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1. INTRODUCTION 
 

Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. 
Several remote sensing studies have recently been done in this area, including the NASA Earth Observations 
Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies 
(YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA’s 
Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of 
synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, 
range, and wetland land cover. Since the beginning, a quality “reference” land cover map has been desired as a tool 
for developing and validating other land cover maps produced during the project. This paper recounts an effort to 
produce such a reference land cover map using low-altitude AVIRIS data and unsupervised classification 
techniques. 

 
The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast 

YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the 
potential for improving ISODATA-based classification of land cover through use of principal components analysis 
and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary 
research objective. 

 
This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek 

with the Lamar River (Figure 1). Range and wetland habitats dominate the image with forested habitats being a 
comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the 
scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS 
scene range from approximately 1998 to 2165 meters above sea level, based on U.S. Geological Survey (USGS) 30-
meter digital elevation model (DEM) data.  Despain (1991) and the National Park Service (NPS) (2000) provide 
additional description of the study area. 

 
2. RESEARCH RATIONALE 

 
Although undersampled in the along-track direction, the 1999 low-altitude AVIRIS data was employed for 

this study because of its well-known overall high spectral quality, its ability to be georeferenced, and its sufficiently 
large areal extent. The unsupervised classification approach was selected over the supervised method because of the 
great diversity and complexity of land cover types within the study area. During this project, several YES research 
collaborators assessed various supervised classification methods for mapping targeted cover types in the area. These 
studies produced impressive maps of specific riparian and in-stream habitats (Crabtree et al., in press) but apparently 
did not yield wall-to-wall land cover maps. The latter can be constructed with the ISODATA unsupervised 
classification routine now resident in most commercial-off-the-shelf software packages. In essence, the acronym 
ISODATA means the Iterative Self-Organizing Data Analysis Technique Algorithm. It is often used for processing 
multispectral image data into effective land cover maps. ISODATA has worked well for mapping land cover from 
broad-band multispectral data sets, which tend to include 3 to 15 bands and spectral coverage in the visible, near 
infrared (NIR), and short-wave infrared (SWIR) regions. Therefore, ISODATA should also be effective for 
classifying land cover from narrow-band hyperspectral imagery with 15 bands or less in comparable regions of the 
electromagnetic spectrum. 
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A literature review revealed a lack of publications discussing the effect of total number of input 
hyperspectral bands on ISODATA classification success. Sensor, application, and scene characteristics can 
individually or collectively affect the optimum number of bands needed for ISODATA classification success. The 
review did show some studies that successfully employed AVIRIS band subsets for effective land cover 
classification. For example, Martin et al. (1998) reported that 11 bands of AVIRIS data were effective for supervised 
classification of forest cover types within the Harvard Experimental Forest. Fuentes et al. (2000) produced boreal 
forest habitat maps that showed improvement over Landsat-based mapping. Fuentes used a subset of AVIRIS bands, 
data stacks of band ratios, and other indices, plus maximum likelihood supervised classification. 

 

 

Figure 1. Location of study area within Yellowstone National Park. The graphic shows a hillshaded 90-meter 
DEM from the USGS with the AVIRIS scene boundary outlined in red. 

 
The number of bands clearly affects the amount of time needed to perform ISODATA classifications. 

Based on first-hand experience, the amount of time needed to run an ISODATA classification on a whole AVIRIS 
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cube is substantially greater than for the time needed to classify 10-15 bands. An initial classification of the entire 
low-altitude AVIRIS cube used in the Yellowstone study took about 20 times longer to compute than did 
classification of the same image with only 11 subset bands (7 hours as opposed to 20 minutes). The input data 
volume for the 11-band data set contains 78 megabytes, while the full AVIRIS cube includes 1600 megabytes. 
These classifications employed an SGI Onyx2 workstation with four CPU’s and five Gigabytes of RAM. 

 
One clear advantage of ISODATA is that it can be used in a supervised manner to generate spectral 

signatures, which can later be subject to a supervised classifier, such as the maximum likelihood routine. In addition, 
ISODATA can be used in the classification refinement process known as cluster busting to effectively reclassify 
“confused” cluster classes (Jensen, 1996). Such reclassification runs using all of the AVIRIS bands would be 
extremely time consuming and would generate excessively large volumes of intermediate raw data files. It would be 
quite advantageous if an accurate, detailed land cover classification could be computed with ISODATA clustering 
on a relatively modest subset of representative bands. 

