
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property

of their respective owners. © 2017 NXP B.V.

PUBLIC

DIRECTOR, LPC EMBEDDED ECOSYSTEM

BRENDON SLADE

LPC546XX MCUS: A 180 MHZ
ARM® CORTEX®-M4-BASED MCU
FOR YOUR COST-EFFECTIVE HMI
APPLICATIONS

AMF-DES-T2637 | JUNE 2017

PUBLIC 1

AGENDA
• Session Objectives

• LPC portfolio and the LPC546xx overview

− LPC ecosystem and the MCUXpresso IDE

− Loading, Building and Running Your First SDK

Example

• emWIN

− emWIN overview and basic features

− Hands on session with emWIN

− Overview of other emWIN features

PUBLIC 2

Session Objectives

• Understand the range of LPC MCUs that can be used for graphical applications

• Learn how to use MCUXpresso IDE to develop and debug applications

• Understand how to construct and customize a touch screen GUI using emWin

PUBLIC 3

LPC Microcontroller Portfolio

Performance

Mainstream

Entry Level

Cortex-M0/M0+ Cortex-M3 Cortex-M4F

LPC800
8-bit Simplicity

LPC1200
Robust & Reliable

LPC1800
Performance

& Integration

LPC4300
High Performance

& Integration

LPC1300
Entry Level

LPC54000
Power Efficiency

& Integration

LPC4000
Mid-Range

Performance & Integration

LPC1700
Breadth & Scalability

LPC1500
Motion Control

LPC1100
Scalable Entry Level

PUBLIC 4

LPC546xx Series Block Diagram
CPU

• 180MHz Cortex-M4 with floating point unit

Memory
• Up to 512 KB Flash, Up to 200 KB RAM

• 16 KB EEPROM

Interfaces for connectivity & sensors
• Dual CAN2.0 or CAN FD Controller Options

• XTAL-less FS USB (H/D)

• 10 SPI, 10 I2C, 10 UART, 2 I2S channels.

• Max 10 channels

• Graphic LCD with resolutions up to 1024x768

• 10/100 Ethernet Controller with PTP

• Stereo DMIC subsystem

• (PDM, decimator, HW VAD)

• 1x HS USB (H/D) w/ on-chip HS PHY

• XIP from QSPI via SPIFI

• External Memory Ctrl (up to 32 bits)

Other
• Operating voltage: 1.71 to 3.6V

• Temperature range: -40 to 105 C

• LQFP208, LQFP100

• TFBGA180, TFBGA100

PUBLIC 5

Graphics LCD Controller

• Key features

− Support for STN and TFT panels

− Up to 1024x768 resolution

− 24-bit LCD interface supports 24bpp (16M colors)

− Palette table allows display of up to 256 of 64K colors

− Adjustable LCD bus size supports various panel bus configurations

− Dedicated LCD DMA controller

− Hardware cursor support

• Graphic Library Support

− Segger’s emWin graphic library free to use with NXP’s microcontrollers

− Other supported graphic libraries include Draupner’s TouchGFX, TARA Embedded Wizard,
Expresslogic GUIX and MicroEJ

• MCUXpresso SDK support

− Significantly reduces your software porting effort

PUBLIC 6

LPC546xx Target Applications

• Industrial gateway

• HVAC control

• Building control &

automation

• Diagnostic equipment

• Electronic instruments

• Multi-node comms hubs

• Multi-protocol bridge

• Various HMI/GUI apps

• Scanners

• Mini printers

• White Goods HMI

• Smart Small Appliance

• Thermostat

• Security monitoring &

alarm

• Fitness equipment

• Audio accessories /

Musical instruments

• Smart Electric Meter

• In Home Display (IHD)

• Data Aggregator

• Communications Hub

• PLC, inverters, circuit

breakers

• OBD-II

• Data collectors,

Infotainment/navigation

• Telematics

• Tachograph

• Fleet Management

Smart

Energy

Industrial, Control &

General Embedded

Smart Home &

General Consumer

Automotive

Aftermarket

PUBLIC 7

LPCXpresso54608 Development Board

• LPCXpresso V3 feature set

− Built-in CMSIS-DAP/J-link debug probe,
option for using off-board probe

• LPC54608 MCU running at 180MHz

• 4.3” TFT LCD (272x480) cap touch display

• 128Mb Micron SDRAM

• 128Mb Micron quad SPI flash

• Ethernet, DMIC, SD card ports

• Stereo audio codec

• Arduino UNO R3 compatible expansion ports

• USB full and high speed ports, with Host or Device options

PUBLIC 8

LPC ECOSYSTEM and

MCUXPRESSO IDE

PUBLIC 9

MCUXpresso Software & Tools

MCUXpresso IDE

Edit, compile, debug and optimize in an intuitive

and powerful IDE

MCUXpresso SDK

Runtime software including peripheral drivers,

middleware, RTOS, demos and more

MCUXpresso Config Tools

Online and desktop tool suite for system

configuration and optimization

MCUXpresso

Software and Tools

• IDE

• SDK

• Config Tools

For NXP’s ARM® Cortex®-M

controllers

• Kinetis MCUs

• LPC Microcontrollers

• i.MX Application

Processors

PUBLIC 10

MCUXpresso Config Tools

MCUXpresso Config Tools is a suite of evaluation and

configuration tools that helps guide users from first evaluation

to production software development.

