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Optimal Signal Processing  
 

The sound of ‘Signalbehandling’ 
 

 
                ‘s’          ‘i’           ‘g’ ‘n’      ‘………………………’     
 
 

 
                                  ‘s’                                       ‘i’   
 
                                noise                             harmonic signal        
 
 
How can this be generated as output from a linear filter? 
Determine the filter and the input signal.   
 
 
LPC model of syntetic  sound production 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In syntetic speech production, the parameters often are updated every 5 milliseconds. 

 

pulse train 

 

white noise  
LPC-model 
 

speech output from pulse 
train  

)(0 zH  
speech output from white noise 
(waveform and spectra) 

 
 

 3

Optimal Signal Processing  
 
Chapter 2.   Digital signal processing 
       impulse response, convolution,  
   system function, Fourier, z-transforms  page 7-20 
   Matrix description.     page 20-52  
   Hints.        page 8-18, 21, 49. 
Chapter 3.   Random processing, such as  
   correlation functions, correlation matrices. 
   Random variables   page 58-74 
   Random Processes   page 74-119 
   Hints.      page 77, 79, 80, 85, 
          95, 99, 100, 101, 106 
Chapter 4.   Signal models, Deterministic and Stochastic approach. 
   Padé, Prony    page 133-154 
   Shank     page 154-160  
   All-pole Modeling   page 160,165 
   Linear prediction   page 165-174 
         4.5 not included 
   4.6        page 178-188 
   4.7 Stochastic Models  page 188-200 
   Hints.     page 130, 135, 138, 147, 148,149 
           195, 195 
Chapter 5. Levinson-Durbin recursion. page 215-225, 233-241 
         page 242 – 276 not included 
   Hints.     Table 5.1 – 5.4, figure 5.10 
Chapter 6. Latttice FIR and IIR filters,  
   only 6.2 and 6.4.1, 6.4.3  page 289-293, 297, 298, 304-307 
   6.5      page 308-324 
Chapter 7. Optimal filters. Linear prediction.  
   Wiener filters. Specially FIR filters.  
   FIR- Wiener filter   page 335-345 
   IIR- Wiener filter   page 353-371 
         7.4 not included 
   Hints.     page 337-339, 354, 355, 358-363, 370 
Chapter 8. Spectrum estimation. 
   Nonparametric methods  page 393-399, 408-425 
   8.3 (8.5 see chap 4) , 8.6  page 426-429, 451-472 
   Hints.     page 394, 408 
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Optimal Signal Processing  
 
Digital Signal Processing 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: Echo system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Digital 
filter.  A/D 

Low pass-
filter 

Low 
pass-  D/A 

Sampling Reconstruction Digital 
 circuit 

Delay  D 

Delay 2D 

D/A A/D x(t) x(n) y(t) y(n) 

loadspeaker
microphone

+    

+   
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Optimal Signal Processing  
 

An application from the text book 
 
Noise cancellation  (chapter 7, page 349) 
 
 
 
 

A signal is disturbed by additive noise v1(n). 
 
 
 
Try to measure the noise v(n) from the source and estimate the noise 
v1(n) added to the signal. Then subtract the noise v1(n) from the 
received signal. 
 
 
 
 
 
 
 
 
 
 
 
 

Signal 
source 

H(z) 

v(n) 

Estimate of v1(n) Wiener  
filter 

Noise 
source 

s(n) s(n)+v1(n) s(n) 

v1(n) v(n) 
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Optimal Signal Processing  
 
Optimal signal processing in Hay's book 
 
 
Chapter 2:   Brief review of digital signal processing. 
Chapter 3:   Brief review of random signals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The filters Hgen(z)  and Hreceiver(z) are of type 
 
   FIR 
   IIR 
   all-pole IIR 
 
 
 
Chapter 4, 5 and 6:   Make a model  Hgen(z) from the properties of s(n). 
 
Chapter 7:   Determine Hreceiver(z). 
 
Chapter 8:   Estimation of spectra. 
 
 
 
 

 received signal
          x(n) 

white noise 
w(n) 
or impulse  
δ(n) 

Estimate Hgen(z) 
from properties of 
s(n) 

noice 
 v(n) 

   hgen(n) 
   Hgen(z) 

transmitted 
    s(n)    hreceiver(n) 

   Hreceiver(z) 
  y(n) 

Determine 
Hreceiver(z) 
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Optimal Signal Processing  
Chapter 2  Digital Signal Processing 
 
Difference equation  
 

y n a k y n k b k x n k
k

q

k

p

( ) ( ) ( ) ( ) ( )= − − + −
==
∑∑

01
 

 
MATLAB:   A=[1  0.5  0.5];  B=[1  1];  y=filter(B,A,x); 
 
Convolution   

  
y n h k x n k

k
( ) ( ) ( )= −

=−∞

∞

∑
 

 

  impulse:    ( ) [0 0 0 1 0 0 0]nδ
↑

=   

  unit step:  ( ) [0 0 0 1 111...]u n
↑

=   
 
System function 
 

   )(
)()(

zA
zBzH =

 
Frequency function 
 

   )(
)()( ω

ω
ω

j

j
j

eA
eBeH =
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Optimal Signal Processing  
 
FIR, IIR filters 
 
 
FIR:    Circuit with impulse response with finite length 
 
Example 

   ( ) ( ) ( 1), ( ) ( ) ( 1)y n x n x n h n n nδ δ= + − = + −   
 
 
IIR: Circuit with impulse response with infinite length 
 
Example 

 ( ) 0.5 ( 1) ( ), ( ) 0.5 ( )ny n y n x n h n u n= − + =   
 
 
All-pole IIR-filters 
 
IIR-filters with poles only ( all zeroes in origin, B(z)=constant) 
 
Example 

 15.01
1)( −−

=
z

zH  

 



 9

Optimal Signal Processing 
Solvning the convolution sum. 
 

 
( ) ( ) ( ) ( ) ( )

k k
y n h k x n k x k h n k

∞ ∞

=−∞ =−∞

= − = −∑ ∑
 

 

 ( ) (0) ( ) (1) ( 1) (2) ( 2)y n h x n h x n h x n= ⋅ ⋅ ⋅ + − + − ⋅ ⋅ ⋅  
 

Example    ( ) [1 2 3 4], ( ) [4 2 2]x n h n
↑ ↑

= =   
 
Method A:  Vector notation 

   
[ ] )(

)1(
.
.

)1(
)(

)1()...1()0()( nxh

Nnx

nx
nx

Nhhhny TT

−−
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−
−=

 

 
Method B: Graphical solution 
Write   

( ) : 1 2 3 4

(0 ) : 2 2 4 (0) 4 1 4

(1 ) : 2 2 4 (1) 2 1 4 2 10

x k

h k y

h k y

↑

↑

↑

− = ⋅ =

− = ⋅ + ⋅ =
 

 

Gives the output   ( ) [4 10 18 26 14 8]y n
↑

=  
 
MATLAB:     x=[1 2 3 4];  h=[4 2 2];  y=conv(x,h) 
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Optimal Signal Processing  
Method C: Convolution matrix 
 
Use matrix notations 
 

  ( ) [1 2 3 4], ( ) [4 2 2]x n h n
↑ ↑

= =  
 

   

x
x x
x x x
x x x

x x
x

h
h
h

y
y
y
y
y
y

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

( )
( )
( )

( )
( )
( )
( )
( )
(5)

0 0 0
1 0 0
2 1 0
3 2 1

0 3 2
0 0 3

0
1
2

0
1
2
3
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

   

1 0 0
2 1 0
3 2 1
4 3 2
0 4 3
0 0 4

4
2
2

4
10
18
26
14
8

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   X h y=  

 
 
In Matlab:  x=[1 2 3 4]’;  X=convmtx(x,3) 
     h=[4 2 2]',      y=X*h 
 
(In signal processing, all vectors are column vectors) 
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Optimal Signal Processing  
Properties of matrices 
 

The square matrix ( )A n n×  is: 
 

 symmetrical if 
TA A=  

 

 Hermitian if ( )T HA A A∗= =  
 

 invertable if  
1AA I− =  

 
 Toeplitz  if all diagonals are identical 

    

3 4 5
2 3 4
1 2 3

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 Hermitian (symmetrical) Toeplitz if 

    

3 2 1
2 3 2
1 2 3

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [3,2,1]A Toep=  

 

 orthogonal if 
TA A I=  
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 Optimal Signal Processing  
Linear equation   (page 31-34) 
 
 

[ ]A is a n m matrix∗   

A x b=           gives 
 

 
1 , ( )x A b if n m A invertable−= =  

 

 
1( )H Hx A A A b if n m−= >  

     (overdetermined, more equations 
                              than variables.) Described more  
                             in chapter 4 
 

 mnifbAAAx HH <= −1)(  
     (underdetermined, less equations 
      than variables) 
 
Eigenvalue:   

    A v v A I= − =λ λ, ( ) 0  

    ,eigenvalues v eigenvectorsλ  
 

Λ
Λ= −

ofdiagonaltheinseigenvalue
VofcolumnstheinrseigenvectowithVVA ,1
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Optimal Signal Processing  
Optimisation  ( minimizing):     (page 49) 
 

If  z   real:      
2( )f z z=  

 
2 2( ) 2 ; 0

0 min ;

d d df z z z z
dz dz dz

gives z as imum

= = =

=  

 
 

If z   is complex: 
2( ) | |f z z z z∗= =   

     ( )zofconjugatetheisz∗
 

 

Derivate with respect to      zorz∗
    separately while 

treating the other as a constant. 
 
 

  

2

2

| |

| |

d dz z z z
dz dz
d dz z z z

dz dz

∗ ∗

∗
∗ ∗

= =

= =  

   
   
Setting this derivatives equal to zero gives the same 
minimum (page 49). This is used sometimes in the 
textbook. 
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 Optimal Signal Processing  
Example on circuits 
 
 
A 
 
 
 
 
 
 

    )()(5.0)(
)1()1(5.0)(

11 zXzzYzzY
nxnyny
−− +=

−+−=
 

 
B 
 
 
 
 
 
 
 
 
 
 
C  Lattice filters 
 
 
 
 
 
 
 
 

  FIR-lattice filter 
 
 
 
 
 
 
 
 
 
 
 
 

  IIR-lattice filter 

 

   

y(n), Y(z) x(n), X(z) 

Г1 
z-1 z-1 

-Г1 -Г2

Г2 

Y(z) 
X(z) 

y(n) 
Г1 x(n) 

z-1 z-1 
Г1 Г2

Г2 

Y(z) X(z)
y(n) x(n) 

z-1 

0.5 

X(z)

y(n) x(n) 
z-1 

0.5 

z-1 

0.5 

0.5 

Y(z)
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Optimal Signal Processing  
Correlation functions  (deterministic) 
 
 

 Autocorrelation function   

( )( ) ( ) ( ) ( )x xx
n

r l x n x n l r l
∞

=−∞

= − =∑
 

Cross-correlation function   

r l y n x n lyx
n

( ) ( ) ( )= −
=−∞

∞

∑
 

 
 
 

   ( ) ( ) ( )xr l x l x l= ∗ −  

   r l y l x lyx ( ) ( ) ( )= ∗ −  
 
 
 
  Relation between input and output 
 
 

     
( ) ( ) ( )yx xr l h l r l= ∗

 
 

( ) ( ) ( )y h xr l r l r l= ∗
 

  
 

 16

Optimal Signal Processing  
Example on correlation, echo 
 

x1   x2  
 

y=x1+x2      
 
 

rx1   
 

ry   
 

rx1y   
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Optimal Signal Processing  
Example of correlation, delay in mobile phones (GSM) 
 

Input signal to the GSM phone  
 
 

 Output signal after GSM      
 
 

Crosscorrelation                           
 
 

In Matlab:   rxy=xcorr(input,output) 
 
  

 18

Optimal Signal Processing  
Chapter 3 Discrete-Time Random Processes 
     
 

Random variables   (3.2 page 58-74) 
 

Probability density function        f xX ( )  

Probability distribution function:    F xX ( )  
 

Expected value (mean):  m E x x f x dxX= = ∫{ } ( )  

Mean-square value:   E x x f x dxX{ } ( )2 2= ∫  

 

Variance:   
2 2 2[ ] {[ ] } [ ] ( )x XVar x E x m x m f x dxσ= = − = −∫  

General:   y g x E y E g x g x f x dxX= = = ∫( ); { } { ( )} ( ) ( )  

Relation:   
2 2 2[ ] {[ ] } { }Var x E x m E X m= − = −  

 
 
Correlation.  Dependency between random variables  
x and y  

Correlation:  { }xyr E x y=  

Covariance:  {[ ][ ]}xy x yc E x m y m= − −  
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Optimal Signal Processing  
Stochastic processes   (3.3 page 74 ) 
(Wide-sense stationary processes, WSS) 
 
Example A:  Sinusoids with random phase   
   x n A n( ) sin( )= +ω0 Φ ,   
   Φ is a random variable  and   
   x n( ) is a random process. 
 
