Bailelle The Business of Innovation

LOWER PASSAIC RIVER RESTORATION PROJECT DRAFT FOCUSED FEASIBILITY STUDY RISK EVALUATION

Remedial Options Work Group Meeting June 27, 2007

Human Health and Ecological Risk Evaluation

Objective: Assesses current and future risk to assist

USEPA in evaluating the need for

undertaking early action.

Process: Two step process:

Estimate risks associated with current conditions

2. Compare current conditions to future risks

Methodology: Conducted a risk evaluation based on USEPA Risk Assessment Guidance. Part of the on-going comprehensive 17-mile study of the Lower Passaic River.

Human Health and Ecological Risk Evaluation

Overview of the Presentation

- Identification of chemicals of potential concern
- Human Health Risk Assessment
 - Pathways and receptor groups examined
 - Results for current conditions
 - Results for future conditions
- Ecological Risk Assessment
 - Pathways and receptor groups examined
 - Results for current conditions
 - Results for future conditions
- Comparison of Current and Future Conditions
- Preliminary Remediation Goals

Identification of Contaminants of Potential Concern

Data Compilation

- Included all data collected since 1993
- Surficial sediment and biota
 - White perch
 - American eel
 - Mummichog
 - Blue crab
- 19 Studies directed by various groups including USEPA,
 TSI, NJDEP, and CARP
- Calculated TEQs for dioxin/furans and coplanar PCB congeners
- Calculated aggregate totals for PAHs, DDx, and PCBs -

Identification of Contaminants of Potential Concern

Identification of Primary Risk Drivers

- Human Health COPCs:
 - Persistent in the environment
 - Toxic to humans
 - Compounds associated with fish and shellfish advisories
- Ecological COPECs followed a three-tier screening process:
 - Bioaccumulation
 - Effects value
 - Essential nutrients

Identification of Contaminants of Potential Concern

Analyte	Human Health COPC	Ecological COPEC				
Inorganic Compounds						
Copper		$\sqrt{}$				
Lead		V				
Mercury	√	√				
Semivolatile Org	anic Compounds ((PAHs)				
LPAHs		√				
HPAHs		V				
Polychlorinated Biphenyls (PCBs)						
Total PCBs (sum Aroclors)	√	V				

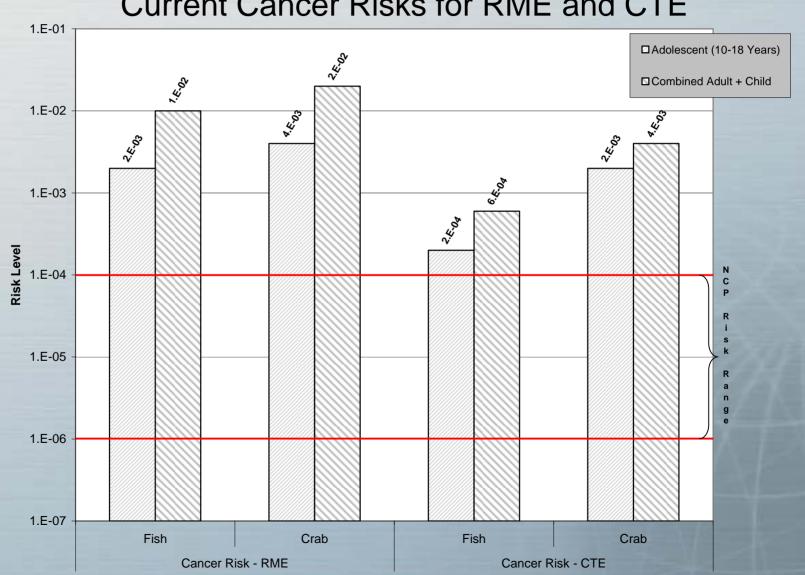
Analyte	Human Health COPC	Ecological COPEC
Dioxins and Fu	rans (D/F)	
TCDD TEQ (D/F)	V	V
TCDD TEQ (PCBs)	√	√
TCDD TEQ (Total)		V
Pesticides/Herk	oicides	
Chlordane	$\sqrt{}$	
Dieldrin	1	V
DDE	√	
DDD	1	4
DDT	√	API
Total DDx		