Integrated configuration and
development tools for LPC
and Kinetis MCUs

SDK Builder packages custom SDKs based on user

selections of MCU, evaluation board, and optional

software components.

Pins, Clocks, and Peripheral tools generate

initialization C code for custom board support. Features

validation of inputs and cross-tool conflict resolution.

Project Generator creates new SDK projects with

generated Pins and Clocks source files.

Project Cloning creates a standalone SDK project

based on a example application available within SDK

release.

Power Estimation tool provides energy and battery-life

estimates based on a user’s application model.
Available as a standalone tool for select devices.

Learn more at: www.nxp.com/mcuxpresso/config

http://www.nxp.com/mcuxpresso/config

PUBLIC 11

LPCOpen

• Software drivers and libraries for pre-2017 LPC Cortex-M devices

• MCU peripheral device drivers

• Common APIs across device families

• Maintained and supported

• Includes USB host/device, Ethernet, FatFS, SWIM graphics and emWIN

• examples

• Keil, IAR, MCUXpresso IDE/LPCXpresso projects

• http://www.nxp.com/lpcopen

LPCOpen and Code Bundles are included in

and supported by MCUXpresso IDE

PUBLIC 12

GETTING STARTED

PUBLIC 13

Hands-on – Session #1

• Hands-on session with following

objectives:

− Get familiar with importing SDK into

MCUXpresso IDE

− Building and running a basic example

(blinky) on the LPC54608 LPCXpresso

board

− Get familiar with debugging operations

PUBLIC 14

Hands-on – Session #1

• Copy MCUXpresso IDE installer executable to your PC*

• Run MCUXpresso IDE installer*

*Tools may already be installed on training laptops

PUBLIC 15

Follow along: Start MCUXpresso IDE – New Workspace

• Start MCUXpresso IDE on your system

• At the dialog box, enter a location for your workspace then click OK

• Suggest C:\MCUX_om13092\workspace1

• Note: A workspace is just a folder containing the projects that you want to actively

work on during this IDE session; new folders for workspace locations can be added

using the Browse.. button

PUBLIC 16

Follow along: New Workspace after Creation

• MCUXpresso IDE will

startup in your new empty

workspace with no initial

projects

• Note that Welcome Page

shows that IDE has been

activated (in this

screenshot with a Pro

Edition License)

PUBLIC 17

Follow along: Develop Perspective

• A “perspective” is a collection of

different “views”

• The Develop Perspective was

created to provide a single

combined Project Management

and Debugging view

• In addition to the default Develop

perspective, the MCUXpresso IDE

also supports traditional Eclipse

C/C++ and Debug perspectives

Project

Explorer

view

Editor

view

SDK browser, Console and

Problems views
(Also trace, memory, peripheral, power views)

Quickstart

Panel

view

PUBLIC 18

SDK installation process

• All LPC products released after 2016 (except LPC8xx devices) and all Kinetis

products require an SDK to be installed before development can start

• SDK packages are built using the MCUXpresso Configuration Tool

• For this tutorial session, an SDK for LPCXpresso54608 has been pre-built

• The SDK includes not only a large set of drivers and examples, but also a complete

set of information about the device(s) and board(s) that it supports

− but User does not normally need to examine the SDK in detail

• Can be useful to check available drivers and example code without needing to go

through the Import project steps

• SDK installation is a simple drag and drop operation

PUBLIC 19

Follow along: SDK installation process

• Copy LPCXpresso54608 SDK zip file to your PC

• Install the SDK by dragging and dropping the zip file from a file explorer over the

Installed SDK window.

• After installation of SDK is complete, click on the package in “Installed SDK”

window. This shows various sections (folders) in SDK package.

• Expand each section to view the various components of that section.

PUBLIC 20

Follow along: Browsing an SDK installation

Click on package open

SDK package exploration tools

Expand each section to view

attributes of the SDK package

loaded

PUBLIC 21

Follow along: Importing an SDK example

1) Click Import SDK

example(s) in

Quickstart panel
2) Click on LPCXpresso54608

image to select as target board

SDK Import Dialog

Window opens

Target MCU updates to match board MCU

3) Click next

PUBLIC 22

Follow along: Importing an SDK example

4) Expand driver_examples and

select gpio > led_output

5) Finish

After unpacking / processing, project appears in

the project explorer window

6) Click to expand project content

PUBLIC 23

Follow along: Building SDK example

7) Click on the project

top level to make it active

8) Click Build

After selecting a project,

options to Build, Clean and

Debug become active

When Build starts, Console panel becomes active (bottom right

of IDE) and shows build progress

PUBLIC 26

LPCXpresso54608 Board Configuration

Before connecting to USB,

ensure that “DFU Link” (JP5)

jumper is fitted so that

MCUXpresso IDE can soft-load

probe firmware

Connect USB cable from PC to

“Link” port (J8) to power main

board and debug probe

LPC-Link2 debug probe MCU

LPC54608 target MCU

(Cortex-M4F)

