Optimal Control for

Linear Dynamical Systems and Quadratic Cost
(“LQR”)

Pieter Abbeel
UC Berkeley EECS

Bellman'’s curse of dimensionality

n-dimensional state space

Number of states grows exponentially in n (assuming some fixed
number of discretization levels per coordinate)

In practice

= Discretization is considered only computationally feasible up
to 5 or 6 dimensional state spaces even when using

= Variable resolution discretization
= Highly optimized implementations

This Lecture

= Optimal Control for Linear Dynamical Systems and Quadratic Cost

(aka LQ setting, or LQR setting)

= Very special case: can solve continuous state-space optimal
control problem exactly and only requires performing linear

algebra operations

Great reference:

[optional] Anderson and Moore, Linear Quadratic Methods --- standard reference for

LQ setting

Note: strong similarity with Kalman filtering, which is able to
compute the Bayes’ filter updates exactly even though in general
there are no closed form solutions and numerical solutions scale

poorly with dimensionality.

Linear Quadratic Regulator (LQR)

The LQR setting assumes a linear dynamical system:
Ti41 = Axy + Buy,

;. state at time ¢
us: Input at time ¢
It assumes a quadratic cost function:

g(xe,up) = mtTQa:t + utTRut

with @ > 0, R > 0.

For a square matrix X we have X > 0 if and only if for all vectors z we
have z'" Xz > 0. Hence there is a non-zero cost for any state different from the
all-zeros state, and any input different from the all-zeros input.

While LQ assumptions might (at first) seem very restrictive,
we will see the method can be made applicable
for non-linear systems, e.g., helicopter.

Value Iteration

= Back-up step for i+ | steps to go:

Ji—l—l(s) — muing<37u) + ZP(S,‘Sau)Ji(S,)

| LQR
Jiy1(x) = min ' Qr +u' Ru+ > J; (2"
r/=Ax+ Bu

= min [:L'TQ:L' +u' Ru+ J;(Azx + Bu,)}

u

LQR value iteration: J,

Jiv1(xz) min {xTQw +u' Ru+ J;(Az + Bu)}

Initialize Jo(z) = 2" Pya.

Ji(z) = m&n [:ETQZE +u' Ru+ Jo(Az + Bu)]
= muin [:cTQa: +u' Ru+ (Az + Bu)' Py(Az + Bu)] (1)
To find the minimum over u, we set the gradient w.r.t. u equal to zero:
Vul...] =2Ru+2B" Py(Az + Bu) = 0,
hence: u= —(R+ B'PyB)"'B"PyAz (2)

(2) into (1): Ji(z) = z' P
for: P, = Q4+ K, RK,+ (A+ BK,)' Py(A+ BK;)
K, = —(R+B'P,B)"'B'PA.

LQR value iteration: J, (ctd)

= In summary:
Jo(z) = 2" Pyx
Tiy1 = Axy + Buy
g(z,u) =u' Ru+ 2" Qux

Ji(z) = 2Pz
for: P, = Q+ K| RK, + (A+ BK,)' Py(A+ BK})
K, = —(R+B'"P,B)"'B"RA.

= J,(x) is quadratic, just like J,(x).

—>Value iteration update is the same for all times and can be done in
closed form for this particular continuous state-space system and cost!

Jo(x) = x| Pyx
for: P, = Q-+ K, RKo+ (A+ BKy)' Pi(A+ BK>)
K = —(R+B'"PB)"'B"PA.

Value iteration solution to LQR

Set P() = 0.
fori=1,2,3,...
Ki = —(R+B'P,_1B)"'B"P,_,A
P, = Q+ K,RK;+ (A+ BK;)' P,_i(A+ BK;)

The optimal policy for a i-step horizon is given by:
m(x) = K;x
The cost-to-go function for a i-step horizon is given by:

Ji(z) = z' Pix.