Example B: Noise  (white noise, colored  noise). 
 
Example C: Speech signals.  
 
The autocorrelation sequence and the cross-correlation 
sequence and their Fourier transforms are important in 
this course. 
 
 
Autocorrelation sequence:  

      ( ) { ( ) ( )}xr m E x k x k m∗= −  
 
Cross-correlation sequence.  

      ( ) { ( ) ( )}xyr m E x k y k m∗= −  
 
Estimation of the autocorrelation sequence  (ergodic 
processes) 

1( ) { ( ) ( )} ( ) ( )x
sum over
N values

r m E x k x k m x k x k m
N

= − = −∑  
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Optimal Signal Processing  
Interpreting of autocorrelation sequence: 
 
 
   Signal      Autocorrelation sequence 

 
Sinusoid:   
 
 

 
White noise.  
 
 

 
Colored noise 
 
 

 
Speech signal: Vowel. 
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Optimal Signal Processing  
Properties of autocorrelation sequence (page 83) 
(Wide-sense stationary processes, WSS) 
 
Definition: 

 
[ ] [ ]

[ ] [ ] ∗∗∗∗∗

∗∗∗

=+=−=

=−=−=

)()()()()(

)()()()()(

krknxnxEnxknxE

knxnxEknxnxEkr

x

x

 

 
Symmetry:  

   ( ) ( )x xr k r k∗= −  
 
Mean-square value:  

   
2(0) [| ( )| ] 0 ( )xr E x n positive= ≥  

 
Maximum value: 

  (0) | ( ) |x xr r k≥  
 
 
 
Non-stationary processes 
For signals that are not wide-sense stationary processes, (not WSS), 
we have to use the definitions (see chapter 4) 
 

  )}()({),(

)}()({),(
*

*

lxkyElkr

lxkxElkr

yx

x

=

=
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Optimal Signal Processing  
Correlation matrix (WSS) 

[ (0) (1)... ( 1)]Tx x x x N= −  
 

[ ]

(0) (1) (2) ( )

(1) (0) (1) ( 1)

(2) (1) (0) ( 2)

( ) ( 1) ( 2) (0)

H
x

x x x

x x x x

x x x x

x x x x

R E x x

r r r r p

r r r r p

r r r r p

r p r p r p r

∗ ∗ ∗

∗ ∗

∗

= =

⎡ ⎤⋅⋅⋅
⎢ ⎥

⋅⋅⋅ −⎢ ⎥
⎢ ⎥= ⋅⋅⋅ −⎢ ⎥
⎢ ⎥⋅
⎢ ⎥

− − ⋅⋅⋅⎢ ⎥⎣ ⎦

  

 

Properties of the correlation matrix 
 
  Hermitian Toeplitz   
  Toeplitz if real-valued process 
  Eigenvalues are real and non-negative 
 
Estimate of the correlation function 

  

1

0

1ˆ ( ) ( ) ( )
N

x
n

r k x n x n k
N

−
∗

=

= −∑  
 
Estimate of the cross-correlation function 

  
)()(1)(ˆ

1

0

knynx
N

kr
N

n
xy −= ∗

−

=
∑  
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Optimal Signal Processing  
Power spectrum of random process (3.3.8 page 94): 
(Wide-sense stationary processes, WSS) 
 
x(n) is a wide sense stationary random process  
(WSS,  x(n) real-valued,    h(n) real) with 
autocorrelation r kx ( )  
 
The  Fourier transform and the z-transform are given 
by: 
The Fourier transform of r kx ( ) :   

     
P e r k ex

j
x

j k( ) ( )ω ω= −∑  

The Z-transform of   r kx ( ) :    

     
P z r k zx x

k( ) ( )= −∑  

 
Properties 
Symmetry (real processes) 

:    ( ) ( )j j
x xP e P eω ω−=  

Positive:  

    ( ) 0j
xP e ω ≥  

Total power:  

    

1(0) ( )
2

j
x xr P e d

π ω
π

ω
π −

= ∫  
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Optimal Signal Processing  
Filtering of random processes,      
(3.4 page 99, 100, 101): 
 
 
 
 
 
 
Input-output relation 

y n x n h n x k h n k
k

( ) ( ) ( ) ( ) ( )= ∗ = −
= −∞

∞

∑  
 
 
Autocorrelation function for the output 

r k E y n y n k h l r m l k h my x
ml

( ) { ( ) ( )} ( ) ( ) ( )= − = − +
=−∞

∞

=−∞

∞

∑∑   
 
 
Cross correlation functions  

 r k E y n x n k h l r k lyx x
l

( ) { ( ) ( )} ( ) ( )= − = −
=−∞

∞

∑  

 ∑
∞

−∞=

+=−=
l

xxy lkrlhknynxEkr )()(}()({)(  

   
    h(n) 
    H(ejω) 

y(n) x(n) 

ry(k) rx(k) 
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Optimal Signal Processing  
 
Using convolution and power spectra 

( ) ( ) ( ) ( ) ( )hDefine r k h l h l k h k h k= + = ∗ −∑  
 
Correlation functions 
 

r k r k h k h k r k r ky x x h( ) ( ) ( ) ( ) ( ) ( )= ∗ ∗ − = ∗  
r k r k h kyx x( ) ( ) ( )= ∗     

 )()()( khkrkr xxy −∗=  
 
 
Spectra 

P e P e H ey
j

x
j j( ) ( ) | ( )|ω ω ω= 2

 

P e P e H eyx
j

x
j j( ) ( ) ( )ω ω ω=  

)()()( ωωω jj
x

j
xy eHePeP ∗=  

 
 

P z P z H z H
zy x( ) ( ) ( ) ( )=
1
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Optimal Signal Processing  
Spectral factorization  (3.5   page 104) 
 
 
x(n) is a WSS process with autocorrelation rx(k).  
We assume that  the process are generated from  
white noise v(n)  filtered in a filter with system   
function Q(z), Then, v(n) is called the innovation  
process of the process x(n). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can we find the filter Q(z) from x(n) and rx(k)? 
Is Q(z) stable and causal? 
Is 1/Q(z) stable and causal? 
 
 

r k k
P z
v

v

( ) ( )
( )

=

=

σ δ
σ

0
2

0
2

r k
P z Q z Q z
x

x

( )
( ) ( ) ( / )= ∗ ∗σ 0

2 1

white noise 
v(n) 

rv(k) 

  
 1/Q(z) 

 
       Q(z) 

our process 
x(n) 

white noise
   v(n) 
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Optimal Signal Processing  

Chapter 4  Signal modeling 
 
 
 
In Chapter 2, we have given a brief review of digital signal  
processing and some basic matrix definitions. 
 
 
Then, in chapter 3, the basics of random processes 
was given, specially autocorrelation sequence, power spectra 
(power spectral density) and filtering random processes.  
 
 
 
Now, we will use our knowledge of random processes to 
analyze signals which could be described as random processes 
such as speech signals. 
 
 
We assume that we have a random process such as speech 
signals and we want to describe this process in terms of the 
output from digital filters. 
 
 
We will have matrix equations and then, in chapter 5, we will 
describe a well-known algorithm (the Levinson-Durbin 
algorithm) to solve the equations. 
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Optimal Signal Processing 
 
Applications:    

 
 

   Speech coding in Mobile phones 
 
   Synthetic speech 
 
   Seismology 
 
   Biomedical applications 
 
   Radar 
 
   Sonar 
 
   Designing optimum filters for noise 
   reduction 
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Optimal Signal Processing  

Seismology 
 

 
 

 
Deterministic signals. 
 Padé        chapter 4.3 page 134-138 
 Prony      chapter 4.4 page 145-148 
       Shanks method     chapter 4.4.2 page 154-158 
 All-pole model  chapter4.4.3 
 
Random signals. 
 All-pole model  chapter 4.7.2 page 194 
 
The all-pole model is the most common method and we will 
concentrate us in the use of this method. 
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Optimal Signal Processing  

Padés approximation (chap 4.3, page 133 - 141) 
 
Start with the difference equation and let the input be δ(n) and the 
output x(n). Then, 
 

1 0
( ) ( ) ( ) ( ) ( ) ( )

p q

k k
x n a k x n k b k n k b nδ

= =

+ − = − =∑ ∑  

 
 
This can be written in matrix forms, 
 
 

   

(0) 0 0
(0)(1) (0) 0

1 (1)
(1)( ) ( 1) ( ) .
(2) ( )

( 1) ( ) ( 1)

( ) 0
( ) ( 1) ( ) 0

q

q

p

p q

p

x
bx x
b

ax q x q x q p
a b q

x q x q x q p

a p
x q p x q p x q

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥ ⎡⋅ ⋅ ⋅⎢ ⎥

⎡ ⎤⎢ ⎥⋅
⎢ ⎥⎢ ⎥− ⋅ ⋅ ⋅ − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅ =
⎢ ⎥⎢ ⎥

+ ⋅ ⋅ ⋅ − + ⎢ ⎥⋅ ⋅⋅⋅⋅⎢ ⎥
⎢ ⎥⎢ ⎥⋅ ⎢ ⎥⎣ ⎦⎢ ⎥

+ + − ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

We divide the equation in two parts (row 1 to q and q+1 to q+p) 
 

   p qX a b=   or   
0

1

1

0
q

pq

X b
aX +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 
 
 
Now, we use the lower part to determine a(n). Then, we use these 
values of a(n) to determine b(n) from the upper part. 
 
We illustrate the method with an example. 
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Optimal Signal Processing  

Example of Pade’s approximation 
Use Padé to determine ( )H z  for 2, 2p q= =  for the signal 

( ) 0.5 ( ) [0 1/ 2 1/ 2 3 / 8 1/ 4 5 / 32 3 / 32 7 /128 ...]nx n n u n
↑

= =  

 
We know the system function (use table for z-transform) 

 

1

1 2

0.5( )
1 0.25

zH z
z z

−

− −=
− +  

We now use method of Pade’ and see if we got the same solution. 
 
In matrix form, we have 

   

(0) 0 0 (0)
(1) (0) 0 (1)
(2) (1) (0) (2)

1
(1)

(3) (2) (1) 0
(2)

(4) (3) (2) 0
(5) (4) (3) 0
(6) (5) (4) 0

x b
x x b
x x x b

a
x x x

a
x x x
x x x
x x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Pade’: Use the rows 4 and 5 to solve a(1),a(2), Then rows 1,2,3 to solve 
b(0),b(1),b(2.) 

1
(3) (2) (1) 0

(1)
(4) (3) (2) 0

(2)

x x x
a

x x x
a

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 ==>

(2) (1) (1) (3)
(3) (2) (2) (4)

qX a

x x a x
x x a x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

This  gives 
1 2 1 2
3 8 1 2

1
2

3 8
1 4

1
2

1
1 4

/ /
/ /

( )
( )

/
/

( )
( ) /

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ ⇒

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

a
a

a
a  

 
Then, use row 1,2 and 3 to determine b(n). 

   

(0) (0) 0
(1) (1) (1) (0) 0.5
(2) (2) (1) (1) (2) (0) 0

b x
b x a x
b x a x a x

= =
= + =
= + + =

 

which gives the filter  
1

1 2

0.5( )
1 0.25

zH z
z z

−

− −=
− +
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Prony’s method (chap 4.4, page 144 – 149) 

In Pade’s approximation, we use a square matrix to determine a(n). If 
we use more equations, then we got an overdetermined equation 
system but we know from the first session how to solve this. This 
method is called Prony’s method. We use the same example to 
illustrate this. 
 
Example of the Prony  method. 
We restrict us to use 3 rows because we solve it manually. 
Then use the row 4,5,6 and solve it as an overdetermined equation 
system. 
The formula for this from chapter 2. 
 

( )A x b n m= > ==>
1( )H Hx A A A b−=  

 
Now, we use this formula for row 4,5 and 6. 
 

(2) (1)
(3) (2)
(4) (3)

q

x x
X x x

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  ,

(2) (1)
(2) (3) (4) 0.45 0.53

(3) (2)
(1) (2) (3) 0.53 0.64

(4) (3)

T
q q

x x
x x x

X X x x
x x x

x x

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

gives ⎥
⎦

⎤
⎢
⎣

⎡−
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ −

25.
1

...
)5(
)4(
)3(

)(
)2(
)1( 1

x
x
x

XXX
a
a T

qq
T
q  

 

Then b(n) the same as in a), which gives  
1

1 2

0.5( )
1 0.25

zH z
z z

−

− −=
− + . 

