Low Back Pain

Clinically differentiating high lumbar radiculopathy and rectus femoris muscle strain

Amber Brown, OMS V, DO19 OMM Fellow OMM Department | Des Moines University

Nick Maiers, PT
PT Department | Des Moines University

4 April 2019

Disclosure

The speakers indicated they have no conflicts with commercial interest companies to disclose relevant to the content of this educational activity.

Objectives

General

- Understand the clinical presentation of high lumbar radiculopathy, femoral neuropathy, and rectus femoris strain
- Understand diagnostic dilemma in differentiating high lumbar radiculopathy, femoral neuropathy, and rectus femoris strain in the context of low back pain

Physical therapy (PT)

- Summarize PT approach to differentiating femoral neuropathy and recuts femoris strain in patient presenting with low back pain
- Summarize PT treatment approach for femoral neuropathy versus rectus femoris strain

Osteopathic manual medicine (OMM)

- Learn a physical exam maneuver to differentiate high lumbar radiculopathy from rectus femoris muscle strain
- Understand the relevant anatomy of the physical exam maneuver
- Understand the utility of the physical exam maneuver in clinical decision-making

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

Multiple structures may be sources of low back pain

- 5 lumbar vertebrae
 - Separated by intervertebral (IV) discs
- IV foramen provide passageway for spinal nerves
 - Single spinal nerves innervate an area of skin (dermatome)
 - Single spinal nerves innervate muscle fibers (myotome)
- 5 pairs of lumbar spinal nerves (L1-5)
 - Exit below corresponding vertebra, above corresponding IV disc
- Portions of spinal nerves may combine to form peripheral nerves

Radiculopathy: nerve root problem

- Radiculopathy: nerve root problem (e.g. compression/injury)
- Potential causes: IV disc herniation, bone spur
- Clinical presentation:
 - Sensory, motor, reflex abnormalities in distribution of affected nerve root(s)
 - Pain in dermatomal distribution of affected nerve root(s)
 - +/- hyperalgesia (exaggerated pain in response to noxious stimulus)
 - +/- allodynia (pain in response to non-noxious stimulus)

High lumbar radiculopathy: L2, L3, and/or L4 root compromise

- High lumbar radiculopathy: compression/injury of L2, L3, and/or L4 nerve roots
- Clinical presentation:
 - Pain in low back and anterior thigh
 - Sensory abnormalities in anterior thigh, groin, medial leg
 - Weak hip flexion, hip ADduction, ankle dorsiflexion
 - Reduced/absent patellar reflex (L4)

Neuropathy: peripheral nerve problem

- Neuropathy: peripheral nerve problem (e.g. compression/injury)
- Potential causes: trauma, surgery, entrapment
- Clinical presentation:
 - Sensory, motor, reflex abnormalities in distribution of affected nerve
 - Pain in dermatomal distribution of affected nerve
 - +/- hyperalgesia
 - +/- allodynia

Femoral neuropathy: femoral nerve compromise

- Femoral neuropathy: compression/injury of femoral nerve
- Femoral nerve comprised of L2-4 nerve roots
 - Courses between psoas and iliacus in retroperitoneal space → under inguinal ligament → anterior thigh
- Innervation:
 - Motor
 - Hip flexors (psoas, iliacus, sartorius, rectus femoris)
 - Knee extensors (quadriceps)
 - Hip ADductor (pectineus)
 - Sensory
 - Anterior and medial thigh
 - Medial leg (via saphenous nerve)

• Sensory innervation – medial leg

HF: hip flexion KE: knee extension HAD: hip ADduction

Femoral neuropathy presentation varies with injury location

- Commonly compromised in retroperitoneal space or under inguinal ligament
- Neurologic symptoms distal to site of injury
 - Injury at/distal to inguinal ligament
 - Weak knee extension
 - Pain/abnormal sensation in anterior thigh, medial thigh, medial leg
 - Reduced/absent patellar reflex
 - Injury proximal to inguinal ligament
 - Weak knee extension, hip flexion
 - Pain/abnormal sensation in anterior thigh, medial thigh, medial leg
 - Reduced/absent patellar reflex
- May present with low back pain