LQR assumptions revisited

Ti41 = A:Ct + BUt

g(xe, uyp) :EtTQ:L"t -+ utTRut

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.

m Extensions which make it more generally applicable:

Affine systems

System with stochasticity

Regulation around non-zero fixed point for non-linear systems
Penalization for change in control inputs

Linear time varying (LTV) systems

Trajectory following for non-linear systems

LQR EXxt0: Affine systems

Tir1 = Axy+ Bup+c

g(xy, ug) :z:tTQa:t + utTRut

= Optimal control policy remains linear, optimal cost-to-go
function remains quadratic

m | wo avenues to do derivation:

= |. Re-derive the update, which is very similar to what we did for
standard setting

= 2. Re-define the state as: z, = [X;; |], then we have:

T A ¢ || x B
Zt+1:[t1+1]=!0 1-[1t]+[0]’Ut:A/Zt+B,Ut

LQR EXxt1: stochastic system

Tir1 = Axy+ Buy +wy
T T
g(we,ug) = x Qo +uyp Ruy
we,t =0,1,...are zero mean and independent

= Exercise: work through similar derivation as we did for the
deterministic case.

= Result:
= Same optimal control policy

= Cost-to-go function is almost identical: has one additional term which
depends on the variance in the noise (and which cannot be influenced
by the choice of control inputs)

LQR Ext2: non-linear systems

Nonlinear system: LTt4+1 = f($t, ’ut)

We can keep the system at the state =™ iff
Jus.t. =¥ = f(z",u”)

Linearizing the dynamics around z™ gives:
xt+l’\’f(xvu)+%(y U)(:131 x)—l'@u(y U)(u?‘ u)

\) \)
| |

Equivalently: A B
rip1 —x ~ Az — ™) + B(ug — u™)

Let 2, = 2, — 2, let v, = v, — u~, then:
¢ = Ty ¢ Uy

2i41 = Az + By, cost = 2, Qz + v, Ru, [=standard LQR]
vw=Kzz=>uy—u =K(x;—2")=>u =u" + K(x; —z")

LQR Ext3: penalize for change in control inputs

Standard LQR:
Tiv1 = Azy+ Buy

g(xe,uy) a:tTQ:z:t + utTRut

When run in this format on real systems: often high frequency control
inputs get generated. Typically highly undesirable and results in poor
control performance.

Why!?

Solution: frequency shaping of the cost function. Can be done by
augmenting the system with a filter and then the filter output can be used
in the quadratic cost function. (See, e.g., Anderson and Moore.)

Simple special case which works well in practice: penalize for change in
control inputs. ---- How ??

LQR Ext3: penalize for change in control inputs

s Standard LQR:
Tiv1 = Azy+ Buy

g(xe,uy) a:tTQ:z:t + utTRut

= How to incorporate the change in controls into the cost/
reward function?
= Soln. method A: explicitly incorporate into the state by augmenting

the state with the past control input vector, and the difference
between the last two control input vectors.

= Soln. method B: change of variables to fit into the standard LQR
setting.

LQR Ext3: penalize for change in control inputs

s Standard LQR:

Tiv1 = Azy+ Buy

g(xe,uy) x;rQ:ct + uz—Rut

= Introducing change in controls Au:

$t+1 . AB It B
e R b R
Y} \ Y J (Y J _Y_H_Y_}

”
wt+1_

|
=
&\l
+
Sl
Q\l

cost = —(2'" Q'z’ + Au' R'Au) Q = [82 22]

R’ = penalty for change in controls
[If R'=0, then “equivalent” to standard LQR.]

LQR Ext4: Linear Time Varying (LTV) Systems

rii1 = Az + Biuy

g(:ct,ut) — £E;I—Qt$t + U;I-Rt’u,t

LQR Ext4: Linear Time Varying (LTV) Systems

Set P() = 0.
forte=1,2,3,...
K; = —(Ry_i+ B}, _,Pi_1By_;) 'B}_,Pi_1Ap_;
P, = Qp-i+ KiTRH—iKi + (Ag—; + BH—iKi)TPi—l(AH—i + By K;)

The optimal policy for a i-step horizon is given by:
m(x) = K;x
The cost-to-go function for a i-step horizon is given by:

Ji(z) = 2" Px.