User

LEDs

PUBLIC 27

Follow along: Start Debug Session

Select project in the Project

Explorer View, then click on

Debug in the Quickstart Panel

The IDE should

identify and boot the

Link2 with CMSIS-

DAP firmware image

These settings will be

remembered

for next time you

debug this project

Note: By default, selecting “Debug” will trigger a build before

the debug session is launched, so it is not necessary to run

a “build” first

Allow Access for Windows

Firewall warnings to Domain and Private networks

(will only appear first time)

Click OK

Note: use Quickstart

Debug, not this icon

PUBLIC 28

Follow along: Develop Perspective – Debugging

Registers

and

Peripherals

views

Editor

view

Console,

Memory

and

Trace

views

Variables,

Global

Variables

and

Breakpoints

views

Debug

view

Run

Controls

PUBLIC 29

Follow along: Develop Perspective – Debugging

• Image downloaded to flash

and execution started

− Default breakpoint set on

function main()

• Debug View displayed

automatically

− Shows / controls current

scope and target (multicore)

− Run controls are on main

toolbar

Resume (F8)
Step

Into (F5)

Suspend

Instruction

stepping mode

Step

Over (F6)

Terminate (Ctrl-F2)

Restart

Step

Return (F7)

Multi-processor

Resume/Pause/etc.

PUBLIC 30

Follow along: Develop Perspective – Debugging

• Click Resume (or press F8 key on keyboard) to execute the application.

• Press and hold switch SW2(ISP2) to make LED3 blink. Press and hold switch

SW4(ISP0) to make LED1 blink.

• Click Suspend to pause execution.

• Click Restart to go back to beginning of application.

• Click Terminate to quit the debug session

PUBLIC 31

emWin Overview

PUBLIC 32

emWin Introduction

• Reliable embedded GUI middleware from SEGGER

• Hardware friendly

• Needs few kB of flash and <= 1kB of RAM to run core functions

• Supports all kinds of LCD panels/modules

• Comprehensive GUI features

PUBLIC 33

• Free to download and use from nxp.com, includes library and

set of Windows utilities, GUI builder, bitmap & font converters

• Can be used with MCUXpresso, Keil, IAR and other ARM

development tools

• Examples provided with LPCOpen (pre 2017 devices) and

SDK (LPC54000 series)

emWIN is included in MCUXpresso SDK packages (for

LPC546xx)

emWIN Licensing

• No royalty or license fee with any current NXP ARM Cortex M0, M3 or M4 MCU

• Source code available under license agreement from SEGGER

• Multiple deployed customer applications using emWin on LPC:

• ATM machines, paper money counter, Industrial touch panel, Elevator control,
Security panel

PUBLIC 34

What NXP customers used emWin for…

• Paper money counter (LPC4300 + 3.1” LCD)

• ATM (LPC1800 + 14”, 1024x768 LCD)

• Industrial touch panel (LPC1788 + 10.1”, 640x480 LCD)

• Washing machine (LPC3000)

• Elevator control with LCD (LPC1788)

• High accuracy scales with LCD (LPC1788)

• Security Panel (LPC2132)

PUBLIC 35

Tools overview

• Bitmap converter - Can be used for converting
images into C-files or streamed bitmaps.

• emWinView - Can be used to view the content of the
display while stepping through the a simulation.

• Bin2C - Can be used for converting any kind of file
into byte arrays which then can be used within a C
file.

• U2C - Can be used to convert UTF8-text into C-code

• Font converter - Can be used for converting any
font installed on the host system into emWin
compatible formats.

• GUIBuilder - Can be used to generate dialog based
applications without writing any line of code.

PUBLIC 36

GUI-Builder

The GUI-Builder is a tool for creating dialogs without
using C

Basic usage of the GUI-Builder:

• Check project path in GUIBuilder.ini
This file can be found in the application folder of the
tool.

• Start GUI-Builder

• Start with FRAMEWIN or WINDOW widget
Only these widgets are able to serve as parent
windows for a dialog here.

• Place widgets within the parent window
The widgets can be placed and sized by moving them
with the mouse and/or by editing the properties in the
property window.

• Configure the widgets
The context menu shows the available options.

• Save dialog
Each dialog is saved in a separate file. The filenames
are generated automatically by the name of the parent
window.

The filenames are automatically generated by the name
of the parent window: <WindowName>Dlg.c

Capabilities:
• Files can be opened by drag and drop

• Multiple dialogs allowed simultaneously

• Each dialog is saved in a separate file

• Filenames are generated automatically

PUBLIC 37

Skinning

• Skinning is used to change the appearance of one
or multiple widgets. Currently emWin supports 2
skins:

− Default skin
Old classic style. Look can be changed by using the API
functions described in the 'Widget' chapter of the
documentation.

