie algebra of SO(r), denoted by so(r). Let X = [xij] be

an r× r skew-symmetric matrix of indeterminates. Thus, x ji =−xij for 1≤ i< j≤ r,
and xii = 0 for all i. A polynomial on so(r) is an element of R[xij], where the x

i
j, 1≤

i, j ≤ r, are indeterminates satisfying the skew-symmetry condition. Alternatively,
we may view a polynomial on so(r) as an element of the free polynomial ring R[xij],
1≤ i< j ≤ r, where the xij are algebraically independent elements over R. We now
have a purely algebraic problem:

Problem. What are the Ad
(
SO(r)

)
-invariant polynomials on so(r), the r× r skew-

symmetric matrices?

We already know some of these, namely the Ad
(
GL(r,R)

)
-invariant polynomi-

als, which are generated as a ring either by the trace polynomials or by the coe-
fficients of the characteristic polynomial. It turns out that for r odd, these are the
only Ad

(
SO(r)

)
-invariant polynomials. For r even, the ring of Ad

(
SO(r)

)
-invariant

polynomials has an additional generator called the Pfaffian, which is a square root
of the determinant.

25.3 The Pfaffian of a Skew-Symmetric Matrix

Johann Friedrich Pfaff

(1765–1825)

Two r× r matrices X and Y with entries in a field F
are said to be congruent if there is an r× r nonsin-
gular matrix A ∈ GL(r,F) such that Y = ATXA. By a
theorem in linear algebra [13, Th. 8.1, p. 586], every
skew-symmetric matrix X over any field F is congru-
ent to a matrix of the form:

ATXA=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S
. . .

S
0

. . .
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where S is the 2×2 skew-symmetric matrix

S=

[
0 1

−1 0

]

.

Since A is nonsingular, it follows that a nonsingular skew-symmetric matrix X has
even rank.
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If X is nonsingular, then

ATXA=

⎡

⎢
⎣

S
. . .

S

⎤

⎥
⎦ .

Moreover, for such a matrix X ,

det(ATXA) = (detA)2(detX) = (detS) · · ·(detS) = 1.

So

detX =

(
1

detA

)2

∈ F.

Thus, the determinant of a skew-symmetric matrix is a perfect square in the field. In
fact, more is true.

Theorem 25.3. Let X = [xij] be a 2m×2m skew-symmetric matrix of indeterminates.

Then det(X) is a perfect square in the polynomial ring Z[xij].

Proof. Let Q(xij) be the field generated over Q by the indeterminates xij. We know
that detX �= 0 in Z[xij], because there exist values of xij in Z for which detX �= 0.
Thus, X = [xij] is a 2m×2m nonsingular skew-symmetric matrix over the fieldQ(xij).
By the discussion above, there is a matrix A ∈ GL

(
2m,Q(xij)

)
such that

detX =

(
1

detA

)2

∈Q(xij).

This proves that detX is a perfect square in Q(xij), the fraction field of the integral
domain Z[xij]. Suppose

detX =

(
p(x)
q(x)

)2

,

where p(x), q(x) ∈ Z[xij] are relatively prime in Z[xij]. Then

q(x)2 detX = p(x)2 ∈ Z[xij].

Since Z[xij] is a unique factorization domain, q(x) must divide p(x), but q(x) and
p(x) are relatively prime, so the only possibilities are q(x) = ±1. It follows that
detX = p(x)2 in Z[xij]. ��

The Pfaffian of a 2m×2m skew-symmetric matrix X of indeterminates is defined
to be a polynomial Pf(X) such that

det(X) = (Pf(X))2;
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however, since any perfect square in a ring has two square roots (as long as the char-
acteristic of the ring is not 2), a normalization condition is necessary to determine the
sign of Pf(X). We adopt the convention that on the standard skew-symmetric matrix

J2m =

⎡

⎢
⎣

S
. . .

S

⎤

⎥
⎦ , S=

[
0 1

−1 0

]

,

we have Pf(J2m) = 1. The Pfaffian Pf(X) is a polynomial of degree m on so(2m).

Example 25.4. If

X =

[
0 x12

−x12 0

]

,

then det(X) = (x12)
2 and Pf(X) = ±x12. Since Pf(S) = 1, the sign must be positive.

Thus, Pf(X) = x12.

Proposition 25.5. Let A= [aij] and X = [xij] be 2m×2m matrices of indeterminates
with X skew-symmetric. Then

Pf(ATXA) = det(A)Pf(X) ∈ Z[aij,x
i
j].

Proof. By the properties of the determinant (Example B.3),

det(ATXA) = (detA)2 detX . (25.2)

Since ATXA and X are both skew-symmetric, (25.2) is equivalent to

(
Pf(ATXA)

)2
= (detA)2(PfX)2.

Therefore,

Pf(ATXA) =±det(A)Pf(X). (25.3)

Since Pf(ATXA) and det(A)Pf(X) are two uniquely defined elements of the ring
Z[aij,x

i
j], the sign does not depend on A or X . To determine the sign, it suffices to

evaluate (25.3) on some particular A and X with integer entries. Taking A = I2m =
the 2m×2m identity matrix and X = J2m, we get

Pf(ATXA) = Pf(J2m) = 1= det(A)Pf(X).

Therefore, the sign is + and

Pf(ATXA) = det(A)Pf(X). ��
From the proposition, it follows that if X ∈ so(r) and A ∈ SO(r), then

Pf(A−1XA) = Pf(ATXA) = det(A)Pf(X) = Pf(X).

Hence, the Pfaffian Pf(X) is an Ad
(
SO(r)

)
-invariant polynomial on r× r skew-

symmetric matrices.
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25.4 The Euler Class

If a ∈ SO(2m), then a−1 = aT and deta = 1. Coming back to the curvature matrix
Ω relative to a positively oriented orthonormal frame e of an oriented Riemannian
bundle E →M over an open setU , we see that if Ω̄ is the curvature matrix relative to
another positively oriented orthonormal frame ē for E|U , then by Theorem 22.1(ii)
the Pfaffian satisfies

Pf(Ω̄) = Pf(a−1Ωa) = Pf(aTΩa)
= det(a)Pf(Ω) = Pf(Ω).

So Pf(Ω) is independent of the positively oriented orthonormal frame e. As before,
Pf(Ω) defines a global form on M. One can prove that this global form is closed
and that its cohomology class [Pf(Ω)] ∈ H2m(M) is independent of the connection
[17, pp. 310–311]. Instead of doing this, we will give an alternate construction in
Section 32 valid for any Lie group. The class e(E) := [Pf((1/2π)Ω)] is called the
Euler class of the oriented Riemannian bundle E.

25.5 Generalized Gauss–Bonnet Theorem

We can finally state, though not prove, a generalization of the Gauss–Bonnet theorem
to higher dimensions.

Theorem 25.6. ([19, Vol. 5, Ch. 13, Th. 26, p.404], [17, p. 311]) Let M be a com-
pact oriented Riemannian manifold M of dimension 2m, and ∇ a metric connection
on its tangent bundle TM with curvature matrix Ω relative to a positively oriented
orthonormal frame. Then

∫

M
Pf

(
1
2π
Ω
)

= χ(M).

Example 25.7. When M is a compact oriented surface and e1,e2 is a positively ori-
ented orthonormal frame on M, we found the connection and curvature matrices
to be

ω =

[
0 ω1

2
−ω1

2 0

]

, Ω= dω+ω ∧ω = dω =

[
0 dω1

2
−dω1

2 0

]

.

(see Section 12.1.) By Theorem 12.3, dω1
2 = Kθ 1 ∧ θ 2, where K is the Gaussian

curvature and θ 1,θ 2 the dual frame to e1,e2. So

Pf(Ω) = dω1
2 = Kθ 1∧θ 2.

From the generalized Gauss–Bonnet theorem, we get
∫

M
e(TM) =

∫

M
Pf

(
1
2π
Ω
)

=
∫

M

1
2π

Kθ 1∧θ 2 = χ(M),

which is the classical Gauss–Bonnet theorem for a compact oriented Riemannian
2-manifold.
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25.6 Hermitian Metrics

On the complex vector space Cn, the Hermitian inner product is given by

〈z,w〉=
n

∑
j=1

z jw̄ j for z,w ∈ C
n.

Extracting the properties of the Hermitian inner product, we obtain the definition of
a complex inner product on a complex vector space.

Definition 25.8. A complex inner product on a complex vector space V is a
positive-definite, Hermitian-symmetric, sesquilinear form 〈 , 〉 : V ×V → C. This
means that for u,v,w ∈V and a,b ∈ C,

(i) (positive-definiteness) 〈v,v〉 ≥ 0; the equality holds if and only if v= 0.
(ii) (Hermitian symmetry) 〈u,v〉= 〈v,u〉.
(iii) (sesquilinearity) 〈 , 〉 is linear in the first argument and conjugate linear in the

second argument:

〈au+bv,w〉= a〈u,w〉+b〈v,w〉,
〈w,au+bv〉= ā〈w,u〉+ b̄〈w,v〉.

In fact, for sesquilinearity it is enough to check linearity in the first argument.
Conjugate linearity in the second argument follows from linearity in the first argu-
ment and Hermitian symmetry.

A Hermitian metric on a C∞ complex vector bundle E → M assigns to each
p ∈ M a complex inner product 〈 , 〉p on the fiber Ep; the assignment is required
to be C∞ in the following sense: if s and t are C∞ sections of E, then 〈s, t〉 is a C∞
complex-valued function on M. A complex vector bundle on which there is given a
Hermitian metric is called a Hermitian bundle.

It is easy to check that a finite positive linear combination ∑ai〈 , 〉i of complex
inner products on a complex vector space V is again a complex inner product. A
partition of unity argument as in Theorem 10.8 then proves the existence of a C∞

Hermitian metric on any C∞ complex vector bundle.

25.7 Connections and Curvature on a Complex Vector Bundle

A connection on a complex vector bundle E → M is defined in exactly the same
way as a connection on a real vector bundle (Definition 10.1): it is an R-bilinear
map ∇ : X(M)× Γ(E) → Γ(E) that is F-linear in the first argument, C-linear in
the second argument, and satisfies the Leibniz rule in the second argument. Just
as in Theorem 10.6, every C∞ complex vector bundle E over a manifold M has a
connection.

On a Hermitian bundle E → M, a connection ∇ is called a metric connection
and is said to be compatible with the Hermitian metric if for all X ∈ X(M) and
s, t ∈ Γ(E),

X〈s, t〉= 〈∇Xs, t〉+ 〈s,∇Xt〉.
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Relative to a frame e1, . . . ,er overU for a complex vector bundle E, a connection
∇ can be represented by a matrix [ω i

j] of complex-valued 1-forms:

∇Xe j =
r

∑
i=1
ω i

j(X)ei.

This is just like the real case except that now ω i
j are complex-valued 1-forms on U .

For X ,Y ∈ X(M), the curvature R(X ,Y ) : Γ(E)→ Γ(E) of the connection is defined
as before:

R(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ].
Relative to a frame e1, . . . ,er for E overU , curvature is represented by a matrix [Ωi

j]
of complex-valued 2-forms. We again have the structural equation

Ω= dω+ω ∧ω.

25.8 Chern Classes

Under a change of frame ē = ea, where a ∈ GL(r,C), the connection and curvature
matrices transform by the formulas (Theorem 22.1)

ω̄ = a−1ωa+a−1da,

Ω̄= a−1Ωa.

Thus, a complex polynomial Q on gl(r,C) that is invariant under conjugation by
elements of GL(r,C) will define a global form Q(Ω) on M. As before, one shows
that [Q(Ω)] is closed and that the cohomology class [Q(Ω)] is independent of the
connection. Taking Q(Ω) = det(I+ i

2π Ω), we obtain the Chern classes ci(E) of E
from

det

(

I+

√−1
2π

Ω
)

= 1+ c1(E)+ · · ·+ cr(E).

The same argument as in Section 24 proves that Chern classes satisfy the natu-
rality property and the Whitney product formula.

Problems

25.1. Trivial line bundle
A line bundle is a vector bundle of rank 1. Prove that if a C∞ line bundle E → M has a
nowhere-vanishing C∞ section, then it is a trivial bundle.

25.2. The determinant and the Pfaffian
For

X =

⎡

⎢
⎢
⎣

0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0

⎤

⎥
⎥
⎦ ,

find det(X) and Pf(X).

25.3. Odd-dimensional skew-symmetric matrices
Using the definition of a skew-symmetric matrix AT = −A, prove that for r odd, an r× r
skew-symmetric matrix is necessarily singular.
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§26 Some Applications of Characteristic Classes

The Pontrjagin classes, the Euler class, and the Chern classes are collectively called
characteristic classes of a real or complex vector bundle. They are fundamental
diffeomorphism invariants of a vector bundle. Applied to the tangent bundle of a
manifold, they yield diffeomorphism invariants of a manifold. We now give a sam-
pling, without proof, of their applications in topology and geometry.

26.1 The Generalized Gauss–Bonnet Theorem

For a compact, oriented Riemannian manifold M of even dimension 2n, the Euler
class e(TM) of the tangent bundle is represented by a closed 2n-form in the entries
of the curvature matrix of M. As we said earlier, the generalized Gauss–Bonnet
theorem states that [17, p. 311]

∫

M
e(TM) = χ(M).

26.2 Characteristic Numbers

On a compact oriented manifold M of dimension 4n, a monomial pi11 · · · pinn has total
degree

4i1+8i2+ · · ·+4nin.

If the total degree happens to be 4n, then the integral
∫
M pi11 · · · pinn is defined. It

is called a Pontrjagin number of M. The Pontrjagin numbers are diffeomorphism
invariants of the manifold M; in fact, they turn out to be topological invariants as
well.

The complex analogue of a smooth manifold is a complex manifold. It is
a second countable, Hausdorff topological space that is locally homeomorphic
to an open subset of C

n; moreover, if φα : Uα → φα(Uα) ⊂ C
n and φβ : Uβ →

φβ (Uβ ) ⊂ C
n are two such homeomorphisms, then the transition function φβ ◦

φ−1
α : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ) is required to be holomorphic. If (U,z1, . . . ,zn) is

a chart of the complex manifold, then the holomorphic tangent space TpM has basis
(∂/∂ z1)p, . . . ,(∂/∂ zn)p. Just as in the real case, the disjoint union

∐
p∈M TpM has

the structure of a complex vector bundle over M, called the holomorphic tangent
bundle. Let c1, . . . ,cn be the Chern classes of the holomorphic tangent bundle of a
complex manifold of complex dimension n. The degree of the monomial ci11 · · ·cinn
is 2i1+ · · ·+ 2nin. If this degree happens to be the same as the real dimension 2n
of the manifold, then the integral

∫
M ci11 · · ·cinn is defined and is called a Chern num-

ber of M. The Chern numbers are diffeomorphism invariants and also topological
invariants of a complex manifold.
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26.3 The Cobordism Problem

Two oriented manifoldsM1 andM2 are said to be cobordant if there exists an oriented
manifold N with boundary such that

∂N =M1−M2,

where−M2 denotesM2 with the opposite orientation. An oriented manifold is cobor-
dant to the empty set if it is the boundary of another oriented manifold. The Pon-
trjagin numbers give a necessary condition for a compact oriented manifold to be
cobordant to the empty set.

Theorem 26.1. If a compact oriented manifold M of dimension 4n is cobordant to
the empty set, then all the Pontrjagin numbers of M vanish.

Proof. SupposeM = ∂N for some manifold N with boundary and that pi11 · · · pinn has
degree 4n. Then

∫

M
pi11 · · · pinn =

∫

∂N
pi11 · · · pinn

=
∫

N
d(pi11 · · · pinn ) (by Stokes’ theorem)

= 0,

since Pontrjagin classes are represented by closed forms and a product of closed
forms is closed. ��
Corollary 26.2. If two compact oriented manifolds M1 and M2 are cobordant, then
their respective Pontrjagin numbers are equal.

Proof. IfM1−M2 = ∂N, then
∫
M1−M2

pi11 · · · pinn = 0 by Theorem 26.1. Hence,

∫

M1

pi11 · · · pinn =
∫

M2

pi11 · · · pinn . ��

26.4 The Embedding Problem

According to Whitney’s embedding theorem, a smooth manifold of dimension n
can be embedded in R

2n+1. Could one improve on the dimension? In some cases
Pontrjagin classes give a necessary condition.

Theorem 26.3. If a compact oriented manifold M of dimension 4n can be embedded
as a hypersurface in R

4n+1, then all the Pontrjagin classes of M vanish.

Proof. Since M is compact oriented in R
4n+1, it has an outward unit normal vector

field and so its normal bundle N in R4n+1 is trivial. From the short exact sequence of
C∞ bundles,

0→ TM → TR4n+1|M → N → 0,
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we obtain a direct sum

TR4n+1|M � TM⊕N.

By the Whitney product formula for Pontrjagin classes,

1= p(TR4n+1|M) = p(TM)p(N) = p(TM).

Thus, all the Pontrjagin classes of M are trivial. ��

26.5 The Hirzebruch Signature Formula

On a 4n-dimensional compact oriented manifoldM, the intersection of 2n-dimensional
cycles defines a symmetric bilinear pairing

〈 , 〉 : H2n(M;R)×H2n(M;R)→ H4n(M;R) = R,

called the intersection form. The intersection form is represented by a symmetric
matrix, which has real eigenvalues. If b+ is the number of positive eigenvalues and
b− is the number of negative eigenvalues of the symmetric matrix, then the difference
σ(M) := b+− b− is called the signature of M. Clearly, it is a topological invariant
of the 4n-dimensional manifold.

In 1953 Hirzebruch found a formula for the signature in terms of Pontrjagin
classes.

Theorem 26.4 (Hirzebruch signature formula). The signature of a compact,
smooth, oriented 4n-dimensional manifold is given by

σ(M) =
∫

M
Ln(p1, . . . , pn),

where the Ln’s are the L-polynomials defined in Appendix B.

26.6 The Riemann–Roch Problem

Many problems in complex analysis and algebraic geometry can be formulated in
terms of sections of vector bundles. A holomorphic vector bundle is a holomorphic
map π : E → M of complex manifolds that is locally a product U ×C

r such that
the transition functions are holomorphic. If E is a holomorphic vector bundle over
a complex manifold M, then the vector space of holomorphic sections of E can be
identified with the zeroth cohomology group H0(M;E) with coefficients in the sheaf
of holomorphic sections of E. When M is compact, this vector space turns out to be
finite-dimensional, but its dimension is in general not so easy to compute. Instead,
the alternating sum

χ(M;E) =
n

∑
g=0

(−1)q dimHq(M;E), n= dimCM,

is more amenable to computation.
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Let L be a complex line bundle over a compact Riemann surface M. The degree
of L is defined to be

∫
M c1(L), where c1(L) is the first Chern class of L. The classical

Riemann–Roch theorem states that for a holomorphic line bundle L over a compact
Riemann surface M of genus g,

χ(M;L) = degL−g+1.

The HIrzebruch–Riemann–Roch theorem, discovered in 1954, is a generalization to
a holomorphic vector bundle E over a compact complex manifold M of complex
dimension n

χ(M;E) =
∫

M
[ch(E) td(TM)]n, (26.1)

where the Chern character

ch(E) = ch
(
c1(E), . . . ,cr(E)

)

and the Todd polynomial

td(TM) = td
(
c1(M), . . . ,cn(M)

)

are defined as in Appendix B and [ ]n means the component of degree n.
In some cases one has vanishing theorems Hq(M;E) = 0 for higher cohomology

q ≥ 1. When this happens, dimH0(M;E) = χ(M;E), which can be computed from
the Hirzebruch–Riemann–Roch theorem.



Chapter 6

Principal Bundles and Characteristic Classes

A principal bundle is a locally trivial family of groups. It turns out that the theory of
connections on a vector bundle can be subsumed under the theory of connections on
a principal bundle. The latter, moreover, has the advantage that its connection forms
are basis-free.

In this chapter we will first give several equivalent constructions of a connection
on a principal bundle, and then generalize the notion curvature to a principal bun-
dle, paving the way to a generalization of characteristic classes to principal bundles.
Along the way, we also generalize covariant derivatives to principal bundles.

§27 Principal Bundles

We saw in Section 11 that a connection ∇ on a vector bundle E over a manifold M
can be represented by a matrix of 1-forms over a framed open set. For any frame
e = [e1 · · · er] for E over an open set U , the connection matrix ωe relative to e is
defined by

∇Xe j =∑
i
(ωe)

i
j(X)ei

for allC∞ vector fields X overU . If ē= [ē1 · · · ēr] = ea is another frame for E overU ,
where a : U →GL(r,R) is a matrix ofC∞ transition functions, then by Theorem 22.1
the connection matrix ωe transforms according to the rule

ωē = a−1ωea+a−1 da.

Associated to a vector bundle is an object called its frame bundle π : Fr(E)→M;
the total space Fr(E) of the frame bundle is the set of all ordered bases in the fibers of
the vector bundle E →M, with a suitable topology and manifold structure. A section
of the frame bundle π : Fr(E)→M over an open setU ⊂M is a map s : U → Fr(E)
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such that π ◦ s = 1U , the identity map on U . From this point of view a frame
e= [e1 · · · er] overU is simply a section of the frame bundle Fr(E) overU .

Suppose ∇ is a connection on the vector bundle E → M. Miraculously, there
exists a matrix-valued 1-form ω on the frame bundle Fr(E) such that for every frame
e over an open setU ⊂M, the connection matrix ωe of ∇ is the pullback of ω by the
section e : U → Fr(E) (Theorem 29.10). This matrix-valued 1-form, called anEhres-
mann connection on the frame bundle Fr(E), is determined uniquely by the connec-
tion on the vector bundle E and vice versa. It is an intrinsic object of which a con-
nection matrix ωe is but a local manifestation. The frame bundle of a vector bundle
is an example of a principal G-bundle for the group G = GL(r,R). The Ehresmann
connection on the frame bundle generalizes to a connection on an arbitrary principal
bundle.

Charles Ehresmann

(1905–1979)

This section collects together some general facts
about principal bundles.

27.1 Principal Bundles

Let E, M, and F be manifolds. We will denote an open
cover U of M either as {Uα} or more simply as an unin-
dexed set {U} whose general element is denoted by U .
A local trivializationwith fiber F for a smooth surjection
π : E →M is an open cover U= {U} forM together with
a collection {φU : π−1(U) → U × F | U ∈ U} of fiber-
preserving diffeomorphisms φU : π−1(U)→U×F:

π−1(U)
φU

π

U ×F

η

U.

where η is projection to the first factor. A fiber bundle with fiber F is a smooth
surjection π : E → M having a local trivialization with fiber F . We also say that it
is locally trivial with fiber F . The manifold E is the total space and the manifold M
the base space of the fiber bundle.

The fiber of a fiber bundle π : E →M over x∈M is the set Ex := π−1(x). Because
π is a submersion, by the regular level set theorem ([21], Th. 9.13, p. 96) each fiber
Ex is a regular submanifold of E. For x ∈U , define φU,x := φU |Ex : Ex → {x}×F to
be the restriction of the trivialization φU : π−1(U)→U×F to the fiber Ex.

Proposition 27.1. Let π : E → M be a fiber bundle with fiber F. If φU : π−1(U) →
U×F is a trivialization, then φU,x : Ex → {x}×F is a diffeomorphism.
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Proof. The map φU,x is smooth because it is the restriction of the smooth map φU to
a regular submanifold. It is bijective because φU is bijective and fiber-preserving. Its
inverse φ−1

U,x is the restriction of the smooth map φ−1
U : U ×F → π−1(U) to the fiber

{x}×F and is therefore also smooth. ��
A smooth right action of a Lie group G on a manifold M is a smooth map

μ : M×G→M,

denoted by x ·g := μ(x,g), such that for all x ∈M and g,h ∈ G,

(i) x · e= x, where e is the identity element of G,
(ii) (x ·g) ·h= x · (gh).
We often omit the dot and write more simply xg for x ·g. If there is such a map μ , we
also say that G acts smoothly on M on the right. A left action is defined similarly.
The stabilizer of a point x ∈M under an action of G is the subgroup

Stab(x) := {g ∈ G | x ·g= x}.
The orbit of x ∈M is the set

Orbit(x) := xG := {x ·g ∈M | g ∈ G}.
Denote by Stab(x)\G the set of right cosets of Stab(x) in G. By the orbit-stabilizer
theorem, for each x ∈M the map:G→Orbit(x), g �→ x ·g induces a bijection of sets:

Stab(x)\G←→ Orbit(x),

Stab(x)g←→ x ·g.
The action of G on M is free if the stabilizer of every point x ∈ M is the trivial
subgroup {e}.

A manifoldM together with a right action of a Lie group G onM is called a right
G-manifold or simply a G-manifold. A map f : N →M between right G-manifolds
is right G-equivariant if

f (x ·g) = f (x) ·g
for all (x,g) ∈ N×G. Similarly, a map f : N → M between left G-manifolds is left
G-equivariant if

f (g · x) = g · f (x)
for all (g,x) ∈ G×N.

A left action can be turned into a right action and vice versa; for example, if G
acts on M on the left, then

x ·g= g−1 · x
is a right action of G on M. Thus, if N is a right G-manifold and M is a left
G-manifold, we say a map f : N →M is G-equivariant if

f (x ·g) = f (x) ·g= g−1 · f (x) (27.1)

for all (x,g) ∈ N×G.
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A smooth fiber bundle π : P → M with fiber G is a smooth principal G-bundle
if G acts smoothly and freely on P on the right and the fiber-preserving local
trivializations

φU : π−1(U)→U×G

are G-equivariant, where G acts onU×G on the right by

(x,h) ·g= (x,hg).

Example 27.2 (Product G-bundles). The simplest example of a principal G-bundle
over a manifold M is the product G-bundle η : M×G → M. A trivialization is the
identity map onM×G.

Example 27.3 (Homogenous manifolds). If G is a Lie group and H is a closed sub-
group, then the quotient G/H can be given the structure of a manifold such that the
projection map π : G→G/H is a principalH-bundle. This is proven in [22, Th. 3.58,
p. 120].

Example 27.4 (Hopf bundle). The group S1 of unit complex numbers acts on the
complex vector space Cn+1 by left multiplication. This action induces an action of
S1 on the unit sphere S2n+1 in C

n+1. The complex projective space CPn may be
defined as the orbit space of S2n+1 by S1. The natural projection S2n+1 → CPn with
fiber S1 turn out to be a principal S1-bundle. When n= 1, S3 → CP1 with fiber S1 is
called the Hopf bundle.

Definition 27.5. Let πQ : Q → N and πP : P → M be principal G-bundles. A
morphism of principal G-bundles is a pair of maps ( f̄ : Q → P, f : N → M) such
that f̄ : Q→ P is G-equivariant and the diagram

Q
f̄

πQ

P

πP

N
f

M

commutes.

Proposition 27.6. If π : P→M is a principal G-bundle, then the group G acts tran-
sitively on each fiber.

Proof. Since G acts transitively on {x}×G and the fiber diffeomorphism φU,x : Px →
{x}×G is G-equivariant, G must also act transitively on the fiber Px. ��
Lemma 27.7. For any group G, a right G-equivariant map f : G→ G is necessarily
a left translation.

Proof. Suppose that for all x,g ∈ G,

f (xg) = f (x)g.
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Setting x= e, the identity element of G, we obtain

f (g) = f (e)g= � f (e)(g),

where � f (e) : G→ G is left translation by f (e). ��
Suppose {Uα}α∈A is a local trivialization for a principal G-bundle π : P → M.

Whenever the intersectionUαβ :=Uα ∩Uβ is nonempty, there are two trivializations
on π−1(Uαβ ):

Uαβ ×G
φα←− π−1(Uαβ )

φβ−→Uαβ ×G.

Then φα ◦ φ−1
β : Uαβ ×G→Uαβ ×G is a fiber-preserving right G-equivariant map.

By Lemma 27.7, it is a left translation on each fiber. Thus,

(φα ◦ φ−1
β )(x,h) = (x,gαβ (x)h), (27.2)

where (x,h) ∈ Uαβ ×G and gαβ (x) ∈ G. Because φα ◦ φ−1
β is a C∞ function of x

and h, setting h = e, we see that gαβ (x) is a C
∞ function of x. The C∞ functions

gαβ : Uαβ → G are called transition functions of the principal bundle π : P → M
relative to the trivializing open cover {Uα}α∈A. They satisfy the cocycle condition:
for all α,β ,γ ∈ A,

gαβgβγ = gαγ ifUα ∩Uβ ∩Uγ �=∅.

From the cocycle condition, one can deduce other properties of the transition
functions.

Proposition 27.8. The transition functions gαβ of a principal bundle π : P→M rel-
ative to a trivializing open cover {Uα}α∈A satisfy the following properties: for all
α,β ∈ A,

(i) gαα = the constant map e,
(ii) gαβ = g−1

βα if Uα ∩Uβ �=∅.

Proof. (i) If α = β = γ , the cocycle condition gives

gααgαα = gαα .

Hence, gαα = the constant map e.
(ii) if γ = α , the cocycle condition gives

gαβgβα = gαα = e

or

gαβ = g−1
βα forUα ∩Uβ �=∅. ��

In a principalG-bundle P→M, the groupG acts on the right on the total space P,
but the transition functions gαβ in (27.2) are given by left translations by gαβ (x)∈G.
This phenomenon is a consequence of Lemma 27.7.
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27.2 The Frame Bundle of a Vector Bundle

For any real vector space V , let Fr(V ) be the set of all ordered bases in V . Suppose
V has dimension r. We will represent an ordered basis v1, . . . ,vr by a row vector
v = [v1 · · · vr], so that the general linear group GL(r,R) acts on Fr(V ) on the right
by matrix multiplication

v ·a= [v1 · · · vr][aij]
=
[

∑via
i
1 · · · ∑via

i
r

]
.

