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Abstract

I compare the performance of the vector autoregressive (VAR) model impulse response function es-

timator with the Jordà (2005) local projection (LP) methodology. In a Monte Carlo experiment, I

demonstrate that when the data generating process is a well-specified VAR, the standard impulse

response function estimator is the best option. However, when the sample size is small, and the

model lag-length is misspecified, I prove that the local projection estimator is a competitive alterna-

tive. Finally, I show how to improve the local projection performance by fixing the lag-length at each

horizon.
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1 Introduction

Since Sims (1980) influential paper Macroeconomics and reality, vector autoregressive models (VARs)

have become pervasive in the empirical economic literature. Among the tools embedded in VAR mod-

els, impulse response functions (IRFs) are undoubtedly the most actively used. In particular, macroe-

conomists rely on IRFs to perform causal inference, to estimate multipliers, and to study the dynamics

of the main macroeconomic aggregates in stochastic models. Due to their usefulness, researchers have

deeply examined statistical properties of VAR impulse response functions. Such investigations have built

a general knowledge about the advantages of the estimation procedure of the VAR impulse responses.

For example, a crucial advantage is that, at the first step-ahead, VAR models produce an optimal and

robust to misspecification IRF (Stock and Watson, 1999). Of course, also disadvantages are presently

well understood. Those are mainly related to the dependency on the Wold’s decomposition theorem.

Provided invertibility, the theorem allows recasting a p-order VAR in an infinite order vector moving

average (VMA), and recover the VMA coefficients recursively as a nonlinear function of the autoregres-

sive parameters. Due to recursiveness, standard IRFs suffer from well-known issues. For example, Pope

(1990) shows that small-sample bias in the VMA coefficients stems from the bias in the estimation of

the autoregressive parameters. Also, due to the nonlinear mapping between VAR and VMA coefficients,

the bias increases as the horizon increases.

Jordà (2005) has introduced a novel methodology to estimate the impulse response functions, labeled

model-free or local projection (LP) estimator. As the name suggests, the estimation employs nonpara-

metric techniques. Also, the estimator is not constrained by the invertibility assumption, which allows

the procedure to be computed when the VMA(∞) representation does not exist. Beside this crucial

advantage, in the original paper, the author illustrates how the estimator accommodates nonlinearities,

such as state and sign dependencies. Additionally, he shows how local projection can outperform a

misspecified VAR model for estimating the impulse response functions. However, this result has been

criticized, and Kilian and Kim (2011) – from now on Kilian and Kim – have opened a debate on the relia-

bility of this novel estimator, showing that its coverage ability relative to the VAR IRFs is extremely poor.

Starting from Kilian and Kim’s article, in this paper, I provide an explanation to reconcile these

conflicting results, and critically assess whether VAR impulse responses are consistently better than lo-

cal projection IRFs. In particular, the objective of the paper is twofold: first, it reviews the Kilian and
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Kim’s findings and demonstrates that the results are driven by the lag-length selection criterion. The

article proves that the authors’ choice deliver an unfair comparison between the local projection and the

VAR impulse responses, returning a comparison between a well-specified VAR and a misspecified local

projection model. To rebalance the experiment, I induce a controlled form of misspecification via the

lag-length selection procedure and show that local projection is able to outperform the VAR IRFs. Sec-

ondly, the paper explores different options to select the lag-length in the LP methodology and shows that

relative improvements are achieved fixing the lag-length in the projection horizons.

The rest of the paper is organized as follows. Section 2 illustrates the motivations behind the study.

Section 3 reviews the VAR and LP impulse response function estimators. Section 4 summarizes the

critique made by Kilian and Kim. Section 5 describe the Monte Carlo experiment and section 6 shows

the simulation results. Section 7 discusses the findings and highlights some topics as potential research

areas to improve the local projection methodology. Finally, section 8 concludes.

2 Motivation

Figure 1 presents meta-data on the Jordà (2005) local projection seminal paper from Google Scholar Cita-

tion. The number of citations-per-year acts as proxy-measure for the estabilishment of the methodology.

A striking feature embedded in the series is the relationship between the local projection methodology

and the applied macroeconomic literature; for example, Haug and Smith (2011) compare LPIRFs with

standard IRFs in a small open economy. Hall et al. (2012) use LPIRFs in the estimation of a Dynamic

Stochastic General Equilibrium (DSGE) model. Auerbach and Gorodnichenko (2012a,b, 2013, 2016),

Owyang et al. (2013) and Ramey and Zubairy (2017) use local projection to estimate state-dependent

fiscal multipliers. Hamilton (2011) exploits LPIRFs to trace out the dynamics of an oil shock and to as-

sess non-linearities. Ambrogio Cesa-Bianchi (2016), Tenreyro and Thwaites (2016), Caldara and Herbst

(2016), Miranda-Agrippino and Ricco (2017), and Swanson (2017) apply the LP estimator to assess the

response of real and financial variables to a monetary policy shock1. Besides, a novel series of papers by

Barnichon and Matthes (Barnichon et al. 2016, Barnichon and Matthes 2017a, Barnichon and Matthes

2017b) uses local projection as an established benchmark to compare the properties of their Functional

1Ramey (2016) extensively describes this novel field in a recent chapter of The Macroeconomic Handbook.
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Figure 1: Jordà (2005) local projection estimator. The blue bars show the number of citations per year. The red-solid line
highlights the citation trend. Data from Google Scholar Citation.

Approximation of Impulse Responses (FAIR) methodology2.

Having a novel methodology widely embraced in the applied macroeconomic community is un-

questionably a positive sign. Nevertheless, such a situation requires an additional effort to examine the

theoretical and empirical properties of such an estimator and to disclose and correct potential drawbacks

quickly. Barnichon and Brownlees (2017) take a step in this direction. In the paper, the authors show the

benefits of applying a linear B-spline basis function to reduce the variance of the estimated local projec-

tion coefficients. Also, Miranda-Agrippino and Ricco (2017) propose a Bayesian estimation procedure

to regularise the local projection IRFs. Both papers have introduced such methodologies based on the

assumption that VAR impulse responses are more efficient than local projection, and LP is less prone to

bias. In this regard, the VAR and LP IRFs should resemble the direct versus iterated forecast procedure

(Marcellino et al., 2006). However, this comparison does not explain why Kilian and Kim find that local

projection, besides presenting less coverage rate and more average length than VAR IRFs, also displays

more bias (see note 17, p. 1463)3. Additionally, this study is the only published article which critically

compares VAR and LP IRFs4. Therefore, according to their conclusions, researchers should abandon
2This recent methodology approximates impulse response functions with Gaussian basis functions.
3Provided that the two methods are asymptotically equivalent, the authors test them in a small-sample context. They use

a 100 data points VAR(1), a 460 data point VAR(12) and a 200 data point VARMA(1,1), and conclude that the standard VAR
impulse response functions are more precise than the local projection estimator.

4There are also two unpublished articles which compare the performance of the two estimators. However, results are mixed.
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local projection in favor of the VAR methodology.