Human Exposures Pathways

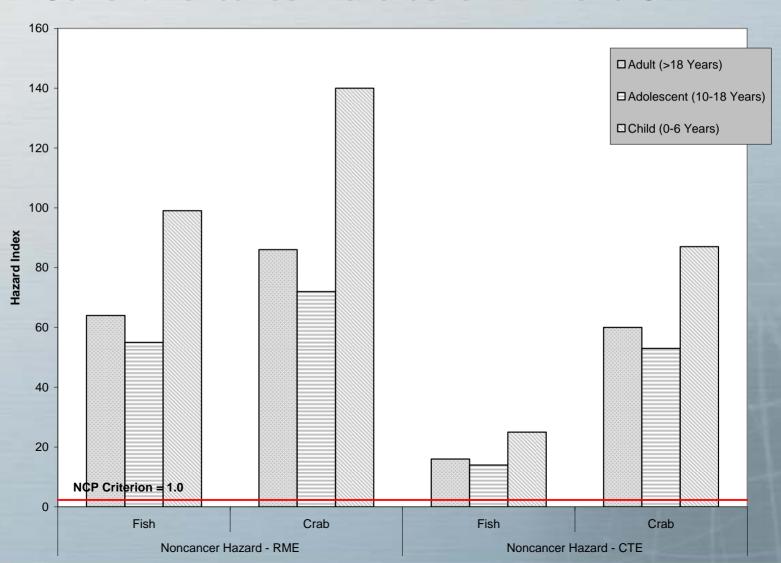
- Angler/Sportsman:
 - An adult consuming fish and blue crab
 - Shares catch with an adolescent (age 10 to 18 years) and child (age 0 to 6 years) family member
- Recreational User and Homeless will be considered in 17mile assessment

Human Exposures

- Consumption of fish and shellfish is associated with the highest cancer risks and noncancer hazards
- Based on the results of similar Superfund sites for rivers:
 - Hudson River
 - Housatonic River
 - Fox River
 - Centredale Manor Woonasquatucket River
- NJDEP has "eat none" advisory for fish and shellfish
- NJDEP determined fishing and crabbing continue to occur


Risk Characterization – Current Conditions

- The assessment evaluates cancer risks and noncancer health hazards
 - RME = Reasonable maximum exposure; and,
 - CTE = Central tendency exposure (average exposure)
- Exposure point concentration (EPC) = 95% UCL on the arithmetic mean
- Exposures assumptions from EPA's exposure factors handbook and peered reviewed literature


Exposure Factor	RME	CTE
Fish ingestion (g/day)	25	8
Crab ingestion (g/day)	23	16

Current Cancer Risks for RME and CTE

Current Noncancer Hazards for RME and CTE

Future Exposures

- Future exposure concentrations were developed for the following:
 - Each COPC
 - Each of the remedial scenarios
 - For three time periods
 - Fish and crab concentrations were based on modeled concentrations from forecasted contaminant concentrations in sediment

Future Cancer Risks for RME

	Remediation Scenario	Time	Adult	Child	Adult + Child
	Remediation Scenario	Period	Risk	Risk	Combined Risk
	Monitored Natural Recovery	2018	4.E-03	2.E-03	6.E-03
Fish		2019-2048	2.E-03	1.E-03	4.E-03
F ISII	Primary Erosional	2018	3.E-03	1.E-03	4.E-03
	Zone/Primary Inventory Zone Area of Focus	2019-2048	1.E-03	1.E-03	2.E-03
		2018	6.E-04	2.E-04	9.E-04
	Alea of Focus	2019-2048	3.E-04	2.E-04	5.E-04
	Current	2007	7.E-03	3.E-03	1.E-02

