LTE – A Technical Overview

Titus Lo tlo@neocific.com

Scope of Presentation

- Cellular wireless systems
- LTE system & architecture
- Key Technologies

Cellular Wireless Systems

Wireless Standard Evolution

IEEE802

- IEEE802.16
 - IEEE standard that defines a wireless network on a metropolitan area (WMAN)
 - Original goal to support fixed and nomadic users (16a~d)
 - Evolved to mobility (vehicular speeds) and increased data rates (16e)
 - 16m under development
- IEEE802.20
 - Span off from 802.16 to support high mobility applications
 - For whatever reasons, it lost momentum
 - Its survival is in doubt

3GPP2 Evolution

- CDMA2000 1X (1999)
- CDMA2000 1xEV-DO (2000)
- EV-DO Rev. A (2004): VoIP
- EV-DO Rev. B (2006): Multi-carrier
- Ultra Mobile Broadband (UMB) (a.k.a. EV-DO Rev. C)
 - Based on EV-DO, IEEE 802.20, and FLASH-OFDM
 - Commercially available in 2009
- UMB's fate?

3GPP Evolution

- Release 99 (Mar. 2000): UTRA in FDD and TDD (3.84 Mcps) modes
- Rel-4 (Mar. 2001): TD-SCDMA
- Rel-5 (Mar. 2002): HSDPA with IMS (IP Multimedia Services)
- Rel-6 (Mar. 2005): HSUPA with MBMS
- Rel-7 (2007): DL MIMO, optimized real-time services (VoIP, gaming, push-to-talk)
- Rel-8 (Dec. 2008) Long Term Evolution (LTE)

System & Architecture

LTE

- Standardization effort started in late 2004
 - With HSPA (downlink and uplink), UTRA will remain highly competitive for several years
 - IEEE is standardizing mobile WiMAX => Threat for loosing competitive edge
- LTE focus:
 - Enhancement of the UTRA
 - Optimisation of the UTRAN architecture
 - To ensure the continued competitiveness of the 3GPP technologies for the future
- LTE was the first and only technology recognized by the Next Generation Mobile Network alliance to meet its broad requirements
- Target deployment in 2010

Service Capabilities

- Reduced cost per bit
 - Improve spectrum efficiency (e.g. 2-4 x Rel6)
 - Reduce cost of backhaul (transmission in UTRAN)
- Increased service provisioning more services at lower cost with better user experience
- Focus on delivery of services utilising "IP"
- Reduced latency, to 10 msec round-trip time between user equipment and the base station, and to less than 100 msec transition time from inactive to active
- Increase the support of QoS for the various types of services (e.g. VoIP)
- Increase "cell edge bit rate" whilst maintaining same site locations as deployed today
- Reasonable terminal power consumption
- Flexibility of use of existing and new frequency bands

System Capabilities

- Downlink peak data rates up to 326 Mbps with 20 MHz bandwidth
- Uplink peak data rates up to 86.4 Mbps with 20 MHz bandwidth
- Operation in both TDD and FDD modes.
- Variable duplex technology within bands as well as between bands
- Scalable bandwidth up to 20 MHz, covering 1.4, 2.5, 5, 10, 15, and 20 MHz
- Increased spectral efficiency over Release 6 HSPA by a factor of two to four
- Enhance the bit rate for MBMS (e.g. 1-3 Mbps)

Architecture & Mobility Capabilities

- UTRAN Evolution and UTRA Evolution with simplified architecture
- Open interfaces to support Multi-vendor deployments
- Robustness no single point of failure
- Support of multi-RAT with resources controlled from the network
- Support of seamless mobility to legacy systems as well as to other emerging systems including
 - Inter-RAT Handovers
 - Service based RAT Selection
- Maintain appropriate level of security

Evolved Packet System (EPS)

Functional Split between eNB & AGW

E-UTRAN

- eNB functions
 - Selection of aGV
 - Routing towards activation;
 - Scheduling and t paging messages;