Against this background, the objective of the paper is first, to reassess the heterogeneous findings

of this compact literature, starting with reexamining the Kilian and Kim’s article. In particular, I extend

their experiment and compare the VAR and LP methodology using different metrics and assumptions.

Secondly, as I find that the choice of the lag-length selection criteria is particularly important in compar-

ing the two methods, I explore different approaches to select this critical hyperparameter5. Finally, as the

local projection lag-length is an H × 1 vector, where H is the IRF horizon h = 1, . . . ,H , I consider two

different alternatives to choose its elements; first, selecting the lag-length once for all the projections,

as typically done in the applied macroeconomic literature. Secondly, selecting each component at each

horizon. The results encourage the use of the first methodology.

3 Review of VAR and LP Impulse response function

3.1 VAR impulse response functions

The standard procedure to recover impulse responses consist in mapping the estimated VAR coefficient to

VMA coefficients recursively. The Wold representation theorem is the mapping device. It states that any

covariance-stationary time series can be rewritten as a sum of present and past innovations. Therefore,

the first step in the impulse response estimation is to estimate the VAR autoregressive coefficients via

ordinary least square (OLS). The OLS in the autoregressive model is the best linear unbiased estimator

(BLUE) and corresponds to the conditional maximum likelihood estimator 6. Provided that all the roots

of the autoregressive polynomial lie outside the unit circle, a VAR(p) is always invertible and can be

rewritten as a VMA(∞). This estimation procedure is theoretically justified when the model corresponds

to the underlined DGP. The reduced form VAR(p) is shown in equation (1).

yt = B1yt−1 +B2yt−2 + ...+Bpyt−p + et (1)

On one side, Ronayne (2011) tests local projection against VAR impulse responses in an IS-LM framework finding evidence in
favor of the first methodology. On the other hand, Meier (2005) tests the two alternatives generating data from the linearised
version of Smets and Wouters (2003) model, finding evidence in favor of the VAR methodology.

5To the best of my knowledge, there are neither theoretical nor empirical studies on how to choose the lag-length for local
projection.

6Hamilton 1994 chapter 8 for the proof.
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where t = p+1, ..., T, yt ≡ (y1t, y2t, ..., yKt)
′ is a (K×1) random vector,Bi, i = 1, ..., p, are (K ×K)

matrices of VAR coefficients and et ≡ (e1t, e2t..., eKt)
′ is a (K× 1) vector of independent and identically

distributed white noises with E (et) = 0, E (ese
′
t) = 0, for s 6= t and a (K ×K) variance-covariance

matrix E(etet) = Σe. The VAR(p) process can always be rewritten in structural form as in equation (2).

A0yt = A1yt−1 +A2yt−2 + ...+Apyt−p + εt (2)

where the (K ×K) variance-covariance matrix of εt, Σε is diagonal and positive-definite. A0 is (K ×K)

and in economic parlance is called the impact matrix and contains the contemporaneous effects of the

increase of each endogenous variable on the others. The relationship between structural shocks εt and

reduce form shocks et is given by equation (3).

A0et = εt (3)

According to the identification scheme chosen,A0 might be any matrix imposing 1
2(K2−K) restrictions.

As we abstract from identification issues in this paper, we simply assume that the DGP identification

scheme is known and accomplished by imposing timing restriction, such as Σe = A−10 εtε
′
tA
−1′
0 =

A−10 ΣεA
−1′
0 = A−10 A−1

′

0 , and Σε = IK , where IK is a (K × K) identity matrix. Given that Σe is

Hermitian, than A−10 can be retrieved from its Cholesky factorization. Also, due to positive-definiteness

of Σe, the decomposition is unique. By applying the Wold representation theorem, the VAR model in

equation (1) can be rewritten as in equation (4).

yt = Φ(L)et (4)

Where Φ(L) = (Ik + Φ1L + Φ2L
2 − ...) is the VMA polynomial, Φj , j = 1, ...,∞, are (K ×K)

matrices of VMA coefficients and L is the lag operator such that Lyt ≡ yt−1. To estimate the VAR

impulse responses and showing the mapping between VAR coefficients and IRFs, we use the conditional

forecast difference definition as in Hamilton (1994) in equation (5):

IRF (t, h, ai) = E [yt+h|et = ai]− E [yt+h|et = 0k]

IRF (t, h, ai) = Φhai (5)
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Where 0K is a (K × 1) zero column vector and the impulse responses are a function of time t, horizons

h and a (K × 1) column vector of the impact matrix A−10 (namely ai). By using this definition, we can

recover the IRFs coefficients from the relationship linking the VAR to the VMA polynomial Φ(L) ≡

B(L)−1, B(L)−1 ≡ (Ik −B1L−B2L
2 − ...−BpL

p)−1. Given this relationship, it is possible to show

that the sets of reduced form and structural IRFs Θh are given by equations (6) and (7):

Φh =
h∑

l=1

Φh−lBl, h = 1, 2, ...,H (6)

Θh = ΦhA
−1
0 , h = 1, 2, ...,H (7)

where Φ0 = IK , Bl = 0 for l > p and A−10 satisfy the triangular representation A−10 (A−10 )′ = Σe.

From the last two equations, it is clear that IRFs are functions of VMA parameters, which in turns are

non-linear functions of the VAR parameters.

3.2 Local projection impulse response functions

The local projection procedure is used to estimate the autoregressive coefficients directly at each h-step-

ahead, regressing the dependent variable on its past as in equation (8).

yt+1 = B1
1yt +B1

2yt−1 + ...+B1
pyt−p + et+1, et+1 ∼MA(1)

yt+2 = B2
1yt +B2

2yt−1 + ...+B2
pyt−p + et+2, et+2 ∼MA(2)

...

yt+H = BH
1 yt +BH

2 yt−1 + ...+BH
p yt−p + et+H , et+H ∼MA(H)

(8)

As shown by Jordà (2005), directly estimating the (K ×K) autoregressive coefficientsBh
1 , h = 1, ...,H ,

corresponds to estimating the IRFs without casting the Wold representation theorem. He also shows that

the errors arising from this projections are VMA processes of order h. Due to this issue, the author sug-

gests estimating the variance-covariance matrix using the Newey and West (1987) and Andrews (1991)

heteroskedasticity and autocorrelation consistent estimator (HAC). Also, Jordà shows that local projec-

tion is pointwise more robust to model misspecification than VAR impulse responses due to the direct

estimation versus the VAR iterated procedure. According to the author, the iterated method compounds

the errors due to misspecification as a function of the horizon. Also, as shown by the author, the local
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projection estimator can be easily adapted to a nonlinear framework by including nonlinear regressors

(flexible local projection). In this context, a researcher can simultaneously or individually estimate all the

equations. This critical twist is particularly appreciated in the applied macroeconomic literature, giving

the ability to practitioners to easily embed in a model crucial economic features as state, size and sign

dependency (Owyang et al. 2013, Tenreyro and Thwaites 2016).