Fix a point v ∈ Fr(V ). Since the action of GL(r,R) on Fr(V ) is clearly transitive and
free, i.e., Orbit(v) = Fr(V ) and Stab(v) = {I}, by the orbit-stabilizer theorem there
is a bijection

φv : GL(r,R) =
GL(r,R)
Stab(v)

←→ Orbit(v) = Fr(V ),

g←→ vg.

Using the bijection φv, we put a manifold structure on Fr(V ) in such a way that φv
becomes a diffeomorphism.

If v′ is another element of Fr(V ), then v′ = va for some a ∈ GL(r,R) and

φva(g) = vag= φv(ag) = (φv ◦ �a)(g).

Since left multiplication �a : GL(r,R)→GL(r,R) is a diffeomorphism, the manifold
structure on Fr(V ) defined by φv is the same as the one defined by φva. We call Fr(V )
with this manifold structure the frame manifold of the vector space V .

Remark 27.9. A linear isomorphism φ : V →W induces a C∞ diffeomorphism φ̃ :
Fr(V )→ Fr(W ) by

φ̃ [v1 · · · vr] = [φ(v1) · · · φ(vr)].
Define an action of GL(r,R) on Fr(Rr) by

g · [v1 · · · vr] = [gv1 · · · gvr].
Thus, if φ : Rr → R

r is given by left multiplication by g ∈ GL(r,R), then so is the
induced map φ̃ on the frame manifold Fr(Rr).

Example 27.10 (The frame bundle). Let η : E →M be a C∞ vector bundle of rank r.
We associate to the vector bundle E a C∞ principal GL(r,R)-bundle π : Fr(E)→M
as follows. As a set the total space Fr(E) is defined to be the disjoint union

Fr(E) =
∐

x∈M
Fr(Ex).

There is a natural projection map π : Fr(E)→M that maps Fr(Ex) to {x}.
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A local trivialization φα : E|Uα ∼→Uα ×R
r induces a bijection

φ̃α : Fr(E)|Uα ∼→Uα ×Fr(Rr),

[v1 · · · vr] ∈ Fr(Ex) �→ (x, [φα ,x(v1) · · · φα ,x(vr)]).

Via φ̃α one transfers the topology and manifold structure from Uα × Fr(Rr) to
Fr(E)|Uα . This gives Fr(E) a topology and a manifold structure such that
π : Fr(E)→M is locally trivial with fiber Fr(Rr). As the frame manifold Fr(Rr)
is diffeomorphic to the general linear group GL(r,R), it is easy to check that
Fr(E) → M is a C∞ principal GL(r,R)-bundle. We call it the frame bundle of the
vector bundle E.

On a nonempty overlap Uαβ :=Uα ∩Uβ , the transition function for the vector
bundle E is theC∞ function gαβ : Uαβ → GL(r,R) given by

φα ◦ φ−1
β : Uαβ ×R

r →Uαβ ×R
r,

(φα ◦ φ−1
β )(x,w) =

(
x,gαβ (x)w

)
.

Since the local trivialization for the frame bundle Fr(E) is induced from the trivializa-
tion {Uα ,φα} for E, the transition functions for Fr(E) are induced from the transition
functions {gαβ} for E. By Remark 27.9 the transition functions for the open cover
{Fr(E)|Uα} of Fr(E) are the same as the transition functions gαβ : Uαβ → GL(r,R)
for the vector bundle E, but now of course GL(r,R) acts on Fr(Rr) instead of on Rr.

27.3 Fundamental Vector Fields of a Right Action

Suppose G is a Lie group with Lie algebra g and G acts smoothly on a manifold P
on the right. To every element A ∈ g one can associate a vector field A on P called
the fundamental vector field on P associated to A: for p in P, define

Ap =
d
dt

∣
∣
∣
∣
t=0

p · etA ∈ TpP.

To understand this equation, first fix a point p∈ P. Then cp : t �→ p ·etA is a curve
in Pwith initial point p. By definition, the vector Ap is the initial vector of this curve.
Thus,

Ap = c′p(0) = cp∗
(

d
dt

∣
∣
∣
∣
t=0

)

∈ TpP.

As a tangent vector at p is a derivation on germs of C∞ functions at p, in terms of a
C∞ function f at p,

Ap f = cp∗
(

d
dt

∣
∣
∣
∣
t=0

)

f =
d
dt

∣
∣
∣
∣
t=0

f ◦ cp =
d
dt

∣
∣
∣
∣
t=0

f (p · etA).

Proposition 27.11. For each A ∈ g, the fundamental vector field A is C∞ on P.
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Proof. It suffices to show that for every C∞ function f on P, the function A f is also
C∞ on P. Let μ : P×G→ P be the C∞ map defining the right action of G on P. For
any p in P,

Ap f =
d
dt

∣
∣
∣
∣
t=0

f (p · etA) = d
dt

∣
∣
∣
∣
t=0

( f ◦ μ)(p,etA).

Since etA is aC∞ function of t, and f and μ are both C∞, the derivative

d
dt
( f ◦ μ)(p,etA)

isC∞ in p and in t. Therefore, Ap f is a C
∞ function of p. ��

Recall that X(P) denotes the Lie algebra of C∞ vector fields on the manifold P.
The fundamental vector field construction gives rise to a map

σ : g→ X(P), σ(A) := A.

For p in P, define jp : G→ P by jp(g) = p ·g. Computing the differential jp∗ using
the curve c(t) = etA, we obtain the expression

jp∗(A) =
d
dt

∣
∣
∣
∣
t=0

jp(e
tA) =

d
dt

∣
∣
∣
∣
t=0

p · etA = Ap. (27.3)

This alternate description of fundamental vector fields, Ap = jp∗(A), shows that the
map σ : g → X(P) is linear over R. In fact, σ is a Lie algebra homomorphism
(Problem 27.1).

Example 27.12. Consider the action of a Lie groupG on itself by right multiplication.
For p ∈ G, the map jp : G → G, jp(g) = p · g = �p(g) is simply left multiplication
by p. By (27.3), for A ∈ g, Ap = �p∗(A). Thus, for the action of G on G by right
multiplication, the fundamental vector field A on G is precisely the left-invariant
vector field generated by A. In this sense the fundamental vector field of a right
action is a generalization of a left-invariant vector field on a Lie group.

For g in a Lie group G, let cg : G → G be conjugation by g: cg(x) = gxg−1.
The adjoint representation is defined to be the differential of the conjugation map:
Ad(g) = (cg)∗ : g→ g.

Proposition 27.13. Suppose a Lie group G acts smoothly on a manifold P on the
right. Let rg : P→ P be the right translation rg(p) = p ·g. For A∈ g the fundamental
vector field A on P satisfies the following equivariance property:

rg∗A= (Adg−1)A.

Proof. We need to show that for every p in P, rg∗(Ap) = (Adg−1)A
pg
. For x in G,

(rg ◦ jp)(x) = pxg= pgg−1xg= jpg(g
−1xg) = ( jpg ◦ cg−1)(x).

By the chain rule,

rg∗(Ap) = rg∗ jp∗(A) = jpg∗(cg−1)∗(A) = jpg∗
(
(Adg−1)A

)
= (Adg−1)A

pg
. ��
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27.4 Integral Curves of a Fundamental Vector Field

In this section suppose a Lie group G with Lie algebra g := Lie(G) acts smoothly on
the right on a manifold P.

Proposition 27.14. For p ∈ P and A ∈ g, the curve cp(t) = p · etA, t ∈ R, is the
integral curve of the fundamental vector field A through p.

Proof. We need to show that c′p(t) = Acp(t) for all t ∈R and all p∈ P. It is essentially
a sequence of definitions:

c′p(t) =
d
ds

∣
∣
∣
∣
s=0

cp(t+ s) =
d
ds

∣
∣
∣
∣
s=0

petAesA = ApetA = Acp(t). ��

Proposition 27.15. The fundamental vector field A on a manifold P vanishes at a
point p in P if and only if A is in the Lie algebra of Stab(p).

Proof. (⇐) If A ∈ Lie
(
Stab(p)

)
, then etA ∈ Stab(p), so

Ap =
d
dt

∣
∣
∣
∣
t=0

p · etA =
d
dt

∣
∣
∣
∣
t=0

p= 0.

(⇒) Suppose Ap = 0. Then the constant map γ(t) = p is an integral curve of A
through p, since

γ ′(t) = 0= Ap = Aγ(t).

On the other hand, by Proposition 27.14, cp(t) = p ·etA is also an integral curve of A
through p. By the uniqueness of the integral curve through a point, cp(t) = γ(t)
or p · etA = p for all t ∈ R. This implies that etA ∈ Stab(p) and therefore A ∈
Lie
(
Stab(p)

)
. ��

Corollary 27.16. For a right action of a Lie group G on a manifold P, let p ∈ P and
jp : G→ P be the map jp(g) = p ·g. Then the kernel ker jp∗ of the differential of jp
at the identity

jp∗ = ( jp)∗,e : g→ TpP

is Lie
(
Stab(p)

)
.

Proof. For A ∈ g, we have Ap = jp∗(A) by (27.3). Thus,

A ∈ ker jp∗ ⇐⇒ jp∗(A) = 0

⇐⇒ Ap = 0

⇐⇒ A ∈ Lie
(
Stab(p)

)
(by Proposition 27.15). ��
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27.5 Vertical Subbundle of the Tangent Bundle TP

Throughout this section, G is a Lie group with Lie algebra g and π : P → M is a
principal G-bundle. On the total space P there is a natural notion of vertical tangent
vectors. We will show that the vertical tangent vectors on P form a trivial subbundle
of the tangent bundle TP.

By the local triviality of a principal bundle, at every point p ∈ P the differential
π∗,p : TpP→ Tπ(p)M of the projection π is surjective. The vertical tangent subspace
Vp ⊂ TpP is defined to be kerπ∗,p. Hence, there is a short exact sequence of vector
spaces

0→ Vp −→ TpP
π∗,p−−→ Tπ(p)M → 0, (27.4)

and
dimVp = dimTpP−dimTπ(p)M = dimG.

An element of Vp is called a vertical tangent vector at p.

Proposition 27.17. For any A ∈ g, the fundamental vector field A is vertical at every
point p ∈ P.

Proof. With jp : G→ P defined as usual by jp(g) = p ·g,

(π ◦ jp)(g) = π(p ·g) = π(p).

Since Ap = jp∗(A) by (27.3), and π ◦ jp is a constant map,

π∗,p(Ap) = (π∗,p ◦ jp∗)(A) = (π ◦ jp)∗(A) = 0. ��

Thus, in case P is a principal G-bundle, we can refine Corollary 27.16 to show
that jp∗ maps g into the vertical tangent space:

( jp)∗,e : g→ Vp ⊂ TpP.

In fact, this is an isomorphism.

Proposition 27.18. For p ∈ P, the differential at e of the map jp : G → P is an iso-

morphism of g onto the vertical tangent space: jp∗ = ( jp)∗,e : g ∼→ Vp.

Proof. By Corollary 27.16, ker jp∗ = Lie
(
Stab(p)

)
. Since G acts freely on P, the

stabilizer of any point p ∈ P is the trivial subgroup {e}. Thus, ker jp∗ = 0 and jp∗ is
injective. By Proposition 27.17, the image jp∗ lies in the vertical tangent space Vp.
Since g and Vp have the same dimension, the injective linear map jp∗ : g → Vp has
to be an isomorphism. ��

Corollary 27.19. The vertical tangent vectors at a point of a principal bundle are
precisely the fundamental vectors.
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Let B1, . . . ,B� be a basis for the Lie algebra g. By the proposition, the funda-
mental vector fields B1, . . . ,B� on P form a basis of Vp at every point p ∈ P. Hence,
they span a trivial subbundle V :=

∐
p∈PVp of the tangent bundle TP. We call V the

vertical subbundle of TP.
As we learned in Section 20.5, the differential π∗ : TP → TM of a C∞ map

π : P→M induces a bundle map π̃∗ : TP→ π∗TM over P, given by

TP π̃∗ π∗TM

P

TpP Xp (p,π∗,pXp).

The map π̃∗ is surjective because it sends the fiber TpP onto the fiber (π∗TM)p �
Tπ(p)M. Its kernel is precisely the vertical subbundle V by (27.4). Hence, V fits into
a short exact sequence of vector bundles over P:

0→ V−→ TP
π̃∗−→ π∗TM → 0. (27.5)

27.6 Horizontal Distributions on a Principal Bundle

On the total space P of a smooth principal bundle π : P→M, there is a well-defined
vertical subbundle V of the tangent bundle TP. We call a subbundle H of TP a
horizontal distribution on P if TP=V⊕H as vector bundles; in other words, TpP=
Vp+Hp and Vp∩Hp = 0 for every p∈ P. In general, there is no canonically defined
horizontal distribution on a principal bundle.

A splitting of a short exact sequence of vector bundles 0→ A
i→ B

j→C→ 0 over
a manifold P is a bundle map k : C→ B such that j ◦ k= 1C, the identity bundle map
on C.

Proposition 27.20. Let

0→ A
i→ B

j→C → 0 (27.6)

be a short exact sequence of vector bundles over a manifold P. Then there is a
one-to-one correspondence

{subbundles H ⊂ B | B= i(A)⊕H}←→ {splittings k : C → B of (27.6)}.
Proof. If H is a subbundle of B such that B = i(A)⊕H, then there are bundle iso-
morphisms H � B/i(A)�C. Hence,C maps isomorphically onto H in B. This gives
a splitting k : C → B.

If k : C→ B is a splitting, let H := k(C), which is a subbundle of B. Moreover, if
i(a) = k(c) for some a ∈ A and c ∈C, then

0= ji(a) = jk(c) = c.

Hence, i(A)∩ k(C) = 0.
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Finally, to show that B= i(A)+ k(C), let b ∈ B. Then

j
(
b− k j(b)

)
= j(b)− j(b) = 0.

By the exactness of (27.6), b− k j(b) = i(a) for some a ∈ A. Thus,

b= i(a)+ k j(b) ∈ i(A)+ k(C).

This proves that B= i(A)+ k(C) and therefore B= i(A)⊕ k(C). ��
As we just saw in the preceding section, for every principal bundle π : P → M

the vertical subbundle V fits into a short exact sequence (27.5) of vector bundles over
P. By Proposition 27.20, there is a one-to-one correspondence between horizontal
distributions on P and splittings of the sequence (27.5).

Problems

27.1. Lie bracket of fundamental vector fields
Let G be a Lie group with Lie algebra g and let P be a manifold on which G acts on the right.
Prove that for A,B ∈ g,

[A,B] = [A,B].

Hence, the map σ : g→ X(P), A �→ A is a Lie algebra homomorphism.

27.2.∗ Short exact sequence of vector spaces

Prove that if 0 → A
i→ B

j→ C → 0 is a short exact sequence of finite-dimensional vector
spaces, then dimB= dimA+dimC.

27.3. Splitting of a short exact sequence

Suppose 0→ A
i→ B→C → 0 is a short exact sequence of vector bundles over a manifold P.

A retraction of i : A→ B is a map r : B
j→ A such that r ◦ i= 1A. Show that i has a retraction

if and only if the sequence has a splitting.

27.4.∗ The differential of an action
Let μ : P×G → P be an action of a Lie group G on a manifold P. For g ∈ G, the tangent
space TgG may be identified with �g∗g, where �g : G → G is left multiplication by g ∈ G and
g = TeG is the Lie algebra of G. Hence, an element of the tangent space T(p,g)(P×G) is of
the form (Xp, �g∗A) for Xp ∈ TpP and A ∈ g. Prove that the differential

μ∗ = μ∗,(p,g) : T(p,g)(P×G)→ TpgP

is given by
μ∗(Xp, �g∗A) = rg∗(Xp)+Apg.

27.5. Fundamental vector field under a trivialization
Let φα : π−1Uα →Uα ×G

φα (p) =
(
π(p),gα (p)

)

be a trivialization of π−1Uga in a principal bundle P. Let A ∈ g, the Lie algebra of G and A
the fundamental vector field on P that it induces. Prove that

gα∗(Ap) = �gα (p)∗(A) ∈ Tgα (p)(G).
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27.6. Trivial principal bundle
Prove that a principal bundle π : P→M is trivial if and only if it has a section.

27.7. Pullback of a principal bundle to itself
Prove that if π : P→M is a principal bundle, then the pullback bundle π∗P→ P is trivial.

27.8. Quotient space of a principal bundle
Let G be a Lie group and H a closed subgroup. Prove that if πP→M is a principal G-bundle,
then P→ P/H is a principal H-subbundle.

27.9. Fundamental vector fields
Let N and M be G-manifolds with G acting on the right. If A ∈ g and f : N → M is
G-equivariant, then

f∗(AN,q) = AM, f (q).
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§28 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra g. As we saw in the preceding section, on
a principal G-bundle P →M, the notion of a vertical tangent vector is well defined,
but not that of a horizontal tangent vector. A connection on a principal bundle is
essentially the choice of a horizontal complement to the vertical tangent bundle on P.
Alternatively, it can be given by a g-valued 1-form on P. In this section we will study
these two equivalent manifestations of a connection:

(i) a smooth right-invariant horizontal distribution on P,
(ii) a smooth G-equivariant g-valued 1-form ω on P such that on the fundamental

vector fields,
ω(A) = A for all A ∈ g. (28.1)

Under the identification of g with a vertical tangent space, condition (28.1) says that
ω restricts to the identity map on vertical vectors.

The correspondence between (i) and (ii) is easy to describe. Given a right-
invariant horizontal distribution H on P, we define a g-valued 1-form ω on P to
be, at each point p, the projection with kernel Hp from the tangent space to the
vertical space. Conversely, given a right-equivariant g-valued 1-form ω that is the
identity on the vertical space at each point p ∈ P, we define a horizontal distribution
H on P to be kerωp at each p ∈ P.

28.1 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra g, and let π : P→M be a principal G-bundle.
A distribution on a manifold is a subbundle of the tangent bundle. Recall that a
distribution H on P is horizontal if it is complementary to the vertical subbundle V
of the tangent bundle TP: for all p in P,

TpP= Vp⊕Hp.

Suppose H is a horizontal distribution on the total space P of a principal
G-bundle π : P→M. For p ∈ P, if jp : G→ P is the map jp(g) = p ·g, then the ver-
tical tangent space Vp can be canonically identified with the Lie algebra g via the
isomorphism jp∗ : g → Vp (Proposition 27.18). Let v : TpP = Vp ⊕Hp → Vp be
the projection to the vertical tangent space with kernel Hp. For Yp ∈ TpP, v(Yp) is
called the vertical component of Yp. (Although the vertical subspace Vp is intrinsi-
cally defined, the notion of the vertical component of a tangent vector depends on
the choice of a horizontal complement Hp.) If ωp is the composite

ωp := j−1
p∗ ◦ v : TpP

v→ Vp
j−1
p∗→ g, (28.2)

then ω is a g-valued 1-form on P. In terms of ω , the vertical component of
Yp ∈ TpP is

v(Yp) = jp∗
(
ωp(Yp)

)
. (28.3)
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Theorem 28.1. If H is a smooth right-invariant horizontal distribution on the total
space P of a principal G-bundle π : P→M, then the g-valued 1-form ω on P defined
above satisfies the following three properties:

(i) for any A ∈ g and p ∈ P, we have ωp(Ap) = A;

(ii) (G-equivariance) for any g ∈ G, r∗gω = (Adg−1)ω;
(iii) ω is C∞.

Proof. (i) Since Ap is already vertical (Proposition 27.17), the projection v leaves it
invariant, so

ωp(Ap) = j−1
p∗
(
v(Ap)

)
= j−1

p∗ (Ap) = A.

(ii) For p ∈ P and Yp ∈ TpP, we need to show

ωpg(rg∗Yp) = (Adg−1)ωp(Yp).

Since both sides are R-linear in Yp and Yp is the sum of a vertical and a horizontal
vector, we may treat these two cases separately.

If Yp is vertical, then by Proposition 27.18, Yp = Ap for some A ∈ g. In this case

ωpg(rg∗Ap) = ωpg

(
(Adg−1)A

pg

)
(by Proposition 27.13)

= (Adg−1)A (by (i))

= (Adg−1)ωp(Ap) (by (i) again).

If Yp is horizontal, then by the right-invariance of the horizontal distribution H,
so is rg∗Yp. Hence,

ωpg(rg∗Yp) = 0= (Adg−1)ωp(Yp).

(iii) Fix a point p ∈ P. We will show that ω is C∞ in a neighborhood of p. Let
B1, . . . ,B� be a basis for the Lie algebra g and B1, . . . ,B� the associated fundamental
vector fields on P. By Proposition 27.11, these vector fields are allC∞ on P. SinceH
is aC∞ distribution on P, one can find a neighborhoodW of p andC∞ horizontal vec-
tor fields X1, . . . ,Xn onW that spanH at every point ofW . Then B1, . . . ,B�,X1, . . . ,Xn
is a C∞ frame for the tangent bundle TP overW . Thus, any C∞ vector field X onW
can be written as a linear combination

X =∑aiBi+∑b jXj

with C∞ coefficients ai,b j onW . By the definition of ω ,

ω(X) = ω
(
∑aiBi

)
=∑aiBi.

This proves that ω is aC∞ 1-form onW . ��
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Note that in this theorem the proof of the smoothness of ω requires only that the
horizontal distribution H be smooth; it does not use the right-invariance of H.

Definition 28.2. An Ehresmann connection or simply a connection on a principal
G-bundle P → M is a g-valued 1-form ω on P satisfying the three properties of
Theorem 28.1.

A g-valued 1-form α on P can be viewed as a map α : TP→ g from the tangent
bundle TP to the Lie algebra g. Now both TP and g are G-manifolds: the Lie group
G acts on TP on the right by the differentials of right translations and it acts on g on
the left by the adjoint representation. By (27.1), α : TP→ g is G-equivariant if and
only if for all p ∈ P, Xp ∈ TpP, and g ∈ G,

α(Xp ·g) = g−1 ·α(Xp),

or
α(rg∗Xp) = (Adg−1)α(Xp).

Thus, α : TP → g is G-equivariant if and only if r∗gα = (Adg−1)α for all g ∈ G.
Condition (ii) of a connection ω on a principal bundle says precisely that ω is G-
equivariant as a map from TP to g.

28.2 Vertical and Horizontal Components of a Tangent Vector

As we noted in Section 27.5, on any principal G-bundle π : P → M, the vertical
subspace Vp of the tangent space TpP is intrinsically defined:

Vp := kerπ∗ : TpP→ Tπ(p)M.

By Proposition 27.18, the map jp∗ naturally identifies the Lie algebra g of G with the
vertical subspace Vp.

In the presence of a horizontal distribution on the total space P of a principal
bundle, every tangent vectorYp ∈ TpP decomposes uniquely into the sum of a vertical
vector and a horizontal vector:

Yp = v(Yp)+h(Yp) ∈ Vp⊕Hp.

These are called, respectively, the vertical component and horizontal component of
the vector Yp. As p varies over P, this decomposition extends to a decomposition of
a vector field Y on P:

Y = v(Y )+h(Y ).

We often omit the parentheses in v(Y ) and h(Y ), and write vY and hY instead.

Proposition 28.3. IfH is a C∞ horizontal distribution on the total space P of a prin-
cipal bundle, then the vertical and horizontal components v(Y ) and h(Y ) of a C∞

vector field Y on P are also C∞.
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Proof. Let ω be the g-valued 1-form associated to the horizontal distribution H

by (28.2). It is C∞ by Theorem 28.1(iii). In terms of a basis B1, . . . ,B� for g, we
can write ω =∑ω iBi, where ω i areC∞ 1-forms on P. If Yp ∈ TpP, then by (28.3) its
vertical component v(Yp) is

v(Yp) = jp∗(ωp(Yp)) = jp∗
(
∑ω i

p(Yp)Bi
)
=∑ω i

p(Yp)(Bi)p.

As p varies over P,
v(Y ) =∑ω i(Y )Bi.

Since ω i, Y , and Bi are all C∞, so is v(Y ). Because h(Y ) = Y − v(Y ), the horizontal
component h(Y ) of aC∞ vector field Y on P is alsoC∞. ��

On a principal bundle π : P→M, if rg : P→ P is right translation by g ∈G, then
π ◦ rg = π . It follows that π∗ ◦ rg∗ = π∗. Thus, the right translation rg∗ : TpP→ TpgP
sends a vertical vector to a vertical vector. By hypothesis, rg∗Hp =Hpg and hence
the right translation rg∗ also sends a horizontal vector to a horizontal vector.

Proposition 28.4. Suppose H is a smooth right-invariant horizontal distribution on
the total space of a principal G-bundle π : P→M. For each g ∈ G, the right trans-
lation rg∗ commutes with the projections v and h.

Proof. Any Xp ∈ TpP decomposes into vertical and horizontal components:

Xp = v(Xp)+h(Xp).

Applying rg∗ to both sides, we get

rg∗Xp = rg∗v(Xp)+ rg∗h(Xp). (28.4)

Since rg∗ preserves vertical and horizontal subspaces, rg∗v(Xp) is vertical and rg∗h(Xp)
is horizontal. Thus, (28.4) is the decomposition of rg∗Xp into vertical and horizontal
components. This means for every Xp ∈ TpP,

vrg∗(Xp) = rg∗v(Xp) and hrg∗(Xp) = rg∗h(Xp). ��

28.3 The Horizontal Distribution of an Ehresmann Connection

In Section 28.1 we showed that a smooth, right-invariant horizontal distribution on
the total space of a principal bundle determines an Ehresmann connection. We now
prove the converse.

Theorem 28.5. If ω is a connection on the principal G-bundle π : P → M, then
Hp := kerωp, p ∈ P, is a smooth right-invariant horizontal distribution on P.

Proof. We need to verify three properties:

(i) At each point p in P, the tangent space TpP decomposes into a direct sum
TpP= Vp⊕Hp.
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(ii) For p ∈ P and g ∈ G, rg∗(Hp)⊂Hpg.
(iii) H is aC∞ subbundle of the tangent bundle TP.

(i) Since Hp = kerωp, there is an exact sequence

0→Hp → TpP
ωp→ g→ 0.

The map jp∗ : g → Vp ⊂ TpP provides a splitting of the sequence. By Proposi-
tion 27.20, there is a sequence of isomorphisms

TpP� g⊕Hp � Vp⊕Hp.

(ii) Suppose Yp ∈Hp = kerωp. By the right-equivariance property of an Ehresmann
connection,

ωpg(rg∗Yp) = (r∗gω)p(Yp) = (Adg−1)ωp(Yp) = 0.

Hence, rg∗Yp ∈Hpg.

(iii) Let B1, . . . ,B� be a basis for the Lie algebra g of G. Then ω = ∑ω iBi, where
ω1, . . . ,ω� are smooth R-valued 1-forms on P and for p ∈ P,

Hp =
�⋂

i=1

kerω i
p.

Since ωp : TpP→ g is surjective, ω1, . . . ,ω� are linearly independent at p.
Fix a point p ∈ P and let x1, . . . ,xm be local coordinates near p on P. Then

ω i =
m

∑
j=1

f ij dx
j, i= 1, . . . , �

for some C∞ functions f ij in a neighborhood of p.

Let b1, . . . ,bm be the fiber coordinates of TP near p, i.e., if vq ∈ TqP for q near p,
then

vq =∑b j ∂
∂x j

∣
∣
∣
∣
q
.

In terms of local coordinates,

Hq =
�⋂

i=1

kerω i
q = {vq ∈ TqP | ω i

q(vq) = 0, i= 1, . . . , �}

= {(b1, . . . ,bm) ∈ R
m |

m

∑
j=1

f ij(q)b
j = 0, i= 1, . . . , �}.

Let Fi(q,b) = ∑m
j=1 f

i
j(q)b

j, i = 1, . . . , �. Since ω1, . . . ,ω� are linearly indepen-
dent at p, the Jacobian matrix [∂Fi/∂b j] = [ f ij], an �×m matrix, has rank � at p.
Without loss of generality, we may assume that the first �× � block of [ f ij(p)] has
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rank �. Since having maximal rank is an open condition, there is a neighborhood
Up of p on which the first �× � block of [ f ij] has rank �. By the implicit function

theorem, onUp, b1, . . . ,b� areC∞ functions of b�+1, . . . ,bm, say

b1 = b1(b�+1, . . . ,bm),

...

b� = b�(b�+1, . . . ,bm).

Let

X1 =
�

∑
j=1

b j(1,0, . . . ,0)
∂
∂x j

+
∂
∂x�+1

X2 =
�

∑
j=1

b j(0,1,0, . . . ,0)
∂
∂x j

+
∂
∂x�+2

...

Xm−� =
�

∑
j=1

b j(0,0, . . . ,1)
∂
∂x j

+
∂
∂xm

.