Comment: The z-transform of x(n) can be found in a formula table to 

be just 
1

1 2( )
1 0.25

zH z
z z

−

− −=
− +  and due to no noise , both methods gives 

the exact solution.  
The disadvantage of these two methods is that the correlation matrix 
is not a Toeplitz matrix. Now, we restrict us now to use an all-pole 
model. 
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All-pole model. (chap 4.4.3, page 162 – 165) 
 
This is the most common model used in practical applications  
(synthetic speech, speech coding in mobile phones). We assume that 
the signal x(n) can be modeled as output from an p-order all-pole 
filter. 

The difference equation for the input ( )nδ  is 
 

 
1

( ) ( ) ( ) (0) ( )
p

p
k

x n a k x n k b nδ
=

+ − =∑  

 
and the system function 
 

 1 2

1

(0) (0)( )
1 (1) (2) ( ) 1 ( )

p p
kp p p

p
k

b bH z
a z a z a p z a k z

− − −
−

=

= =
+ + + ⋅ ⋅ ⋅+ +∑

 

 

The output should be zero for all 0n ≠ .   We  define an error 

    
1

( ) ( ) ( ) ( )
p

p
k

e n x n a k x n k
=

= + −∑  

and we minimize 

    
2

0
| ( ) |

n
p e nε

∞

=

=∑   

 
This can be described by the following figure  (b(0)=1). 
 
 
 
 

    
1

( ) 1 ( )
p

k
p p

k

A z a k z−

=

= +∑  
The filter Ap(z) is  called the predicting error filter (PEF). 

impulse    
   ≈δ(n) 

0
0

1( )
( )

H z
A z

=   

our signal 
       x(n) 

impulse 
 δ(n)  

 ( ) ( )pHz A z=  
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We use a least squares solution to solve the problem. 
Take the derivative (for simplicity, we assume real valued signals). 
 

2

0 0

0 1

0

( )

| ( ) | 2 ( ) ( )
( ) ( ) ( )

2 ( ) [ ( ) ( ) ( ) ]
( )

2 ( ) ( ) 0 1,2,..,

n np p p

p

p
n lp

n

p

e n and given data
orthogonal

e n e n e n
a k a k a k

e n x n a l x n l
a k

e n x n k k p

ε ∞ ∞

= =

∞

= =

∞

=

∂ ∂ ∂= = =
∂ ∂ ∂

∂= + − =
∂

= − = =

∑ ∑

∑ ∑

∑
1442443

 

Then  
0 1

[ ( ) ( ) ( ) ] ( ) 0
p

p
n l

x n a l x n l x n k
∞

= =

+ − − =∑ ∑  

With 

   ∑
∞

=

−=
0

)()()(
n

x knxnxkr  

we got the result 

   1 ( )

( ) ( ) ( ) 0
x

p

p x
l r k l

r k a l r l k
= −

+ − =∑ 14243  

or rewritten 

  
1

( ) ( ) ( ) 1,...,
p

p x x
l

a l r k l r k k p
=

− = − =∑  

 
 
This equation is called the normal equation or the Yule-Walker 
equation. 
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In matrix form 
 

 

(0) (1) (2) ( 1) (1)

(1) (0) (1) ( 2) (2)

(2) (1) (0) ( 3) (3)

( 1) ( 2) ( 3) (0) ( )

x x x x p

x x x x p

x x x x p

x x x x p

px aR

r r r r p a

r r r r p a

r r r r p a

r p r p r p r a p

∗ ∗ ∗

∗ ∗

∗

⎡ ⎤⋅ ⋅ ⋅ − ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − − ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦114444444444244444444443

(1)
(2)
(3)
.
( )

x

x

x

x

r
r
r

r p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4243

 

 

Orthogonality principle. 
We can derive the filter in a slightly different way. 
Writing 

2

0 0 0 1

0 1 0

,min 0
( )mod

| ( ) | ( ) ( ) ( )[ ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( )

p

p
n n n k

p

p
n k n

p

p e n and given data
must be orthogonalcalled el error

e n e n e n e n x n a k x n k

e n x n a k e n x n k

ε

ε
∞ ∞ ∞

= = = =

∞ ∞

= = =

=

= = = + − =

= + −

∑ ∑ ∑ ∑

∑ ∑ ∑
1442443 1442443  

 
 
 

The minimum error (model error) is now found as 
 
 

0 0 1

1

,min ( ) ( ) [ ( ) ( ) ( )] ( )

(0) ( ) ( )

p

p p
n n k

p

x x
k

p e n x n x n a k x n k x n

r a k r k

εε
∞ ∞

= = =

=

= = = + − =

= +

∑ ∑ ∑

∑
 
 

 
1

,min (0) ( ) ( )
p

p x x
k

p r a k r kεε
=

= = +∑  
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This equation can be added to the matrix equation described above.  

Then, we got  (for real signals ( ) ( )x xr k r k∗ = ) 
 
 
 

 

(0) (1) (2) ( 1) 1
(1) (0) (1) ( 2) (1)
(2) (1) (0) ( 3) (2)

( 1) ( 2) ( 3) (0) ( )

x x x x

x x x x p

x x x x p

x x x x p

px
a

r r r r p

r r r r p a

r r r r p a

r p r p r p r a p

R

∗ ∗ ∗

∗ ∗

∗

⎡ ⎤⋅ ⋅ ⋅ − ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − − ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦1424314444444444244444444443 {

1

0
0

.
0

p

p uε

ε⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 

      1x p pR a uε=  
 
 
 
This is a symmetrical Toeplitz matrix equation system and can be 
solve with the method described in chapter 5. 
 
This all-pole model is often called Prediction Error Filter  (PEF) or 
Linear Prediction Coding (LPC). 
 
 
 
 
 
 
 
Shank’s method   (4.4.2,  see Hayes) 
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Application: FIR Least Squares Inverse Filters:  
Chap. 4.4.5 
 
Exercise 3, problem 4.19 ,   Exercise 4 (Computer exercise 1) 
 
The following system is given 
 
 
 
 
 
 
 
 
 
The input signal is an impulse,   

  )(ninput δ= ,   
and the desired output from our receiver is a delayed version of the 
input impulse,   

  )( 0nnoutputdesired −= δ .  
 

This means that we want to have the overall impulse response 
   )()()( 0nnnhng −≈∗ δ  
We define the error signal    
   )()()()( 0 nhngnnne ∗−−= δ  
 

Determine the receiver impulse response )(nh .which we will 
minimize  

  )(ε 2
0

ne
nA ∑∞

=
=  

 
Solution: See Exercise 3 and exercise4 (Computer exercise) 

 

  v(n),    white noise,  
    2

vσ  

x(n)=g(n)  

 

)(nh)( ng

Desired output  δ(n-n0)
 

Input    
δ(n) 
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Finite Data Records, all-pole modeling (4.6,  see Hayes) 
 
The error is defined as 
 

  
ε p

n
e n=

=

∞

∑ | ( )|2
0

 

 

but  x n( ) is  known only for  n in the interval [0  N], Then, 
 
 

ε p
C

n p

N

e n=
=
∑ | ( )|2

 

 
 
Autocorrelation Method (most common used method) 
 

Determine r kx ( )   assuming    x n( ) = 0 outside the interval [0  N]. 
 
Exactly as the Prony’s all-pole method with the autocorrelation 
matrix a Toeplitz matrix. 
 
 
 
Covariance Method (used sometimes) 
 

Use only values of x n( )  in the interval [0  N].  Like the Prony’s 
method but the autocorrelation matrix  is now not a Toeplitz matrix. 
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Stochastic model 4.7,  All-pole model 4.7.2 page 194. 
 
An all-pole stochastic model is called an autoregressive model (AR). 
The equations are identical to the all-pole model we had before. The 
only difference is the definition of the autocorrelation sequence. 
 

  
1

( ) ( ) ( ) 1,...,
p

p x x
l

a l r n l r k k p
=

− = − =∑  

 

  ( ) { ( ) ( )}xr k E x n x n l= −  
 
The minimum error (model error) is 

  
1

,min (0) ( ) ( )
p

p x x
k

p r a k r kεε
=

= = +∑  

 
We now write the model as (predicting error filter, PEF) 
 
 
 
 
 
 

    
1

( ) 1 ( )
p

k
p p

k

A z a k z−

=

= +∑  
 
 

white noise   
   ≈v(n) 

0
0

1( )
( )

H z
A z

=   

our process 
       x(n) 

white noise
 v(n)  

 ( ) ( )pHz A z=  
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 Stochastic model with both poles and zeroes.  
ARMA-model (4.7 page 189. 
 
 
The solution with both poles and zeroes is more difficult. 

Solve the problem in 2 steps like before  (first a kp ( ) ,  then b kq ( ) ) 
 
 
 

The differential equation is ( )white input noise with vσ 2 1=  
 

x n a l x n l b l v n lp
l

p

q
l

q

( ) ( ) ( ) ( ) ( )+ − = −
= =
∑ ∑

1 0  

 
 
 

Multiply with       x n k*( )−    and take   { }E .... gives  ( ( ) )ap 0 1=  
 
 
 

a l r k l b l r k lp
l

p

x q v x

r k l h l k
l

q

c k

vx v

q

( ) ( ) ( ) ( )
( ) ( )

( )

*
=

− = −
=

∑ ∑− = −
0 0

2σ
1 24 34

1 2444 3444  
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The right side is    ( )l k≥  
      

c k b l h l kq
l k

q

q( ) ( ) ( )*= −
=
∑

 

 
 

 
This gives the equations 
 

a l r k l
c k k q

k qp
l

p

x
q( ) ( )
( )

=
∑ − =

≤ ≤

>
⎧
⎨
⎩0

0
0  

 
 
or in matrix form 
 
 

R
R

a
ca

b
p

q⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥0  

 
 

*  Determine ap  from the lower part,  then cq  from the  
   upper part. 

   * From  cq   back to bq  we use spectral factorization. 
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From chapter 3, we have 
 
 

P z Q z Q
zx v( ) ( ) ( )*

*=σ 2 1
 

 
 
Take the transform of YWE: 
 
 

A z P z C z B z H
zp x q q( ) ( ) ( ) ( ) ( )*

*= =
1

 
 

A z P z C z B z
B z
A zp x q q

q

p
( ) ( ) ( ) ( )

( / )
( / )

* *

* *= =
1
1  

 
 
 
An finally 
 

C z A z B z B zq p q q( ) ( / ) ( ) ( / )* * * *1 1=  
 
 
The left side is known and hopefully we can identify the factors in the 
right side. 
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Example   -   ARMA model 
 
 
 
Problem:  We will estimate a first order ARMA model from 
  

   r r rx x x( ) , ( ) , ( ) ,0 3 1 2 2 1= = =   
 

Solution:  We have  p q= = 1  which gives the equations 
 

  

3 2
2 3
1 2

1 0
1

01

1

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

c
c

( )
( )

 

 

Then, we found   a1 1 2= − /    from the lower equation 
 
and  
 

c
c

1

1

0
1

3 2
2 3

1
1 2

2
1 2

( )
( ) / /

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ −
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<
≥=

usednotkkc
kkc

0)(
20)(

1

1
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Now, we have to identify           B zq ( )  
 
We have 

C z A z z zq p

C z A z

z

q p

( ) ( / ) (... ) ( )* *

( ) ( / )

. . .

* *

1 2
1
2

1
1
2

1

1

7
4

1
2

1

= + + −−

+ −

1 244 344 124 34

1 24444 34444  

 
But   
 

B z B zq q( ) ( / )* *1  must be symmetrical  so we can write 
 

⎪⎩

⎪
⎨
⎧

++

++
=

=++=

=++=

−

−

−

−

phaseminimumnotzz
phaseminimumzz

zcczcc

zzzBzB qq

)26.14.0()26.14.0(
)4.026.1()4.026.1(

)()(
2
1

4
7

2
1)/1()(

1

1

21
1

21

1**

 

 
which gives the filter  (choose minimum phase) 
 

1

1

1

1

2
11

31.0126.1

2
11

4.026.1)(
−

−

−

−

−

+=
−

+=
z

z

z

zzH
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Chapter 5  Levinson-Durbin recursion 
 
 

In chapter 4, we derive the normal equations or Yule-walker 
equations for an all-pole model  (chap 4.4.3, page 162 – 165). 
 

The difference equation for the input ( )nδ  is 
 

 
1

( ) ( ) ( ) (0) ( )
p

p
k

x n a k x n k b nδ
=

+ − =∑  

 
and the system function 
 

 1 2

1

(0) (0)( )
1 (1) (2) ( ) 1 ( )

p p
kp p p

p
k

b bH z
a z a z a p z a k z

− − −
−

=

= =
+ + + ⋅ ⋅ ⋅+ +∑

 

 
 
The output should be zero for all 0n ≠ .   We  define an error 

    
1

( ) ( ) ( ) ( )
p

p
k

e n x n a k x n k
=

= + −∑  

and we minimize 

    
2

0
| ( ) |

n
p e nε

∞

=

=∑   

This can be described by the following figure  (b(0)=1). 
 