− FLEX_SKIN
Flexible skin, can easily be modified by a custom
skinning routine.

• The default skin for each kind of widget can be set
by:

<WIDGET>_SetDefaultSkin()

• The skin of each single wigdet can be set by:

<WIDGET>_SetSkin()

• Properties of FLEX_SKIN can be fetched / set by:

<WIDGET>_GetSkinFlexProps()

<WIDGET>_SetSkinFlexProps()

#include "DIALOG.h"

static int _ScrollbarSkinCust(const WIDGET_ITEM_DRAW_INFO * pDrawItemInfo) {

switch (pDrawItemInfo->Cmd) {

case WIDGET_ITEM_CREATE:

WM_SetHasTrans(pDrawItemInfo->hWin);

break;

case WIDGET_ITEM_DRAW_BUTTON_L:

case WIDGET_ITEM_DRAW_BUTTON_R:

GUI_SetColor(GUI_GRAY);

GUI_FillRoundedRect(pDrawItemInfo->x0, pDrawItemInfo->y0,

pDrawItemInfo->x1, pDrawItemInfo->y1, 4);

GUI_SetColor(GUI_WHITE);

GUI_DrawRoundedRect(pDrawItemInfo->x0, pDrawItemInfo->y0,

pDrawItemInfo->x1, pDrawItemInfo->y1, 4);

GUI_SetColor(GUI_BLACK);

GUI_FillCircle((pDrawItemInfo->x1 + pDrawItemInfo->x0) / 2,

(pDrawItemInfo->y1 + pDrawItemInfo->y0) / 2, 4);

break;

case WIDGET_ITEM_DRAW_SHAFT_L:

case WIDGET_ITEM_DRAW_SHAFT_R:

GUI_SetColor(GUI_WHITE);

GUI_DrawLine(pDrawItemInfo->x0, pDrawItemInfo->y0, pDrawItemInfo->x1, pDrawItemInfo->y1);

GUI_DrawLine(pDrawItemInfo->x0, pDrawItemInfo->y1, pDrawItemInfo->x1, pDrawItemInfo->y0);

break;

default:

return SCROLLBAR_DrawSkinFlex(pDrawItemInfo);

}

return 0;

}

PUBLIC 38

Hands-on

Session 2

PUBLIC 39

Hands-on – Session #2

• Hands-on session with following

objectives:

− Build and run an emWin example from the

LPC54608 MCUXpresso SDK

− Modify the example to add a logo

− Create a simple GUI using GUIBuilder tools

PUBLIC 40

Follow Along: Running out of Box example

• Open a new workspace.

• From the Quickstart Panel ->
Import the SDK example(s) ,
select the touch_and_draw
examples under
emwin_examples section.

• Upon clicking finish, the example
is imported into the current
workspace.

• Expand the project to view the
project structure. Expand every
folder to view the files within the
folder.

PUBLIC 41

emWin Configuration

• There are two compile time configuration files

− GUIConf.h - Configuration of available GUI features

− LCDConf.h - Display driver configuration (obsolete)

PUBLIC 42

Follow Along: Build and Run example

• In the Quickstart Panel click Debug.

• This builds the project and enters debug mode.

• Click resume or press F8 to execute the example.

• Interact with the example using touch screen, buttons etc.

• Touch and drag on the LCD screen to draw.

PUBLIC 43

Change Background Bitmap Image

• Use the emWin tools to convert a bitmap to C source and compiled into the project

• In the touch_and_draw example, the background is white. We will replace the

background with an image.

PUBLIC 44

Follow Along: Choose a Bitmap Image

• To create a new bitmap to use as the display background, you have two choices:

− Use the available NXP logo provided in the project folder. All instructions are written for

this case, so this is the easiest path.

• Navigate the folder emWin_Tools in the package. This folder contains various

emWin tools.

PUBLIC 45

Follow Along: Choose a Bitmap Image

• Open the Bitmap Conversion application

“BmpCvtNXP.exe”.

• Locate the file “nxplogo_small.bmp”.

Drag and drop it onto the app

“BmpCvt.exe”.

• Save the file in C format. Click File ->

Save As, change the type to “C bitmap

file” and click Save.

PUBLIC 46

Follow Along: Choose a Bitmap Image

• The “Format Specification” dialog opens. Scroll to the bottom of the list and select

“True color 24 bpp”. Then select OK. A ‘C’ source file is created in the Tools

folder.

• Copy and paste the “nxplogo_small.c” file into the workspace source folder of the

project (choose “Copy” when prompted to copy or link to the file)

PUBLIC 47

Follow Along: emWin API to Draw Bitmap image

• The API GUI_DrawBitmap() is used to draw the bitmap image. Refer to the emWin user Guide for details of the
API call. This API takes 3 parameters: pointer to the bitmap to display, x position and y position.