These areC∞ vector fields onUp that spanHq at each point q∈Up. By the subbundle
criterion (Theorem 20.4), H is aC∞ subbundle of TP. ��

28.4 Horizontal Lift of a Vector Field to a Principal Bundle

Suppose H is a horizontal distribution on a principal bundle π : P→M. Let X be a
vector field on M. For every p ∈ P, because the vertical subspace Vp is kerπ∗, the
differential π∗ : TpP→ Tπ(p)M induces an isomorphism

TpP

kerπ∗
∼→Hp

∼→ Tπ(p)M

of the horizontal subspaceHp with the tangent space Tπ(p)M. Consequently, there is
a unique horizontal vector X̃p ∈Hp such that π∗(X̃p) = Xπ(p) ∈ Tπ(p)M. The vector
field X̃ is called the horizontal lift of X to P.

Proposition 28.6. If H is a C∞ right-invariant horizontal distribution on the total
space P of a principal bundle π : P → M, then the horizontal lift X̃ of a C∞ vector
field X on M is a C∞ right-invariant vector field on P.

Proof. Let x ∈M and p ∈ π−1(x). By definition, π∗(X̃p) = Xx. If q is any other point
of π−1(x), then q= pg for some g ∈ G. Since π ◦ rg = π ,

π∗(rg∗X̃p) = (π ◦ rg)∗X̃p = π∗X̃p = Xp.

By the uniqueness of the horizontal lift, rg∗X̃p = X̃pg. This proves the right-invariance
of X̃ .
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We prove the smoothness of X̃ by proving it locally. Let {U} be a trivializing

open cover for P with trivializations φU : π−1(U) ∼→U×G. Define

Z(x,g) = (Xx,0) ∈ T(x,g)(U×G).

Let η : U ×G →U be the projection to the first factor. Then Z is a C∞ vector field
onU×G such that η∗Z(x,g) = Xx, and Y := (φU∗)−1Z is aC∞ vector field on π−1(U)

such that π∗Yp = Xπ(p). By Proposition 28.3, hY is a C∞ vector field on π−1(U).
Clearly it is horizontal. BecauseYp = v(Yp)+h(Yp) and π∗v(Yp) = 0, we have π∗Yp =
π∗h(Yp) = Xπ(p). Thus, hY lifts X over U . By the uniqueness of the horizontal lift,

hY = X̃ overU . This proves that X̃ is a smooth vector field on P. ��

28.5 Lie Bracket of a Fundamental Vector Field

If a principal bundle P comes with a connection, then it makes sense to speak of hor-
izontal vector fields on P; these are vector fields all of whose vectors are horizontal.

Lemma 28.7. Suppose P is a principal bundle with a connection. Let A be the fun-
damental vector field on P associated to A ∈ g.

(i) If Y is a horizontal vector field on P, then [A,Y ] is horizontal.
(ii) If Y is a right-invariant vector field on P, then [A,Y ] = 0.

Proof. (i) A local flow for A is φt(p) = petA = retA(p) (Proposition 27.14). By the
identification of the Lie bracket with the Lie derivative of vector fields [21, Th. 20.4,
p. 225] and the definition of the Lie derivative,

[A,Y ]p = (LAY )p = lim
t→0

(re−tA)∗YpetA −Yp
t

. (28.5)

Since right translation preserves horizontality (Theorem 28.5), both (re−tA)∗YpetA and
Yp are horizontal vectors. Denote the difference quotient in (28.5) by c(t). For every
t near 0 in R, c(t) is in the vector space Hp of horizontal vectors at p. Therefore,
[A,Y ]p = limt→0 c(t) ∈Hp.

(ii) If Y is right-invariant, then

(re−tA)∗YpetA = Yp.

In that case, it follows from (28.5) that [A,Y ]p = 0. ��

Problems

28.1. Maurer–Cartan connection
If θ is the Maurer–Cartan form on a Lie group and π2 : M×G → G is the projection to the
second factor, prove that ω := π∗

2θ is a connection on the trivial bundle π1 : M×G→M. It is
called the Maurer–Cartan connection.
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28.2. Convex linear combinations of connections
Prove that a convex linear combination ω of connections ω1, . . . ,ωn on a principal bundle
π : P→M is again a connection on P. (ω = ∑λiωi, ∑λi = 1, λi ≥ 0.)

28.3. Pullback of a connection
Let πQ : Q→ N and πP : P→M be principal G-bundles, and let ( f̄ : Q→ P, f : N →M) be a
morphism of principal bundles. Prove that if θ is a connection on P, then f̄ ∗θ is a connection
on Q.
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§29 Horizontal Distributions on a Frame Bundle

In this section we will explain the process by which a connection∇ on a vector bundle
E over a manifoldM gives rise to a smooth right-invariant horizontal distribution on
the associated frame bundle Fr(E). This involves a sequence of steps. A connection
on the vector bundle E induces a covariant derivative on sections of the vector bundle
along a curve. Parallel sections along the curve are those whose derivative vanishes.
Just as for tangent vectors in Section 14, starting with a frame ex for the fiber of
the vector bundle at the initial point x of a curve, there is a unique way to parallel
translate the frame along the curve. In terms of the frame bundle Fr(E), what this
means is that every curve in M has a unique lift to Fr(E) starting at ex representing
parallel frames along the curve. Such a lift is called a horizontal lift. The initial
vector at ex of a horizontal lift is a horizontal vector at ex. The horizontal vectors at
a point of Fr(E) form a subspace of the tangent space Tex

(
Fr(E)

)
. In this way we

obtain a horizontal distribution on the frame bundle. We show that this horizontal
distribution on Fr(E) arising from a connection on the vector bundle E is smooth and
right-invariant. It therefore corresponds to a connection ω on the principal bundle
Fr(E). We then show that ω pulls back under a section e of Fr(E) to the connection
matrix ωe of the connection ∇ relative to the frame e on an open setU .

29.1 Parallel Translation in a Vector Bundle

In Section 14 we defined parallel translation of a tangent vector along a curve in a
manifold with an affine connection. In fact, the same development carries over to an
arbitrary vector bundle η : E →M with a connection ∇.

Let c : [a,b] → M be a smooth curve in M. Instead of vector fields along the
curve c, we consider smooth sections of the pullback bundle c∗E over [a,b]. These
are called smooth sections of the vector bundle E along the curve c. We denote by
Γ(c∗E) the vector space of smooth sections of E along the curve c. If E = TM is the
tangent bundle of a manifoldM, then an element of Γ(c∗TM) is simply a vector field
along the curve c inM. Just as in Theorem 13.1, there is a unique R-linear map

D
dt

: Γ(c∗E)→ Γ(c∗E),

called the covariant derivative corresponding to ∇, such that

(i) (Leibniz rule) for any C∞ function f on the interval [a,b],

D( f s)
dt

=
d f
dt

s+ f
Ds
dt

;

(ii) if s is induced from a global section s̃ ∈ Γ(M,E) in the sense that s(t) = s̃
(
c(t)
)
,

then
Ds
dt

(t) = ∇c′(t)s̃.
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Definition 29.1. A section s ∈ Γ(c∗E) is parallel along a curve c : [a,b] → M if
Ds/dt ≡ 0 on [a,b].

As in Section 14.5, the equation Ds/dt ≡ 0 for a section s to be parallel is
equivalent to a system of linear first-order ordinary differential equations. Suppose
c : [a,b]→M maps into a framed open set (U,e1, . . . ,er) for E. Then s ∈ Γ(c∗E) can
be written as

s(t) =∑si(t)ei,c(t).

By properties (i) and (ii) of the covariant derivative,

Ds
dt

=∑
i

dsi

dt
ei+∑

j
s j
D
dt

e j,c(t)

=∑
i

dsi

dt
ei+∑

j
s j∇c′(t)e j

=∑
i

dsi

dt
ei+∑

i, j
s jω i

j

(
c′(t)

)
ei.

Hence, Ds/dt ≡ 0 if and only if

dsi

dt
+∑

j
s jω i

j

(
c′(t)

)
= 0 for all i.

This is a system of linear first-order differential equations. By the existence and
uniqueness theorems of differential equations, it has a solution on a small interval
about a give point t0 and the solution is uniquely determined by its value at t0. Thus,
a parallel section is uniquely determined by its value at a point. If s ∈ Γ(c∗E) is a
parallel section of the pullback bundle c∗E, we say that s(b) is the parallel transport
of s(a) along c : [a,b] → M. The resulting map: Ec(a) → Ec(b) is called parallel
translation from Ec(a) to Ec(b).

Theorem 29.2. Let η : E → M be a C∞ vector bundle with a connection ∇ and let
c : [a,b] → M be a smooth curve in M. There is a unique parallel translation ϕa,b
from Ec(a) to Ec(b) along c. This parallel translation ϕa,b : Ec(a) → Ec(b) is a linear
isomorphism.

The proof is similar to that of Theorem 14.14.
A parallel frame along the curve c : [a,b]→M is a collection of parallel sections(

e1(t), . . . ,er(t)
)
, t ∈ [a,b], such that for each t, the elements e1(t), . . . ,er(t) form a

basis for the vector space Ec(t).
Let π : Fr(E)→M be the frame bundle of the vector bundle η : E →M. A curve

c̃(t) in Fr(E) is called a lift of the curve c(t) inM if c(t) = π(c̃(t)). It is a horizontal
lift if in addition c̃(t) is a parallel frame along c.

Restricting the domain of the curve c to the interval [a, t], we obtain from Theo-
rem 29.2 that parallel translation is a linear isomorphism of Ec(a) with Ec(t). Thus, if
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a collection of parallel sections
(
s1(t), . . . ,sr(t)

) ∈ Γ(c∗E) forms a basis at one time
t, then it forms a basis at every time t ∈ [a,b]. By Theorem 29.2, for every smooth
curve c : [a,b] → M and ordered basis (s1,0, . . . ,sr,0) for Ec(a), there is a unique par-
allel frame along c whose value at a is (s1,0, . . . ,sr,0). In terms of the frame bundle
Fr(E), this shows the existence and uniqueness of a horizontal lift with a specified
initial point in Fr(E) of a curve c(t) in M.

29.2 Horizontal Vectors on a Frame Bundle

On a general principal bundle vertical vectors are intrinsically defined, but horizontal
vectors are not. We will see shortly that a connection on a vector bundle E over a
manifold M determines a well-defined horizontal distribution on the frame bundle
Fr(E). The elements of the horizontal distribution are the horizontal vectors. Thus,
the notion of a horizontal vector on the frame bundle Fr(E) depends on a connection
on E.

Definition 29.3. Let E → M be a vector bundle with a connection ∇, x ∈ M, and
ex ∈ Fr(Ex). A tangent vector v∈ Tex(Fr(E)) is said to be horizontal if there is a curve
c(t) through x in M such that v is the initial vector c̃′(0) of the unique horizontal lift
of c̃(t) of c(t) to Fr(E) starting at ex.

Our goal now is to show that the horizontal vectors at a point ex of the frame
bundle form a vector subspace of the tangent space Tex

(
Fr(E)

)
. To this end we

will derive an explicit formula for c̃′(0) in terms of a local frame for E. Suppose
c : [0,b] → M is a smooth curve with initial point c(0) = x, and c̃(t) is its unique
horizontal lift to Fr(E) with initial point ex = (e1,0, . . . ,er,0). Let s be a frame for E
over a neighborhoodU of x with s(x) = ex. Then s(c(t)) is a lift of c(t) to Fr(E) with
initial point ex, but of course it is not necessarily a horizontal lift (see Figure 29.1).
For any t ∈ [0,b], we have two ordered bases s(c(t)) and c̃(t) for Ec(t), so there is a
smooth matrix a(t) ∈GL(r,R) such that s(c(t)) = c̃(t)a(t). At t = 0, s(c(0)) = ex =
c̃(0), so that a(0) = I, the identity matrix in GL(r,R).

Lemma 29.4. In the notation above, let s∗ : Tx(M) → Tex(Fr(E)) be the differential
of s and a′(0) the fundamental vector field on Fr(E) associated to a′(0) ∈ gl(r,R).
Then

s∗
(
c′(0)

)
= c̃′(0)+a′(0)

ex
.

Proof. Let P = Fr(E) and G = GL(r,R), and let μ : P×G → P be the right action
of G on P. Then

s
(
c(t)
)
= c̃(t)a(t) = μ

(
c̃(t),a(t)

)
, (29.1)

with c(0) = x, c̃(0) = ex, and a(0) = the identity matrix I. Differentiating (29.1) with
respect to t and evaluating at 0 gives

s∗
(
c′(0)

)
= μ∗,(c̃(0),a(0))

(
c̃′(0),a′(0)

)
.
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M

Fr(E)

x

ex

π

c̃(t)

s(c(t)) = c̃(t)a(t)

c(t)

Fig. 29.1. Two liftings of a curve

By the formula for the differential of an action (Problem 27.4),

s∗
(
c′(0)

)
= ra(0)∗c̃′(0)+a′(0)

c̃(0)
= c̃′(0)+a′(0)

ex
. ��

Lemma 29.5. Let E → M be a vector bundle with a connection ∇. Suppose s =
(s1, . . . ,sr) is a frame for E over an open setU, c̃(t) a parallel frame over a curve c(t)
in U with c̃(0) = s(c(0)), and a(t) the curve in GL(r,R) such that s(c(t)) = c̃(t)a(t).
If ωs = [ω i

j] is the connection matrix of ∇ with respect to the frame (s1, . . . ,sr) over
U, then a′(0) = ωs(c′(0)).

Proof. Label c(0) = x and c̃i(0) = si
(
c(0)

)
= ei,x. By the definition of the connection

matrix,

∇c′(0)s j =∑ω i
j

(
c′(0)

)
si
(
c(0)

)
=∑ω i

j

(
c′(0)

)
ei,x. (29.2)

On the other hand, by the defining properties of the covariant derivative
(Section 29.1),

∇c′(t)s j =
D(s j ◦ c)

dt
(t) =

D
dt ∑ c̃i(t)a

i
j(t)

=∑(aij)
′(t)c̃i(t)+∑aij(t)

Dc̃i
dt

(t)

=∑(aij)
′(t)c̃i(t) (since Dc̃i/dt ≡ 0).

Setting t = 0 gives
∇c′(0)s j =∑(aij)

′(0)ei,x. (29.3)

Equating (29.2) and (29.3), we obtain (aij)
′(0) = ω i

j(c
′(0)). ��

Thus, Lemma 29.4 for the horizontal lift of c′(0) can be rewritten in the form

c̃′(0) = s∗
(
c′(0)

)−a′(0)
ex
= s∗

(
c′(0)

)−ωs
(
c′(0)

)

ex
. (29.4)
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Proposition 29.6. Let π : E →M be a smooth vector bundle with a connection over
a manifold M of dimension n. For x ∈M and ex an ordered basis for the fiber Ex, the
subsetHex of horizontal vectors in the tangent space Tex(Fr(E)) is a vector space of
dimension n, and π∗ : Hex → TxM is a linear isomorphism.

Proof. In formula (29.4), ωs(c′(0)) is R-linear in its argument c′(0) because ωs is
a 1-form at c(0). The operation A �→ Aex of associating to a matrix A ∈ gl(r,R) a
tangent vector Aex ∈ Tex

(
Fr(E)

)
is R-linear by (27.3). Hence, formula (29.4) shows

that the map

φ : TxM → Tex
(
Fr(E)

)
,

c′(0) �→ c̃′(0)

is R-linear. As the image of a vector space TxM under a linear map, the set Hex of
horizontal vectors c̃′(0) at ex is a vector subspace of Tex

(
Fr(E)

)
.

Since π
(
c̃(t)
)
= c(t), taking the derivative at t = 0 gives π∗

(
c̃′(0)

)
= c′(0), so

π∗ is a left inverse to the map φ . This proves that φ : TxM → Tex
(
Fr(E)

)
is injective.

Its image is by definitionHex . It follows that φ : TxM →Hex is an isomorphism with
inverse π∗ : Hex → TexM. ��

29.3 Horizontal Lift of a Vector Field to a Frame Bundle

We have learned so far that a connection on a vector bundle E → M defines a hor-
izontal subspace Hp of the tangent space TpP at each point p of the total space of
the frame bundle π : P = Fr(E) → M. The horizontal subspace Hp has the same
dimension as M. The vertical subspace Vp of TpP is the kernel of the surjection
π∗ : TpP → Tπ(p)M; as such, dimVp = dimTpP− dimM. Hence, Vp and Hp have
complementary dimensions in TpP. Since π∗(Vp) = 0 and π∗ : Hp → Tπ(p)M is an
isomorphism, Vp∩Hp = 0. It follows that there is a direct sum decomposition

Tp(Fr(E)) = Vp⊕Hp. (29.5)

Our goal now is to show that as p varies in P, the subsetH :=
⋃

p∈PHp of the tangent
bundle TP defines aC∞ horizontal distribution on P in the sense of Section 27.6.

Since π∗,p : Hp → Tπ(p)M is an isomorphism for each p∈ P, if X is a vector field
on M, then there is a unique vector field X̃ on P such that X̃p ∈ Hp and π∗,p(X̃p) =
Xπ(p). The vector field X̃ is called the horizontal lift of X to the frame bundle P.

Since every tangent vector Xx ∈ TxM is the initial vector c′(0) of a curve c, for-
mula (29.4) for the horizontal lift of a tangent vector can be rewritten in the following
form.

Lemma 29.7 (Horizontal lift formula). Suppose ∇ is a connection on a vector bun-
dle E → M and ωs is its connection matrix on a framed open set (U,s). For x ∈U,
p = s(x) ∈ Fr(E), and Xx ∈ TxM, let X̃p be the horizontal lift of Xx to p in Fr(E).
Then

X̃p = s∗,x(Xx)−ωs(Xx)p.



29.3 Horizontal Lift of a Vector Field to a Frame Bundle 267

Proposition 29.8. Let E → M be a C∞ rank r vector bundle with a connection and
π : Fr(E) → M its frame bundle. If X is a C∞ vector field on M, then its horizontal
lift X̃ to Fr(E) is a C∞ vector field.

Proof. Let P= Fr(E) and G=GL(r,R). Since the question is local, we may assume
that the bundle P is trivial, say P=M×G. By the right invariance of the horizontal
distribution,

X̃(x,a) = ra∗X̃(x,1). (29.6)

Let s : M→ P=M×G be the section s(x) = (x,1). By the horizontal lift formula
(Lemma 29.7),

X̃(x,1) = s∗,x(Xx)−ωs(Xx)(x,1). (29.7)

Let p= (x,a) ∈ P and let f be a C∞ function on P. We will prove that X̃p f is C∞ as
a function of p. By (29.6) and (29.7),

X̃p f = ra∗s∗,x(Xx) f − ra∗ωs(Xx)(x,1) f , (29.8)

so it suffices to prove separately that
(
ra∗(s∗,xXx)

)
f and

(
ra∗ωs(Xx)(x,1)

)
f are C∞

functions on P.
The first term is

(
ra∗s∗,x(Xx)

)
f = Xx( f ◦ ra ◦ s)

= X( f ◦ ra ◦ s)
(
π(p)

)

= X
(
f
(
s(π(p))a

))
= X

(
f
(
μ(s(π(p)),a)

))

= X
(
f
(
μ(s(π(p)),π2(p))

))
, (29.9)

where μ : P×G→P is the action ofG on P and π2 : P=M×G→G is the projection
π2(p) = π2(x,a) = a. The formula (29.9) expresses

(
ra∗s∗,x(Xx)

)
f as a C∞ function

on P.
By the right equivariance of the connection form ωs, in (29.8) the second term

can be rewritten as

ra∗ωs(Xx)(x,1) f = (Ada−1)ωs(Xx)(x,a) f

=
(
Adπ2(p)−1)ωs

(
Xπ(p)

)

p
f ,

where
(
Adπ2(p)−1

)
ωs(Xπ(p)) is aC

∞ function: P→ gl(r,R) that we will denote by
A(p). The problem now is to show that p �→ A(p)

p
f is a C∞ function of p.

Let μ : P×G→ P be the right action of G= GL(r,R) on P= Fr(E). Then

A(p)
p
f =

d
dt

∣
∣
∣
∣
t=0

f (p · etA(p)) = d
dt

∣
∣
∣
∣
t=0

f (μ(p,etA(p))).

Since f , μ , A, and the exponential map are allC∞ functions, A(p)
p
f is aC∞ function

of p. Thus, X̃p f in (29.8) is a C∞ function of p. This proves that X̃ is a C∞ vector
field on P. ��
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Theorem 29.9. A connection ∇ on a smooth vector bundle E → M defines a C∞

distributionH on the frame bundle π : P= Fr(E)→M such that at any p ∈ P,

(i) TpP= Vp⊕Hp;
(ii) rg∗(Hp) =Hpg for any g ∈ G= GL(r,R),

where rg : P→ P is the right action of G on P.

Proof. To prove that H is a C∞ subbundle of TP, let U be a coordinate open set in
M and s1, . . . ,sn a C∞ frame onU . By Proposition 29.8 the horizontal lifts s̃1, . . . , s̃n
are C∞ vector fields on Ũ := π−1(U). Moreover, for each p ∈ Ũ , since π∗,p : Hp →
Tπ(p)M is an isomorphism, (s̃1)p, . . . ,(s̃n)p form a basis for Hp. Thus, over Ũ the
C∞ sections s̃1, . . . , s̃n of TP span H. By Theorem 20.4, this proves that H is a C∞

subbundle of TP.
Equation (29.5) establishes (i).
As for (ii), let c̃′(0) ∈Hp, where c(t) is a curve in M and c̃(t) = [v1(t) · · · vr(t)]

is its horizontal lift to P with initial point p. Here we are writing a frame as a row
vector so that the group action is simply matrix multiplication on the right. For any
g= [gij] ∈ GL(r,R),

c̃(t)g=
[
∑gi1vi(t) · · · ∑girvi(t)

]
.

Since Dvi/dt ≡ 0 by the horizontality of vi and gij are constants, D(∑gijvi)/dt ≡ 0.
Thus, c̃(t)g is the horizontal lift of c(t) with initial point c̃(0)g. It has initial tangent
vector

d
dt

∣
∣
∣
∣
t=0

c̃(t)g= rg∗c̃′(0) ∈Hpg.

This proves that rg∗Hp ⊂ Hpg. Because rg∗ : Hp → Hpg has a two-sided inverse
rg−1∗, it is bijective. In particular, rg∗Hp =Hpg. ��

29.4 Pullback of a Connection on a Frame Bundle
Under a Section

Recall that a connection ∇ on a vector bundle E can be represented on a framed open
set (U,e1, . . . ,er) for E by a connection matrix ωe depending on the frame. Such a
frame e= (e1, . . . ,er) is in fact a section e : U → Fr(E) of the frame bundle. We now
use the horizontal lift formula (Lemma 29.7) to prove that the Ehresmann connection
ω on the frame bundle Fr(E) determined by ∇ pulls back under the section e to the
connection matrix ωe.

Theorem 29.10. Let ∇ be a connection on a vector bundle E →M and let ω be the
Ehresmann connection on the frame bundle Fr(E) determined by∇. If e=(e1, . . . ,er)
is a frame for E over an open set U, viewed as a section e : U → Fr(E)|U , and ωe is
the connection matrix of ∇ relative to the frame e, then ωe = e∗ω .
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Proof. Let x ∈U and p= e(x) ∈ Fr(E). Suppose Xx is a tangent vector to M at x. If
we write ωe,x for the value of the connection matrix ωe at the point x ∈U , then ωe,x

is an r× r matrix of 1-forms at x and ωe,x(Xx) is an r× r matrix of real numbers, i.e.,
an element of the Lie algebra gl(r,R). The corresponding fundamental vector field
on Fr(E) is ωe,x(Xx). By Lemma 29.7, the horizontal lift of Xx to p ∈ Fr(E) is

X̃p = e∗Xx−ωe,x(Xx)p.

Applying the Ehresmann connection ωp to both sides of this equation, we get

0= ωp(X̃p) = ωp(e∗Xx)−ωp

(
ωe,x(Xx)p

)

= (e∗ωp)(Xx)−ωe,x(Xx) (by Theorem 28.1(i)).

Since this is true for all Xx ∈ TxM,

e∗ωp = (e∗ω)x = ωe,x. ��



270 §30 Curvature on a Principal Bundle

§30 Curvature on a Principal Bundle

Let G be a Lie group with Lie algebra g. Associated to a connection ω on a principal
G-bundle is a g-valued 2-form Ω called its curvature. The definition of the curvature
is suggested by the second structural equation for a connection ∇ on a vector bundle
E. Just as the connection form ω on the frame bundle Fr(E) pulls back by a section e
of Fr(E) to the connection matrixωe of∇with respect to the frame e, so the curvature
form Ω on the frame bundle Fr(E) pulls back by e to the curvature matrix Ωe of ∇
with respect to e. Thus, the curvature form Ω on the frame bundle is an intrinsic
object of which the curvature matrices Ωe are but local manifestations.

30.1 Curvature Form on a Principal Bundle

By Theorem 11.1 if ∇ is a connection on a vector bundle E →M, then its connection
and curvature matrices ωe and Ωe on a framed open set (U,e) = (U,e1, . . . ,er) are
related by the second structural equation (Theorem 11.1)

Ωe = dωe+ωe∧ωe.

In terms of the Lie bracket of matrix-valued forms (see (21.12)), this can be rewrit-
ten as

Ωe = dωe+
1
2
[ωe,ωe].

An Ehresmann connection on a principal bundle is Lie algebra-valued. In a general
Lie algebra, the wedge product is not defined, but the Lie bracket is always defined.
This strongly suggests the following definition for the curvature of an Ehresmann
connection on a principal bundle.

Definition 30.1. Let G be a Lie group with Lie algebra g. Suppose ω is an Ehres-
mann connection on a principal G-bundle π : P → M. Then the curvature of the
connection ω is the g-valued 2-form

Ω= dω+
1
2
[ω,ω].

Recall that frames for a vector bundle E over an open set U are sections of the
frame bundle Fr(E). Let ω be the connection form on the frame bundle Fr(E) det-
ermined by a connection ∇ on E. In the same way that ω pulls back by sections of
Fr(E) to connection matrices, the curvature form Ω of the connection ω on Fr(E)
pulls back by sections to curvature matrices.

Proposition 30.2. If ∇ is a connection on a vector bundle E →M and ω is the asso-
ciated Ehresmann connection on the frame bundle Fr(E), then the curvature matrix
Ωe relative to a frame e = (e1, . . . ,er) for E over an open set U is the pullback e∗Ω
of the curvature Ω on the frame bundle Fr(E).
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Proof.

e∗Ω= e∗dω+
1
2
e∗[ω,ω]

= de∗ω+
1
2
[e∗ω,e∗ω] (e∗ commutes with d and [ , ] by Proposition 21.8)

= dωe+
1
2
[ωe,ωe] (by Theorem 29.10)

=Ωe. (by the second structural equation) ��

30.2 Properties of the Curvature Form

Now that we have defined the curvature of a connection on a principal G-bundle
π : P → M, it is natural to study some of its properties. Like a connection form,
the curvature form Ω is equivariant with respect to right translation on P and the
adjoint representation on g. However, unlike a connection form, a curvature form
is horizontal in the sense that it vanishes as long as one argument is vertical. In
this respect it acts almost like the opposite of a connection form, which vanishes on
horizontal vectors.

Lemma 30.3. Let G be a Lie group with Lie algebra g and π : P → M a principal
G-bundle with a connection ω . Fix a point p ∈ P.

(i) Every vertical vector Xp ∈ TpP can be extended to a fundamental vector field A
on P for some A ∈ g.

(ii) Every horizontal vector Yp ∈ TpP can be extended to the horizontal lift B̃ of a C∞

vector field B on M.

Proof. (i) By the surjectivity of jp∗ : g→Vp (Proposition 27.18) and Equation (27.3),

Xp = jp∗(A) = Ap

for some A ∈ g. Then the fundamental vector field A on P extends Xp.

(ii) Let x = π(p) in M and let Bx be the projection π∗(Yp) ∈ TxM of the vector Yp.
We can extend Bx to a smooth vector field B onM. The horizontal lift B̃ of B extends
Yp on P. ��

By Proposition 28.6, such a horizontal lift B̃ is necessarily right-invariant.

Theorem 30.4. Let G be a Lie group with Lie algebra g. Suppose π : P → M is a
principal G-bundle, ω a connection on P, and Ω the curvature form of ω .

(i) (Horizontality) For p ∈ P and Xp,Yp ∈ TpP,

Ωp(Xp,Yp) = (dω)p(hXp,hYp). (30.1)

(ii) (G-equivariance) For g ∈ G, we have r∗gΩ= (Adg−1)Ω.
(iii) (Second Bianchi identity) dΩ= [Ω,ω].
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Proof. (i) Since both sides of (30.1) are linear in Xp and in Yp, we may decompose
Xp and Yp into vertical and horizontal components, and so it suffices to check the
equation for vertical and horizontal vectors only. There are three cases.

Case 1. Both Xp and Yp are horizontal. Then

Ωp(Xp,Yp) = (dω)p(Xp,Yp)+
1
2
[ωp,ωp](Xp,Yp) (definition of Ω)

= (dω)p(Xp,Yp)

+
1
2

(
[ωp(Xp),ωp(Yp)]− [ωp(Yp),ωp(Xp)]

)

= (dω)p(Xp,Yp) (ωp(Xp) = 0)

= (dω)p(hXp,hYp). (Xp, Yp horizontal)

Case 2. One of Xp and Yp is horizontal; the other is vertical. Without loss of gener-
ality, we may assume Xp vertical and Yp horizontal. Then [ωp,ωp](Xp,Yp) = 0 as in
Case 1.

