Low Temperature Emissions Control

<u>Todd J. Toops</u> (co-Principal Investigator) James E. Parks (co-Principal Investigator) J. Chris Bauer Oak Ridge National Laboratory Energy and Transportation Science Division

> Gurpreet Singh and Ken Howden Advanced Combustion Engine Program U.S. Department of Energy

ACE085 May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

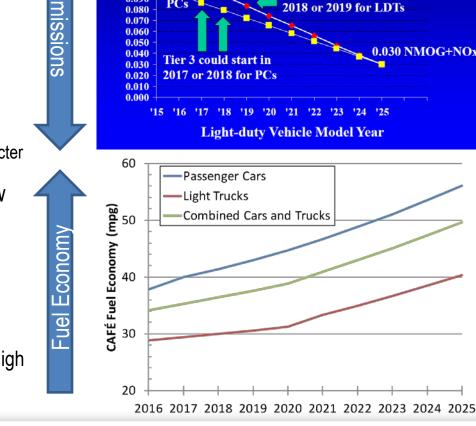
- Started in FY2013
 - Reprogrammed project that was unfunded in 2012
 - Prior project focused on effects of advanced combustion regimes on emissions control (Multi-mode)

Barriers

- From DOE Vehicle Technologies Multi-Year Program Plan (2011-2015)
 - 2.3.1.B: Lack of cost-effective emission control
 - 2.3.1.D: Durability
- Responsive to ACEC Tech Team requested emphasis on low temperature emissions control

Partners

- BES-funded scientists Sheng Dai and Steve Overbury
- Center for Nanophase Materials Science (CNMS) user project


Budget

- FY2013: \$400k (expected)
- FY2012: \$0k

Objectives and Relevance

Develop emission control technologies that perform at low temperatures (<150°C) to enable fuel-efficient engines with low exhaust temperatures to meet emission regulations

- Project aims to identify advancements in technologies that will enable commercialization of advanced combustion engine vehicles
 - Advanced combustion engines have greater efficiency needed to meet CAFE
 - consequently lower exhaust temperatures
 - At low temperatures catalysis is challenging
 - emissions standards harder to meet, getting stricter
- Perform research on strategies to improve low temperature catalysis for emission control
 - Need ~90% conversion at T \leq 150°C
- Investigate "trap" material technologies that would temporarily store emissions
 - Released and converted later under periodic high temperature conditions

FTP NMOG+NOx Emissions, g/mi

LDT2s

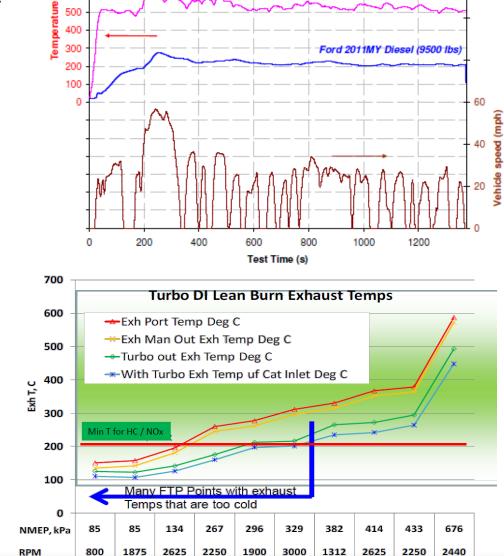
0.100

0.090

0.080 0.070

0.060 0.050

Top: J.Kubsh, "Light-duty Vehicle Emission Standards", 01/10/2013. Bottom: C. DiMaggio, "ACEC Low Temperature Aftertreatment Program", 06/21/2012.


AK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Tier 3 could start in

2018 or 2019 for LDTs

Improved vehicle efficiency leads to low exhaust temperature

- Advanced combustion modes have greater efficiency and consequently lower exhaust temperatures
- Low temperature exhaust is <u>not</u> simply a start-up problem
- Exhaust temperatures stay low throughout the FTP
- Further improvements in efficiency will be even more challenging for emissions
 - Waste heat recovery (WHR)
 - ACEC: "Turbo = Catalyst Refrigerator"

Top: C. Lambert, "Future Directions in SCR Systems", 2012 CLEERS workshop, 05/01/2012. Bottom: M. Zammitt, "ACEC Future Aftertreatment Strategy Report", 01/10/2012.