• Copy the following lines of code and paste it inside “touch_and_draw.c” as specified:

− Declare the following line with global scope.

extern const GUI_BITMAP bmnxplogo_small;

− Paste the following as first statement inside for(;;) loop.

GUI_DrawBitmap(&bmnxplogo_small, 130, 0);

Example:

for (;;)

{

GUI_DrawBitmap(&bmnxplogo_small, 130, 0);

...

...

}

• Build and Debug the application. Observe the updated bitmap displayed in the background of the frame.

PUBLIC 48

Creating New application using emWin GUIBuilder

• The GUIBuilder application is a tool for creating dialogs without any knowledge of

the C programming language.

• Instead of writing source code the widgets can be placed and sized by drag and

drop

− Additional properties can be added per context menu. Fine tuning can be done by editing

the properties of the widgets.

• The dialogs can be saved as C files which can be enhanced by adding user

defined code.

• These C files with the embedded user code can be loaded and modified by the

GUIBuilder

PUBLIC 49

Follow Along: Creation of GUI

• Note : The GUIBuilder.ini file contains the path

where the GUIBuilder.exe tool is located. All saved

files pertaining to GUIBuilder application will be in

this path. Please modify the path if required.

Default path in the package is: "C:\FTF 2017

Training\emWin_Tools\“

− The ini file is created the first time GUIBuilder.exe is run

• Open the GUIBuilder “GUIBuilder.exe “application

inside the emWin_Tools folder. Examine the

capabilities of the tool.

• Create a new window by clicking on the FrameWin

dialog icon. The default size of the window is 320 x

240. This can be changed by editing the properties

of the window. Edit the properties and set xSize to

480 and ySize to 272.

PUBLIC 50

Follow Along: Creation of GUI

• Create a Button by clicking the Button icon.

Drag the created Button to the center of the

frame.

• Click the Button and change the Button

properties such as Name, xPos, yPos, xSize

and ySize to match the screenshot below.

Name = “On/off” , xPos = 170, yPos = 100, xSize = 110, ySize = 40.

• Save the GUI by clicking File -> Save. This

creates the file FramewinDLG.c in the

emWin_Tools folder (refer to path specified in

the GUIBuilder.ini file).

PUBLIC 51

Follow Along: Add FramewinDLG.c file to project workspace

• To do this either drag and drop the FramewinDLG.c file into the source folder of the

project in workspace or copy the FramewinDLG.c and paste it in the source folder

of the workspace.

PUBLIC 52

Follow Along: Add code to create window frames

• Create a new copy of the existing “touch_and_draw.c”
file in source folder. To do this copy/paste the file in the
project workspace in source folder and name the new
file as “touchbutton.c”.

• Exclude the “touch_and_draw.c” file from build.

• Delete or Comment all lines after GUI_Init() function.

• Copy/paste the following lines after GUI_Init().

CreateFramewin();

WM_Exec();

while(1)

{

WM_Exec();

}

• Build and Debug the application. When the application
is executed, the GUI developed using GUIBuilder
appears on the LCD.

PUBLIC 53

Follow Along : Add code to Control an LED

• Edit the file “touchbutton.c” to initialize LED. Paste the

following lines before GUI_Init(). This will initialize

LED3 on the board.

LED3_INIT(0);

• Copy paste the following lines after GUI_Init().

CreateFramewin();

WM_Exec();

while(1)

{

GUI_PID_STATE pid_state;

if (kStatus_Success != FT5406_GetSingleTouch(&touch_handle, &touch_event, &cursorPosX, &cursorPosY))

{

PRINTF("error reading touch controller\r\n");

}

else if (touch_event != kTouch_Reserved)

{

pid_state.x = cursorPosY;

pid_state.y = cursorPosX;

pid_state.Pressed = ((touch_event == kTouch_Down) || (touch_event == kTouch_Contact));

pid_state.Layer = 0;

GUI_TOUCH_StoreStateEx(&pid_state);

WM_Exec();

}

}

PUBLIC 54

Follow Along : Add code to Control an LED

• Edit the “FramewinDLG.c” file and add the
following code to the USER section,
around line 22:

#include “board.h”

• In the file “FramewinDLG.c”, add the
following code to the _cbDialog() function
for the selected notifications “CLICKED”
and “RELEASED”.

CLICKED : LED3_ON();

RELEASED: LED3_OFF();

• Build and Debug the application.

• Run the application. When the button is
pressed on the LCD, LED3 switches ON.
When the button is released, LED3
switches OFF.