LQR Ext5: Trajectory following for non-linear systems

= A state sequence x.*, % ..., ¢ ;" is a feasible target
trajectory iff

Jus, ul, .. upy_y 2 Ve {0,1,...,H -1} : zp, = f(zf,u))

m Problem statement:
. H—
MMy 2, —1 tzol(wt _ x:)TQ(xt _ Cl?;f) + (ut o u:)TR(uf o u;‘k)

s.t. xip1 = fay, ug)

= Transform into linear time varying case (LTV):

Tt41 ~ f(xtvut) + %(xt’ut)(wt - xt) + %(xtaut)(ut - Ut)

\ J \
| |

A, B,
Tip1 — Tppq ~ Ag(zy — x3) + B(uy — uy)

LQR Ext5: Trajectory following for non-linear systems

Transformed into linear time varying case (LTV):

. H—
mln*u,o,ul,...,u”_l tz()l(xt - x:)TQ(CEt - l’:) + (’U,t — u;‘)TR(ut — ’U,:)

S.t. Lt41 — Zl?:+1 — At(xt — :C:fk) + Bt(ut o UI)

Now we can run the standard LQR back-up iterations.

Resulting policy at ¢ time-steps from the end:

X

Upg—i — wy_; = Ki(xg—; — 2% _;)

The target trajectory need not be feasible to apply this technique,
however, if it is infeasible then the linearizations are not around the
(state,input) pairs that will be visited

Most general cases

= Methods which attempt to solve the generic optimal control
problem

H
min,, Z g(xe,ue)
t=0

subject to x;41 = f(xy,up) Vi

by iteratively approximating it and leveraging the fact that the
linear quadratic formulation is easy to solve.

[teratively apply LQR

Initialize the algorithm by picking either (a) A control policy 7(®) or (b) A
sequence of states :E(()O), azgo), - ,mg) and control inputs u(()o) ; u§°), e ,ug). With
initialization (a), start in Step (1). With initialization (b), start in Step (2).

Iterate the following:

(1) Execute the current policy 7(*) and record the resulting state-input tra-
jectory :céz), ugz), :cgz), ugz), e :c%), ug).

(2) Compute the LQ approximation of the optimal control problem around
the obtained state-input trajectory by computing a first-order Taylor ex-
pansion of the dynamics model, and a second-order Taylor expansion of
the cost function.

(3) Use the LQR back-ups to solve for the optimal control policy 7("+1) for
the LQ approximation obtained in Step (2).

(4) Set i =i+ 1 and go to Step (1).

[terative LQR: in standard LTV format

Standard LTV is of the form 2,11 = Az + By, g(2z,v) = 2"Qz+v' Ro.
Linearizing around (xiz), u,(f)) in iteration ¢ of the iterative LQR algorithm
gives us (up to first order!):
i) (i of .) (i i of .)y (i i
wien = fo”) + 5@) @ a?) 4 5@ u?) -)

Subtracting the same term on both sides gives the format we want:

i iy (i o, Of @) G in, O () (@ i
vy = faf uf) =l + 55 @) (@2 0)+ 2 (@,) (-
Ox ou
Hence we get the standard format if using:
2z =[xy — xﬁi) 1]T
v o= (u—uy)
e iy (i i) (i i
i 0 1
9 iy (i
s [260,
0

A similar derivation is needed to find () and R.

[teratively apply LQR: convergence

= Need not converge as formulated!

= Reason: the optimal policy for the LQ approximation
might end up not staying close to the sequence of points
around which the LQ approximation was computed by
Taylor expansion.

= Solution: in each iteration, adjust the cost function so this
is the case, i.e., use the cost function

(1 — @)g(@s,) + a(|Jar — 2872 + [Jur — ui”||3)

Assuming g is bounded, for o close enough to one, the
2nd term will dominate and ensure the linearizations are

good approximations around the solution trajectory
found by LQR.

[teratively apply LQR: practicalities

= fis non-linear, hence this is a non-convex optimization
problem. Can get stuck in local optima! Good initialization
matters.