Future Cancer Risks for RME

	Remediation Scenario	Time	Adult	Child	Adult + Child
	Remediation Scenario	Period	Risk	Risk	Combined Risk
	Monitored Natural Recovery	2018	3.E-03	1.E-03	4.E-03
Crab		2019-2048	2.E-03	1.E-03	3.E-03
Crab	Primary Erosional	2018	2.E-03	9.E-04	3.E-03
	Zone/Primary Inventory Zone Area of Focus	2019-2048	1.E-03	8.E-04	2.E-03
		2018	6.E-04	2.E-04	8.E-04
	Area of Focus	2019-2048	2.E-04	2.E-04	4.E-04
	Current	2007	1.E-02	5.E-03	2.E-02

Future Noncancer Hazards for RME

	Domadiation Compute	Time	Adult	Child
	Remediation Scenario	Period	Hazard	Hazard
		2018	24	37
	Monitored Natural Recovery	2019-2025	20	31
	Primary Erosional	2042-2048	6.8	ND
Fish		2018	21	33
1, 1211	Zone/Primary Inventory	2019-2025	18	29
	Zone	2042-2048	6.1	ND
		2018	16	25
	Area of Focus	2019-2025	14	22
		2042-2048	4.7	ND
	Current	2007	64	99

Current Noncancer Hazards for RME

	Domodiation Cooperis	Time	Adult	Child
	Remediation Scenario	Period	Hazard	Hazard
		2018	19	31
	Monitored Natural Recovery	2019-2025	16	27
		2042-2048	5.2	ND
Crab		2018	17	28
Crab	Primary Erosional Zone/Primary Inventory Zone	2019-2025	14	24
	Zone/Timary inventory Zone	2042-2048	4.7	ND
		2018	13	21
	Area of Focus	2019-2025	11	19
		2042-2048	3.5	ND
	Current	2007	86	140

Ecological Receptors of Concern

- The following species were selected based on known sensitivity to COPECs
 - Benthic invertebrates
 - Great blue heron
 - Mink
 - Herring gull embryo
 - Mummichogs
 - American eel and white perch (AE/WP)

Risk Characterization

- Benthic Invertebrates
 - Sediment benchmarks (ER-Ls)
 - NOAEL and LOAEL Critical body residues (CBR)
 - Oysters tissue threshold for dioxin developed by USFWS
- Fish (AE/WP, mummichog)
 - Life-stage specific CBRs to fish (both adult and embryonic) tissue EPCs
- Wildlife (heron and mink)
 - NOAEL and LOAEL TRVs to dose estimates
- Avian embryos (herring gull embryo)
 - CBRs to estimated egg tissue concentrations

Ecological Risk Evaluation Current Conditions – Benthos and Fish

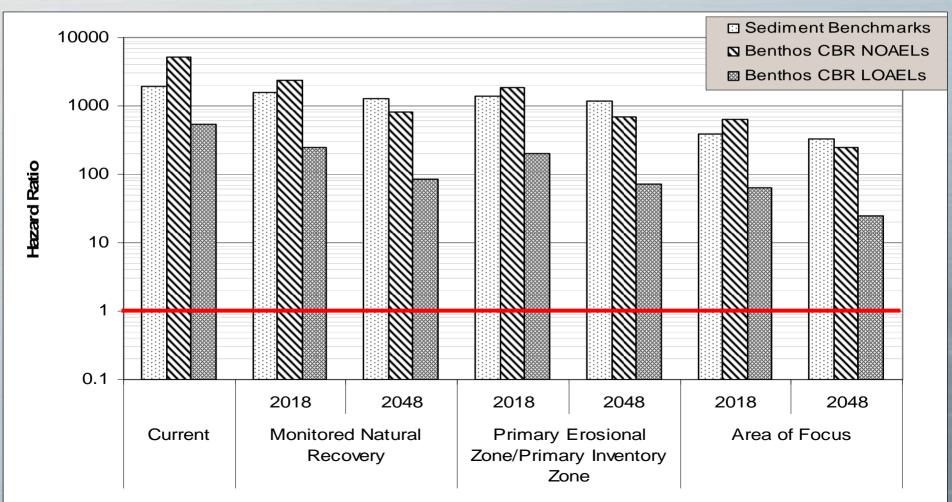
	Benthi	c Invertebi	ates	American Eel/White Perch		Mummichog	
COPECs	Sediment Benchmarks	Macroin	vertebrates				
	HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ
Inorganic Compou	ınds						
Copper	6.9	410	41	12,400	1,200	1,900	190
Lead	8	1.0	0.1	23	2.3	45	4.5
Mercury	24	10	1.0	350	35	41	4.1
Semivolatile Organ	ic Compounds ((PAHs)					
LPAHs	74	6.9	0.69	0.82	0.082	0.82	0.082
HPAHs	36	74	0.74	0.48	0.048	0.31	0.031
Pesticides/Herbicides							
Dieldrin	936	2.2	0.28	2.5	0.25	0.00033	0.00012
Total DDx	239	3,000	300	13,000	290	0.55	0.1