• Sensory innervation – medial leg

HF: hip flexion KE: knee extension HAD: hip ADduction

L2-4 radiculopathies & femoral neuropathy may present similarly

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

Rectus femoris injury can cause/contribute to low back pain

- Rectus femoris muscle
 - Origins: anterior inferior iliac spine (AIIS), superior acetabulum
 - Insertion: patellar tendon, tibial tuberosity
- Response to injury: shorten, tighten, strained
 - Short: contracted
 - Tight: muscle fibers short
 - Strain: muscle/tendon tear
- Clinical presentation
 - Low back pain
 - Anterior thigh pain

High lumbar radiculopathy, femoral neuropathy, and rectus femoris strain present similarly (pain in low back/anterior thigh)

Clinically differentiating the etiologies can be challenging but is important in determining further workup and treatment

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

- Follow-up visit to DMU OMM Clinic
- Extensive past medical history, including chronic pain in multiple areas
- Relevant subjective and objective findings emphasized here

Subjective

CC: low back pain (LBP), tight thighs, shoulder pain, tight neck HPI:

- LBP, bilaterally, left > right
 - Began 6 months ago
 - Described as achy, tight, burning, stabbing
- Anterior thigh tightness, bilaterally
 - Began in the last month
 - Described as achy/burning on the right, achy/tight/weak on the left
- Both LBP and thigh tightness
 - Pain level 3.5/10, constant
 - Better with heat, rest, stretching, short time on incline table
 - Worse with sitting/walking too long, bending, twisting, lifting
- Fell 2 months prior to visit, reports due to "balance" issues
 - Fell backwards, caught self on chair/table, denies major injuries

Symptom diagram, completed by patient on follow-up questionnaire

Subjective (continued)

ROS:

- Reports muscle aches, weakness, numbness, joint pain, back pain, leg swelling, difficulty moving limbs
- Denies tingling, bowel/bladder incontinence or retention, saddle anesthesia, pain that wakes her up at night, unplanned weight loss

Past medical history:

- Fibromyalgia with chronic pain in multiple areas
- Chronic low back pain with recurrent muscle spasms in middle and low back, onset 6 months ago
- Scoliosis
- Osteoporosis

Medications: multiple, notably hydrocodone/acetaminophen, 1 tab every 4-6 hours as needed for pain

Past surgical history, family history, social history, allergies not relevant to this presentation

Objective

Physical exam:

- Vitals: BP 128/76, HR 88, Wt 179 lbs, Ht 5'7"
- General: well-appearing, no acute distress
- Cardiovascular: no lower extremity edema on inspection or palpation
- Skin: warm, dry, no rash on exposed areas of low back and lower extremities
- Musculoskeletal exam to be explained from physical therapy and osteopathic medicine approach

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

David M. Walton^{a,*}, James M. Elliott^b

Faculty of Health Science, Western University Canada, Canada
 Faculty of Health Sciences, The University of Sydney, and the Kolling Institute, Royal North Shore Hospital, NSW, Australia

Pain Phenotyping

Table 1

Examples of tools or clinical signs currently available for estimating magnitude of dysfunction/impact in each of the 7 domains described by the sample radar plot. NSAIDs = Non-Steroidal Anti-Inflammatories, TCA = Tricyclic Antidepressants, SSRI = Selective Serotonin Reuptake Inhibitors, SNRI = Serotonin & Norepinephrine Reuptake Inhibitors.