= g could be non-convex: Then the LQ approximation fails to
have positive-definite cost matrices.

s Practical fix: if Q, or R, are not positive definite =
increase penalty for deviating from current state and input
(x0, u®) until resulting Q, and R, are positive definite.

While there is no need to follow this particular route, this is a (imho) partic-
ularly convenient way of turning the linearized and quadraticized approximation
in the iLQR iterations into the standard LQR format for the setting of trajectory
following with a quadratic penalty for deviation from the trajectory.

Let :I:Ez), utz) be the state and control around which we linearize. Let x}, u;
be the target controls then we have:

7 2 8f 7 2 7 8f i 7 7
e = S u?) + oo (g u) e = o)+ 5@) (-)
Li+1 — Ly = f(wg),ut))— L1 +8_($§)7u§))(xt_xg)_$t+xt)+%(x§ ,ug)
3 (2 7 af 7 i % af 7 7 * 7
o =iy = @)) =i+ 5@) - a) + o)) e - 2))
o @) (e —) + 2 () (g~ u)?)
(@41 — 23 1] = Al(we —27); 1 + Blug — uy)
For
A | L@ u) @ u?) - ap + L@) @ - 2) + G u?) ()
0 1
and

B= [(@), u?)]
0

The cost function can be used as is: (z¢—2}) T Q(x; —)+ (us —u}) T R(uy —u}).

[terative LQR for trajectory following

Differential Dynamic Programming (DDP)

= Often loosely used to refer to iterative LQR procedure.

= More precisely: Directly perform 2"d order Taylor expansion of the Bellman
back-up equation [rather than linearizing the dynamics and 2" order
approximating the cost]

= Turns out this retains a term in the back-up equation which is discarded in
the iterative LQR approach

= [It’s a quadratic term in the dynamics model though, so even if cost is
convex, resulting LQ problem could be non-convex ...]

[Reference: Jacobson and Mayne, “Differential dynamic programming,” 1970]

Differential dynamic programming

Jiv1(x) = min
u

2nd order expansion of g around (x*,u™)

+Ji(f(2”, u”))

FL(fw) — fau))

+(f(@,u) = f(z",u”)) == (f(@,u) = f(z",u7))

To keep entire expression 2" order:

Use Taylor expansions of f and then remove all resulting
terms which are higher than 2" order.

Turns out this keeps 1 additional term compared to
iterative LQR

Can we do even better?

Yes!

At convergence of iLQR and DDP, we end up with linearizations around the
(state,input) trajectory the algorithm converged to

In practice: the system could not be on this trajectory due to perturbations /
initial state being off / dynamics model being off / ...

Solution: at time t when asked to generate control input ut, we could re-solve
the control problem using iLQR or DDP over the time steps t through H

Replanning entire trajectory is often impractical = in practice: replan over
horizon h. = receding horizon control

= This requires providing a cost to go J(*" which accounts for all future
costs. This could be taken from the offline iLQR or DDP run

Multiplicative noise

= In many systems of interest, there is noise entering the
system which is multiplicative in the control inputs, i.e.:

Ty 1 = Az + (B + wat)ut

s Exercise: LQR derivation for this setting

[optional related reading:Todorov and Jordan, nips 2003]

Cart-pole

m, H(q)g+C(g,4) + G(q) = Blq)u
g
[[m.+m, mylcosO |
/7> H(q) =] mplcosg’ leQ |
) (\L 6 Clg.q) = 8 am,,l@sm@]
g /)
Gla) = | myglsin® }
(1
B = |,]

[See also Section 3.3 in Tedrake notes.]

Cart-pole --- LQR

= 1

Cart-pole --- LQR

Results of running LQR for the linear time-invariant system obtained from linearizing
around [0;0;0;0]. The cross-marks correspond to initial states. Green means the
controller succeeded at stabilizing from that initial state, red means not.