TURBO

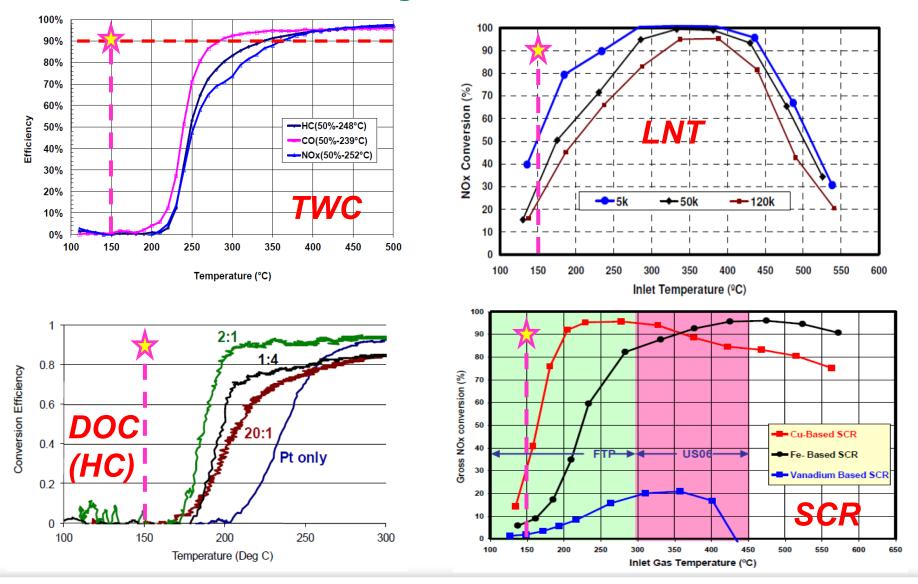
OC MARKE

Turbo: http://www.autoblog.com/2012/10/03/turbo-sales-to-accelerate-by-80-could-make-up-40-of-global-of/

1

B

0

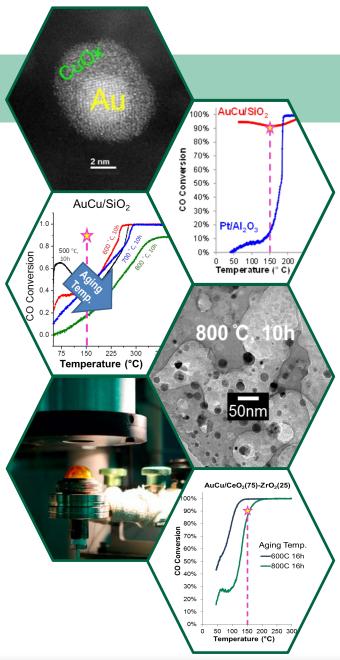

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

(5250 lbs

4

Turbo

Current emissions control technologies have limited activity at 150°C


All: M. Zammitt, "ACEC Future Aftertreatment Strategy Report", 01/10/2012.

Approach:

Pursue innovative catalyst technologies to improve low temperature emissions control

- Coordinate with BES-funded scientists to identify catalysts/technologies that have potential
 - Transfer "science" findings to applied settings
- Evaluate promising catalysts/technologies under exhaust-relevant conditions
 - H₂O, CO₂, CO, HC, NOx
- Investigate durability
 - Sulfur, aromatics, hydrothermal cycling
- Characterize catalysts/technologies to understand fundamental behavior and limitations
 - Particularly when performance is being impeded
 - Materials and specific catalyst functionality/chemistry
- Redesign catalysts trying to overcome shortcomings

