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Abstract—The Digital–to–Analog-Converter (DAC) is one of 

the fundamental components of Analog and Mixed-signal circuits. 

Static linearity testing of high resolution high performance DACs 

traditionally requires a long time and is very expensive. In this 

paper, a low-cost ultrafast method of testing DACs is presented. 

The method utilizes a low cost on-board measurement device for 

capturing the output of the DAC, instead of a precise digital 

voltmeter. By using a segmented non-parametric model for the 

DAC’s INL curve and thus reducing the number of unknowns, 

the test time is drastically reduced. Additionally, the linearity 

requirement on the measurement device is significantly relaxed by 

removing its non-linearity. The combination of these two methods 

results in drastic reduction in linearity test cost for DACs.  

Keywords— digital-to-analog-converters, static linearity testing, 

segmented model, low-cost 

I. INTRODUCTION 

As one of the most fundamental blocks of analog and 
mixed signal (AMS) circuits, the digital-to-analog converter 
(DAC) is widely used in many areas such as audio, high 
definition television and cellular telephones. The DAC is 
usually deeply embedded in a system-on-chip (SoC). With the 
growth of the Internet-of-things, the DAC volume and 
performance requirements have improved significantly, while 
the test cost keeps increasing. Thus, there is an urgent need to 
develop low-cost methods for characterization and testing of 
DACs.  

DAC testing includes the measurement of integral 
nonlinearity (INL) and differential nonlinearity (DNL), offset, 
gain error, spurious free dynamic range (SFDR), signal-to-
noise ratio (SNR), total harmonic distortion (THD) etc. [1], [2]. 
It is challenging to accurately test the DAC in a cost-effective 
way for various reasons. Traditional testing of DAC static 
linearity is done using a digital voltmeter (DVM) or a digital 
waveform recorder [2]. The equipment is required to have 

significantly better accuracy and resolution than the 
specifications of the DAC itself. Moreover, multiple samples 
are needed to average out the noise. The testing time is long 
and the test equipment is expensive.  

In the past, many researchers have proposed methods to 
reduce the cost of DAC testing. The proposed method in [3] 
applied stimulus error identification and removal (SEIR) [4] to 
obtain the ADC linearity first and estimate DAC INL/DNL 
with the ADC. However, the accuracy of the DAC INL/DNL 
estimation is limited and the test time is long. In [5], the 
authors developed a circuit with deterministic dynamic element 
matching (DDEM) ADC and a dithering DAC to test the DAC. 
It is capable of testing a 14-bit DAC with ADC at 6-bit 
linearity. But it has to use the proposed ADC circuit and it also 
has the long test time problem. In [6], Huang, et al, improved 
the test accuracy with DAC scaling using local histogram test 
with DAC to test the ADC performance. Then the ADC is used 
to test the DAC with voltage scaling. It is architecture 
dependent and it takes long testing time. In [7], Ting, et al, 
tested the current-steering DAC by measuring the major 
transition current difference with a current-controlled oscillator 
and counter. This method is fast and low-cost but it is highly 
architecture-dependent.  

 In this paper, a new testing method and algorithm are 
introduced for accurate linearity testing of DACs with 
dramatically reduced test time and cost. This is done in two 
ways. Firstly, the algorithm exploits the fact that the number of 
truly independent error sources is much smaller than the 
number of DAC codes at which linearity has to be tested. This 
enables linearity testing with much fewer samples than is 
traditionally required, and so, saves on test time. Secondly, the 
method proposes use of an on-board digitizer for measurement 
of the DAC output, instead of the traditionally used high 
accuracy digital voltmeter. This results in less test time per 
sample. This reduction in test time directly translates to 
reduction in test cost. Moreover, the algorithm relaxes the 
stringent linearity requirement on the measurement device by 
removing the errors introduced due to the nonlinearity of the 
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device. This results in further cost savings. 

II. PROBLEM STATEMENT 

To test the linearity of a DAC, the digital stimulus needs to 
be generated and the analog response needs to be captured. In 
the conventional method, the DAC input code is swept from 0 
to the maximum code, and the output voltage at each code is 
measured using a digital voltmeter (DVM). To average out the 
noise, multiple samples are taken for each DAC code. These 
voltages are compared to the ideal expected voltage for each 
code, and the INL and DNL are calculated.  