PUBLIC 55

Follow Along : Add Skinning to change GUI appearance

• Skinning allows customization of the GUI across various widgets, automatically applying the same look across all items within a frame

• Add the following lines in touchbutton.c just before calling CreateFramewin();

•

BUTTON_SKINFLEX_PROPS Props;

FRAMEWIN_SetDefaultSkin(FRAMEWIN_SKIN_FLEX);

BUTTON_SetDefaultSkin(BUTTON_SKIN_FLEX);

WIDGET_SetDefaultEffect(&WIDGET_Effect_3D);

FRAMEWIN_SetDefaultFont(GUI_FONT_32_ASCII);

FRAMEWIN_SetDefaultTextAlign(GUI_TA_HCENTER);

BUTTON_GetSkinFlexProps(&Props, BUTTON_SKINFLEX_PI_FOCUSSED);

Props.aColorFrame[0] = 0x007FB13C;

Props.aColorFrame[1] = 0x008FfF8F;

Props.Radius = 6;

BUTTON_SetSkinFlexProps(&Props, BUTTON_SKINFLEX_PI_FOCUSSED);

• Add this include to the top of touchbutton.c:

#include “DIALOG.h”

• Build and Debug the application. Test the code by executing the application.

PUBLIC 56

Other emWIN Features

PUBLIC 57

emWin Library Functions

The following features are covered by the base package:

• Drawing and images

− Software alpha blending

− Image file support for BMP, GIF, PNG and JPEG

− Drawing of images from non addressable media (using GetData call back)

− Sprites and cursors (also animated)

− Lines, polygons, rectangles, arcs and circles

• Fonts and text

− Standard font package (ASCII and ISO 8859-1)

− LTR (Left to Right), RTL (right to Left) and bidirectional text support

− Support for all non anti-aliased font formats

− Drawing of values (dec, bin, hex and float)

• Virtual screens (physical screen smaller than virtual screen)

• Touch screen support

• Multitasking support

PUBLIC 58

Widget library

Widget = Window + Gadget

Currently the following widgets are supported:

• Button, Checkbox, Dropdown, Edit, Framewin,
Graph, Header, Iconview, Image, Listbox, Listview,
Listwheel, Menu, Multiedit, Progbar, Radio,
Scrollbar, Slider, Text, Treeview

Creating a widget can be done with one line of code.
There are basically 2 ways of creating a widget:

• Direct creation
For each widget there exist creation functions:

− <WIDGET>_CreateEx() : Creation without user data.

− <WIDGET>_CreateUser() : Creation with user data.

• Indirect creation
Indirect means using a dialog box creation function
and a GUI_WIDGET_CREATE_INFO
structure which contains a pointer to the indirect
creation routine:

− <WIDGET>_CreateIndirect() : Creation by dialog
box creation function.

Direct creation
void MainTask(void) {
WM_HWIN hWin;

GUI_Init();
hWin = FRAMEWIN_CreateEx(10, 10, 100, 50, WM_HBKWIN, WM_CF_SHOW, 0, 0, "Window", NULL);
while (1) {
GUI_Delay(100);

}
}

Indirect creation
#include "DIALOG.h"
static const GUI_WIDGET_CREATE_INFO _aDialogCreate[] = {
{ FRAMEWIN_CreateIndirect, "Window", 0, 10, 10, 100, 50 }

};

void MainTask(void) {
WM_HWIN hWin;

GUI_Init();
hWin = GUI_CreateDialogBox(_aDialogCreate, GUI_COUNTOF(_aDialogCreate), NULL, WM_HBKWIN, 0, 0);
while (1) {
GUI_Delay(100);

}
}

PUBLIC 59

Common dialogs

• Common dialogs available:

− Message boxes

− Color selection

− Exploring a file system

• MESSAGEBOX

− Only one line of code required for a message box.

• CHOOSEFILE

− Embedded file system explorer.

− Simple callback mechanism used to get file data from application.

− Ready to use sample for emFile available

• CHOOSECOLOR

− Selection from an application defined array of colors.

• CALENDAR

− Selection of a date of the gregorian calendar.

PUBLIC 60

Memory devices

• How do they work?

− Drawing operations can be passed to a memory device instead
to the display to prevent display from flickering. A memory
device is a hardware independent destination device for
drawing operations.

• What can they be used for?

− Preventing flickering

− Container for decompressed images

− Scaling and rotating

− Fading operations

− Window animations

− Transparency effects

• What does 'transparency' mean here?

− Memory devices with transparency 'know' the pixels which
have been accessed. One additional bit is required per pixel for
storing this information. Supported by 1, 8 and 16bpp memory
devices.

• Do memory devices support alpha blending?

− Yes, 32bpp memory devices support alpha blending, but not
'transparency'

#include "GUI.h"

void MainTask(void) {

GUI_MEMDEV_Handle hMem;

GUI_RECT Rect = { 10, 10, 109, 109 };

GUI_Init();

hMem = GUI_MEMDEV_Create(Rect.x0, Rect.y0, Rect.x1 - Rect.x0 + 1, Rect.y1 - Rect.y0 +
1);

GUI_DrawGradientH(Rect.x0, Rect.y0, Rect.x1, Rect.y1, GUI_RED, GUI_BLUE);

GUI_MEMDEV_Select(hMem);

GUI_DrawRectEx(&Rect);

GUI_SetTextMode(GUI_TM_TRANS);

GUI_DispStringInRect("This shows\n"

"how transparency\n"

"can be used with\n"

"memory devices"

, &Rect

, GUI_TA_HCENTER | GUI_TA_VCENTER);

GUI_MEMDEV_Select(0);

GUI_MEMDEV_Write(hMem);

while (1) {

GUI_Delay(100);

}

}

Without transparency With transparency

PUBLIC 61

Antialiasing

• Antialiasing smoothes curves and diagonal lines
by "blending" the background color with that of the
foreground.