Secondly, an essential advantage over VAR IRFs is in the direct estimation of the impulse response

coefficients. However, to determine the structural impulse responses, a researcher still needs to estimate

the impact matrix in a first-step aided by an auxiliary model as a VAR model. Equation (9) shows the

structural impulse response functions estimated via local projection.

yt+1 = Â1
1yt + Â1

2yt−1 + ...+ Â1
pyt−p + εt+1, εt+1 ∼MA(1)

yt+2 = Â2
1yt + Â2

2yt−1 + ...+ Â2
pyt−p + εt+2, εt+2 ∼MA(2)

...

yt+H = ÂH
1 yt + ÂH

2 yt−1 + ...+ ÂH
p yt−p + εt+H , εt+H ∼MA(H)

(9)

Where Âh
p = Â−10 Bh

p and Âh
1 = Â−10 Bh

1 are the structural local projection IRFs. Both Jordà and Kilian

and Kim use this methodology in their paper. However, structural local projection impulse response

functions computed with an auxiliary model and a projection invariant matrix is a topic which does not

have any theoretical treatment in the literature. Given that the objective of the paper is to assess the local

projection procedure ceteris paribus to the other studies, in this article, I do not take any further step in

this direction and assume that the identification scheme is known. The only known alternative to this

procedure is when a proxy series for the shock is available (see for example Swanson, 2017). In fact, the

series can be used as an external instrument to achieve the identification.

Switching the focus from the advantages to the drawbacks of the local projection procedure, the data

consuming nature appears as its first limit. In fact, increasing the horizons of the impulse responses

reduces the sample available for the estimation itself. Therefore, while VAR consumes data only along

the lag dimension (p), local projection consumes data along both the lag (p) and the lead (h) dimensions.
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4 Local projection critique

Kilian and Kim compare the VAR and LP impulse response estimators in a small sample setting, select-

ing the effective coverage rate (ECR) and the average length (AL) of the impulse response confidence

bands as performance criteria.

Equation (10) presents the effective coverage rate. This is a (H × 1) vector reporting for each

horizon h = 1, . . . ,H , the proportion of time in which the interval contains the true value of the IRFs in

percentage points.

ECR(h) =
1

M

M∑
m=1

I
(
IRFtrue(h) ∈

[
IRF

(m)
L (h), IRF

(m)
H (h)

])
, h = 1, ...,H (10)

Wherem = 1, ...,M is the number of repetitions in the Monte Carlo simulation, IRFtrue (h) is the true

impulse response generated from a Data Generating Process (DGP), and IRF (m)
r (h), with r = {L,H},

is the upper/lower bound of the estimated confidence intervals for horizon h. I is an indicator function

which assigns value 1 when the true impulse response belongs to the estimated confidence bands and

0 otherwise. Therefore 0 ≤ ECR (h) ≤ 1. Averaging over the Monte Carlo simulations, when the

effective coverage rate is equal to zero, the estimated confidence bands never contain the true impulse

response. On the other hand, when ECR = 1, the confidence bands include the true impulse response

with probability 1. Depending on the significance level α used to compute the confidence bands in the

Monte Carlo experiment, the ideal measure for the ECR (h) would be exactly (1− α). For example,

when α = 0.05, the proportion of time in which the interval contains the true values of the impulse

response function should be 95%. Deviations from this value induce over/under coverage of the impulse

responses.

Equation (11) describes the average length of the confidence bands. This is a (H × 1) vector which

measures the absolute distance between confidence bands. Shorter average length implies more precise

estimates.

AL(h) =
1

M

M∑
m=1

∣∣∣IRF (m)
H (h)− IRF (m)

L (h)
∣∣∣ , h = 1, ...,H (11)

Both the ECR and the AL are functions of the estimated confidence bands. Therefore, to mimimise the

probability of having results depending on the particular confidence band estimator, the autors compare

four different possibilities. For VAR IRFs, they select the Lutkepohl (1990) delta method and Kilian’s
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bias-corrected bootstrap (Kilian, 1998a,b,c)7. For local projection, they choose the asymptotic proce-

dure developed by Jordà (Jordà 2009, 2005) and the block-bootstrap developed within their article. The

main results of the paper is that VAR IRFs always have more coverage rate and less average length than

the LP counterpart.

5 Simulation

In this section, I perform and extend the Monte Carlo simulation presented by Kilian and Kim. In

particular, I focus on the application of the VAR(12) data generating process. This is the four-variate

model (K = 4) used in Christiano et al. (1999) to identify the US monetary policy shock. The variables

involved are the CFNAI index of US real activities8, the US CPI inflation, US commodity price inflation,

and the effective FED fund rate. The sample covers the period from January 1970 to December 2007

(the sample size is around 460 observations), and the model is specified as in Kilian and Kim to enhance

comparability. Therefore, the CFNAI index and the FED fund rate are in levels, while the CPI and the

commodity prices in log-differences multiplied by 1200. All the variables are demeaned. Theoretically,

the monetary policy shock is the only exogenous source identified in the model, as Christiano et al. (1999)

exploit contemporaneous restriction to determine the Taylor rule used by the FED. However, assuming

that the impact matrix A0 is identified, implies that all the shocks in the system are also identified.

Accordingly, it is possible to evaluate the ECR and the AL on the K exogenous sources in the system.

The Monte Carlo experiment is designed as follows:

1. Fitting a VAR(12) on the data-set;

2. Generating simulated data from the estimated model (T = b+ 456, where b = 300 is the burn-in);

3. Selecting the lag-length p via information criteria (IC), and fitting a VAR(p) on the simulated data;

4. Computing VAR impulse response functions;

5. Selecting the LP lag-length plp via IC – this is a (H × 1) vector;

6. Computing local projection impulse response functions;
7The bias-corrected bootstrap is a generalization of the nonparametric bootstrap procedure developed by Runkle (1987),

and tailored to account for bias and skewness in the impulse responses.
8This is a measure of real output gap produced by the Federal Reserve Bank of Chicago. More details can be found at the

following link: CFNAI index.
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7. Computing 95% confidence bands using the four described procedures9;

At the end of the M = 1000 Monte Carlo repetitions, the effective coverage rate and the average length

are computed. The significance level is set to α = 0.0510.

6 Results

6.1 Simulation performing AIC model selection

Figure 2 presents the effective coverage rate and average length computed at the end of the Monte Carlo

simulation (top row, first and second panels). In particular, we compute these statistics for each structural

IRF by assuming a known impact matrixA0. This assumption also implies that theK2 IRFs in the system

are identified. Therefore, to summarise the results, the figure displays the averages along theK2 impulse

responses, as described in equation (12)11.

