

The US Particle Accelerator School Pressure Measuring Devices

Lou Bertolini Lawrence Livermore National Laboratory June 10-14, 2002

- Large measurement range: 760 10⁻¹³ Torr (16 orders of magnitude)
- · Pressure is the descriptive term, rarely the important one
- · High accuracy is impractical, \pm 10% good enough
- \cdot Some gauges do not measure pressure directly
- Some gauges are gas species dependent
- · Measured environment is usually a dynamic one
- · Placement of gauge will influence it's response

Vacuum Measurement

Total pressure gauges

- Direct measurement
 - · Liquid column level
 - Solid wall movement
- Indirect measurement
 - · Thermal conductivity
 - · Viscosity
 - Ionization
- · Partial pressure gauges
 - Indirect only: ionization & mass filtering

The pressure range measured in most vacuum systems is too broad to be measured with a single gauge!

1x10-10 Torr
Base Vacuum
Pressure760 Torr
Atmospheric
Pressure

1 unit is ~11,000,000,000 [11 billion] times the other!

It is not practical to measure both with the same device.

Atmospheric Pressure (Standard) =			
760	Torr		
760	mm of mercury (Hg)		
29.9	inches of Hg		
14.7	lbs. per square inch – abs. (psia)		
0	psig (psi at gauge)		
760,000	Millitorr or "microns" of Hg		
101,000	Pascal (Newton/m²)		
1.01	Bar		
1010	Millibar		

Range of Vacuum Gauges

Gauge Summary

Gauge	Measurement Mechanism	Operating range (Torr)	Accuracy
Bourdon tube/ diaphragm	solid wall movement	1000s-1	low
Capacitance manometer	solid wall movement	10,000-10 ⁻⁶	high
Thermocouple	thermal conductivity	1-10 ⁻³	medium
Pirani	thermal conductivity	1-10 ⁻⁴	medium
Bayard-Alpert	ionization	10 ⁻² -10 ⁻¹¹	medium
Penning	ionization	10 ⁻² -10 ⁻⁶	medium
Inverted	ionization	10 ⁻³ -10 ⁻¹²	medium
magnetron Spinning rotor	momentum transfer	760-10 ⁻⁷	high

Medium and Low Vacuum: 10⁻³ Torr to 1000 Torr

- •Direct Gauges Displacement of a Solid Wall
 - Capacitance Diaphragm Gauge
- •Indirect Gauges Heat-Loss Gauges
 - Thermocouple Gauge
 - Pirani Gauge
 - CONVECTRON Gauge (Convection-Enhanced Pirani)

Ultra-High and High Vacuum: 10⁻¹¹ Torr to 10⁻³ Torr

•Indirect Gauges - Ionization Gauges

- Hot Cathode Gauge
- Cold Cathode Gauge

Distinguishing features & operating characteristics:

- Measures pressure directly
- · Operating range above atm pressure to 1 Torr
- Indicated value is independent of gas specie being measured
- System of gears & levers transmit the movement of a small tube or wall to a pointer
- · Can be constructed such that all parts exposed to vacuum are stainless steel
- · Optionally configured as a compound gauge
- \cdot Bourdon tube often used as an indicator of system status
- For safety reasons: Bourdon tube recommended for most systems

Bourdon Tube Gauge Components

Pressure Range Comparison of Heat-Loss Sensors

Heat-Loss or Energy Transfer

Distinguishing features & operating characteristics:

- \cdot Indirectly measures pressure via thermal conductivity of gases
- · Operating range 1 Torr to 10^{-3} Torr
- · Indicated value is gas dependent
- Constant current is delivered to a wire & it's temperature is measured by a thermocouple
- · Thermocouple voltage is read on a pressure scale
- · Not capable of good measurements above 1 Torr
- Rugged design, inexpensive, however somewhat inaccurate

Thermocouple Gauges

- Constant current through the heater (sensor).
- TC junction measures temperature changes.
- · Slow response time.

Distinguishing features & operating characteristics:

- Indirectly measures pressure via thermal conductivity of gases
- · Operating range 1 to 10^{-4} Torr
- · Indicated value is gas dependent
- Resistance heated wire which is part of a Wheatstone bridge
- Pirani gauge that is sensitive to convection heat losses is available
- \cdot This gauge's operating range is 1000 to $10^{-4}~\text{Torr}$

- Wheatstone bridge with sensor as one leg of bridge.
- Current through sensor changes to maintain balance.
- Reads to ~100 Torr.

• Similar principle to pirani.

- Conductive heat loss (10⁻³ Torr to ~100 Torr)
- Adds convective heat loss (~100 Torr to 1000 Torr.)
- Improved temperature compensation.
- · Gold plated tungsten sensor.

CONVECTRON Gauge Benefits

- Wide Measurement Range: 10⁻³ Torr - 1000 Torr.
- · Individual calibration.
- · Accurate, fast measurement.
- · Long term stability.
- Recalibrate for contaminated gauge or
- after cleaning gauge.
- · Very reliable industry standard.

