LV (600V) Dry-Type Transformers

Industrial Control + Encapsulated 600 Volt Class
 Ventilated 600 Volt Class + DOE 2016 Efficiency Compliant

Federal Pacific History

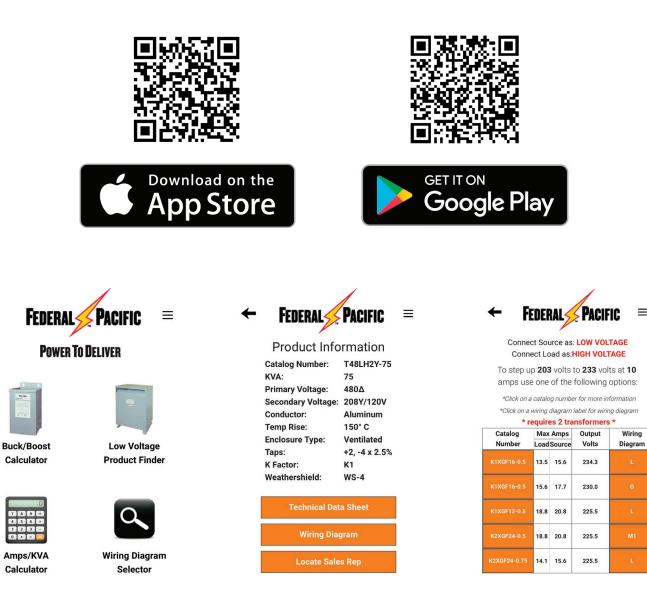
In 1987, the Electro-Mechanical Corporation acquired the dry-type transformer division of Federal Pacific Electric in Des Plaines, Illinois. It was moved to Bristol, Virginia and the name was changed to Federal Pacific (FP). A new 100,000 square foot facility was constructed where time-proven designs and modern technology were combined and deployed under new management. Expansion in early 1993 provided an additional 36,000 square feet of manufacturing space.

Federal Pacific Today

Federal Pacific is a major manufacturer of drv-type transformers which serve the industrial, construction, commercial, mining, OEM and utility markets. The product scope is 50 VA through 10,000 KVA and I20 volts through 25,000 volts. The 600 volt class offering includes industrial control transformers, encapsulated/compound-filled general purpose and buck-boost transformers, ventilated designs for general purpose applications, electrostatically shielded transformers and a complete line of motor drive isolation transformers. The medium voltage offering includes core and coil transformers, general purpose designs, pad-mount transformers, unit substation transformers, vacuum pressure impregnated transformers (VPI), and vacuum pressure encapsulated (VPE) transformers. K-Factor rated transformers are offered for the entire product scope.

Distribution

Regional warehouse stocks have been implemented across the United States, ensuring quick delivery of all products anywhere in the country.



Check Out The New Tools Available From Federal Pacific

 Buck/Boost Calculator
 Low Voltage Product Finder Amps/kVA Calculator
 Wiring Diagram Selector

Online at www.federalpacific.com or Download the new Federal Pacific App

Amps/KVA Calculator

Calculator

Table of Contents

Transformer Naming Convention	5
Single Phase Quick Reference Guide	6
Three Phase Quick Reference Guide	7
Transformer Basics	8
Transformer Selection Consideration	9-11
Dry-Type Transformers	
Overview & Application	
Sound Levels, Industry Standards & Certifications, Tested Performance	
Single-Phase Encapsulated Technical Data	14
Single-Phase Ventilated Technical Data	15
Three-Phase Encapsulated Technical Data	
Three-Phase Ventilated Technical Data	17-25
Single-Phase Wiring Diagrams	
Three-Phase Wiring Diagrams	
Buck-Boost Transformers - Application, Operation Selection	
Buck-Boost Technical Data	
Buck-Boost Selection Tables	41-43
Buck-Boost Connection Diagrams	
Epoxy Encapsulated Copper-Wound Industrial Control Transformers	
Selection Considerations	
Primary Fusing - Industrial Control	
Primary Overcurrent Protection	51
Secondary Overcurrent Protection	51
Industrial Control Transformers Technical Data	
Industrial Control Wiring Diagrams	53
Motor Drive Isolation Transformers	
Motor Drive Isolation Technical Data	54
Transformer Accessories	
Terminal Lug Kits	55
Weather Shield Kits	55
Wall Mount Brackets	55
Primary Fuse Kit	55
Glossary	56-57

Single & Three Phase Encapsulated and Ventliated Transformer Naming Convention (using T48LH2Y-75 as an example)

т	Туре	T = Three Phase, Ventilated N = Three Phase, Encapsulated S = Single Phase, Ventilated P = Single Phase, Encapsulated K = Single Phase, Buck Boost
48	Primary	Single or Three Phase 20 = 208 24 = 240 48 = 480 60 = 600 Three phase primary windings will be Delta connected. Single Phase Only $IX = I20 \times 240$ $2X = 240 \times 480$ $ZX = 240 \times 480$
LH	Material/Temperature Rise	27 = 277I50° CII5° C80° CAluminum UnshieldedLHLFLBAluminum ShieldedSHSFSBCopper ShieldedCHCFCBCopper UnshieldedGHGFGB
2Y	Secondary	Single PhaseThree Phase $2I = 120/240$ $2Y = 208Y/120$ $12 = 12/24$ $2D = 240/(120LT)^*$ $16 = 16/32$ $3Y = 380Y/219$ $24 = 24/48$ $40 = 400Y/23I$ $42 = 480Y/277$ * 120LT applies to ventilated units only
-	Separator	KVA Separator
75	KVA	
	(-K-Factor)	KI = has no identifier K4 = K4 KI3 = KI3 K20 = K20
	-N/T	Applicable to encapsulated transformers only N = No Taps T = Taps

Single-Phase Transformer Quick Reference Guide

		S	ingle Phase Encapsulated T	ransformers		
		Part N	umber = Family [-KVA] [-N/T]	(P2X only for tap	os)	
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	Taps Available
			I20x240V - I20/240V 208V - I20/240V 277V - I20/240V	PIXGF2I P20GF2I P27GF2I	I, I.5, 2, 3	N Y Y
CU	II5°C	N	240x480V - I20/240V	P2XGF2I	0.05, 0.1, 0.15, 0.25, 0.5, 0.75, I, 2	Ν
					3	[-T]
			480V - 120/240V 600V - 120/240V	P48GF2I P60GF2I	I, I.5, 2, 3	Y
		Y	240x480V - 120/240V	P2XCF2I	3	Ν
AL	115°C	N	120x240V - 120/240V 208V - 120/240V 277V - 120/240V 240x480V - 120/240V 480V - 120/240V	PIXLF2I P20LF2I P27LF2I P2XLF2I P48LF2I	5, 7.5, 10, 15	N Y [-T] (All), [-N] (7.5-15 KVA) Y
			240x480V - 120/240V	P2XSF2I	5	Ν
		Y	600V - 120/240V	P60SF2I	5, 7.5, 10, 15	Y

Single Phase Ventilated Dry-Type Transformers							
			Part Number = Family [-KVA]			
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	Taps Available	
	I50°C	N	208V - I20/240V	S20LH2I			
AL		150°C	N	240x480V - 120/240V	S2XLH2I		
		Y	600V - I20/240V	S60SH2I	15, 25, 37, 50, 75, 100, 167	Y	
CU	150°C	N	240,480,4120,240,4	S2XGH2I	- 13,100,107		
CU	150 C	Y	240x480V - 120/240V	S2XCH2I	1		

Single Phase Encapsulated Buck-Boost Transformers							
			Part Number = Family	[-KVA]			
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	Taps Available	
CU	115°C	Ν	120x240V - 12/24V 120x240V - 16/32V 240x480V - 24/48V	KIXGFI2 KIXGFI6 K2XGF24	0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1, 2, 3	N	
AL	II5°C	N	I20x240V - I2/24V I20x240V - I6/32V 240x480V - 24/48V	KIXLFI2 KIXLFI6 K2XLF24	5	IN	

		Single Phase FE	EC Epoxy Encapsulated (Ind	ustrial Control) Transformers			
			Part Number = Family [V	A] [Suffix]				
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	Taps Available		
			240x480V - 120V					
			230x460V - II5V	FA[VA]JK				
			220x440V - II0V					
			240x480V - 24V	FB[VA]JK	0.50, 0.75,			
CU	55°C	55°C	N	N	120x240V - 24V	FC[VA]JK	0.200, 0.250, N	Ν
			208/277V - I20V	FF[VA]XK	0.300, 0.350,			
			200/220/440V - 23/II0V 208/230/460V - 24/II5V 240/480V - 25/I20V	FJ[VA]XK	- 0.500, 0.750			
			240x480V - 120V	FK[VA]JJ				

