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Outline: 

□ Why post-combustion CO2 sequestration is needed. 

□ CO2 capture/storage options, and R&D at LLNL. 

□ Chemistry-based approaches for CO2 removal from 
waste gas streams (and air). 



 

Conclusions: 
 CO2 sequestration should not be ignored in California’s

strategy for meeting its CO2 mitigation goals. 

□ Continued reliance on fossil fuels in a carbon-
constrained world (and State) will require that CO2 
sequestration technologies be found and deployed in
the coming decades. 

 Cost-effective and safe chemical CO2 sequestration
options are available, but need to be further
researched and evaluated. 

 Partners and funding for R&D are needed. 



         

    
            

    

Why CO2 Mitigation?
         It’s Not Just Because of Climate Impacts! 

Adding CO2 to the Atmosphere adds CO2 to the ocean
 = Ocean Acidification: 

Air-to-sea diffusion of CO2 into seawater:
 CO2 + H2O <––> H2CO3 <––> H+ + HCO3

– <––> 2 H+ + CO3
2-

Fate of CO2 added: (+ 9 %)  (+151 %) (– 60%) 
2– ]↓ocean relationships: [CO2 ]↑ [H+ ]↑  pH↓ [CO3 

• For each mole of CO2 added ~0.9 mole H+ is produced. 

Therefore, the annual net ocean uptake of 2Gt C
 (=7.3Gt CO2) produces about 0.15Gt of H+. 



 

CO2 Emissions Impact on Ocean pH: 

(Caldeira and Wickett, 2003, Nature 425:365) 



 
  

Nature 407: 364-

Consequences of Ocean pH Decrease: 

pH = 8.2 8.1   8.0 7.9 7.8 



State Response to CO2 Threat: 

AB 32: 
•

AND OCEAN ACIDIFICATION 

Other Legislation/Executive Orders: 
AB 1493 
S-3-05 
AB 1368 
AB 1925 



AB 32 Goal: 

“…require the state board [CARB] to adopt a statewide 
greenhouse gas emissions limit equivalent to the statewide 
greenhouse gas emissions levels in 1990 to be achieved by 
2020…” 

(CAT, 2006) 

---> 174 MMTCO2e/yr (29%) reduction over BAU by 2020 



How to Achieve Goal? 

Center for Clean Air Policy Report, Jan. 2006: 
California can achieve 86% of its 2020 emissions 
reduction target by applying known technologies/methods 
that on average will cost $5.77/tonne of CO2 avoided. 
Does not require participation by electricity production 
and oil refining. 
No mention of CO2 sequestration. 

The total emissions target can be achieved at no cost to 
consumers if additional emissions reduction cost no more 
than $123/tonne CO2 avoided. 



How to Achieve Goal - Part 2 

Climate Action Team Report - March, 2006: 
California can meet or exceed its 2020 emissions reduction 
target by applying known technologies/methods principally to 
transportation, fossil energy, renewable energy, and forest/ag 
sectors. 

Includes mitigation of non-CO2 GHG’s 
Anticipated low net cost, and positive effects on economy 
No mention of CO2 sequestration. 



                                 
How to Stabilize Atmospheric CO2 

- A Less Rosy View 

Pacala and Socolow (2004, Science 305:968-): 

To stabilized atmospheric CO2 at 
500 ppm by 2054 -
Emissions must be reduced by 
1/3 over the next fifty years. 
Draconian application of 
existing/known technologies is 
required, including CO2 
sequestration, especially in the 
context of hydrogen and coal-to-
synfuels production. 