As the resolution of the DAC grows, the number of input 
codes and therefore the number of INLs/DNLs to be estimated 
grows exponentially. For an n-bit DAC, if H samples per code 

are needed for noise averaging, then a total of 2nH   output 

voltages will have to be measured. Measuring these  2nH   
voltages takes a long time, and so the test cost is also high. For 
a 16-bit DAC, with H=64, over 4 million samples would be 
required. If the DAC has a sampling rate of 500KSPS, the data 
acquisition time alone would be around 10 seconds. Multi-site 
testing will reduce this time, but this still corresponds to a 
significant test cost. 

Conventional wisdom also dictates that the measuring 
device must be much more accurate and precise than the device 
under test. In the case of DAC testing, the digitizer in the DVM 
must be at least 10 times more linear than the DAC under test. 
If the INL of the DAC is at the +/-2 LSB level, then the 
digitizer’s non-linearity must be in the range of +/-0.2 LSB. 
This stringent requirement on the linearity means that a highly 
accurate DVM is required, thus increasing the test cost even 
further. 

III. THE PROPOSED METHOD 

A. Segmented model of DAC’s INL 

The conventional method essentially treats the INL/DNL 
error at each code as unrelated to each other, and so, the 
number of variables to be estimated is equal to the number of 
DAC codes. In reality, especially for high resolution DACs, the 
number of truly independent error sources is much smaller than 
the number of codes. For example, take a 16-bit R-2R DAC. 
The number of resistor mismatches is just 31162 1  which 

is dramatically less than 
162 65,536 . Although there will be 

many more error sources, it is true that the non-idealities 
(mismatches, voltage coefficients, etc.) of a limited number of 
analog components determines the errors in the input output 
transfer curve of the DAC. In other words, all the INL/DNL 
errors are highly correlated and are deterministic functions of a 
much smaller number of independent errors.  

This correlated nature of the INL/DNL DAC errors makes 
a strong case for a model based approach to DAC linearity 
testing. Instead of basing the model on circuit laws, the 
proposed method takes a fundamentally different approach. It 
models the DAC’s INL curve with a segmented non-parametric 
model. The idea is very similar to the uSMILE algorithm 
developed previously for ADCs [8], and is described in detail 
in the following paragraphs. 

The INL curve of the DAC is broken into many MSB 
segments according to the MSB (Most Significant Bits) value 
of the DAC input code. Take a 16-bit DAC for example. If 6 
bits are used as the MSB, then the INL curve is divided into 64 
different segments. Each of these segments has an error term 

associated with it. Let’s call this error as ( )M MSBe C . The error 

terms associated with the MSB segments will then be 

(0), (1), (2) ...... (63)M M M Me e e e corresponding to the MSB 

code. Each of these segments in turn can be further divided 
into smaller segments. Say the next 5 bits are used as ISB 
(Intermediate Significant Bits), then each MSB segment gets 
divided into 32 ISB segments, each of which has an error term 

associated with it, denoted as ( )BI ISe C . If we stop the 

segmentation here, the variations within each ISB segment 
away from the ISB average values are captured by the 32 LSB 
errors (5 LSB bits). The error term associated with each LSB 

segment is denoted as ( )BL LSe C . The final INL value for code 

C will be: 

 ( ) ( ) ( ) ( )M MSB ISB LSBI LINL C e C e C e C    (1) 

Most DAC architectures are inherently segmented in this 
fashion, like binary weighted, R-2R, mDAC etc., and so, this 
segmented non-parametric model can be applied to the INL 
curve. Note that this segmented model is not valid for string or 
thermometer-coded type architectures. For example, if you had 
a segmented 15-bit DAC implemented as a 7-bit thermometer 
coded resistor DAC and an 8-bit R-2R DAC, then the 
segmentation of the INL curve must be carefully chosen such 
that the MSB bits are greater than or equal to 7, since the 
thermometer coded part does not have a segmented 
architecture. For example, a 7-4-4 segmentation of the INL 
curve is valid, and so is an 8-3-4 segmentation, but a 6-5-4 
segmentation is not valid. 