Three-Phase Transformer Quick Reference Guide

		Thre	ee Phase Ventilated Dry-T	ype Transforme	rs							
	Part Number = Family [-KVA] [-K Factor] (K Factor only required for K4, KI3 and K20 products)											
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	K-Factor Available	Taps Available					
	150°C	N	208∆-480Y 480∆-208Y 480∆-240∆/I20LT 480∆-380Y/2I9 480∆-400Y 480∆-480Y	T20LH42 T48LH2Y T48LH2D T48LH3Y T48LH40 T48LH42	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						
		Y	208∆-208Y 240∆-208Y 480∆-208Y 480∆-240∆/I20LT 600∆-208Y	T20SH2Y T24SH2Y T48SH2Y T48SH2D T60SH2Y	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						
AL	II5°C	N	208∆-480Y 480∆-208Y 480∆-240∆/I20LT 480∆-380Y/2I9 480∆-400Y 480∆-480Y	T20LF42 T48LF2Y T48LF2D T48LF3Y T48LF40 T48LF42	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						
		Y	208∆-208Y 240∆-208Y 480∆-208Y 480∆-240∆/I20LT 600∆-208Y	T20SF2Y T24SF2Y T48SF2Y T48SF2D T60SF2Y	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20	Y					
	80°C	N	208∆-480Y 480∆-208Y 480∆-240∆/I20LT 480∆-380Y/2I9 480∆-400Y 480∆-480Y	T20LB42 T48LB2Y T48LB2D T48LB3Y T48LB40 T48LB42	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						
		Y	208∆-208Y 240∆-208Y 480∆-208Y 480∆-240∆/I20LT 600∆-208Y	T205B2Y T245B2Y T485B2Y T485B2D T605B2Y	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						
CU	I50°C II5°C 80°C	Y	480∆-208Y	T48CH2Y T48CF2Y T48CB2Y	15, 30, 45, 75, 112.5, 150, 225, 300, 500	KI, K4 KI3, K20						

		Three	Phase Encapsulated Dry	-Type Transforme	ers		
			Part Number = Famil	y [-KVA]			
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	K-Factor Available	Taps Available
		Ν	480∆-208Y 480∆-240∆	N48GF2Y N48GF2D			
CU	ll5℃	Y	240∆-208Y 480∆-208Y 480∆-240∆	N24CF2Y N48CF2Y N48CF2D	3, 6		
		N	480∆-208Y 480∆-240∆	N48LF2Y N48LF2D		N/A	Y
AL	II5°C	Y	240∆-208Y 480∆-208Y 480∆-240∆	N24SF2Y N48SF2Y N48SF2D	9, 15		

	Three Phase Ventilated Drive Isolation Dry-Type Transformers Part Number = [KVA] Family										
Conductor	Temp Rise (Celsius)	Electrostatic Shield	Primary/Secondary	Family	KVA Available	K-Factor Available	Taps Available				
			230∆-230Y	AEMD							
			230∆-460Y	AFMD							
			460∆-230Y	CEMD	7.5, 11, 15, 20, 34,						
			460∆-460Y	CFMD	40, 51, 63, 75, 93,						
AL	150°C	N	230∆-575Y	AHMD	118, 145, 175, 220,	KI	Y				
		Γ	460∆-575Y	CHMD	275, 330, 440,						
		[575∆-230Y	DEMD	550, 660, 750						
			575∆-460Y	DFMD							
			575∆-575Y	DHMD							

Transformer Basics

A transformer is a static, passive electrical device that converts alternating electrical voltage from one value to another without modifying the frequency or amount of electrical power. A transformer links together two or more electrical circuits through the process of electromagnetic induction. A simple transformer consists of two coils of electrical wire wrapped around a common closed magnetic iron circuit (or "core"). The coils are electrically isolated from one another but magnetically linked through the core, allowing electrical power to be transferred from one coil to the other.

Transformers are primarily used to increase ("step-up") or decrease ("step-down") voltage from their input ("primary") to their output ("secondary"). The amount of voltage change is determined by the ratio of the number of turns in the primary coil to the number of turns in the secondary coil. A secondary use of transformers is to electrically isolate the input from the output circuit while maintaining the same input and output voltage.

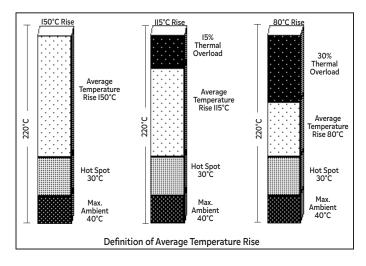
Electrostatically Shielded Transformers

Electrostatically shielded transformers are designed to protect primary systems from unwanted high-frequency signals generated by loads connected to a transformer's secondary. While all transformers with separate primary and secondary windings provide some isolation from load circuits, transients and electrical noise can be transmitted through the internal capacitance of the transformer windings. These disturbances may have a detrimental effect on sensitive electronic equipment and can cause improper operation. Electrostatic shielding diverts these unwanted signals to ground and help prevent electrical disturbances from being transmitted to the load circuits.

UL[®] Listed electrostatically shielded transformers provide all the quality features of the transformer plus an electrostatic shield consisting of a grounded single turn of thin aluminum or copper foil conductor between the primary and secondary spanning the height of the coil.

Typical applications for Electrostatically Shielded Transformers include:

- Hospital Operating Rooms
- X-Ray Equipment
- Computer Installations
- Data Processing
- Instrumentation
- Programmable Controllers


Optional Temperature Rise Transformers

Transformers are specifically designed for optimum performance on systems with a continuous high loading factor. Optional Temperature Rise Transformers feature either 80° C or II5°C temperature rise (vs. I50°C typical) utilizing a 220°C insulation system which provides extended life and inherent overload capability (I5% for II5°C and 30% for 80°C). (See chart below.) These transformers provide lower losses and can minimize operating costs, depending on loading factors and local energy costs.

K-Factor Transformers

Modern electronic switching elements can produce non-linear or nonsinusoidal wave shapes in the current on the load side of a transformer, which can introduce harmonic distortion. The distortions can couple with the fundamental current wave and create current pulses that exceed the nameplate ampere rating of the power source and cause transformers to run hotter than expected.

A K-Factor Transformer is designed to handle harmonic content in its load current without exceeding its operating temperature limits. A specific K-Factor rating indicates that a transformer can supply its rated KVA load output to a load with a specified amount of harmonic content. For more detail on K-Factor Transformers refer to Federal Pacific's K-Factor Transformer Application Note.

Selection Steps

- · Determine the system supply voltage available (Primary voltage).
- Determine the required load voltage rating (Secondary voltage).
- Determine the KVA rating of the load. (If the load rating is given only in amperes, the proper KVA size of the transformer can be selected from the Full Load Current Rating Tables below. The KVA capacity of the transformer must equal or be greater than the load rating.
- Select a transformer model using the Quick Selection Guide for the desired transformer type.

	Sing	le Phase Transform	iers	
KVA		Full Load Current	(Amperes)	
Rating	120 V	240 V or I20/240 (I)	480 V	600 V
.050	0.42	0.21	0.1	0.08
.075	0.63	0.31	0.16	0.13
.100	0.83	0.42	0.21	0.17
.150	1.25	0.63	0.31	0.25
.250	2.08	1.04	0.52	0.42
.500	4.17	2.08	1.04	0.83
.750	6.25	3.13	1.56	1.25
I	8.33	4.17	2.08	1.67
I.5	12.5	6.25	3.13	2.5
2	16.7	8.33	4.17	3.33
3	25	12.5	6.25	5
5	41.7	20.8	10.4	8.33
7.5	62.5	31.3	15.6	12.5
10	83.3	41.7	20.8	16.7
15	125	62.5	31.2	25
25	208	104	52	41.7
37.5	312	156	78.1	62.5
50	417	208	104	83.3
75	625	312	156	125
100	833	417	208	167
167	1392	696	348	278
333	2775	1387	694	555

Full Load Current Ratings

333	2//5	1387	694	555
(I) For I20/240	, currents rep	oresent maximum cui	rrents for eac	ch I20V leg.

Single-Phase KVA = Volts x Load Amperes

Connections

Many single-phase transformers are manufactured with series multiple winding construction and a dual voltage primary or secondary designation (e.g. 240x480V to 120/240V). These transformers will have two windings on the primary or secondary that can be connected either in series for the higher voltage or in parallel for the lower voltage. Transformers with primary voltage ratings containing an "x" can only be connected for one or the other of the two voltages. Transformers with secondary voltage ratings separated by a forward slash "/", the windings can be connected to provide either or both voltages (three wire operation).

Three-phase transformers are provided with a Delta primary for three wire input and either a Wye secondary for four wire output or a Delta secondary for three wire output. Transformers with a 240 volt Delta secondary may have a I20 volt single-phase lighting tap as a standard feature.