Assessment Domain	Nociceptive (Physiological) input	Peripheral Neuropathy	Central Nociplastic Mechanisms	Emotional Dysregulation	Maladaptive Cognitions or Beliefs	Socioenvironmental Context	Sensorimotor Dys-integration
History of the complaint	 Complaints are proportionate to the mechanism 	 Mechanism of onset consistent with trauma of a peripheral nerve 	 More difficult to draw connection between mechanism of onset and current complaints 	 History of psychopathology especially if temporally related to other symptom onset 	 No defined pattern, can be acute or chronic, traumatic or non-traumatic 	 May be more likely when pathogenesis has occurred in a compensable environment or linked to other stressors 	 More likely to manifest in chronic problems
Patient narrative	 Well-localized pain complaints 	 Spontaneous or 'ectopic' pain, allodynia and local hyperalgesia 	 Resting pain (local or widespread), may be related to mood or emotional status 	 Symptoms consistent with psychopathology (e.g. DSM- V criteria) 	 Examples: Belief that hurt = harm, or that 100% relief is required before resuming activity 	 Feels under constant scrutiny or surveillance (e.g. medicolegal involvement) 	 Describes the injured body region as though it is detached from self
Standardized self- report evaluations	 Responses do not support other drivers in the framework 	 Self-report diagnostic tools (e.g. SLANSS^a) 	• Self-report diagnostic tools (e.g. CSI ^d)	 Self-report diagnostic tools (e.g. PHQ-9^f, PCL^g) 	 Self-report evaluative tools (e.g. PCSⁱ, TSK^j, FABQ^k) 	 Self-report evaluative tools (e.g. SRI¹, IEQ^m) 	 Few available, but may struggle to identify painful areas on a body diagram
Standardized clinical evaluations and signs	 Consistent and predictable movement- related pain behaviour 	 Clinical signs of pain or impaired neural transmission along the course of a known sensory nerve 	 Non-mechanical and non- predictable patterns of pain reproduction, with/ without dysfunctional descending pain modulation^e 	 Pain not consistent with predictable mechanical patterns 	 Exaggerated or inconsistent pain behaviours out of proportion to magnitude of testing 	 Signs suggestive of intentional exaggeration may provide a clue, but careful interpretation is encouraged 	 Signs of somatosensory reorganization (e.g. 2PDⁿ, JPSE^o)
Other observations	 Responsive to routine front-line pharmacotherapy 	 Not responsive to NSAIDs, may be responsive to TCAs^b, SNRIs^c, pregabalin or gabapentin 	 Not responsive to routine front-line therapies, nay be responsive to opioids, TCAs and/or SSRIs 	 Small to no effect on pain from front-line pharmacotherapy, may see effect from TCAs^b or SSRIs^h/ SNRIs^c 	 Preference for avoidant or passive coping methods, 'all or none'-type thinking 	 Counseled to avoid activity or 'straining' until after case is settled 	 May require exploration and exclusion of a CNS disorder

Table 1 Examples of tools or clinical sign

Assessment Domain	Nociceptive (I input
History of the complaint	Complaint proportion mechanism
Patient narrative	Well-local complaint
Standardized self- report evaluations	 Responses support of the frame
Standardized clinical evaluations and signs	 Consistent predictable related participation
Other observations	 Responsive front-line pharmaco

Table 1

Pain PExamples of tools or clinical signs currently available for estimating matter and the TCA = Tricyclic Antidepressants, SSRI = Selective Serotonin Reuptake In

Assessment Domain	Nociceptive (Physiological) input	Peripheral Neuropathy
History of the complaint	 Complaints are proportionate to the mechanism 	 Mechanism of onset consistent with trauma of a peripheral nerve
Patient narrative	 Well-localized pain complaints 	 Spontaneous or 'ectopic' pain, allodynia and local hyperalgesia
Standardized self- report evaluations	 Responses do not support other drivers in the framework 	 Self-report diagnostic tools (e.g. SLANSS^a)
Standardized clinical evaluations and signs	 Consistent and predictable movement- related pain behaviour 	 Clinical signs of pain or impaired neural transmission along the course of a known sensory nerve
Other observations	 Responsive to routine front-line pharmacotherapy 	 Not responsive to NSAIDs, may be responsive to TCAs^b, SNRIs^c, pregabalin or gabapentin

ains described by the sample radar plot. NSAIDs = Non-Steroidal Anti-Inflammatories, ıke Inhibitors.

	Maladaptive Cognitions or Beliefs	Socioenvironmental Context	Sensorimotor Dys-integration
logy m	 No defined pattern, can be acute or chronic, traumatic or non-traumatic 	 May be more likely when pathogenesis has occurred in a compensable environment or linked to other stressors 	 More likely to manifest in chronic problems
ith OSM-	• Examples: Belief that hurt = harm, or that 100% relief is required before resuming activity	 Feels under constant scrutiny or surveillance (e.g. medicolegal involvement) 	 Describes the injured body region as though it is detached from self
ools	 Self-report evaluative tools (e.g. PCSⁱ, TSK^j, FABQ^k) 	 Self-report evaluative tools (e.g. SRI¹, IEQ^m) 	 Few available, but may struggle to identify painful areas on a body diagram
1	 Exaggerated or inconsistent pain behaviours out of proportion to magnitude of testing 	 Signs suggestive of intentional exaggeration may provide a clue, but careful interpretation is encouraged 	 Signs of somatosensory reorganization (e.g. 2PDⁿ, JPSE^o)
see RIs ^h /	 Preference for avoidant or passive coping methods, 'all or none'-type thinking 	 Counseled to avoid activity or 'straining' until after case is settled 	 May require exploration and exclusion of a CNS disorder