- AGW functions
 - Paging origination
 - Ciphering of the user plane
 - PDCP
 - SAE Bearer Control
 - Ciphering and integrity protection of NAS signaling
- Scheduling and transmission of BCCH information;
- Dynamic allocation of resources to UEs in both uplink and downlink;
- The configuration and provision of eNB measurements;
- Radio Bearer Control;
- Radio Admission Control;

Protocol Stack

RLC Functions

- Transferring upper layer PDUs
- Error correction through ARQ
- Concatenation, segmentation and reassembly of RLC SDUs
- Re-segmentation of RLC data PDUs

MAC Functions

- Mapping between logical channels and transport channels
- Scheduling information reporting
- Managing HARQ
- Logical channel prioritization;
- Transport format selection.

Network CN and User Equipment UE

 Supporting signaling and traffic between these two elements

Data Flow

Channel Mapping

Key Technologies

Key Technologies

- OFDMA for DL
- SC-FDMA (Single Carrier FDMA) for UL
- Bandwidth Flexibility
- Advanced antenna technology
- Link adaptation
- Inter-cell-interference coordination (ICIC)
- Two-layered retransmission (ARQ/HARQ)
- Multicarrier channel-dependent resource scheduling
- Discontinuous Rx and Tx
- MBMS

OFDMA

- Modulation OF
 - An OFDM symb certain time dura
 - Transmitting dat subcarriers
 - Each subcarrier (e.g., QPSK)

- Multiple-access scheme
 - Transmission organized into intervals
 - Time and frequency resource organized into resource blocks (RBs)
 - Multiple RBs assigned to individual users for transmission

Time and Frequency Resource

- Resource element: subcarrier in an OFDM symbol
 - uniquely identified by the index pair (k,l) in a slot
- Resource block consisting of multiple RE Physical RB
 - Normal CP: 12x7
 - Extended CP: 12x6 (for 15KHz) and 24x3 (for 7.5KHz)

Frame Structure

- Type 1
 - Twenty time slots in a frame, each 0.5 ms long
 - A subframe consisting of two slots
 - Ten subframes for DL and 10 for UL

Type 2

Subframe

DL Physical Channel Processing

UL Physical Channel Processing

- Utilizes single carrier modulation and frequency domain equalization
- SC-FDMA can be regarded as DFT-precoded or DFT-spread OFDMA

SC-FDMA

- Two types of SC transmission
 - Localized transmission
 - Multi-user scheduling gain in frequency domain
 - Need to feedback channel state information
 - Mainly for low-to-medium mobility users
 - Distributed transmission
 - Robust transmission for control channels and high mobility UE
 - Mainly for high mobility users

Bandwidth Flexibility

- Supported bandwidths: 1.4, 3.0, 5, 10, 15, 20 MHz
- All UE support bandwidth of 110 RBs (110x180 kHz≈20 MHz)
- Fixed subcarrier spacing
- Modular sampling rates for different BWs
- Adjusting the numbers of RB for different BWs
- Fixed symbol length for all BWs

	Chap <mark>nel b</mark> and <mark>width (M</mark> Hz)	1.4	3	6	10- 4	16	20	
1.4 I	Subcarrier spacing (KHz)	15	15	15	15	15	15	
	Number of occupied subcarriers	72	180	300	600	900	1200	
	Number of RB per slot	6	15	25	50	75	100	
	IDFT/DFT size	128	256	512	1024	1536	2048	
	Sampling rate (MHz)	1.92	3.84	7.68	15.36	23.04	30.72	

DL Synchronization Signals

- Transmitted on the 72 centre sub-carriers (around DC sub-carrier)
- Primary sync signal
 - carrying 3 unique identities of a cell group
 - Tx at 1st and 5th subframes (Type1) or at 2nd and 6th subframes (Type 2)
- Secondary sync signal
 - carrying 168 cell identity groups
 - Tx at 1st and 5th subframes
- Generated from Zadoff-Chu sequences