KVA		Full Load Cur	rent (Amperes)	
Rating	208 V	240 V	480 V	600 V
3	8.33	7.22	3.61	2.89
6	16.6	14.4	7.22	5.77
9	25	21.6	10.8	8.66
15	41.6	36.1	18	14.4
25	69.4	60.1	30.1	24.1
30	83.3	72.2	36.1	28.9
37.5	104	90.2	45.I	36.1
45	125	108	54.1	43.3
50	139	120	60.1	48.1
60	166	144	72.2	57.7
75	208	180	90.2	72.2
100	278	241	120	96.2
112.5	312	271	135	108
150	416	361	180	144
225	625	541	271	217
300	833	722	361	289
400	IIIO	962	481	385
500	1388	1203	601	481
750	2082	1804	902	722
1000	2776	2406	1203	962

Three-Phase KVA = Volts x Load Amperes x I.73 1000

Transformer Selection Considerations

Altitude

Standard self-cooled dry-type transformers are designed for operation with normal temperature rise at altitudes up to 3300 ft. above sea level. The transformer rated KVA should be reduced by 0.3% for each 330 ft. the transformer is installed above 3300 ft.

Angular Displacement

The angular displacement of a three-phase transformer is the time angle expressed in degrees between the line-to-neutral voltage of a specified high voltage terminal and the line-to-neutral voltage of a specified low voltage terminal.

The angular displacement between the high voltage and low voltage terminal voltages of three-phase transformers with Delta-Delta connections is zero degrees.

The angular displacement for three-phase transformers with Delta-Wye connections is 30 degrees with the low voltage lagging the high voltage.

Balanced Loading

Single-phase loads connected to the secondary of a transformer must be distributed so as not to overload any one winding of the transformer.

Single-phase transformers generally have two secondary windings that can be connected for I20/240 volt three wire operation. When so arranged, care must be taken when connecting I20 volt loads to assure that the total connected load on each secondary winding does not exceed one-half the nameplate KVA rating.

When connecting single-phase loads on a three-phase transformer, each phase must be considered as a single-phase transformer. The single-phase loading on each phase of a three-phase transformer must not exceed one-third of the nameplate KVA rating. For example, a 45 KVA three-phase transformer with a 208Y/I20 Volt secondary should not have any I20 volt single-phase loads distributed such that more than I5 KVA of single-phase load is applied to any one phase.

Banking

Three single-phase transformers can be properly connected to supply a three-phase load. The single-phase units can be used in a threephase bank with Delta connected primary and Wye or Delta connected secondary. The equivalent three-phase capacity would be three times the nameplate rating of each single-phase transformer. For example, three I5 KVA single-phase transformers will, when properly banked, accommodate a 45 KVA three-phase load.

Overcurrent Protection (Reference N.E.C. Article 450)

Primary Protection Only

If secondary protection is not provided, a transformer must be protected by an individual overcurrent device on the primary side. The primary overcurrent device must be rated: No more than 125% of the rated primary current or the next higher standard device rating (for primary currents of 9 amperes or more); no more than 167% of the rated primary current (for 2 amperes to 9 amperes); and no more than 300 % of the rated primary current (for ratings less than 2 amperes). An individual transformer primary protective device is not necessary where the primary circuit overcurrent protective device provides the required protection.

Primary & Secondary Protection

If the transformer secondary is protected by an overcurrent protective device rated no more than 125% of the transformer rated secondary current (or the next higher standard rating device), an individual primary protective device is not required provided the primary feeder circuit overcurrent device is rated no more than 250% of the transformer rated primary current.

Parallel Operation

Transformers with the same KVA ratings can be connected in parallel if required conditions are met. Single-phase transformers must have the same voltage rating, tap settings and frequency rating. Plus, the impedance values of the transformers must be within 7.5% of each other. When paralleling three-phase transformers, the same conditions would apply and, in addition, the angular displacement of the transformers must be the same.

Polarity

Transformer polarity is an indication of the direction of current flow through the high voltage terminals with respect to the direction of current flow through the low voltage terminals at any given instant in the alternating cycle. Primary and secondary terminals are said to have the same (or additive) polarity when, at a given instant, the current enters the primary terminal in question and leaves the secondary terminal in question in the same direction as though the two terminals formed a continuous circuit.

Single-phase transformers rated 600 volts and below normally have additive polarity.

The polarity of a three-phase transformer is fixed by the internal connections between phases. It is usually designated by means of a vector diagram showing the angular displacement of the windings and a sketch showing the markings of the terminals.

Transformer Selection Considerations

Reverse Feed (Back Feed) or Step-Up Operation

Step-down transformers may be reverse-fed for step-up operation to increase voltage. This means that the incoming power is connected to the low voltage terminals (typically designated by X# in wiring diagrams) and the load is connected to the high voltage terminals (typically designated by H#). If the low voltage is Wye, the X0 terminal must NOT be connected in any way. Likewise, if the low voltage is Delta with a I20 volt lighting tap (high-leg), the X4 terminal must NOT be connected in any way.

CAUTION: Much higher than normal inrush currents may occur with reverse feed operation and may cause nuisance fuse blowing or breaker tripping. For this reason, fuses and breakers with time-delay characteristics must be used.

If a breaker is used for incoming over-current protection, it must be a thermal-magnetic type breaker, not a magnetic-only type breaker.

- Reverse feeding is not recommended for transformers rated 3KVA and below as they will output a voltage lower than the rated nameplate value.
- No neutral will be available for three-phase transformers with delta primary windings.
- Taps can only be used for adjusting output voltage and not compensate for input overvoltages exceeding 5%.

Sound Levels

A humming sound is an inherent characteristic of transformers due to the vibration caused by alternating flux in the magnetic core. Sound levels will vary according to transformer size. Attention to installation methods can help reduce any objectionable noise. When possible, locate the transformer in an area where the ambient sound will be equal to or greater than the transformer sound level. Avoid locating units in corners. Flexible conduits and couplings may be used to prevent transmitting vibration to other equipment. Larger units should be installed on flexible mountings to isolate the transformer from the building structure. For more detail on transformer sound refer to Federal Pacific's Understanding Transformer Noise white paper.

Temperature

Insulation system limiting temperatures for dry-type transformers are classified by industry standards based on a 40° C ambient for ventilated transformers, 25° C ambient for encapsulated transformers.

Federal Pacific Dry-Type Transformers

Overview

Federal Pacific encapsulated and ventilated dry-type transformers rated 600 volts and below are available in a wide variety of types and ratings to provide reliable and versatile electrical distribution for lighting and power loads in industrial and commercial applications.

Ratings in the 600V class are available from .050 through 333 KVA in single-phase configurations and from 3 through I500 KVA in three-phase. All standard primary and secondary voltage ratings are provided to match load requirements to the distribution system.

The air-cooled dry-type construction requires no special vaults for installation. The units may be located in almost any indoor location convenient to the load being served. Most transformers are also available for outdoor installations. Maintenance requires only periodic inspection of cable connections and removal of any dust accumulation.

All Federal Pacific three-phase transformers and most single-phase models are provided with taps in the primary winding to compensate for input voltage variations. The taps will provide a range of voltage adjustment below and/or above the nominal voltage rating of the transformer. The available quantity, location, and percentage of the tap connections are shown in the transformer specifications. All transformers are furnished with a nameplate showing the terminal and tap arrangements.

Application

Federal Pacific UL and cUL Listed encapsulated dry-type transformers can be used in industrial, commercial, institutional, and residential installations for economical, efficient distribution of power. Encapsulated units are ideal for dusty industrial areas and are suitable for Indoor and Outdoor applications. Typical loads served include tanning beds, motors, lighting, heating, ranges, air conditioners, exhaust fans, control circuits, appliances, and portable tools. Other applications are found in pumping stations, mining and shipboard distribution systems.

Construction Encapsulated Dry-Type Transformers

An encapsulated dry-type transformer is a totally enclosed, compound filled transformer. The core and coil assembly is embedded in a polyester resin compound, which provides solid insulation. The embedding compound has an extremely high heat transfer rate, which permits a design of minimum size and weight. The compound-filled assembly is completely encased in a sturdy steel housing and cannot be damaged by dust, moisture, or adverse atmospheric conditions. Federal Pacific encapsulated transformers are designed based on a 25°C ambient, II5°C rise, I80°C insulation system. Due to low enclosure temperature rise, no UL-506 special markings are needed to indicate clearance between the enclosure and adjacent surfaces. Sound level problems are negligible with encapsulated transformers because the core and coils are rigidly encased in the polyester resin, which is mechanically strong and acts as sound deadening material. Average sound levels are consistently below NEMA standards. A large wiring compartment with knockouts permits fast wiring connections. Compartment temperatures can attain temperatures reaching 90°C; therefore 90°C cable should be used. Encapsulated units are supplied with flexible cable leads marked with easy identification, and are supplied with wall-mounting brackets to reduce installation time.

Ventilated Dry-Type Transformers

The design features of Federal Pacific UL and cUL Listed ventilated dry-type transformers assure versatile, economical, and reliable distribution of power. All transformers are fully tested to insure trouble-free installation and operation. Availability across a variety of material, temperature, K-factor and enclosure sizes makes these transformers suitable for a wide variety of applications.