Ecological Risk Evaluation Current Conditions – Benthos and Fish

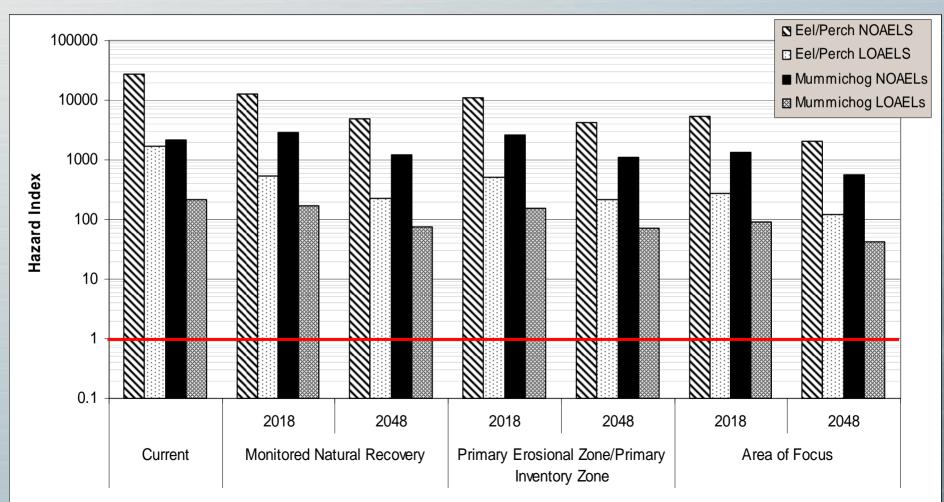
	Benthi	c Invertebr	ates	American Eel/White Perch		Mummichog		
COPECs	Sediment Benchmarks	Macroin	vertebrates					
	HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	
Polychlorinated bi	Polychlorinated biphenyls (PCBs)							
Total PCBs	79	13	5	1,400	140	160	16	
Dioxin-Like Comp	oounds							
TCDD TEQ (D/F)	493	1500	170	7.4	4.3	2.2	0.22	
TCDD TEQ (PCBs)	1.2	170	19	0.15	0.088	0.027	0.0027	
TCDD TEQ (Total)	494	1670	189	7.55	4.4	2.23	0.22	
Total HI	1,897	5,187	538	27,184	1,672	2,150	215	