C̄ (h) =
1

K2

K2∑
j=1

Cj , C = {AL,ECR} (12)

Solid and dash-dotted blue lines present the results for the confidence bands computed with the VAR delta

method and the bootstrap procedure. Dashed and dotted green lines display the results for the confidence

bands computed with LP asymptotic and bias-corrected bootstrap procedures. In the simulation, the

lag-length p and plp are selected with Akaike (1974) information criterion (AIC) with an upper bound

p = 12 as in the Kilian and Kim’s paper. The solid red line highlights the reference value for each

statistic. Additionally, the figure reports the estimated bias, mean squared error (MSE), and standard

deviation (STD) of the impulse responses, as described in equation (13) to (15) (second row, first to third

panels)12.

BIAS (h) =
1

M

M∑
m=1

(
ˆIRF

(m)
(h)− IRFtrue(h)

)
, h = 1, ...,H (13)

9For the bootstrap and block-bootstrap procedures, I repeat the algorithm 500 times for each Monte Carlo simulation. Using
up to 2000 repetitions does not affect the results

10Given the complexity of the experiment (especially considering the number of bootstrap repetitions), I implemented the
original Kilian and Kim’s code in Julia Language (Bezanson et al. 2017). My VAR Julia package is still a work in progress.
However, it is available and freely downloadable on my Github webpage.

11For completeness, appendix A shows the results for the single IRFs related to the monetary policy shock, as presented in
Kilian and Kim’s paper. For consistency with figure 2, I also report the IRFs bias, mean squared error, and standard deviation.

12Kilian and Kim compute these statistics in the original code, but those were not reported in the paper. In the figures, we
report the average bias, mean square error, and standard deviation for the K2 impulse responses, computed as in equation (12).
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MSE (h) =
1

M

M∑
m=1

(
IRFtrue(h)− ˆIRF

(m)
(h)
)2
, h = 1, ...,H (14)

STD (h) =
√
MSE(h)−BIAS(h)2, h = 1, ...,H (15)

Figure 2 displays significative advantages in using the VAR IRF estimator. For horizons h = 1, . . . , 25,

VAR IRFs present higher effective coverage rate and lower average length. Additionally, the procedure

shows a lower MSE and STD. The results for the bias are mixed. However, the LP estimator does not

present any visible advantage. The overall assessment is extremely negative for the local projection es-

timator, and the results highlight characteristics which should discourage the use of such methodology.

However, this result is particularly difficult to reconcile with the Jordà (2005) original findings, which
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Figure 2: IRFs results from the Monte Carlo experiment. We average all the statistics along all the shocks and all the variables
in the system (the number of impulse responses in a K = 4 variable VAR is K2 = 16). VAR asy. denotes the asymptotic delta
method for VAR impulse responses (Lutkepohl 1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP
asy. denotes the asymptotic interval for LPs. LP boot. refers to the bias-corrected block bootstrap interval for LPs. The AIC
selects all lag orders with an upper bound p = 12. The solid red line acts as a reference line for each statistics.

highlight the robustness of the local projection estimator. Therefore, to explain this controversial result,

I analyze the Kilian and Kim’s and Jordà’s Monte Carlo experiments, focusing on their differences. In

particular, I examine the lag-length selection procedure. The reason behind this choice is related to the

different information criteria selected by Jordà (2005) and Kiliam and Kim in their articles. Jordà (2005)

uses the Schwarz (1978) information criterion (BIC), while Kilian and Kim employ the AIC.

Figure 3 is the starting point of the analysis. It presents the distributions of the lag-length p and
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plp using the AIC in the M = 1000 repetitions of the Monte Carlo algorithm. This is the information

criterion employed in the Kilian and Kim’s experiment. The upper panel (blue bars) shows the distri-

bution of the VAR lag-length, while the lower panels (green bars) displays the distributions of the local

projection lag-length for h = [1, 5, 10, 20]. The figure shows some clear patterns. First, the lag-length p
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Figure 3: Selected lag-length distribution for VAR and LP IRFs using AIC as in Kilian and Kim. The four lower panels show
the distribution for the local projection selected lag-length for the horizons h = [1, 5, 10, 20]. The red-solid vertical line shows
the median lag-length.

selected for the VAR(p) model in each round of the Monte Carlo simulation is p = 12 with probability

approaching one. Twelve is also the correct lag-length selected for the VAR data generating process.

This finding explains why the lag-length selection procedure induces an unfair comparison between the

local projection and the VAR impulse responses, returning a comparison between a well-specified VAR

and a misspecified local projection model. Using a well-specified VAR returns correctly specified IRFs

where the only source of distortion arises from small-sample bias. On the contrary, local projection

suffers from an augmented form of small-sample bias plus the model misspecification bias13. In this

setting, it is implausible for any model to outperform the VAR, as the model should outperform the data

generating process itself.

There is a second issue related to the lag-length selection procedure: in a VAR model, the lag-length

is a scalar, while in the local projection methodology, the lag-length is a (H × 1) vector. For the VAR

lag-length selection procedure there are articles suggesting how to select this parameter optimally. For
13Applying the LP estimator, the sample-size reduces with both lags p and leads h.
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example, the choice of the AIC in the Kilian and Kim’s experiment is guided by Ivanov and Kilian (2005),

which is a study on maximizing the performance of the estimated VAR IRFs. For the local projection

methodology there are no studies on this critical topic, and having H parameters to be selected has

generated in the literature at least two different practices.

1. Selecting the lag-length for each projection using an information criteria (Jordà, 2005, and Kilian

and Kim).

2. Selecting the lag-length at the first step-ahead (h = 1), and using it for the H projections (this

procedure has been employed in many empirical papers as Auerbach and Gorodnichenko, 2012a,

Owyang et al. 2013, Tenreyro and Thwaites 2016, Caldara and Herbst 2016, Ambrogio Cesa-

Bianchi, 2016).

A major implication of the lag-length selection procedure is visible in the second row of figure 3. The

lag-length distributions of the local projection methodology are remarkably wild, and two main features

emerge. On one side, at the first step-ahead, the local projection and the VAR impulse responses have

identical distributions. This result is well-known, and due to Jordà (2005). Secondly, starting from the

second step-ahead (not shown in the figure), the distributions begin widening, and the mode shifting to-

ward more parsimonious models. This feature is evident in panel 2 to 4, where the mode is equal to eight,

six and four respectively. This phenomenon is likely due to the increasing order of the moving average

(MA) component of the local projection error. The MA component contributes to capturing the variation

in the data while fitting the local projection model and resulting in a more parsimonious autoregressive

component. However, in the present setting, this feature contributes to shifting the local projection model

away from the true VAR(12) data generating process. Therefore, while the VAR IRFs is based on a well-

specified model, as it selects the lag-length of the true DGP, the local projection estimator corresponds

to the true data generating process only at the first horizon. Additionally, the misspecification grows as

the horizon increases. In this context, it is likely that the results penalize the local projection procedure.