B I D I S I I S I I L D I L P I L L D D L D L L e
6_XX
PRI D D (P P S D P P S D P S I P D P I P S P D P P P P
PRI D I P I P P P I P I S P I P D P I P S D P P P
PP I P I P P P S I I I P I P S D D S
PR I S P I P P I I I I P L P I L S D D L I L
5_XX
PRI I B P P P P P D P 5 I S P I P P P P P P P P P P P P
PR S D I P P S D P S I P P I P S P P P S P
PR I P I P P P I I S I P P P I P S D P S I
B b P P S S I P S D I S S P I D D L 4
4 HKAEKXKXHKKKK

theta

KAEXXKEKKXKXKXXK
2- P P P P D P I I P S S P P P P S I P I D D I b b b 4 4
P I I S O I P D D I I P S D I I D L b b I P L D D D O P I b e 4
P S b I L b b L b L b i b L L L b i L L L b L L e Y
B S S b i i b L b L b b b i L b i L b L b Y
R S I I L I I I L e
1—XX
P I S I S S P D D I I I S D I I D b b I P L D D D O 1 I I b a4
P S b I L b b L b L b L L L b L i L D L b O L OB b b e g 4
P S b i i b b L b L b b i b L b L b Y
R S S I I

N & A A s n i n n 0

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

Q =diag([1;1;1;1]); R = 0; [x, theta, xdot, thetadot]

Cart-pole --- LQR

Results of running LQR for the linear time-invariant system obtained from linearizing
around [0;0;0;0]. The cross-marks correspond to initial states. Green means the
controller succeeded at stabilizing from that initial state, red means not.

7r

KH KK
KHE KK

HX
XX

P D I D L
I S D I D D
A -k Bl x

HKEKEKXHKKXKXKEKK
KUK EKAKKXHKKEKK
Bl &

HKHEKKKXKKK
HKHAKKKAHKKXK
Bl S

P D P L I S I I I S D I S I I L I L L e
8_XX
P I S S P P P S P PP P P P P D P S P P P P P P S P e
PP I S P D P P P i P P P D S P P P P D P S P e
P S P P P P P I S P S P I L S D D P e
P I S P I P P I S P I I S P I D P S I O i e
5_XX
PP g D P P P P P D I P P P S P D P S P P P S D P P S P
P S P P D P P P D I P P P P S P P P D P S P e
PP S P P P P P S P I S P I P I I P S I i e
PP S P P P I S I I S P I L P D P L S I i e
P D I L S S I I D L S D I S D I L L i L L L L b e
4—XX
1] PP I S P D P P P D S P P P S D P S P P P P P P S I P e
E PP S P P P P P i P D S P I S D I P S I e
= P I S D P P P P S D I S P I L I D P S i e
= P I I I I 4 HUARXKEE AKX KKK KKK KKK AKX
3—XX
PP I S P P D P P P D I P P S P I S P P S I D P S P P
PP I S P P P P S S P I S P I P I D P I P e
PP I S P P P P I e P S D I S P I I D P I I e
P b D I L S S I I D L L D I S D I L L L I O L L b e
2_XX
PP S D P P P P PP i I P P P I S P P P P P S P S e
PP I S P P P P P P S I S P S P I S P D P S I P
P I S D P P P P e P D I S P I P I I P I
P b D I L S S I I I L S D I I I I L I L i L L b e
1—XX
P S D P P P P P D i I P P S D I P S P P P P P P S P e
PP I S P I D P P P S P S P D S P I S P P P S I P e

x x x x

x X x x

& &
4 1

[
(B}
1

-3 -2 -1 0
X

2 3 4 5

Q =diag([1;1;1;1]); R =1; [X, theta, xdot, thetadot]

[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.]

Lyapunov’s linearization method

Once we designed a controller, we obtain an autonomous system, X, = f(X,)

Defn. x* is an asymptotically stable equilibrium point for system f if there
exists an € > 0 such that for all initial states x s.t. || x — x* || < € we have

that lim X, = x*

t— oo 7t

We will not cover any details, but here is the basic result:
Assume x* is an equilibrium point for f(x), i.e., x™ = f(x*).

