WLPGA Regional Summit "Exceptional Energy for Andes"

Hitachi Proprietary Information

LPG Burning Gas Turbine for Power Generation

Hitachi, Ltd.

Jan. 2014

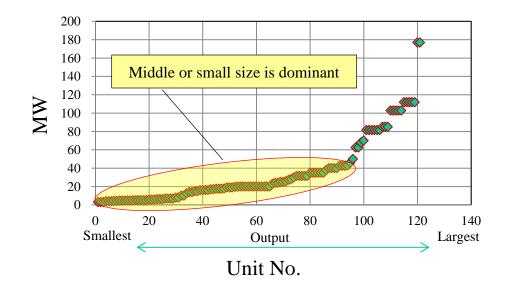
Shunichi Kuba, Ph.D Shunichi.kuba.ej@hitachi.com

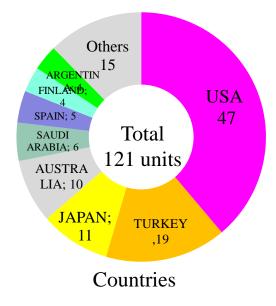
Doc No. : GXP-14-002

© Hitachi, Ltd. 2014. All rights reserved.

- 1. LPG burning GT power plants in the world
- 2. Hitachi Gas Turbines
- 3. Feature of LPG burning GT and plant
- 4. Applications
- 5. Conclusions

1. LPG burning GT power plants in the world

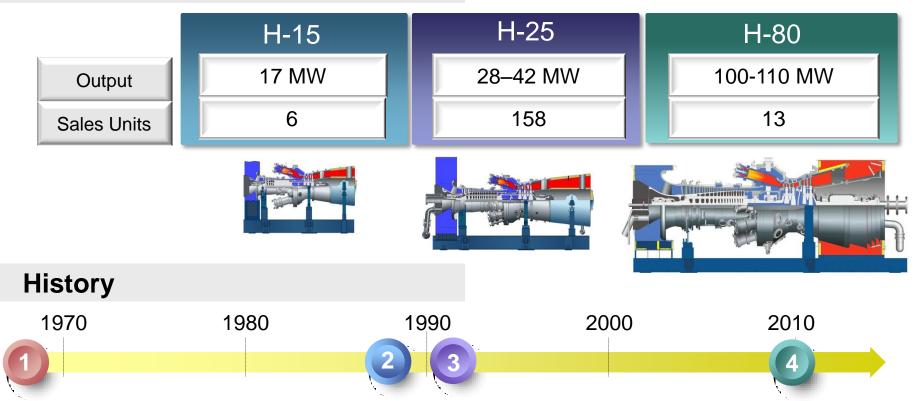



REF:UDI World Electric Power Plants Data Base

Total 121 units of LPG burning gas turbines were installed in the world since 1964.

Proven technology

- Middle or small size GTs are dominant (Less than 50 MW)
- All units are duel or triple fuel system