Thirdly, a further source of distortion can be identified in the specification of the sample size T

and the maximum lag-length p of the Kilian and Kim’s Monte Carlo experiment. These two param-

eters play a prominent role in the lag-length selection procedure, and their choice, combined with the

use of the Akaike’s information criterion, supports the VAR in selecting the correct lag-length. In fact,

compared to other criteria, the Akaike’s criterion tends to prefer over-parametrized models. For VAR

models, this feature implies a preference for specifications with higher lag-length. Other information
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criteria have a different tendency. For example, the Hurvich and Tsai (1993) criterion (AICC) introduces

a correction term to attenuate this behavior. On the other hand, the Schwarz’s criterion heavily penalizes

over-parametrization, resulting in more parsimonious models. Finally, the Hannan and Quinn (1979)

criterion (HQC) penalizes over-parametrization, but not as heavily as BIC.

To understand the implications of this point, table 1 reports the results of steps 1 to 5 of the Monte

Carlo experiment described in section 5 by twisting the parameters p and T and selecting the lag-length

with AIC, AICC, BIC, and HQC14. The table shows the relative frequency of the selected lag-length in

percentage points. When the sample size is 400 and p = 12, the AIC chooses the correct lag-length in

Table 1: Lag-length selected in a Monte Carlo exercise.

Horizon T = 100 T = 200 T = 400

AIC BIC HQC AICC AIC BIC HQC AICC AIC BIC HQC AICC

1 13.7 99.4 83.1 62.6 0.2 93.7 31.8 1.6 0 31.6 0 0
2 20 0.6 15.5 33.8 6.4 6.3 54.3 36.7 0 64.8 26.9 0
3 10 0 1.4 3.4 13 0 13.4 46.9 0 3.6 53.8 0.2
4 1.5 0 0 0.2 3 0 0.4 6.5 0 0 3.7 0.1
5 0.8 0 0 0 6.1 0 0.1 5.8 0 0 9.2 0.7
6 0.7 0 0 0 1.9 0 0 1.2 0 0 0.6 0.3
7 0.9 0 0 0 2.2 0 0 0.8 0 0 0.9 0.3
8 1.4 0 0 0 3.6 0 0 0.2 0 0 0.7 1.1
9 2.4 0 0 0 13.1 0 0 0.3 1.2 0 3.4 23.2

10 2.6 0 0 0 7.2 0 0 0 2.1 0 0.2 8.7
11 6.2 0 0 0 8.9 0 0 0 4.5 0 0.1 10.1
12 39.8 0 0 0 34.4 0 0 0 92.2 0 0.5 55.3

Note: the table shows the results from a Monte Carlo exercise which simulates data from the four variable VAR(12) by
Christiano et al. (1999) and select the lag-length using AIC, BIC, AICC, and HQC. We repeat the process M = 1000 times,
and we report the relative frequency of the lag-length selected by each of the procedure in percentage points. We repeat the
process for sample of size T = 100, 200, 400. The maximum lag-length allowed to be selected in the procedure is p = 12.

more than 90% of the cases. However, as the sample size decreases to T = 200 and T = 100, the correct

lag-length is selected less than 40% of the time. Employing more parsimonious criteria always results

in a misspecified VAR model. For example, the AIC and AICC distributions overlap as T increases.

However, when T is small, the AICC distribution shrinks around p = 1. The distributions for the BIC

and HQC are more concentrated around parsimonious models, with modes shifting from p = 1 to p = 3.

Reducing or increasing the maximum lag-length to test p, always results in a worse scenario. Selecting

p < 12 leads never to choose the correct lag-length for any criteria while selecting p > 12 leads to a shift

in the probability towards higher order models15.
14Appendix C reports the results for the entire Monte Carlo experiment.
15Table B.1 and B.2 in appendix B show the cases in which p = 6 and p = 18.
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To rebalance the experiment and having results reflecting a more fair comparison between the two

procedures, in the next section I consider the case in which both methodologies present a controlled form

of lag-length misspecification. In particular, I simulate the Monte Carlo experiment described in section

5 by choosing the lag-length with the most parsimonious criteria among the four previously described.

6.2 Simulation performing BIC model selection

In this section, I perform the Monte Carlo experiment described in section 5, choosing the lag-length

for VAR and LP IRFs using the Schwarz information criterion. The BIC ensures selecting a model far

from the true DGP in terms of lag-length. Figure 4 shows the lag-length distribution of the M = 1000

repetitions of the Monte Carlo simulation for both the VAR and the local projection procedure. The

VAR

0 1 2 3 4 5 6 7 8 9 10 11 12 13

  selected lag-length

0

200

400

600

800

  
a
b

s
. 
fr

e
q

.

LP1

0 2 4 6 8 10 12

  selected lag-length

0

200

400

600

800

  
a
b

s
. 
fr

e
q

.

LP5

0 2 4 6 8 10 12

  selected lag-length

0

200

400

600

800

1000

  
a
b

s
. 
fr

e
q

.

LP10

0 2 4 6 8 10 12

  selected lag-length

0

200

400

600

800

1000

  
a
b

s
. 
fr

e
q

.

LP20

0 2 4 6 8 10 12

  selected lag-length

0

200

400

600

800

1000

  
a
b

s
. 
fr

e
q

.

Figure 4: Selected lag-length distribution for VAR and LP IRFs using BIC criterion. The four lower panels show the distribution
for the local projection selected lag-length for the horizons h = [1, 5, 10, 20]. The red-solid vertical line shows the median
lag-length.

figure displays a scenario remarkably different from the one showed in figure 3. The distributions of the

selected lag-length are entirely shifted toward more parsimonious models (as in table 1). In this context,

the mode of the VAR lag-length distribution is p = 2, symmetrically the local projection distribution

presented in the second row (first-left panel) is exactly equal to the VAR distribution, while, as the hori-

zon increases, the mass tends to shrink on a very parsimonious model with p = 1. Figure 5 reports the
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average result for all K2 IRFs generated from the model. The first panel highlights the sensitivity of the

two methodologies with respect to lag-length misspecification. In fact, the coverage rate decreases up to

65%-85% for local projection and till 40% for the VAR impulse responses. This is a large drop compared

to what figure 2 shows. However, considering the relative performance of the two methodologies, the

results are reverted. In fact, the true value of the IRFs is not contained in the VAR confidence bands
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Figure 5: Average of statistics along all the shocks and all the variables in the system (the number of impulse responses in
a K = 4 variable VAR is K2 = 16). VAR asy.denotes the asymptotic delta method for VAR impulse responses (Lutkepohl
1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP asy. denotes the asymptotic interval for LPs. LP
boot. refers to the bias-corrected block bootstrap interval for LPs. The BIC selects all lag orders with an upper bound p = 12.
The solid red line acts as a reference line for each statistics.

more than 50% of the times. The same ratio is extremely lower for LP (around 20%). However, VAR

IRFs, due to lower STD, also have shorter average length, which can hint an explanation for the result.

Nevertheless, VAR IRFs seems more biased on average, and less prone to errors in MSE terms, at least

for further horizons. The latter feature is likely due to shorter STD and in turn, to the evidence that LP is

a data consuming approach.