Federal Pacific ventilated dry-type transformers incorporate wire and/ or strip wound coils in a barrel wound configuration. Horizontal and vertical spacers are strategically positioned in the windings to brace the winding layers and allow maximum ventilation. The electrical grade core steel is arranged in a construction designed to accommodate the coils. The insulation system has received a 220°C continuous rating from Underwriters Laboratories, Inc. derived from the average conductor temperature rise of I50°C, hotspot temperature gradient of 30°C, and a maximum ambient temperature of 40°C. Terminals are sized to carry the full current capacity of the transformers and a flexible grounding conductor is installed between the core and coil assembly and the transformer enclosure.

The core and coil assembly is anchored to the enclosure through a vibration dampening system to reduce noise levels. Units through 600 KVA are provided with neoprene isolating pads while larger units are furnished with three layer rubber and cork pads. Front accessible wiring compartments are approved for 90°C cable. Enclosures are rigidly braced and covers are fastened with slotted hex head screws for ease of removal. A rugged steel base supported by mounting feet opened outward provides safe handling with a forklift and easy attachment to mounting pad.

This combination of materials and the care taken in construction and workmanship, not only give Federal Pacific Type Ventilated Dry-Type Transformers a long operating life but helps insure their quiet operation.

Federal Pacific Dry-Type Transformers

Sound Levels

Federal Pacific transformers comply with NEMA maximum sound level requirements as measured in accordance with NEMA ST 20-2014.

	Average Sound	Level, Decibels	5	
Equivalent	Sel	f Cooled Ventila	ted	Self Cooled Sealed
Ŵinding	А	В	С	D
KVA Range	K Factor = I K Factor = 4 K Factor = 9	K Factor = I3 K Factor = 20	Forced Air When Fans Running	
3.00 and below	40	40	67	45
3.01 to 9.00	40	40	67	45
9.01 to 15.00	45	45	67	50
15.01 to 30.00	45	45	67	50
30.01 to 50.00	45	48	67	50
50.0l to 75.00	50	53	67	55
75.0I to II2.50	50	53	67	55
ll2.5l to l50.00	50	53	67	55
150.01 to 225.00	55	58	67	57
225.0I to 300.00	55	58	67	57
300.01 to 500.00	60	63	67	59
500.0l to 700.00	62	65	67	61
700.0l to 1000.00	64	67	67	63
Greater than 1000		Consult Fa	ctory	

Note I: Consult factory for non-linear requirements exceeding a K-factor rating of 20.

Note 2: When the fans are not running columns A & B apply

Note 3: Sound levels are measured using the A-weighted scale (dB (A)

Industry Standards & Certifications

Federal Pacific dry-type transformers are approved, listed, recognized or comply in accordance with applicable industry standards

- + UL-5085, UL I56I
- cUL
- DOE Efficiency Levels as required by IO CFR 43I

Tested Performance

Federal Pacific performs the following routine testing on Low Voltage transformers in accordance with NEMA ST 20.

Ratio Test is performed on rated voltage connection and tap connections to assure the proper turns ratio on all connections.

Polarity Test and Phase Relation tests are made to ensure proper polarity and marking because of their importance in paralleling or banking two or more transformers.

No-load (Excitation) Loss Test determines the losses of a transformer which is excited at rated voltage and frequency, but which is not supplying a load. Transformer excitation loss consists mainly of the iron loss in the transformer core.

Load Loss Test determines the amount of losses in the transformer when carrying full rated load. These losses consist primarily of I2R losses in the primary and secondary winding and ensure that specifications of the transformer design are met.

Excitation Current Test determines the current necessary to maintain transformer excitation.

Resistance Test is performed on the transformer windings and is used to determine I2R loss.

Impedance Test is made to insure that transformer design standards are attained.

Dielectric Test (applied and induced potential) checks the insulation and workmanship to demonstrate that the transformer has been designed and manufactured to meet the insulation tests required by the standards.

Applied Potential Tests are made by impressing between windings and between each winding and ground, a low frequency voltage.

Induced Potential Tests call for over-exciting the transformer by applying between the terminals on one winding a voltage of twice the normal voltage developed in the winding for a period of 7200 cycles.

	DOE 20	016	
Eff	iciency Levels for Dry-Type	Distribut	ion Transformers
	Single Phase		Three Phase
kVA	Efficiency Level (%)	kVA	Efficiency Level (%)
15	97.7	15	97.89
25	98.0	30	98.23
37	98.2	45	98.40
50	98.3	75	98.60
75	98.5	112.5	98.74
100	98.6	150	98.83
167	98.7	225	98.94
250	98.8	300	99.02
333	98.9	500	99.14
		750	99.23
		1000	99.28

Efficiency computed at 35% load and adjusted to 75°C.

Single-Phase Encapsulated Technical Data

Temp	Electro	Primary/	Part	Wiring	_	Dim	ensions (in	ches)	Weight	Wall
Rise (Celsius)	static Shield	Secondary	Number	Diagram	Taps	н	W	D	(lbs)	Mount Bracket
			PIXGF2I-I			II.25	5.25	6.5	28	
			PIXGF2I-I.5						45	
			PIXGF2I-2			13.25	6.25	7.75	50	
	N	120x240V - 120/240V	PIXGF2I-3	- 5	N				60	Built-In
		120/2400 - 120/2400	PIXLF2I-5		IN IN	15	10.187	10.625	110	Dunc-In
			PIXLF2I-7.5			15	10.101	10.023	150	
			PIXLF2I-IO	_		17	13.187	13.125	175	
			PIXLF2I-I5						270	
			P20GF2I-I			II.25	5.25	6.5	28	
			P20GF2I-I.5						45	
			P20GF2I-2	_		13.25	6.25	7.75	50	
	N	208V - I20/240V	P20GF2I-3	6	-2@5%				60	Built-In
			P20LF2I-5	-		15	10.187	10.625	110	
			P20LF2I-7.5	_					150	
			P20LF2I-I0	_		17	13.187	13.125	175	
			P20LF2I-I5						270	
		-	P2XGF2I-0.05-N	-		0.25	2.25	4.25	8	
			P2XGF2I-0.075-N P2XGF2I-0.I-N	-		8.25	3.25	4.25	9 10	
		-		-					10	
		-	P2XGF2I-0.I5-N P2XGF2I-0.25-N	-		9.25	4	5	14	
		-	P2XGF2I-0.25-N	-					21	
	N	240x480V - I20/240V	P2XGF2I-0.75-N	-	N	II.25	5.25	6.5	25	Built-In
		-	P2XGF2I-0.75-N P2XGF2I-I-N		IN	11.20	5.25	0.5	23	Duiit-iii
		-	P2XGF2I-I.5-N	-					45	
		-	P2XGF2I-1.5-N	-		13.25	6.25	7.75	50	
		-	P2XLF2I-7.5-N	-		15	10.187	10.625	150	
		-	P2XLF2I-IO-N	-					175	
			P2XLF2I-I5-N	-		17	13.187	13.125	270	
ll5°		240×480V - 120/240V	P2XCF2I-3-N			13.25	6.25	7.75	60	
110	Y	240x480V - I20/240V	P2XSF2I-5-N	I0	N	15	10.187	10.625	110	Built-In
			P2XGF2I-3-T			13.25	6.25	7.75	60	
			P2XLF2I-5-T				1		110	
	N	240x480V -120/240V	P2XLF2I-7.5-T	8	+2/-4@2.5%	15	10.187	10.625	150	Built-In
			P2XLF2I-I0-T			17	10.107	10.105	175	
			P2XLF2I-I5-T	1		17	13.187	13.125	270	
			P27GF2I-I			II.25	5.25	6.5	28	
			P27GF2I-I.5	1					45	1
			P27GF2I-2			13.25	6.25	7.75	50	
	N	277V - 120/240V	P27GF2I-3	7	-2@5%				60	Built-In
		2110-120/2400	P27LF2I-5] '	-2@5%	15	10.187	10.625	110	Duiit-iii
			P27LF2I-7.5			15	10.107	10.025	150	
			P27LF2I-I0			17	13.187	13.125	175	
			P27LF2I-I5						270	
			P48GF2I-I			II.25	5.25	6.5	28	
			P48GF2I-I.5						45	
			P48GF2I-2	_		13.25	6.25	7.75	50	
	N	480V - 120/240V	P48GF2I-3	2	-2@5%				60	Built-In
	N 480V-120/2		P48LF2I-5		-0.010	15	10.187	10.625	110	
			P48LF2I-7.5	_					150	
			P48LF2I-I0	_		17	13.187	13.125	175	
			P48LF2I-I5			11.25			270	
			P60CF2I-I	-		II.25	5.25	6.5	28	
			P60CF2I-I.5	-		12.25	6.25	775	45	
			P60CF2I-2	-		13.25	6.25	7.75	50	
	Y	600V - I20/240V	P60CF2I-3	- 3	-2@5%				60 II0	Built-In
			P60SF2I-5 P60SF2I-7.5	-		15	10.187	10.625	150	
			P605F2I-7.5 P60SF2I-I0	-					150	
			P605F2I-I0 P60SF2I-I5	-		17	13.187	13.125	270	
			100312113	1			I	l	210	L