 

50-yr Projected pCO2 and CO2-Free Energy Requirements 
for Various Climate Sensitivities and Global Warmings: 

Required Rate of CO2-Free Energy Addition Required Stabilized Atmos. pCO2 

presently 

(Caldeira et al., 2003, Science 299: 2052-) 



     

To add 1 GWt of CO2 Free power capacity each day: 

 Biomass @ 5 W / m2 

 200 km2 land area suitable for agriculture each day 
 Wind @ 30 We / m2 

 20 km2 suitably windy land area each day (~500 wind turbines per day)
[+ storage and distribution] 

 Solar @ 66 We / m2 

 5 km2 of solar cells on suitably sunny land each day [+ storage and
distribution] 

 Fission 
 One 300 MWe fission plant coming on line each day [assuming energy

can be used as electricity! 1 GW if needed for heating, etc.] 

 Solutions must be applicable to developing
countries, where most of the increase in
emissions is expected to occur 

 Thus, fossil fuel use WITH CO2 
sequestration appears essential. Nordex 2.5 MW 

80 m rotor diam 



 

 

The Role of CO2 Sequestration in California? 

CO2 sequestration should be include in California’s CO2 
mitigation portfolio because: 

□It would reduce the need for efficiency, renewables, and 
forest/ag management to satisfy all CO2 reductions -
sequestration can fill in mitigation shortfall. 

□Sequestration will likely be needed in longer term, 
especially in a fossil-energy-based hydrogen/synfuels 
economy. 

□Sequestration may prove to be more cost-effective than 
other available CO2 mitigation technologies. 



 

 

CO2 Capture/Sequestration Options: 
□ Land-Based 

• Abiotic molecular CO2 capture and purification with 
underground (geologic) storage 

• Enhanced biological uptake/storage -
managed forests, crops, microbes, soils, etc 

• Carbonation/mineralization reactions 

□ Ocean-Based 
• Abiotic CO2 capture plus direct CO2 injection 
• Enhanced bio uptake/storage

 e.g., Fe, nitrate, etc fertilization 

□ Alternatives… 



Activities in LLNL’s Energy & Environment Directorate: 

Four major programs: 
• CAMS (Accelerator Mass Spectrometry) 
• NARAC (Atmospheric Release) 
• Nuclear Science & Engineering 
• Earth System Science & Engineering 

ESSE comprises for program elements 
• Carbon management & fossil energy 
• Water & environment (incl. energy-water 
nexus) 
• Climate change prediction 
• Energy technology & analysis 

Combination of basic and applied science 
• Simulation and experimentation 
• Field programs and verification 
• Funded by DOE and industry 

Service to government institutions and 
decision making process 



 

 

Carbon Management Program Foci: 

Novel CO2 Capture 
• Advanced membranes 
• Accelerated Limestone Weathering 
• Desalination and CO2 Separation 
• Direct Carbon Fuel Cell 

CO2 storage in geological formations 
• Simulation (and experimentation) 

• Geomechanical effects 
• Reactive chemistry (e.g., groundwater) 

•CO2 Monitoring and verification (M&V) 
• Geophysical Integration 
• Source term Characterization 
• Operational protocols 

• Risk characterization & assessment 
• Site characterization and assessment 
• Operational protocols 
• Hazard definition and management 

Energy systems modeling 1 km1 km 

Fossil Energy (e.g., underground coal gasification) 



Carbon Management Partners in CA, US, and World-Wide 

California 
• Charter member of WestCarb (CEC) 
• CA companies and projects (e.g. BP, CES) 
• Testified to assembly & senate 

US programs 
• 3 DOE Regional partnerships (including Westcarb) 
• Fundamental Research (e.g., ZERT) 
• Work with EPA on regulatory framework 
• Partnerships with NGOs (NRDC, World Resource 
Institute, Great Plains Institute) 
• Helping to develop international protocols for CCS 

Internationally 
• Engaged on large projects (e.g., In Salah, Weyburn) 
• Helping to develop international protocols for CCS 
through Carbon Sequestration Leadership Forum, 
industry 
• Work with International Energy Agency on best 
practices 
• Partnered with international companies, NGOs 



 

  

  
  

Nature’s Chemical CO2 Capture and Storage: 
Nature’s own mechanisms: 