Motivated by these findings, in the next section, I perform the Monte Carlo experiment described in

section 5 by selecting the local projection lag-length once for all the projections. Adopting this approach,

for all the horizons h, the distribution of the LP and VAR lag-length are equal. Additionally, this twist

allows to better control the induced misspecification by precisely selecting the desired lag-length. Fi-

nally, this case is an interesting one to consider because many empirical studies are using this procedure
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without any theoretical nor empirical basis. However, whether this is better than selecting the lag-length

for each projection is a practical question, and in the next section, I test this option.

6.3 Simulation with a fixed lag-length

Motivated by the previous results, in this section, I perform the Monte Carlo experiment described in

section 5 by fixing the lag-length for both methodologies. Fixing the lag-length implies that local pro-

jection always presents a fixed order autoregressive component, while the order of the moving average

increases with the horizon. For example, choosing p = 1 at horizon h = 10 returns a projection with

an autoregressive component of order one and an MA error of order ten. I examine the cases in which

p ≡ [1, 3, 6, 9, 12], and compare the average criteria along the VAR and local projection impulse re-

sponses. On one side, the objective of the simulation is to understand which estimator performs better.

On the other, by varying the degree of misspecification, the exercise allows assessing the existence of

particular patterns. Therefore, to map the performance of the two methodologies, for each horizon h, I

derive a measure to compare the difference between the average of theECRi, i = {LP, V AR}, absolute

distance from the 95% correct acceptance rate (∆ECR), as presented in equation (16).

∆ECR (h) =
1

K2

K2∑
j=1

(
∣∣0.95− ECRLP

j

∣∣− ∣∣0.95− ECRV AR
j

∣∣) (16)

Assuming symmetric losses by deviating from the 0.95 threshold, when ∆ECR (h) > 0, the VAR

methodology displays higher coverage than local projection, on the contrary, when ∆ECR (h) < 0,

the reverse is true. When ∆ECR (h) = 0, the two methodologies present equal ECR. As a relative

measure, ∆ECR (h) gives information only on the relative performance of the two procedure. Figure

6 shows the ∆ECR (h) for the Monte Carlo simulations with fixed lag-length p ≡ [1, 3, 6, 9, 12]. The

left panel shows the ∆ECR computed with the VAR and LP asymptotic procedures. On the other hand,

the right panel shows the difference between bootstrap procedures. Both panels display a clear advan-

tage in terms of ECR of the local projection estimator. The coverage rate increases up to a maximum of

60% for the local projection estimator with respect to the VAR impulse responses. In particular, three

striking features emerge; first, the relative performance of the local projection increases as the horizon

increases. The reason is linked to the increasing wideness of the local projection confidence bands which

enhance the local projection coverage rate; also, it is connected to the deteriorating performance of the

18



5 10 15 20 25

  horizons

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
  

p
e

rc
e

n
ta

g
e

Asyn. ECR difference

p=1

p=3

p=6

p=9

p=12

ref. line

5 10 15 20 25

  horizons

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

  
p

e
rc

e
n

ta
g

e

Boot. ECR difference

Figure 6: The figure shows the ECR for different Monte Carlo simulations using asymptotic and bootstrap confidence interval
and selecting a different lag-length.

VAR coverage rate as the horizon increases. Second, as the lag-length distance from the true lag-length

p = 12 increases, the LP coverage rate is higher relative to the VAR ECR. Third, the asymptotic ECR

difference for the VAR confidence bands seems to perform better than the bootstrap counterpart (figure

6, left panel). For example, the ∆ECR line corresponding to p = 12 is entirely above zero.

As shown in the previous subsections, the main reason why the coverage rate of the local projection

is higher than the VAR impulse responses is connected to the wideness of the confidence bands. Figure

7 confirms this result, reporting in the second panel the STD ratio between the LP and VAR IRFs and in

the third the ratio for the MSE. When the ratios are larger the one, the STD/MSE for the LP is larger than

the VAR IRFs. In practice, these ratios are extremely large. The average STD ratio ranges from one to

seven, while the MSE ratio from one to sixteen. A clear pattern emerges from the figures; first, as lower

the lag-length p (meaning as more misspecified the model), as wider the LP confidence bands. Secondly,

as higher the horizon h as larger the ratio between the two procedure. In particular, such a difference

in the STD ratio entirely enters in the computation of the MSE ratio between the two methodologies.

This explains why the MSE ratio rapidly increases up to fifteen. From this perspective, large confidence

bands imply a misspecification error due to the lag-length selection procedure. Naturally, the first best

estimator would be unbiased and present small confidence bands. However, as a second best, one might

argue that the efficiency of an estimator is a second-order property, and having an unbiased estimator
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with larger confidence bands would be better than having a bias one with shorter intervals. To explore

the LP and VAR estimator bias level, I derive an average absolute measure of “bias distance” between

the two procedures computed as in equation (17):

∆BIAS (h) =
1

K2

K2∑
j=1

(
∣∣BIASLP

j

∣∣− ∣∣BIASV AR
j

∣∣) (17)

∆BIAS is positive, when
∣∣BIASLP (h)

∣∣ > ∣∣BIASV AR (h)
∣∣, and negative in the opposite situation.

When ∆BIAS = 0, the two procedures presents the same degree of bias. The first panel of figure 7
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Figure 7: The figure shows the average bias, MSE, and STD for different Monte Carlo. The chart reports simulations results
using asymptotic and bootstrap confidence intervals by selecting different lag-lengths.

displays the ∆BIAS. The figure highlights the advantage of the local projection procedure, as ∆BIAS

is more frequently in negative territory. This result is starkly in contrast with the Kilian and Kim’s

finding. However, when p = 12 (solid blue line), meaning that the VAR model is correctly specified,

∆BIAS ≥ 0, and it is possible to retrieve the authors’ result.

The central message that emerges from figure 6 and 7 is reasonably clear. As the model is misspeci-

fied, the VAR impulse responses return a vector of points far from the true ones. Nevertheless, confidence

bands are narrow around these points and unable of signaling any uncertainty. On the other hand, the

local projection estimator returns points closer to the correct ones together with large confidence bands.

The wide intervals, from one side signal the uncertainty in the estimation, from the other, with high
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probability, contain the true parameters.

7 Discussion: what is missing in the local projection literature?

The Monte Carlo experiments presented in section 6 show some interesting results about the coverage

ability of the VAR and the LP methodology. In particular, they legitimate the use of local projection

also when the true DGP is a VAR. Of course, in applied works, a researcher never knows the nature of

the DGP, and for this reason, more flexible alternatives are usually preferred to more rigid models. The

local projection estimator is not an exception. Moreover, this methodology is still not exploited at full

capacity, and in this paragraph, building on section 6, I summarize what are in my opinion the results

that are still missing to reach this goal.

