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• Signaling
• Delay
• Power dissipation
• Bandwidth
• Self heating
• Data reliability (Noise)
• Cross talk
• ISI: impedance mismatch
• Area

• Depend on R, C and L !
• Function and length dictates relative importance

 Performance Metrics

• Clocking
• Timing uncertainty 
   (skew and jitter)
• Power dissipation
• Slew rate
• Area

• Power Distribution
• Supply reliability

• Reliability
• Electromigration
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Interplay Between Signaling Metrics

• AR increase (tradeoffs)=>
– Better delay and electromigration
– Worse power and cross talk

• Increasing aspect ratio may not help

•Pay attention to different metrics simultaneously
•Design window quite complex
•Capacitance very important
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• The dielectric constant, κ, is a physical measure of the electric polarizability of a
material

• Electric polarizability is the tendency of a material to allow an externally applied
electric field to induce electric dipoles (separated positive and negative charges)
in the material. Polarization P is related to the electric field E and the
displacement D by

D = εoE + P
• P is related to E through χe the electric susceptibility of the dielectric

P = εoχeE
Therefore D = εo (1+ χe )E  = εo κ E

Dielectric Constant

where εo is the permittivity of the free space.
Note that P  also is the density of atomic electric dipole per unit volume

P = Σp/V = Np
where p is the dipole moment and N is the density of dipoles
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 In solid state matter, there are three polarization mechanisms:
1.Electronic polarization occurs in neutral atoms when an electric field displaces the

nucleus with respect to the electrons that surround it.
 Example: Hydrogen atom, Si, Ge

2.Atomic or ionic polarization occurs when adjacent positive and negative ions stretch
under an applied electric field.
 Example: NaCl, most dielectrics
 Compond semiconductors (GaAs, SiC have both electronic and ionic polarization)

3.Dipolar or orientational polarization occurs when permanent dipoles in asymmetric
molecules respond to the applied electric field.
 Example: H2O

Components of Dielectric Polarization
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 In a perfect vacuum, there are are no atoms to polarize, making χe = 0 and k = 1.

 Each polarization mechanism has an associated response time and therefore will not
contribute to k beyond some corresponding frequency.

 At the frequency of interest to us all 3 mechanisms contribute to polarization but relative
contributions may vary from material to material

Components of Dielectric Polarization
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• Choose a nonpolar dielectric system. For example, polarity is weak in materials
with few polar chemical groups and with symmetry to cancel the dipoles of
chemical bonds between dissimilar atoms.

• Since kair = 1, dielectrics can also have lower effective k with the incorporation
of some porosity into the chemical structure.
 Materials where atoms are far apart (remember P = Np)
 Add physical porosity

• Minimize the moisture content in the dielectric or alternatively design a dielectric
with minimum hydrophilicity. Since k water ~ 80, a low-k dielectric needs to
absorb only very small traces of water before losing its permittivity advantage.

A low- k dielectric is an insulating material that exhibits weak polarization when
subjected to an externally applied electric field. A few practical approaches to
design low- k materials are:

Low Dielectric Constant
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Challenges for Low-κ Materials
Weak Thermo-Mechanical Strength: 10x worse than SiO2 in
almost every category of thermo-mechanical properties.

Ref: C.-H. Jan, IEDM Short Course, 2003
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• Reduce polarization strength and density.
• Reduce Si-O density: SiO2 (k=4)
• Incorporate F: SiOF(k =3.7)
• Incorporate CH3-: SiOC(H) (k=2.8)
• Use low polarization polymer:

(Ref.: K.J. Miller et al., Macromolecules, 23, 3855 (1990).)

Dielectric Constant Reduction Methods
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Low Dielectric Constant (Low-k) Materials
Oxide Derivatives
F-doped oxides (CVD) k = 3.3-3.9
C-doped oxides (SOG, CVD) k = 2.8-3.5
H-doped oxides (SOG) k = 2.5-3.3

Organics
Polyimides (spin-on) k = 3.0-4.0
Aromatic polymers (spin-on) k = 2.6-3.2
Vapor-deposited parylene; parylene-F k ~ 2.7; k ~ 2.3
F-doped amorphous carbon k = 2.3-2.8
Teflon/PTFE (spin-on) k = 1.9-2.1

Highly Porous Oxides
Xerogels/Aerogels k = 1.8-2.5

 Air k = 1
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Industry split between CVD and spin-on. Currently CVD dominates for
k > 2.5 and spin-ons dominate at k < 2.5 porous films (< 65 nm).