24

Self-report version of the Leeds Assessment of Neuropathic Signs and Symptoms (SLANSS)

 Score > 12 suggestive of a predominantly neuropathic origin

1.	In the area where you have pain, do you also have "pins and needles", tingling or prickling sensations?		
	□ NO – I don't get these sensations	0	
	YES – I get these sensations	5	
2.	Does the painful area change colour (perhaps look mottled or more red) when the pain is particularly bad?		
	NO – The pain does not affect the colour of my skin	0	
	YES – I have noticed that the pain does make my skin look different from normal.	5	
3.	Does your pain make the affected skin abnormally sensitive to touch? Getting unpleasant sensations or pain when lightly stroking the skin might describe this.		
	NO – The pain does not make my skin abnormally sensitive to touch.	0	
	YES – My skin in that area is particularly sensitive to touch.	3	
4.	Does your pain come on suddenly and in bursts for no apparent reason when you are completely still? Words like "electric shocks", jumping and bursting might describe this.		
	NO – My pain doesn't really feel like this.	0	
	YES – I get these sensations often.	2	
5.	In the area where you have pain, does your skin feel unusually hot like a burning pain?		
	NO – I don't have burning pain	0	
	YES – I get burning pain often	1	
6.	Gently rub the painful area with your index finger and then rub a non-painful area (for example, an area of skin further away or on the opposite side from the painful area). How does this rubbing feel in the painful area?		
	☐ The painful area feels no different from the non-painful area	0	
	I feel discomfort, like pins and needles, tingling or burning in the painful area that is different from the non-painful area.	5	
7.	Gently press on the painful area with your finger tip and then gently press in the same way onto a non-painful area (the same non-painful area that you chose in the last question). How does this feel in the painful area?		
	The painful area does not feel different from the non-painful area.	0	
	I feel numbness or tenderness in the painful area that is different from the non-painful area.	3	
	Total score:		

Let's get SMART about pain...Keith Smart

Nociceptive Pain

Subjective

- Intermittent, sharp pain with aggravation
- Dull ache or throbbing at rest
- Mechanical nature to aggravating/easing factors
- Pain proportional to injury/pathology
- Pain localized to area of injury/pathology
- Resolves in accordance with expected tissue healing times
- Responsive to simple analgesics
- Pain in association with symptoms of inflammation
- Pain of recent onset

Objective

- Clear, consistent and proportionate mechanical/anatomical pattern of pain reproduction on movement or mechanical testing of target tissues
- Localized pain on palpation
- Absence of hyperalgesia or allodynia
- Pain relieving postures or movement patterns

Neuropathic Pain

Subjective

- Burning, shooting, sharp or electric shock-like pain
- History of nerve injury or pathology
- Neurological symptoms (numbness, weakness, pins & needles)
- Less responsive to simple analgesics, more responsive to anti-epileptics/anti-depressants
- Severe and irritable pain
- Mechanical pattern associated with loading/compression of neural tissue
- Reports of spontaneous pain

Objective

- Symptom provocation with tests that move/load/compress neural tissue (e.g. neurodynamic tests – SLR)
- Pain with palpation of neural tissues
- Positive neurological findings (altered reflexes/sensation in a dermatomal distribution)
- Hyperalgesia and/or allodynia

Objective Assessment – Palpation

Fingleton, Caitriona & Dempsey, Lucy & Smart, Keith & Doody, Catherine. (2014). Intraexaminer and Interexaminer Reliability of Manual Palpation and Pressure Algometry of the Lower Limb Nerves in Asymptomatic Subjects.

Objective Assessment – Neurodynamics

Objective Assessment – Modified Thomas Test

Physical Therapy Treatment Considerations – Muscle 1st Stage

- <u>P</u>rotect
- <u>O</u>ptimal
- <u>L</u>oading
- <u>I</u>ce
- <u>C</u>ompress
- <u>E</u>levate

Physical Therapy Treatment Considerations – Muscle 2nd Stage

- Education to promote understanding of activity considerations and/or modifications and expectations
- Movement re-education and/or stretching to promote passive, assisted and active ROM restoration
- Isometric, concentric, eccentric strength progression with consideration placed on non-aggravating activities
- Sensorimotor exercise including balance and stability as indicated