First, as highlighted in section 6, the local projection estimator has by construction an MA(h) error

term, whose order increases with the horizon h. Jordà (2005) suggests estimating the variance-covariance

matrix with the Newey and West (1987) and Andrews (1991) heteroskedasticity and autocorrelation con-

sistent estimator (HAC). However, in a recent paper by Stock and Watson (2017), there is a clear call for

abandoning the Newey-West’s estimator in favor of methods which produce fewer distortions. The author

cites voluminous literature starting from Kiefer et al. (2000). As one of the main issue highlighted by the

Monte Carlo experiment is the confidence band wideness of the impulse response functions, exploiting

different methodologies for estimating the variance-covariance matrix would be one of the first routes to

cover. Also Jordà, in its original paper, made a proposal which goes in the direction of improving the

estimator efficiency (p. 165, last block, lines 5 to 9)16. The idea is simply to include in the projection at

step h+ 1 the estimate of the residual at step h. This should reduce the estimation uncertainty and shrink

the confidence bands. However, a study to assess this procedure and possible drawbacks is needed to

confirm this guess, at least in a small sample set.

Secondly, from the Monte Carlo simulations emerge a crucial issue for both the VAR and the LP

estimator: the lag-length selection procedure. In fact, the lag-length influences both the shape and the

magnitude of the impulse responses, and figure 2–5 show how the outcome can differ in a small sample

setting. The reader is pointed to the practitioners’ guide to best select the lag-length in a VAR model
16Also Miranda-Agrippino and Ricco (2017) and Barnichon and Brownlees (2017) methodologies follow this route.
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by Ivanov and Kilian (2005) to have a better idea of how the lag-length influences the impulse response

function estimation (figure 1, p. 9). Moreover, the authors argue that the lag-length is not per se impor-

tant, but it is only in the way it affects the precision of the IRF estimates. For example, by choosing as

a performance metric the MSE, the accuracy of the IRFs become a nonlinear function of the estimated

bias and variance. It’s important to notice that this two statistics may move in opposite directions. A

practical case is when a researcher underestimates the true lag-length of the VAR model. In that case,

the result will be a biased impulse response with variance smaller than the true one. Such reduction may

more than offset the bias, leading to more precise IRFs in MSE sense. The study concludes suggesting

the use of different criteria for data-sets with different frequencies and sample size T 17. For the local

projection, it is still an open issue how to select the best lag-length to use in each projection. Given that

each projection may have different lags, finding a right criterion can lead to significant improvements in

the estimation procedure.

Finally, it is essential to remark a significant result for VAR impulse responses due to Kilian (2001),

which can be translated into the LP framework. In the paper, the author shows that underestimating

and overestimating the lag-length does not produce symmetric errors in a small sample. Due to the

mapping between VAR and VMA coefficients, underestimating the lag-length of the impulse response

functions implies a cut in the polynomial order of the IRFs which translate in a reduction of the curvature

of the impulse responses. On the contrary, overestimating the lag-length adds curvature to the impulse

responses. This valuable insight has some practical consequences, and translate in a preference for more

parametrized VAR models when the research focus on impulse responses. In turn, this leads to avoid

information criteria for the selection of the lag length which penalize too much for the number of param-

eters as the Schwarz information criterion. However, for local projection, the same reasoning is not so

straightforward given that a researcher can estimate the regression coefficients at each horizon. In this

case, the autoregressive part may support mixed lag-length. Also, the VMA(h) part will increase with

the horizons resulting in more complex models.

Indeed, further studies are necessary to deepen these crucial topics. However, a correct choice of the

lag-length appears as the leading route to follow.

17In particular, the study recommends AIC for monthly data, HQC for quarterly data with T > 120 and BIC for quarterly
data T < 120. These findings also justify why Kilian and Kim, in choosing the lag-length in their paper uses the AIC.
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8 Conclusion

Starting from Kilian and Kim (2011), I compare the performance of the local projection estimator against

the standard VAR impulse response function estimator. I replicate the Monte Carlo simulation performed

by the two authors highlighting the arguments that lead to conclude in favor of VAR IRFs. In particu-

lar, I show that the Akaike (1974) information criterion selects the correct lag-lenght order, and thus

returns a comparison between a well-specified VAR and a misspecified local projection model. Using

a well-specified VAR returns correctly specified IRFs where the only source of distortion arising from

small-sample bias. On the contrary, local projection suffers from an augmented form of small-sample

bias18 plus the model misspecification bias. This features in the construction of the Monte Carlo experi-

ment leave some space for further investigations.

In the analysis, I perform a Monte Carlo experiment with a controlled form of misspecification.

Therefore, I compare VAR and LP IRFs in a context in which both models are misspecified. The results

change completely and are no longer in favor of the VAR IRFs. Motivated by these findings, I perform a

third Monte Carlo experiment fixing the lag-length for each equation of the local projection procedure.

The results show that when the model is misspecified, the VAR impulse responses return a vector of

points with narrow confidence bands far from the true ones. By contrast, the local projection estimator

returns points closer to the correct ones together with large confidence bands. Additionally, the simula-

tions display evidence that the performance of LP IRFs improves by selecting the lag-length once for all

the projections.

Finally, based on these findings, I present a discussion on the elements which can considerably im-

prove the estimation performance of the local projection. Looking forward, studying how to correctly

select the lag-length for this methodology appears to be the leading route to follow.

18“Augmented” relatively to the VAR methodology, as in local projection both the IRF horizon h and the lags in the projec-
tions plp reduce the data availability. Therefore, the total number of points dropped in the estimation procedure are plp + H .
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A Results for individual IRFs

Figure A.1 to A.3 presents the results of the Monte Carlo simulation for individual impulse response

functions, as in the original Kilian and Kim’s article. In particular, they show the IRFs to a monetary

policy shock on the CFNAI index of US real activity, US CPI inflation and US real commodity price

inflation. The solid red line acts as the reference value for each statistic. The figures confirm the findings

highlighted in section 6. In particular, when the lag-length is selected using the AIC, the VAR is a well-

specified model, and the VAR IRFs outperform local projection. On the other hand, when the lag-length

is selected using the BIC, as in figure A.4 to A.6, both the models are misspecified, and the LP impulse

response functions outperform the VAR methodology.
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Figure A.1: IRFs to a monetary policy shock on CFNAI index of US real activity. VAR asy. denotes the asymptotic delta
method for VAR impulse responses (Lutkepohl 1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP
asy. denotes the asymptotic interval for LPs. LP boot. refers to the bias-corrected block bootstrap interval for LPs. The AIC
selects all lag orders with an upper bound p = 12. The solid red line acts as a reference line for each statistics.
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Figure A.2: Note as in Figure A.1. The reference variable is now US CPI inflation.
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Figure A.3: Note as in Figure A.1. The reference variable is now US commodity price inflation.
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Figure A.4: IRFs to a monetary policy shock on CFNAI index of US real activity. VAR asy. denotes the asymptotic delta
method for VAR impulse responses (Lutkepohl 1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP
asy. denotes the asymptotic interval for LPs. LP boot. refers to the bias-corrected block bootstrap interval for LPs. The BIC
selects all lag orders with an upper bound p = 12. The solid red line acts as a reference line for each statistics.
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Figure A.5: Note as in Figure A.4. The reference variable is now US CPI inflation
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Figure A.6: Note as in Figure A.4. The reference variable is now US commodity price inflation.
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B Additional tables