By Lemma 30.3 the vertical vector Xp extends to a fundamental vector field A on
P and the horizontal vector Yp extends to a right-invariant horizontal vector field B̃
on P. By the global formula for the exterior derivative (Problem 21.8)

dω(A, B̃) = A(ω(B̃))− B̃(ω(A))−ω([A, B̃]).
On the right-hand side, ω(B̃) = 0 because B̃ is horizontal, and B̃ω(A) = B̃A = 0
because A is a constant function on P. Being the bracket of a fundamental and a hor-
izontal vector field, [A, B̃] is horizontal by Lemma 28.7, and therefore ω([A, B̃]) = 0.
Hence, the left-hand side of (30.1) becomes

Ωp(Xp,Yp) = (dω)p(Ap, B̃p) = 0.

The right-hand side of (30.1) is also zero because hXp = 0.

Case 3. Both Xp and Yp are vertical. As in Case 2, we can write Xp = Ap and
Yp = Bp for some A,B ∈ g. We have thus extended the vertical vectors Xp and Yp to
fundamental vector fields X = A and Y = B on P. By the definition of curvature,

Ω(X ,Y ) =Ω(A,B)

= dω(A,B)+
1
2

(
[ω(A),ω(B)]− [ω(B),ω(A)]

)

= dω(A,B)+ [A,B]. (30.2)

In this sum the first term is

dω(A,B) = A
(
ω(B)

)−B
(
ω(A)

)−ω([A,B])

= A(B)−B(A)−ω([A,B]) (Problem 27.1)

= 0−0− [A,B].
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Hence, (30.2) becomes

Ω(X ,Y ) =−[A,B]+ [A,B] = 0.

On the other hand,
(dω)p(hXp,hYp) = (dω)p(0,0) = 0.

(ii) Since the connection form ω is right-equivariant with respect to Ad,

r∗gΩ= r∗g

(

dω+
1
2
[ω,ω]

)

(definition of curvature)

= dr∗gω+
1
2
[r∗gω,r∗gω] (Proposition 21.8)

= d(Adg−1)ω+
1
2
[(Adg−1)ω,(Adg−1)ω]

= (Adg−1)

(

dω+
1
2
[ω,ω]

)

= (Adg−1)Ω.

In this computation we used the fact that because Adg−1 = (cg−1)∗ is the differential
of a Lie group homomorphism, it is a Lie algebra homomorphism.

(iii) Taking the exterior derivative of the definition of the curvature form, we get

dΩ=
1
2
d[ω,ω]

=
1
2
([dω,ω]− [ω,dω]) (Proposition 21.6)

= [dω,ω] (Proposition 21.5)

=
[
Ω− 1

2
[ω,ω],ω

]
(definition of Ω)

= [Ω,ω]− 1
2
[[ω,ω],ω]

= [Ω,ω]. (Problem 21.5) ��
In case P is the frame bundle Fr(E) of a rank r vector bundle E, with structure

group GL(r,R), the second Bianchi identity becomes by Proposition 21.7

dΩ= [Ω,ω] =Ω∧ω−ω ∧Ω, (30.3)

where the connection and curvature forms ω and Ω are gl(r,R)-valued forms on
Fr(E). It should not be so surprising that it has the same form as the second Bianchi
identity for the connection and curvature matrices relative to a frame e for E (Propo-
sition 22.3). Indeed, by pulling back (30.3) by a frame e : U → Fr(E), we get

e∗dΩ= e∗(Ω∧ω)− e∗(ω ∧Ω),
de∗Ω= (e∗Ω)∧ e∗ω− (e∗ω)∧ e∗Ω,
dΩe =Ωe∧ωe−ωe∧Ωe,

which is precisely Proposition 22.3.
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Problems

30.1. Curvature of the Maurer–Cartan connection
Let G be a Lie group with Lie algebra g, and M a manifold. Compute the curvature of the
Maurer–Cartan connection ω on the trivial bundle π : M×G→M.

30.2. Generalized second Bianchi identity on a frame bundle
Suppose Fr(E) is the frame bundle of a rank r vector bundle E overM. Letω be an Ehresmann
connection and Ω its curvature form on Fr(E). These are differential forms on Fr(E) with
values in the Lie algebra gl(r,R). Matrix multiplication and the Lie bracket on gl(r,R) lead
to two ways to multiply gl(r,R)-valued forms (see Section 21.5). We write Ωk to denote the
wedge product of Ω with itself k times. Prove that d(Ωk) = [Ωk,ω].

30.3. Lie bracket of horizontal vector fields
Let P→M be a principal bundle with a connection, and X ,Y horizontal vector fields on P.

(a) Prove that Ω(X ,Y ) =−ω([X ,Y ]).
(b) Show that [X ,Y ] is horizontal if and only if the curvature Ω(X ,Y ) equals zero.
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§31 Covariant Derivative on a Principal Bundle

Throughout this chapter, G will be a Lie group with Lie algebra g and V will be a
finite-dimensional vector space. To a principal G-bundle π : P→M and a represen-
tation ρ : G→ GL(V ), one can associate a vector bundle P×ρ V →M with fiber V .
When ρ is the adjoint representation Ad of G on its Lie algebra g, the associated
bundle P×Ad g is called the adjoint bundle, denoted by AdP.

Differential forms on M with values in the associated bundle P×ρ V turn out to
correspond in a one-to-one manner to certain V -valued forms on P called tensorial
forms of type ρ . The curvature Ω of a connection ω on the principal bundle P is
a g-valued tensorial 2-form of type Ad on P. Under this correspondence it may be
viewed as a 2-form on M with values in the adjoint bundle AdP.

Using a connection ω , one can define a covariant derivative D of vector-valued
forms on a principal bundle P. This covariant derivative maps tensorial forms to
tensorial forms, and therefore induces a covariant derivative on forms on M with
values in an associated bundle. In terms of the covariant derivative D, the curvature
form is Ω= Dω , and Bianchi’s second identity becomes DΩ= 0.

31.1 The Associated Bundle

Let π : P → M be a principal G-bundle and ρ : G → GL(V ) a representation of G
on a finite-dimensional vector space V . We write ρ(g)v as g · v or even gv. The
associated bundle E := P×ρ V is the quotient of P×V by the equivalence relation

(p,v)∼ (pg,g−1 · v) for g ∈ G and (p,v) ∈ P×V . (31.1)

We denote the equivalence class of (p,v) by [p,v]. The associated bundle comes with
a natural projection β : P×ρ V →M, β ([p,v]) = π(p). Because

β ([pg,g−1 · v]) = π(pg) = π(p) = β ([p,v]),
the projection β is well defined.

As a first example, the proposition below shows that an associated bundle of a
trivial principal G-bundle is a trivial vector bundle.

Proposition 31.1. If ρ : G → GL(V ) is a finite-dimensional representation of a Lie
group G, and U is any manifold, then there is a fiber-preserving diffeomorphism

φ : (U×G)×ρ V ∼→U×V,

[(x,g),v] �→ (x,g · v).
Proof. The map φ is well defined because if h is any element of G, then

φ
(
[(x,g)h,h−1 · v])= (x,(gh) ·h−1 · v)= (x,g · v) = φ([(x,g),v]).
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Define ψ : U×V → (U×G)×ρ V by

ψ(x,v) = [(x,1),v].

It is easy to check that φ and ψ are inverse to each other, are C∞, and commute with
the projections. ��

Since a principal bundle P → M is locally U ×G, Proposition 31.1 shows that
the associated bundle P×ρ V → M is locally trivial with fiber V . The vector space
structure on V then makes P×ρ V into a vector bundle over M:

[p,v1]+ [p,v2] = [p,v1+ v2],

λ [p,v] = [p,λv], λ ∈ R.
(31.2)

It is easy to show that these are well-defined operations not depending on the choice
of p ∈ Ex and that this makes the associated bundle β : E →M into a vector bundle
(Problem 31.2).

Example 31.2. Let Ad: G→GL(g) be the adjoint representation of a Lie groupG on
its Lie algebra g. For a principal G-bundle π : P→M, the associated vector bundle
AdP := P×Ad g is called the adjoint bundle of P.

31.2 The Fiber of the Associated Bundle

If π : P → M is a principal G-bundle, ρ : G → GL(V ) is a representation, and E :=
P×ρ V → M is the associated bundle, we denote by Px the fiber of P above x ∈ M,
and by Ex the fiber of E above x ∈ M. For each p ∈ Px, there is a canonical way of
identifying the fiber Ex with the vector space V :

fp : V → Ex,

v �→ [p,v].

Lemma 31.3. Let π : P → M be a principal G-bundle, ρ : G → GL(V ) a finite-
dimensional representation, and E = P×ρ V the associated vector bundle. For each
point p in the fiber Px, the map fp : V → Ex is a linear isomorphism.

Proof. Suppose [p,v] = [p,w]. Then (p,w) = (pg,g−1v) for some g ∈ G. Since G
acts freely on P, the equality p= pg implies that g= 1. Hence, w= g−1v= v. This
proves that fp is injective.

If [q,w] is any point in Ex, then q ∈ Px, so q= pg for some g ∈ G. It follows that

[q,w] = [pg,w] = [p,gw] = fp(gw).

This proves that fp is surjective. ��
The upshot is that every point p of the total space P of a principal bundle gives

a linear isomorphism fp : V → Eπ(p) from V to the fiber of the associated bundle E
above π(p).
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Lemma 31.4. Let E = P×ρ V be the vector bundle associated to the principal G-
bundle P → M via the representation ρ : G → GL(V ), and fp : V → Ex the linear
isomorphism v �→ [p,v]. If g ∈ G, then fpg = fp ◦ ρ(g).

Proof. For v ∈V ,

fpg(v) = [pg,v] = [p,g · v] = fp(g · v) = fp
(
ρ(g)v

)
. ��

Example 31.5. Let π : P → M be a principal G-bundle. The vector bundle P×ρ
V → M associated to the trivial representation ρ : G → GL(V ) is the trivial bundle
M×V →M, for there is a vector bundle isomorphism

P×ρ V →M×V,

[p,v] = [pg,g−1 · v] = [pg,v] �→ (
π(p),v

)
,

with inverse map
(x,v) �→ [p,v] for any p ∈ π−1(x).

In this case, for each p ∈ P the linear isomorphism fp : V → Ex = V , v �→ [p,v], is
the identity map.

31.3 Tensorial Forms on a Principal Bundle

We keep the same notation as in the previous section. Thus, π : P→M is a principal
G-bundle, ρ : G→GL(V ) a finite-dimensional representation of G, and E := P×ρV
the vector bundle associated to P via ρ .

Definition 31.6. A V -valued k-form ϕ on P is said to be right-equivariant of type
ρ or right-equivariant with respect to ρ if for every g ∈ G,

r∗gϕ = ρ(g−1) ·ϕ.

What this means is that for p ∈ P and v1, . . . ,vk ∈ TpP,

(r∗gϕ)p(v1, . . . ,vk) = ρ(g−1)
(
ϕp(v1, . . . ,vk)

)
.

In the literature (for example, [12, p. 75]), such a form is said to be pseudo-
tensorial of type ρ .

Definition 31.7. A V -valued k-form ϕ on P is said to be horizontal if ϕ vanishes
whenever one of its arguments is a vertical vector. Since a 0-form never takes an
argument, every 0-form on P is by definition horizontal.

Definition 31.8. A V -valued k-form ϕ on P is tensorial of type ρ if it is right-
equivariant of type ρ and horizontal. The set of all smooth tensorial V -valued
k-forms of type ρ is denoted by Ωk

ρ(P,V ).
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Example. Since the curvature Ω of a connection ω on a principal G-bundle P is
horizontal and right-equivariant of type Ad, it is tensorial of type Ad.

The set Ωk
ρ(P,V ) of tensorial k-forms of type ρ on P becomes a vector space

with the usual addition and scalar multiplication of forms. These forms are of special
interest because they can be viewed as forms on the base manifold M with values in
the associated bundle E := P×ρ V . To each tensorial V -valued k form ϕ ∈Ωk

ρ(P,V )

we associate a k-form ϕ� ∈Ωk(M,E) as follows. Given x ∈M and v1, . . . ,vk ∈ TxM,
choose any point p in the fiber Px and choose lifts u1, . . . ,uk at p of v1, . . . ,vk, i.e.,
vectors in TpP such that π∗(ui) = vi. Then ϕ� is defined by

ϕ�
x(v1, . . . ,vk) = fp

(
ϕp(u1, . . . ,uk)

) ∈ Ex, (31.3)

where fp : V → Ex is the isomorphism v �→ [p,v] of the preceding section.
Conversely, if ψ ∈ Ωk(M,E), we define ψ� ∈ Ωk

ρ(P,V ) as follows. Given p ∈ P
and u1, . . . ,uk ∈ TpP, let x= π(p) and set

ψ�
p(u1, . . . ,uk) = f−1

p

(
ψx(π∗u1, . . . ,π∗uk)

) ∈V. (31.4)

Theorem 31.9. The map

Ωk
ρ(P,V )→Ωk(M,E),

ϕ �→ ϕ�,

is a well-defined linear isomorphism with inverse ψ� ← � ψ .

Proof. To show that ϕ� is well defined, we need to prove that the definition (31.3) is
independent of the choice of p∈Px and of u1, . . . ,uk ∈ TpP. Suppose u′1, . . . ,u

′
k ∈ TpP

is another set of vectors such that π∗(u′i) = vi. Then π∗(u′i−ui) = 0 so that u′i−ui is
vertical. Since ϕ is horizontal and k-linear,

ϕp(u′1, . . . ,u′k) = ϕp(u1+vertical, . . . ,uk+vertical)

= ϕp(u1, . . . ,uk).

This proves that for a given p ∈ P, the definition (31.3) is independent of the choice
of lifts of v1, . . . ,vk to p.

Next suppose we choose pg instead of p as the point in the fiber Px. Because
π ◦ rg = π ,

π∗(rg∗ui) = (π ◦ rg)∗ui = π∗ui = vi,

so that rg∗u1, . . . ,rg∗uk are lifts of v1, . . . ,vk to pg. We have, by right equivariance
with respect to ρ ,

ϕpg(rg∗u1, . . . ,rg∗uk) = (r∗gϕpg)(u1, . . . ,uk)

= ρ(g−1)ϕp(u1, . . . ,uk).

So by Lemma 31.4,
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fpg
(
ϕpg(rg∗u1, . . . ,rg∗uk)

)
= fpg

(
ρ(g−1)ϕp(u1, . . . ,uk)

)

=
(
fp ◦ ρ(g)

)(
ρ(g−1)ϕp(u1, . . . ,uk)

)

= fp
(
ϕp(u1, . . . ,uk)

)
.

This proves that the definition (31.3) is independent of the choice of p in the fiber Px.
Let ψ ∈ Ωk(M,E). It is clear from the definition (31.4) that ψ� is horizontal. It

is easy to show that ψ� is right-equivariant with respect to ρ (Problem 31.4). Hence,
ψ� ∈Ωk

ρ(P,V ).
For v1, . . . ,vk ∈ TxM, choose p∈Px and vectors u1, . . . ,uk ∈ TpP that lift v1, . . . ,vk.

Then

(ψ��)x(v1, . . . ,vk) = fp
(
ψ�

p(u1, . . . ,uk)
)

= fp
(
f−1
p

(
ψx(π∗u1, . . . ,π∗uk)

))

= ψx(v1, . . . ,vk).

Hence, ψ�� = ψ .
Similarly, ϕ�� = ϕ for ϕ ∈Ωk

ρ(P,V ), which we leave to the reader to show (Prob-

lem 31.5). Therefore, the map ψ �→ ψ� is inverse to the map ϕ �→ ϕ�. ��
Example 31.10 (Curvature as a form on the base). By Theorem 31.9, the curvature
form Ω of a connection on a principal G-bundle P can be viewed as an element of
Ω2(M,AdP), a 2-form onM with values in the adjoint bundle AdP.

When k= 0 in Theorem 31.9,Ω0
p(P,V ) consists of maps f : P→V that are right-

equivariant with respect to ρ:

(r∗g f )(p) = ρ(g)−1 f (p),

or
f (pg) = ρ(g−1) f (p) = g−1 · f (p).

On the right-hand side of Theorem 31.9,

Ω0(M,P×ρ V ) =Ω0(M,E) = sections of the associated bundle E.

Hence, we have the following corollary.

Corollary 31.11. Let G be a Lie group, P → M a principal G-bundle, and ρ : G →
Aut(V ) a representation of G. There is a one-to-one correspondence

{
G-equivariant maps
f : P→V

}

←→
{
sections of the associated bundle
P×ρ V →M

}

.

By the local triviality condition, for any principal bundle π : P → M the projec-
tion map π is a submersion and therefore the pullback map π∗ : Ω∗(M)→ Ω∗(P) is
an injection. A differential form ϕ on P is said to be basic if it is the pullback π∗ψ
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of a form ψ onM; it is G-invariant if r∗gϕ = ϕ for all g ∈G. More generally, for any
vector space V , these concepts apply to V -valued forms as well.

Suppose ρ : G→GL(V ) is the trivial representation ρ(g) =1 for all g∈G. Then
an equivariant form ϕ of type ρ on P satisfies

r∗gϕ = ρ(g−1) ·ϕ = ϕ for all g ∈ G.

Thus, an equivariant form of type ρ for the trivial representation ρ is exactly an
invariant form on P. Unravelling Theorem 31.9 for a trivial representation will give
the following theorem.

Theorem 31.12. Let π : P → M be a principal G-bundle and V a vector space.
A V-valued form on P is basic if and only if it is horizontal and G-invariant.

Proof. Let ρ : G → GL(V ) be the trivial representation. As noted above, Ωk
ρ(P,V )

consists of horizontal, G-invariant V -valued k-forms on P.
By Example 31.5, when ρ is the trivial representation, the vector bundle E =

P×ρ V is the product bundle M×V over M and for each p ∈ P, the linear isomor-
phism fp : V → Ex =V , where x= π(p), is the identity map. Then the isomorphism

Ωk(M,E) =Ωk(M,M×V ) =Ωk(M,V )→Ωk
ρ(P,V ),

ψ �→ ψ#,

is given by

ψ#
p(u1, . . . ,uk) = ψx(π∗u1, . . . ,π∗uk) (by (31.4))

= (π∗ψ)p(u1, . . . ,uk).

Therefore,

ψ# = π∗ψ.

This proves that horizontal, G-invariant forms on P are precisely the basic forms. ��

31.4 Covariant Derivative

Recall that the existence of a connection ω on a principal G-bundle π : P → M is
equivalent to the decomposition of the tangent bundle TP into a direct sum of the
vertical subbundle V and a smooth right-invariant horizontal subbundle H. For any
vector Xp ∈ TpP, we write

Xp = vXp+hXp

as the sum of its vertical and horizontal components. This will allow us to define
a covariant derivative of vector-valued forms on P. By the isomorphism of Theo-
rem 31.9, we obtain in turn a covariant derivative of forms on M with values in an
associated bundle.

Let ρ : G → GL(V ) be a finite-dimensional representation of G and let E :=
P×ρ V be the associated vector bundle.
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Proposition 31.13. If ϕ ∈Ωk(P,V ) is right-equivariant of type ρ , then so is dϕ .

Proof. For a fixed g ∈ G,

r∗gdϕ = dr∗gϕ = dρ(g−1)ϕ

= ρ(g−1)dϕ,

since ρ(g−1) is a constant linear map for a fixed g. ��
In general, the exterior derivative does not preserve horizontality. For any V -

valued k-form ϕ on P, we define its horizontal component ϕh ∈Ωk(P,V ) as follows:
for p ∈ P and v1, . . . ,vk ∈ TpP,

ϕh
p(v1, . . . ,vk) = ϕp(hv1, . . . ,hvk).

Proposition 31.14. If ϕ ∈Ωk(P,V ) is right-equivariant of type ρ , then so is ϕh.

Proof. For g ∈ G, p ∈ P, and v1, . . . ,vk ∈ TpP,

r∗g(ϕh
pg)(v1, . . . ,vk) = ϕh

pg(rg∗v1, . . . ,rg∗vk) (definition of pullback)

= ϕpg(hrg∗v1, . . . ,hrg∗vk) (definition of ϕh)

= ϕpg(rg∗hv1, . . . ,rg∗hvk) (Proposition 28.4)

= (r∗gϕpg)(hv1, . . . ,hvk)

= ρ(g−1) ·ϕp(hv1, . . . ,hvk) (right-equivariance of ϕ)

= ρ(g−1) ·ϕh
p(v1, . . . ,vk) ��

Propositions 31.13 and 31.14 together imply that if ϕ ∈ Ωk(P,V ) is right-
equivariant of type ρ , then (dϕ)h ∈ Ωk+1(P,V ) is horizontal and right-equivariant
of type ρ , i.e., tensorial of type ρ .

Definition 31.15. Let π : P → M be a principal G-bundle with a connection ω
and let V be a real vector space. The covariant derivative of a V -valued k-form
ϕ ∈Ωk(P,V ) is Dϕ = (dϕ)h.

Let ρ : G → GL(V ) be a finite-dimensional representation of the Lie group G.
The covariant derivative is defined for anyV -valued k-form on P, and it maps a right-
equivariant form of type ρ to a tensorial form of type ρ . In particular, it restricts to a
map

D : Ωk
ρ(P,V )→Ωk+1

ρ (P,V ) (31.5)

on the space of tensorial forms.

Proposition 31.16. Let π : P → M be a principal G-bundle with a connection and
ρ : G→ GL(V ) a representation of G. The covariant derivative

D : Ωk
ρ(P,V )→Ωk+1

ρ (P,V )

on tensorial forms of type ρ is an antiderivation of degree +1.
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Proof. Let ω,τ ∈Ω∗
ρ(P,V ) be tensorial forms of type ρ . Then

D(ω ∧ τ) = (d(ω ∧ τ))h

=
(
(dω)∧ τ+(−1)degωω ∧dτ)h

= (dω)h∧ τh+(−1)degωωh∧ (dτ)h

= Dw∧ τh+(−1)degωωh∧Dτ .

Since τ and ω are horizontal, τh = τ and ωh = ω . Therefore,

D(ω ∧ τ) = Dω ∧ τ+(−1)degωω ∧Dτ . ��
If E := P×ρ V is the associated vector bundle via the representation ρ , then the

isomorphism of Theorem 31.9 transforms the linear map (31.5) into a linear map

D : Ωk(M,E)→Ωk+1(M,E).

Unlike the exterior derivative, the covariant derivative depends on the choice of
a connection on P. Moreover, D2 �= 0 in general.

Example 31.17 (Curvature of a principal bundle). By Theorem 30.4 the curvature
form Ω ∈Ω2

Ad(P,g) on a principal bundle is the covariant derivative Dω of the con-
nection form ω ∈Ω1(P,g). Because ω is not horizontal, it is not in Ω1

Ad(P,g).

31.5 A Formula for the Covariant Derivative of a Tensorial Form

Let π : P→M be a smooth principal G-bundle with a connection ω , and let ρ : G→
GL(V ) be a finite-dimensional representation of G. In the preceding section we
defined the covariant derivative of a V -valued k-form ϕ on P: Dϕ = (dϕ)h, the
horizontal component of dϕ . In this section we derive a useful alternative formula
for the covariant derivative, but only for a tensorial form.

The Lie group representation ρ : G → GL(V ) induces a Lie algebra representa-
tion ρ∗ : g→ gl(V ), which allows us to define a product of a g-valued k-form τ and
a V -valued �-form ϕ on P: for p ∈ P and v1, . . . ,vk+� ∈ TpP,

(τ ·ϕ)p(v1, . . . ,vk+�)

=
1

k!�! ∑σ∈Sk+�

sgn(σ)ρ∗
(
τp(vσ(1), . . . ,vσ(k))

)
ϕp
(
vσ(k+1), . . . ,vσ(k+�)

)
.

For the same reason as the wedge product, τ ·ϕ is multilinear and alternating in
its arguments; it is therefore a (k+ �)-covector with values in V .

Example 31.18. IfV = g and ρ =Ad: G→GL(g) is the adjoint representation, then

(τ ·ϕ)p = 1
k!�! ∑σ∈Sk+�

sgn(σ)
[
τp(vσ(1), . . . ,vσ(k)),ϕp(vσ(k+1), . . . ,vσ(k+�))

]
.

In this case we also write [τ ,ϕ] instead of τ ·ϕ .
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Theorem 31.19. Let π : P → M be a principal G-bundle with connection form ω ,
and ρ : G → GL(V ) a finite-dimensional representation of G. If ϕ ∈ Ωk

ρ(P,V ) is a
V -valued tensorial form of type ρ , then its covariant derivative is given by

Dϕ = dϕ+ω ·ϕ.

Proof. Fix p ∈ P and v1, . . . ,vk+1 ∈ TpP. We need to show that

(dϕ)p(hv1, . . . ,hvk+1) = (dϕ)p(v1, . . . ,vk+1)

+
1
k! ∑σ∈Sk+1

sgn(σ)ρ∗
(
ωp(vσ(1))

)
ϕp
(
vσ(2), . . . ,vσ(k+1)

)
. (31.6)

Because both sides of (31.6) are linear in each argument vi, which may be de-
composed into the sum of a vertical and a horizontal component, we may assume
that each vi is either vertical or horizontal. By Lemma 30.3, throughout the proof we
may further assume that the vectors v1, . . . ,vk+1 have been extended to vector fields
X1, . . . ,Xk+1 on P each of which is either vertical or horizontal. If Xi is vertical, then
it is a fundamental vector field Ai for some Ai ∈ g. If Xi is horizontal, then it is the
horizontal lift B̃i of a vector field Bi on M. By construction, B̃i is right-invariant
(Proposition 28.6).

Instead of proving (31.6) at a point p, we will prove the equality of functions

(dϕ)(hX1, . . . ,hXk+1) = I+ II, (31.7)

where

I= (dϕ)(X1, . . . ,Xk+1)

and

II=
1
k! ∑σ∈Sk+1

sgn(σ)ρ∗
(
ω(Xσ(1))

)
ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)
.

Case 1. The vector fields X1, . . . ,Xk+1 are all horizontal.
Then II = 0 because ω(Xσ(1)) = 0 for all σ ∈ Sk+1. In this case, (31.7) is trivially
true.

Case 2. At least two of X1, . . . ,Xk+1 are vertical.
By the skew-symmetry of the arguments, we may assume that X1 = A1 and X2 = A2

are vertical. By Problem 27.1, [X1,X2] = [A1,A2] is also vertical.
The left-hand side of (31.7) is zero because hX1 = 0. By the global formula for

the exterior derivative [21, Th. 20.14, p. 233],

I=
k+1

∑
i=1

(−1)i−1Xiϕ(. . . , X̂i, . . .)+ ∑
1≤i< j≤k+1

(−1)i+ jϕ([Xi,Xj], . . . , X̂i, . . . , X̂ j, . . .).
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In this expression every term in the first sum is zero because ϕ is horizontal and at
least one of its arguments is vertical. In the second sum at least one of the arguments
of ϕ is X1, X2, or [X1,X2], all of which are vertical. Therefore, every term in the
second sum in I is also zero.

As for II in (31.7), in every term at least one of the arguments of ϕ is vertical, so
II= 0.

Case 3. The first vector field X1 = A is vertical; the rest X2, . . . ,Xk+1 are horizontal
and right-invariant.
The left-hand side of (31.7) is clearly zero because hX1 = 0.

On the right-hand side,

I= (dϕ)(X1, . . . ,Xk+1)

=∑(−1)i+1Xiϕ(X1, . . . , X̂i, . . . ,Xk+1)

+∑(−1)i+ jϕ([Xi,Xj],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1).

Because ϕ is horizontal and X1 is vertical, the only nonzero term in the first sum is

X1ϕ(X2, . . . ,Xk+1) = Aϕ(X2, . . . ,Xk+1)

and the only nonzero terms in the second sum are

k+1

∑
j=2

(−1)1+ jϕ([X1,Xj], X̂1,X2, . . . , X̂ j, . . . ,Xk+1).

Since the Xj, j= 2, . . . ,k+1, are right-invariant horizontal vector fields, by Lemma 28.7,

[X1,Xj] = [A,Xj] = 0.

Therefore,
I= Aϕ(X2, . . . ,Xk+1).

If σ(i) = 1 for any i≥ 2, then

ϕ(Xσ(2), . . . ,Xσ(k+1)) = 0.

It follows that the nonzero terms in II all satisfy σ(1) = 1 and

II=
1
k! ∑σ∈Sk+1
σ(1)=1

sgn(σ)ρ∗
(
ω(X1)

)
ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)

=
1
k! ∑σ∈Sk+1
σ(1)=1

sgn(σ)ρ∗(A)ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)

= ρ∗(A)ϕ (X2, . . . ,Xk+1) (because ϕ is alternating).
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Denote by f the function ϕ(X2, . . . ,Xk+1) on P. For p ∈ P, to calculate Ap f ,
choose a curve c(t) in G with initial point c(0) = e and initial vector c′(0) = A, for
example, c(t) = exp(tA). Then with jp : G→ P being the map jp(g) = p ·g,

Ap f = jp∗(A) f = jp∗
(
c′(0)

)
f = jp∗

(

c∗
(

d
dt

∣
∣
∣
∣
t=0

))

f

= ( jp ◦ c)∗
(

d
dt

∣
∣
∣
∣
t=0

)

f =
d
dt

∣
∣
∣
∣
t=0

( f ◦ jp ◦ c).