Physical Therapy Treatment Considerations – Muscle 3rd Stage

Focus on Function

- Functional rehabilitation and general athletic re-conditioning
- Sport specific rehabilitation which involves the metabolic system, specific and individualized training protocols, fitness and strength training
- Multi-modal approach to improve sensitive and motor abilities, muscle resistance and strength. Isokinetic and complex "multi task" exercises (including cognitive tasks) are started

Physical Therapy Treatment Considerations – Muscle 4th Stage

Sport/Work specific retraining (as indicated)

- Athletic reconditioning and specific strength
- Start high intensity training protocols based on strength, athletic reconditioning, and sport specific abilities
- Plyometric, and ballistic exercises are started
- Ability to repeat series of sport specific movements, which had caused the traumatic insult (as applicable)

Physical Therapy Treatment Considerations – Nerve

Nerves need...

- Space
 - Clearing the container
- Movement
 - Neurodynamics
- Blood
 - Aerobic exercise

Space – Clearing the Container

37

Movement – Neurodynamics

38

Blood - Aerobics

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

Neuro exam, low back exam, hip screen indicated for LBP

- Neurologic exam
 - Assess strength, sensation, and reflexes of lower extremities (+/- upper extremities)
- Low back exam
 - Assess gait, ability to heel/toe walk
 - Inspect and palpate low back
 - Assess lumbar range of motion (flexion, extension, sidebending, and rotation)
 - Perform special tests (e.g. femoral nerve stretch test, straight leg raise)
- Hip screen
 - Assess gait, ability to squat up/down
 - Assess hip range of motion (flexion, internal rotation, external rotation)
 - FABER (flexion, Abduction, external rotation) test assess for ipsilateral hip and sacroiliac joint pathology
 - Ely test

FNST assesses for high lumbar radiculopathy

- Femoral nerve stretch test (FNST)
 - Neural tension sign, assesses for high lumbar radiculopathy
 - Reported positive in 84-95% of patients with known high lumbar IV disc herniation
 - Reported positive in 43-60% of patients with known high lumbar nerve root impingement
- FNST maneuver: patient prone, examiner passively flexes knee of symptomatic side
 - Tractions L2-4 nerve roots/femoral nerve inferior and lateral
 - Positive test: pain in anterior thigh or groin, pain in low back
 - Pain caused by stretching compressed/injured L2-4 nerve roots
- Sensitive screening tool but may be falsely positive with tight or strained rectus femoris

Ely test assesses for rectus femoris tightness

- Ely test: muscle length test, assesses for rectus femoris tightness
- Ely test maneuver: patient prone, examiner passively flexes knee of symptomatic side
 - Stretches rectus femoris by moving its insertion away from its origins
 - Positive test: ipsilateral hip rises off table (innominate rotates anteriorly) with knee flexion
 - Anterior innominate rotation: anterior superior iliac spine (ASIS) moves inferiorly
 - Innominate rotates anteriorly to shorten rectus femoris by moving its origins toward its insertion
- May also cause low back pain
 - Anterior innominate rotation → lumbar spine extension → compress posterior/stretch anterior structures
 - Pathology posteriorly (e.g. facet inflammation) or anteriorly (e.g. hip flexor strain/spasm) → low back pain
 - Lumbar extension-induced low back pain may cause false positive FNST

Ely & FNST: same maneuver, different info, conflicting results

- Maneuver: prone, passive knee flexion
- Information: muscle length (Ely test), neural tension (FNST)
- Findings: both tests may cause low back pain
 - Stretching injured nerve roots (FNST)
 - Lumbar extension-induced low back pain (Ely test)
 - Secondary to innominate rotating anteriorly to keep a tight rectus femoris muscle short

Ely & FNST: same maneuver, different info, conflicting results

- Maneuver: prone, passive knee flexion
- Information: muscle length (Ely test), neural tension (FNST)
- Findings: both tests may cause low back pain
 - Stretching injured nerve roots (FNST)
 - Lumbar extension-induced low back pain (Ely test)
 - Secondary to innominate rotating anteriorly to keep a tight rectus femoris muscle short

Literature has not described a physical exam maneuver to singularly differentiate low back pain secondary to high lumbar radiculopathy from rectus femoris strain, we propose a modified FNST to do so