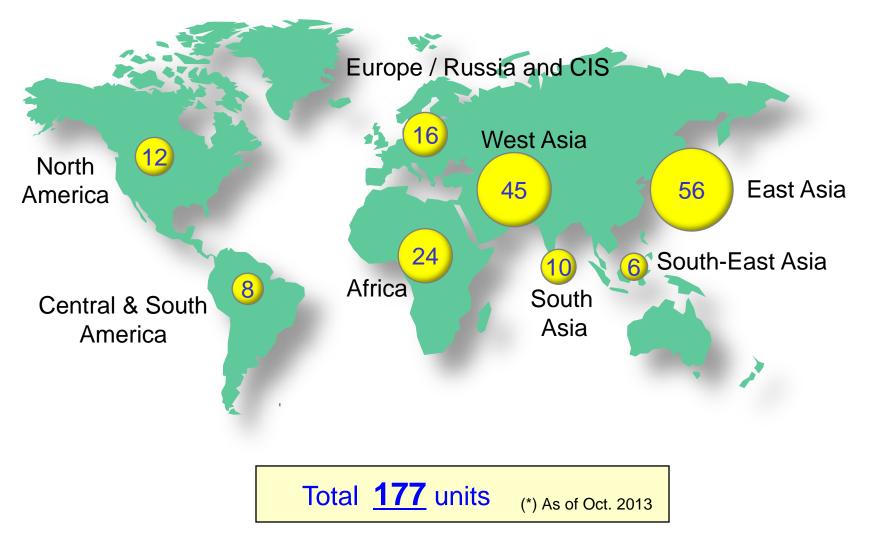

1. LPG burning GT power plants in the world

2. Hitachi Gas Turbines

- 3. Feature of LPG burning GT and plant
- 4. Applications

5. Conclusions

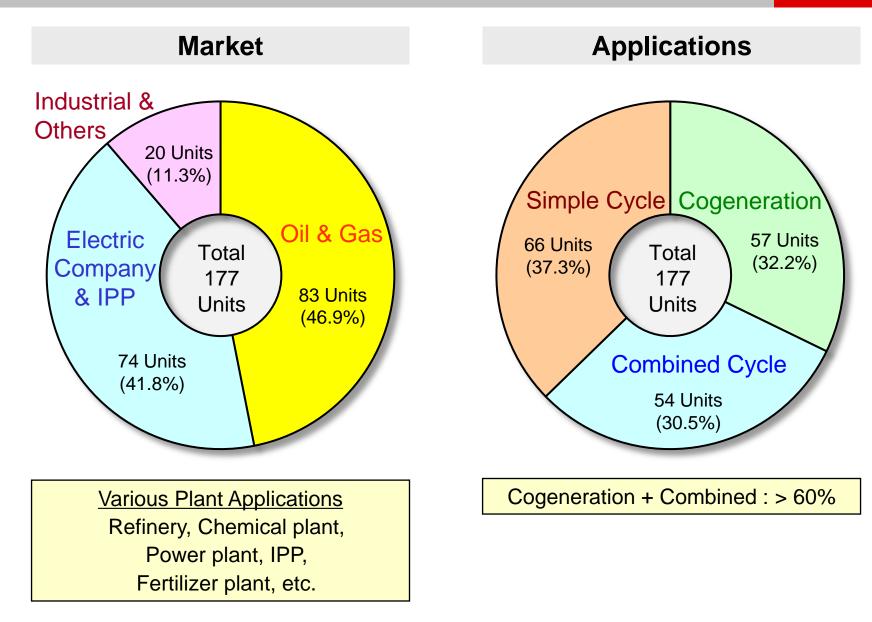
Hitachi Gas Turbine Lineups



- 1. 1966 : Hitachi 1st Gas Turbine Released
- 2. 1988 Nov. : H-25 1st Unit in Commercial Operation
- 3. 1991 Jan. : H-15 1st Unit in Commercial Operation
- 4. 2010 Jan. : H-80 1st Unit in Commercial Operation

Doc No. : GXP-14-002

2-2 Supply experiences – Hitachi Gas Turbines (1/2)


Hitachi Gas Turbine in the World

Inspire the Next

2-2 Supply experiences – Hitachi Gas Turbines (2/2)

Natural Gas Burning H-15/H-25 ISO Performance

		11.45	H-25			
ITEM	UNIT	H-15	H-25(28)	H-25(32)	H-25(42)	
Output	MW	16.9	27.5	32.0	41.9	
Efficiency	%(LHV)	34.3	33.8	34.8	37.2	
Heat Rate	kJ/kWh	10,500	10,650	10,350	9,670	
(LHV)	Btu/kWh	9,950	10,097	9,806	9,166	
Exhaust Flow	kg/s	52.9	89.5	96.6	111.1	
Exhaust Temp	deg. C	564	555	561	556	

Natural Gas Case ISO Condition (Temperature=15deg.C)

In case of LPG burning, following collections shall be considered

Output : approx. -1.5% Heat Rate : approx. +0.2%

H-25 Gas Turbine

LPG Burning H-15/H-25 Performance on Typical Site Condition

		11.45	H-25			
ITEM	EM UNIT	H-15	H-25(28)	H-25(32)	H-25(42)	
Output	MW	16.0	26.1	30.0	38.7	
Efficiency	%(LHV)	33.1	32.9	33.6	35.4	
Heat Rate	kJ/kWh	10,884	10,935	10,703	10,178	
(LHV)	Btu/kWh	10,318	10,366	10,147	9,647	
Fuel Flow	ton/h	3.8	6.2	6.9	8.5	