- · Gas dependent
- \cdot Sensitive to orientation
- · S-curve, analog output
- · Fragile

Corrosive gases - attacked by fluorine, chlorine, mercury

Capacitance Manometers

Distinguishing features & operating characteristics:

- · Measures pressure directly
- Operating range 10,000 to 10⁻⁶ Torr, with different ranged sensors
- Indicated value is independent of gas being measured
- Diaphragm gauge that senses the change in capacitance of a circuit which contains the diaphragm wall as an active element
- Deflections of the diaphragm as small as one Å can be sensed
- Available in several ranges with differing resolution
- Measurements requiring a high degree of accuracy use heated sensors
- High precision work requires frequent "zeroing"

- Gas atoms and molecules are normally without charge or "neutral", they have equal numbers of protons and electrons
- If one or more electrons are removed from an atom it becomes positively charged and we call it an ion
- Numerous processes in vacuum technology utilize energetic free electrons to strip atoms of some of their electrons, thus creating ions
- Ions, being positively charged, can be manipulated by magnetic and electrical fields
- An atom has a probability of being ionized that is dependent on the atom itself and the energy of the colliding electron. The ionization cross section quantifies the probability of ionization

- At pressures below 10⁻⁵ Torr (high vacuum) direct measurement of pressure is very difficult
- Thermal conductivity gauges have exceeded their operational limits
- Primary method for pressure measurement from 10⁻⁴ to 10⁻¹²
 Torr is gas ionization & ion collection/measurement
- These gauges can be divided into hot & cold cathode types
- Most common high vacuum gauge today is the Bayard-Alpert

Ionization Gauge Principle of Operation

- Hot filament (cathode) emits electrons.
- · Molecules are ionized and collected.
- Pressure reading is determined by the electronics from the collector current.

Gauge Sensitivity: A constant that indicates how well a gauge creates ions.

Ion gauge equation:

$$P = \frac{i_{+}}{i_{e} \cdot S} \quad \begin{array}{l} \text{where:} \\ i_{+} = \text{ ion current} \\ i_{e} = \text{ emission current} \\ S = \text{ sensitivity} \end{array}$$

whone

- Sensitivities of B-A Gauges
 - Glass Gauge and Standard Nude Gauge ~10/Torr
 - UHV Nude Gauge ~25/Torr

USPAS June 2002 Pressure Gages Page 28

•

· Emission current = Electron Current \approx No. of electrons

 \cdot A variable controlled by the electronics

$$P = \frac{i_{\star}}{i_e \cdot S}$$

- · Selected, based on measurement range
- Typical emission settings for B-A gauges:
 - High pressure: $i_e = 0.1 \text{ mA}$
 - · Widest pressure range: $i_e = 1 \text{ mA}$ (default)
 - · UHV range: $i_e = 10 \text{ mA}$
- Typical problems:
 - High emission + high pressure = gauge off
 - Low emission + low pressure = "nervous" display

X-Ray Limit

- Lower limit of the gauge
- · Low accuracy readings near the x-ray limit
- Select gauge with x-ray limit 5 to 10 times lower than lowest pressure
- · Only an issue for UHV measurement at P < 1 x 10^{-9} Torr

Thoria-coated Iridium

General purpose Operates cooler (~900° C) Burn-out resistant

• Tungsten

Special purpose Operates hotter (~1200° C) Burns out easily and oxidizes when exposed to atmosphere

Granville-Phillips Series 274: Glass B-A Gauge

- Filaments: single thoria-coated
- iridium, or dual tungsten
- · Sensitivity: 10/Torr.
- · Helical grid: EB or I^2R degas.
- X-ray limit: < 3 x 10⁻¹⁰ Torr
- Port diameter: 3/4 in. or 1 in.
- Vacuum connections: straight tube, NW25, 1.33 in. ConFlat-type (16CF), 2.75 in. ConFlat-type (35CF)

Granville-Phillips Series 274: Nude B-A Gauge

- Filaments: single thoria-coated iridium, replaceable
- · Sensitivity: 10/Torr
- Helical grid: EB or resistive degas
- X-ray limit: about 4 x 10⁻¹⁰ Torr
- Flanges: NW40, 2.75 in. ConFlat-type (35CF)
- Available with pin-guard

Granville-Phillips Series 274: UHV Nude B-A Gauge

- Filaments: dual thoria-coated iridium, or dual tungsten, replaceable.
- · Sensitivity: 25/Torr.
- Enclosed grid: EB degas only
- X-ray limit: about 2 x 10⁻¹¹ Torr
- Flanges: NW40, 2.75 in. ConFlat-type (35CF)
- Available with pin-guard

STABIL-ION Gauge Design

STABIL-ION Gauge Types

- Extended Range Gauge
 - \cdot 1 x 10⁻⁹ to 2 x 10⁻² Torr
 - · x ray limit: < 2 x 10^{-10} Torr
 - Highest accuracy & stability
 - Sensitivity: 50/Torr
- UHV Gauge
 - $\cdot~10^{\text{--}11}$ to $10^{\text{--}3}$ Torr
 - · x ray limit: <2 x 10^{-11} Torr
 - Less accurate & stable than Extended Range Gauge
 - · Sensitivity: 20/Torr