 
 
 

    
1

( ) 1 ( )
p

k
p p

k

A z a k z−

=

= +∑  
 
 

impulse    
   ≈δ(n) 

0
0

1( )
( )

H z
A z

=   

our signal 
       x(n) 

impulse 
 δ(n)  

 ( ) ( )pHz A z=  
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The solution derived in chapter 4 is 
 

1

( ) ( ) ( ) 1,...,
p

p x x
l

a l r k l r k k p
=

− = − =∑  

In matrix form 
 

 

(0) (1) (2) ( 1) (1)

(1) (0) (1) ( 2) (2)

(2) (1) (0) ( 3) (3)

( 1) ( 2) ( 3) (0) ( )

x x x x p

x x x x p

x x x x p

x x x x p

px aR

r r r r p a

r r r r p a

r r r r p a

r p r p r p r a p

∗ ∗ ∗

∗ ∗

∗

⎡ ⎤⋅ ⋅ ⋅ − ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − − ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦114444444444244444444443

(1)
(2)
(3)
.
( )

x

x

x

x

r
r
r

r p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4243

 

The optimal coefficients can be found just by inverting the correlation 
matrix. The value of resulting minimum cost function was 

1
,min (0) ( ) ( )

p

p x x
k

p r a k r kεε
=

= = +∑  

The minimum cost is decreasing if the order p increases and can be 
used to chose an appropriate the value of the order p. 
 
 
Combining the two equations into one matrix equation gives 
  
 

 

(0) (1) (2) ( 1) 1
(1) (0) (1) ( 2) (1)

(2) (1) (0) ( 3) (2)

( 1) ( 2) ( 3) (0) ( )

x x x x

x x x x p

x x x x p

x x x x p

px
a

r r r r p

r r r r p a

r r r r p a

r p r p r p r a p

R

∗ ∗ ∗

∗ ∗

∗

⎡ ⎤⋅ ⋅ ⋅ − ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − − ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦1424314444444444244444444443 {

1

0
0

.
0

p

p uε

ε⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

      1x p pR a uε=  
 
We will now derive an iterative solution this equations. 
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Levinson-Durbin recursion 
 
The autocorrelation matrix for this system is Hermitian Toeplitz 
(symmetrical Toeplitz for real valued signals). For solving this types of 
matrix equation, a very well known algorithm is the Levinson-Durbin 
recursion. We assume here  real valued signals (for complex signal, 
see the textbook). 
 
We start with the normal equation from chapter 4 (page 216-219)  

  
1

( ) ( ) ( ) 0; 1, 2...
p

x p k
l

r k a l r l k k p
=

+ − = =∑  

and  the error 

   
1

(0) ( ) ( )
p

p x x
l

r a l r lε
=

= +∑  

 
 
In matrix form (index p denotes the order of the filter) 
 

(0) (1) (2) ( ) 1
(1) (0) (1) ( 1) (1) 0
(2) (1) (0) ( 1) (2) 0

.
0( ) ( 1) ( 2) (0) ( )

x x x x p

x x x x p

x x x x p

x x x x p

pp
a

r r r r p

r r r r p a

r r r r p a

r p r p r p r a p

R

ε⎡ ⎤⋅ ⋅ ⋅ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⋅ ⋅ ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥⋅ ⋅ ⋅ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎣⎣ ⎦⎣ ⎦14243144444444424444444443 {

1p uε

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥

⎦

 

 
 

    1p p pR a uε=  

 
Now we will derive an algorithm to solve this iteratively . The idea is 
to solve it in a recursive procedure starting a1, then a2, a3,   up to ap. 
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Then, in step j we have 
 

 

(0) (1) (2) ( ) 1
(1)(1) (0) (1) ( 1) 0

(2) (1) (0) ( 2) (2) 0
.

0( ) ( 1) ( 2) (0) ( )

x x x x j

jx x x x

x x x x j

x x x x j

jj
a

r r r r j
ar r r r j

r r r r j a

r j r j r j r a j

R

ε⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅ ⎡
⎢ ⎥ ⎢ ⎥ ⎢⋅ ⋅ ⋅ −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⋅ ⋅ ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢

⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ ⋅ ⎢ ⎥⎢ ⎥ ⎣⎣ ⎦⎣ ⎦14243144444444424444444443 {

1j uε

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥

⎦

 

    1j j jR a uε=  

 
 
 
Add one row and one column including the following equation 
 

   
1

( 1) ( ) ( 1 )
j

j x j x
i

r j a i r j iγ
=

= + + + −∑  

The new matrix is 
 

1

1(0) (1) (2) ( 1)
(1)(1) (0) (1) ( )
(2)(2) (1) (0) ( 1)

( )( ) ( 1) ( 2) (1)
0( 1) ( ) ( 1) (0)

x x x x

jx x x x

jx x x x

jx x x x

x x x x

j

r r r r j
ar r r r j
ar r r r j

a jr j r j r j r
r j r j r j r

R +

⎡ ⎤ ⎡⋅ ⋅ ⋅ +
⎢ ⎥ ⎢

⋅ ⋅ ⋅⎢ ⎥ ⎢
⎢ ⎥ ⎢⋅ ⋅ ⋅ −⎢ ⎥ ⎢⋅

⋅⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥− − ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥+ − ⋅ ⋅ ⋅ ⎣⎣ ⎦144444444424444444443 {

0
0

.
0

j

j

ε

γ

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ = ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎦14243
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Use the symmetry to write this as  
 

 ( ,T
j jR R symmetrical= ) 

 
 

0(0) (1) (2) ( 1)
( )(1) (0) (1) ( )
( 1)(2) (1) (0) ( 1)

(1)( ) ( 1) ( 2) (1)
1( 1) ( ) ( 1) (0)

x x x x

jx x x x

jx x x x

jx x x x

x x x x

r r r r j
a jr r r r j
a jr r r r j

ar j r j r j r
r j r j r j r

⎡ ⎤ ⎡⋅ ⋅ ⋅ +
⎢ ⎥ ⎢

⋅ ⋅ ⋅⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⋅ ⋅ ⋅ −⎢ ⎥ ⎢⋅

⋅⎢ ⎥ ⎢⋅ ⋅ ⋅
⎢ ⎥ ⎢− − ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥+ − ⋅ ⋅ ⋅ ⎣⎣ ⎦144444444424444444443 {

0
0

.
0

j

j

γ

ε

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ = ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎦14243
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Now, make a linear combination of these two equations 
 

{

1 1 1

1

1 0
(1) ( ) 0 0
(2) ( 1) 0 0

. .
0 0( ) (1)

0 1

j j

j j

j j
j j j

j j

j j

jja

a a j

a a j
R

a j a

ε

ε γ

γ ε

+ + +

+

⎧ ⎫
⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎪ ⎪⎢ ⎥ ⎢ ⎥⋅ +Γ = + Γ⎢ ⎥ ⎢ ⎥⎨ ⎬

⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎪ ⎪⎩ ⎭
14243
1444442444443

1 1u+
1442443

 

 
This new matrix equation must satisfy 

1 1 1 1j j jR a uε+ + +=  
 
Then, the lowest element in the vector on the right side must be zero. 
 
 
Then we got     

1

1

0j j j

j
j

j

γ ε
γ
ε

+

+

+ Γ =

Γ = −  

and  also  
2

1 1 1(1 | | )j j j j j jε ε γ ε+ + += + Γ = − Γ  
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This results in the update equation for a  
 
 

1

1
1

1

1

1 1 0
(1) (1) ( )
(2) (2) ( 1)

( ) ( ) (1)
( 1) 0 1

j j j

j j j
j

j j j

j

a a a j
a a a j

a j a j a
a j

+

+
+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +Γ

⋅⎢ ⎥ ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
Alternatively, we can write 
 

 

1 1( ) ( ) ( 1) 1, 2,..., 1j j j ja i a i a j i i j+ += + Γ − + = +  
 
Note that  

    
1 1

0

(0) 1

( 1) 0

( 1)

(0)

j

j

j j

x

a

a j

a j

rε
+ +

=

+ =

+ = Γ

=  

 
 
This algorithm is easy to implement in a computer program. 
This is shown in table 5.1 in the textbook. The parameters  

jΓ    are called the reflection parameters. For stable filters 
(all poles inside the unit circle), the reflection parameters are bounded 
by 

  | | 1jΓ < .  
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 55

Optimal Signal Processing  
The relation between     ja  and  jΓ   can be written as (page 234) 
 
 

0

1
1 1

11

2

2 2 1 2 1 1 2 1 1 1 2

2 2

3

3
3

3

3

1
(0) 11 0
(1) 0 1

(0) 1 0 1 0 1
(1) (1) (1)
(2) 0 1 0 1

(0)
(1)
(2)
(2)

a
a

a
a

a
a a a a

a

a
a

a
a
a

=

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = + Γ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + Γ = Γ + Γ Γ = Γ + Γ ⋅Γ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡
⎢
⎢=

⎣

2 2
3

2 2

1 0
(1) (2)
(2) (1)

0 1

a a
a a

⎤ ⎡ ⎤ ⎡ ⎤
⎥ ⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥ ⎢ ⎥= + Γ

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎦
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Lattice filter 
 

The parameters jΓ  can be interpreted in a specific structure of  
digital filters, called the lattice filters (see page 225 and chapter 6 and 
also homework 1). 
 
 
 a) Second order FIR-lattice filter 
 
 
 
 
 
 
 
 
  1 2

1 1 2 2( ) 1 ( )H z z z− −= + Γ + Γ Γ + Γ  
 
 
 b) Second order IIR-lattice filter 
 
 
 
 
 
 

  1 2
1 1 2 2

1( )
1 ( )

H z
z z− −=

+ Γ + Γ Γ + Γ  
 

 
 

 

   

y(n), Y(z) x(n), X(z) 

Г1 

z-1 z-1 

-Г1 -Г2 

Г2 

Y(z) 
X(z) 

y(n) 
Г1 x(n) 

z-1 z-1 
Г1 Г2 

Г2 
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Relation between the polynomial ja   and the  

reflection coefficients jΓ using z-transform 
 
 

We have  1 (1) (2) ( ) T
j j j ja a a a j⎡ ⎤= ⋅ ⋅⋅⎣ ⎦  

Then define  ( ) (2) (1) 1R T
j j j ja a j a a⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦  

 
 
 
Then we can write the update equation (page 224, 235, 236) 

   1 1( ) ( ) ( 1)R
j j j ja i a i a i+ += + Γ −  

 
 
 
Make a variable substitution  1i j i⇒ − +  gives 

    1 1

)1 ( 1) (( )

( 1) ( 1) ( )R
j j j j

âR
j

R jj i a ia i

a j i a j i a j i+ +

+ −

− + = − + + Γ −
1442443 14243 14243  
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Taking the z-transform of these equations gives 
 
 

Forwards:   (from gamma to polynomial) 
 

 

1
1 1

1
1 1

( ) ( ) ( )

( ) ( )

R
j j j j

R R
j j j j

A z A z z A z

A z z A A z

−
+ +

−
+ +

⎧ = + Γ⎪
⎨

= +Γ⎪⎩
 

 
 
In matrix form this can be written  (page 224  and page 236 
 
 

 

1
1 1

1
1 1

( ) 1 ( )

( ) ( )
j j j

R R
j j j

A z z A z

A z z A z

−
+ +

−
+ +

⎡ ⎤ ⎡ ⎤Γ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥

Γ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
 
 

Backwards:  (From polynomial to gamma) 
 

 

1 1
11

1 2
1 1 1

1 1 12
1

( )( ) 1
(1 | | ) 1 ( )( )

1( ) ( ) ( )
(1 | | )

jj j
RR

j j jj

R
j j j j

j

A zA z z z
z A zA z

A z A z A z

− −
++

−
+ + +

+ + +
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− Γ
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− Γ −Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= −Γ⎣ ⎦− Γ
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Backwards ireratively 
 

If the filter is given by ( )pa n , the reflection parameters jΓ  can be 
determined, see textbook page 235, page 236, table 5.3. 
  

 

1

1 1 12
1

The step down recursion (see table 5.3)
Identify ( )

Loop   j=p-1, p-2, ...  1
Then,determine from

1( ) ( ) ( 1) 1, 2,...,
1

Identify ( )

p p

j j

j j j j
j

j j

a p

a a

a i a i a j i i j

a j

+

+ + +
+

Γ =

⎡ ⎤= − Γ − + =⎣ ⎦− Γ

Γ =
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The Levinson-Durbin algorithm determine relation between 
autocorrelation r(x),polynomial a(k) and the reflection coefficients. 
This can be summarized in the figure below and in the 
 table 5.1 –5.4. 
 