Single-Phase Ventilated Technical Data

	Temp	Electro-	Primary/	Part	К	Wiring	-	Dimer	nsions (i	nches)	Weight	Weather	Wall
Conductor	Rise (Celsius)	static Shield	Secondary	Number	Factor	Diagram	Taps	Н	W	D	(lbs)	shield	Mount Bracket
				S2XLH2I-I5				33	16.625	18.375	170	WS-3	
				S2XLH2I-25							195		WMB-3
			240x480V -	S2XLH2I-37	-			37	22.375	19.875	270	WS-4	
		N	120/240V	S2XLH2I-50	_	9	+2/-4@2.5%	45 5			300		
				S2XLH2I-75	-			45.5	24.375	20	450	WS-5	WMB-4
				S2XLH2I-I00	-			52	25.375	23	610	WS-7	N1/A
				S2XLH2I-I67	-			60	33.375	26	1070	WS-9	N/A
				S20LH2I-I5	-			33	16.625	18.375	170 195	WS-3	
				S20LH2I-25 S20LH2I-37	-						270		WMB-3
AL	150°	N	208 - I20/240V	S20LH2I-37	KI	IIA	+2/-2@2.5%	37	22.375	19.875	300	WS-4	
AL	150	IN	200 - 120/2401	S20LH2I-50		IIA	+2/-2@2.5%	45.5	24.375	20	450	WS-5	
				S20LH2I-I00				43.5 52	25.375	20	610	WS-7	WMB-4
				S20LH2I-I67	_			60	33.375	25	1070	WS-9	N/A
				S60SH2I-I5	-						170		
				S60SH2I-25	-			33	16.625	18.375	195	WS-3	
		Y		S60SH2I-37	-						270		WMB-3
			600V - I20/240V	S60SH2I-50		Ш	+2/-4@2.5%	37	22.375	19.875	300	WS-4	
				S60SH2I-75	-		, ,	45.5	24.375	20	450	WS-5	
				S60SH2I-I00	1			52	25.375	23	610	WS-7	WMB-4
				S60SH2I-I67	1			60	33.375	26	1070	WS-9	N/A
				S2XGH2I-I5				33	16.625	18.375	220	WS-3	
				S2XGH2I-25	1			33	10.025	10.3/3	260	003-3	WMB-3
				S2XGH2I-37]			37	22.375	19.875	405	WS-4	10-3
		Ν		S2XGH2I-50		9	+2/-4@2.5%	51	22.515	19.075	340	VV3-4	
				S2XGH2I-75				45.5	24.375	20	510	WS-5	WMB-4
				S2XGH2I-I00				52	25.375	23	720	WS-7	VVI-1D-4
CU	150°		240x480V -	S2XGH2I-I67	- KI			60	33.375	26	1210	WS-9	N/A
00	CU 150°		I20/240V	S2XCH2I-I5				33	16.625	18.375	220	WS-3	
				S2XCH2I-25					10.020	10.010	260		WMB-3
				S2XCH2I-37				37	22.375	19.875	325	WS-4	
		Y		S2XCH2I-50	_	9A	+2/-4@2.5%				340		
				S2XCH2I-75	-			45.5	24.375	20	510	WS-5	WMB-4
				S2XCH2I-I00	-			52	25.375	23	630	WS-7	
				S2XCH2I-I67				60	33.375	26	1210	WS-9	N/A

Three-Phase Encapsulated Technical Data

Temp	Electro-	Primary/	Part	Wiring	-	Din	nensions (incl	nes)	Weight	Weather	Wall Mount
Rise (Celsius)	static Shield	Secondary	Number	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			N24CF2Y-3			12.062	12.125	8.375	95		
		240∆ -	N24CF2Y-6	12	-2@5%	14.562	20.125	10.625	225		
		208Y/I20	N24SF2Y-9	12	-2@J%	14.302	20.125	10.025	270		
			N24SF2Y-I5			16.062	21.125	15.125	435		
			N48CF2Y-3			12.062	12.125	8.375	95		
	Y	480 ∆ -	N48CF2Y-6	15	-2@5%	14.562	20.125	10.625	225		
	'	208Y/I20	N48SF2Y-9	15	-2@378	14.302	20.125	10.025	270		
			N48SF2Y-I5			16.062	21.125	15.125	435		
			N48CF2D-3		-2@5%	12.062	12.125	8.375	95		
115°		480 <u>0</u> - 240 <u>0</u>	N48CF2D-6	16		14.562	20.125	10.625	225	N/A	Built-In
115		460/ - 240/	N48SF2D-9				20.125	10.025	270		Duilt-III
			N48SF2D-I5			16.062	21.125	15.125	435		
			N48GF2Y-3			12.062	12.125	8.375	95		
		480∆ -	N48GF2Y-6	13	-2@5%	14.562	20.125	10.625	225		
		208Y/I20	N48LF2Y-9	15	-2@0%	14.302	20.125	10.025	270		
	N		N48LF2Y-I5			16.062	21.125	15.125	435		
	IN	Ν 480Δ - 240Δ	N48GF2D-3			12.062	12.125	8.375	95]	
			N48GF2D-6	4	-2@5%	14.562	20.125	10.625	225		
	48	4804 - 2404	N48LF2D-9	14	-∠(ພວ‰	14.302	20.125	10.025	270]	
			N48LF2D-I5			16.062	21.125	15.125	435		

Conduc-	Temp	Electro	Primary/	Part	K	Wiring		Dime	nsions (ir	iches)	Weight	Weather	Wall
tor	Rise (Celsius)	static Shield	Secondary	Number	Factor	Diagram	Taps	Н	W	D	(lbs)	Shield	Mount Bracket
			208∆-480Y/277	T20LH42-I5		23	+2/-2@2.5%						
			480∆-208Y/I20	T48LH2Y-I5		22							
		N	480∆-240∆/I20LT	T48LH2D-I5	KI	21							
		IN	480∆-380Y/2I9	T48LH3Y-I5	Γ\I	30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-I5		27							
	150°		480∆-480Y/277	T48LH42-I5		20							WMB-3
			208∆-208Y/I20	T20SH2Y-I5		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SH2Y-I5		26							
		Y	480∆-208Y/I20	T48SH2Y-I5	KI	18	+2/-4@2.5%						
			480∆-240∆/I20LT	T48SH2D-I5		17	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-I5		24		20	17125	10 275	245	WC 2	
			208∆-480Y/277	T20LF42-I5		23	+2/-2@2.5%	29	17.125	19.375	245	WS-2	
			480∆-208Y/I20	T48LF2Y-I5		22							
			480∆-240∆/I20LT	T48LF2D-I5	1/1	21							
		N	480∆-380Y/2I9	T48LF3Y-I5	KI	30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LF40-I5		27	, .						
AL	ll5°		480∆-480Y/277	T48LF42-I5		20							WMB-3
			208∆-208Y/I20	T20SF2Y-I5		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SF2Y-I5		26	12/ 2@2.070						
		Y	480∆-208Y/I20	T48SF2Y-I5	KI	18							
		'	480∆-240∆/I20LT	T48SF2D-I5	NI I	17	+2/-4@2.5%						
			600∆-208Y/I20	T60SF2Y-I5		24							
			208∆-480Y/277	T20LB42-I5		24	+2/-2@2.5%						
				T48LB2Y-I5		23	+2/-2@2.3%						
			480∆-208Y/I20			22							
		N	480∆-240∆/I20LT	T48LB2D-I5	KI								
			480∆-380Y/2I9	T48LB3Y-I5		30A	2/ 402 5%						
			480∆-400Y/23I	T48LB40-I5		27	+2/-4@2.5%	24	00.075	10.075	415	N/G 4	
	80°		480∆-480Y/277	T48LB42-I5		20	0/00050	34	22.375	19.875	415	WS-4	WMB-3
			208∆-208Y/I20	T20SB2Y-I5		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SB2Y-I5		26							
		Y	480∆-208Y/I20	T48SB2Y-I5	KI	18	+2/-4@2.5%						
			480∆-240∆/I20LT	T48SB2D-I5		17							
			600∆-208Y/I20	T60SB2Y-I5		24							
	150°			T48CH2Y-I5	1/1	18	0/ 400 50	29	17.125	19.375	285	WS-2	WMB-3
CU	115°	Y	480∆-208Y	T48CF2Y-I5	KI	18	+2/-4@2.5%						
	80°			T48CB2Y-I5		18		34	22.375	19.875	465	WS-4	WMB-3
Conduc-	Temp	Electro	Primary/	Part	К	Wiring	Tana	Dime	nsions (ir	nches)	Weight	Weather	Wall
tor	Rise (Celsius)	static Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Mount Bracket
	150°			T48SH2Y-I5-K4				20	17125	10.275	245	we a	
AL	II5°	Υ	480∆-208Y/I20	T48SF2Y-I5-K4	K4	18		29	17.125	19.375	245	WS-2	
	80°	1		T48SB2Y-I5-K4	1		2/ 402 5%	34	22.375	19.875	415	WS-4	
	150°			T48CH2Y-I5-K4			+2/-4@2.5%						WMB-3
CU	II5°	Y	480∆-208Y/I20	T48CF2Y-I5-K4	K4	18		29	17.125	19.375	285	WS-2	
	80°		4004 2001/120	T48CB2Y-I5-K4				34	22.375	19.875	465	WS-4	
	150°			T48SH2Y-I5-KI3				01	22.010	10.010	100		
AL	130 115°	Y	480∆-208Y/I20	T48SF2Y-I5-KI3	KI3	18		29	17.125	19.375	245	WS-2	
AL	80°	{ '	4004-2001/120	T485F21-15-KI3		10		34	22.375	19.875	415	WS-4	
	150°						+2/-4@2.5%	54	22.313	19.013	413	VV-3-4	WMB-3
C11		v	4004 2007/120	T48CH2Y-I5-KI3		10		29	17.125	19.375	285	WS-2	
CU	115°	Y	480∆-208Y/I20	T48CF2Y-I5-KI3	KI3	18		24	22.275	10.075	405		
	80°			T48CB2Y-I5-KI3				34	22.375	19.875	465	WS-4	
	150°			T48SH2Y-I5-K20				29	17.125	19.375	245	WS-2	
AL	ll5°	Υ	480∆-208Y/I20	T48SF2Y-I5-K20	K20	18							
	80°			T48SB2Y-I5-K20			+2/-4@2.5%	34	22.375	19.875	415	WS-4	WMB-3
	150°			T48CH2Y-I5-K20			، د. ۲۳۳۰ (۲۰	29	17.125	19.375	285	WS-2	
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-I5-K20	K20	18					205		
	80°			T48CB2Y-I5-K20				34	22.375	19.875	465	WS-4	
•							I						