- Extended Range:
 0.040 inches
- · UHV: 0.005 inches

- \cdot 370120 with 370 controller = +/-4% of reading
- 360120 with 360 controller = +/-6% of reading [mid-scale pressures]
- 360120 with other controllers such as 347 module or older style Series 303, 307, or 350 = ~+/-15% of reading
- Independent Labs [Sandia & PTB] report better accuracy levels than the manufacturer

- X-ray limit: < 3×10^{-10} Torr (< 4×10^{-10} mbar).
- Upper pressure limit: 5 x 10⁻² Torr/mbar.
- Stable behavior at pressures > 1×10^{-3} Torr/mbar.
- Useable in place of glass and nude B-A gauges.
- Good overlap with low vacuum (> 1×10⁻³ Torr/mbar) gauges such as CONVECTRON.

Distinguishing features & operating characteristics:

- Measures pressure indirectly
- \cdot Operating range is 10^{-3} to $10^{-11}\,\text{Torr}$
- Indicated value is gas dependent
- \cdot Gas ionization from electron impact & then ion collection
- · Three electrode geometry
- \cdot Hot cathode (filament)
- · Two configurations available, tubulated & nude

Pressure (P) = $(1/S) (i_c/i_e)$

S = sensitivity of the gauge, units are reciprocal pressure

Different sensitivities for different gas species

Accurate to +/- 50%, better with calibration

Low pressure measurement limited by residual currents X-ray effect EID Insulator leakage

Bayard-Alpert gauge components

- Glass tubulated
 - Pumping capacity can mask true pressure
 - \cdot About one third the price of a nude gauge
- · Nude
 - \cdot More robust
 - · Placed directly into environment, pumping is minimized
 - Filaments are replaceable
 - Higher sensitivities & can measure lower pressures (UHV)
 - Larger variation in sensitivity

Penning gauge

- Measures pressure indirectly
- Operating range 10^{-2} to 10^{-7} Torr
- · Indicated value is gas dependent
- · Cold cathode (no hot filament)
- Penning discharge: crossed electrical & magnetic fields to enhance ionization efficiency
- Discharge current is used as a measure of pressure
- S = I_c/Pⁿ
 1.1 < n < 1.4 pressure-current relationship is nonlinear
- Does not produce gases like a hot filament gauge
- Difficult to start & maintain discharge at pressures <10⁻⁶ Torr
- · Discharge mode "hopping" may confuse pressure indication
- · Less accurate and less stable than a B-A gauge

Spinning Rotor Gauge (SRG)

- \cdot Also called the molecular drag gauge (MDG)
- Measures pressure indirectly
- Operating range 10⁻² to 10⁻⁷ Torr
- Indicated value is gas dependent (viscosity)
- \cdot Works by the principle of momentum transfer
- Utilizes a magnetically levitated, spinning, steel 4mm ball
- $\cdot\,$ Ball rotation is slowed by gas collisions & measured
- Vibration sensitive
- Requires 30 seconds to 5 minutes to make a measurement
- Very good accuracy and linearity
- Often used in laboratories for calibration transfer standard

Spinning Rotor Gauge (SRG)

From Handbook of Vacuum Science and Technology, Hoffman

Inverted Magnetron Gauge

- Measures pressure indirectly
- Operating range 10^{-3} to 10^{-12} Torr (note low pressure)
- Indicated value is gas dependent
- · Cold cathode (no hot filament)
- Ion current & pressure are not linearly related
- Same advantages as Penning, improvement on drawbacks
- Electrode geometry evolved from Penning configuration
- Anode changed to a rod and auxiliary (shield) cathode added
- Less accurate & reproducible than Bayard-Alpert

Partial Pressure Gauges

- Determine the composition of gases in a vacuum environment
- · Usually qualitatively, sometimes quantitatively
- · Mass spectrometer
- · Amount of ions vs. mass/charge ratio (m/e or m/q)
- · AMU atomic mass unit C_{12} is exactly 12 AMU
- · PPA & RGA
- · Analytical mass spectrometer
- $\cdot N_2^+$ m/e = 28.0061 CO⁺ m/e = 27.9949

- · PPA components
 - · Ionizer
 - Mass filter
 - Detector
- \cdot Common types of PPAs
 - · Quadrupole
 - \cdot Magnetic sector
 - \cdot Time of flight

Quadrupole Analyzer, Exploded View

Quadrupole mass filter.

- Fragmentation or cracking patterns
 - · Dissociative ionization
 - · Isotopes
 - \cdot Multiple ionization
 - · Combined effects
- Cracking patterns are dependent on instrumental parameters
- Be careful with tabulated patterns
- Beware of instruments that convert ion currents to partial pressures