DL MIMO Modes

 Dynamic switching between spatial multiplexing and SFBC

LTE-MIMO 2x2 and 4x2

- CL
 - -PMI feedback from UE
 - Codebook-based linear precoding
 - -PSRC
 - Uses diversity to transmit multiple data streams over multiple transmit antennas
 - -MU-MIMO/SDMA
 - To improve capacity

- OL single stream
 - SFBC
- OL multiple streams
 - -PARC
 - Uses diversity to transmit multiple data streams over multiple transmit antennas

Closed loop

- Beamforming
 - To improve coverage

DL MIMO

MIMO operation in the frequency domain

Link adaptation

- Transmission power control
 - Support fractional path-loss compensation: UEs close to to border use less tx power
- Adaptive modulation and channel coding rate
 - Modulation and coding for the sharlow Tx power data channel adapted accord
 Channel Quality Indication reported by UE
- Adaptive transmission Ł
 - RB allocation

Inter-Cell-Interference Coordination

- Allowing frequency reuse >1 at cell edge
- UL ICIC
 - Supported through High-Interference and Overload Indicators, sent to neighboring cells
 - Avoiding scheduling UL use at the cell edge in some parts of the bandwidth

DL ICIC

- Restriction of tx power in some parts of the bandwidth
- Coordination supported through RNTP indicator, sent to neighboring cells

ARQ/HARQ

- eNB or UE can to request retransmissions of incorrectly received data packets
- Use two-layered mechanism to achieve low latency and low overhead without sacrificing reliability
- Most errors captured by HARQ protocol

ARQ
MAC
HARQ

HARQ Protocol

Scheduling

- eNB scheduler
 - Taking into account of different types of information
 - QoS parameters and measurements from the UE
 - UE capabilities and buffer status
 - Each subframe (1ms), determining
 - which users are allowed to transmit
 - on what frequency resource,
 - at what data rate
 - Example channel dependent scheduling taking advantage of channel quality variation for more efficient use of BW
- Types of scheduling
 - Dynamic scheduling
 - Semi-persistent scheduling
 - With HARQ

Power Saving: DRX and DTX

- LTE power save protocols
 - Discontinuous Reception (DRX)
 - Discontinuous Transmission (DTX)
 - Both reducing transceiver duty cycle while in active operation
 - DRX also applies to the RRC_Idle state with a longer cycle time than active mode

Long and Short DRX

- DRX may have long or short "off" durations, configured by the RRC
- Transition between long DRX and short DRX
 - Determined by the eNB (MAC commands) or by the UE based on an activity timer
- A lower duty cycle could be used during a pause in speaking during a voice over IP call
- When speaking resumes, this results in lower latency
- For packets arriving at a lower rate, the UE can be off for a longer period of time
- For packets arriving more often, the DRX interval is reduced during this period

MBMS

- MBMS is an essential requirement for LTE an integral part of LTE.
- Cells may be configured to be part of an SFN for transmission of an MBMS service
 - the cells and content are synchronized to enable for the UE to soft-combine the energy from multiple transmissions
- The MBMS traffic can share the same carrier with the unicast traffic or be sent on a separate carrier
- Suppoeted by MBSFN reference signals

LTE -Advanced

- Advanced version of LTE (3GPP Rel. 10) designed to meet IMT-Advanced requirements
- Evolution of current OFDMA approaches
- High-order MIMO (e.g., 4X4)
- Wider radio channels (e.g., 50 to 100 MHz).
- Optimization in narrower bands (e.g., less than 20 MHz) due to spectrum constraints in some deployments
- Multi-channel operation in either same or different frequency bands
- Ability to share bands with other services.

About Neocific

- A wireless technology company
 - Consulting
 - Prototyping and product development
 - Reference designs on HW/SW platforms
- Technical strength
 - OFDM/OFDMA broadband wireless system
 - IP networking software development
 - Embedded software development
- Current focus
 - Broadband wireless technologies : WiMAX, LTE, and others
 - Sensor networks

Thank you!