Dak Ridge National Laboratory

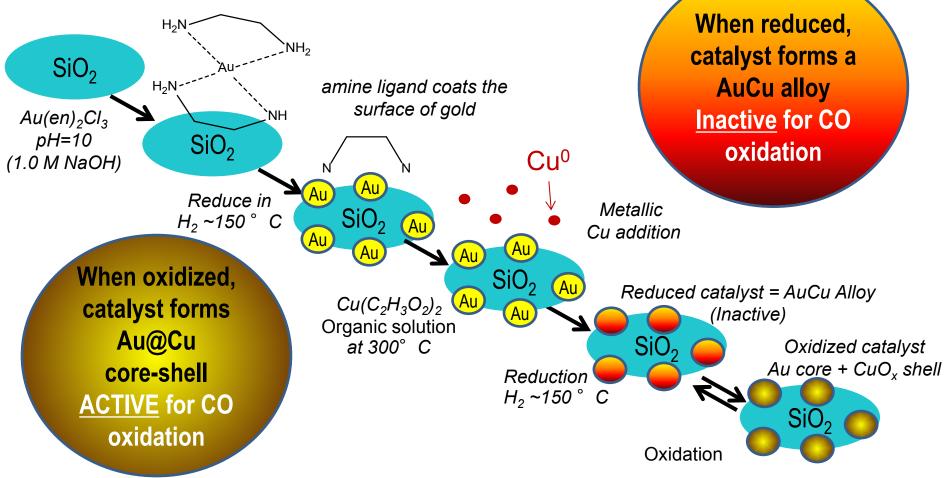
ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF

Milestones

- Previous project scope was aimed at measuring the impact of advanced combustion modes on emissions control
 - Low temperature reactivity seen to be a significant hurdle
- Example completed previous milestones are:
 - Comparison of Cu- and Fe-zeolite Urea-SCR catalyst performance for multimode diesel engine operation
 - Characterization of hydrocarbon oxidation efficiency of diesel oxidation catalyst for low load operation with advanced combustion which results in lower exhaust temperatures
- Current direction is to identify novel/innovative technologies that can be implemented to address the challenges of advanced combustion strategies
- FY13 Milestone: Characterization of performance and surface morphology for a novel candidate catalyst (September 30, 2013)
 - On target

Collaborations

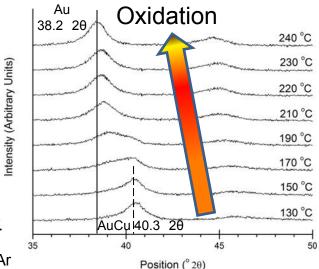
- Basic Energy Sciences [active]
 - Sheng Dai and Steve Overbury (ORNL)
 - Center for Nanophase Material Science (ORNL)
- Interactions with other fundamental catalysis groups [planned]
- CLEERS [active]
 - Dissemination of data; presentation at CLEERS workshop
- USCAR/USDRIVE [active and future activities]
 - Participation in US DRIVE 2012 Low Temperature Workshop
 - ACEC catalyst sub-team (GM, Ford, Chrysler, PNNL, ORNL)
 - Guidance of critical technology needs

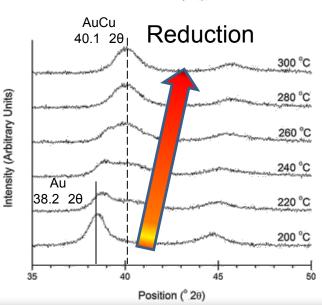

Summary of Technical Accomplishments

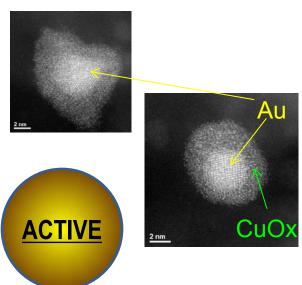
- Investigated innovative Au@Cu (core@shell) catalyst for oxidation
 - Copper oxide surrounding Au core shows excellent low temperature CO oxidation behavior
 - In presence of CO_2 and H_2O
 - Inhibition by HC and NOx observed
 - Could be potential CO-cleanup catalyst at tailpipe
 - Durability investigated up to 800°C
 - Performance is good up to 700°C, but falls off 800°C; Sintering observed
- Demonstrated synergy of mixing of Au@Cu and Pt catalysts and potential to overcome inhibitions
 - Pt inhibited by CO at low temperature; improved with AuCu
 - Very high NO to NO₂ oxidation observed with mixture
- Synthesized and evaluated new catalysts using a new support
 - Improved hydrothermal durability using ceria-zirconia support