Modified FNST differentiates radiculopathy & muscle strain

Maneuver

- Patient prone, lower extremity (LE) not being tested flexed at the hip with foot planted on the floor
- Examiner stabilizes ischial tuberosity of LE being tested
- Examiner passively flexes knee of LE being tested
- Findings/suggested pathology
 - Low back pain → high lumbar radiculopathy
 - Stretch in ipsilateral anterior thigh → rectus femoris strain
- Few contraindications
 - Patent unable to follow directions or communicate symptoms
 - Undiagnosed pain with positioning

→ Rotates and stabilizes pelvis posteriorly

Modified FNST: stabilizing the pelvis posteriorly is key

- Stabilizing pelvis in posteriorly rotated position
 - Induces/maintains lumbar flexion
 - Increases stretch on L2-4 nerve roots/femoral nerve
 - Prevents lumbar extension
 - Prevents lumbar extension-induced LBP in cases of rectus femoris strain
 - If LBP occurs in this position, unlikely due to rectus femoris strain
 - Puts the origins of rectus femoris on stretch and stabilizes them
 - Allows for optimal rectus femoris length testing
- Knee flexion further stretches L2-4 nerve roots/femoral nerve and rectus femoris
 - Low back pain → stretching of injured L2-4 nerve roots/femoral nerve
 - Posteriorly rotated pelvis prevents lumbar extension-induced LBP secondary to rectus femoris strain
 - Stretch in ipsilateral anterior thigh → lengthening of strained rectus femoris

52 year-old female with LBP and anterior thigh tightness

- Neurologic exam, low back exam, and hip screen indicated
- Neurologic exam
 - 4/5 HF bilaterally due to pain (L2 root level)
 - 5/5 KE (L3 root level), ADF (L4 root level), EHL (L5 root level), APF (S1 root level) bilaterally
 - Sensation to light touch intact bilaterally L2-S2 root levels
 - Patellar reflexes 1/4 bilaterally (L4 root level); Achilles reflexes 2/4 bilaterally (S1 root level)
 - Babinski down-going bilaterally, no clonus bilaterally
- Low back exam
 - Gait normal, heel/toe walk without difficulty
 - No soft tissue or bony abnormalities on back or lower extremities
 - · Lumbar flexion, extension, sidebending, and rotation within normal limits
 - Straight leg raise negative bilaterally
 - (+) FNST bilaterally LBP with passive prone knee flexion

HF: hip flexion
KE: knee extension
ADF: ankle dorsiflexion
APF: ankle plantar flexion
EHL: extensor hallucis longus 48

52 year-old female with LBP and anterior thigh tightness

- Hip screen
 - Gait normal, able to squat up/down
 - (+) FABER test bilaterally
 - Patient unable to localize pain to anterior, lateral, or posterior pelvis
 - (+) Ely test bilaterally
 - LBP and significant rectus femoris tightness with passive prone knee flexion
 - Modified FNST
 - No LBP
 - Significant tightness in anterior thighs, bilaterally → rectus femoris strain most likely
- Treatment of bilateral rectus femoris strains resulted in
 - Decreased anterior thigh tightness and LBP
 - Resolved LBP previously present with passive prone knee flexion
 - Increased knee flexion range of motion present with passive prone knee flexion and modified FNST

Modified FNST is useful in clinical decision-making

- Helps clinically differentiate high lumbar radiculopathy and rectus femoris strain
- Informs further workup
 - Performed osteopathic structural exam for causative/contributing somatic dysfunctions
 - Deferred imaging studies (e.g. CT, MRI), saving time and money
- Informs treatment
 - Provided osteopathic manual therapy (OMT)

Outline

- Anatomy review lumbar spine, spinal nerves
- High lumbar radiculopathy definition and clinical presentation
- Femoral neuropathy definition and clinical presentation
- Rectus femoris muscle anatomy and response to injury
- Rectus femoris muscle strain clinical presentation
- Case: 52 year-old female with low back pain and anterior thigh tightness
- Physical therapy diagnostic and treatment approach
- Proposed diagnostic approach modified femoral nerve stretch test

Summary

Osteopathic manual medicine (OMM)

- High lumbar radiculopathy, femoral neuropathy, rectus femoris strain may present similarly (LBP, anterior thigh pain)
- Clinically differentiating the etiologies is important to determine further workup and treatment
- Currently, no physical exam maneuver to differentiate radiculopathy/neuropathy from rectus femoris strain
- Proposed modified FNST helps differentiate neural/muscular etiologies and is useful in clinical decision-making