This segmented model of the DAC’s INL drastically 

reduces the number of variables to be estimated, thus enabling 

us to estimate the INL/DNL of the DAC at each code with a 

much-reduced number of samples.   

B. Removal of error due to measurement device 

As mentioned previously, conventional DAC outputs are 

captured with an accurate and precise digital voltmeter, which 

is costly and time-taking. In the proposed method, a non-linear 

on-board digitizer is used for this purpose. We say “non-

linear” here because the error introduced due to the 

nonlinearity of the digitizer is completely removed by the 

method and algorithm proposed. This will be explained in 

detail later.  

The basic idea of the Removal Of Measurement Error 

(ROME) method used here is similar to the USER-SMILE [9] 

method which has been proposed for accurate linearity testing 

of ADCs with non-linear input sources. For ADC static 

linearity testing, the ramp generator (stimulus) can be non-

ideal and have non-linearities whereas the output is digital and 

thus assumed to have no error while being captured. For DAC 

testing, the input is ideal (sweep of digital code from all 0s to 

all 1s) but there can be errors in the measurement device, 



which can be non-linear. Hence, in USER-SMILE, the 

stimulus error is removed, whereas in ROME, the 

measurement error is removed. The details of the method are 

described below. 

The test setup is as follows. The DAC output voltage is 

sent to an on-board digitizer whose linearity can be much less 

than the linearity of the DAC. This digitizer should have 

sufficiently small quantization errors, meaning it cannot have 

large “dead-zones”, where a very large voltage range gives the 

same output code. This is an easy condition to guarantee even 

if the digitizer has bad linearity performance. It should have 

no, or sufficiently small kickback to the DAC output. For 

static linearity test, this should be very easy to meet, and 

means that the measurement device’s transient settles faster 

than the DAC settling time. This is not an extra requirement. 

High performance measurement devices also need to satisfy 

this. But this might be easier to satisfy for low cost 

measurement devices since the accuracy requirement is more 

relaxed. As an example, an ADC is used as the digitizer in this 

paper, but the method is not limited to using an ADC. The 

reference voltages for the DAC and the ADC are such that the 

output range of the DAC is less than the input range of the 

ADC. For each DAC code, two ADC output codes are 

obtained. The first ADC code is obtained when a positive 

voltage shift  is added to the output voltage of the DAC and 

then sent to the ADC for digitization. The second ADC code is 

obtained when the output voltage of the DAC is sent directly 

to the ADC. We assume that this shift  is constant for all the 

measurements. The value of this shift is not required to be 

accurate or known, but must be reasonable. There are several 

methods to generate this constant shift. Many of the constant 

shift generation methods developed for the SEIR algorithm 

[10], [11] can be used for this purpose. It is important to note 

that the ADC must not have wide codes or dead-zones which 

will result in many DAC codes giving the same ADC output 

code. 

C. Derivation of equations 

For a given DAC code 1DACC , let’s say that the output 

voltage after addition of shift is 1V . This voltage can be 

expressed as: 

  11 1 1DAC D DAC DAC DAC DACC INL C o wV l      (2) 

where DINL is the INL function of the DAC, DACl is the actual 

LSB of the DAC, DACo is the offset of the DAC,  is the 

added voltage shift, and 1DACw is the additive noise. This same 

1V becomes the input voltage to the ADC to give 1ADCC . The 

following equation can be written, with all variables 

corresponding to the ADC this time: 

   11 1 1 1ADC ADC ADC ADCA ADC ADCC INL o qlC wV       (3) 

Where 1ADCC is the ADC output code, ADCo is the offset of the 

ADC,  1ADCw is the additive noise, and 1ADCq is the 

quantization noise of the ADC.  