• emWin supports antialiased drawing of

− Text
Font converter is required for creating AA fonts.

− Arcs
GUI_AA_DrawArc()

− Circles
GUI_AA_FillCircle()

− Lines
GUI_AA_DrawLine()

− Polygons
GUI_AA_DrawPolyOutline()
GUI_AA_FillPolygon()

Note:Performance of antialiased drawing operations degrades

significantly in comparison to non antialiased drawing operations.

#include "GUI.h"

static GUI_POINT _aPoint[] = {
{ -5, -5 }, { 0, -50 }, { 5, -5 }, { 50, 0 },
{ 5, 5 }, { 0, 50 }, { -5, 5 }, { -50, 0 },

};

void MainTask(void) {
GUI_Init();
GUI_SetBkColor(GUI_WHITE);
GUI_SetColor(GUI_BLACK);
GUI_Clear();
GUI_SetPenSize(2);
GUI_AA_DrawLine(10, 10, 100, 50);
GUI_AA_DrawArc(100, 50, 40, 40, 270, 450);
GUI_AA_FillCircle(50, 100, 30);
GUI_AA_DrawPolyOutline(_aPoint, GUI_COUNTOF(_aPoint), 4, 200, 100);
GUI_AA_FillPolygon(_aPoint, GUI_COUNTOF(_aPoint), 100, 170);
while (1) {
GUI_Delay(100);

}
}

PUBLIC 62

Window Manager

• Management system for a hierarchic window
structure
Each layer has its own desktop window. Each desktop
window can have its own hierarchical tree of child
windows.

• Callback mechanism based system
Communication is based on an event driven callback
mechanism. All drawing operations should be done within
the WM_PAINT event.

• Foundation of widget library

All widgets are based on the functions of the WM.

Basic capabilities:

• Automatic clipping

• Automatic use of multiple buffers

• Automatic use of memory devices

• Automatic use of display driver cache

• Motion support

#include "WM.h"

void _cbWin(WM_MESSAGE * pMsg) {
int xSize, ySize;

switch (pMsg->MsgId) {
case WM_PAINT:

xSize = WM_GetWindowSizeX(pMsg->hWin);
ySize = WM_GetWindowSizeY(pMsg->hWin);
GUI_Clear();
GUI_DrawRect(0, 0, xSize - 1, ySize - 1);
GUI_DispStringHCenterAt("Window", xSize / 2, 10);
break;

default:
WM_DefaultProc(pMsg);

}
}

void _cbBk(WM_MESSAGE * pMsg) {
switch (pMsg->MsgId) {
case WM_PAINT:

GUI_DrawGradientV(0, 0, 479, 271, GUI_BLUE, GUI_MAGENTA);
break;

default:
WM_DefaultProc(pMsg);
break;

}
}

void MainTask(void) {
WM_HWIN hWin;

GUI_Init();
WM_SetCallback(WM_HBKWIN, _cbBk);
hWin = WM_CreateWindowAsChild(10, 10, 100, 100, WM_HBKWIN, WM_CF_SHOW, _cbWin,

0);
while (1) {

GUI_Delay(100);
}

}

PUBLIC 63

Supplemental Information

PUBLIC 64

Design Considerations

PUBLIC 65

Choosing a LCD : Resolution and Color Depth

• Resolution is not measured in

inches!

• LCD resolution is quoted as

width x height with units in

pixels.

− QVGA 320 X 240

− VGA 640 x 480

− SVGA 800 X 600

− Landscape or portrait orientation

G0 B3B4G1G2R2 R1 R0

RGB555 + I color pattern as organized in memory

MCU LCD data lines

D0D7 D6 D5 D4 D3 D2 D1

B0B2 B1G3G4R4 R3I

D9 D8D10D11D12D13D14D15

+

CGA
320x200

QVGA
320x240

HVGA
480x320

VGA
640x480

WVGA
800x480

SVGA
640x480

WSVGA
1024x600

XGA
1024x768

HD 720
1280x720

XGA+
1152x864

Resolutions

Supported by

NXP graphic

LCD

controller

• Color depth or bits per pixel
(bpp)

PUBLIC 66

What is a Frame Buffer?