B.1 Results for p̄ = 6 and p̄ = 18

Table B.1: Lag-length selected in a Monte Carlo exercise. p̄ = 6

Horizon T = 100 T = 200 T = 400

AIC BIC HQC AICC AIC BIC HQC AICC AIC BIC HQC AICC

1 19.5 99 79.3 55.9 0.2 94.7 28.9 1.7 0 26.2 0 0
2 38.2 1 18.8 38.7 14.8 5.3 55.8 32.6 0.1 68.4 24.3 0.2
3 24.2 0 1.9 5.4 34.7 0 14.7 48.3 2.4 5.4 59.2 6.9
4 6.5 0 0 0 9.6 0 0.4 9.1 2 0 5.7 3.6
5 7.5 0 0 0 22.2 0 0.2 6.5 19.7 0 9.6 31.8
6 4.1 0 0 0 18.5 0 0 1.8 75.8 0 1.2 57.5

Note: the table shows the results from a Monte Carlo exercise which simulates data from the four variable VAR(12) by
Christiano et al. (1999) and select the lag-length using AIC, BIC, AICC, and HQC. We repeat the process M = 1000 times,
and we report the relative frequency of the lag-length selected by each of the procedure in percentage points. We repeat the
process for sample of size T = 100, 200, 400. The maximum lag-length allowed to be selected in the procedure is p = 6.

Table B.2: Lag-length selected in a Monte Carlo exercise. p̄ = 18

Horizon T = 100 T = 200 T = 400

AIC BIC HQC AICC AIC BIC HQC AICC AIC BIC HQC AICC

1 0 99.4 15 68.5 0.3 95.7 32.1 3 0 32.6 0 0
2 0 0.5 2.4 29.6 7.6 4.3 54.5 38 0 64.4 29.3 0.1
3 0 0 0.1 1.8 14.8 0 12.6 44.3 0 3 53.1 0.3
4 0 0 0 0.1 4.1 0 0.6 6.8 0 0 4.1 0.2
5 0 0 0 0 5.5 0 0.2 5.7 0 0 8.2 0.5
6 0 0 0 0 2 0 0 1.1 0 0 0.6 0.2
7 0 0 0 0 3 0 0 0.5 0.1 0 0.5 1.1
8 0 0 0 0 3.3 0 0 0.2 0 0 0 2.1
9 0 0 0 0 12.4 0 0 0.4 2.1 0 3.5 21.1

10 0 0 0 0 5.3 0 0 0 1.3 0 0 9.3
11 0 0 0 0 9.5 0 0 0 5.7 0 0.1 9.1
12 0 0 0 0 23 0 0 0 86.7 0 0.6 56
13 0 0 0 0 4.4 0 0 0 3.3 0 0 0
14 0 0 0 0 1.2 0 0 0 0.8 0 0 0
15 0 0 0 0 1.7 0 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0 0 0
17 0.1 0 0 0 0.6 0 0 0 0 0 0 0
18 99.9 0.1 82.5 0 0.3 0 0 0 0 0 0 0

Note: the table shows the results from a Monte Carlo exercise which simulates data from the four variable VAR(12) by
Christiano et al. (1999) and select the lag-length using AIC, BIC, AICC, and HQC. We repeat the process M = 1000 times,
and we report the relative frequency of the lag-length selected by each of the procedure in percentage points. We repeat the
process for sample of size T = 100, 200, 400. The maximum lag-length allowed to be selected in the procedure is p = 18.
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C Additional simulations

In this section, I report the results of the Monte Carlo simulation using the corrected Akaike criterion

(AICC) and the Hannan-Quinn criterion (HQC). These are popular model selection criteria extensively

used in the empirical macroeconomics and time-series literature.

C.1 Simulation performing model selection using HQC

Figure C.1 presents the distributions of the lag-length p and plp in the M = 1000 repetitions of the

Monte Carlo algorithm using the HQC. The upper panel (blue bars) shows the distribution of the VAR

lag-length, while the lower panels (green bars) displays the distribution of the local projection lag-length

for h = [1, 5, 10, 20]. The results are mixed between the results of the Monte Carlo simulation performed

using the AIC and the BIC. The main difference concerns the support of distributions, which have broader

coverage. The VAR distribution has mode p = 3, while the LP distribution mode shifts between one and

six. Figure C.2 presents the average of the effective coverage rate, average length, mean squared error,
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Figure C.1: Selected lag-length distribution for VAR and LP IRFs using HQC. The four lower panels show the distribution
for the local projection selected lag-length for the horizons h = [1, 5, 10, 20]. The red-solid vertical line shows the median
lag-length.

standard deviation, and bias of the impulse responses. The results of using the HQC are extremely close

to the results presented using the BIC.
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Figure C.2: Average of statistics along all the shocks and all the variables in the system (the number of impulse responses in
a K = 4 variable VAR is K2 = 16). VAR asy.denotes the asymptotic delta method for VAR impulse responses (Lutkepohl
1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP asy. denotes the asymptotic interval for LPs. LP
boot. refers to the bias-corrected block bootstrap interval for LPs. The HQC selects all lag orders with an upper bound p = 12.
The solid red line acts as a reference line for each statistics.

C.2 Simulation performing model selection using AICC

Figure C.3 presents the distributions of the lag-length p and plp in the M = 1000 repetitions of the

Monte Carlo algorithm using the AICC. The upper panel (blue bars) shows the distribution of the VAR

lag-length, while the lower panels (green bars) displays the distribution of the local projection lag-length

for h = [1, 5, 10, 20]. The results resemble the results of the Monte Carlo simulation performed using the

AIC. The main difference is that the distribution is less concentrated around the correct lag-length. The

VAR distribution has mode p = 12, while the LP distribution mode shifts from twelve to three. Figure

C.4 presents the average of the effective coverage rate, average length, mean squared error, standard

deviation, and bias of the impulse responses. As expected, due to the similarities between AIC and

AICC, the results are extremely close.
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Figure C.3: Selected lag-length distribution for VAR and LP IRFs using AICC. The four lower panels show the distribution
for the local projection selected lag-length for the horizons h = [1, 5, 10, 20]. The red-solid vertical line shows the median
lag-length.
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Figure C.4: Average of statistics along all the shocks and all the variables in the system (the number of impulse responses in
a K = 4 variable VAR is K2 = 16). VAR asy.denotes the asymptotic delta method for VAR impulse responses (Lutkepohl
1990). VAR boot refers to the bias-corrected bootstrap (Kilian 1998a,b,c). LP asy. denotes the asymptotic interval for LPs. LP
boot. refers to the bias-corrected block bootstrap interval for LPs. The AICC selects all lag orders with an upper bound p = 12.
The solid red line acts as a reference line for each statistics.
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