Deposition Methods –CVD vs. Spin-on

CVD

CVD:
• Proven technology
• No cure step.
• Mechanical strength ↑.
• Easier integration.
• By equipment vendors

Spin-on:
• Done on track.
• Need post treatment.
• Mechanical strength ↓.
• By materials suppliers.

Ref: C.-H. Jan, IEDM Short Course, 2003
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SiOF (F-Silicate Glass) k ~ 3.5 –4.5
• Basic Process Chemistry:

SiH4+ SiF4+O2→SiOxFy(H)z      (HDP/PECVD, T> 450 °C)
• Structure: F substitution of O in the 3D network of Si and O.
• Properties:

 k: 3.6 –3.9.
 k <3.5 and F > 4% not stable with high moisture adsorption.
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• CDO (Carbon Doped Oxide), OSG (Organo Silicate Glass), SiOC
• Proven CVD technology for 90 nm node.
• k ~ 3.5 to 2.5 with decreasing mechanical strength

CVD Organo Silicates k ~ 2.5 –3.5

Structure
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SOP (Spin-On Polymer)

Spin-on Organics: k ~ 2.5 –3.5

Issues: Weak mechanical strength (hardness, modulus), poor
thermal stability, poor adhesion (can be improved with adhesion
promoter), high CTE.

Polyimide, BCBTM, ---
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Mechanical Strength:
– CVD SiOC > Spin-on SiOC > Spin-on Organics
– SiO2, SiOF  10x  of low k

Adhesion:
– SiO2, SiOF  10x  of low k
– Spin-on Organic > CVD SiOC
– Blister, Cracking and Delamination.

Mechanical Properties
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Dielectric constants can be lowered via porosity (air = 1).

pores Dielectric

Dielectric Constants and Porosity

Ref: C.-H. Jan, IEDM Short Course, 2003
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Material Options:
 Porous Silicate Glass
 Xerogel/Aerogel
 Porous Organo Silicate Glass
 Porous SSQ
 Porous Organics
 Porous SiLK

Spin-on Sol-Gel is the most common approach.
Sol-Gel Process:

 Sol: (Organo) Silicate or Organic matrix forming a 3-D
polymerization network in solvent.

 Gel: Organic solvent and “structure directing” molecules
(templates, porogen(pore generator)) blend in polymerization
network.

 Heat treatment to remove solvent and porogen, and leave
porous framework.

Porous Materials
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Synthesis Methods



10

EE311/ Low-k Dielectrics19 tanford University
araswat

Poor pores distribution ⇒ weak mechanical strength

Pores Distribution

Ref: C.-H. Jan, IEDM Short Course, 2003
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1µm

L/S=0.30µm L/S=0.30µm

 Old dielectric SiO2 K = 4 

Air-gap as Low-k Dielectrics
Air-Gap Interconnect Structure

Air

Al

SiO2

Ref: Shieh, Saraswat & McVittie. IEEE
Electron Dev. Lett.,  January 1998

Ultimate limit is air with K = 1

Cu
Air
gap

Source: Werner Pamler, Infinion 
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Air-gap Experimental Data
0.3µm  line/space

Capacitance
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Ref: Shieh, et al., IEEE IITC, 1998
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 Air-Gap splits show significantly longer lifetimes than Gapfill split
 Leakage data indicates no breakdown well above operating voltage.

Electromigration
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Ref: Shieh, et al., IEEE IITC, 2002
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• Rigid gapfill dielectric unable to
deform and reduce stress during
electromigration.

• Flexible air-gap sidewall deforms

• Air-gaps lower the effective
modulus of the dielectric.

• Lower modulus reduces stress
during electromigration.

• Effect of air-gap on modulus is
greater in high aspect ratio lines.

HDP Gapfill Dielectric

Air-gap Dielectric

FIB Mill Cross-Section
Reduced Stress in Air-gap Structures

Ref: Shieh, et al., IEEE IITC, 2002