LPG Consumption for 1 year (=8,000 hours operation)

LPG Flow	10 ³ ton/year	30	49	56	68	
	10 ³ m ³ /year	59	97	109	134	
	BI/day(appx)	1,000	1,700	1,900	2,300	

Fuel : LPG (C₃H₈, 507.6kg/m³, Liquid, 288K)) ISO Condition (Temperature=15deg.C) Inlet / Exhaust Pressure Drop : 4.0 / 13.5 inch H₂O NOx Level : Approx. 250 ~ 370 ppm@15%O₂

H-25 Gas Turbine

LPG Burning H-15/H-25 Performance on Typical Site Condition

ITEM		11.45	H-25			
	UNIT	H-15	H-25(28)	H-25(32)	H-25(42)	
Output	MW	17.5	28.2	33.2	43.6	
Efficiency	%(LHV)	34.1	33.5	34.4	36.3	
Heat Rate (LHV)	kJ/kWh	10,565	10,734	10,455	9,918	
	Btu/kWh	10,017	10,176	9,911	9,400	
Fuel Flow	ton/h	4.0	6.5	7.5	9.3	
Steam Flow	ton/h	7.5	11.4	14.2	18.5	

LPG Consumption for 1 year (=8,000 hours operation)

LPG Flow	10 ³ ton/year	32	52	60	75
	10 ³ m ³ /year	63	103	118	147
	BI/day(appx)	1,100	1,800	2,000	2,500
Fuel : LPG (C ₃ H ₈ , 5		Steam Inje	ction for		

ISO Condition (Temperature=15deg.C) Inlet / Exhaust Pressure Drop : 4.0 / 13.5 inch H₂O

NOx Level : 60ppm@15%O₂

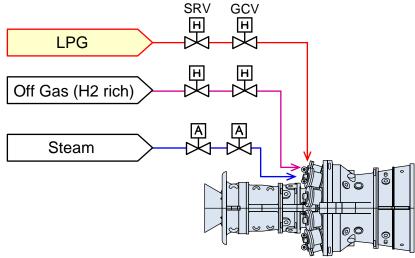
Doc No. : GXP-14-002

Steam Injection for NOx Abatement

H-25 Gas Turbine for Refinery Plant

No.	Customer	Place	Output	GT Type	Units	NOx Reduction	Fuel	Commercial Operation
1	I-Refinery	Japan	26.25 MW	H-25 (28)	1	Steam Injection	<u>LPG</u> / Heavy Oil	1988
2	S-Refinery	Japan	25.8 MW 24.8 MW	H-25 (28) H-25 (28)	2	Steam Injection	Off Gas / A Heavy Oil	1989 1997
3	T-Plant	Japan	25.35 MW 27.35 MW	H-25 (28) H-25 (28)	2	Steam Injection	Off Gas / A Heavy Oil	1990 1997
4	Y-Refinery	Japan	25.0 MW	H-25 (28)	2	Steam Injection	Off Gas / <u>LPG</u>	1996
5	M-Refinery	Japan	34.15 MW	H-25 (32C)	1	Steam Injection	Off Gas	2005
6	O-Refinery	Japan	32.92 MW	H-25 (32C)	1	Steam Injection	Off Gas / <u>LPG</u>	2005
7	A-Refinery	Japan	33.99 MW	H-25 (32C)	2	Steam Injection	Off Gas / LPG	2007
8	T-Refinery	Japan	33.13 MW	H-25 (32C)	1	Steam Injection	Off Gas / Kerosene	2010
9	L-Refinery	Korea	23.56 MW 29.14 MW 30.38 MW	H-25 (28) H-25 (32C) H-25 (32C)	3	– LNC LNC	Methane Off Gas	2000 2009 2014
10	P-Plant	Brazil	27.12 MW	H-25 (28)	1	Steam Injection	Off Gas / Natural Gas	2006
11	O-Plant	Korea	31.38 MW	H-25 (32C)	1	Water Injection	Off Gas (C1/ <mark>C3 Gas</mark>)	2008