 
3. DATA ACQUISITION 

 
The related NASA EOCAP hyperspectral project with YES enabled acquisition of and access to a wealth of 

remote sensing data, much of which was also acquired in 1999 (Table 1). These data sets included Probe-1 
hyperspectral data at various resolutions, ATLAS multispectral data with multiple thermal bands, very high 
resolution color infrared (CIR) aerial photography scanned at 0.5 meters, plus synthetic aperture radar imagery 
collected by the AIRSAR and STAR-3i sensors. In addition, the study also employed several geographic 
information system (GIS) compatible field surveys and thematic maps generated by the USGS, the NPS, and others 
(Table 2).  

 
Table 1. Remote sensing data available for study. 

 

Remote Sensing Data Type Date Acquired Spatial Resolution 

AVIRIS Hyperspectral data 7/23/99 1.6 by 4.8m 

ATLAS Multispectral/Thermal data 8/17/99 2.5m 

Zeiss CIR Aerial Photo data 8/17/99 scanned at 0.5m 

Positive Systems Multispectral data early 10/99 0.5m 

USGS DOQQ data mid 1990s 1m 

Probe-1 Hyperspectral data summer 1999 1 to 8m 

STAR-3i X-Band SAR data fall 1999 2.5m 

AIRSAR data 5/28/99 10m 

Landsat ETM+ data 7/13/99 30m 

 
Table 2. Field reference data. 

 

Reference Data GIS Format Source 

Analytical Spectral Devices spectra point NASA/YES 

Field checks and photos point NASA/YES 

40x40m vegetation plots polygon YES 

DEM data - 10 to 30m raster USGS, EarthWatch 

Digital line graph data polygon USGS 

Digital raster graphic data – multiple scales raster USGS 

National wetlands inventory polygon U.S. Fish and Wildlife Service National Wetlands 
Inventory 

Habitat map raster NPS 

Vegetation map raster NPS 

Fire intensity - 1988 wildfire raster NPS 

 
 



 
 

4. METHODS 
 
ATREM and EFFORT software were used to compute ground reflectance from the AVIRIS data. 

Afterwards, an additive offset was applied to eliminate negative reflectance values in waters and shadows. The 
AVIRIS data was later georeferenced with software developed by Analytical Imaging Geophysics and subsequently 
co-registered to USGS digital orthophoto quarter quadrangles (DOQQ’s) using 80 ground control points and a 
second-order polynomial transformation. Output imagery contained an across-track resolution of 1.6 meters, an 
along-track resolution of 4.8 meters, and an overall root mean square error fit of 2.70. This unusual resolution is due 
to along-track undersampling (i.e., skip) from the plane’s not flying high enough to permit sampling at the same 
resolution as in the cross track. Future collects should not have this problem as the AVIRIS data can now be 
collected at sufficiently high altitudes to avoid along-track skip. 

 
Prior to classification, the author conducted a literature review to identify spectral bands or regions 

important for classification of vegetation, soil, and water conditions. Relevant publications include Ahern (1988), 
Guyot et al. (1992), Penuelas et al. (1994), Clark et al. (1995), Goetz and Boardman (1995), Carter et al. (1998), 
Kokaly et al. (1998), Martin et al. (1998), Sampson et al. (2001), Adams et al. (1999), Zarco-Tejada et al. (1999), 
Fuentes et al. (2000), Jensen (2000), Mohammed et al. (2000), and Thenkabail et al. (2000).  This review led to the 
selection of 11 bands for classification, including six bands in the visible, three bands in the NIR, one in the 
“Landsat” short wave infrared-1 (SWIR-1), and one in the “Landsat” SWIR-2 region (Table 3). Selection included 
representative bands indicative of healthy, stressed, and dead vegetation. Bands sensitive to vegetation health and 
biomass help to promote detection of several grassland types growing along a topographic moisture gradient. 
Selection also consisted of blue and green bands for aiding separation of forest types as well as for mapping water. 
In addition, selection included one SWIR-1 band for adding information on soil and vegetation moisture and one 
SWIR-2 band for enhancing detection of vegetation moisture, dead forest, woody debris, exposed soil, rock, mineral 
deposits, and alluvial surfaces. Band selection avoided bands with known significant atmospheric influence. 

 
The 11 selected bands were subset from the path-oriented yet georeferenced output. Classification analyses 

required at least some initial georeferencing because the non-georeferenced data could not be effectively related to 
field surveys. In particular, classification products could not be most effectively assessed without visual comparison 
to the ground reference data. The use of the path-oriented raw data and the band reduction collectively also enabled 
significant reductions in data volume and expedited classification run times. 