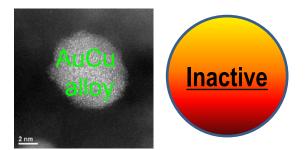
Synthesis of AuCu/SiO₂ Catalyst

- Supported Au nanoparticles serve as templates to synthesize small and disperse intermetallic AuCu nanoparticles
 - Synthesized using aqueous/solution techniques


H. Zhu *et al. Applied Catalysis A: General* **2007**, *326*, 89-99 Bauer *et al.* Phys. Chem. Chem. Phys., **2011**, *13*, 2571-2581


AuCu/SiO₂ catalyst is <u>activated</u> under lean conditions; forms core (Au) shell (CuOx)

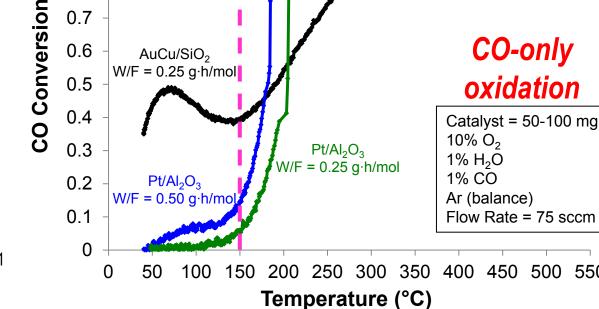

When oxidized, Au core surrounded by amorphous CuO_x shell after heating at 500 °C


Oxidation pretreatment conditions: Flow Rate = 75 sccm 550° C for 16 in 10% O₂ + 1% H₂O in Ar

- After H₂ reduction at 300 °C, AuCu alloy forms
 - Time required to be reduced
 - Brief rich period will not inactivate catalyst

Au@Cu/SiO₂ catalyst is excellent for low temperature CO oxidation

0.9


0.8

0.7

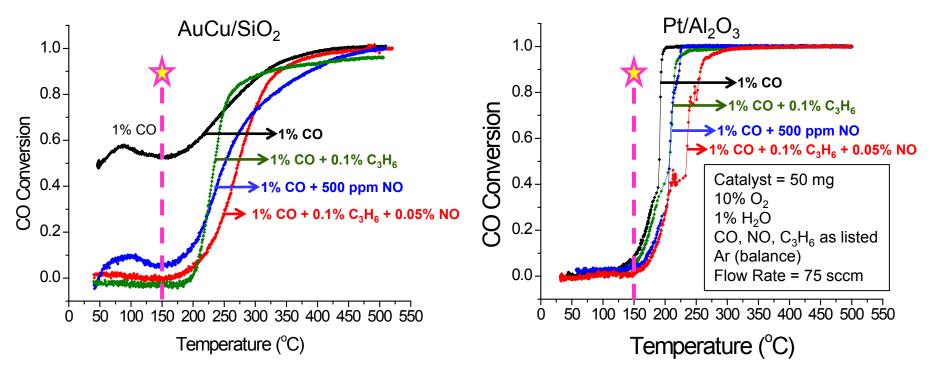
AuCu/SiO₂ W/F = 0.50 g·h/mol

- Au@Cu/SiO₂ shows high activity even at 50°C
 - Reactivity as low as 0 °C
- Similar loadings of Pt/Al₂O₃ catalyst show little activity below 200°C
 - $T_{50\%} = 182-205 \ ^{\circ}C$
 - Pt/Al₂O₃ space velocity:

W/F = 0.5 g·h/mol is 27k h^{-1}

[molar gas flow (mol/h)]

[weight catalyst (g)]