Similarly, for any DAC code 2DACC , let’s say that the DAC 

output voltage, without shift, is 2V , which can be expressed 

as: 

  22 2 2DAC D DAC DAC DAC DACC INL C oV l w    (4) 

This voltage, when sent directly to the ADC for measurement, 

gives ADC code 2ADCC . The voltage 2V can again be 

expressed as: 

  22 2 2 2ADC ADC ADC ADCA ADC ADCC INL o qlC wV       (5) 

Subtracting equations (2) and (4) and then equating that to the 
difference of equations (3) and (5), we get: 
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Equation (6) can finally be re-arranged to get: 
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Where /DAC ADCg l l , and wq is the variable with all the 

additive and quantization noise terms. The reason for writing 

equation (7) in this manner will become apparent very soon. 

Now, if (i) the 2 ADC codes 1ADCC and 2ADCC  are the same 

or close to each other, and (ii) they belong to the same “LSB 

segment” of the ADC, then the term 

    1 2ADC CA A ADer INL C INL C g   will be negligible. The 

underlying assumption in the above stated conditions is that 

the linearity within the LSB segment of an ADC is good, and 

so, the difference in INLs will be negligible compared to the 

noise. Or in other words, if the LSB segment of the ADC is 

linear, then the difference in input voltages to the ADC is 

approximately equal to the difference in ADC codes 

multiplied by the slope. In order to guarantee that conditions 

(i) and (ii) are true, we need to carefully select from our (DAC 

input code, ADC output code) pairs for the shifted and non-

shifted measurements. 

When taking the measurements, we have two ADC output 

codes 1 , 2ADC ADCk k  for each DAC input code DACk . We can 

create two matrices with rows of the form (DAC input code, 

ADC output code). One matrix for the shifted version 

( 1A with rows of the form ( , 1 )DAC ADCk k ) and the other matrix 

for the non-shifted version ( 2A with rows of the form 

( , 2 )DAC ADCk k ). First, sort the rows of 1A in the increasing 

order of 1ADCk codes. The whole row is sorted, so DAC codes 

will get rearranged too. Similarly, sort rows of 2A in the 

increasing order of 2ADCk codes. Next, group together the rows 
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Fig. 1. Visual representation of various operations performed 

in 1A in which the ADC codes belong to the same ADC LSB 

segment. Similarly, group together the rows in 2A which 

belong to the same ADC LSB segment. For those rows in 

1A and the rows in 2A which belong to the same ADC LSB 

segment group, we can identify corresponding rows in which 

the ADC codes are almost the same or differ by a few codes. 

Some excess rows, and rows near the transition between LSB 

segments can be removed. Since the codes are already sorted, 

this task is easy to do. Figure 1 gives a clearer visual 

representation of the preceding operations and what happens 

to the ADC columns of the matrices. The result is that we now 

have two matrices 1A and 2A , with each corresponding row 

of the form ( 1 , 1 )DAC ADCC C and ( 2 , 2 )DAC ADCC C respectively. 

For the same row number, 1ADCC and 2ADCC are either exactly 

equal or within a few codes of each other.  

Our goal is to form an equation like (7) for each row of the 

final matrices 1A and 2A with unknowns on the left side and 

knowns on the right side. On the right side, if we ignore the 

error terms er and wq , then g is the only other “unknown”. 

We know that /DAC ADCg l l  is nothing but the gain from the 

DAC codes to the ADC codes. Since the ADC can be highly 

nonlinear, this gain should be calculated separately within 

each ADC LSB segment. Within a specific ADC segment, the 

actual LSB of the DAC can be written as: 
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The actual LSB of the ADC can be written as: 
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From (9) and (10), g can be estimated as : 

 max_ _ min_ __ | _ |

max_ _ min_ _

DAC code DAC codeADC code ADC code
g

DAC code DAC code





 (10) 

For the case of a general digitizer, equation (7) still applies. 

We can simply form the equations only when the output codes 

are equal. This might lead to a lot discarded rows. To avoid 

this loss of information, equations can also be formed when 

the codes are nearby. The gain term required on the right-hand 

side can be approximated by 
DACl divided by the weight of the 

digitizer. 