 
Table 3. Bands selected for ISODATA classification. 

 

AVIRIS 
Band 

Band 
Center 

Spectral 
Region Characteristic Sensitivities Per Selected Band 

13 488.37 Blue soil, water, and vegetation 
17 527.67 Green vegetation - chlorophyll reflectance – in left side slope 

20 557.14 Green vegetation - "green peak" for chlorophyll reflectance 

23 586.61 Yellow vegetation – reflectance of chlorotic foliage 

27 625.90 Orange vegetation – reflectance - early phase necrotic foliage 

37 692.33 Red vegetation – right side of  red "chlorophyll absorption well" 

42 740.03 Red/NIR vegetation - band located in far red portion of "red edge" 

51 825.93 NIR Plateau vegetation condition, soil moisture, and water body detection 

70 1012.21 NIR Plateau vegetation condition, soil moisture, and water body detection 

137 1654.04 SWIR-1 clouds, snow, soil moisture, and vegetation moisture 

194 2211.8 SWIR-2 mineral, rock type, and vegetation moisture 

 
Classifications were performed with ERDAS IMAGINE software as follows: ISODATA was used to 

generate an initial classification of 30 cluster classes using settings of 50 iterations, 99% convergence, means 
initialization along the first PC axis, automatic scaling, and sampling every pixel. The 30-class output was compared 
to assorted reference data (e.g., aerial photographs and field survey data) and then recoded into 9 broad classes. 



 
For the most part, at least some visually apparent confusion occurred in each broad class of the regrouped 

initial classification. Consequently, cluster-busting techniques were applied to reduce misclassification. In doing so, 
masking was performed to isolate raw data for each broad class. These raw data sets were then reclassified with 
ISODATA clustering. The settings for these follow-up “runs” were identical to the initial classification, except with 
respect to the number of classes. For each raw data mask, the number of classes was set to twice the apparent 
number of distinct spectral tones evident on representative RGB color composite displays. This reclassification 
process worked well for most situations but did not usually separate targeted classes that were locally common yet 
regionally rare. To break out the latter, area of interest (AOI) polygons were screen delineated and later used to 
guide ISODATA clustering within AOI’s. In paved highway, AOI’s had to be defined around the category of 
interest as well as the category with which it was confused. Running ISODATA on both confused features enabled 
spectrally similar but distinct signatures to be identified. In the reclassification process, “keeper” cluster classes refer 
to those not needing cluster busting. Such classes contain minimal apparent confusion between spectrally similar 
land cover types. 

 
Reclassification led to several secondary classifications being output as classification imagery and 

signature files. All of the “keeper” secondary classification signatures were appended into one master signature file. 
The master signature file and the original 11-channel subset were then subject to the maximum likelihood classifier 
to produce a classification image containing 147 cluster classes. The latter represented 33 specific land cover 
categories falling under 13 general classes: 1) wet herbaceous cover, 2) moist to seasonally wet herbaceous cover, 
3) moderately moist grassland without and with sage, 4) dry sage habitats without and with dry grassland, 5) dry 
grassland without sage, 6) very dry grassland on exposed sites, 7) coniferous forest – alive and dead, 8) deciduous 
forest and shrubs, 9) woody debris, 10) bare rocks and coarse soil, 11) bare alluvial deposits, 12) water, and 
13) shadowed non-forested areas. 

 
The 147-class image was regrouped to 33 classes that were subsequently filtered using IMAGINE’s 

ELIMINATE routine and a 9-pixel elimination threshold (Figure 2). Areal extent for each of 33 categories in the 
“final” classification was summarized (Table 4). The final classification was then evaluated qualitatively through 
comparison with large-scale CIR aerial photographs and field survey data. The latter includes field-annotated 
hardcopies of the aerial photography as well as Global Positioning System referenced field photographs. Time 
scheduling did not permit for results of a quantitative accuracy assessment to be presented at the workshop. 

 
5. PRELIMINARY ANALYSIS OF FINAL CLASSIFICATION 

 
This classification includes not only distinct land cover types but also variants (i.e., subclasses) in some 

cases. In doing so, the classification scheme includes ecological and/or spectral subclasses to aid qualitative and 
quantitative accuracy assessment, plus the editing of class descriptions. 

 
Rangeland cover types dominate the scene, collectively composing about 67 % of the total mapped area. 

The final map clearly shows the main herbaceous plant and sage communities occurring along the topographic 
moisture gradient readily seen in the field. In general, the classification separates extremely dry grassland, dry 
grassland, moist grassland, moderately moist grassland, and moist to seasonally wet herb-dominated grassland as 
well as sage/grasslands growing in moderately moist to dry sites (Figure 2 and Figure 3). 