If x* is an asymptotically stable equilibrium point for the linearized system, then
it is asymptotically stable for the non-linear system.

If x* is unstable for the linear system, it’s unstable for the non-linear system.
If x* is marginally stable for the linear system, no conclusion can be drawn.

= additional justification for linear control design techniques

Controllability

= A system is t-time-steps controllable if from any start state, X,, we can reach any target
state, X', at time t.

m For a linear time-invariant systems, we have:

;= Alxg + A7 Bug + A ?Buy + ...+ ABuy_o + Buy_1

hence the system is t-time-steps controllable if and only if the above linear system of
equations in Uy, ..., U_; has a solution for all choices of X, and X.. This is the case if and only if

rank [A""'B A'""°B ... A°B AB B]=n

with n the dimension of the statespace.

The Cayley-Hamilton theorem from linear algebra says that for all A, forallt > n:

n—1
JweR", Al =) w;A’

1=0

Hence we obtain that the system (A,B) is controllable for all times t>=n, if and only if

rank [A""'B A"°B ... A’B AB B|=n

Feedback linearization

Consider system of the form:

i = f(x) +g(a)u

If g(x) is square (i.e., number of control inputs = number of state variables)
and it is invertible, then we can linearize the system by a change of input
variables:

v=f(x) +9(z)u

gives us:
=

Prototypical example: fully actuated manipulators:
H(q)j+b(q;q) +9(q) =7
Feedback linearize by using the following transformed input:
v=H""(q) (7 - g(a) — b(q,q))

which results in

Feedback linearization

r1 = —2xr1+ axo +sinxy

Ty = —XxoC0STy + ucos(2xq)

Feedback linearization

Feedback linearization

& = f(z) + g(x)u (6.52)

Definition 6.6 A single-input nonlinear system in the form (6.52), with f(x) and g(x)
being smooth vector fields on R”, is said to be input-state linearizable if there exists a
region Q in R", a diffeomorphism ¢ : Q — R”, and a nonlinear feedback control law

u = ox) + Bx)v (6.53)

such that the new state variables z = §(X) and the new inpur v satisfy a linear time-
invariant relation

z=Az+ by (6.54)
where
[(010..0 [0
00T1... 0
A= b=
000..1 0
000..0 -l_

[A function is called a diffeomorphism if it is smooth and its inverse is

smooth. [From: Slotine and Li]

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

s the vector fields (g, adp g , ..., adg"~1 g} are linearly independent in Q

¢ the set (g, adg g , ..., adf"*z g} is involutive in Q

Deﬁnitioq 0.1 Let h: R" — R be a smooth scalar function, and f: R" — R” be a
smooth vecior field on R", then the Lie derivative of h with respect to § is a scalar
Junction defined by Leh = Vh f.

Thus, the Lie derivative Lgh is simply the directional derivative of A along the
direction of the vector f.

Repeated Lie derivatives can be defined recursively
Le®h=h
Léth = Le(Le=Vhy= V(L1 h) f for i=1,2,....
Similarly, if g is another vector field, then the scalar function Ly Lg A(X) is

LyLih=V{lch) g

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

s the vector fields (g, adp g , ..., adg"~1 g} are linearly independent in Q

¢ the set (g, ade g, ..., adf"*2 g} is involutive in Q

Definition 6.2 Let f and g be two vector fields on R". The Lic bracket of fand g is a
third vector field defined by

[fg) = Vg f-Vlg

The Lie bracket [f, g) is commonly written as adg g (where ad stands for "adjoint™).
Repeated Lie brackets can then be defined recursively by

adg®g=g

adg' g = [f, ady'~! g] for i=1,2,.....

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

s the vector fields (g, adp g , ..., adg"~1 g} are linearly independent in Q

¢ the set (g, adg g , ..., adf"*z g} is involutive in Q

Definition 6.5 A linearly independent set of vector fields (€ .15, ..., T,) is said to
be involutive if, and only If, there are scatar functions e - R”? — R such that

[f;)00 = Yoy yx) Vij 6.51)
k=1

Feedback linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

» the vector fields (g, adg g , ..., adg"~1 g} are linearly independent in Q

* the set (g, ads g, ..., aa'f"‘2 g} is involutive in Q

—>This condition can be checked by applying
the chain rule and examining the rank of

certain matrices!