• Contiguous memory buffer containing a complete frame of data

• Consists of color values for every pixel

• Color values are commonly represented as

− 1 bit (1 bpp): Monochrome

− 2 bit (2 bpp): Palette based (4 colors)

− 4 bit (4 bpp): Palette (16 colors, controller has a palette look-up table)

− 8 bit (8 bpp): Palette (256 colors, controller has a palette look-up table)

− 16 bit (16 bpp): High color format (5:5:5 - 32,768 colors; 5:6:5 - 65,536 colors)

− 24 bit (24 bpp): True color format (16,777,216 colors)

PUBLIC 67

Resolution x Color Depth = Memory Size

• Resolution x Color Depth = Total bits needed (divide by 8 for bytes)

• Framebuffer = Memory buffer containing complete frame (bitmap) of data

Resolution
1

bits/
pixel

2
bits/
pixel

4
bits/
pixel

8
bits/
pixel

16
bits/
pixel

24
bits/
pixel

XGA 1024x768 98,304 196,608 393,216 786,432 1,572,864 2,359,296

WVGA 800x480 48,000 96,000 192,000 384,000 768,000 1,152,000

VGA 640x480 38,400 76,800 153,600 307,200 614,400 921,600

WQVGA 480x272 16,320 32,640 65,280 130,560 261,120 391,680

QVGA 320x240 9,600 19,200 38,400 76,800 153,600 230,400

CGA 320x200 8,000 16,000 32,000 64,000 128,000 192,000

Example: (480 x 272) x 16bpp = 2,088,960 bits

To convert to bytes : 2088960 ÷ 8 = 261,120 bytes

PUBLIC 68

Palette Based Frame Buffer

• The frame buffer will contain an index value for each pixel

• Palette RAM is pre-filled with 16-bit color value for each index

• NXP microcontrollers have 256 entries to support

− 1, 2, 4, or 8 bpp palletized color displays for color STN and TFT

− 1, 2, or 4 bits-per-pixel (bpp) palletized displays for mono STN

Framebuffer Palette Image

PUBLIC 69

LCD TFT Display Pixel Layout

320x240 TFT display

Pixel 0 (16 bits),

line 0

Pixel 319,

line 0

Pixel 1, line 239

With a 18-bit TFT display, a clock of data will drive 1

pixel. It will take 320 clocks to drive all the data for a

320 pixel line.

RGB RGB RGB

RGBRGB RGB

RGBRGB RGB

R5...R0 G5...G0 B5...B0

PUBLIC 70

Driving a clocked LCD bus

Host MCU LCD panel
Data lines

VSYNC/FP

HSYNC/LP

Pixel clock

Constant

current

source

BacklightPWM

PUBLIC 71

Refresh Rate

• 𝑅𝑒𝑓𝑟𝑒𝑠ℎ_𝑅𝑎𝑡𝑒 𝐻𝑧 =
𝑝𝑖𝑥𝑒𝑙_𝑐𝑙𝑜𝑐𝑘_𝑟𝑎𝑡𝑒

[(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ) × (𝑝𝑖𝑥𝑒𝑙_𝑐𝑙𝑜𝑐𝑘𝑠_𝑝𝑒𝑟_𝑑𝑎𝑡𝑎_𝑙𝑖𝑛𝑒 + ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ)]

• Example for a 320 x 240 LCD display:

− 6.5MHz pixel clock

− vertical resolution=240 lines,

− vertical front porch=5 lines,

− vertical back porch=1 line,

− pixel clocks per data line = 320 pixels,

− horizontal front porch=20 clocks,

− horizontal back porch=10 clocks

• 𝑅𝑒𝑓𝑟𝑒𝑠ℎ_𝑅𝑎𝑡𝑒 =
6500000

240+5+1 × 320+20+10
= 75.5 𝐻𝑧

PUBLIC 72

LCD Controller Signals

• The largest configuration for the LCD controller uses 31 pins. There are many

variants using as few as 10 pins for a monochrome STN panel.

PUBLIC 73

LCD TFT Signals

PUBLIC 74

Driving the LCD – Various Timings

320x240 display shown with

timing for VSYNC, HSYNC,

clock, and porch values

VSYNC starts the

frame

Vertical back

porch timing

Vertical front

porch timing

Horizontal front

porch timing

Horizontal back

porch timing

HSYNC starts at

the beginning of

each line

PUBLIC 75

Snapshot of incorrect LCD settings

• Picture is an example for Truly G240320LTSW panel, which wrongly sets vertical

back porch to 8 while the correct value is 4, leading to 4 visible blank lines by LCD

panel.

PUBLIC 76

Example : 480 x 272 LCD TFT Display Timing Table

• Below is the timing table of LCD used in LPCXpresso54608 Development board.

PUBLIC 77

LCD Tearing

• Tearing:

• Result of LCD DMA unable to service the LCD FIFO in time

• Use the FIFO Underflow to monitor for this

• Workarounds

• Change AHB priority – next slide

• Slow down frame refresh rate, pixel clock if possible

• Use 32-bit wide external memories

• Increase the SDRAM clock speed, use faster SRAM

• Profile code and move frequently accessed code to internal SRAM

PUBLIC 78

LPC54608 LCD AHB Priority

• AHB Matrix Priority Register (AHBMATPRIO - 0x4000 0010)

• The values used for the various priorities are 3 = highest, 0 = lowest

• To give priority to the LCD DMA use the value 0x0000 0C09

PUBLIC 79

Bus Bandwidth Calculator

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