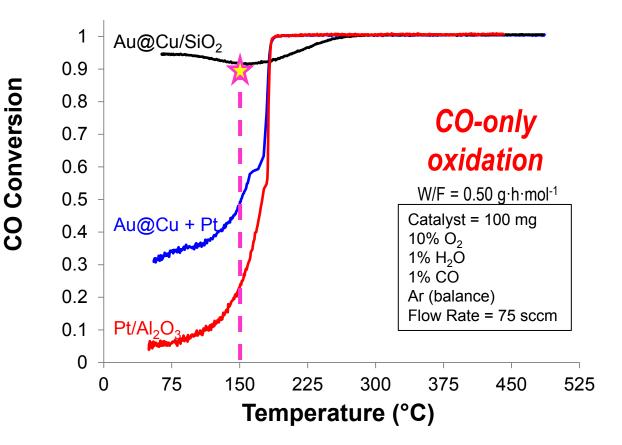


550

Low temperature activity is limited in the presence of NO and hydrocarbons

• Strong inhibition by both NO and HC

Pt/Al₂O₃ displays less impact, but still shows inhibition



- Opportunity exists as a low temperature CO-cleanup catalyst for Au@Cu
 - Passive SCR approach presented by Jim Parks in prior talk (ACE033) shows CO-only exhaust concerns

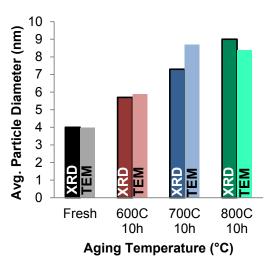
Combination of Au@Cu/SiO₂ and Pt/Al₂O₃ studied to explore potential synergies

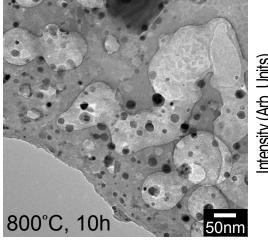
- Au@Cu/SiO₂ and Pt/Al₂O₃ were physically mixed together
- CO oxidation activity increases compared to Pt/Al₂O₃
 - but not as high as Au@Cu/SiO₂ alone

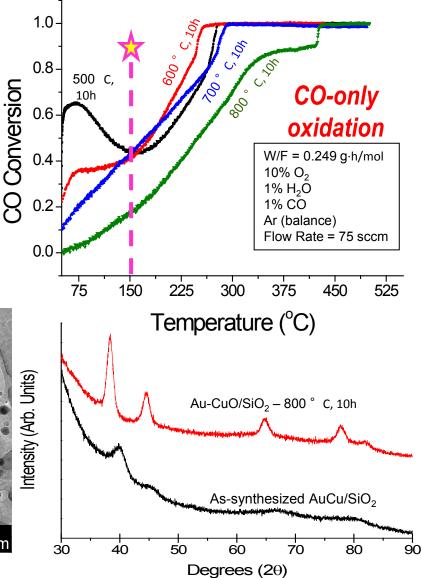
NO oxidation synergy observed with Au@Cu/SiO₂ + Pt/Al₂O₃ physical mixture

- Improved low temperature CO-oxidation in the presence of NO w/ Au@Cu+Pt
 - Better than either individual catalyst

- For Au@Cu+Pt, NO oxidation to NO₂ approaches equilibrium limit at 250°C
- Considerably more active than Pt/Al₂O₃

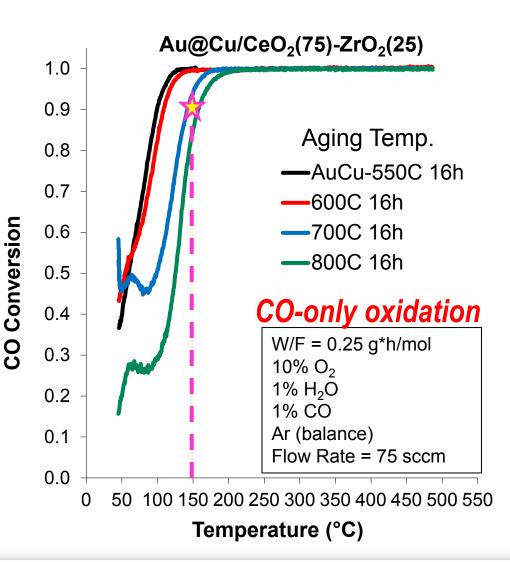



Theory:1. NO oxidation inhibited by CO on Pt2. Au@Cu catalyst oxidizes CO, thus improving NO oxidation