Ecological Risk Evaluation Current Conditions - Wildlife

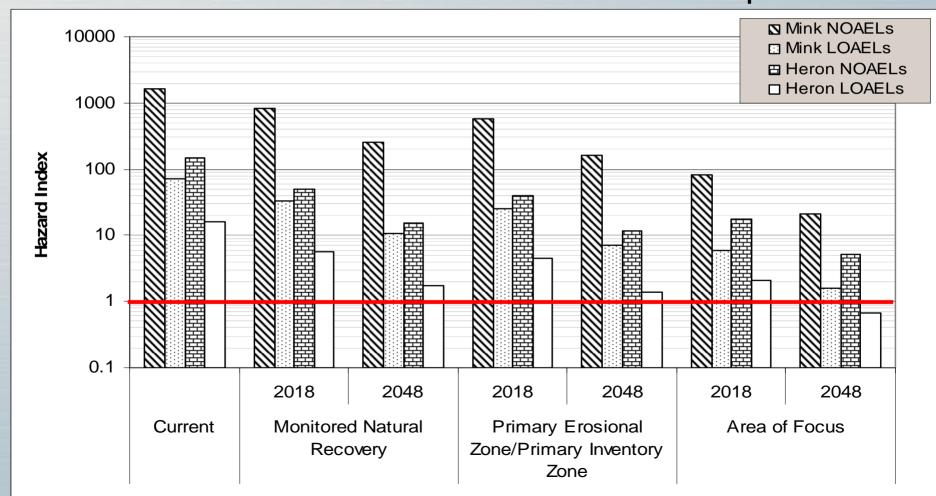
COPECs		nk l		ue Heron P) Diet	Great Blue Heron (Mummichog Diet)		
	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	
Inorganic Compounds							
Copper	1.7	1	0.97	0.32	0.52	0.17	
Lead	0.52	0.27	1.2	0.61	1.6	0.63	
Mercury	2	0.62	6.5	0.65	3.1	0.31	
Semivolatile Organic Co	ompounds (PA	AHs)					
LPAHs						9/-	
HPAHs	0.04	0.04	-	- 1	XXI	X-1	
Polychlorinated biphenyls (PCBs)							
Total PCBs	15	12	3.9	0.98	1.6	0.39 Rattell	


Ecological Risk Evaluation Current Conditions - Wildlife

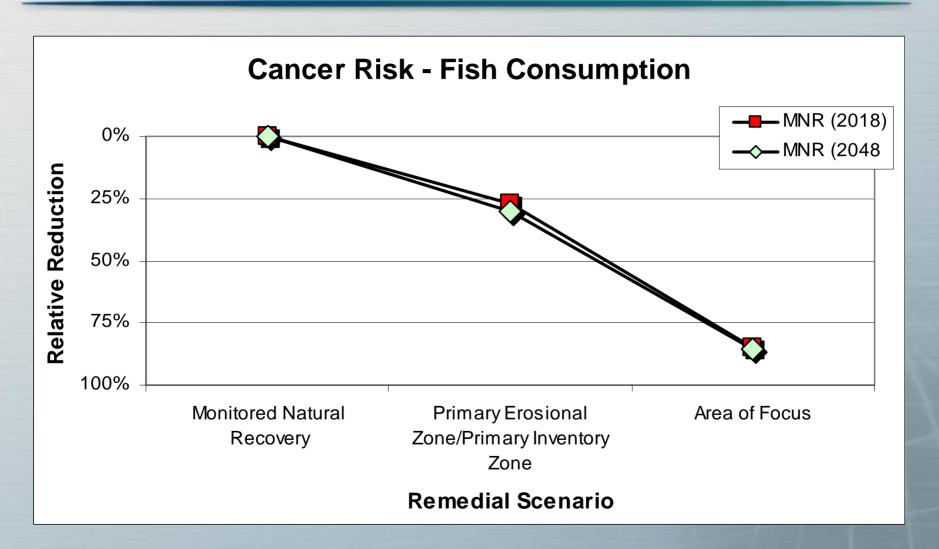
COPECs	Mink		Great Blue Heron (AE/WP) Diet		Great Blue Heron (Mummichog Diet)			
	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ	NOAEL HQ	LOAEL HQ		
Pesticides/Herbicides	Pesticides/Herbicides							
Dieldrin	0.53	0.26	0.039	0.00074	0.011	0.00021		
Total DDx	0.2	0.04	20	2	6.5	0.65		
Dioxin-Like Compounds								
TCDD TEQ (D/F)	1,000	37	27	2.7	19	1.9		
TCDD TEQ (PCBs)	560	20	87	8.7	46	4.6		
TCDD TEQ (Total)	1560	57	114	11.4	65	6.5		
Total HI	1,580	72	147	16	78	9		