 
 
 

 
 
 
 
 
 
 
 
c 
 
 
 
 
 

 

(1), (2), ...., ( ),x x xr r r p  

 

 1 2, ,..., pΓ Γ Γ  

 

(1), (2), ...., ( )p p pa a a p  

Levinson-Durbin 
Table 5.1 

Table 5.2 

Table 5.4 

Table 5.3 
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Chapter 3 Review of filtering random processes 
 
 
 
 
 
 
Input-output relation  (convolution) 

y n x n h n x k h n k
k

( ) ( ) ( ) ( ) ( )= ∗ = −
= −∞

∞

∑  
 
 
 
Autocorrelation function (deterministic)  

 
))(()()()( krknxnxkr xx

n
x =−=∑  

Autocorrelation function (random processes)  
  

 ))(()}()({)( krknxnxEkr xxx =−=  
 
 
Cross correlation function (random processes)  
  

 )}()({)( knxnyEkr xy −=  
 

   
    h(n) 
    H(ejω) 

y(n) x(n) 

ry(k) rx(k) 
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Autocorrelation function for the output 

r k E y n y n k h l r m l k h my x
ml

( ) { ( ) ( )} ( ) ( ) ( )= − = − +
=−∞

∞

=−∞

∞

∑∑   
 
Cross correlation functions  

 r k E y n x n k h l r k lyx x
l

( ) { ( ) ( )} ( ) ( )= − = −
=−∞

∞

∑  

 ∑
∞

−∞=

+=−=
l

xxy lkrlhknynxEkr )()()}()({)(  
 
Correlation functions 

 )()()()( khkhkrkr xy −∗∗=  

 )()()( khkrkr xyx ∗=  

 )()()( khkrkr xxy −∗=  
 
Spectra 

P e P e H ey
j

x
j j( ) ( ) | ( )|ω ω ω= 2

 

P e P e H eyx
j

x
j j( ) ( ) ( )ω ω ω=  

)()()( ωωω jj
x

j
xy eHePeP ∗=  

 
)()()()( 1−= zHzHzPzP xy  

)()()( zHzPzP xyx =    

 )()()( 1−= zHzPzP xxy   
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Chapter 3 Review of the All-pole model.  
 

The difference equation for the input ( )nδ  is   (deterministic) 
 

 
1

( ) ( ) ( ) (0) ( )
p

p
k

x n a k x n k b nδ
=

+ − =∑  

 
and the system function 
 

 1 2

1

(0) (0)( )
1 (1) (2) ( ) 1 ( )

p p
kp p p

p
k

b bH z
a z a z a p z a k z

− − −
−

=

= =
+ + + ⋅ ⋅ ⋅+ +∑

 

 

The output should be zero for all 0n ≠ .   We  define an error 

    
1

( ) ( ) ( ) ( )
p

p
k

e n x n a k x n k
=

= + −∑  

and we minimize 

    
2

0
| ( ) |

n
p e nε

∞

=

=∑   

 
This can be described by the following figure  (b(0)=1). 
 
 
 
 

    
1

( ) 1 ( )
p

k
p p

k

A z a k z−

=

= +∑  
The filter Ap(z) is  called the predicting error filter (PEF). 

impulse    
   ≈δ(n) 

0
0

1( )
( )

H z
A z

=   

our signal 
       x(n) 

impulse 
 δ(n)  

 ( ) ( )pHz A z=  
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We use a least squares solution to solve the problem. 
Take the derivative (for simplicity, we assume real 
valued signals). 
 

2

0 0

0 1

0

( )

| ( ) | 2 ( ) ( )
( ) ( ) ( )

2 ( ) [ ( ) ( ) ( ) ]
( )

2 ( ) ( ) 0 1,2,..,

n np p p

p

p
n lp

n

p

e n and given data
orthogonal

e n e n e n
a k a k a k

e n x n a l x n l
a k

e n x n k k p

ε ∞ ∞

= =

∞

= =

∞

=

∂ ∂ ∂= = =
∂ ∂ ∂

∂= + − =
∂

= − = =

∑ ∑

∑ ∑

∑
1442443

 

Then  
0 1

[ ( ) ( ) ( ) ] ( ) 0
p

p
n l

x n a l x n l x n k
∞

= =

+ − − =∑ ∑  

With 

   ∑
∞

=

−=
0

)()()(
n

x knxnxkr  

we got the result 

   
0)()()(

1 )(

=−+∑
= −

p

l lkr

xpx

x

klrlakr
43421  

or rewritten 

  
1

( ) ( ) ( ) 1,...,
p

p x x
l

a l r k l r k k p
=

− = − =∑  

 
 
This equation is called the normal equation or the Yule-Walker 
equation. 
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In matrix form 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−
−
−

)(

)3(
)2(
)1(

)(

)3(
)2(
)1(

)0(...)3()2()1(

)3(...)0()1()2(
)2(...)1()0()1(
)1(...)2()1()0(

pr

r
r
r

pa

a
a
a

rprprpr

prrrr
prrrr
prrrr

x

x

x

x

p

p

p

p

xxxx

xxxx

xxxx

xxxx

 

  
 

Orthogonality principle. 
We can derive the filter in a slightly different way. 
Writing 

2

0 0 0 1

0 1 0

,min 0
( )mod

| ( ) | ( ) ( ) ( )[ ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( )

p

p
n n n k

p

p
n k n

p

p e n and given data
must be orthogonalcalled el error

e n e n e n e n x n a k x n k

e n x n a k e n x n k

ε

ε
∞ ∞ ∞

= = = =

∞ ∞

= = =

=

= = = + − =

= + −

∑ ∑ ∑ ∑

∑ ∑ ∑
1442443 1442443  

 
 
 

The minimum error (model error) is now found as 
 
 

0 0 1

1

,min ( ) ( ) [ ( ) ( ) ( )] ( )

(0) ( ) ( )

p

p p
n n k

p

x x
k

p e n x n x n a k x n k x n

r a k r k

εε
∞ ∞

= = =

=

= = = + − =
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This equation can be added to the matrix equation described above.  

Then, we got  (for real signals ( ) ( )x xr k r k∗ = ) 
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      1x p pR a uε=  
 
 
 
This is a symmetrical Toeplitz matrix equation system and can be 
solve with the Levinson-Durbin algorithm described in chapter 5. 
 
This all-pole model is often called Prediction Error Filter  (PEF) or 
Linear Prediction Coding (LPC). 
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Chapter 6  Lattice Filters 
 
In chapter 4, we derive the normal equations or Yule-walker 
equations for an all-pole model.  And in chapter 5 we derived an 
algorithm (Levinson-Durbin) to solve the equations. In this chapter 
we will interpret the signals direct in a Lattice FIR structure. 
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The output should be zero for all 0n ≠ .   The error was defined as   
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We minimized the cost 
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The solution was given by the normal equation ( chapter 4, page 216-
219)  
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In matrix form this can be written as 
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      1x p pR a uε=  
 
Levinson-Durbin (chapter 5) solves the normal equations iteratively. 

The solution gives      )(ka j   and jΓ   in each step j=1,..,p 
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Example of all-pole model of vowels 
Example 1 
 
 
Vowel  ‘i’ with order p=6 

 
 
 
 
Upper left:  Signal ,      Upper right: Fourier transform (DFT) of the signal 
 
Middle:  Autocorrelation sequence of the signal 

Pole-zero plot  Spectrum from poles 
 

Lower left:  Impulse response to HIIR(z)=1/A(z) 
Lower right :  Output from HFIR(z)=A(z). 
 
Coefficients ap(k) for order p=6. 
a=[1.0000   -0.4912    0.1714   -1.0041    0.1397   -0.4127    0.7529] 
 
Reflection coefficients: 
Γ= [  -0.7021   -0.2154   -0.5704   -0.0168   -0.0990    0.7529] 
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Example 2 
 
Vowel  ‘i’ with order p=8 
 

 
 
Upper left:  Signal ,      Upper right: Fourier transform (DFT) of the signal 
 
Middle:  Autocorrelation sequence of the signal 

Pole-zero plot  Spectrum from poles 
 

Lower left:  Impulse response to HIIR(z)=1/A(z) 
Lower right :  Output from HFIR(z)=A(z). 
 
 
Coefficients ap(k) for order p=8. 
a=[1.0000  -0.1191   0.3997  -1.1694   -0.2256  -0.9065   0.6446   0.1265   0.5622] 
 
Reflection coefficients: 
Γ= [ -0.7021   -0.2154   -0.5704   -0.0168   -0.0990    0.7529    0.2829    0.5622] 
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LPC Speech encoding 
 

 
 
LPC model of syntetic  sound production 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In syntetic speech production, the parameters often are updated every 5 milliseconds. 

 

pulse train (waveform  
and spectra) 

 

 

white noise (waveform 
 and spectra 

 

LPC-model 
(All-pole model) 

speech output from pulse train 
(waveform and spectra) 

 

 
 
speech output from white noise 
(waveform and spectra) 

 

 

)(0 zH  
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The principles of the speech coding in GSM 
 
 
Transmitting mobile 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Radio channel 
 
 
 
 
 
 
 
Receiving mobile 
 
 
 
 
 
 
 
 
 
In the laboratory work 1, we listen to the signals after each block and we also 
plot the waveforms and the spectra after each step. 
 

pitch and 
amplitude 

error signal after pitch 
reduction and down sampling 

error signal 
from LPC 

input speach 

LPC  
coding 

High-pass 
filter 

Coding of the error 
signal including 
down sampling 

Pitch 
estimation  

error signal reflection 
coefficients 

 
output speach 

LPC  
decoding 

Low-pass 
filter 

decoding of 
the error 
signal and 
restore 
sampling 
rate 

Insert 
pitch 
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FIR Lattice Filter structure  
 
Now we look at signals direct in the FIR Lattice Filter structure. 
We determine the coefficients direct from the signal not determining 
the autocorrelation function r(k).  
 
 
The error signal (output signal) is 
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We refer this error as the forward prediction error and use the 
notation 

)(ˆ)()()()()(

)(ˆ

1
nxnxknxkanxne

nx

p

p

k
−=−+=

−

=

+ ∑
444 3444 21  

This signal is found as the output from the upper branch in the 
Lattice FIR filter. 
Now, we also define the signal in the lower branch as the backward 
prediction error.  
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Forward/Backward Prediction Error 
 
 
From chapter 5, we have  (page 224, 235, 236) (real signals) 
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  a i a i a ij
R

j
R

j j+ += − +1 11( ) ( ) ( )Γ  
 
and the transforms 
 

A z A z z A zj j j j
R

+
−

+= +1
1

1( ) ( ) ( )Γ  

A z z A z A zj
R

j
R

j j+
−

+= +1
1

1( ) ( ) ( )Γ  
 

 
The output in each step is 
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The error signal is the  
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Second order Lattice-FIR-filter  (real signals) 
 
We can interpret the forward prediction error in the upper branch 
and the backward prediction error in the lower branch in the Lattice 
FIR filter shown below. 
 
 
  

FIR   H(z)=A (z) 
 
 
 
 
 
 
 
 
 
 
 
 
 We now will briefly present methods using the Lattice structure. 
 
 Forward Covariance Method, page 308 
 
  Backward Covariance Method, page 313 
 

Burgs Method, page 317 
 
 
 

Another method is the modified covariance method (page 322) using 
only FIR structure. 
 
6.4 IIR Lattice filters. Some examples in the exercises 

e0
+(n) e1

+(n) e2
+(n) 

e0
-(n) e2

-(n) e1
-(n) 

 
  

Γ2 Γ1 x(n) 

Γ2 Γ1 
z-1 z-1 
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Forward Covariance method, page 308 
 
 
Given: The Lattice FIR structure   (real signals).  
 
Task: Determine the predictor, which minimize the forward prediction error 
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This gives the solution 
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Backward Covariance method (page 313-314) 
 
Given: The Lattice FIR structure   (real signals).  
 
Task: Determine the predictor, which minimize the forward prediction error 
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Take the derivative of −

jε  with respect to −Γ j  
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Burgs method  (page 317-319) 
 
Given: The Lattice FIR structure   (real signals).  
 
Task: Determine the predictor, which minimize the forward prediction error 
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Burgs method step by step 
 
Step 1: 
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Step 3 
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Step 4 
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and so on
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Which method is the best? 
 
Useful for short data sequences. 
 
 
The forward and backward covariance  
methods can give reflection coefficients  
not always less than 1 and then, the  
signal model is not stable. 
 
 
 
 
The reflection coefficients estimated using  
the Burg method are always less than 1  
and signal model is stable. 
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Burgs method modified with a window 
 
Given: The Lattice FIR structure   (real signals).  
 
Task: Determine the predictor, which minimize the forward prediction error 
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Solution:  
 

 
This gives the solution (see exercise 6.18) 
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Forward/Backward Covariance method, page 322. 
Gives the coefficients ap(k) direct. 
 
Given: The Lattice FIR structure   (real signals).  
 
Task: Determine the predictor, which minimize the forward prediction error 
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Solution:  
 
 

Take the derivative of 
M
pε  with respect to )(ka M

p  
 

This gives the solution 
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Chapter 7  Wiener Filters 
 

In this chapter we will use the model shown below. 
 