- The proof is actually semi-constructive: it
constructs a set of partial differential
equations to which the state transformation is
the solution.

Feedback linearization

= Further readings:

= Slotine and Li, Chapter 6 — example 6.10 shows state-
input linearization in action

= Isidori, Nonlinear control systems, 1989.

Car

Tr = u,cosft

i, sin #

- U,
= — tan u.
L. -

.
|

= For your reference: Standard (kinematic) car models: (From Lavalle, Planning Algorithms, 2006, Chapter
13)

= Tricycle: ug € [—1,1],uy € [-7/2,7/2]
= Simple Car: ug € [—1, 1],u¢ € [_¢maxa ¢max]a Pmax < T/2
= Reeds-Shepp Car: ug € {—1,0,1},up € [—Pmaxs Pmax)s Pmax < 7/2

= Dubins Car: us € {O, 1}, Ugp € [_¢maxa ¢max]7 Omax < ’/T/2

Cart-pole

m, H(gq)j+ C(q,9) + G(g) = Blg)u
g _ _
’/7> Ho = | i me
Cla.d) = [0 —mplésinﬂ}
AL

1 0 0
[0
X Glg) = ;]
> f | mypglsind
B — [1
10

[See also Section 3.3 in Tedrake notes.]

Acrobot

H(q)q+C(q,q) +G(q) = B(q)u

H(q)

C(q,9)

[I+ Iy + mol? + 2malyle,co In + maoLyleocs
| L2+ malileacs Iy

[—2mlileesage —malileasado 1

| malile2s2qy 0

[(mllcl + mgll)gsl + ngl281+2
| maglasiyo

[0

|1

|

[See also Section 3.2 in Tedrake notes.]

Lagrangian dynamics

= Newton: F=ma
= Quite generally applicable

= Its application can become a bit cumbersome in multi-
body systems with constraints/internal forces

= Lagrangian dynamics method eliminates the internal forces
from the outset and expresses dynamics w.r.t. the degrees of
freedom of the system

Lagrangian dynamics

= [generalized coordinates

= [: total kinetic energy

= U: total potential energy

= Q. : generalized forces Qi=2; Fjg

= lLagrangianL=T-U

—> Lagrangian dynamic equations:

4oL OL
dt 9g; Oq;

Qi

[Nice reference: Goldstein, Poole and Satko, “Classical Mechanics”]

Lagrangian dynamics: point mass example

Consider a point mass m with coordinates (x,y, z) close to earth and with
external forces F,, Iy, F.

1
T = 5m(;i;2 + 9% + 27)

U =mgz

Lagrangian dynamic equations:

F, = ia—L—ﬁ—L—mz’zé
Y dtox Ox
po— 4oL oL _
v T atag oy Y
d OL 0L .
F, = ————=mZ—-mg

Lagrangian dynamics: simple double pendulum

[LLLL L

\92 m,

FIGURE A.1 Simple Double Pendulum

1 :Hl,qZ :ez,Si :Sintgi,Ci :COSQi,81+2 :Sin(91 +(92)

. |haia . la(q1 + g2)c142
e [lldlsl T X l2(q1 + G2)s1+2

1.) 1. :
T :§X’{7711X1 - 3X§"712X2

1 T A
25(‘7711 +mo)l34} + 3‘771215(611 + Go)? 4+ malylagy (41 + Go)ea

U =mygyy +magys = —(my + may)glicy — moglaciio

(my + m.ﬁlfijl + 772.213(('1'1 + g2) + malila(2¢1 + G2)ca
— 7712[1[2(2(21 -+ 42)4282 + (7711 -+ 7712)[1981 + 77129[281_1_2 =T

moal3(G1 + G2) + malilagica + malilagise + maglasi+o = To

[From: Tedrake Appendix A]