By the right-invariance of the horizontal vector fields X2, . . . ,Xk+1,

( f ◦ jp ◦ c)(t) = f
(
pc(t)

)

= ϕpc(t)
(
X2,pc(t), . . . ,Xk+1,pc(t)

)

= ϕpc(t)
(
rc(t)∗X2,p, . . . ,rc(t)∗Xk+1,p

)

= r∗c(t)ϕpc(t)
(
X2,p, . . . ,Xk+1,p

)

= ρ(c(t)−1)ϕp
(
X2,p, . . . ,Xk+1,p

)
(right-equivariance of ϕ)

= ρ(c(t)−1) f (p).

Differentiating this expression with respect to t and using the fact that the differential
of the inverse is the negative [21, Problem 8.8(b)], we have

Ap f = ( f ◦ jp ◦ c)′(0) =−ρ∗(c′(0)) f (p) =−ρ∗(A) f (p).
So the right-hand side of (31.7) is

I+ II= A f +ρ∗(A) f =−ρ∗(A) f +ρ∗(A) f = 0. ��
If V is the Lie algebra g of a Lie group G and ρ is the adjoint representation of

G, then ω ·ϕ = [ω,ϕ]. In this case, for any tensorial k-form ϕ ∈Ωk
Ad(P,g),

Dϕ = dϕ+[ω,ϕ].

Although the covariant derivative is defined for any V -valued form on P, The-
orem 31.19 is true only for tensorial forms. Since the connection form ω is not
tensorial, Theorem 31.19 cannot be applied to ω . In fact, by the definition of the
curvature form,

Ω= dω+
1
2
[ω,ω].

By Theorem 30.4, Ω = (dω)h = Dω . Combining these two expressions for the
curvature, one obtains

Dω = dω+
1
2
[ω,ω].

The factor of 1/2 shows that Theorem 31.19 is not true when applied to ω .
Since the curvature formΩ on a principal bundle P is tensorial of type Ad, Theo-

rem 31.19 applies and the second Bianchi identity (Theorem 30.4) may be restated as

DΩ= dΩ+[ω,Ω] = 0. (31.8)



286 §31 Covariant Derivative on a Principal Bundle

Problems

Unless otherwise specified, in the following problems G is a Lie group with Lie algebra g,
π : P → M a principal G-bundle, ρ : G → GL(V ) a finite-dimensional representation of G,
and E = P×ρ V the associated bundle.

31.1. Transition functions of an associated bundle
Show that if {(Uα ,φα )} is a trivialization for P with transition functions gαβ : Uα ∩Uβ → G,
then there is a trivialization {(Uα ,ψα )} for E with transition functions ρ ◦ gαβ : Uα ∩Uβ →
GL(V ).

31.2. Vector bundle structure on an associated bundle
Show that the operations (31.2) on E = P×ρ V are well defined and make the associated
bundle β : E →M into a vector bundle.

31.3. Associated bundle of a frame bundle
Let E → M be a vector bundle of rank r and Fr(E) → M its frame bundle. Show that the
vector bundle associated to Fr(E) via the identity representation ρ : GL(r,R) → GL(r,R) is
isomorphic to E.

31.4. Tensorial forms
Prove that if ψ ∈Ωk(M,P×ρ V ), then ψ� ∈Ωk(P,V ) is right-equivariant with respect to ρ .

31.5. Tensorial forms
For ϕ ∈Ωk

ρ (P,V ), prove that ϕ�� = ϕ .
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§32 Characteristic Classes of Principal Bundles

To a real vector bundle E → M of rank r, one can associate its frame bundle
Fr(E)→M, a principal GL(r,R)-bundle. Similarly, to a complex vector bundle of
rank r, one can associate its frame bundle, a principal GL(r,C)-bundle and to an
oriented real vector bundle of rank r, one can associate its oriented frame bundle,
a principal GL+(r,R)-bundle, where GL+(r,R) is the group of all r× r matrices
of positive determinant. The Pontrjagin classes of a real vector bundle, the Chern
classes of a complex vector bundle, and the Euler class of an oriented real vector
bundle may be viewed as characteristic classes of the associated principal G-bundle
for G= GL(r,R),GL(r,C), and GL+(r,R), respectively.

In this section we will generalize the construction of characteristic classes to
principal G-bundles for any Lie group G. These are some of the most important
diffeomorphism invariants of a principal bundle.

32.1 Invariant Polynomials on a Lie Algebra

Let V be a vector space of dimension n and V∨ its dual space. An element of
Symk(V∨) is called a polynomial of degree k on V . Relative to a basis e1, . . . ,en
for V and corresponding dual basis α1, . . . ,αn for V∨, a function f : V → R is a
polynomial of degree k if and only if it is expressible as a sum of monomials of
degree k in α1, . . . ,αn:

f =∑aIα i1 · · ·α ik . (32.1)

For example, if V = R
n×n is the vector space of all n× n matrices, then trX is a

polynomial of degree 1 on V and detX is a polynomial of degree n on V .
Suppose now that g is the Lie algebra of a Lie group G. A polynomial f : g→R

is said to be Ad(G)-invariant if for all g ∈ G and X ∈ g,

f
(
(Adg)X

)
= f (X).

For example, if G is the general linear group GL(n,R), then (Adg)X = gXg−1 and
trX and detX are AdG-invariant polynomials on the Lie algebra gl(n,R).

32.2 The Chern–Weil Homomorphism

Let G be a Lie group with Lie algebra g, P→M a principal G-bundle, ω an Ehres-
mann connection on P, and Ω the curvature form of ω . Fix a basis e1, . . . ,en for g
and dual basis α1, . . . ,αn for g∨. Then the curvature form Ω is a linear combination

Ω=∑Ωiei,

where the coefficientsΩi are real-valued 2-forms on P. If f : g→R is the polynomial
∑aIα i1 · · ·α ik , we define f (Ω) to be the 2k-form
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f (Ω) =∑aIΩi1 ∧·· ·∧Ωik

on P. Although defined in terms of a basis for g, the 2k-form f (Ω) is independent of
the choice of a basis (Problem 32.2).

Recall that the covariant derivative Dϕ of a k-form ϕ on a principal bundle P is
given by

(Dϕ)p(v1, . . . ,vk) = (dϕ)p(hv1, . . . ,hvk),

where vi ∈ TpP and hvi is the horizontal component of vi.

Lemma 32.1. Let π : P → M be a principal bundle. If ϕ is a basic form on P, then
dϕ = Dϕ .

Proof. A tangent vector Xp ∈ TpP decomposes into the sum of its vertical and hori-
zontal components:

Xp = vXp+hXp.

Here h : TpP → TpP is the map that takes a tangent vector to its horizontal compo-
nent. Since π∗Xp = π∗hXp for all Xp ∈ TpP, we have

π∗ = π∗ ◦ h.

Suppose ϕ = π∗τ for τ ∈Ωk(M). Then

Dϕ = (dϕ) ◦ h (definition of D)

= (dπ∗τ) ◦ h (ϕ is basic)

= (π∗dτ) ◦ h ([21, Prop. 19.5])

= dτ ◦ π∗ ◦ h (definition of π∗)
= dτ ◦ π∗ (π∗ ◦ h= π∗)
= π∗dτ (definition of π∗)
= dπ∗τ ([21, Prop. 19.5])

= dϕ (ϕ = π∗τ). ��

The Chern–Weil homomorphism is based on the following theorem. As before,
G is a Lie group with Lie algebra g.

Theorem 32.2. Let Ω be the curvature of a connection ω on a principal G-bundle
π : P→M, and f an Ad(G)-invariant polynomial of degree k on g. Then

(i) f (Ω) is a basic form on P, i.e., there exists a 2k-form Λ on M such that f (Ω) =
π∗Λ.

(ii) Λ is a closed form.
(iii) The cohomology class [Λ] is independent of the connection.

Proof. (i) Since the curvature Ω is horizontal, so are its components Ωi and there-
fore so is f (Ω) = ∑aIΩi1 ∧·· ·∧Ωik .
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To check the G-invariance of f (Ω), let g ∈ G. Then

r∗g
(
f (Ω)

)
= r∗g

(
∑aIΩi1 ∧·· ·∧Ωik

)

=∑aIr
∗
g(Ω

i1)∧·· ·∧ r∗g(Ω
ik).

Since the curvature form Ω is right-equivariant,

r∗gΩ= (Adg−1)Ω

or

r∗g(∑Ωiei) =∑
(
(Adg−1)Ω

)i
ei,

so that

r∗g(Ω
i) =

(
(Adg−1)Ω

)i
.

Thus,

r∗g
(
f (Ω)

)
=∑aI

(
(Adg−1)Ω

)i1 ∧·· ·∧ ((Adg−1)Ω
)ik

= f
(
(Adg−1)Ω

)

= f (Ω) (by the AdG-invariance of f ).

Since f (Ω) is horizontal and G-invariant, by Theorem 31.12, it is basic.
(ii) Since π∗ : TpP→ Tπ(p)M is surjective, π∗ : Ω∗(M)→Ω∗(P) is injective. There-

fore, to show that dΛ= 0, it suffices to show that

π∗dΛ= dπ∗Λ= d f (Ω) = 0.

If f = ∑aIα i1 · · ·α ik , then

f (Ω) =∑aIΩi1 ∧·· ·∧Ωik .

In this expression, each aI is a constant and therefore by Lemma 32.1

DaI = daI = 0.

By the second Bianchi identity (31.8), DΩ= 0. Therefore, DΩi = 0 for each i.
Since the Ωi are right-equivariant of type Ad and horizontal, they are tensorial
forms. By Lemma 32.1 and because D is an antiderivation on tensorial forms
(Proposition 31.16)

d
(
f (Ω)

)
= D

(
f (Ω)

)
= D

(
∑aIΩi1 ∧·· ·∧Ωik

)

=∑
I
∑
j
aIΩi1 ∧·· ·∧DΩi j ∧·· ·∧Ωi2k

= 0.

(iii) Let I be an open interval containing the closed interval [0,1]. Then P× I is a
principal G-bundle overM× I. Denote by ρ the projection P× I → P to the first
factor. If ω0 and ω1 are two connections on P, then

ω̃ = (1− t)ρ∗ω0+ tρ∗ω1 (32.2)
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is a connection on P× I (Check the details). Moreover, if it : P → P× I is the
inclusion p �→ (p, t), then i∗0ω̃ = ω0 and i∗1ω̃ = ω1.
Let

Ω̃= dω̃+
1
2
[ω̃, ω̃]

be the curvature of the connection ω̃ . It pulls back under i0 to

i∗0Ω̃= dı∗0ω̃+
1
2
i∗0[ω̃, ω̃]

= dω0+
1
2
[i∗0ω̃, i∗0ω̃]

= dω0+
1
2
[ω0,ω0]

=Ω0,

the curvature of the connection ω0. Similarly, i∗1Ω̃ = Ω1, the curvature of the
connection ω1.
For any Ad(G)-invariant polynomial

f =∑aIα i1 · · ·α ik

of degree k on g,

i∗0 f (Ω̃) = i∗0∑aIΩ̃i1 ∧·· ·∧ Ω̃ik

=∑aIΩi1
0 ∧·· ·∧Ωik

0

= f (Ω0)

and

i∗1 f (Ω̃) = f (Ω1).

Note that i0 and i1 : P→ P× I are homotopic through the homotopy it . By the
homotopy axiom of de Rham cohomology, the cohomology classes [i∗0 f (Ω̃)]
and [i∗1 f (Ω̃)] are equal. Thus, [ f (Ω0)] = [ f (Ω1)], or

π∗[Λ0] = π∗[Λ1].

By the injectivity of π∗, [Λ0] = [Λ1], so the cohomology class of Λ is indepen-
dent of the connection. ��
Let π : P→M be a principal G-bundle with curvature form Ω. To every Ad(G)-

invariant polynomial on g, one can associate the cohomology class [Λ]∈H∗(M) such
that f (Ω) = π∗Λ. The cohomology class [Λ] is called the characteristic class of P
associated to f . Denote by Inv(g) the algebra of all Ad(G)-invariant polynomials
on g. The map

w : Inv(g)→ H∗(M)

f �→ [Λ], where f (Ω) = π∗Λ, (32.3)

that maps each Ad(G)-invariant polynomial to its characteristic class is called the
Chern–Weil homomorphism.



32.2 The Chern–Weil Homomorphism 291

Example 32.3. If the Lie group G is GL(r,C), then by Theorem B.10 the ring of
Ad(G)-invariant polynomials on gl(r,C) is generated by the coefficients fk(X) of
the characteristic polynomial

det(λ I+X) =
r

∑
k=0

fk(X)λ r−k.

The characteristic classes associated to f1(X), . . . , fk(X) are the Chern classes of a
principal GL(r,C)-bundle. These Chern classes generalize the Chern classes of the
frame bundle Fr(E) of a complex vector bundle E of rank r.

Example 32.4. If the Lie group G is GL(r,R), then by Theorem B.13 the ring of
Ad(G)-invariant polynomials on gl(r,R) is also generated by the coefficients fk(X)
of the characteristic polynomial

det(λ I+X) =
r

∑
k=0

fk(X)λ r−k.

The characteristic classes associated to f1(X), . . . , fk(X) generalize the Pontrjagin
classes of the frame bundle Fr(E) of a real vector bundle E of rank r. (For a real
frame bundle the coefficients fk(Ω) vanish for k odd.)

Problems

32.1. Polynomials on a vector space
Let V be a vector space with bases e1, . . . ,en and u1, . . . ,un. Prove that if a function
f : V → R is a polynomial of degree k with respect to the basis e1, . . . ,en, then it is
a polynomial of degree k with respect to the basis u1, . . . ,un. Thus, the notion of a
polynomial of degree k on a vector space V is independent of the choice of a basis.

32.2. Chern–Weil forms
In this problem we keep the notations of this section. Let e1, . . . ,en and u1, . . .un be
two bases for the Lie algebra g with dual bases α1, . . . ,αn and β 1, . . . ,β n, respec-
tively. Suppose

Ω=∑Ωiei =∑Ψ ju j

and

f =∑aIα i1 · · ·α ik =∑bIβ i1 · · ·β ik .

Prove that

∑aIΩi1 ∧·· ·∧Ωik =∑bIΨi1 ∧·· ·∧Ψik .

This shows that the definition of f (Ω) is independent of the choice of basis for g.

32.3. Connection on P× I
Show that the 1-form ω̃ in (32.2) is a connection on P× I.

32.4. Chern–Weil homomorphism
Show that the map w : Inv(g)→ H∗(M) in (32.3) is an algebra homomorphism.



Appendices

§A Manifolds

This appendix is a review, mostly without proofs, of the basic notions in the theory
of manifolds and differential forms. For more details, see [21].

A.1 Manifolds and Smooth Maps

We will be following the convention of classical differential geometry in which vec-
tor fields take on subscripts, differential forms take on superscripts, and coefficient
functions can have either superscripts or subscripts depending on whether they are
coefficient functions of vector fields or of differential forms. See [21, §4.7, p. 44] for
a more detailed explanation of this convention.

A manifold is a higher-dimensional analogue of a smooth curve or surface. Its
prototype is the Euclidean space Rn, with coordinates r1, . . . ,rn. Let U be an open
subset of Rn. A function f = ( f 1, . . . , f m) : U → R

m is smooth on U if the partial
derivatives ∂ k f/∂ r j1 · · ·∂ r jk exist onU for all integers k≥ 1 and all j1, . . . , jk. In this
book we use the terms “smooth” and “C∞” interchangeably.

A topological spaceM is locally Euclidean of dimension n if for every point p in
M, there is a homeomorphism φ of a neighborhoodU of pwith an open subset ofRn.
Such a pair (U,φ : U →R

n) is called a coordinate chart or simply a chart. If p ∈U ,
then we say that (U,φ) is a chart about p. A collection of charts {(Uα ,φα : Uα →
R
n)} isC∞ compatible if for every α and β , the transition function

φα ◦ φ−1
β : φβ (Uα ∩Uβ )→ φα(Uα ∩Uβ )

is C∞. A collection of C∞ compatible charts {(Uα ,φα : Uα → R
n)} that cover M is

called a C∞ atlas. A C∞ atlas is said to be maximal if it contains every chart that is
C∞ compatible with all the charts in the atlas.

© Springer International Publishing AG 2017
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Definition A.1. A topological manifold is a Hausdorff, second countable, locally
Euclidean topological space. By “second countable,” we mean that the space has
a countable basis of open sets. A smooth or C∞ manifold is a pair consisting of a
topological manifold M and a maximal C∞ atlas {(Uα ,φα)} on M. In this book all
manifolds will be smooth manifolds.

In the definition of a manifold, the Hausdorff condition excludes certain patho-
logical examples, while the second countability condition guarantees the existence
of a partition of unity, a useful technical tool that we will define shortly.

In practice, to show that a Hausdorff, second countable topological space is a
smooth manifold it suffices to exhibit aC∞ atlas, for by Zorn’s lemma everyC∞ atlas
is contained in a unique maximal atlas.

Example A.2. Let S1 be the circle defined by x2+ y2 = 1 in R
2, with open sets (see

Figure A.1)

U+
x = {(x,y) ∈ S1 | x> 0},

U−
x = {(x,y) ∈ S1 | x< 0},

U+
y = {(x,y) ∈ S1 | y> 0},

U−
y = {(x,y) ∈ S1 | y< 0}.

S1 U−
y

U+
y

U−
x U+

x

Fig. A.1. AC∞ atlas on S1.

Then {(U+
x ,y),(U−

x ,y),(U+
y ,x),(U−

y ,x)} is a C∞ atlas on S1. For example, the tran-
sition function from

the open interval ]0,1[ = x(U+
x ∩U−

y )→ y(U+
x ∩U−

y ) = ]−1,0[

is y=−√
1− x2, which is C∞ on its domain.

A function f : M → R
n on a manifold M is said to be smooth or C∞ at p ∈M if

there is a chart (U,φ) about p in the maximal atlas of M such that the function

f ◦ φ−1 : Rm ⊃ φ(U)→ R
n
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is C∞. The function f : M → R
n is said to be smooth or C∞ on M if it is C∞ at every

point of M. Recall that an algebra over R is a vector space together with a bilinear
map μ : A×A → A, called multiplication, such that under addition and multiplica-
tion, A becomes a ring. Under addition, multiplication, and scalar multiplication, the
set of allC∞ functions f : M → R is an algebra over R, denoted by C∞(M).

A map F : N →M between two manifolds is smooth or C∞ at p ∈ N if there is a
chart (U,φ) about p in N and a chart (V,ψ) about F(p) in M with V ⊃ F(U) such
that the composite map ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U)→ ψ(V )⊂ R

m is C∞ at φ(p). It is
smooth on N if it is smooth at every point of N. A smooth map F : N →M is called
a diffeomorphism if it has a smooth inverse, i.e., a smooth map G : M → N such that
F ◦ G= 1M and G ◦ F = 1N .

A typical matrix in linear algebra is usually an m× n matrix, with m rows and
n columns. Such a matrix represents a linear transformation F : Rn → R

m. For this
reason, we usually write a C∞ map as F : N →M, rather than F : M → N.

A.2 Tangent Vectors

The derivatives of a function f at a point p in R
n depend only on the values of f in

a small neighborhood of p. To make precise what is meant by a “small” neighbor-
hood, we introduce the concept of the germ of a function. Decree two C∞ functions
f : U → R and g : V → R defined on neighborhoods U and V of p to be equivalent
if there is a neighborhoodW of p contained in bothU and V such that f agrees with
g onW . The equivalence class of f : U → R is called the germ of f at p.

It is easy to verify that addition, multiplication, and scalar multiplication are
well-defined operations on the set C∞p (M) of germs of C∞ real-valued functions at p
inM. These three operations make C∞p (M) into an algebra over R.

Definition A.3. A point-derivation at a point p of a manifold M is a linear map
D : C∞p (M)→ R such that for any f , g ∈C∞p (M),

D( f g) = (Df )g(p)+ f (p)Dg.

A point-derivation at p is also called a tangent vector at p. The set of all tangent
vectors at p is a vector space TpM, called the tangent space of M at p.

Example A.4. If r1, . . . ,rn are the standard coordinates on R
n and p ∈ R

n, then the
usual partial derivatives

∂
∂ r1

∣
∣
∣
∣
p
, . . . ,

∂
∂ rn

∣
∣
∣
∣
p

are tangent vectors at p that form a basis for the tangent space Tp(Rn).

At a point p in a coordinate chart (U,φ) = (U,x1, . . . ,xn), where xi = ri ◦ φ is the
ith component of φ , we define the coordinate vectors ∂/∂xi|p ∈ TpM by

∂
∂xi

∣
∣
∣
∣
p
f =

∂
∂ ri

∣
∣
∣
∣
φ(p)

f ◦ φ−1 for each f ∈C∞p (M).
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If F : N →M is aC∞ map, then at each point p ∈ N its differential

F∗,p : TpN → TF(p)M, (A.1)

is the linear map defined by

(F∗,pXp)(h) = Xp(h ◦ F)

for Xp ∈ TpN and h ∈ C∞F(p)(M). Usually the point p is clear from context and we
may write F∗ instead of F∗,p. It is easy to verify that if F : N → M and G : M → P
are C∞ maps, then for any p ∈ N,

(G ◦ F)∗,p = G∗,F(p) ◦ F∗,p,

or, suppressing the points,

(G ◦ F)∗ = G∗ ◦ F∗.

A.3 Vector Fields

A vector field X on a manifold M is the assignment of a tangent vector Xp ∈ TpM to
each point p ∈ M. At every p in a chart (U,x1, . . . ,xn), since the coordinate vectors
∂/∂xi|p form a basis of the tangent space TpM, the vector Xp can be written as a
linear combination

Xp =∑
i
ai(p)

∂
∂xi

∣
∣
∣
∣
p
with ai(p) ∈ R.

As p varies overU , the coefficients ai(p) become functions onU . The vector field X
is said to be smooth orC∞ ifM has aC∞ atlas such that on each chart (U,x1, . . . ,xn)
of the atlas, the coefficient functions ai in X = ∑ai∂/∂xi are C∞. We denote the set
of allC∞ vector fields onM byX(M). It is a vector space under the addition of vector
fields and scalar multiplication by real numbers. As a matter of notation, we write
tangent vectors at p as Xp,Yp,Zp ∈ TpM, or if the point p is understood from context,
as v1,v2, . . . ,vk ∈ TpM. As a shorthand, we sometimes write ∂i for ∂/∂xi.

A frame of vector fields on an open set U ⊂ M is a collection of vector fields
X1, . . . ,Xn on U such that at each point p ∈U , the vectors (X1)p, . . . ,(Xn)p form a
basis for the tangent space TpM. For example, in a coordinate chart (U,x1, . . . ,xn),
the coordinate vector fields ∂/∂x1, . . . ,∂/∂xn form a frame of vector fields onU .

AC∞ vector field X on a manifoldM gives rise to a linear operator on the vector
space C∞(M) of C∞ functions on M by the rule

(X f )(p) = Xp f for f ∈C∞(M) and p ∈M.

To show that X f is a C∞ function on M, it suffices to write X in terms of local
coordinates x1, . . . ,xn in a neighborhood of p, say X =∑ai∂/∂xi. Since X is assumed
C∞, all the coefficients ai are C∞. Therefore, if f is C∞, then X f = ∑ai∂ f/∂xi is
also.
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The Lie bracket of two vector fields X ,Y ∈ X(M) is the vector field [X ,Y ] de-
fined by

[X ,Y ]p f = Xp(Y f )−Yp(X f ) for p ∈M and f ∈C∞p (M). (A.2)

So defined, [X ,Y ]p is a point-derivation at p (Problem A.3(a)) and therefore [X ,Y ]
is indeed a vector field on M. The formula for [X ,Y ] in local coordinates (Prob-
lem A.3(b)) shows that if X and Y are C∞, then so is [X ,Y ].

If f : N →M is a C∞ map, its differential f∗,p : TpN → Tf (p)M pushes forward a
tangent vector at a point in N to a tangent vector in M. It should be noted, however,
that in general there is no push-forward map f∗ : X(N)→X(M) for vector fields. For
example, when f is not one-to-one, say f (p) = f (q) for p �= q in N, it may happen
that for some X ∈ X(N), f∗,pXp �= f∗,qXq; in this case, there is no way to define f∗X
so that ( f∗X) f (p) = f∗,pXp for all p ∈ N. Similarly, if f : N → M is not onto, then
there is no natural way to define f∗X at a point ofM not in the image of f . Of course,
if f : N → M is a diffeomorphism, then the pushforward f∗ : X(N) → X(M) is well
defined.

A.4 Differential Forms

For k ≥ 1, a k-form or a form of degree k on M is the assignment to each p in M of
an alternating k-linear function

ωp : TpM×·· ·×TpM
︸ ︷︷ ︸

k copies

→ R.

Here “alternating” means that for every permutation σ of the set {1,2, . . . ,k} and
v1, . . . ,vk ∈ TpM,

ωp(vσ(1), . . . ,vσ(k)) = (sgnσ)ωp(v1, . . . ,vk), (A.3)

where sgnσ , the sign of the permutation σ , is ±1 depending on whether σ is even
or odd. We define a 0-form to be the assignment of a real number to each p ∈M; in
other words, a 0-form on M is simply a real-valued function on M. When k = 1, the
condition of being alternating is vacuous. Thus, a 1-form onM is the assignment of a
linear function ωp : TpM → R to each p inM. For k < 0, a k-form is 0 by definition.

An alternating k-linear function on a vector space V is also called a k-covector
on V . As above, a 0-covector is a constant and a 1-covector on V is a linear function
f : V → R. Let Ak(V ) be the vector space of all k-covectors on V . Then A0(V ) = R

and A1(V ) =V∨ :=Hom(V,R), the dual vector space ofV . In this language a k-form
on M is the assignment of a k-covector ωp ∈ Ak(TpM) to each point p inM.

Let Sk be the group of all permutations of {1,2, . . . ,k}. A (k, �)-shuffle is a
permutation σ ∈ Sk+� such that

σ(1)< · · ·< σ(k) and σ(k+1)< · · ·< σ(k+ �).
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The wedge product of a k-covector α and an �-covector β on a vector space V is by
definition the (k+ �)-linear function

(α ∧β )(v1, . . . ,vk+�) =∑(sgnσ)α(vσ(1), . . . ,vσ(k))β (vσ(k+1), . . . ,vσ(k+�)), (A.4)

where the sum runs over all (k, �)-shuffles. For example, if α and β are 1-covectors,
then

(α ∧β )(v1,v2) = α(v1)β (v2)−α(v2)β (v1).
The wedge of a 0-covector, i.e., a constant c, with another covector ω is simply
scalar multiplication. In this case, in keeping with the traditional notation for scalar
multiplication, we often replace the wedge by a dot or even by nothing: c∧ω =
c ·ω = cω .

The wedge product α ∧β is a (k+ �)-covector; moreover, the wedge operation
∧ is bilinear, associative, and anticommutative in its two arguments. Anticommuta-
tivity means that

α ∧β = (−1)degα degββ ∧α.
Proposition A.5. If α1, . . . ,αn is a basis for the 1-covectors on a vector space V ,
then a basis for the k-covectors on V is the set

{α i1 ∧·· ·∧α ik | 1≤ i1 < · · ·< ik ≤ n}.
A k-tuple of integers I = (i1, . . . , ik) is called a multi-index. If i1 ≤ ·· · ≤ ik, we

call I an ascending multi-index, and if i1 < · · · < ik, we call I a strictly ascending
multi-index. To simplify the notation, we will write α I = α i1 ∧·· ·∧α ik .

As noted earlier, for a point p in a coordinate chart (U,x1, . . . ,xn), a basis for the
tangent space TpM is

∂
∂x1

∣
∣
∣
∣
p
, . . . ,

∂
∂xn

∣
∣
∣
∣
p
.

Let (dx1)p, . . . ,(dxn)p be the dual basis for the cotangent space A1(TpM) = T ∗
p M,

i.e.,

(dxi)p

(
∂
∂x j

∣
∣
∣
∣
p

)

= δ ij.

By Proposition A.5, if ω is a k-form onM, then at each p ∈U , ωp is a linear combi-
nation:

ωp =∑
I
aI(p)(dx

I)p =∑
I
aI(p)(dx

i1)p∧·· ·∧ (dxik)p.

We say that the k-form ω is smooth if M has an atlas {(U,x1, . . . ,xn)} such that on
each U , the coefficients aI : U → R of ω are smooth. By differential k-forms, we
will mean smooth k-forms on a manifold.

A frame of differential k-forms on an open set U ⊂ M is a collection of dif-
ferential k-forms ω1, . . . ,ωr on U such that at each point p ∈ U , the k-covectors
(ω1)p, . . . ,(ωr)p form a basis for the vector space Ak(TpM) of k-covectors on the
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tangent space at p. For example, on a coordinate chart (U,x1, . . . ,xn), the k-forms
dxI = dxi1 ∧·· ·∧dxik , 1≤ i1 < · · ·< ik ≤ n, constitute a frame of differential k-forms
onU .

A subset B of a left R-module V is called a basis if every element of V can be
written uniquely as a finite linear combination ∑ribi, where ri ∈ R and bi ∈ B. An
R-module with a basis is said to be free, and if the basis is finite with n elements, then
the free R-module is said to be of rank n. It can be shown that if a free R-module has
a finite basis, then any two bases have the same number of elements, so that the rank
is well defined. We denote the rank of a free R-module V by rkV .