The signal into the receiver is x(n) (received signal). Normally, this 
signal is disturbed by additive white noise v(n). The information is in 
s(n). Also, we often used the approach that the information signal is 
modeled as white noise w(n) filtered in a filter g(n). 
 
 
 
 
 
 
 
 
 
 
 
 
 We will minimize the output error e(n),  which we describe as the 
difference between the desired output d(n) and the estimated output. 
  

  
2 2ˆminimize [ ( )] [( ( ) ( )) ]E e n E d n d nξ = = −  

 
Applications. 
 
Filtering s(n): The desired signal is s(n) and we will 
    determine the optimum filter for noise reduction. 
Smoothing:  Like filtering but we allow an extra delay in the  
    output signal (specially image processing). 
Prediction:  The output is a prediction of future values of s(n). 
    One step predictor. predict next value s(n+1). 
Equalization:  The desired signal is w(n) and we will 
    determine the optimum filter for whitening the 
    output spectrum (inverse filtering, deconvolution). 
 
Other applications:  Echo cancellation. Noise cancellation.  
     Pulse shaping. 
 

received 
  x(n) g0(n) 

G0(z) 
w(n) h(n) 

H(z) 

noise 
  v(n) 

desired output 
   d(n) 

error 
 e(n) 

s(n)

estimated
output

)(ˆ nd  
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Prediction Error Filter PEF  (second order) from chapter 4 
 
  Model of the signal  x(n). 
  Input: white noise w n( )  or   impulse  δ ( )n  
 
 
 
 
 
 
 
 
 

∑

∑

=

=

−−=

−=

=−+=

2

1
2

2

1
2

)()()(ˆ

)(ˆ)(

)()()()(

l

l

lnxlanx

withnxnx

lnxlanxne

 

 
We can rewrite the figure 
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Optimum Filters  (process the received signal x(n)) 
 
 
 
 
 
 
 
 
 
 
We assume uncorrelated noise v(n). 
 
 
 
d n( )  could be:  s n( ) ,     filtering noisy signal )(nx  
     s n n( )− 0 , smoothing (allow delay) 
     s n n( )+ 0 ,  predict future values 
     )( 0nn −δ ,  inverse filtering, deconvolution 
 
 
h(n) causal FIR filter:  easy, useful (chap. 7.2) 
h(n) noncausal IIR filter: easy, less useful (chap. 7.3.1) 
h(n) causal  IIR filter  more difficult, useful (chap. 7.3.2) 
 
 
 
We assume that correlation functions )(krx , )(krdx  and )(krd  
are known or could be estimated.

v(n) 

x(n) s(n) 

δ ( )n r kx ( )r ks ( )

w(n) d n( )

e(n) $( )d n
h n( )  g n0 ( )
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Derivation of the optimal solution (Wiener filter).  
Real-valued random signals. 
 
 
We start with 

   
2 2ˆ[ ( )] [( ( ) ( )) ]E e n E d n d nξ = = −  

with 

ˆ( ) ( ) ( )
l

d n h l x n l
∞
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= −∑         (in general noncausal filter) 

and 
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Set the derivative of ξ  with respect to h(k)  equal to zero for all k. 
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which gives 
 
  [ ( ) ( )] 0E e n x n k− =    (The orthogonality principle) 
 
 
Replace e(n) and then 
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and we got the Wiener-Hopf equations  
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Derivation of the minimum error 
 
Writing 
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This gives the minimum error 
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The Wiener filter was derive from random signals. 
For a deterministic approach we have to use the definition of 
autocorrelation and cross correlation 
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Then, minimize  
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The Wiener-Hopf equations will be the same. 
 
 
 
 
 
 
 
Now, we will look at the three types of filters H(z) 
 
 FIR Wiener filter  (in the textbook denoted W(z)) 
 
 Noncausal  IIR filter 
 
 Causal Wiener filter  (at the end of this chapter) 
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FIR Wiener filter (pp. 337-339, table 7.1 page 339) 
 
The Wiener-Hopf equations are now 
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or in matrix form 
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦14243

 

 

      x dxR h r=  
 

The solution is   
1

x dxh R r−=  
 
and the minimum error 
 

     

1

min
0

(0) ( ) ( )
p

d dx
l

r h l r lξ
−

=

= −∑  

 
which also can be written 

dxx
T

dxdopt
T

dxddx

p

l
d rRrrhrrlrlhr 1

1

0
min )0()0()()()0( −

−

=

−=−=−= ∑ξ  
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Noncausal IIR Wiener filter (pp. 353-356, table 7.2) 
 
The Wiener-Hopf equation are here  
 

   
( ) ( ) ( )x dx

l
h l r k l r k all k

∞

=−∞

− =∑  

 
 
Here we have a complete convolution and it can be solved using 
z-transform or Fourier transform 
 
 

   

( ) ( ) ( )
( )

( ) ;
( )

( )
( )

( )

x dx

dx

x
j

j dx
j

x

H z P z P z
P z

H z
P z

P e
H e

P e

ω
ω

ω

=

=

=
 

 
The minimum error is 

  min (0) ( ) ( )d dx
l

r h l r lξ
∞

=−∞

= − ∑  
 
We can use the Parseval’s relation and also write this in 
the frequency domain. Then, (see properties of the 
Fourier transform, see page 356, Table 7.2) 
 

[ ] ω
π

ξ ωωωπ

π
dePeHeP j

dx
jj

d )()()(
2
1

min
∗

−
−= ∫  
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Filtering received signal for noise reduction 
 
 
The received signal is disturbed by additive zero mean white noise 
 
 

    ( ) ( ) ( )x n s n v n= +  
 
 
 
 
 
 
 
 
 

 
 
Desired signal is now s(n). Then 
 

( ) ( ) ( )
( ) [ ( ) ( )] [ ( ) ( ( ) ( ))] ( )
( ) ( ) ( )
( ) ( )

x s v

dx s

x s v

dx s

r k r k r k
r k E d n x n k E s n s n k v n k r k
P z P z P z
P z P z

= +
= − = − + − =
= +
=

 
 

received 
  x(n) g0(n) 

G0(z) 
w(n) h(n) 

H(z) 

noise 
  v(n) 

desired  
   d(n)=s(n) 

error 
 e(n) 

s(n)

Estimated

)(ˆ nd  
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Causal FIR-filter for noise reduction 
 
 

The FIR-filter equations are 
 

   

1

0

( ) ( ) ( ) 0,1,..., 1
p

x dx
l

h l r k l r k k p
−

=

− = = −∑
 

 
 
Now, they will be 

   

1

0
( )( ( ) ( )) ( )

p

s v s
l

h l r k l r k l r k
−

=

− + − =∑  

 
 
or 

    ( )s v sR R h r+ =   
 
and     
 

1( )opt s v sh R R r−= +  
 
The spectrum we find from the Fourier Transform 
 
 

)}({)( nhFouriereH opt
j =ω
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Noncausal IIR-filter for noise reduction 
 
 
 

For non-causal IIR filter, we have 
 

  

( ) ( ) ( )
( )

( ) ;
( )

( )
( )

( )

x dx

dx

x
j

j dx
j

x

H z P z P z
P z

H z
P z

P e
H e

P e

ω
ω

ω

=

=

=
 

 
In the filtering problem the power spectra are 
 

  

( ) ( ) ( )
( ) ( )

x s v

dx s

P z P z P z
P z P z

= +
=  

 
which gives the Wiener filter 
 

  

( )
( ) ;

( ) ( )

( )
( ) ;

( ) ( )

s

s v
j

j s
j j

s v

P z
H z

P z P z

P e
H e

P e P e

ω
ω

ω ω

=
+

=
+

 

 
We see that for frequencies with low noise, 

 1|)(| ≈ωjeH  
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Prediction 
 
 

In a one-step predictor, the desired signal is s(n+1). 
 
 
 
 
 
 
 
 

 
 
Desired signal is now s(n+1). Then 
 

 
( ) [ ( ) ( )] [ ( 1) ( ( )] ( 1)
( ) ( )

dx s

dx s

r k E d n x n k E s n s n k r k
P z z P z

= − = + − = +
=  

 
 
This gives the Wiener-Hopf equation 
 

  

1

0
( ) ( ) ( 1) 0,1,..., 1

p

s s
l

h l r k l r k k p
−

=

− = + = −∑  

 

error 
 e(n) 

received 
  x(n) g0(n) 

G0(z) 
w(n) h(n) 

H(z) 

noise 
  v(n) 

desired  
 d(n)=s(n+1) 

s(n) 

estimated 

    )(ˆ nd  
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 Noise cancellation  (page 349) 
 
 
 
 

A signal is disturbed by additive noise v1(n). 
 
 
 
Try to measure the noise v(n) from the source and estimate the noise 
v1(n) added to the signal. Then subtract the noise v1(n) from the 
received signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signal 
source 

H(z) 

v(n)

Estimate of v1(n) Wiener  
filter 

Noise 
source 

s(n) s(n)+v1(n) s(n) 

v1(n) v(n)
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Deconvolution (equalizing, inverse filtering) 
 
Desired signal here is w(n) (or allow delay, w(n-n0)).  
(see also problem 4.19) 
 
 
This means that 
 
 

  0( ) ( ) ( )g n h n n nδ∗ ≈ −  

 
 
 
 
 
 
 
 
 
 
 
 

received 
  x(n) g0(n) 

G0(z) 
h(n) 
H(z) 

noise 
  v(n) 

desired  
 d(n)=w(n-n0) 

error 
 e(n) 

s(n) w(n) 

estimated 

    )(ˆ nd  
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Causal IIR Wiener filter –1   (page 358-362) 
 
 
Derivation of the causal filter is more difficult. 
The Wiener solution is 
 

)()()(
0

krlkrlh dxx
l

=−∑
∞

=  
 
We divide the solution into two steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In step 1, we whitening the input signal x(n). From chapter 3, we 
have spectral factorization 
 

)()()( 12
0

−= zQzQzPx σ  
 

If the chose     )(
1)(

zQ
zF

σ
=   the signal ε(n) will be white with 

variance equal to 1. 
 

Q(z) F(z) 
w(n) x(n) ε(n)  

1/F(z) H(z) 

G(z) 

H(z) 

Step 1 Step 2 

Q(z) F(z) 
w(n) x(n) ε(n)  

1/F(z) H(z) 

G(z) 

H(z) 

Step 1 Step 2 
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IIR, causal filter – 2 
 
Step 2 
 
In step 2 we know have  (Wiener-Hopf equation) 
 

)()()(
0

krlkrlg d
l

εε =−∑
∞

=  

 
 

with           )()( kkr δε =  
 
 
 
 
 
The optimal filter (the causal filter, k≥0) is then 

 

)()()( kukrkg dε=  
 
with the z-transform 
 

    [ ]+= )()( zPzG dε  
 
The notation […]+ means the causal part of the argument. 
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IIR, causal filter – 3 
 

Vi have to determine    )(zPdε .    Then 
 

)()(

))}()()(({
)}()({)(

lkrlf

lknxlfndE
knndEkr

dx
l

l

d

+=

=−−=

=−=

∑

∑
εε

 

where     

 )}({)( 1 zFZnf −=  
 
Then 
 

)(
)()()()( 1

0

1
−

− ==
zQ
zPzFzPzP dx

dxd σε
 

To find G(z) we take the causal part 
 

+
− ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)()( 1

0 zQ
zPzG dx

σ  

 
Combining step 1 and step 2 gives finally 
 

+
− ⎥
⎦

⎤
⎢
⎣

⎡
==

)(
)(

)(
1)()()( 12

0 zQ
zP

zQ
zGzFzH dx

σ  
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Relation between causal and non causal IIR Wiener filter 
 
Non causal IIR Wiener filter 
 
 

)(
)(

)(
1

)(
)()( 12

0
−==

zQ
zP

zQzP
zPzH dx

x

dx

σ  

 
 
 
Causal IIR Wiener filter 
 

+
− ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
1)( 12

0 zQ
zP

zQ
zH dx

σ  

 
 
 
 
We can see both filters as a cascade two filters there the first is  a 
whitening filter . 
 
   
 
   
The minimum error is as before 
 

  
min

0
(0) ( ) ( )d dx

l
r h l r lξ

∞

=−

= −∑  
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Adaptive filtering. 
 Chapter 9 or the course ´Adaptive Signal Processing´. 
 
We want to minimize the error 

  
2 2ˆ[ ( )] [( ( ) ( )) ]E e n E d n d nξ = = −  

 
Iterative solution 
 
We can solve this iteratively using the update equation 
 

)}()({'2)(

)(
')()(1

knxneEkh

kh
khkh

n

n
nn

−+=

=−=+

μ
δ

ξδμ

 

there 'μ is the step size. 
     