Durability a concern with SiO₂ support

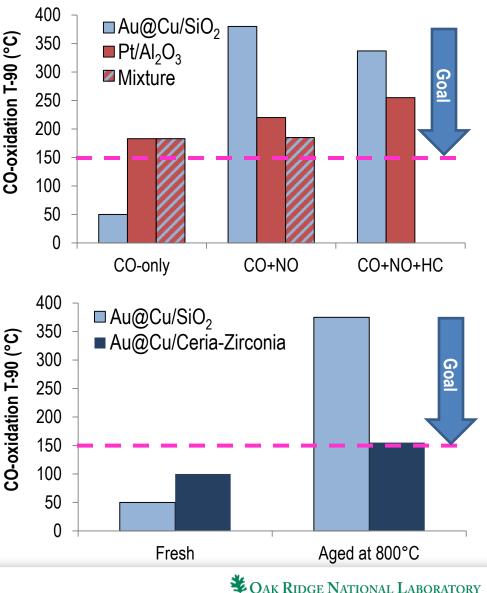
- Au@Cu/SiO₂ aged in 10% O₂ + 1% H₂O in Ar
- Catalyst relatively stable up to 700°C
 - Only very low temperature activity (T< 150°C) diminishes with increasing aging temperature
- Particles grow up to ~25 nm in diameter after thermally aged at 800°C for 10h (8-9 nm avg.)
 - Sulfur also shown to strongly deactivate
- Improved metal support interactions needed



ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Supporting AuCu catalyst on ceriazirconia shows improved stability

- Same synthesis procedure as followed as described in slide 10
- Even with low weight loading high activity shown with unaged sample
 - W/F = 0.25 g*h/mol
 - SV = ~95,000 h⁻¹; denser than SiO_2
 - − T_{50%} = 60°C
 - − T_{90%} = 98°C
- Activity drops after aging at 800°C, but is still very high
 - − T_{50%} = 125°C


− T_{90%} = 155°C

Catalysts studied show promise, but challenges remain

- T-90 compared for each catalyst and condition studied
 - T-90 = temperature where 90% conversion is achieved
 - The lower the better
- 90% Oxidation of HCs and CO at 150°C will continue to be difficult, but exploiting synergies of catalysts show promise
 - Both Au@Cu/SiO₂ and Pt/Al₂O₃ show impact from NO and HCs
 - Mixing catalysts results in ~35°C drop in T-90
- Matching active catalysts with the right support shows promise for overcoming durability challenges
 - 90% conv. achieved w/ 800°C aging