Let Ωk(M) denote the vector space of C∞ k-forms on M and let

Ω∗(M) =
n⊕

k=0

Ωk(M).

If (U,x1, . . . ,xn) is a coordinate chart onM, thenΩk(U) is a free module overC∞(U)
of rank

(n
k

)
, with basis dxI as above.

An algebra A is said to be graded if it can be written as a direct sum A=
⊕∞

k=0Ak

of vector spaces such that under multiplication, Ak ·A� ⊂ Ak+�. The wedge product
∧ makes Ω∗(M) into an anticommutative graded algebra over R.

A.5 Exterior Differentiation on a Manifold

An exterior derivative on a manifold M is a linear operator d : Ω∗(M) → Ω∗(M),
satisfying the following three properties:

(1) d is an antiderivation of degree 1, i.e., d increases the degree by 1 and for ω ∈
Ωk(M) and τ ∈Ω�(M),

d(ω ∧ τ) = dω ∧ τ+(−1)kω ∧dτ;

(2) d2 = d ◦ d = 0;
(3) on a 0-form f ∈C∞(M),

(d f )p(Xp) = Xp f for p ∈M and Xp ∈ TpM.

By induction the antiderivation property (1) extends to more than two factors; for
example,

d(ω ∧ τ ∧η) = dω ∧ τ ∧η+(−1)degωω ∧dτ ∧η+(−1)degω∧τω ∧ τ ∧dη .

The existence and uniqueness of an exterior derivative on a general manifold is
established in [21, Section 19]. To develop some facility with this operator, we will
examine the case whenM is covered by a single coordinate chart (U,x1, . . . ,xn). This
case can be used to define and compute locally on a manifold.

Proposition A.6. Let (U,x1, . . . ,xn) be a coordinate chart. Suppose d : Ω∗(U) →
Ω∗(U) is an exterior derivative. Then



300 §A Manifolds

(i) for any f ∈Ω0(U),

d f =∑ ∂ f
∂xi

dxi;

(ii) d(dxI) = 0;
(iii) for any aI dxI ∈Ωk(M), d(aI dxI) = daI ∧dxI.

Proof. (i) Since (dx1)p, . . . ,(dxn)p is a basis of 1-covectors at each point p ∈ U ,
there are constants ai(p) such that

(d f )p =∑ai(p)(dx
i)p.

Suppressing p, we may write

d f =∑ai dx
i.

Applying both sides to the vector field ∂/∂xi gives

d f

(
∂
∂x j

)

=∑
i
ai dx

i
(
∂
∂x j

)

=∑
i
aiδ ij = a j.

On the other hand, by property (3) of d,

d f

(
∂
∂x j

)

=
∂
∂x j

( f ).

Hence, a j = ∂ f/∂x j and d f = ∑(∂ f/∂x j)dx j.

(ii) By the antiderivation property of d,

d(dxI) = d(dxi1 ∧·· ·∧dxik) =∑
j
(−1) j−1dxi1 ∧·· ·∧ddxi j ∧·· ·∧dxik

= 0 since d2 = 0.

(iii) By the antiderivation property of d,

d
(
aI dx

I)= daI ∧dxI +aI d(dx
I)

= daI ∧dxI since d(dxI) = 0. ��
Proposition A.6 proves the uniqueness of exterior differentiation on a coordinate

chart (U,x1, . . . ,xn). To prove its existence, we define d by two of the formulas of
Proposition A.6:

(i) if f ∈Ω0(U), then d f = ∑(∂ f/∂xi)dxi;
(iii) if ω = ∑aI dxI ∈Ωk(U) for k ≥ 1, then dω = ∑daI ∧dxI .

Next we check that so defined, d satisfies the three properties of exterior differ-
entiation.

(1) For ω ∈Ωk(U) and τ ∈Ω�(U),

d(ω ∧ τ) = (dω)∧ τ+(−1)kω ∧dτ . (A.5)
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Proof. Suppose ω = ∑aI dxI and τ = ∑bJ dxJ . On functions, d( f g) = (d f )g+
f (dg) is simply another manifestation of the ordinary product rule, since

d( f g) =∑ ∂
∂xi

( f g)dxi

=∑
(
∂ f
∂xi

g+ f
∂g
∂xi

)

dxi

=

(

∑ ∂ f
∂xi

dxi
)

g+ f∑ ∂g
∂xi

dxi

= (d f )g+ f dg.

Next suppose k ≥ 1. Since d is linear and ∧ is bilinear over R, we may assume
that ω = aI dxI and τ = bJ dxJ , each consisting of a single term. Then

d(ω ∧ τ) = d(aIbJ dx
I ∧dxJ)

= d(aIbJ)∧dxI ∧dxJ (definition of d)

= (daI)bJ ∧dxI ∧dxJ +aI dbJ ∧dxI ∧dxJ

(by the degree 0 case)

= daI ∧dxI ∧bJ dx
J +(−1)kaI dx

I ∧dbJ ∧dxJ

= dω ∧ τ+(−1)kω ∧dτ . ��

(2) d2 = 0 on Ωk(U).

Proof. This is a consequence of the fact that the mixed partials of a function are
equal. For f ∈Ω0(U),

d2 f = d

(
n

∑
i=1

∂ f
∂xi

dxi
)

=
n

∑
j=1

n

∑
i=1

∂ 2 f
∂x j∂xi

dx j ∧dxi.

In this double sum, the factors ∂ 2 f/∂x j∂xi are symmetric in i, j, while dx j ∧dxi are
skew-symmetric in i, j. Hence, for each pair i< j there are two terms

∂ 2 f
∂xi∂x j

dxi∧dx j,
∂ 2 f
∂x j∂xi

dx j ∧dxi

that add up to zero. It follows that d2 f = 0.
For ω = ∑aI dxI ∈Ωk(U), where k ≥ 1,

d2ω = d
(
∑daI ∧dxI

)
(by the definition of dω)

=∑(d2aI)∧dxI +daI ∧d(dxI)

= 0.

In this computation, d2aI = 0 by the degree 0 case, and d(dxI) = 0 follows as in the
proof of Proposition A.6(ii) by the antiderivation property and the degree 0 case. ��
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(3) For f aC∞ function and X aC∞ vector field on (U,x1, . . . ,xn), (d f )(X) = X f .

Proof. Suppose X = ∑a j ∂/∂x j. Then

(d f )(X) =

(

∑ ∂ f
∂xi

dxi
)(

∑a j ∂
∂x j

)

=∑ai
∂ f
∂xi

= X f . ��

A.6 Exterior Differentiation on R
3

On R
3 with coordinates x,y,z, every smooth vector field X is uniquely a linear com-

bination

X = a
∂
∂x

+b
∂
∂y

+ c
∂
∂ z

with coefficient functions a,b,c ∈C∞(R3). Thus, the vector space X(R3) of smooth
vector fields on R

3 is a free module of rank 3 over C∞(R3) with basis {∂/∂x,∂/∂y,
∂/∂ z}. Similarly, Ω3(R3) is a free module of rank 1 over C∞(R3) with basis {dx∧
dy∧ dz}, while Ω1(R3) and Ω2(R3) are free modules of rank 3 over C∞(R3) with
bases {dx,dy,dz} and {dy∧ dz, dz∧ dx, dx∧ dy}, respectively. So the following
identifications are possible:

functions = 0-forms ←→ 3-forms
f = f ←→ f dx∧dy∧dz

and

vector fields ↔ 1-forms ↔ 2-forms
X = 〈a,b,c〉 ↔ adx+bdy+ cdz ↔ ady∧dz+bdz∧dx+ cdx∧dy.

We will write fx = ∂ f/∂x, fy = ∂ f/∂y, and fz = ∂ f/∂ z. On functions,

d f = fx dx+ fy dy+ fz dz.

On 1-forms,

d(adx+bdy+ cdz) = (cy−bz)dy∧dz− (cx−az)dz∧dx+(bx−ay)dx∧dy.

On 2-forms,

d(ady∧dz+bdz∧dx+ cdx∧dy) = (ax+by+ cz)dx∧dy∧dz.

Identifying forms with vector fields and functions, we have the following correspon-
dences:

d(0-form)←→ gradient of a function,

d(1-form)←→ curl of a vector field,

d(2-form)←→ divergence of a vector field.
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A.7 Pullback of Differential Forms

Unlike vector fields, which in general cannot be pushed forward under a C∞ map,
differential forms can always be pulled back. Let F : N → M be a C∞ map. The
pullback of a C∞ function f on M is the C∞ function F∗ f := f ◦ F on N. This
defines the pullback on C∞ 0-forms. For k > 0, the pullback of a k-form ω on M is
the k-form F∗ω on N defined by

(F∗ω)p(v1, . . . ,vk) = ωF(p)(F∗,pv1, . . . ,F∗,pvk)

for p ∈ N and v1, . . . ,vk ∈ TpM. From this definition, it is not obvious that the pull-
back F∗ω of aC∞ form ω isC∞. To show this, we first derive a few basic properties
of the pullback.

Proposition A.7. Let F : N →M be a C∞ map of manifolds. If ω and τ are k-forms
and σ is an �-form on M, then

(i) F∗(ω+ τ) = F∗ω+F∗τ;
(ii) for any real number a, F∗(aω) = aF∗ω;
(iii) F∗(ω ∧σ) = F∗ω ∧F∗σ ;
(iv) for any C∞ function h on M, dF∗h= F∗dh.

Proof. The first three properties (i), (ii), (iii) follow directly from the definitions. To
prove (iv), let p ∈ N and Xp ∈ TpN. Then

(dF∗h)p(Xp) = Xp(F
∗h) (property (3) of d)

= Xp(h ◦ F) (definition of F∗h)

and

(F∗dh)p(Xp) = (dh)F(p)(F∗,pXp) (definition of F∗)

= (F∗,pXp)h (property (3) of d)

= Xp(h ◦ F). (definition of F∗,p)

Hence,

dF∗h= F∗dh. ��
We now prove that the pullback of a C∞ form is C∞. On a coordinate chart

(U,x1, . . . ,xn) inM, aC∞ k-form ω can be written as a linear combination

ω =∑aI dx
i1 ∧·· ·∧dxik ,

where the coefficients aI are C∞ functions onU . By the preceding proposition,

F∗ω =∑(F∗aI)d(F∗xi1)∧·· ·∧d(F∗xik)

=∑(aI ◦ F)d(xi1 ◦ F)∧·· ·∧d(xik ◦ F),

which shows that F∗ω isC∞, because it is a sum of products ofC∞ functions andC∞

1-forms.
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Proposition A.8. Suppose F : N →M is a smooth map. OnC∞ k-forms, dF∗ = F∗d.

Proof. Let ω ∈ Ωk(M) and p ∈ M. Choose a chart (U,x1, . . . ,xn) about p in M.
OnU ,

ω =∑aI dx
i1 ∧·· ·∧dxik .

As computed above,

F∗ω =∑(aI ◦ F)d(xi1 ◦ F)∧·· ·∧d(xik ◦ F).

Hence,

dF∗ω =∑d(aI ◦ F)∧d(xi1 ◦ F)∧·· ·∧d(xik ◦ F)

=∑d(F∗aI)∧d(F∗xi1)∧·· ·∧d(F∗xik)

=∑F∗daI ∧F∗dxi1 ∧·· ·∧F∗dxik

(dF∗ = F∗d on functions by Prop. A.7(iv))

=∑F∗(daI ∧dxi1 ∧·· ·∧dxik)

(F∗ preserves the wedge product by Prop. A.7(iii))

= F∗dω. ��
In summary, for anyC∞ map F : N →M, the pullback map F∗ : Ω∗(M)→Ω∗(N)

is an algebra homomorphism that commutes with the exterior derivative d.

Example A.9 (Pullback under the inclusion map of an immersed submanifold). Let
N and M be manifolds. A C∞ map f : N → M is called an immersion if for all
p ∈ N, the differential f∗,p : TpN → Tf (p)M is injective. A subset S of M with a
manifold structure such that the inclusion map i : S ↪→ M is an immersion is called
an immersed submanifold of M. An example is the image of a line with irrational
slope in the torus R2/Z2. An immersed submanifold need not have the subspace
topology.

If ω ∈Ωk(M), p ∈ S, and v1, . . . ,vk ∈ TpS, then by the definition of the pullback,

(i∗ω)p(v1, . . . ,vk) = ωi(p)(i∗v1, . . . , i∗vk) = ωp(v1, . . . ,vk).

Thus, the pullback of ω under the inclusion map i : S ↪→M is simply the restriction
of ω to the submanifold S. We also adopt the more suggestive notation ω|S for i∗ω .

Problems

A.1. Connected components

(a) The connected component of a point p in a topological space S is the largest connected
subset of S containing p. Show that the connected components of a manifold are open.

(b) Let Q be the set of rational numbers considered as a subspace of the real line R. Show
that the connected component of p ∈ Q is the singleton set {p}, which is not open in Q.
Which condition in the definition of a manifold does Q violate?
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A.2. Path-connectedness versus connectedness
A topological space S is said to be locally path-connected at a point p ∈ S if for every neigh-
borhoodU of p, there is a path-connected neighborhood V of p such that V ⊂U . The space S
is locally path-connected if it is locally path-connected at every point p ∈ S. A path compo-
nent of S is a maximal path-connected subset of S.

(a) Prove that in a locally path-connected space S, every path component is open.
(b) Prove that a locally path-connected space is path-connected if and only if it is connected.

A.3. The Lie bracket
Let X and Y be C∞ vector fields on a manifold M, and p a point in M.

(a) Define [X ,Y ]p by (A.2). Show that for f ,g ∈C∞p (M),

[X ,Y ]p( f g) = ([X ,Y ]p f )g(p)+ f (p)([X ,Y ]pg).

Thus, [X ,Y ]p is a tangent vector at p.
(b) Suppose X = ∑ai∂i and Y = ∑b j∂ j in a coordinate neighborhood (U,x1, . . . ,xn) of p in

M. Prove that
[X ,Y ] =∑

i, j
(a j∂ jbi−b j∂ jai)∂i.
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§B Invariant Polynomials

Let X = [xij] be an r× r matrix with indeterminate entries xij. Over any field F ,

a polynomial P(X) ∈ F [xij] in the r2 variables xij is said to be invariant if for all
invertible matrices A in the general linear group GL(r,F), we have

P(A−1XA) = P(X).

Over the field of real or complex numbers, there are two sets of obviously invariant
polynomials: (1) the coefficients fi(X) of the characteristic polynomial of −X :

det(λ I+X) =
r

∑
k=0

fk(X)λ r−k,

and (2) the trace polynomials Σk(X) = tr(Xk). This appendix contains results on
invariant polynomials needed in the sections on characteristic classes. We discuss
first the distinction between polynomials and polynomial functions. Then we show
that a polynomial identity with integer coefficients that holds over the reals holds
over any commutative ring with 1. This is followed by the theorem that over the
field of real or complex numbers, the ring of invariant polynomials is generated by
the coefficients of the characteristic polynomial of −X . Finally, we prove Newton’s
identity relating the elementary symmetric polynomials to the power sums. As a
corollary, the ring of invariant polynomials over R or C can also be generated by the
trace polynomials.

B.1 Polynomials Versus Polynomial Functions

Let R be a commutative ring with identity 1. A polynomial in n variables over R is an
element of the R-algebra R[x1, . . . ,xn], where x1, . . . , xn are indeterminates. A poly-
nomial P(x) ∈ R[x1, . . . ,xn] defines a function P̂ : Rn → R by evaluation. Hence, if
Fun(Rn,R) denotes the R-algebra of functions from Rn to R, then there is a map

ε : R[x1, . . . ,xn]→ Fun(Rn,R),

P �→ P̂.

By the definition of addition and multiplication of functions, the map ε is clearly
an R-algebra homomorphism. An element in the image of ε is called a polynomial
function over R.

Example. Let F be the field Z/pZ for a prime p. The set F× = (Z/pZ)× of nonzero
elements of F forms a group of order p− 1 under multiplication. By Lagrange’s
theorem from group theory, xp−1 = 1 for all x ∈ F×. Therefore, allowing x = 0, we
get xp = x for all x ∈ F . Thus, although xp and x are distinct polynomials in F [x],
they give rise to the same polynomial functions in Fun(Fn,F). In this example, the
map

ε : F [x]→ Fun(F,F)

is not injective.
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Proposition B.1. If F is an infinite field (of any characteristic), then a polynomial
function P̂ : Fn → F is the zero function if and only if P is the zero polynomial; i.e.,
the map

ε : F [x1, . . . ,xn]→ Fun(Fn,F)

is injective.

Proof. If P is the zero polynomial, then of course P̂ is the zero function. We prove
the converse by induction on n. Consider first the case n = 1. Suppose P(x) is
a polynomial of degree m in x such that P̂ is the zero function. Since a nonzero
polynomial of degree m can have at most m zeros, and P(x) vanishes on an infinite
field, P(x) must be the zero polynomial.

Next, we make the induction hypothesis that ε is injective whenever the number
of variables is ≤ n−1. Let

P(x1, . . . ,xn−1,xn) =
m

∑
k=0

Pk(x1, . . . ,xn−1)x
k
n,

where Pk(x1, . . . ,xn−1) are polynomials in n− 1 variables. Suppose P̂ is the zero
function on Fn. Fix (a1, . . . ,an−1) ∈ Fn−1. Then P(a1, . . . ,an−1,xn) is a polynomial
in xn, and P̂(a1, . . . ,an−1,xn) ∈ Fun(F,F) is the zero function. By the one-variable
case, P(a1, . . . ,an−1,xn) is the zero polynomial. It follows that all its coefficients
Pk(a1, . . . ,ak−1) are zero. Since (a1, . . . ,an−1) is an arbitrary point of Fn−1, the poly-
nomial function P̂k is the zero function on Fn−1. By the induction hypothesis, the
Pk’s are all zero polynomials. Hence, P(x1, . . . ,xn−1,xn) =∑m

k=0Pk(x1, . . . ,xn−1)xkn is
the zero polynomial. ��

Thus, for an infinite field F , polynomial functions on Fn may be identified with
polynomials in F [x1, . . . ,xn].

B.2 Polynomial Identities

Using Proposition B.1, we can derive the following principle by which a polynomial
identity over one field can imply the same identity over any commutative ring with 1.
Contrary to expectation, in this principle a special case implies a general case.

Proposition B.2 (Principle of extension of algebraic identities). If a polynomial
P(x) ∈ Z[x1, . . . ,xn] with integer coefficients is identically zero when evaluated on
a field F of characteristic zero, then it is identically zero when evaluated on any
commutative ring R with 1.

Proof. Because F has characteristic zero, the canonical map

Z→ F, k �→ k ·1,
is an injection. The injectionZ→F induces an injectionZ[x1, . . . ,xn]→F [x1, . . . ,xn]
of polynomial rings, so that P(x) ∈ Z[x1, . . . ,xn] may be viewed as a polynomial
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over F . By hypothesis, the polynomial function P̂ on Fn is identically zero. Since F
is an infinite field, we conclude from Proposition B.1 that P(x) is the zero polynomial
in Z[x1, . . . ,xn].

If R is a commutative ring with 1, then there is a canonical map

Z→ R, k �→ k ·1,
that induces a canonical map Z[x1, . . . ,xn]→ R[x1, . . . ,xn], which need not be an in-
jection, but under which the zero polynomial P(x) inZ[x] goes to the zero polynomial
in R[x]. This means that P(x) will be identically zero when evaluated on R. ��
Example B.3 (A determinantal identity). Let aij, b

i
j, 1 ≤ i, j ≤ r, be indeterminates,

and let P(A,B) be the polynomial

P(A,B) = det(AB)−det(A)det(B) ∈ Z[aij,b
i
j].

It is well known that if A and B are real r× r matrices, then P(A,B) is zero. By the
principle of extension of algebraic identities (Proposition B.2), for any commutative
ring R with 1 and for all A,B ∈ Rr×r,

P(A,B) = det(AB)−det(A)det(B) = 0.

Thus, the truth of the identity det(AB) = det(A)det(B) over R implies its truth over
any commutative ring R with 1.

In particular, over any commutative ring R with 1, if a matrix A ∈ Rr×r is invert-
ible in Rr×r, then det(A−1) = (detA)−1.

B.3 Invariant Polynomials on gl(r,F)

Let F be a field, and gl(r,F) = Fr×r the F-vector space of r× r matrices with entries
in F . A polynomial P(X) on gl(r,F) is an element of the commutative F-algebra
F [xij], i.e., it is a polynomial in the indeterminates xij, 1 ≤ i, j ≤ r. An invertible
matrix A ∈ GL(r,F) acts on polynomials on gl(r,F) by

(A ·P)(X) = P(A−1XA).

A polynomial P(X) on gl(r,F) is said to be invariant if

P(A−1XA) = P(X) for all A ∈ GL(r,F).

Example B.4 (Determinant). Let F be any field and R=F [xij] the polynomial algebra
over F in r× r indeterminates. If A ∈ GL(r,F), then

A ∈ Fr×r ⊂ Rr×r

and X = [xij] is a matrix of indeterminates in Rr×r, so by Example B.3,

det(A−1XA) = (detA)−1 detX detA= detX .

Therefore, det(X) ∈ F [xij] is an invariant polynomial on gl(r,F).
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Although an invariant polynomial on gl(r,F) applies a priori to matrices with
entries in F , it can in fact be applied to any commutative F-algebra R with identity.

Proposition B.5. Suppose P(X)∈F [xij] is an invariant polynomial on gl(r,F), and R
is a commutative F-algebra with identity 1. Then for any A∈GL(r,F) and X ∈ Rr×r,

P(A−1XA) = P(X).

Proof. Fix an invertible matrix A ∈GL(r,F). Since P(X) is invariant on gl(r,F), the
polynomial

PA(X) := P(A−1XA)−P(X) ∈ F [xij]

is by definition the zero polynomial. If R is a commutative F-algebra with identity
1, then the canonical map F → R, f �→ f · 1, is injective and induces an injection
F [xij] ↪→ R[xij], under which the zero polynomial PA(X)maps to the zero polynomial.

Therefore, PA(X) = P(A−1XA)−P(X) is the zero polynomial in R[xij]. It follows
that for any X ∈ Rr×r,

P(A−1XA) = P(X). ��
Let λ , xij be indeterminates. Then

det(λ I+X) = λ r+ f1(X)λ r−1+ · · · fr−1(X)λ + fr(X)

=
r

∑
k=0

fk(X)λ r−k.

The polynomials fk(X) ∈ Z[xij] have integer coefficients. For any field F , the
canonical map Z→ F is not necessarily injective, for example, if the field F has pos-
itive characteristic. So the induced map ϕ : Z[xij]→ F [xij] is not necessarily injective.
Although it is possible to define the polynomials fk over any field, we will restrict
ourselves to fields F of characteristic zero, for in this case the canonical maps Z→ F
and Z[xij]→ F [xij] are injective, so we may view the fk(X)’s in Z[xij] as polynomials
over F .

Proposition B.6. Let F be a field of characteristic zero. Then the coefficients fk(X)
of the characteristic polynomial det(λ I+X) are invariant polynomials on gl(r,F).

Proof. With λ , xij as indeterminates, we take R to be the commutative ring F [λ ,xij]
with identity. Since det(X) is an invariant polynomial on gl(r,F) (Example B.4), by
Proposition B.5 for any A ∈ GL(r,F),

det(λ I+X) = det(A−1(λ I+X)A)

= det(λ I+A−1XA).

Hence,
r

∑
k=0

fk(X)λ r−k =
r

∑
k=0

fk(A
−1XA)λ r−k.
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Comparing the coefficients of λ r−k on both sides gives

fk(A
−1XA) = fk(X) for all A ∈ GL(r,F).

This proves that all the polynomials fk(X) are invariant polynomials on gl(r,F). ��
For each integer k ≥ 0, the kth trace polynomial is defined to be

Σk(X) = tr(Xk) ∈ Z[xij].

Since tr(X) = f1(X) is an invariant polynomial on gl(r,F), for any A ∈ GL(r,F),

Σk(A−1XA) = tr(A−1XkA) = tr(Xk) = Σk(X).

So the trace polynomials Σk(X) are also invariant polynomials on gl(r,F).

B.4 Invariant Complex Polynomials

The goal of this subsection is to determine all complex polynomials on gl(r,C) inv-
ariant under conjugation by elements of GL(r,C).

Suppose X ∈ gl(r,C) is a diagonalizable matrix of complex numbers (as opposed
to indeterminates). Because X is diagonalizable, there exists a nonsingular matrix
A ∈ GL(r,C) such that

A−1XA=

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦= diag(t1, . . . , tr),

with t1, . . . , tr being the eigenvalues of X . For such a matrix X ,

tr(X) = tr(A−1XA) =∑ ti,

det(X) = det(A−1XA) =∏ ti.

Thus, tr(X) and det(X) can be expressed as symmetric polynomials of their eigen-
values. This example suggests that to an invariant polynomial P(X) on gl(r,C), one
can associate a symmetric polynomial P̃(t1, . . . , tr) such that if t1, . . . , tr are the eigen-
values of a complex matrix X ∈ gl(r,C), then P(X) = P̃(t1, . . . , tr). Note that ∑ ti
and ∏ ti are simply the restriction of tr(X) and det(X), respectively, to the diagonal
matrix diag(t1, . . . , tr).

Let Inv(gl(r,C)) be the algebra of all invariant complex polynomials on gl(r,C),
and C[t1, . . . , tr]Sr the algebra of complex symmetric polynomials in t1, . . . , tr. To an
invariant polynomial P(X) ∈ Inv(gl(r,C)), we associate the polynomial

P̃(t1, . . . , tr) = P

⎛

⎜
⎝

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦

⎞

⎟
⎠ .
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If σ ∈ Sr is a permutation of {1, . . . ,r}, the permutation matrix Pσ ∈GL(r,Z) is
the matrix whose (i,σ(i))-entry is 1 and whose other entries are all 0. For example,

P(12) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1
1 0

1
. . .

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

If σ is a transposition, then Pσ is called a transposition matrix.
It is easy to check that conjugating the diagonal matrix diag(t1, . . . , tr) by the

transposition matrix P(i j) interchanges ti and t j in diag(t1, . . . , tr). Consequently,
by conjugating diag(t1, . . . , tr) by a product of transposition matrices, we can make
t1, . . . , tr appear in any order. Thus, P̃(t1, . . . , tr) is invariant under all permutations of
t1, . . . , tr, i.e., it is a symmetric polynomial in t1, . . . , tr.

Theorem B.7. The map

ϕ : Inv(gl(r,C))→ C[t1, . . . , tr]
Sr

P(X) �→ P̃(t1, . . . , tr) = P

⎛

⎜
⎝

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦

⎞

⎟
⎠

given by restricting an invariant polynomial P(X) to the diagonal matrix
diag(t1, . . . , tr) is an isomorphism of algebras over C.

The elementary symmetric polynomials in a set of variables t1, . . . , tr are the
polynomials

σ0 = 1, σ1 =∑ ti, σ2 =∑
i< j

tit j,

...

σk = ∑
1≤i1<i2<···<ik≤r

ti1ti2 · · · tik ,

...

σr = t1 · · · tr.

Example B.8. For any indeterminate λ , let

Pλ (X) = det(λ I+X) =
r

∑
k=0

fk(X)λ r−k.
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Then

ϕ(Pλ (X)) = Pλ

⎛

⎜
⎝

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦

⎞

⎟
⎠= det

⎛

⎜
⎝λ I+

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦

⎞

⎟
⎠

=
r

∏
i=1

(λ + ti)

=
r

∑
k=0

σk(t)λ r−k. (B.1)

Since ϕ is an algebra homomorphism,

ϕ(Pλ (X)) = ϕ
(

∑
k

fk(X)λ r−k
)
=∑

k

ϕ( fk(X))λ r−k. (B.2)

Comparing the coefficients of λ r−k in (B.1) and (B.2) gives

ϕ( fk(X)) = σk(t).

The proof of Theorem B.7 depends on two facts from algebra:

(1) The set of all diagonalizable r× r complex matrices is a dense subset of gl(r,C).
(2) (Fundamental theorem of symmetric polynomials) Every symmetric polyno-

mial in t1, . . . , tr is a polynomial in the elementary symmetric polynomials σ1,
. . ., σr.

Proof (of (1)). Recall from linear algebra that matrices with distinct eigenvalues are
diagonalizable. The eigenvalues of the matrix X are the roots of its characteristic
polynomial fX (λ ) = det(λ I−X). The polynomial fX (λ ) has multiple roots if and
only if fX (λ ) and its derivative f ′X (λ ) have a root in common. Two polynomials
f (λ ) and g(λ ) have a root in common if and only if their resultant R( f ,g), which
is a polynomial in the coefficients of f and g, is zero. Thus, the matrix X has re-
peated eigenvalues if and only if R( fX , f ′X ) = 0. Note that the resultant R( fX , f ′X ) is a
polynomial with coefficients that are functions of entries of X . Since R( fX , f ′X ) = 0
defines a subset of codimension one in gl(n,C), the set of complex matrices with
distinct eigenvalues is dense in gl(r,C). Hence, the set of diagonalize matrices in
gl(n,C) is dense.