Conductor	Temp Rise	Electro static	Primary/	Part	к	Wiring	Taps	Dime	ensions (ii	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-30		23	+2/-2@2.5%						
			480∆-208Y/I20	T48LH2Y-30	1	22							
		N	4804-2404/I20LT	T48LH2D-30] кі	21							
			480∆-380Y/2I9	T48LH3Y-30		30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-30]	27							
	150°		480∆-480Y/277	T48LH42-30		20							
			208∆-208Y/I20	T20SH2Y-30		19	+2/-2@2.5%						
			2404-208Y/I20	T24SH2Y-30		26							
		Y	480∆-208Y/I20	T48SH2Y-30	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SH2D-30]	17	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-30		24		34	22.375	19.875	415	WS-4	WMB-3
			208∆-480Y/277	T20LF42-30		23	+2/-2@2.5%	54	22.375	19.075	415	VV5-4	W™D-3
			480Δ-208Y/I20	T48LF2Y-30]	22							
		N	4804-2404/I20LT	T48LF2D-30	- KI	21							
			480Δ-380Y/2I9	T48LF3Y-30		30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LF40-30]	27							
AL	li5°		480∆-480Y/277	T48LF42-30]	20							
			208∆-208Y/I20	T20SF2Y-30		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SF2Y-30		26							
		Y	480Δ-208Y/I20	T48SF2Y-30	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SF2D-30		17	+2/-4@2.5%						
			600∆-208Y/I20	T60SF2Y-30		24							
			208∆-480Y/277	T20LB42-30		23	+2/-2@2.5%						
			480Δ-208Y/I20	T48LB2Y-30		22							
		N	4804-2404/I20LT	T48LB2D-30	- KI	21							
			480∆-380Y/2I9	T48LB3Y-30		30A							
			480∆-400Y/23I	T48LB40-30]	27	+2/-4@2.5%						
	80°		480∆-480Y/277	T48LB42-30		20		37	26	19.875	455	WS-I8A	WMB-4
			2084-208Y/I20	T20SB2Y-30		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SB2Y-30		26							
		Y	480∆-208Y/I20	T48SB2Y-30	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SB2D-30		17							
			600∆-208Y/I20	T60SB2Y-30		24							
	150°			T48CH2Y-30				34	22.375	19.875	465	WS-4	WMB-3
CU	115°	Y	480∆-208Y	T48CF2Y-30	KI	18	+2/-4@2.5%	-				_	_
	80°			T48CB2Y-30				37	26	19.875	520	WS-I8A	WMB-4

Conductor	Temp Rise	Electro static	Primary/	Part	ĸ	Wiring	Taps	Dime	ensions (ir	nches)	Weight		Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-30-K4				34	22.375	19.875	415	WS-4	WMB-3
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-30-K4	K4	18					-	-	_
	80°			T48SB2Y-30-K4			+2/-4@2.5%	37	26	19.875	455	WS-I8A	WMB-4
	150°			T48CH2Y-30-K4			+2/-4@2.5%	34	22.375	19.875	465	WS-4	WMB-3
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-30-K4	K4	18		37	26	19.875	520	WS-I8A	WMB-4
	80°			T48CB2Y-30-K4				51	20	19.075	520	W3-10A	VVI•1D-4
	150°			T48SH2Y-30-KI3				34	22.375	19.875	415	WS-4	WMB-3
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-30-KI3	KI3	18		54	22.315	19.075	415	VV-5-4	VVIVID-5
	80°			T48SB2Y-30-KI3			+2/-4@2.5%	43	28.5	23.5	685	WS-18	WMB-4
	150°			T48CH2Y-30-KI3			+2/-4@2.5%	34	22.375	19.875	465	WS-4	WMB-3
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-30-KI3	KI3	18		37	26	19.875	520	WS-I8A	WMB-4
	80°			T48CB2Y-30-KI3				51	20	19.075	520	WJ-10A	VVIVID-4
	150°			T48SH2Y-30-K20				34	22.375	19.875	415	WS-4	WMB-3
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-30-K20	K20	18		37	26	19.875	455	WS-I8A	WMB-4
	80°			T48SB2Y-30-K20			+2/-4@2.5%	43	28.5	23.5	685	WS-18	VVI•1D-4
	150°			T48CH2Y-30-K20	к20	18		34	22.375	19.875	465	WS-4	WMB-3
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-30-K20	1\20	10		54	22.375	19.075	405	vv3-4	VVIVID-S
	80°			T48CB2Y-30-K20				Cons	ult Factor	y			

Conductor	Temp Rise	Electro static	Primary/	Part	к	Wiring	Taps	Dime	nsions (i	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	w	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-45		23	+2/-2@2.5%						
			480Δ-208Y/I20	T48LH2Y-45		22							
		N	4804-2404/I20LT	T48LH2D-45	- KI	21							
			480Δ-380Y/2I9	T48LH3Y-45		30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-45		27							
	150°		480∆-480Y/277	T48LH42-45		20		37	26	19.875	455	WS-I8A	WMB-4
			208∆-208Y/I20	T20SH2Y-45		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SH2Y-45		26							
		Y	480Δ-208Y/I20	T48SH2Y-45	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SH2D-45		17	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-45		24							
			208∆-480Y/277	T20LF42-45		23	+2/-2@2.5%						
			480∆-208Y/I20	T48LF2Y-45		22							
		N	4804-2404/I20LT	T48LF2D-45	- KI	21							
			480Δ-380Y/2I9	T48LF3Y-45		30A	+2/-4@2.5%						
	AL II5°	o	480∆-400Y/23I	T48LF40-45		27							
AL			480∆-480Y/277	T48LF42-45		20		-					
			208∆-208Y/I20	T20SF2Y-45		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SF2Y-45		26							
		Y	480Δ-208Y/I20	T48SF2Y-45	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SF2D-45		17	12/ 4@2.3/0						
			600∆-208Y/I20	T60SF2Y-45		24		43	28.5	23.5	685	WS-18	WMB-4
			208∆-480Y/277	T20LB42-45	_	23	+2/-2@2.5%	10	20.0	20.0			
			480∆-208Y/I20	T48LB2Y-45	_	22							
		N	4804-2404/I20LT	T48LB2D-45	- KI	21							
			480∆-380Y/2I9	T48LB3Y-45		30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LB40-45		27							
	80°		480∆-480Y/277	T48LB42-45		20							
			208∆-208Y/I20	T20SB2Y-45	_	19	+2/-2@2.5%						
			240∆-208Y/I20	T24SB2Y-45		26							
		Y	480∆-208Y/I20	T48SB2Y-45		18	+2/-4@2.5%						
			4804-2404/I20LT	T48SB2D-45		17	, .c						
			600∆-208Y/I20	T60SB2Y-45		24							
	150° 115°	v	4004 2001/	T48CH2Y-45		10	12/ 402 50	37	26	19.875	520	WS-I8A	WMB-4
CU	80°	Y	480∆-208Y	T48CF2Y-45 T48CB2Y-45	KI	18	+2/-4@2.5%	43	28.5	23.5	775	WS-I8	vvi∾iB-4
	80			140CB21-45	1			43	20.0	23.3	L 112	01-244	