 
Wetland habitats commonly occur in some parts of the scene. The classification identifies several types of 

herb-dominated wetlands, including sedge-dominated communities and mixed grass/forbs with Canada thistle, an 
exotic species. The latter is a land cover condition of interest to the NPS for its program to combat invasive plant 
species (NPS, 1999). The rush cover type is not mapped, probably because of the rareness of the cover type in the 
study area. It tends to occur as very small patches in close proximity to the waterlogged sedge sites. The sedge types 
represent multiple spectral conditions, apparently due to variations in site moisture. In effect, the sedges occur on 
wet to very wet sites with standing water apparent in the extreme cases. The classification does not map wetland 
forest (cottonwood) and shrub (willow) types as well as desired, in part due to the rarity and very small patch size of 
these features within the AVIRIS scene. The largest patch of willow observed in the study area is only 10 meters by 
10 meters, which is much smaller than a 0.25-acre minimum-mapping unit. The time of year probably imposes a 
negative influence on the detection of willow communities. The willows tend to occur among sedges that are 
spectrally similar to willows on the AVIRIS scene. A scene acquired later in the year probably would have better 



separation, based on the fact that these types are distinct on October multispectral data from Positive Systems’ 
ADAR system. Undoubtedly, the undersampling of the AVIRIS data in the along-track direction also impeded the 
detection of these very fine-scaled features. 

 
In general, this author found the non-forested wetland cover types to have impressive exploitable spectral 

variability, but they posed great difficulties in mapping because of the spectrally subtle tones of certain wetland 
types on the CIR aerial photographs and because of the fine-scaled nature of many wetland sites (Figure 3). Certain 
AVIRIS RGB displays show wetland types better than the CIR aerials do, although it was best to view both data 
types compared to ground reference data. While we had considerable in-situ data, the description and accuracy 
assessment of the wetland types would benefit greatly from additional field validation. 

 
The AVIRIS classification also largely identifies live and dead softwood forest, plus dead woody debris. 

The last tends to be a fine-scaled feature occurring on alluvial surfaces, such as gravel and sandbars (Figure 3). 
Mapping woody debris is important to the NPS for enhanced understanding of the region’s riparian ecology and for 
better park management (NPS, 1999). The attempt to map aspen yielded mixed success, again apparently because of 
very small patch size and rarity within the scene. The AVIRIS also readily identifies many non-vegetated surfaces, 
such as multiple alluvium types, surface water, pavement, and bare rock outcroppings. Pavement is mapped well, 
though doing so required considerable additional effort using subset AOI’s in conjunction with masking and 
reclassification. The classification shows a very small amount of non-forested shadow. The shadowed forest largely 
pertained to softwood forest and subsequently recoded as such in the final classification. 

Figure 2. AVIRIS-based final classification with 33 map categories. 

Wet sedge
Wet sedge - in water
Wet grasses/forbs with sedge
Wet grasses/forbs with sedge - in water
Wet grasses/forbs with sparse sedge
Wet grasses/forbs with timothy and thistle
Wet grasses/forbs with thistle
Wet grasses/forbs - sparse forbs
Wet grasses/forbs - sparse - disturbed cover
Moist to seasonally wet grasses/forbs
Dense to moderate density live RN grass
Sparse to very sparse RN grass
RN grass/ moderate density sage
Sage/dry IF grass - dense sage
Sage/dry IF grass - moderate density sage
Dry IF grass on flats
Dry IF grass on slopes
Dry IF grass on exposures
Very dry BBW grass on rocky exposures
Live coniferous forest
Dead coniferous forest
Aspen
Cottonwood
Willow
Woody debris
Bare rock and coarse soil
Sand
Sand/gravel
Gravel - (gravel and cobble)
Silt/organic soil
Water
Pavement
Shadow - nonforest



Table 4. Summary area for map categories in final classification. 
 