Proof (of (2)). This is a standard theorem in algebra. See, for example, [13,
Chap. IV, §6, Th. 6.1, p. 191]. ��
Proof (of Theorem B.7). Injectivity of ϕ: By Proposition B.1, becauseC is an infinite
field, complex polynomials may be identified with complex polynomial functions.
So we will interpret elements of both Inv(gl(r,C)) and C[t1, . . . , tr]Sr as polynomial
functions on gl(r,C) and C

r, respectively.
Suppose the invariant polynomial P(X) vanishes on all diagonal matrices X ∈

gl(r,C). By the invariance of P(X) under conjugation, P(X) vanishes on all diago-
nalizable matrices X ∈ gl(r,C). Since the subset of diagonalizable matrices is dense
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in gl(r,C), by continuity P(X) vanishes on gl(r,C). Therefore, P(X) is the zero
function and hence the zero polynomial on gl(r,C).

Surjectivity of ϕ: We know from Example B.8 that the elementary symmetric polyno-
mial σk(t1, . . . , tr) is the image of the polynomial fk(X) under ϕ . By the fundamental
theorem on symmetric polynomials, every element of C[t1, . . . , tr]Sr is of the form
Q(σ1, . . . ,σr) for some polynomial Q. Then

Q(σ1, . . . ,σr) = Q(ϕ( f1(X)), . . . ,ϕ( fr(X)))
= ϕ(Q( f1(X), . . . , fr(X)) = ϕ(P(X)),

where P(X) = Q( f1(X), . . . , fr(X)) ∈ Inv(gl(r,C)). ��

Example B.9. If Σk(X) = tr(Xk) are the trace polynomials, then

Σ̃k(t1, . . . , tr) = tr

⎡

⎢
⎣

tk1
. . .

tkr

⎤

⎥
⎦=∑ tki = sk.

So the symmetric polynomials corresponding to the trace polynomials Σk are the
power sums sk.

Theorem B.10. The ring of invariant complex polynomials on gl(r,C) is generated
as an algebra over C by the coefficients fi(X) of the characteristic polynomial
det(λ I+X). Thus,

Inv(gl(r,C)) = C[ f1(X), . . . , fr(X)].

Proof. Under the isomorphism

ϕ : Inv(gl(r,C)) ∼−→ C[t1, . . . , tr]
Sr ,

the polynomials fk(X) correspond to the elementary symmetric polynomials
σk(t1, . . . , tr). Since C[t1, . . . , tr]Sr = C[σ1, . . . ,σr] by the fundamental theorem on
symmetric polynomials, the isomorphism ϕ gives

Inv(gl(r,C)) = C[ f1(X), . . . , fr(X)]. ��

B.5 L-Polynomials, Todd Polynomials, and the Chern Character

The L-polynomials, Todd polynomials, and the Chern character are three families of
polynomials of great importance in algebraic topology. All three are defined in terms
of elementary symmetric polynomials.

Consider the formal power series

f (t) =

√
t

tanh
√
t
= 1+

1
3
t− 1

45
t2+ · · · .
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Let t1, . . . , tr be algebraically independent variables over Q. Then the formal power
series

F(t1, . . . , tr) =
r

∏
i=1

f (ti) =
r

∏
i=1

(
1+

1
3
ti− 1

45
t2i + · · ·)

= 1+F1(t1, . . . , tr)+F2(t1, . . . , tr)+F3(t1, . . . , tr)+ · · ·

is symmetric in t1, . . . , tr, so that for each n its homogeneous component Fn(t1, . . . , tr)
is a symmetric polynomial of degree n. By the fundamental theorem of symmetric
polynomials,

Fn(t1, . . . , tr) = Ln(x1, . . . ,xr),

where x1, . . . ,xr are the elementary symmetric polynomials in t1, . . . , tr. The poly-
nomials Ln(x1, . . . ,xr) are called the L-polynomials.. The L-polynomials appear in
Hirzebruch’s signature formula (26.4).

It is easy to work out the first few L-polynomials:

F1(t1, . . . , tr) =
1
3∑ ti =

1
3
x1 = L1(x1),

F2(t1, . . . , tr) =− 1
45∑ t2i +

1
9∑i< j

tit j

=− 1
45

(
(∑

i
ti)

2−2∑
i< j

tit j
)
+

1
9∑i< j

tit j

=− 1
45

(∑
i
ti)

2+
7
45∑i< j

tit j

=
1
45

(7x2− x21) = L2(x1,x2).

Instead of f (t) =
√
t/ tanh

√
t, one may apply the same construction to any an-

alytic function to obtain a sequence of homogeneous polynomials. For example,
starting with the formal power series of

f (t) =
t

1− e−t = 1+
t
2
+

t2

12
− t4

120
+ · · · ,

one forms the product

F(t1, . . . , tr) =
r

∏
i=1

f (ti)

= 1+F1(t1)+F2(t1, t2)+ · · ·
= 1+T1(x1)+T2(x1,x2)+ · · · .

The polynomials Tn(x1, . . . ,xn), called the Todd Polynomials, play a key role in the
Hirzebruch–Riemann–Roch theorem (26.1).
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Again, it is easy to work out the first few Todd polynomials:

F1(t1, . . . , tr) =
1
2∑ ti =

1
2
x1 = T1(x1)

F2(t1, . . . , tr) =
1
12∑ t2i +

1
4∑i< j

tit j

=
1
12

(
(∑ ti)

2−2∑
i< j

tit j+3∑
i< j

tit j
)

=
1
12

(x21+ x2) = T2(x1,x2).

The Chern character is defined differently from the L-polynomials and the Todd
polynomials. Instead of the product of f (ti), we take the sum:

ch(x1, . . . ,xn) =
n

∑
i=1

eti .

Since in each degree ∑n
i=1 e

ti is a symmetric polynomial in t1, . . . , tn, it can be exp-
ressed as a polynomial in the elementary symmetric functions x1, . . . ,xn. Thus,

ch(x1, . . . ,xn) = n+ ch1(x1, . . . ,xn)+ ch2(x1, . . . ,xn)+ . . . ,

where

chk(x1, . . . ,n ) =
n

∑
i=1

tki
k!
.

Then

ch1(x1, . . . ,xn) =∑ ti = x1,

ch2(x1, . . . ,xn) =∑ t2i
2
=

(∑ ti)2−2∑i< j tit j
2

=
x21− x2

2
.

The Chern character of a vector bundle E is defined to be

ch(E) = ch(c1, . . . ,cn),

where c1, . . . ,cn are the Chern classes of E. Formally, if c(E) = ∏(1+ ti), then
ch(E) = ∑eti .

B.6 Invariant Real Polynomials

In this subsection we will prove the analogue of Theorem B.10 for invariant real
polynomials, that every invariant real polynomial on gl(r,R) is a real polynomial in
the elementary symmetric polynomials.

Proposition B.11. If a real homogeneous polynomial P(X) on gl(r,R) is invariant
under conjugation by GL(r,R), then it is invariant under conjugation by GL(r,C).
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Proof. By Cramer’s rule, A−1 = A∗/detA, where A∗ is the transpose of the matrix of
signed minors of A. Suppose P(X) has degree k. Then the equation

P(AXA−1) = P(AXA∗/detA) = P(X)

is equivalent by homogeneity to

P(AXA∗) = (detA)kP(X),

or
q(A,X) := P(AXA∗)− (detA)kP(X) = 0. (B.3)

This is a polynomial equation in ai j and xi j that vanishes for (A,X) ∈GL(r,R)×
R
n×n. By continuity, (B.3) holds for all (A,X) ∈ R

r×r ×R
n×n. Since q(A,X) gives

a holomorphic function on C
n×n ×C

n×n, if it vanishes identically over R, then it
vanishes identically over C. (This is a property of holomorphic functions. It can
be proven by noting that a holomorphic function is expressible as a power series,
and if the function vanishes identically over R, then the power series over R is zero.
Since the power series over C is the same as the power series over R, the function is
identically zero.) ��

Proposition B.11 may be paraphrased by the equation

Inv
(
gl(r,R)

)
= Inv(gl(r,C))∩R[xij].

Theorem B.12. Let ϕR be the restriction of the map ϕ of Theorem B.7 to Inv
(
gl(r,R)

)
:

ϕR : Inv
(
gl(r,R)

)→ R[t1, . . . , tr]
Sr

P(X) �→ P̃(t1, . . . , tr) = P

⎛

⎜
⎝

⎡

⎢
⎣

t1
. . .

tr

⎤

⎥
⎦

⎞

⎟
⎠ .

Then ϕR is an algebra isomorphism over R.

Proof. We have a commutative diagram

Inv(gl(r,C))

⋃

ϕ �� C[t1, . . . , tr]Sr

⋃

Inv
(
gl(r,R)

) ϕR �� R[t1, . . . , tr]Sr .

The injectivity of ϕR follows immediately from the injectivity of ϕ .
As for the surjectivity of ϕR, the proof is the same as the complex case (Theo-

rem B.7). More precisely, every symmetric polynomial p(t1, . . . , tr) ∈ R[t1, . . . , tr]Sr

is a real polynomial in the elementary symmetric polynomials σ1, . . . ,σr of t1, . . . , tr:

p(t1, . . . , tr) = q(σ1, . . . ,σr).



B.7 Newton’s Identities 317

Since σk(t) = ϕ( fk(X)) and ϕ is an algebra homomorphism,

p(t1, . . . , tr) = q(ϕ( f1(X)), . . . ,ϕ( fr(X))) = ϕ (q( f1(X), . . . , fr(X))) ,

which proves that ϕR is onto. ��

Theorem B.13. The ring of invariant real polynomials on gl(r,R) is generated as an
algebra overR by the coefficients fi(X) of the characteristic polynomial det(λ I+X).
Thus,

Inv(gl(r,R)) = R[ f1(X), . . . , fr(X)].

Proof. The proof is the same as that of Theorem B.10, with R instead of C. ��

B.7 Newton’s Identities

Among the symmetric polynomials in t1, . . . , tr, two sets are of special significance:
the elementary symmetric polynomials σ1, . . . ,σr and the power sums s1, . . . ,sr.
Newton’s identities give relations among the two sets. As a corollary, each set gen-
erates the algebra of symmetric polynomials over R. Define σ0 = 1.

Theorem B.14 (Newton’s identities). For each integer k ≥ 1,

(
k−1

∑
i=0

(−1)iσisk−i

)

+(−1)kkσk = 0,

or written out,

sk−σ1sk−1+σ2sk−2−·· ·+(−1)k−1σk−1s1+(−1)kkσk = 0.

Proof (from [2, p. 79]). Consider the identity

(1− t1x) · · ·(1− trx) = 1−σ1x+σ2x2−·· ·+(−1)rσrxr.

Denote the right-hand side by f (x) and take the logarithmic derivative of both sides
to get

ln(1− t1x)+ · · ·+ ln(1− trx) = ln f (x),

−t1
1− t1x

+ · · ·+ −tr
1− trx

=
f ′(x)
f (x)

.

Hence,
t1x

1− t1x
+ · · ·+ trx

1− trx
=

−x f ′(x)
f (x)

.
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Expanding the left-hand side as a sum of geometric series, we get

∞

∑
i=1

(t1x)
i+ · · ·+

∞

∑
i=1

(trx)
i =

−x f ′(x)
f (x)

,

∞

∑
i=1

six
i =

−x f ′(x)
f (x)

.

Now multiply both sides by f (x):

f (x)

( ∞

∑
i=1

six
i
)

=−x f ′(x),

(1−σ1x+σ2x2−·· ·+(−1)rσrxr)(s1x+ s2x
2+ · · ·)

= σ1x−2σ2x2+ · · ·+(−1)r+1rσrxr.

A comparison of the coefficients of xk on both sides of the equation gives

sk−σ1sk−1+ · · ·+(−1)k−1σk−1s1 = (−1)k+1kσk. ��
Using Newton’s identities we can write each elementary symmetric polynomial

σk as a polynomial in the power sums.

Example B.15. For σ1 and σ2 we can get the relations directly:

σ1 = t1+ · · ·+ tr = s1,

σ2 =∑
i< j

tit j =
1
2
((t1+ · · ·+ tr)

2− (t21 + · · ·+ t2r ))

=
1
2

(
s21− s2

)
.

For σ3, Newton’s identities give

3σ3 = s3−σ1s2+σ2s1
= s3− s1s2+

1
2

(
s21− s2

)
s1.

A mathematical induction on k using Newton’s identities proves that every elemen-
tary symmetric polynomial σk is a polynomial in the power sums s1, . . . ,sk.

Theorem B.16. The algebra of symmetric polynomials over R can be generated as
an algebra over R by the elementary symmetric polynomials or by the power sums:

R[t1, . . . , tr]
Sr = R[σ1, . . . ,σr] = R[s1, . . . ,sr].

Proof. We have just shown that every σk is a polynomial in s1, . . . ,sr. Conversely,
since each sk is symmetric, by the fundamental theorem on symmetric polynomials
it is a polynomial in σ1, . . . ,σr. ��
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Theorem B.17. The algebra of invariant polynomials on gl(r,R) is generated as an
algebra over R by the coefficients f1(X), . . . , fr(X) of the characteristic polynomial
det(λ I+X) or by the trace polynomials tr(X), . . . , tr(Xr).

Proof. By Examples B.8 and B.9, under the algebra isomorphism

φ : Inv
(
gl(r,R)

)→ R[t1, . . . , tr]
Sr ,

the polynomials f1(X), . . . , fr(X) correspond to the generators σ1, . . . ,σr and the
trace polynomials correspond to the generators s1, . . . ,sr. This theorem then fol-
lows from Theorems B.13 and B.16. ��

An analogous statement holds for the complex invariant polynomials on gl(r,C).

Problems

B.1. The invariant polynomial f2(X)
Let X = [xij] be an r× r matrix of indeterminates. The polynomials fk(X) ∈ Z[xij] are the
coefficients in the characteristic polynomial

det(λ I+X) =
r

∑
k=0

fk(X)λ r−k.

Find a formula for the polynomial f2(X) ∈ Z[xij]. Write out all the terms of the formula when
r = 3.



Hints and Solutions to Selected End-of-Section
Problems

Problems with complete solutions are starred (*). Equations are numbered consecutively
within each problem.

1.1 Positive-definite symmetric matrix

Fixing a basis e1, . . . ,en for V defines an isomorphism V ∼→ R
n by mapping a vector in V to

its coordinates relative to e1, . . . ,en. So we may work exclusively with column vectors in R
n.

Because A is positive-definite, 〈x,x〉 = xTAx ≥ 0 with equality if and only if x = 0. Because
A is symmetric,

〈y,x〉= yTAx= (xTAT y)T = (xTAy)T = xTAy= 〈x,y〉.
Finally, the expression xTAy is clearly linear in x and in y. ��
1.2∗ Inner product
By linearity in the first argument,

〈u,w〉= 〈v,w〉 iff 〈u− v,w〉= 0.

Since the inner product is positive-definite, this implies that u− v= 0. ��
1.4∗ Positive linear combination of inner products
For any v ∈ V , we have 〈v,v〉 = ∑ai〈v,v〉i ≥ 0. If equality holds, then every term is 0 and
therefore v=0 by the positive-definiteness of any of the inner products 〈 , 〉i. Symmetry and
bilinearity in either argument are just as obvious. ��
1.5∗ Extending a vector to a vector field
Let (U,x1, . . . ,xn) be a coordinate chart about p. If Zp = ∑ai∂/∂xi|p, then Z := ∑ai∂/∂xi is
a C∞ vector field onU that extends Zp. To extend Zp to a C∞ vector field on M, let f be a C∞

bump function supported inU which is 1 at p. Define

Xq =

{
f (q)Zq, for q ∈U ,

0, for q /∈U .

Then X is a vector field on M such that Xp = Zp.
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On U the vector field X is C∞ because it is the product of a C∞ function and a C∞ vector
field Z. If q /∈U , then since supp f is a closed subset⊂U , there is a neighborhoodV of q such
that V ∩ supp f = ∅. Thus, X ≡ 0 on V , and is trivially C∞ at q. This proves that X is C∞ at
every point of M. ��
1.6∗ Equality of vector fields
(⇒) If X = Y , then clearly 〈X ,Z〉= 〈Y,Z〉 for all Z ∈ X(M).
(⇐) To prove that X = Y , it suffices to show that Xp = Yp for all p ∈M. Let Zp be any vector
in TpM. By Problem 1.5, Zp can be extended to a C∞ vector field Z on M. By hypothesis,
〈X ,Z〉= 〈Y,Z〉. Hence,

〈Xp,Zp〉= 〈X ,Z〉p = 〈Y,Z〉p = 〈Yp,Zp〉.

By Problem 1.2, this implies that Xp = Yp. Since p is an arbitrary point of M, it follows that
X = Y . ��
1.7∗ Hyperbolic upper half-plane
Since 1/y2 is always positive on H

2, by Problem 1.4 the function 〈 , 〉′ is an inner product at
each point p ∈H

2. It remains to check that if X ,Y ∈ X(H2), then 〈X ,Y 〉′ = (1/y2)〈X ,Y 〉 is a
C∞ function on H

2. This is true because being the Euclidean metric, 〈X ,Y 〉 is C∞ on H
2 and

1/y2 isC∞ on H2. ��
2.1∗ Signed curvature
If γ ′(s) = T (s) = (cosθ(s),sinθ(s)), then

γ ′′(s) = T ′(s) =
[−θ ′(s)sinθ(s)
θ ′(s)cosθ(s)

]

and n(s) =
[
0 −1
1 0

][
cosθ(s)
sinθ(s)

]

=

[−sinθ(s)
cosθ(s)

]

.

Therefore, γ ′′(s) = θ ′(s)n(s). This proves that κ = θ ′(s). ��
2.3 Write θ = arctan(ẏ/ẋ). Compute κ = dθ/ds = (dθ/dt)/(ds/dt), where ds/dt = (ẋ2+
ẏ2)1/2.

2.4 In Problem 2.3, set the parameter t = x.

2.5 κ = ab/(a2 sin2 t+b2 cos2 t).

2.6 (1/27)
[−8+(4+9a2)3/2

]
.

2.7∗ Curvature of a space curve

a) Since

s(t) =
∫ t

0
|c′(u)|du=

∫ t

0

√
a2+b2 du=

√
a2+b2 t,

t = s/
√
a2+b2.

b) Let C = 1/
√
a2+b2. Then γ(s) = (acosCs,asinCs,bCs). A short computation gives

|γ ′′(s)|= a/(a2+b2). ��
3.1 κ1,κ2 = H±2

√
H2−K.

5.3∗ The Gauss map
Let c(t) be a curve through p with c′(0) = Xp. Define a vector field N̄(t) along c by N̄(t) =
dNc(t)/dt. Then
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ν∗,p(Xp) =
d
dt

∣
∣
∣
∣
t=0
ν(c(t)) =

d
dt

∣
∣
∣
∣
t=0

Nc(t) =
d
dt

∣
∣
∣
∣
t=0

N̄(t)

= N̄′(0) = Dc′(0)N (by Proposition 4.11)

= DXpN =−L(Xp). ��
5.4 Area ν(M) =

∫
ν(M) 1=

∫
M |detν∗| by the change of variables formula. Now apply Prob-

lem 5.3.

5.8 Choose an orthonormal basis e1,e2 for TpM and write Xp = (cosθ)e1+(sinθ)e2. Let the

shape operator L be represented by the matrix

[
a b
b c

]

relative to e1,e2. Find κ(Xp) in terms of

a,b,c,d and θ and compute
∫ 2π
0 κ(Xp)dθ .

5.9 (a) Take the inner product of both sides of the equation L(e1) = ae1+ be2 with e1 and
with e2. Then solve for a,b.

(b) K = det

[
E F
F G

]−1

det

[
e f
f g

]

= (eg− f 2)/(EG−F2).

H = (eG−2 f F+gE)/
(
2(EG−F2)

)
.

5.10 (a) First show that e1 = (1,0,hx), e2 = (0,1,hy).

(b) By Lemma 5.2, 〈L(ei),e j〉= 〈Deie j,N〉, where N = (e1× e2)/‖e1× e2‖. Show that

De1e1 = (0,0,hxx), De2e1 = (0,0,hxy), De2e2 = (0,0,hyy).

(c) Use Problem 5.9(b).

5.11 (a) e1 =
(
(sinhu)cosθ ,(sinhu)sinθ ,1

)
, e2 =

(− (coshu)sinθ ,(coshu)cosθ ,0
)
.

(b) E = cosh2 u, F = 0, G= cosh2 u.
(c) e′1 =

(
(coshu)cosθ ,(coshu)sinθ ,0

)
, e′2 =

(− (sinhu)sinθ ,(sinhu)cosθ ,1
)
.

7.1∗ Derivation and local operator
Suppose aC∞ function g onM is zero on an open setU . Let p∈U and choose a bump function
f ∈C∞(M) such that f (p) = 1 and supp f ⊂U . then f g ≡ 0 because g ≡ 0 on U and f ≡ 0
on M−U . By the derivation property,

0= (D( f g))(p) = (Df )(p)g(p)+ f (p)(Dg)(p) = Dg(p),

since g(p) = 0 and f (p) = 1. As p is an arbitrary point ofU , Dg≡ 0 onU . ��
7.4∗ Section with a prescribed value

Let U be a neighborhood of p in M over which E is trivial: E|U
φ� U ×R

k. Suppose
φ(e) = (p,v). Then sU (q) := φ−1(q,v) is aC∞ section of E overU with sU (p) = φ−1(p,v) = e.
By Proposition 7.13, there is a C∞ global section s ∈ Γ(M,E) that agrees with sU over some
neighborhood of p. Then s(p) = sU (p) = e. ��
7.5∗ Coefficients relative to a global frame
It suffices to show that a j isC∞ over any trivializing open set for E. Choose a trivializing open
setU for E with trivialization

φ : π−1(U)�U×R
k, e �→ (p,b1, . . . ,bk).
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Let s1, . . . ,sk be the frame overU corresponding to the standard basis in Rk under φ . Then for
any v ∈ π−1(U), v = ∑bisi. The bi’s are C∞ functions on E because they are components of
the C∞ map φ .

Since e1, . . . ,ek is a C∞ frame overU ,

e j =∑ f ijsi

with f ij C
∞. Then

v=∑bisi =∑a je j =∑a j f ijsi.

Comparing the coefficients of si gives

bi =∑
j
a j f ij.

In matrix notation, b = Ca. Hence, a = C−1b, which shows that the a j are C∞ because the
entries ofC and b are allC∞. ��
12.1∗ The orthogonal group O(2)

(a) The condition ATA = I is equivalent to the fact that the columns of the matrix A form an

orthonormal basis of R2. Let

[
a
b

]

be the first column of A. Then a2+ b2 = 1. Since the

second column of A is a unit vector in R
2 orthogonal to

[
a
b

]

, it is either

[−b
a

]

or

[
b

−a

]

.

Hence,

A=

[
a −b
b a

]

or

[
a b
b −a

]

,

with a2+b2 = 1.
(b) In part (a),

det

[
a −b
b a

]

= a2+b2 = 1, det

[
a b
b −a

]

=−a2−b2 =−1.

Therefore,

SO(2) =

{[
a −b
b a

] ∣
∣
∣
∣ a

2+b2 = 1

}

.

The condition a2+b2 = 1 implies that (a,b) is a point on the unit circle. Hence, (a,b) is
of the form (cos t,sin t) for some t ∈ R. So every element of SO(2) is of the form

[
cos t −sin t
sin t cos t

]

.

��
14.1∗ Geodesic equations
Differentiating (14.10) with respect to t gives

2ÿ=±ẏ
√

1− k2y2∓ y
k2yẏ

√
1− k2y2

=±ẏ

(

± ẏ
y

)

∓ k2y3ẏ

y
√

1− k2y2
=

ẏ2

y
− k2y3 (by (14.8))

=
ẏ2

y
− k2y4

y
=

ẏ2

y
− ẋ2

y
. (by (14.10))
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Thus,

ÿ+
1
y
ẋ2− 1

y
ẏ2 = 0,

which is (14.5). ��
16.4∗ Volume form of a sphere in Cartesian coordinates
The unit outward normal vector field on the sphere Sn−1(a) is X = (1/a)∑xi∂/∂xi. The
volume form on the closed ball B̄n(a) of radius a is the restriction of the volume form on R

n;
thus,

volB̄n(a) = dx1∧· · ·∧dxn.

By Theorem 16.11,

volSn−1(a) = ιX (dx
1∧· · ·∧dxn)

=
1
a∑xiι∂/∂xi(dx1∧· · ·∧dxn)

=
1
a∑(−1)i−1xi dx1∧· · ·∧ d̂xi∧· · ·∧dxn. ��

20.1∗ Topology of a union
Using the bijection φα : Sα →Yα in (iii), each Sα can be given a topology so that φα becomes a
homeomorphism. Condition (iv) guarantees that the open subsets of Sα ∩Sβ are well defined.
Let T be the topology on S generated by all the open subsets of Sα for all α ; this means T is
the smallest topology containing all such sets.

IfUα is open in Sα andUβ is open in Sβ , thenUα ∩Uβ is open in T. SinceUα ∩Uβ ⊂ Sα ,
we need to show thatUα ∩Uβ is already open in Sα so that in generating T we did not create
additional open sets in Sα . By condition (ii), Sα ∩ Sβ := Sαβ is in the collection C, so it is
open via φαβ : Sαβ → Yαβ . By the compatibility of Sαβ and Sα in (ii), Sαβ is open Sα . Since
Uα is open in Sα , Uα ∩ Sαβ =Uα ∩ Sβ is open in Sα . By (iv), Uα ∩ Sβ is also open in Sβ .
Therefore, (Uα ∩Sβ )∩Uβ =Uα ∩Uβ is open in Sβ . By (iv) again, it is also open in Sα . ��
21.9 ∗ The Maurer–Cartan equation
Since dθ + 1

2 [θ ,θ ] is a 2-form and therefore is bilinear over the C∞ functions, it suffices to
check the equation on a frame of vector fields. Such a frame is, for example, given by left-
invariant vector fields. Thus, it suffices to check

dθ(X ,Y )+
1
2
[θ ,θ ](X ,Y ) = 0

for two left-invariant vector fields X ,Y on G.
By Problem 21.8,

dθ(X ,Y ) = Xθ(Y )−Yθ(X)−θ([X ,Y ]).
Since θ(X) and θ(Y ) are constants, Xθ(Y ) = 0 and Yθ(X) = 0. Thus,

dθ(X ,Y ) =−θ([X ,Y ]) =−θe
(
[X ,Y ]e

)
=−[X ,Y ]e =−[Xe,Ye].
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By (21.10),

[θ ,θ ](X ,Y ) = [θ(X),θ(Y )]− [θ(Y ),θ(X)]
= 2[θ(X),θ(Y )]
= 2[θe(Xe),θe(Ye)] since θ(X),θ(Y ) are constants)
= 2[Xe,Ye].

The Maurer–Cartan equation follows. ��
22.4 If T1 is an (a,b)-tensor field and T2 is an (a′,b′)-tensor field, evaluate both sides on
ω1, . . . ,ωa+a′ ,Y1, . . . ,Yb+b′ .

27.2∗ Short exact sequence of vector spaces
By the first isomorphism theorem of linear algebra,

B
i(A)

=
B

ker j
� im j =C.

Hence,

dimB−dim i(A) = dimC.

Because i : A→ B is injective, dim i(A) = dimA. Therefore,

dimB= dimA+dimC. ��
27.4∗ The differential of an action
By linearity,

μ∗(Xp, �g∗A) = μ∗(Xp,0)+μ∗(0, �g∗A),
so it suffices to compute the two terms on the right separately.

Let c(t) be a curve through p in P with initial vector Xp. Then a curve through (p,g) in
P×G with initial vector (Xp,0) is

(
c(t),g

)
. Computing the differential μ∗ using the curve(

c(t),g
)
, we get

μ∗,(p,g)(Xp,0) =
d
dt

∣
∣
∣
∣
t=0
μ
(
c(t),g

)

=
d
dt

∣
∣
∣
∣
t=0

c(t) ·g

= rg∗c′(0) = rg∗Xp.

A curve through (p,g) with initial vector (0, �g∗A) is (p,getA), so

μ∗,(p,g)(0, �g∗A) =
d
dt

∣
∣
∣
∣
t=0
μ(p,getA)

=
d
dt

∣
∣
∣
∣
t=0

pgetA

= Apg.

Hence,

μ∗,(p,g)(Xp, �g∗A) = rg∗Xp+Apg. ��
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30.3∗ Lie bracket of horizontal vector fields

Ω(X ,Y ) =
(
dω+

1
2
[ω,ω]

)
(X ,Y )

= (dω)(X ,Y )+
1
2

(
[ω(X),ω(Y )]− [ω(Y ),ω(X)]

)

= (dω)(X ,Y ) (since X , Y are horizontal)

= Xω(Y )−Yω(X)−ω([X ,Y ])

=−ω([X ,Y ]).
Thus, [X ,Y ] is horizontal if and only if Ω(X ,Y ) = 0. ��
31.4∗ Tensorial forms
Let p ∈ P, g ∈ G, and u1, . . . ,uk ∈ TpP. Then

r∗g(ψ�
pg)(u1, . . . ,uk) = ψ�

pg(rg∗u1, . . . ,rg∗uk)

= f−1
pg (ψx(π∗rg∗u1, . . . ,π∗rg∗uk))

= ρ(g−1) f−1
p (ψx(π∗u1, . . . ,π∗uk)) (because fpg = fp ◦ ρ(g))

= ρ(g−1)ψ�
p(u1, . . . ,uk). ��

31.5∗ Tensorial forms
Let p ∈ P and u1, . . . ,uk ∈ TpP. Write x= π(p). Then

(ϕ��)p(u1, . . . ,uk) = f−1
p (ϕ�

x(π∗u1, . . . ,π∗uk))

= f−1
p fpϕp(u1, . . . ,uk)

= ϕp(u1, . . . ,uk). ��
32.1∗ Polynomials on a vector space
Let α1, . . . ,αn be dual to e1, . . . ,en and β 1, . . . ,β n be dual to u1, . . . ,un. Then α i =∑cijβ

j for

some invertible matrix [cij], and

f =∑aIα i1 · · ·α ik

=∑aIc
i1
j1
· · ·cikjkβ i1 · · ·β ik .