Atmospheric CO2 

Photosynthesis 
nCO2 + nH2O + photons

 ---> (CH2O)n + nO2 Weathering Reactions 
e.g.: 
CO2 + Ca/MgOSiO2 --->

 Ca/MgCO3 + SiO2 

CO2 + H2O + CaCO3 ---> 
-Ca2+ + 2HCO3 

Ocean uptake 

CO2 + H2O + CO3
2-

----> 2HCO3 



Natural CO2 “Capture and Sequestration”: 
Instantaneous doubling of 
pre-industrial atmospheric CO2 content 

(Caldeira and Rau, 2000) 



  

Carbonate Weathering in the 
Global Carbon Cycle: 

A t m o s p h e r i c CO2 (7x102) 

HCO3 -
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Accelerated Weathering of Limestone 
(AWL) Reactor: 

(Rau and Caldeira, 1999) 



 
 

Analogies to Flue Gas Desulfurization: 

FGD: 
SO2(g) + H2O(l) + CaCO3(s) ---> CaSO3(aq) + CO2(g) + H2O(l)

 CaSO3(aq) + 0.5O2 ---> CaSO4(s) 

AWL: 
-CO2(g) + H2O(l) + CaCO3(s)  ---> Ca2+

(aq) + 2HCO3 (aq) 

•Gases captured via reaction with wet limestone 
(at ambient temperature and pressure), and
 converted to benign, storable/useable liquids or solids 



             Carbonate dissolution

Direct Injection

Direct CO2 Injection vs AWL -
Effect on Atmospheric pCO2: 

Atmospheric pCO2 after 1,000 years: 
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(Caldeira and Rau, 2000) 
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AWL Economics: 

□ Estimated cost per tonne CO2 sequestered, 
assuming coastal location: 
•Limestone -

 2.3 tonnes @ $4/tonne = $ 9.20 
 crushing from 10 cm to 1cm = $ 1.45 
 transport 100 km by rail = $ 8.00 

•Water -
 104 m3, pumped 2 vertical meters = $ 7.57 

•Capital and maintenance = $ 2.50

 TOTAL: $ 29/tonne CO2 
Compared to $40-$60/tonne for amine capture + geologic storage 

of CO2 from a conventional power plant 



 

 

Optimum AWL Economics: 
Estimated cost per tonne CO2 sequestered, 
assuming coastal location: 

•Limestone -
 2.3 tonnes @ $4/tonne = 
 crushing from 10 cm to 1cm = 
 transport 100 km by rail = 
 Water -
 104 m3, pumped 2 vertical meters = 

•Capital and maintenance = 

TOTAL: 

$ 9.20 
$ 1.45 
$ 8.00 

$ 7.57 
$ 2.50 

use free, nearby
 waste limestone 

use cooling water 

<$3/tonne CO2 



 
 

 

  

Advantages of AWL: 
□ Abundant and cheap reactants: 

• Limestone - carbonates = 6x107Gt C, fossil fuels = 4x103Gt C;
 H20 - ocean = 1.4x1018m3 

□ Relatively innocuous waste products: 
-• Primarily Ca2++ and HCO3 in solution; Avoids low pH inherent in 

passive or active CO2 injection into ocean; benefits to marine biota 

□ Not energy- or technology-intensive: 
• Does not require separate, costly CO2 capture/concentration 
• Can modify existing flue gas scrubbing technology 

- analogous to coal plant desulfurization 

□ Relatively inexpensive 
• 10-20% US emissions mitigated at <$30/tonne CO2 



Limestone Availability vs 
CA Coastal Power Plant Location: 

Major Limestone 
Deposits/Mines 



Impacts/Issues Needing Further Research: 

□ Local availability of limestone and water limits application 
•could be offset by piping CO2 to favorable AWL sites 
•use inland saline aquifer or water with oil? 

□ Marine biological impacts -
•net beneficial? 
• trace contaminants from flue gas or limestone? 

□ Environmental, transportation, and economic impacts due
to increased limestone mining/transport. 