D. uSMILE-ROME 

Now that the measurement error has been removed in the 

previous section, equation (7) can be combined with equation 

(1) to get the final equation: 
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Where / DACl  is treated as an unknown. We can form one 

such equation for each row in the matrices. er is the error term 

which is negligible, and wq can be treated as random noise 

(the quantization noise can also be approximated to be 

whitened). Let’s say we do nMSB-nISB-nLSB segmentation 

of the DAC’s INL. Since we are estimating end-point fit INL, 

(0) (0) (0) 0M I Le e e   . We should also add an extra 

equation (2 1) (2 1) (2 1) 0nMSB nISB nLSB

M I Le e e      . If we 

take just 2 samples per DAC code (with and without shift), the 

number of equations will be 2 1nDAC r  where r is the total 

number of discarded rows. The number of unknowns will be 

2 2 2 3 1nMSB nISB nLSB    . The +1 here is for  . For a high 

resolution DAC and correct INL segmentation, the number of 

unknowns will be much less than the number of equations. For 

this over-determined system, the method of least squares can 

be applied to estimate the unknown vectors , ,  and M I Le e e , 

and the shift. The noise term will be effectively averaged out. 

The full code INL of the DAC can be reconstructed after the 

least squares estimation. 

IV. SIMULATION RESULTS 

To verify the effectiveness of the proposed method, 
extensive simulations were performed with different DAC 
architectures and INL levels. The R-2R DAC was particularly 
studied due to its wide usage, high resolution and low power. A 
16-bit R-2R DAC, modeled with resistor mismatches was used 
as the device under test. A 16-bit SAR ADC, modeled with 
capacitor mismatches, was used as the measurement device. 
The SAR ADC had a scale down capacitor after 8 MSB bits. It 
was ensured that the ADC did not have any wide codes or dead 
zones. The additive noise added to the output of the DAC was 
set to around 0.5 LSB level.  

First, to show that the method reduces the linearity 
requirement on the measurement device, a relatively low-
linearity ADC is taken. The INL of the ADC is plotted in 
Figure 2. As can be seen in the figure, the INL of the ADC is 
around the +/-10 LSB level, which means that the ADC is only 
around 12-bit linear. 



 

Fig. 2. INL of ADC used for measurement 

 

Fig. 3 (a). True and estimated DAC INL (b) Error in INL estimation 

 

Fig. 4. Maximum and minimum INL estimation errors over 100 runs 

 

Fig. 5. Estimated INL vs True INL over 100 runs 

While estimating the INL of the DAC using the uSMILE-
ROME method, the INL curve is segmented as 8-4-4. The 
number of unknowns is 286. Say the number of equations that 
remain after the discarded rows is around 80% of 2^16. The 
average number of equation per variable is around 180. This 
should be sufficient to average out the noise. The true and 
estimated INL of the DAC, along with the error in estimation 
for each DAC code is shown in Figure 3. It can be seen that the 
DAC INL estimation is very accurate in spite of the ADC used 
for measurement being highly non-linear. 

To further test the robustness of the method, 100 
simulations were run with 100 randomly generated 16-bit 
DACs and 16-bit ADCs. The maximum and minimum of the 
DAC INL estimation errors for each run is shown in figure 4. 
All the estimation errors are within +/- 0.4 LSB. A different 
view of the estimation accuracy is presented in figure 5. The 

X-axis is the true maximum absolute INL and the y-axis the 
estimated maximum absolute INL. Ideally, all the points 
should lie on the y=x line.  +/-0.3 LSB bands around y=x are 
also plotted. All the points are contained within this band, 
which implies that the accuracy of the uSMILE-ROME 
algorithm is very high. The simulation results show that the 
proposed method is robust over different DAC linearity levels. 

V. CONCLUSION 

A fast, low-cost method for static linearity testing of DACs 
is presented in this paper. The uSMILE-ROME method allows 
the testing of high linearity DACs with low-linearity on board 
digitizers, while considerably reducing the test time and the test 
cost. This is enabled by using a segmented non-parametric 
model for the INL curve of the DAC, which reduces the 
number of unknowns to be estimated. Additionally, the 
measurement error introduced due to the on-board digitizer is 
removed in the algorithm, thus allowing it to be orders of 
magnitude less linear than the DAC under test. All of this is 
combined in the uSMILE-ROME method, and results in 
significant reduction in time and cost for static linearity testing 
of DACs as compared to the traditional method. 
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