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERG

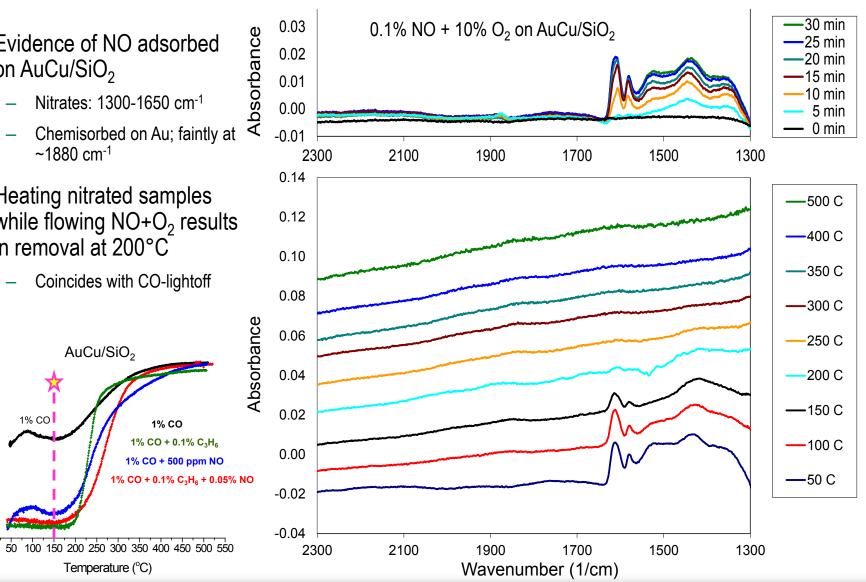
Future work

- Continue investigation on Au@Cu with ceria-zirconia and other supports
 - Activity in the presence of HC and NO
 - Physical mixture with Pt/Al₂O₃; Pt co-supported on ceria-zirconia
 - Additional supports while studying/characterizing metal support interactions
 - Specifically interested in titania-modified SiO₂ support
 - -Discussed briefly last year and this year in CLEERS project (ACE022)
- Initial focus is on oxidation catalysts, but future efforts will move into trap materials and NOx reduction catalysts
 - Low temperature NOx and HC trap materials
 - Release at moderate temperatures
 - NOx storage reduction catalysis with low temperature release and highly active reduction chemistry
- Goal is to move from powder catalysts to washcoated cores and further validation in engine exhaust
 - Developing washcoating capability

Summary

- <u>Relevance</u>:
 - Advanced combustion modes have greater efficiency and consequently lower exhaust temperatures
 - Simultaneous increase in efficiency and decrease in allowable emissions necessitates improved emissions control system performance, especially at low temperatures
- <u>Approach</u>:
 - Pursue innovative catalyst technologies to improve low temperature emissions control
 - Evaluate performance, investigate durability, characterize materials, identify fundamental limitations
- <u>Collaborations</u>:
 - Basic Energy Science scientists, CLEERS, USCAR/USDRIVE
- <u>Technical Accomplishments</u>:
 - Investigated activity, durability and material properties of Au@Cu core-shell oxidation catalyst
 - Identified synergistic effects of physical mixture of Au@Cu and Pt catalysts that overcome some of the observed inhibitions
 - Synthesized new catalysts with a range of supports, that significantly improve durability
- Future Work:
 - Continue investigation on AuCu with ceria-zirconia and other supports
 - Move into NOx reduction catalysts and trap materials
 - Move from powder catalysis to washcoated cores and further validation in engine exhaust

Technical back-up slides


DRIFTS analysis shows NO interactions on catalysts are unstable above 200°C

- Evidence of NO adsorbed on AuCu/SiO₂
 - Nitrates: 1300-1650 cm⁻¹
 - Chemisorbed on Au; faintly at ~1880 cm⁻¹
- Heating nitrated samples while flowing NO+O₂ results in removal at 200°C
 - Coincides with CO-lightoff

AuCu/SiO₂

Temperature (°C)

1% CO

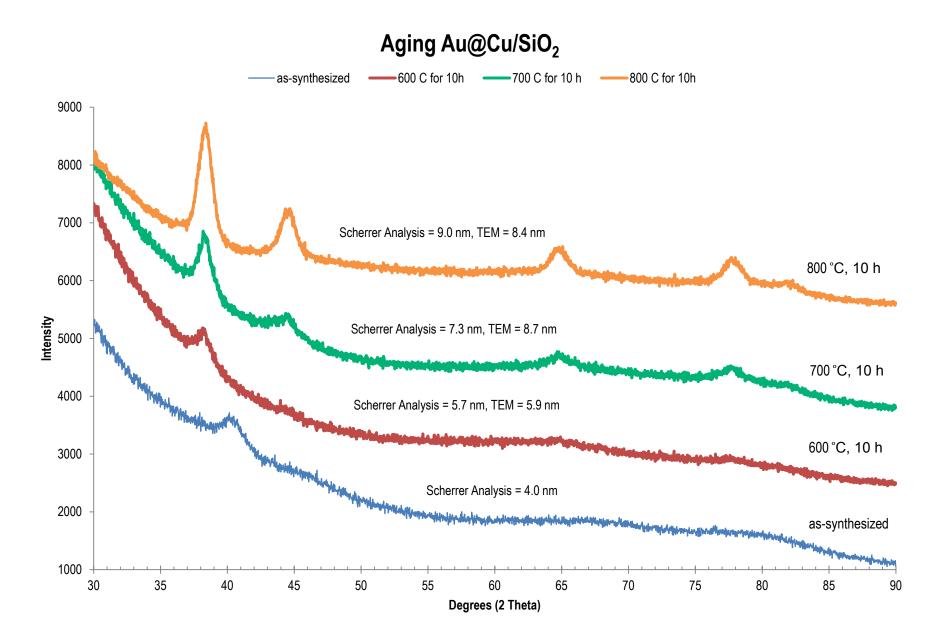
AK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