□ Regional, national, and global assessments and R&D
needed. Proposal submitted to CEC PIER program. 



 

CO2 Mitigation In Cement Manufacture: 

CCAP Report 2005: CA Cement Manufacture -
□Current state emissions ≈ 10.5 MMT CO2/yr 
□Cumulative emissions by 2020 = 260 MMTCO2 

□Can be reduced by 47 MMTCO2 by 2020 at a cost
 <$10/tonne CO2 via: 
•Limestone or flyash + cement blends 
•Alternative fuels 

□But there is industry/public resistance to these options
 - Alternatives needed 



-

- 

Combined CO2 and Kiln Dust Mitigation: 

CO2 

Potential CO2 and Kiln 
Dust Mitigation inCaCO3

+ 

cementsand + Cement Manufacture 
high heat 

kiln dust (CKD) 

H2O 
Ca2+  + 2HCO3 ---> 
H2O + CaCO3 + CO2 

alkaline cement 

e.g., Ca(OH)2 + 2CO2 --->
 Ca2+  + 2HCO3 

C 
<--CaCO3 recycle -and/or- sequestration

as CaCO3 



Features/Issues: 

 Helps mitigate both CO2 and CKD 
 Potential co-benefits 
Recycle of waste Ca as CaCO3 
Selective precipitation of other useful

 compounds e.g. K, Mg, and Na carbonates 
 Should be very low cost, maybe <$1/tonne CO2 

 Further evaluation and testing needed. Proposal 
submitted to Portland Cement Association. 



CO2 Sequestration Using Water 
Co-Produced With Oil: 

  On average 10 barrels of water are brought to the surface 
with every barrel of oil produced. 

 CA produces 650 Mb oil/yr, therefore 2.7x1011 gals (?) water 
produced; Majority of water is injected back into ground. 

 These waters are on average alkaline and undersaturated 
with respect to typical CO2 waste streams (based on 
analysis of Texas produced waters). 

 Therefore why not equilibrate these waters with waste CO2 
(+-limestone) to effect very low cost CO2 capture and safe 
geologic storage? Co-benefits: 
reduced scaling and microbial fouling 
enhanced oil recovery and oil/water separation? 



Typical Produced Water Scheme: 
Primary separation: 

gases+CO2 

Secondary separation: 
gases 

Water finishing: oil 

oil 
flotation 
flocculation 

bubblingsolids skimming 

filtration, 
degassing, 
storage 

de-emulsifierssettling gases flocculants producedoil+water+ 
waterhydrocyclonesgas lifting 
injection 



             -

Produce Water with CO2 Capture +Geologic Storage: 
Primary separation: 

Secondary separation 
with CO2 addition: 

gases 

oil 

Produced Water 
CO2 + DissolvedOil+Water+ Carbonsettling Limestone, waste Injection 

carbonates 
Low-pressure, 

waste CO2 

Gas Lifting 

solids 

oil 

gases+CO2 

water storage,
2HCO3 isolation from 

air 

flotation 
flocculation 
skimming 

CO2 + H2O + CO3 
2- --> 



        

   

 

       

 

Another Idea: Iron/CO2 Fuel Cells? 

From corrosion science: 

Fe0
(s) + 2CO2(g) + 2H2O(l) => Fe(HCO3)2(aq) + H2 (g)↑ + 113.5kJ (1) 

ΔG = -2.2kJ @ 25°C 

Fe(HCO3)2(aq) => FeCO3(s)↓ + CO2(g)↑ + H2O(l) - 52.3kJ (2) 

Net reaction: 

Fe0
(s) + CO2(g) + H2O(l) => FeCO3(s)↓ + H2(g)↑ + 61.2kJ (3) 

ΔG = -35.2kJ @ 25°C 

Thus, at ambient temperature and pressure: 
□ CO2 converted to a dissolved bicarbonate or solid carbonate 
□ hydrogen gas is produced 
□ electricity is produced -----> 
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Electricity Generation - an Fe/CO2 Galvanic Cell: 