2-5 Example of LPG burning unit


Off Gas/LPG Dual Gases Fired H-25 Cogeneration Plant

Customer	Y-Refinery
System	Cogeneration
GT Type	H-25(28) x 2 units
GT Output	25,000 kW
Fuel	Off Gas / LPG
NOx Abatement	Steam Injection
Commercial Operation	June, August. 1996
Location	Mie, Japan

- Operation Track Record
 - Unit A 130,478 hours (at July, 2012)
 - Unit B 139,480 hours (at July, 2013)

LPG burning GT power plants in the world Hitachi Gas Turbines

3. Feature of LPG burning GT and plant

4. Applications

5. Conclusions

	Items	Merits comparing with diesel burning gas turbine
1	Fuel cost	Fuel cost can be saved greatlyTypical value : LPG : 0.86 USD/Gallon10.2 USD/ MMBTUDiesel : 4.5 USD/ Gallon35.0 USD/MMBTU
2	Maintenance interval	Maintenance interval can be longer 20-30 % which depends on operational mode.
3	Performance	Output : Approx. + 0.7 % Efficiency : Approx. + 1.3 % (relative) (depends on operational conditions)
4	Reliability	Rotating equipment (fuel pump) and precision equipment (flow divider) are not required. Reliability of the auxiliary system increases.

Dual fuel burning system with back up fuel is available. Availability of the unit will be higher than single fuel unit such as gas engine or diesel engine.

3-2 Key points in designing of LPG burning GT

	LPG characteristics	Reflection required to LPG burning GT
1	High dew point	Easily liquefied by compression under 24-30 barg •Heating (above 100 deg.C) is required •Steam tracing is required for LPG line.
2	Heavier specific gravity than air	Suitable ventilation is required to avoid explosion.
3	Combustion characteristics •High combustion speed •Rich "C" content	Countermeasure may be required depending on environmental regulation.
4	Impurity	In order to keep high reliability, fuel must strictly satisfy GT supplier's fuel specifications, not only physical conditions (pressure, temperature) but also chemical compositions such as alkali metals and butadiene, etc.

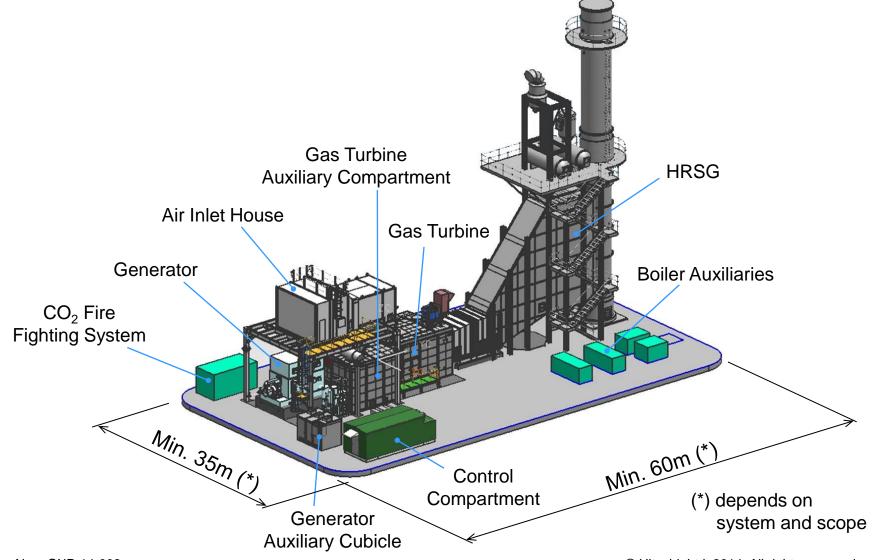
Note:

In addition to uncertainty of the supply capability, LPG can't be continuously supplied through pipe line. From these reasons, LPG has been used as back up fuel of middle or small size GTs.