1.0

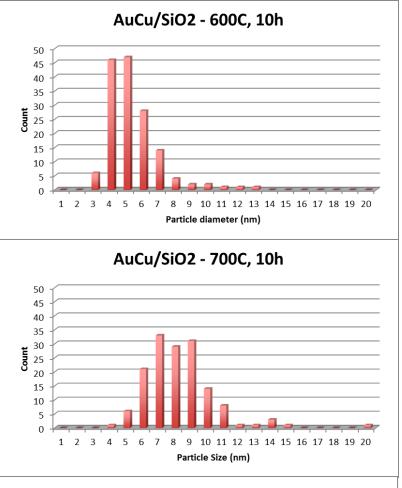
0.8

0.6

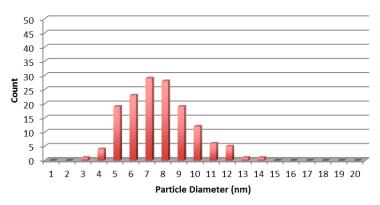
0.4


0.2

0.0

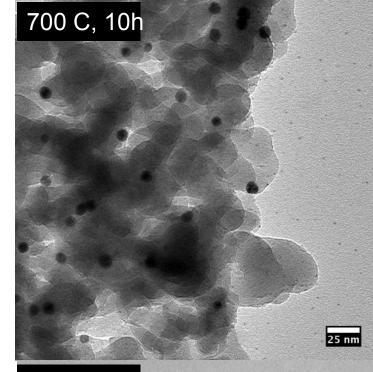

0

1% CO


CO Conversion

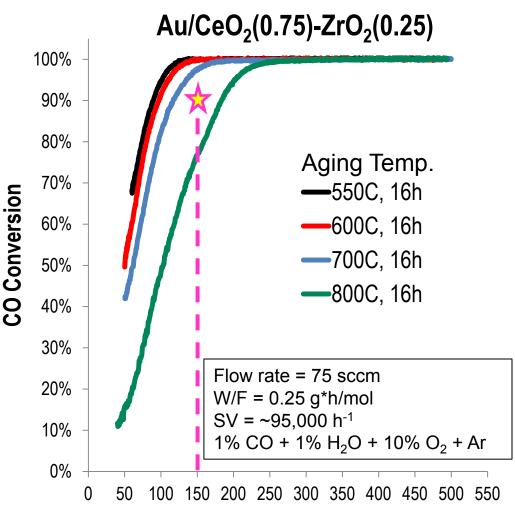
AuCu/SiO2 - 800 C 10h




Heated at 600 C for 10 h.

Heated at 700 C for 10 h.

This sample is different from the two above. This sample was from the first Au@Cu batch that was heated 500, 600, 700 and 800 C.



800 C, 10h

Au-only catalyst supported on ceriazirconia also shows good stability

- Even with low weight loading high activity shown with unaged sample
 - W/F = 0.25 g*h/mol
 - SV = ~95,000 h⁻¹
 - − T_{50%} = 50°C
 - − T_{90%} = 94°C
- Activity drops after aging at 800°C, but is still very high

T_{50%} = 103°C
T_{90%} = 182°C

Temperature (°C)