So f is also a polynomial of degree k with respect to u1, . . . ,un. ��
32.2∗ Chern–Weil forms
Suppose α i = ∑cijβ

j. Then

Ωi = α i(Ω) =∑cijβ
j(Ω) =∑cijΨ

j

and

f =∑aIc
i1
j1
β j1 · · ·cikjkβ jk

=∑aIc
i1
j1
· · ·cikjkβ j1 · · ·β ji .

So

f (Ψ) =∑aIc
i1
j1
· · ·cikjkΨ j1 · · ·Ψ ji

=∑aIΩ j1 · · ·Ω ji

= f (Ω). ��
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R
n Euclidean n-space (p. 2)

(u1,u2,u3) a point in R3 (p. 2)

u=

⎡

⎣
u1

u2

u3

⎤

⎦ column vector (p. 2)

〈 , 〉 dot product, inner product, or Riemannian metric (p. 2)

‖v‖ length of a vector v (p. 2)

〈 , 〉|W×W restriction of 〈 ,〉 to a subspaceW (p. 3)

AT transpose of the matrix A (p. 4)

TpM tangent space at p toM (p. 4)

H
2 upper half-plane (p. 7)

[a,b] closed interval from a to b (p. 9)

T (s) unit tangent vector at time s (p. 11)

T ′(s) derivative of T (s) (p. 11)

n(s) unit normal vector to a curve at time s (p. 11)

κ signed curvature of a plane curve (p. 12)

ẋ dx/dt (p. 14)

ẍ d2x/dt2 (p. 14)

Np normal vector at p (p. 17)

κ(Xp) normal curvature (p. 18)

H mean curvature (p. 18)

K Gaussian curvature (p. 18)

χ(M) Euler characteristic (p. 20)

DXp f directional derivative of f in the direction Xp (p. 22)
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∂i partial derivative ∂/∂xi (p. 22)
X(M) Lie algebra of all C∞ vector fields on a manifoldM (p. 23)

[X ,Y ] Lie bracket of two vector fields (p. 24)

T (X ,Y ) torsion tensor (p. 24)

EndR(V ) ring of endomorphisms over R of a vector space V (p. 24)

R(X ,Y ) curvature tensor (p. 24)

V (t) vector field along a curve (p. 25)

c′(t) velocity vector field of a curve (p. 25)

∂i|c(t) the vector field ∂i evaluated at c(t) (p. 26)

Γ(TR|M) the set of C∞ vector fields along a submanifold M in a manifold
R (p. 26)

Z( f ) zero set of a function f (p. 29)

Lp shape operator, Weingarten map (p. 30)

II(Xp,Yp) second fundamental form (p. 35)

grad f gradient of a function f (p. 34)

ν Gauss map (p. 39)

∇ affine connection, connection on a vector bundle (p. 43)

TM (p. 51)

Γ(U,E) the set of smooth sections of E overU (p. 51)

Γ(E) the set of smooth global sections of E (p. 51)

C∞(M) the algebra of C∞ functions over M (p. 52)

Ωk(M) space of C∞ k-forms on M (p. 54)

Xtan tangential component of a vector field X along a manifold M
(p. 62)

III(X ,Y ) third fundamental form (p. 68)

ω = [ω i
j] connection matrix (p. 80)

Ω= [Ωi
j] curvature matrix (p. 80)

α ∧β wedge product of differential forms (p. 80)

A∧B wedge product of matrices of differential forms (p. 86)

projab orthogonal projection of b to the linear span of the vector a (p. 81)

θ i dual 1-form (p. 84)

τ i torsion form (p. 84)

D Poincaré disk (p. 86)

K(P) sectional curvature of a plane P (p. 92)

tangent bundle of M
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dx⊗dx tensor product (p. 93)

ds2 Riemannian metric (p. 93)

� Tc(t)M disjoint union (p. 95)

D/dt covariant derivative (p. 96)

f∗V pushforward of a vector field V (t) along a curve (p. 98)

Γki j Christoffel symbols (p. 100)

Expq exponential map of a connection (p. 115)

B(0,ε) open ball of radius ε centered at 0 (p. 115)

f∗,p differential of f at p (p. 116)

g= TeG Lie algebra of a Lie group G (p. 119)

�g left multiplication by g (p. 119)

ϕt(p) integral curve starting at p (p. 119)

cX (t) = ϕt(e) integral curve through e of the left-invariant vector field X
(p. 120)

exp exponential map for a Lie group G 120)

cg conjugation by g (p. 123)

Ad adjoint representation of a Lie group (p. 123)

ad adjoint representation of a Lie algebra (p. 124)

adA B ad(A)(B) (p. 124)

volM volume form of a Riemannian manifoldM (p. 133)

det determinant (p. 134)

κ̃g geodesic curvature (p. 138)

ζ angle function along a curve (p. 139)

κg signed geodesic curvature (p. 140)
∫ b
a κg ds total geodesic curvature (p. 141)

εi jump angle (p. 142)

βi interior angle (p. 142)

Δζi change in the angle along the ith edge (p. 142)

Free(V ) free module with basis V (p. 152)

V ⊗RW tensor product of two R-modules (p. 152)

HomR(V,W ) the set of R-module homomorphisms from V toW (p. 157)

V∨,V ∗ dual of an R-module (p. 157, p. 187)

Tk(V ) kth tensor power of a module V (p. 162)
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T (V ) tensor algebra of a module V (p. 163)
∧
(V ) exterior algebra of V (p. 164)

∧k(V ),
∧kV kth exterior power of V (p. 164)

sgn(π) sign of a permutation (p. 166)

[s1 · · · sk] a k-frame (p. 174)

f ∗E pullback bundle of E by f (p. 177)

E|U restriction of the bundle E toU (p. 178)

E⊕E ′ direct sum of vector bundles (p. 181)

E⊗E ′ tensor product of vector bundles (p. 183)

Iso(V,V ′) the set of all isomorphisms from V to V ′ (p. 183)
∧k E kth exterior power of a vector bundle (p. 184)

Ωk(M) vector space of C∞ k-forms on M (p. 186)

Ak(T,V ) vector space of all alternating k-linear maps from T to V (p. 187)

Ωk(M,V ) vector space of smooth V -valued k-forms onM (p. 187)

Xp f directional derivative of a vector-valued function f (p. 190)

α ·β product of vector-valued forms (p. 191)

[α,β ] Lie bracket of g-valued forms (p. 191)

ei j the matrix with a 1 in the (i, j)-entry and 0 everywhere else
(p. 193)

Ωk(M,E) vector space of smooth E-valued k-forms on M (p. 194)

Ωk the wedge product Ω∧ ·· · ∧Ω of the curvature matrix k times
(p. 204)

tr trace of a linear endomorphism (p. 209)

Ric(X ,Y ) Ricci curvature (p. 209)

S(p) scalar curvature at p (p. 209)

Inv
(
gl(r,R)

)
algebra of invariant polynomials on gl(r,R) (p. 212)

fk a coefficient of det(λ I+X) (p. 213)

Σk(X) the trace polynomial tr(Xk) (p. 213)

[P(Ω)] the cohomology class of the form P(Ω) (p. 221)
pk(E) Pontrjagin class of a real vector bundle E (p. 225)

SO(r) special orthogonal group (p. 229)

so(r) Lie algebra of SO(r) (p. 230)

Pf(X) Pfaffian of a skew-symmetric matrix X (p. 231)

e(E) Euler class of an oriented Riemannian bundle E (p. 233)
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ck(E) Chern class of a complex vector bundle (p. 235)

Stab(x) stabilizer of x (p. 243)

Orbit(x), xG orbit of x (p. 243)

Uαβ the intersectionUα ∩Uβ (p. 245)

Fr(V ) frame manifold of the vector space V (p. 246)

Fr(E) frame bundle of the vector bundle E (p. 246)

Ap fundamental vector field associated to A (p. 247)

Vp vertical tangent subspace (p. 250)

ϕa,b parallel translation from Ec(a) to Ec(b) (p. 263)

Hp horizontal subspace (p. 266)

v(Yp) vertical component of a vector Yp (p. 254)

h(Yp) horizontal component of a vector Yp (p. 256)

P×ρ V associated bundle (p. 275)

Ωk
ρ(P,V ) tensorial V -valued k-forms of type ρ (p. 277)

AdP adjoint bundle (p. 279)

ϕh horizontal component of a form ϕ (p. 281)

Dϕ covariant derivative of a V -valued form on a principal bundle
(p. 281)

Inv(g) algebra of Ad(G)-invariant polynomials on g (p. 290)

(U,φ) coordinate chart (p. 293)

C∞p (M) set of germs of C∞ functions at p inM (p. 295)

R
2/Z2 torus (p. 304)

R[x1, . . . ,xn] polynomial ring over R in n variables (p. 306)

Fun(Rn,R) algebra of functions from R
n to R (p. 306)

C[t1, . . . , tr]
Sr the algebra of complex symmetric polynomials (p. 310)

Pσ permutation matrix (p. 311)

σi elementary symmetric polynomial (p. 311)
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action, 243
action of GL(r,F) on polynomials, 308
Ad GL(r,R)-invariant, 212
adjoint representation

of a Lie group, 123
adjoint bundle, 276
adjoint representation, 123, 248

of a Lie algebra, 124
affine connection, 43
algebra, 295

graded, 299
alternating k-linear function, 297
alternating linear map, 164
alternating multilinear maps

universal mapping property, 166
angle

between two vectors, 2
angle function, 139
anticommutativity, 298
antiderivation, 299
arc length, 2, 10, 128

is independent of parametrization, 128
arc length function, 10
arc length parametrization, 10
ascending multi-index, 298
associated bundle, 275
associativity

of a bi-invariant metric, 125
of the tensor product, 161

atlas, 293

base space, 242
of a vector bundle, 49

basic
iff invariant and horizontal, 280

basic form, 279
basis, 299
for a tensor product, 156
for the exterior power, 168

Betti numbers, 199
bi-invariant metric
on a Lie group, 124

Bianchi identity
first, 203
in vector form, 204

second, 204, 271
in vector form, 207

bilinear form, 3
bilinear maps
universal mapping property, 153

bilinear maps over F, 59
binormal, 15
bundle isomorphism, 51
bundle map, 51
over a manifold, 51

Cartan, Élie, 71
catenary, 36
catenoid, 37
characteristic classes, 212, 220
independence of a connection, 218
naturality of, 221
of a principal bundle, 290
vanishing, 223

characteristic form, 212
closed, 215
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chart, 293
chart about a point, 293
charts

compatible, 293
Chern character, 315
Chern classes

of a complex vector bundle, 235
of a principal GL(r,C)-bundle, 291

Chern–Weil homomorphism, 212, 214, 290
Christoffel symbols, 99, 100

for the Poincaré half-plane, 101
of a surface of revolution, 102
of the Poincaré disk, 102, 114
symmetric iff torsion-free, 100

circle
volume form, 134

cobordant, 237
cocycle condition, 245
Codazzi–Mainardi equation, 62
coefficients

of the first fundamental form, 35
of the second fundamental form, 36

coefficients of characteristic polynomial,
306

coefficients of characteristic polynomial
are invariant polynomials, 309

coefficients of the characteristic polynomial,
212, 213

compatible charts, 293
compatible with the Hermitian metric, 234
complex inner product, 234
complex invariant polynomials

generated by coefficients of characteristic
polynomials, 313

complex manifold, 236
complex vector bundle, 228
component, 31
congruent matrices, 230
connected component, 304
connection

affine, 43
at a point, 77
compatible with the metric, 45, 75
defined using connection matrices, 209
Euclidean, 43
Levi-Civita, 45
metric
in terms of forms, 82

on a complex vector bundle, 234

on a framed open set, 81
on a principal bundle, 254, 256
on a trivial bundle, 72
on a vector bundle, 72
Riemannian, 45
symmetric, 100

connection forms, 80
connection matrix, 80
dependence on frames, 202

connection on a vector bundle
existence, 73

connection-preserving diffeomorphism, 99
preserves geodesics, 108

connections
convex linear combination of, 48

convex linear combination, 73
coordinate chart, 293
coordinate vectors, 295
covariant derivative
corresponding to a connection, 262

covariant derivative
of tensor fields, 206
of a basic form, 288
of a tensorial form, 282
of a vector field along a curve, 97
on a principal bundle, 281
on surface in R3, 104

covariant differentiation
along a curve, 95

covector, 297
curvature, 44
G-equivariance, 271
and shape operator, 32
Gaussian, 18
Gaussian, in terms of an arbitrary basis,

64
geodesic curvature, 138
is F-linear, 44
is horizontal, 271
is independent of orientation, 13
mean, 18
normal, 18
of Maurer–Cartan connection, 274
of a connection on a principal bundle, 270
of a connection on a vector bundle, 74
of a plane curve, 12, 14
of a space curve, 15
of an ellipse, 14
of directional derivative, 24
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principal, 18
sectional, 92
signed geodesic curvature, 140
symmetries, 205
total curvature, 146
total geodesic curvature, 141

curvature tensor, 207
independence of orthonormal basis, 92

curvature forms, 80
curvature matrix, 80

dependence on frames, 202
is skew-symmetric relative to an

orthonormal frame, 84
curvature tensor, 74

skew-symmetry, 91
curve, 9

geometric, 9
parametrized, 9
piecewise smooth, 112
regular, 9

cuspidal cubic
arc length, 15

cylinder
mean and Gaussian curvature, 40
shape operator, 40

decomposable
in the exterior algebra, 164
in the tensor product, 153

degree, 147
of a form, 188
of a line bundle, 239

diagonal entries
of a skew-symmetric matrix is 0, 224

diagonalizable matrices
are dense in gl(r,C), 312

diffeomorphism, 295
differential, 296
differential form, 297, 298

vector-valued, 187
differential forms

depending smoothly on a real parameter,
216

with values in a vector bundle, 194
with values in a vector space, 186

differentiating under an integral sign), 218
dimension

of tensor product, 157
direct sum

of vector bundles, 181
directional derivative
computation using a curve, 22
in R

n, 22
has zero curvature, 25
is compatible with the metric, 25
is torsion-free, 25

of a vector field, 22
of a vector-valued form, 190
on a submanifold of Rn, 27
properties, 23

distance
on a connected Riemannian manifold, 129

distribution, 254
horizontal, 251

dot product, 2
dual
of a module, 157

dual 1-forms
under a change of frame, 132

dual 1-forms, 84

Ehresmann connection, 242, 256
Einstein summation convention, 80
elementary symmetric polynomials, 311
ellipse
curvature, 14

equivariant map, 243
Euclid’s fifth postulate, 110
Euclid’s parallel postulate, 110
Euclidean connection, 43
Euclidean inner product, 2
Euclidean metric, 5
Euler characteristic
independent of decomposition, 146
of a compact orientable odd-dimensional

manifold is 0, 200
of a polygonal decomposition of a surface,

145
Euler class, 233
existence of a geodesic, 107
existence of a connection, 73
existence of a Hermitian metric, 234
existence of geodesics, 106
exponential map
of a connection, 115

exponential map
as a natural transformation, 126
differential, 117
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for a Lie group, 120, 122
naturality, 116

extension of algebraic identities, 307
exterior derivative, 299
exterior differentiation

on R3, 302
exterior algebra, 164
exterior derivative

of a vector-valued 1-form, 198
of a vector-valued form, 190
properties, 300

exterior power, 164
basis, 168

F-bilinearity, 59
F-linear map

of sections correspond to a bundle map,
58

fiber, 242
of a vector bundle, 49

fiber bundle, 242
first fundamental form

coefficients, 35
first Bianchi identity, 203

vector form, 204
first fundamental form, 35
first fundamental form, 68
first structural equation, 85
flat section, 72
form

smooth, 188, 298
forms with values in a Lie algebra, 191
frame, 56, 174

k-forms, 298
of vector fields, 296
positively oriented, 229

frame bundle, 247
of a vector bundle, 247

frame manifold
of a vector space, 246

framed open set, 81
free action, 243
free module, 299

rank, 299
Frenet–Serret formulas, 15
Frenet–Serret frame, 15
functoriality

of tensor product, 160

fundamental theorem on symmetric
polynomials, 312

fundamental vector field, 247
integral curve, 249
right-equivariance, 248
vanishing at a point, 249

Fundamental vector fields
Lie bracket of, 252

G-manifold, 243
Gauss curvature equation

in terms of forms, 89
Gauss curvature equation, 62
Gauss map, 39, 40, 147
Gauss’s Theorema Egregium, 19, 63
Gauss–Bonnet formula
for a polygon, 143

Gauss–Bonnet theorem, 20
for a surface, 145
generalized, 233

Gaussian curvature, 18, 67
and Gauss map, 147
in terms of an arbitrary basis, 64
is the determinant of the shape operator,

34
of a cylinder, 40
of a Riemannian 2-manifold, 91
of a sphere, 40
of a surface, 90
of a surface of revolution, 41
of the Poincaré disk, 114
Poincaré half-plane, 94
positive, 146

generalized Gauss–Bonnet theorem, 233
generalized second Bianchi identity, 204
on a frame bundle, 274

genus
of a compact orientable surface, 146

geodesic, 95, 103
existence of, 106
existence of, 107
in the Poincaré half-plane, 108
maximal, 103
minimal, 130
on a sphere, 104
reparametrization, 105
speed is constant, 103

geodesic equations, 107
geodesic curvature, 138
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signed geodesic curvature, 140
total geodesic curvature, 141

geodesic equations, 106
of the Poincaré disk, 114

geodesic polygon, 144
geodesic triangle

sum of angles, 144
geodesically complete, 130
geodesics

on a sphere, 107
geometric curve, 9
germ

of a function at a point, 295
germ of neighborhoods, 127
graded algebra, 299
gradient vector field, 137
Gram–Schmidt process, 81
graph

curvature, 14

helicoid, 37
Hermitian bundle, 234
Hermitian inner product, 234
Hermitian metric, 234

existence of, 234
Hermitian symmetric, 234
Hirzebruch–Riemann–Roch theorem, 239
holomorphic tangent bundle, 236
holomorphic vector bundle, 238
holonomy, 113
homogeneous elements, 163
homogeneous form, 188
homogeneous manifold, 244
Hopf bundle, 244
Hopf Umlaufsatz, 142
Hopf–Rinow theorem, 131
horizontal component

of a form, 281
of a tangent vector, 256

horizontal distribution, 251, 254
of an Ehresmann connection, 257

horizontal form, 277
horizontal lift, 262, 263

of a vector field, 259, 266
horizontal lift formula, 266
horizontal lift of a vector field

to a frame bundle, 266
to a principal bundle, 259

horizontal tangent vector, 264

horizontal vector, 262
Horizontal vector fields
Lie bracket of, 274

hyperbolic plane, 114, 144
hyperbolic triangle, 144
hypersurface, 29, 66
normal vector field, 29
volume form, 137

immersed submanifold, 304
immersion, 304
induced connection
on a pullback bundle, 210

inner product, 3
Euclidean, 2
representation by a symmetric matrix, 3
restriction to a subspace, 3

inner products
nonnegative linear combination, 3

integral curve
of a fundamental vector field, 249

integral form, 226
interior angle, 142
interior angles
of a polygon, 147

invariant, 212
invariant complex polynomials, 310
invariant form, 280
invariant polynomial, 212, 306, 308
generators, 215

isometric invariant, 63
isometry, 1, 5
isomorphic vector bundles, 51

jump angle, 142

L-polynomials, 314
left action, 243
left G-equivariant map, 243
left-invariant metric, 124
left-invariant vector field, 119
Leibniz rule, 43
length, 4
of a vector, 2

length of a vector, 128
Levi-Civita connection, 45
Lie bracket
of a vertical and a horizontal vector field,

260
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Lie bracket, 297, 305
of fundamental vector fields, 252
of horizontal vector fields, 274
of vector fields, 28

Lie derivative
comparison with the directional derivative

in Rn, 25
Lie group

exponential map, 122
lift, 263

horizontal, 263
line bundle, 49, 235

trivial, 235
local operator, 53, 76

restriction, 55
local trivialization, 242
locally Euclidean, 293
locally finite, 6
locally path-connected, 305
locally trivial, 242

Maurer–Cartan connection, 260
curvature of, 274

Maurer–Cartan equation, 198
Maurer–Cartan form, 198

right translate, 198
maximal atlas, 293
maximal geodesic, 103
mean curvature, 18, 41, 67

of a cylinder, 40
of a sphere, 40
of a surface of revolution, 41

metric
on the Poincaré half-plane, 93

metric connection, 75, 234
existence of, 76
relative to an orthonormal frame is

skew-symmetric, 83
metric space, 129
metric-preserving map, 5
minimal geodesic, 130
Möbius strip, 50
module

free, 299
morphism

of principal bundles, 244
multi-index, 298

ascending, 298
strictly ascending, 298

natural transformation, 126
naturality
of the exponential map, 116
of characteristic classes, 221
of the exponential map for a Lie group,

122
naturality property, 221
Newton’s identities, 317
Newton’s identity, 215
non-Euclidean geometry, 110
nondegenerate pairing, 169
normal coordinates, 118
normal curvature
average value of, 41
of a normal section, 18

normal neighborhood, 118
normal section, 18
normal vector, 17
normal vector field, 17
along a hypersurface, 29
smooth, 17

orbit, 243
orientable vector bundle, 229
orientation
and curvature, 13
on a vector bundle, 229
on a vector space, 228

orientation-preserving reparametrization,
128

orientation-reversing reparametrization, 128
oriented vector bundle, 229
orthogonal projection, 81
on a surface in R3, 46

pairing
nondegenerate, 169
of two modules, 169

parallel translation
existence of, 111

parallel along a curve, 263
parallel frame
along a curve, 263

parallel postulate, 110
parallel translate, 111
parallel translation, 111, 263
on a sphere, 113
preserves length and inner product, 112

parallel transport, 111, 263
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parallel vector field, 110
parametrization

by arc length, 10
parametrized curve, 9
partition of unity, 6
path component, 305
permutation matrix, 311
Pfaffian, 231
piecewise smooth curve, 112
Poincaré disk

connection and curvature forms, 86
Poincaré half-plane

Gaussian curvature, 94
metric, 93

Poincare
Poincaré disk
Christoffel symbols, 102

Poincaré disk
Gaussian curvature, 94

Poincaré half-plane, 144
Poincaré half plane

Gaussian curvature, 92
Poincaré half-plane

geodesics, 108
point operator, 53
point-derivation, 295
polygon

geodesic polygon, 144
on a surface, 142

polynomial, 212, 306
Ad(G)-invariant, 287
on gl(r,F), 308
on a vector space, 287

polynomial function, 306
polynomial on so(r), 230
polynomials

versus polynomial functions, 306
Pontrjagin class, 225
Pontrjagin number, 226, 236
positive orientation

on a polygon, 142
positive-definite, 234
positive-definite bilinear form, 3
positive-definite symmetric matrix, 4
positively oriented frame, 229
principal curvature

is an eigenvalue of the shape operator, 33
principal bundle, 244
principal curvature, 18, 67

principal direction, 18
is an eigenvector of the shape operator, 33

principle of extension of algebraic identities,
307

product bundle, 50, 244
product of vector-valued forms, 188
projection
orthogonal, 81

pseudo-tensorial form
with respect to a representation, 277

pullback
of a vector bundle, 177
of a differential form, 303
of a function, 303

pullback of vector-valued forms, 193
pullback bundle, 177
induced connection, 210
examples, 180

pushforward
of of a vector field, 98

quotient bundle, 177

rank, 299
rank of a vector bundle, 49
real invariant polynomials, 315
generated by the coefficients of

characteristic polynomial, 317
generation, 319

regular curve, 9
regular point, 29
regular submanifold, 5, 17
regular value, 29
reparametrization, 9, 128
orientation-preserving, 128
orientation-reversing, 128

reparametrization of a geodesic, 105
restriction
of a connection to an open subset, 76
of a form to a submanifold, 304
of a local operator, 55
of a vector bundle to an open set, 178
of a vector bundle, 50

retraction, 252
Ricci curvature, 208
Riemann curvature tensor, 207
Riemannian bundle, 74
Riemannian connection, 45
existence and uniqueness, 45
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in terms of differential forms, 85
on a surface in R3, 47

Riemannian manifold, 4
is a metric space, 129

Riemannian metric, 4
existence, 6
on a manifold with boundary, 133
on a vector bundle, 74

right action, 243
right G-equivariant map, 243
right-equivariant form

with respect to a representation, 277
rotation angle theorem, 143
rotation index theorem, 143

scalar curvature, 209
second Bianchi identity

in vector form, 207
second Bianchi identity, 204, 271

generalized, 204
generalized, on a frame bundle, 274

second fundamental form, 35, 68
coefficients, 36

second structural equation, 85
section

of a vector bundle, 51
sectional curvature, 92
sections

of a vector bundle along a curve, 262
sesquilinear, 234
shape operator, 30, 66

and curvature, 32
is self-adjoint, 31
matrix is symmetric, 32
of a cylinder, 40
of a sphere, 40
of a surface of revolution, 41

short exact sequence
rank condition, 252
splitting, 252

shuffle, 172, 297
sign convention, 197
signature, 238
signed curvature, 12
signed geodesic curvature, 140
signs concerning vector-valued forms, 197
singular value, 29
skew-symmetric matrices

powers, 224

skew-symmetric matrix
diagonal 0, 224

smooth dependence
of a form on t, 216

smooth form, 188, 298
smooth function, 293, 294
smooth manifold, 294
smooth map, 295
smooth vector field, 296
smoothly varying
family of forms, 216

Ad
(
SO(r)

)
-invariant polynomial,

229
speed, 10, 103
sphere
geodesics, 107
geodesics on, 104
mean and Gaussian curvature, 40
shape operator, 40
volume form in Cartesian coordinates,

135
spherical coordinates, 135
splitting, 251, 252
stabilizer, 243
straight, 95
strictly ascending multi-index, 298
structural equation
first, 85
second, 80, 85

subbundle, 174
subbundle criterion, 175
submanifold
immersed, 304
regular, 5

summation convention
Einstein, 80

support
of a function, 6

surface
in R3, 5

surface in R
3

covariant derivative, 104
Gaussian curvature, 90

surface of revolution
Christoffel symbols, 102
mean and Gaussian curvature, 41
shape operator, 41

symmetric bilinear form, 3
symmetric connection, 100
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symmetric polynomials
fundamental theorem, 312
generation, 318

symmetric power, 173
symmetries

of curvature, 205

tangent bundle, 51
tangent space, 295
tangent vector, 295
tensor, 91
tensor product

basis, 156
tensor algebra, 162, 163
tensor criterior, 196
tensor field

covariant derivative of, 206
tensor field on a manifold, 195
tensor product, 152

associativity, 161
basis, 156
characterization, 154
dimension, 157
functorial properties, 160
identities, 158
of finite cyclic groups, 159, 163
of three vector spaces, 161

tensorial form
of type ρ , 277

Theorema Egregium, 19, 63
using forms, 90

third fundamental form, 68
topological manifold, 294
torsion, 44

is F-linear, 44
of directional derivative, 24

torsion forms, 84
torsion-free, 45

in terms of Christoffel symbols,
100

torsion-free connection, 100
torus

as a Riemannian manifold, 5
total curvature, 40, 146

is a topological invariant, 146
of a plane curve, 147

total geodesic curvature, 141
total Pontrjagin class, 226

total space, 242
of a vector bundle, 49

trace
derivative of, 215
of a bilinear form, 209

trace polynomial, 213, 215, 306, 310
transition functions, 245
transitive action on a fiber, 244
transposition matrix, 311
triangle
sum of angles, 144

trivial line bundle, 235
trivialization, 49, 72
trivializing open cover, 50
trivializing open set, 49

Umlaufsatz, 147
unit-speed polygon, 142
universal mapping property
for bilinear maps, 154

universal mapping property
for alternating k-linear maps, 166
for bilinear maps, 153
of the tensor product, 153

vanishing
of characteristic classes, 223

vector bundle
associated to a representation, 275

vector bundle, 49
base space, 49
holomorphic, 238
isomorphism, 51
total space, 49

vector field, 296
along a curve, 25
along a submanifold, 26
left-invariant, 119
on a submanifold, 26
parallel, 110

vector subbundle, 174
vector-valued forms
product, 188

vector-valued k-covector, 186
vector-valued differential forms, 186
vector-valued form, 186, 187
directional derivative, 190
pullback, 193

velocity vector field, 25
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vertical component, 254
of a tangent vector, 256

vertical subbundle, 251
vertical tangent space, 250
vertical tangent vector, 250
volume form

of a smooth hypersurface, 137
of a sphere, 135
of a sphere in spherical coordinates, 135
of an oriented Riemannian manifold, 133
on a circle, 134

on H2, 133
on R2, 133
on the boundary, 133

wedge product, 164, 298
is anticommutative, 165
properties, 164
under a change of frame, 132

wedge product formula, 172
Weingarten map, 30
Whitney product formula, 226
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