
© 2013 Minitab, Inc.

Predictive Analytics and 
Quality Control in Healthcare

Daniel Griffith and Eduardo Santiago



© 2013 Minitab, Inc.

Table of Contents

1. What is and Why Predictive Analytics?
2. Difficulties arising from the application of predictive 

analytics
3. Predictive Analytic Tools
4. Quality Control



© 2013 Minitab, Inc.

What is and Why Predictive Analytics

► Predictive Analytics is the use of information systems, 
statistics, and/or computer-based models to help 
decision makers analyze historical data to make 
predictions about the future. 

► Dramatic growth of applications of analytics. Source: 
indeed.com 
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What is and Why Predictive Analytics

► As indicated by Eric Siegl’s
book the application of 
predictive analytics lies in the 
power to predict who will 
click, buy, lie or die. 
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Difficulties arising from its application

► Evans [1] suggests that organizations are overwhelmed 
by data and have difficulty determining how to use it.

► Successful application of analytics requires the 
integration of data, statistics, and Operations Research. 
But most importantly it requires a high-level 
understanding of how analytics supports an 
organization’s competitive strategy.
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Analytics Framework
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross Validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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Principal Component Analysis

► How to analyze many variables that could be highly 
correlated with each other?

► How to identify the underlying relationships that could 
exist between these correlated variables?

► How to combine these variables to extract the essence of 
the data?
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Principal Component Analysis

► Let’s talk about the great Bob Ross.
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Principal Component Analysis

► FiveThirtyEight published an article in 2014 on “A 
Statistical Analysis of the Work of Bob Ross”
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross Validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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Partial Least Squares – Readmission 
Diabetes

► 130 hospitals in the US from 1999-2008, patients with 
diabetes.

► 55 attributes from over 100,000 patients.
► The data contains such attributes as patient number, 

race, gender, age, admission type, time in hospital, 
medical specialty of admitting physician, number of lab 
tests performed, HbA1c test result, diagnosis, number of 
medications, diabetic medications, number of outpatient, 
inpatient, and emergency visits in the year before the 
hospitalization, etc.
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Partial Least Squares – Readmission 
Diabetes

► Binary logistic regression could be used but…
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Partial Least Squares – Readmission 
Diabetes

► Comparable results are obtained in terms of prediction 
but in a less painful way.
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross Validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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► Using all data to fit a predictive model can result in overfitting.
► Cross Validation is a technique commonly used to ensure the 

predictive model can do its job.

Partial Least Squares – Readmission 
Diabetes
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Partial Least Squares – Readmission 
Diabetes

► Cross Validation results are displayed:
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► Another way to assess the model is to look at the correct 
classification of patients in a confusion matrix. 

Partial Least Squares – Readmission 
Diabetes

Prediction according to model
Observed 
Outcome

Not likely to be 
readmitted

Likely to be 
readmitted

No readmission 4076 427
Readmission 455 138

A natural follow-up would be to 
investigate what factors can be used 
to more accurately predict this group.

Model classification = 83% 
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross Validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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Assessing the level of pre-operative risk 
for cardiac surgery patients

► There is considerable variation in the level of risk
► There are multiple variables that can be used to evaluate 

this risk: age, gender, hypertension, diabetic status, renal 
function, and left ventricular mass

► The Parsonnet score summarizes this in a single number
► To illustrate we use the data from Steiner et al. [3] that 

includes 6,994 patients and whether or not they died 
within 30 days of surgery.
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Build Predictive Model: Binary Logistic
► A very simple model can be built based on a patient’s 

Parsonnet’s score. 
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Build Predictive Model: Binary Logistic
► Using Parsonnet’s Score we can assign the Predicted 

Mortality to each patient. 
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross Validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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How should we Monitor Mortality Rate?
► We have a Binary Outcome

► We have the Operation Date Recorded

► We have the risk of Mortality associated with each
Patient
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Monitoring the Mortality Rate
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Monitoring Monthly Mortality Rates 

Monitoring the Mortality Rate

Only one month the probability is 
considered to be out of control.
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Monitoring the Mortality Rate

► We are assuming each patient has the same risk of 
Mortality going into his/her surgery.
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Monitoring Monthly Mortality Rates 

What is wrong with the P-Chart 
approach?
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Monitoring the Mortality Rate
► So what type of chart do we need?

1. We need to account for the different patient risk level for the
plotted points

2. We need to have proper detection when the mortality rate is
increasing while ensuring we adjust for the proper risk level.

3. Therefore, we need control limits based on the varying risk
levels of the patients.

► We need to monitor mortality with:

Risk Adjusted Bernoulli CUSUM with Dynamic Probability Control Limits
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Predictive Analytic Tools

q Principal Components Analysis
q Partial Least Squares
q Cross-validation Techniques
q Binary Logistic Regression 
q Risk-adjusted Monitoring Charts
q Rare Events Charts (and not so “rare”)
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Monitoring Rare Events – UTI’s

► Description: A large hospital system concerned with a 
very high rate of hospital-acquired urinary tract infections 
(UTIs) is trying to evaluate if their processes are in 
statistical control. 

► Because the root cause often differs based on gender, 
male and female patients are charted separately.

► The financial cost to the hospital is significant, with 
Medicare no longer covering the cost to treat hospital-
acquired infections (historically 80% coverage). 
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Conclusions

► With the increasing size of datasets, predictive analytics 
should be part of LSS professionals toolset

► Classification problems in Healthcare include modeling 
readmissions, or mortality but can be generalized to handle 
problems from various disciplines 

► Binary logistic regression, Partial Least Squares are two 
popular modeling techniques that can incorporate cross 
validation to ensure robust models

► Process monitoring is a difficult task to achieve when the 
“samples” are not homogeneous
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