Adaptive solution (Least Mean Square, LMS) 
 

Use the approximation 
 

)()()}()({ knxneknxneE −≈−  
 
which gives 
 

)()('2)()(1 knxnekhkh nn −+=+ μ
 

 

How to chose step size 'μ ? 
Does the algorithm converge? How fast? 
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Spectrum  estimation,  Chapter 8  
 
 
Nonparametric methods: 
 
  The periodogram 
  The modified Periodogram (windowing) 
  Averaging periodogram 
   Bartlett 
   Welch 
  The Blackman-Tukey method 
 
 
Parametric methods:   

Described in chapter 4 
 
 
 
 
 
Frequency estimation (Estimation of sinusoids), lesson 7 
 
The well known methods like Pisarenco Harmonic Decomposition and 
the MUSIC algorithm are presented here. These methods are based 
on 
the eigenvectors of the correlation matrix.  
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Examples of waveforms and Fourier Transforms 
 
 
 

 

 
Row 1:  White noise (N=512 values) 
Row 2: Fourier transform of the signal in row 1 (magnitude) 
  (N=512 values) 
 
Row 3: Coloured noise (output from 4th order Butterworth filter) 
Row 4: Fourier transform of the signal in row 3 (magnitude) 
  (N=512 values)
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Estimation of power spectra – periodogram  
(page 393-394) 
 
 
 
 

We want to estimate ( )xr k  from x(n) in the interval 0 1n N≤ ≤ − .  
In chapter 3 we had 

  

1

0

1ˆ ( ) ( ) ( )
N

x
n

r k x n x n k
N

−

=

= −∑  
 
To ensure that the values that fall outside the interval are excluded,  
we write 

   

1

0

1ˆ ( ) ( ) ( ) 0 1
N k

x
n

r k x n k x n k N
N

− −

=

= + ≤ ≤ −∑  

 
 
Using a rectangular window  
 

( ) [1 1 1 1] rectangular windowR

N

w n = ⋅⋅⋅
14243  

this can be written 
 

   ( ) ( ) ( )N Rx n x n w n= ⋅  
 
or 

( ) 0 1
( )

0N

x n n N
x n

otherwise
≤ ≤ −⎧

= ⎨
⎩  
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The estimated autocorrelation can now be written 
 
 

1ˆ ( ) ( ) ( )

1 ( ) ( ) ( ) ( )

1 ( ) ( )

x N N
n

R R
n

N N

r k x n k x n
N

x n k w n k x n w n
N

x k x k
N

∞

=−∞

∞

=−∞

= +

= + +

= ∗ −

∑

∑
 

 

Then   ˆ ( )xr k  is defined for 1 1N k N− + ≤ ≤ −  
 
 
Now, we take the Fourier Transform of ˆ ( )xr k , and then we get 

1

1

ˆ ˆ( ) ( )
N

j j k
per x

k N
P e r k eω ω

−
−

=− +

= ∑  

which is called the periodogram. 
 
 
We see that it also can be written 
 

21 1ˆ ( ) ( ) ( ) | ( ) |j j j j
per N N NP e X e X e X e

N N
ω ω ω ω∗= =  

 
Using DFT (FFT), the periodogram will be 

 

2 / 21 1ˆ ( ) ( ) ( ) | ( ) |j k N
per N N NP e X k X k X k

N N
π ∗= =
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The Performance of the Periodogram  (page 398-399) 
 
The estimate is unbiased if 
 

ˆ{ ( )} ( )j j
x xE P e P eω ω=  

 
 

The estimate is consistent if it is (asymptotically) unbiased and if 
 
  ˆlim var{ ( )} 0j

xN
P e ω

→∞
=  

 
 
Taking the mean of ˆ ( )xr k , we got    ( 0k ≥ )   (page 398-399) 

 

{ } { }

{ } )()(1)()(1

)()(1)(ˆ

1

0

1

0

kr
N

kNkr
N

nxknxE
N

nxknxE
N

krE

xx

kN

n

kN

n

NN
n

−==+=

=+=

∑∑

∑
−−

=

−−

=

∞

−∞=

 

 
 
 
Defining the Bartlett (triangular) window 

 

  ⎪⎩

⎪
⎨
⎧

>

≤−
=

Nk

Nk
N

kN
kwB

||0

||||
)(

 

 
we can write 

ˆ{ ( )} ( ) ( )x B xE r k w k r k=  
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Using this, we have   (page 399) 
 
 

1

1
1

1

ˆ ˆ{ ( )} { ( ) }

ˆ{ ( )} ( ) ( )

N
j j k

per x
k N

N
j k j k

x x B
k N k

E P e E r k e

E r k e r k w k e

ω ω

ω ω

−
−

=− +

− ∞
− −

=− + =−∞

= =

= =

∑

∑ ∑  

 
or 
 

   

1ˆ{ ( )} ( ) ( )
2

j j j
per x BE P e P e W eω ω ω

π
= ∗

 

 
The Bartlett  (triangular) window can be seen as the convolution  of 
two rectangular windows. The window is 
 

   

2
1 sin( / 2)( )

sin( / 2)
j

B
NW e

N
ω ω

ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

 

 
 
 

Plot of )( ωj
B eW , N=100, bandwidth 0.89*2π/N
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The estimate in asymptotically unbiased due to 
 

 
ˆlim { ( )} ( )j j
per xN

E P e P eω ω

→∞
=  

 
The variance is (textbook page 404, 405) 
 

 
2ˆvar{ ( )} ( )j j

per xP e P eω ω≈  
 
so the periodogram is not a consistent estimate of the power spectrum. 
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The Modified Periodogram (windowing x(n)) 
 
 
The periodogram use a rectangular window wR(n)  
 

2 21 1ˆ ( ) | ( ) | | ( ) ( ) ) |j j j n
per N R

n
P e X e x n w n e

N N
ω ω ω

∞
−

=−∞

= = ∑  

 
 
If we use other windows, we got the modified periodogram 
 

2

1
2

0

1ˆ ( ) | ( ) ( ) ) |

1 | ( ) ) |

j j n
M

n
N

j n

n

P e x n w n e
NU

U w n e
N

ω ω

ω

∞
−

=−∞
−

−

=

=

=

∑

∑  

 
 
 

 

 102

Optimal Signal Processing   
 

 
 

Properties of the modified periodogram 
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Example of the resolution 
 
 
 
 
 
 

 
 
 
 

Row 1:  Waveform of a vowel ‘a’, N=500 (50 ms)- 
Row 2:  Fourier transform of the N=500 values in row 1. 
Row 3:  Part of the waveform in row 1, N=100, (10 ms) 
Row 4:  Fourier transform of the N=100 values in row 3. 
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Spectrogram 
 
Spectrogram is a plot of spectrum as function of the time  using a 
sliding window. The command in Matlab is 
 
specgram(x,Nfft,Fs); 
 
Nfft is the length of the time window (length of the fft). 
Fs is the sample frequency. 
 
Example of spectrogram of the word ‘mamma’. 
 

 
 
 
Top:   Waveform of the word ‘mamma’. 
Middle:  Specgram with wide time window, N=200 (20 ms) 
Bottom:  Specgram with narrow time window, N=50 (5 ms)
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Averaging periodogram. Bartlett’s Method 
(page 412.414) 
 
In order to reduce the variance we must use averaging. 
 

We divide the input sequence x(n) of length N into 
K blocks of length L, 
 

    
NK
L

=  

 
Then, determine the power spectra for each block and take the 
average. The variance will decrease but also the resolution will 
decrease. 
 
The variance will be  

    )(1)}(ˆvar{ 2 ωω j
x

j
B eP

K
eP ≈  
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Averaging periodogram. Welch’s Method 
(page 419) 
 
 
The method of Welch is similar to the Bartlett’s method 
but we allow overlapping of the blocks and using windows w(n). 
 
The estimated properties of Welch’s method is found in table 8.5 
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Blackman-Tukey Method 
(page 420-423) 
 

With the Blackman-Tukey method we calculate ˆ ( )xr k  from all N 
data. But for  large k, the estimate is not so god.  
 

Multiply ˆ ( )xr k  with a window symmetric around k=0 and take the 
Fourier Transform.  This gives 
 

1

1

ˆ ˆ( ) ( ) ( )
N

j j k
BT x

k N
P e r k w k eω ω

−
−

=− +
= ∑  

 
The spectrum of the window must be positive for all frequencies, i.e. 

0)( ≥ωjeW , to guarantee that 0)( ≥ωj
BT eP . This is not true for 

a rectangular time window. 
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Example of the Blackman-Tukey Method 
 
 
 
 

 
 
 
Row 1:  Spectrum  from FFT. 
Row 2:  Autocorrelation 
Row 3:  Time window 
Row 4:  Windowed autocorrelation 
Row 5:  Blackman-Tukey Spectrum (from windowed autocorr) 
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Conclusion 
 
 
We have always a trade-off between resolution and variance. 
 
 
 
Time windows 
 
Rectangular window has the best resolution but also highest leakage 
(highest side lobes) 
 
 
 
Averaging 
 
Averaging decreases the variance but for fix length of data the 
resolution also will decrease. 
 
 
Performance comparisons 
 

Definitions see page 424-426 
 
Resolution:     ωΔ  

Variability:    2})(ˆ{(
}(ˆvar{

ω

ω

ν
j

x

j
x

ePE
eP=  

 
Figure of merit:    ων Δ⋅=M  
 

Quality factor:   ν
1=Q  
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Filter bank implementation of periodogram 
 
We can interpret the periodogram as the output from of bank of band 
pass filters. 
 

 
2

1

0
|)(|1)( nj

N

n

j
x enx

N
eP ωω −

−

=
∑=

 

 
For the frequency iω , this can be written 
 
 

2
0

1

0

2
0 |)()(||)(|)( =

−

=
= −== ∑ ni

N

n
n

j
x knhnxNnyeP iω

 

 
i.e. the squared of the output from the filter at n=0; 
 
 
 
The band pass filters are then 
  

  ⎪⎩

⎪
⎨
⎧ −−=

=
otherwise

Nke
Nkh

kj

i

i

0

0),...,1(1
)(

ω
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The Fourier transform of the filters  
 
  

  ⎪⎩

⎪
⎨
⎧ −−=

=
otherwise

Nke
Nkh

kj

i

i

0

0),...,1(1
)(

ω

 

are 
 

2/)1)((

)2/)sin((
)2/)(sin()( −−−

−
−= Nj

i

ij
i

ii e
N

NeH ωωω

ωω
ωω

 

 

 
 

 
Conclusion: The value of the spectrum at this frequency is 
the output at n=0 from the band pass filter. The bandwidth is 
approximately  
 

    Nf
N

/1
/2

=Δ
=Δ πω
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Minimum variance spectral estimation 
(page 426-429) 
 
 
We use the idea of band pass filters 
 
 
 
 
 
 
The output y(n) is an narrowband signal out from the band pass filter. 
 

)(),( ij
ii eGkg ω

 
  
 
  

1. Design a bank of band pass filters )(kgi  with center 

frequency iω  so that each filter rejects the maximum 

out-of-band power while passing component at iω  with 
no distortions. 
 
 

2.  Filter x(n) with each filter and estimate the output power. 
 
 

3.  Set )(ˆ ij
x eP ω

 equal to the estimated power in step 2 
  divided by the filter bandwidth.

gi(k) 
x(n) y(n) 
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The band pass filter depends on the properties of the 
signal x(n). 
 
 
Use the vector notation: 
 

Band pas sfilter: [ ]T
iiii pgggg )(),...,1(),0(=  

 
 

Sinusoids:  [ ]Tpjjj
i

iii eeee ωωω ,...,,,1 2=  
 

 

Output:   
xgknxkgny T

ii

p

k
i =−=∑

=

)()()(
0  

 
 
 

With the definition of ie  the Fourier transform of  g at frequency iω  can 
be written 
 
 

H
i

HH
i

kj
p

k

j eggeekgeG ii )()()(
0

=== −

=
∑ ωω
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Now, the spectrum estimate can be written (complex signals) 
 
 
 
 

ix
H

i

i
HH

iii
j

gRg

gxxgEnynyEeP i

=

=== }{)}()({)( *ω

 

 
 
 
We must also normalize the band pass filters so that  
 
 

1)()()(
0

==== −

=
∑ H

i
H
ii

H
i

kj
i

p

k

j eggeekgeG ii ωω

 

 
 
Then, we now want to minimize         
 

   ix
H

i
j gRgeP i =)( ω

 
 
due to the linear constraints  
 
 
 

   1)( == i
H
i

j
i egeG iω

 
 
 
 
 
 
This can be done using Lagrange multipliers    (page 50-52) 
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Introduce the Lagrange multiplier 

μ
and minimize  (page 50-52) 

 
 

43421
43421 zerobeshould  this
thisminimize

)1(
2
1),( i

H
iix

H
ii eggRggL −+= μμ

 

 

Differentiate  
 ),( μigL

with respect to 
H

ig . Then 
 
 

0),(* =−=∇ iixi egRgL
ig

μμ
 

 
and 

ixi eRg 1−= μ
 

  

Differentiate  
 ),( μigL

with respect to μ  gives 
 
 

01),( =−= i
H

ii eggL μ
δμ
δ
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Then using 

ixi eRg 1−= μ
 

we have 

ix
H
i eRe 1

1
−=μ

 

This gives the filter 
 
 
  

ix
H
i

ix
i eRe

eRg 1

1

−

−

=
 

 
 
The power at frequency iω  is estimated as  
 

ix
H
i

ix
H

i
j

eRe
gRgeP i

1

1)( −==ω

 

 
We normalized the band pass filter but we must also normalize for the 
bandwidth of the band pass filter (length p+1).  
 