Doc No. : GXP-14-002

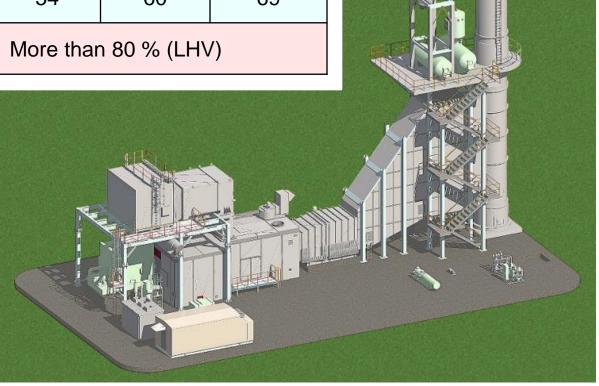
- 1. LPG burning GT power plants in the world
- 2. Hitachi Gas Turbines
- 3. Feature of LPG burning GT and plant
- 4. Applications
- 5. Conclusions

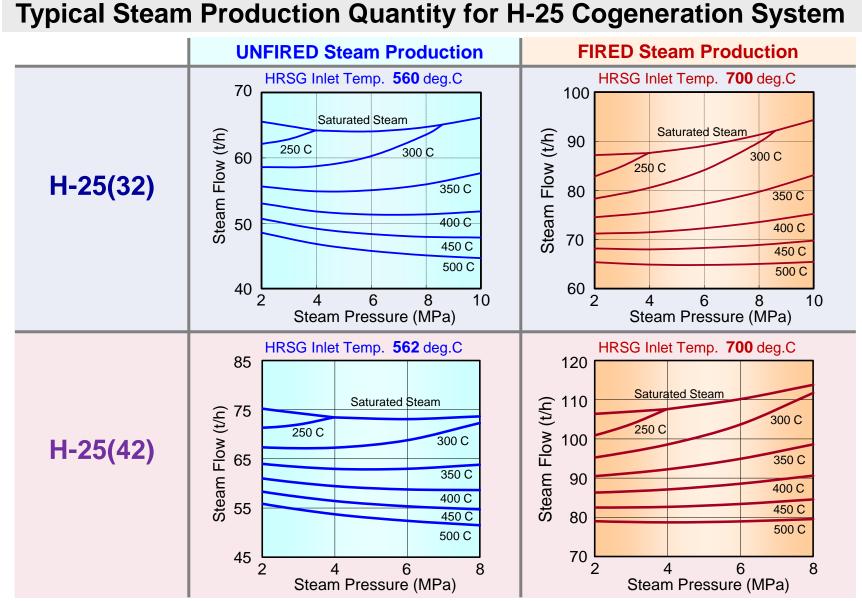
4-1 Simple Cycle Power Plant


H-25 Simple Cycle Power Plant in Venezuela

4-2 Cogeneration Plant for Refinery (1/3)

Typical General Arrangement of H-25 Cogeneration Plant

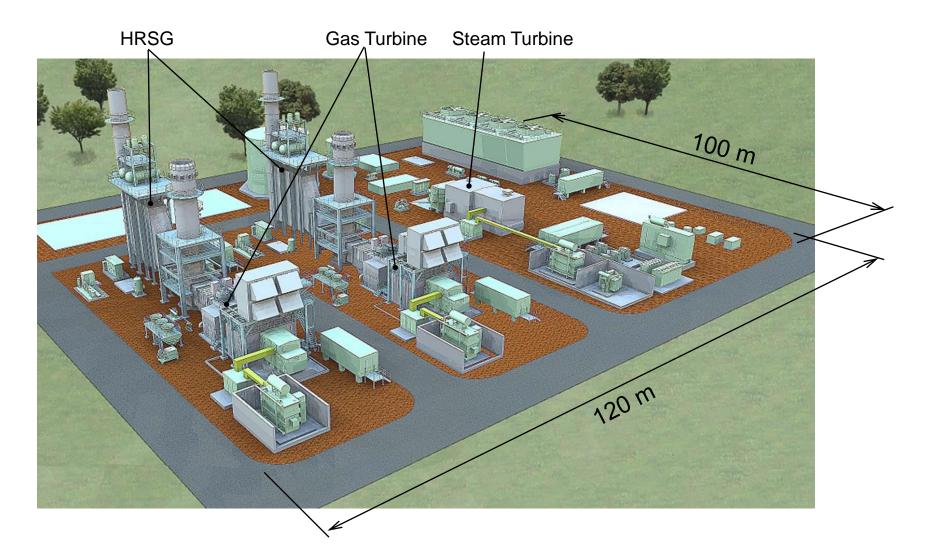

4-2 Cogeneration Plant for Refinery (2/3)