Category # Cover Type Category Hectares % Total Area 

1 Wet sedge  13.62 2.69 

2 Wet sedge - in water 7.19 1.42 

3 Wet grasses/forbs with sedge 17.53 3.47 

4 Wet grasses/forbs with sedge - in water 7.76 1.53 

5 Wet grasses/forbs with sparse sedge 14.17 2.80 

6 Wet grasses/forbs with timothy and thistle 3.14 0.62 

7 Wet grasses/forbs with thistle 0.72 0.14 

8 Wet grasses/forbs - sparse forbs 4.69 0.93 

9 Wet grasses/forbs - sparse - disturbed cover 20.22 4.00 

10 Moist to seasonally wet grasses/forbs 60.52 11.96 

11 Dense to mod. dense live RN grass1 36.17 7.15 

12 Sparse to very sparse RN grass 46.56 9.20 

13 RN grass/moderate density sage 14.45 2.86 

14 Sage/dry IF grass - dense sage2 18.43 3.64 

15 Sage/dry IF grass - moderate density sage 39.47 7.80 

16 Dry IF grass on flats 52.84 10.45 

17 Dry IF grass on slopes 53.05 10.49 

18 Dry IF grass on exposures 12.93 2.56 

19 Very dry BBW grass on rocky exposures3 3.91 0.77 

20 Live coniferous forest 14.40 2.85 

21 Dead coniferous forest 1.98 0.39 

22 Aspen 0.33 0.06 

23 Cottonwood 0.14 0.03 

24 Willow 0.05 0.01 

25 Woody debris 1.15 0.23 

26 Bare rock and coarse soil 4.83 0.95 

27 Sand 0.62 0.12 

28 Sand/gravel 2.54 0.50 

29 Gravel - (gravel and cobble) 17.39 3.44 

30 Silt/organic soil 6.24 1.23 

31 Water 23.01 4.55 

32 Pavement 3.40 0.67 

33 Shadow – nonforest 2.38 0.47 

N/A Grand Total 505.82 100.00 
 
1RN denotes grassland community with Richardson’s needlegrass  
2IF denotes grassland community with Idaho fescue grass 
3BBW denotes grassland community with bluebunch wheatgrass 

 



 

Figure 3. Visual comparison of final classification to scanned 1:8,000 color infrared aerial photographs. 
 
6. CONCLUDING REMARKS 

 
The results of this study provide insight into the apparent feasibility of using an 11-band subset of AVIRIS 

data and ISODATA techniques for classification of forest, range, and wetland habitats. The author observed 
consistent classification success for the most common cover types based on qualitative comparison to ground 
reference data. Classification success also occurred for some scarce, fine-scaled and/or comparatively rare habitats. 
However, classification confusion took place for other scarce, fine-scaled cover types. Herb-dominated wetlands 
appear to be well classified in general, although additional ground reference data is needed to determine the level of 
detail that can be extracted with the ISODATA classification approach as well as through interpretation of the CIR 
aerial photographs. 

 
The ISODATA classification approach appears to be quite useful for computing wall-to-wall land cover 

maps from AVIRIS-quality hyperspectral data. The approach does not require all the bands and may or may not be 
improved using more bands. In terms of a first-cut classification, ISODATA classification using all bands did not 
appear to improve results when compared to ISODATA classification of 11 select bands. In addition, using all the 
bands takes about 20 times longer to perform a classification run and requires much more disk space to run. The disk 
space requirement for running ISODATA cluster busting on all the bands is probably too great for usage in an 
operational setting. However, an 11-band subset or a similar sized subset would be much easier to process from a 
data volume management perspective. 
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It is quite possible that there are other comparable or even better ways to compute wall-to-wall land cover 
maps from AVIRIS data. For example, some preliminary work by the author indicates that use of the 15 most signal-
rich MNF bands instead of 11 select bands may improve ISODATA classification success. It also maybe possible to 
increase the number of raw bands to 25 without significantly slowing run times and without increasing data volumes 
to excessively large amounts. There are other bands that probably would be useful for band selection in regard to 
ISODATA classification. For example, Kokaly and Clark (1999) identify spectral regions important for estimating 
nitrogen, lignin, and cellulose levels in vegetation. Additional bands from these spectral regions could help improve 
classification results. Some of the bands selected for classification may not have been optimal. Consequently, better 
band selection may also improve results. 

 
The classification of problematic scarce, fine-scaled features maybe better mapped with subpixel 

classification techniques. ISODATA may not always provide a sufficiently effective means to map rare and 
spectrally subtle features, although it appears to be well suited for land cover classification of common types within 
the scene. The study area of Northeast Yellowstone National Park largely consists of cover types common to the 
Northern Rocky Mountains. Consequently, the results from this study should be quite applicable to comparable 
mapping studies in this region of North America. 

 
Additional work is being done to complete a quantitative map accuracy assessment, using a stratified 

random sampling of the classification in conjunction with CIR aerial photograph interpretation and field surveys. 
The results of this assessment will be reported at later date. 
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