Physical therapy (PT)

- Diagnostic approach considers pain phenotyping and nociceptive and neuropathic pain
- Objective assessment includes palpation, neurodynamic testing, and special tests
- PT treatment considerations include 4 muscle stages and nerves (space, movement, and blood)

References

- Abdullah A, Wolber P, Warfield J, Gunadi I. Surgical Management of Extreme Lateral Lumbar Disc Herniations: Review of 138 Cases. Neurosurgery. 1988;22(4):648-653.
- Bowley M, Doughty C. Entrapment Neuropathies of the Lower Extremity. Med Clin N Am. 2019;103(2):371-382.
- Braddom R. Physical medicine and rehabilitation. 2nd ed. Saunders; 2001.
- Christodoulides A. Ipsilateral Sciatica on Femoral Nerve Stretch Test is Pathognomonic of L4/5 Disc Protrusion. J Bone Joint Surg Br. 1989;71(1):88-89.
- De Luigi A, Fitzpatrick K. Physical Examination in Radiculopathy. Phys Med Rehabil Clin N Am. 2011;22(1):7-40.
- Deyo R, Mirza S, Martin B. Back Pain Prevalence and Visit Rates: Estimates From U.S. National Surveys, 2002. Spine. 2006;31(23):2724-2727.
- Deyo R, Weinstein J. Low Back Pain. N Engl J Med. 2001;344(5):363-370.
- Estridge M, Rouhe S, Johnson N. The femoral stretching test: a valuable sign in diagnosing upper lumbar disc herniations. J Neurosurg. 1982;57(6):813-817.
- Greenman P. Principles of manual medicine. 2nd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2003.
- Hart L, Deyo R, Cherkin D. Physician Office Visits for Low Back Pain: Frequency, Clinical Evaluation, and Treatment Patterns From a U.S. National Survey. Spine. 1995;20(1):11-19.
- Moore K, DAlley A, Agur A. Clinically oriented anatomy e-book. 7th ed. Baltimore, MD. Lippincott Williams & Wilkins; 2014.
- Nadler S, Campagnolo D, Tomaio A, Stitik T. High Lumbar Disc: Diagnostic and Treatment Dilemma. Am J Phys Med Rehabil. 1998;77(6):538-544.
- Nadler S, Malanga G, Stitik T, Keswani R, Foye P. The Crossed Femoral Nerve Stretch Test to Improve Diagnostic Sensitivity for the High Lumbar Radiculopathy: 2 Case Reports. *Arch Phys Med Rehabil.* 2001;82(4):522-523.
- Porchet F, Fankhauser H, de Tribolet N. Extreme Lateral Lumbar Disc Herniation: Clinical Presentation in 178 Patients. Acta Neurochir. 1994;127(3-4):203-209.
- Rainville J, Jouve C, Finno M, Limke J. Comparison of Four Tests of Quadriceps Strength in L3 or L4 Radiculopathies. Spine. 2003;28(21):2466-2471.
- Richard D, Wayne V, Adam M. Gray's e-book: Gray's Atlas of Anatomy. 2nd ed. 2015.
- Standring S, Anand N, Birch R, et al. Gray's anatomy e-book: the anatomical basis of clinical practice. 41st ed. Edinburgh: Churchill Livingstone/Elsevier; 2016.
- Suri P, Rainville J, Katz J, et al. The Accuracy of the Physical Examination for the Diagnosis of Midlumbar and Low Lumbar Nerve Root Impingement. Spine. 2011;36(1):63-73.
- Tarulli A, Raynor E. Lumbosacral Radiculopathy. *Neurol Clin*. 2007;25(2):387-405.
- Tawa N, Rhoda A, Diener I. Accuracy of clinical neurological examination in diagnosing lumbo-sacral radiculopathy: a systematic literature review. *BMC Musculoskelet Disord*. 2017;18(1):93.
- Watson J. Office Evaluation of Spine and Limb Pain: Spondylotic Radiculopathy and Other Nonstructural Mimickers. Semin Neurol. 2011;31(1):85-101.

Low Back Pain

Clinically differentiating high lumbar radiculopathy and rectus femoris muscle strain

questians?

Amber Brown, OMS V, DO19 OMM Fellow OMM Department | Des Moines University

Nick Maiers, PT
PT Department | Des Moines University

4 April 2019