Typical Performance for Cogeneration Plant

	11.45					
	H-15	H-25(28)	H-25(32)	H-25(42)		
Power Output (MW)	16.2	26.5	30.5	40.5		
Steam Flow (t/h) (6 MPa / 300 deg C)	33	54	60	69		
Overall Efficiency	More than 80 % (LHV)					

Natural Gas, ISO Base Load Operation

4-2 Cogeneration Plant for Refinery (3/3)



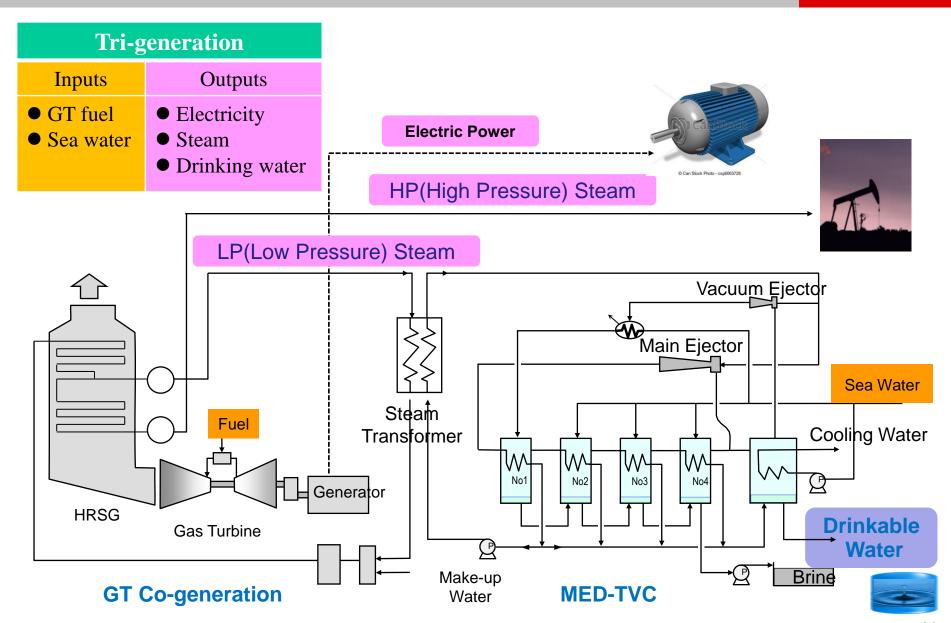
Doc No. : GXP-14-002

© Hitachi, Ltd. 2014. All rights reserved.

20

Typical General Arrangement of H-25 Combined Cycle Plant (2-2-1)

HITACHI Inspire the Next


4-3 Combined plant (2/2)

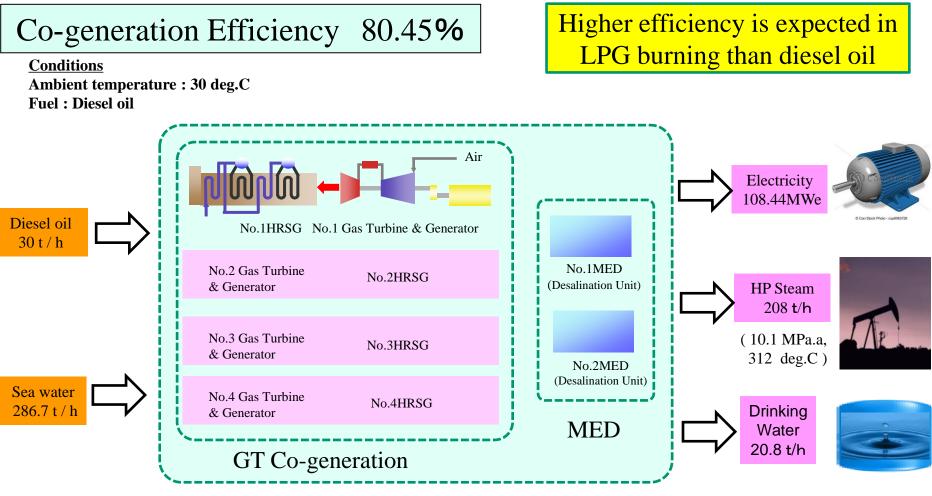
Typical Performance for H-25 Combined Cycle Plant