□ Anodic reaction:  Feo=> Fe2+  + 2e- (4) 

□ Cathodic reaction:  2H+ + 2e- => H2 (5) 
e.g., from Hasenberg (1988): 
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Possible Fe/CO2 Fuel Cell Design: 

Example of Fe/CO2 Fuel Cell: 

Fe(HCO3)2+ H2 gas out H2 gas out
H2O outlet 

headspace lid 
+ -

gas-tight
seal 

DC out 
removeable 

cathode 

A 

DC 

looking 

Fe anode Fe(HCO3)2+
H2O outlet 

C 

top 

B A D 

non-conductive,
non-reactivetop H2CO3  case 

+ H2O
 inlet

view, 

down 
(lid C-D crosselectrolyte B-A cross section (side view )off)  section 

(end view ) 
B 

+ H2O 
H2CO3 Figure 2

inlet 



 

   

    CO2
 cleanup?

Schematic of Fe/CO2 Fuel Cell Battery Operation:

Large-Scale Fe/CO2 Fuel Cell Operation: 
G.H. Rau 
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CO2 input 
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Fe/CO2 Fuel Cell Requirements/Yields: 

Mass in (tonnes):  Mass/energy out: 
1 Fe0 --> 

Fuel cell

--> 2.07 FeCO3

 0.79 CO2 --> --> 0.04 H2

 0.32 H2O --> --> 421kWhe(tonne-1 Fe hr-1) 



                                

 

Fe/CO2 Fuel Cell Economics: 

CO2 capture + sequestration cost = 
$0.00 (per tonne CO2 mitigated) 

IF the following costs or values are assumed: 

Reactants -
Fe = $85/tonne
H2O = $0.05/tonne
CO2 = free 

Products -
FeCO3 = $3.80/tonne (=$10/tonne CO2 credit)
H2 = $2,800/tonne ($2.80/kg)
Electricity = $0.05/kWhe 

Overhead = $50.00/tonne Fe reacted 



Fuel Cell Net Cost or Profit? 
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The Holy Grail of Sequestration: 
Cost-Effective Capture + Storage of CO2 from Air 

 Would allow continued fossil fuel use via post-emission
mitigation of point, non-point, and mobile CO2 
emissions. 

 Contrasts with current CA mitigation policy/strategy; 
•stabilizes atmos CO2 by consuming air CO2 not by

reducing CO2 emissions. 
 Biological and chemical capture of CO2 from air is well 

known (e.g., CaOH +2CO2+H2O --> Ca(HCO3)2), but: 
•photosynthesis is land-intensive; products not stable 
•hydroxides are costly and carbon/energy- intensive 

to make. 
 A more efficient electrochemistry strategy? ---> 



      

Electrolysis with CO2 Uptake from Air: 

2H+ 2OH-

1/2O2 H2 

H2O 2H2O 

2e- 2e-

Fuel Cell 
H2O• + energy•

X(CO2) 

anode cathode 

-+ 

water level 

+ -

PROPRIETARY 

Excess Atmospheric CO2 



Bottom Line: The chemical reactivity of CO2 
should be exploited for CO2 mitigation 

□ CO2 is a reactive compound: 
+ C ----> 2CO 
+ CH4  ----> CO/H2 

CO2 + S ----> SO2 
+ M ----> MO 

+ MO ----> MCO3 

□ Reaction requirements: 
• Inexpensive, abundant reactants 
• Low or no energy input 
• Benign, storable/useable products 
• Low cost/benefit 



 

Conclusions: 
 CO2 sequestration should not be ignored in California’s

strategy for meeting its CO2 mitigation goals. 

□ Continued reliance on fossil fuels in a carbon-constrained 
world (and State) will require that CO2 sequestration
technologies be found and deployed in the coming
decades. 

 Cost-effective and safe chemical CO2 sequestration
options are available, but need to be further researched 
and evaluated. 

 Partners and funding for R&D are needed. 
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