Conductor	Temp Rise	Electro static	Primary/	Part	_ K	Wiring	Taps	Dime	nsions (ii	nches)	Weight	Weather	Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram	po	н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-45-K4				37	26	19.875	455	WS-I8A	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-45-K4	K4	18		43	28.5	23.5	685	WS-18	
	80°			T48SB2Y-45-K4			+2/-4@2.5%						WMB-4
	150°			T48CH2Y-45-K4			+2/-4@2.5%	37	26	19.875	520	WS-I8A	VVIVID-4
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-45-K4	K4	18		43	28.5	23.5	775	WS-18	
	80°			T48CB2Y-45-K4				45	20.5	23.5	115	VVJ-10	
	150°			T48SH2Y-45-KI3				37	26	19.875	455	WS-I8A	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-45-KI3	KI3	18		43	28.5	23.5	685	WS-18	
	80°			T48SB2Y-45-KI3			+2/-4@2.5%		20.5		005	VV3-10	WMB-4
	150°			T48CH2Y-45-KI3			+2/-4@2.3%	37	26	19.875	520	WS-I8A	VVIVID-4
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-45-KI3	KI3	18		43	28.5	23.5	775	WS-18	
	80°			T48CB2Y-45-KI3				45	20.5	25.5	115	10	
	150°			T48SH2Y-45-K20				43	28.5	23.5	685	WS-18	WMB-4
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-45-K20	K20	18		45	20.5	23.5	005	VV-5-10	VVI•1D-4
	80°			T48SB2Y-45-K20			+2/-4@2.5%	46	32	28	1045	WS-IOB	N/A
	150°			T48CH2Y-45-K20		18		43	28.5	23.5	775	WS-18	WMB-4
CU [ll5°	Y	480∆-208Y/I20	T48CF2Y-45-K20	K20	10		43	20.5	23.5	115	01-CVV	VVI™IB-4
	80°			T48CB2Y-45-K20				С	onsult Fa	actory			

Conductor	Temp Rise	Electro static	Primary/	Part	к	Wiring	Tana	Dime	ensions (inches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-75		23	+2/-2@2.5%						
			480Δ-208Y/I20	T48LH2Y-75]	22							
		N	4804-2404/I20LT	T48LH2D-75	KI	21							
		IN	480Δ-380Y/2I9	T48LH3Y-75			+2/-4@2.5%						
			480Δ-400Y/23I	T48LH40-75]	27							
	150°		480∆-480Y/277	T48LH42-75		20		43	28.5	23.5	685	WS-18	WMB-4
			208∆-208Y/I20	T20SH2Y-75		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SH2Y-75]	26							
		Y	480Δ-208Y/I20	T48SH2Y-75	KI	18	+2/-4@2.5%						
			4804-2404/I20LT	T48SH2D-75]	17	+2/-4@2.5%						
			6004-208Y/I20	T60SH2Y-75		24							
			208∆-480Y/277	T20LF42-75		23	+2/-2@2.5%						
			480Δ-208Y/I20	T48LF2Y-75]	22							
		N	480A-240A/I20LT	T48LF2D-75	KI	21							
	_ 5°	IN	4804-380Y/2I9	T48LF3Y-75			+2/-4@2.5%						
			480Δ-400Y/23I	T48LF40-75]	27							
AL		5°	480Δ-480Y/277	T48LF42-75		20							
			208∆-208Y/I20	T20SF2Y-75		19	+2/-2@2.5%						
			240A-208Y/I20	T24SF2Y-75]	26							
		Y	480Δ-208Y/I20	T48SF2Y-75	KI	18	+2/-4@2.5%						
			480A-240A/I20LT	T48SF2D-75]	17	+2/-4@2.5%						
			6004-208Y/I20	T60SF2Y-75]	24		46	32	28	1045	WS-IOB	N/A
			208∆-480Y/277	T20LB42-75		23	+2/-2@2.5%	40	32	20	1045	WS-10B	IN/A
			480Δ-208Y/I20	T48LB2Y-75]	22							
		N	4804-2404/I20LT	T48LB2D-75	KI	21							
			4804-380Y/2I9	T48LB3Y-75			+2/-4@2.5%						
			480Δ-400Y/23I	T48LB40-75]	27							
	80°		480∆-480Y/277	T48LB42-75]	20							
			208∆-208Y/I20	T20SB2Y-75		19	+2/-2@2.5%						
			240A-208Y/I20	T24SB2Y-75]	26							
		Y	480Δ-208Y/I20	T48SB2Y-75	KI	18	12/ 102 59/						
			4804-2404/i20LT	T48SB2D-75]	17	+2/-4@2.5%						
			600A-208Y/I20	T60SB2Y-75]	24							
	150°			T48CH2Y-75]			43	28.5	23.5	775	WS-18	WMB-4
CU	ll5°	Y	480∆-208Y	T48CF2Y-75] KI	18	+2/-4@2.5%						
	80°			T48CB2Y-75				46	32	28	1155	WS-I0B	N/A

Conductor	Temp Rise	Electro static	Primary/	Part	ĸ	Wiring	Taps	Dime	ensions (inches)		Weather	Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		Н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-75-K4]			43	28.5	23.5	685	WS-18	WMB-4
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-75-K4	K4	18		46	32	28	1045	WS-IOB	N/A
	80°			T48SB2Y-75-K4			+2/-4@2.5%			_			,
	150°			T48CH2Y-75-K4		18	+2/-4@2.5%	43	28.5	23.5	775	WS-18	WMB-4
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-75-K4	K4			46	32	28	1155	WS-IOB	N/A
	80°			T48CB2Y-75-K4		18A		40	52	20	1155	VVJ-10D	IN/A
	150°			T48SH2Y-75-KI3				46	32	28	1045	WS-IOB	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-75-KI3	KI3	18		40		20	1045	VVJ-10D	
	80°			T48SB2Y-75-KI3			+2/-4@2.5%	46	32	28	1205	WS-IOB	N/A
	150°			T48CH2Y-75-KI3			+2/-4@2.3%						IN/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-75-KI3	KI3	18		46	32	28	1155	WS-IOB	
	80°			T48CB2Y-75-KI3									
	150°			T48SH2Y-75-K20		18	+2/-4@2.5%	46	32	28	1045	WS-IOB	
AL	II5°	Y	4804-208Y/I20	T48SF2Y-75-K20	K20	10	+2/-4@2.5%	40	52	20	1045	VV3-10D	
	80°			T48SB2Y-75-K20]			Consu	lt Facto	ry			N/A
	150°			T48CH2Y-75-K20		10		46	32	28	1155	WS-IOB	IN/A
CU	ll5°	Y	4804-208Y/I20	T48CF2Y-75-K20	-	(20 18	+2/-4@2.5%	40	52		1100	VV3-10B	
	80°			T48CB2Y-75-K20]	18A		46	32	28	1355	WS-IOB	

II2 kVA Transformers

Conductor	Temp Rise	Electro	Primary/	Part	к	Wiring	Tana	Dimen	sions (i	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-II2		23	+2/-2@2.5%						
			480∆-208Y/I20	T48LH2Y-II2		22							
		N	480a-240a/I20LT	T48LH2D-II2	ĸ	21							
		IN	480Δ-380Y/2I9	T48LH3Y-II2		30A	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-II2		27							
	150°		480∆-480Y/277	T48LH42-II2		20		46	32	28	1045	WS-IOB	N/A
			208∆-208Y/I20	T20SH2Y-II2		19	+2/-2@2.5%						
			240∆-208Y/I20	T24SH2Y-II2]	26							
		Y	4804-208Y/I20	T48SH2Y-II2	KI	18	+2/-4@2.5%						
			4804-2404/120LT	T48SH2D-II2]	17	+2/-4@2.5%						
			6004-208Y/I20	T60SH2Y-II2	1	24							
			208∆-480Y/277	T20LF42-II2		23A	+2/-2@2.5%						
			4804-208Y/I20	T48LF2Y-II2]	22A							
		N	4804-2404/120LT	T48LF2D-II2	- KI	2IA							
		IN	480Δ-380Y/2I9	T48LF3Y-II2		30B	+2/-4@2.5%						
			480Δ-400Y/23I	T48LF40-II2	1	27A							
AL	ll5°		480∆-480Y/277	T48LF42-II2	1	20A							
			208∆-208Y/I20	T20SF2Y-II2		19A	+2/-2@2.5%						
			2404-208Y/I20	T24SF2Y-II2	1	26A							
		Y	480∆-208Y/I20	T48SF2Y-II2	KI	18A	12/ 402 5%						
			4804-2404/I20LT	T48SF2D-II2	1	I7A	+2/-4@2.5%						
			6004-208Y/I20	T60SF2Y-II2	1	24A		46	32	28	1205	WS-IOB	N/A
			208∆-480Y/277	T20LB42-II2	1	23A	+2/-2@2.5%	46	32	28	1205	WS-IOB	IN/A
			480∆-208Y/I20	T48LB2Y-II2	1	22A							
		N	4804-2404/120LT	T48LB2D-II2	- KI	2IA							
		N	480Δ-380Y/2I9	T48LB3Y-II2		30B							
			480Δ-400Y/23I	T48LB40-II2	1	27A	+2/-4@2.5%						
	80°		480∆-480Y/277	T48LB42-II2	1	20A							
			208∆-208Y/I20	T20SB2Y-II2		19A	+2/-2@2.5%						
			240∆-208Y/I20	T24SB2Y-II2	1	26A							
		Y	480∆-208Y/I20	T48SB2Y-II2	KI	18A	+2/-4@2.5%						
			4804-2404/120LT	T48SB2D-II2	1	I7A							
			6004-208Y/I20	T60SB2Y-II2	1	24A							
	150°			T48CH2Y-II2		18		46	32	28	1155	WS-IOB	
CU	ll5°	Y	480∆-208Y	T48CF2Y-II2	KI	18	+2/-4@2.5%	-		_			N/A
	80°			T48CB2Y-II2		18A		46	32	28	1355	WS-IOB	