A correction factor (p+1) (see page 429) finally  
gives the minimum variance estimate  for any  ω  
 

eRe
peP

x
H

j
MV 1

1)( −
+=ω
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Chapter 8,   Spectrum  estimation   
 
Nonparametric methods: lesson 6 
 
  The periodogram 
  The modified Periodogram (windowing) 
  Averaging periodogram 
   Bartlett 
   Welch 
  The Minimum variance method 
  The Blackman-Tukey method 
 
Parametric methods:   
 

Described in chapter 4 
   Pade 
   Prony 
   All-pole model 
  Lattice structures in chapter 6 
 
Frequency estimation (Estimation of sinusoids), lesson 7 
 
The well known methods like Pisarenco Harmonic Decomposition and 
the MUSIC algorithm are presented here. These methods are based 
on 
the eigenvectors of the correlation matrix.  
 
 Pisarenco Harmonic Decomposition 
 The MUSIC algorithm  
 The Eigenvector method (EV)  
 (Minimum norm) 
 Principal components Blackman-Tukey frequency estimation 
 Minimum variance Frequency estimation 
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Frequency estimation 
 
The model is that we have sinusoids in white noise. 
 
 

)()(
1

nweAnx nj
i

p

i

i +=∑
=

ω
 

with the complex amplitude 
 

ij
ii eAA φ||=  

The phase is randomly distributed in the interval πφπ ≤≤− i  
 
 
We want to estimate 
 
 
 
 
 

I:  The amplitudes      
ij

iii eAAA φ||;|| =  

II:  The frequency ii f,ω  
 
III:  Number of sinusoids p 
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Frequency estimation, 
Examples on eigenvectors and eigenvalues of the correlation matrix. 
Sinusoid in white noise 

)()*1.0**2sin()( nwnnx += π  

      
Upper:  Waveform of a sinusoid in white noise 
Middle:  Spectrum from DFT 
Lower: The eigenvalues of the correlation matrix Rx. 
 
 

    
 
The first 5 eigenvectors (left) and their spectra (right)
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Frequency estimation, 
Examples on eigenvectors and eigenvalues of the correlation matrix. 
Vowel ‘i’. 
 

 
Upper:  Waveform of a vowel ‘i’. 
Middle:  Spectrum from DFT 
Lower: The eigenvalues of the correlation matrix Rx. 
 
 

 
The first 5 eigenvectors (left) and their spectra (right)      
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Frequency estimation, correlation matrix. 
 
We assume first that p=1, 
 

 )()( 1
1 nweAnx nj += ω

      1,...,0 −= Nn  
 

or 

   weAx += 11  
with 

 [ ]TNxxxx )1(,...),1(),0( −=

 [ ]TNjjj eeee )1(2
1

111 ,...,,,1 −= ωωω

 [ ]TNwwww )1(,...),1(),0( −=  
 

 
The correlation matrix is 

 IeeP
weAweAE
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w
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H
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2
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1111 }))({(

}{

σ+=

=++=

==

 

 

The power of the sinusoids is 
2

11 || AP = .
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Frequency estimation, eigenvalues and eigenvectors. 
 
Eigenvalues and eigenvectors for sinusoids in white noise. 
 
 

Multiply   xR     with  1e , 
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We now identify one eigenvalue and corresponding eigenvector 
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Frequency estimation, eigenvalues and eigenvectors. 
 
The other eigenvectors must be  orthogonal to eigenvector 1. 
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Niv
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The noise subspace is determined by vi ,i=2,...,N 

The signal subspace is determined by v1 
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Frequency estimation. 
 
A: Estimate Rx  and determine the eigenvalues and eigenvectors. 
 

B: Estimate the variance of the noise as min
2 λσ =w . 

 
 
C: Estimate the signal power as 
 

   N
P minmax

1̂
λλ −=

 

 
 Note that  
 

11

2
11

ev
NP w

=
+= σλ

 

 
 
D: Estimate the frequency from the eigenvector 1. 
 

   )}1(arg{ 11 v=ω            (second  index)
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Frequency estimation,  
Frequency estimation function 
 
The eigenvectors 2v   to  Nv

 are orthogonal to 11 ev = . 
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But 
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For   1ωω =      we have 
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This is valid for all eigenvectors  2v
  to  Nv

 . 
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We define the frequency estimation function as 
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We can also compute the Z-transform 

 

k
i

N

k
i zkvzV −

−

=
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1

0  

and determine the zeroes of         )(zVi
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Frequency estimation.  
 
Averaging over all noise eigenvectors yield 
 

2

2

||

1)(ˆ

i
H

i

N

i

j

ve
eP

α

ω

∑
=

=
 

 
Example from the textbook page 455 
Upper figure: Averaging over the noise eigenvectors  with the  

weight equal to one. 
Lower figure:  Overlay plot over the frequency estimation function 
    from each of the noise eigenvectors 
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Frequency estimation.  
Several sinusoids in white noise 
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and  for p=2 
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Eigenvaules 
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The frequency estimation function is now  
 
 
 

2
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We will now look at some methods using the frequency estimation 
function above. 
 
The first is called the Pisarenco Decomposition method. This method 
is very sensitive to the noise but describe the principle for the 
methods. 
 
A well known method is the MUSIC algorithm. 
 
 
 
The frequency estimation function is sometimes called the 
pseudospectrum or eigenspectrum. 
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Frequency estimation: Pisarenco 
 
 
1: Assume  p complex sinusoids in white noise 
 
2: Assume the dimension of Rx (p+1)*(p+1), i.e. only one noise  

eigenvector. 
 
 
This assumptions means that only one eigenvector corresponds to the 
noise subspace. 
 

Then  
2

1min wp σλλ == +  
 
 
and the frequency estimation function (pseudospectrum) is defined 
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Frequency estimation: MUSIC 
Page 464, 465 

 
MUSIC: MUltiple SIgnal Characterization 
 
The frequency estimation is achieved by averaging the pseudospectra 
over the noise eigenvectors. 
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Then estimate the position of the peaks in )(ˆ ωj
MU eP  
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Principal Components Spectrum Estimation. 
 
These methods use the signal subspace. (page 470-471)  
 
The Blackman-Tukey power spectrum was determined from a windowed 
autocorrelation sequence 
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If w(k) is a Bartlett window,  the Blackman-Tukey estimate can be 
written in terms of the autocorrelation matrix 
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In terms of eigenvectors (eigendecomposition) this is 
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Now, use only the eigenvectors corresponding to the sinusoids. Then 
the Blackman-Tukey principal frequency estimation  
is defined by 
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The minimum variance power spectrum estimate was defined by 
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x
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j
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Rewrite this in terms of eigenvectors and only use eigenvectors 
corresponding to the sinusoids gives the minimum variance 
frequency estimation 
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Example of sinusoids in white noise 
 
Power spectrum estimation 

1varaiancewithnoisewhitewith
2502sin5.02002sin

=
+⋅⋅+⋅⋅=

v(n)
v(n)n).π(n).π(x(n)

 

 
 
 
Row 1: Waveform of input signal x(n) 
Row 2 FFT of x(n), N=1024  (Periodogram) 
 
Row 3 Averaging with the Welch method (10 subintervals,  
  rectangular time window) 
Row 4 Blackman-Tukey estimate with M=20 (hamming window) 
Row 5 Minimum variance method with M=20, 
Row 6 All-pole model of order M=20 (Levinson Durbin algorithm). 
 
 
(All spectra in 1024 frequency points. y axis in dB) 
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Example of sinusoids in white noise 
 
Frequency estimation methods 
 

1varaiancewithnoisewhitewith
2502sin5.02002sin

=
+⋅⋅+⋅⋅=

v(n)
v(n)n).π(n).π(x(n)

 

 
 

 
Row 1 FFT of x(n), N=1024  (Periodogram). 
Row 2 Pisarenco Harmonic Decomposition p=4, M=5. 
Row 3 The MUSIC algorithm p=4, M=30. 
Row 4 The Eigenvector method (EV) p=4, M=30. 
Row 5 Principal components Blackman-Tukey frequency estimation 
  (PC-BT) p=4, M=30. 
 
(All spectra in 1024 frequency points, y axis in dB) 



  Optimal Signal Processing 2008 
 

    A brief review   
 
 
 
   
 

We have focused on methods used in practical applications 
 
 
 

 All-pole modeling in chapter 4 (LPC, Prediction Error Filter) 
 
 Levinson Durbin Recursion using the reflection parameters Γ  
 in chapter 5. 
 
 Lattice structure in chapter 6, Burgs algorithm 
 
 Wiener FIR  Filters in chapter 7 
 
 Power Spectrum Estimation using the Periodogram in chapter 8 
 Frequency estimation (MUSIC) 
 
 

Chapter 3 
 
Filtering random processes   (real signals) 
 
  input:    )(nx  
  output:  )(ny  
 

  )()()()()( knhkxnhnxny
k

−=∗= ∑  
 
 

  )()()()( khkhkrkr xy −∗∗=  

  )()()( krkhkr xyx ∗=  
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j
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  )()()( ωωω jj
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j
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x

j
xy eHePeP ∗=  

 

  )()()()( 1−= zHzHzPzP xy  

  )()()( zHzPzP xyx =  

  )()()( 1−= zHzPzP xxy  
  

Chapter 4 System modeling 
 

All-pole modeling 
 
This can be described by the following figure. 
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Chapter 5 Levinson-Durbin recursion 
 

The Levinson-Durbin algorithm determine relation between 
autocorrelation r(x),polynomial a(k) and the reflection coefficients. 
 
The matrix equation can be written 
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This can be summarized in the figure below and in the 
 table 5.1 –5.4. 
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(1), (2), ...., ( ),x x xr r r p  

 

 1 2, ,..., pΓ Γ Γ  

 

(1), (2), ...., ( )p p pa a a p  

Levinson-Durbin 
Table 5 1

Table 

Table 

Table 



Chapter 6 Lattice Structure 
 
 
 

 
FIR   H(z)=A (z) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Burgs algorithm 
 
  Lattice FIR 
  Lattice IIR  
 
 
 

e0
+(n) e1

+(n) e2
+(n) 

e0
-(n) e2

-(n) e1
-(n) 

 
  

Γ2 Γ1 x(n) 

Γ2 Γ1 
z-1 z-1 

Chapter 7. Wiener filters 
 
 
 
 
 
 
 
 
 
 
 We will minimize the output error e(n),  which we describe as the 
difference between the desired output d(n) and the estimated output. 
  
   
 
Applications. 
 
Filtering s(n): The desired signal is s(n) and we will 
    determine the optimum filter for noise reduction. 
Smoothing:  Like filtering but we allow an extra delay in the  
    output signal (specially image processing). 
Prediction:  The output is a prediction of future values of s(n). 
    One step predictor. predict next value s(n+1). 
Equalization:  The desired signal is w(n) and we will 
    determine the optimum filter for whitening the 
    output spectrum (inverse filtering, deconvolution). 
 
Other applications:  Echo cancellation. Noise cancellation.  
     Pulse shaping. 
 
Minimizing  
 

2 2ˆ[ ( )] [( ( ) ( )) ]E e n E d n d nξ = = −    
gives the wiener-Hopf equations 
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Non-causal IIR Wiener filter 

   

( )
( )

( )

j
j dx

j
x

P e
H e

P e

ω
ω

ω=  

 

Causal IIR Wiener filter 
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FIR-filter for noise reduction 
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Non-causal IIR-filter for noise reduction 
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Chapter 8 Power Spectrum Estimation 
 
 

The Fourier Transform of ˆ ( )xr k  is called the periodogram 
1
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We see that it also can be written 
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Using DFT (FFT), the periodogram will be 
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per N N NP e X k X k X k
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Averaging periodogram.  
 Bartlett’s Method 
 Welch’s method 
 
Blackman-Tukey method 
 

Minimum variance method 
 
 
Frequency estimation (Estimation of sinusoids) 
 
 
 Pisarenco Harmonic Decomposition 
 The MUSIC algorithm  
 The Eigenvector method (EV)  
 Principal components Blackman-Tukey frequency estimation 
 