		H-25 (28)		H-25(32)		H-25(42)	
ITEM	UNIT	<u>1-1-1</u>	<u>2-2-1</u>	<u>1-1-1</u>	<u>2-2-1</u>	<u>1-1-1</u>	<u>2-2-1</u>
Configuration		1 x GT 1 x HRSG 1 x ST	2 x GT 2 x HRSG 1 x ST	1 x GT 1 x HRSG 1 x ST	2 x GT 2 x HRSG 1 x ST	1 x GT 1 x HRSG 1 x ST	2 x GT 2 x HRSG 1 x ST
Total Plant Output	MW	39.9	80.3	45.5	91.4	57.7	115.9
Gas Turbine Output	MW	26.5	26.5 x2	30.5	30.5 x2	40.5	40.5 x2
Steam Turbine Output	MW	13.4	27.3	15.0	30.4	17.2	34.9
Gross Efficiency	%(LHV)	49.7	50.0	50.3	50.5	51.7	51.9

Natural Gas, ISO Base Load Operation

4-4 Tri-generation Plant for EOR (1/3)

Doc No. : GXP-14-002

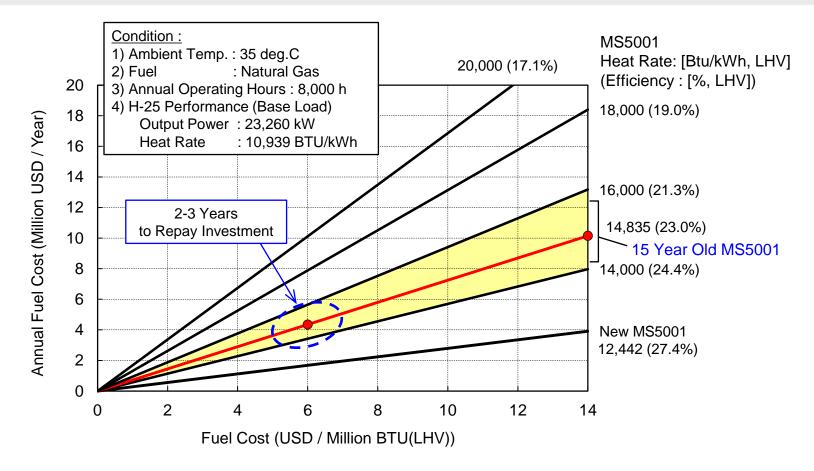

HITACHI Inspire the Next

4-4 Tri-generation Plant for EOR (2/3)

Fuel Gas (Future) Diesel Oil Gas **HP Steam** LP Steam HRSG Feed Water Supply Main Eject Feed W ater Cooling water Supply Generator **Electricity** MED Heat Rejection **Product Water Gas Turbine** Condensate Associated Gas Feed Water Brine Blow-down **GT CO-GENERATION MED (Multi Effect Desalination)** Drinkable Power steam generator Water Crude Oi injection well production well disposal well Associated Water heat losses hot water steam and condensed water **Oil bank** Oil & water zone