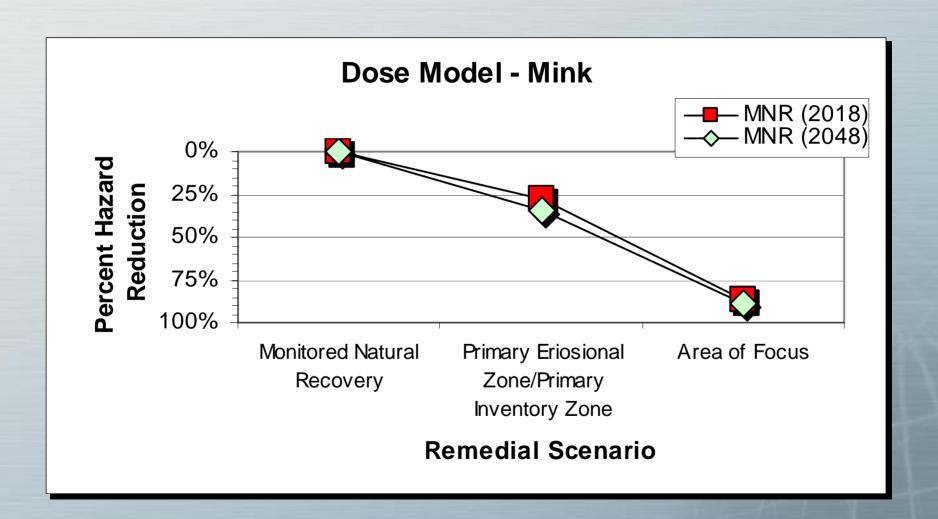

Future Exposures

- Future exposure concentrations were developed for the following:
 - Each COPECs
 - Each of the remedial scenarios
- Fish and crab concentrations were estimated using sitespecific BSAFs and future cast sediment concentrations
- Risk estimated for 2 time periods, 2018 and 2048


Current and Future Hazards for Each Remediation Scenario For Benthic Invertebrates

Comparison of Current and Future Hazards for Each Remediation Scenario Based on Fish CBRs


Comparison of Current and Future Hazards for Each Remediation Scenario Based on Wildlife Exposures


Risk Reduction Analysis

- Estimated residual risks under the 3 remedial scenarios
- Compared to MMNR (No Action) projections to assess relative risk reduction
- Human health evaluated consumption of fish and crab pathway – cancer only, noncancer showed similar results
- Ecological analysis evaluated direct contact (benthos), tissue residue (benthos, fish) and dose assessment (wildlife)
- Up to 85% lower residual risk under AOC scenario compared to MNR (No Action)
- Intermediate benefits for the PIZ/PEZ scenario.

Risk Reduction Analysis - Human Health

Relative Risk Reduction - Ecological

Development of Preliminary Remediation Goals (PRG)

PRG Development Considers the Following:

- ARARs/TBCs
- Risk based PRGs protective of human health and ecological receptors
- Evaluation of background levels

Development of Preliminary Remediation Goals (PRG)

PRG Development

- No appropriate ARARs/TBCs for sediment
- Human health PRGs established for fish consumption pathway
- Ecological PRGs established for direct contact (benthos) and bioaccumulation (wildlife) pathways
- Risk level set at 1 x 10⁻⁶ and/or a non-cancer Hazard Index = 1
- Background COPC concentrations based on data from Dundee Lake
- Background COPC concentrations pose unacceptable risks

Preliminary Remediation Goals

COPC	PRG (ng/g)	Basis
Copper	80,000	Background
Lead	140,000	Background
Mercury	720	Background
Low Mol. Wt. PAH	8,900	Background
High Mol. Wt. PAH	65,000	Background
Total PCB	660	Background
DDx	91	Background
Total Chlordane	92	Background
Dieldrin	4.3	Background
2,3,7,8-TCDD	0.0020	Background

Units in ng/g; parts per billion