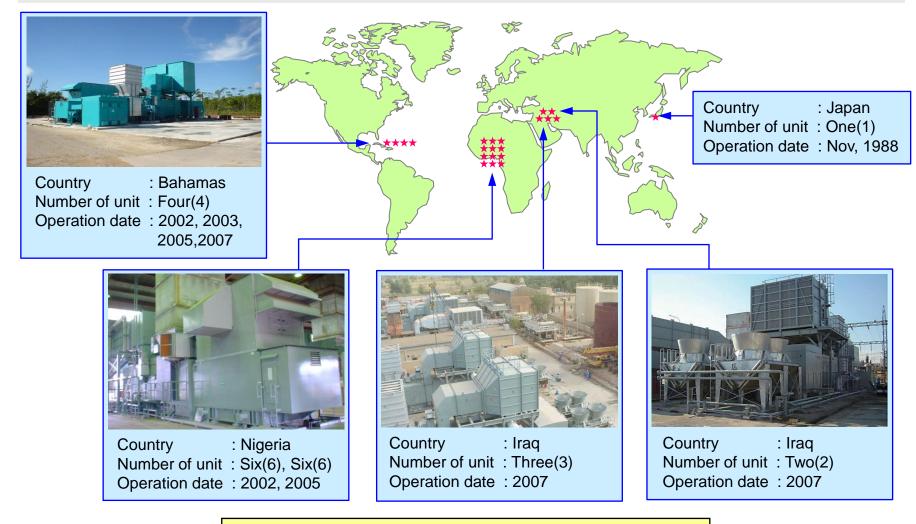
HITACHI Inspire the Next

Example of Tri-generation Plant Performance

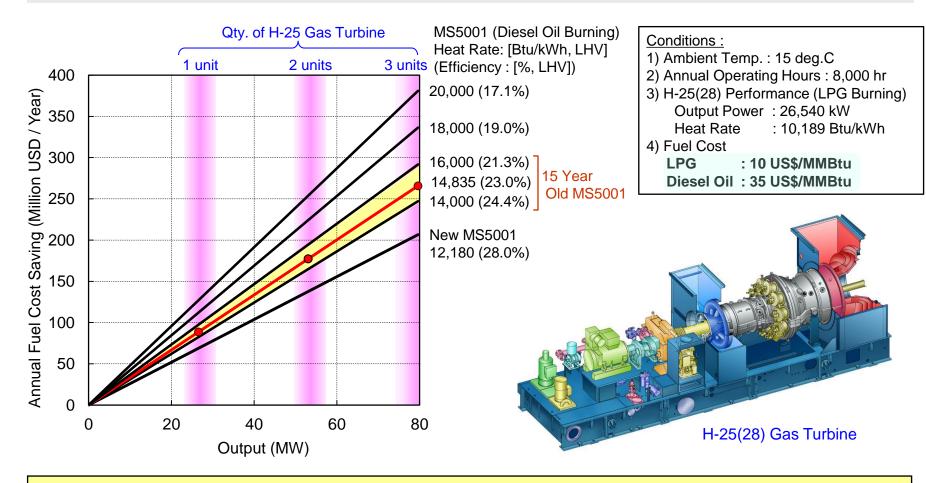


GT tri-generation (4 GTs + 4 HRSGs + 2 MEDs)

4-5 Replacement of Existing Old Unit (1/3)


Benefit of Replacement (Old unit →New H-25) : Both Natural Gas Burning

- 1. If fuel gas is 6 US\$/MBTU(LHV), H-25 new plant investment will be recovered in 2-3 years.
- 2. If gas price is higher, the recovery time becomes shorter.



Replacement Records

Total 22 units of MS5001 were already replaced.

Benefit of Replacement (Old Diesel burning unit →New LPG burning H-25

- 1. Fuel cost can be saved greatly since the cost of LPG is smaller than Diesel Oil.
- 2. Benefit of introducing LPG fuel will become larger with new high efficiency Gas Turbine.

- 1. LPG burning GT power plants in the world
- 2. Hitachi Gas Turbines
- 3. Feature of LPG burning GT and plant
- 4. Applications
- 5. Conclusions

- LPG burning in GT is proven technology
- LPG burning GT is more efficient and reliable than diesel burning unit.
- LPG is cheaper than diesel oil, therefore LPG is very attractive fuel for GT power generation.
- Various applications using GT are available, simple cycle power plant, co-generation, tri-generation etc.
- Middle size GT may be suitable for LPG burning plant, considering LPG transportation, refinery applications and decentralized power supply.
- To make economical and reliable power plant, skilled engineering know-how is required for plant system design and GT design. Hitachi can supply LGP burning GT certified by enough experiences.

HITACHI Inspire the Next

A Mitsubishi Corporation

Contact in Colombia

Mitsubishi Colombia Ltda. Mr. Julian Lemos / Ms. Lina Rosada julian.lemos@mitsubishicorp.com +57 1 313 7522 lina.rosada@mitsubishicorp.com +57 1 313 7406