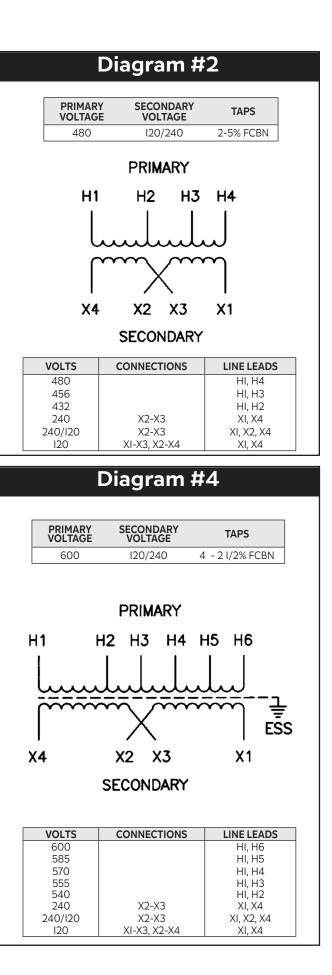
Conductor	Temp Rise	Electro static	Primary/	Part	K	Wiring	Taps	Dimen	sions (i	nches)	Weight		Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-II2-K4		18		46	32	28	1045	WS-I0B	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-II2-K4	K4	18A					1205		
	80°			T48SB2Y-II2-K4		IOA	+2/-4@2.5%	51	36	30.5	1520	WS-I2A	N/A
	150°			T48CH2Y-II2-K4		18	+2/-4@2.5%	46	32	28	1155	WS-I0B	IN/A
CU	ll5°	Y	4804-208Y/I20	T48CF2Y-II2-K4	K4	10		40	52	20	1155	W3-IUB	
	80°			T48CB2Y-II2-K4		18A		51	36	30.5	1750	WS-I2A	
	150°			T48SH2Y-II2-KI3		18A	+2/-4@2.5%	46	32	28	1205	WS-I0B	N/A
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-II2-KI3	KI3	IOA	+2/-4@2.5%	51	36	30.5	1520	WS-I2A	IN/A
	80°			T48SB2Y-II2-KI3				Со	nsult Fa	actory			
	150°			T48CH2Y-II2-KI3		18	+2/-4@2.5%	46	32	28	1155	WS-I0B	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-II2-KI3	KI3	18A	+2/-4@2.5%	40	52	20	1355	W3-IUB	IN/A
	80°			T48CB2Y-II2-KI3				Со	nsult Fa	actory			
	150°			T48SH2Y-II2-K20		18A	+2/-4@2.5%	46	32	28	1205	WS-I0B	N/A
AL	ll5°	Y	4804-208Y/I20	T48SF2Y-II2-K20	K20	IOA	+2/-4@2.5%	51	36	30.5	1520	WS-I2A	
	80°			T48SB2Y-II2-K20]			Co	nsult Fa	actory			
	150°			T48CH2Y-II2-K20		18A	12/ 402 59/	46	32	28	1355	WS-I0B	N/A
CU	ll5°	Y	4804-208Y/I20	T48CF2Y-II2-K20	K20	IOA	+2/-4@2.5%	51	36	30.5	1750	WS-I2A	IN/A
	80°		-	T48CB2Y-II2-K20				Со	nsult Fa	actory			

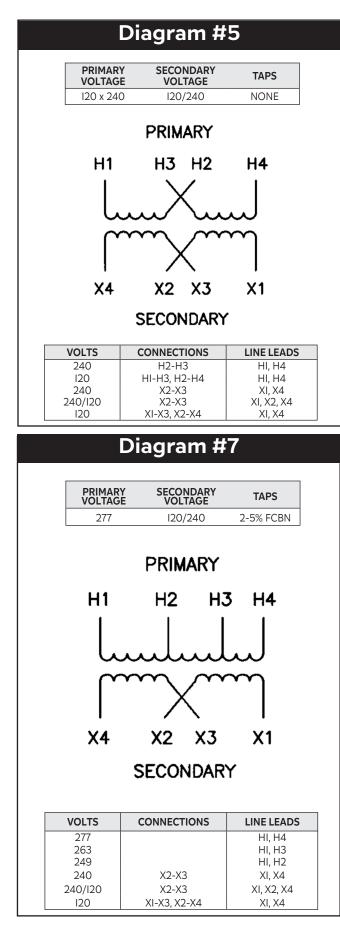
Conductor	Temp Rise	Electro static	Primary/	Part	к	Wiring	Toma	Dimen	isions (ii	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-I50		23A	+2/-2@2.5%						
			480∆-208Y/120	T48LH2Y-I50]	22A							
		N	480∆-240∆/120LT	T48LH2D-I50] кі	2IA							
			480∆-380Y/219	T48LH3Y-I50		30B	+2/-4@2.5%						
			480∆-400Y/231	T48LH40-I50]	27A							
	150°		480∆-480Y/277	T48LH42-I50		20A		46	32	28	1205	WS-IOB	N/A
			208∆-208Y/120	T20SH2Y-I50		19A	+2/-2@2.5%						
			240∆-208Y/120	T24SH2Y-I50]	26A							
		Y	480∆-208Y/120	T48SH2Y-I50	KI	18A	+2/-4@2.5%						
			480Δ-240Δ/120LT	T48SH2D-I50]	17A	+2/-4@2.5%						
			600∆-208Y/120	T60SH2Y-I50]	24A							
			208∆-480Y/277	T20LF42-I50		23B	+2/-2@3%						
			480∆-208Y/120	T48LF2Y-I50	1	22A							
			480Δ-240Δ/120LT	T48LF2D-I50		2IA							
		N	480∆-380Y/219	T48LF3Y-I50	KI	30B	+2/-4@2.5%						
			480∆-400Y/231	T48LF40-I50	1	27A							
AL	ll5°		480∆-480Y/277	T48LF42-I50	1	20A							
			208∆-208Y/120	T20SF2Y-I50		19B	12/2029/						
			240∆-208Y/120	T24SF2Y-I50	1	26B	+2/-2@3%						
		Y	480∆-208Y/120	T48SF2Y-I50	KI	18A							
			480∆-240∆/120LT	T48SF2D-I50	1	I7A	+2/-4@2.5%						
			600∆-208Y/120	T60SF2Y-I50	1	24A		EL	26	30.5		WS-I2A	
			208∆-480Y/277	T20LB42-I50	1	23B	+2/-2@3%	51	36	30.5	1645	WS-IZA	N/A
			480∆-208Y/120	T48LB2Y-I50	1	22A							
		N	480Δ-240Δ/120LT	T48LB2D-I50	- KI	2IA							
			480∆-380Y/219	T48LB3Y-I50		30B	+2/-4@2.5%						
			480∆-400Y/231	T48LB40-I50]	27A							
	80°		480∆-480Y/277	T48LB42-I50	1	20A							
			208∆-208Y/120	T20SB2Y-I50		19B	+2/-2@3%						
			240∆-208Y/120	T24SB2Y-I50	1	26B	+2/-2@3%						
		Y	480∆-208Y/120	T48SB2Y-I50	KI	18A							
			480∆-240∆/120LT	T48SB2D-I50]	17A	+2/-4@2.5%						
			600∆-208Y/120	T60SB2Y-I50]	24A							
	150°			T48CH2Y-I50		18A		46	32	28	1355	WS-IOB	
CU	li5°	Y	480∆-208Y	T48CF2Y-I50	KI	18A	+2/-4@2.5%	51	36	30.5	1750	WS-I2A	N/A
	80°			T48CB2Y-I50		18A		51	50	50.5	1130	1105-12A	

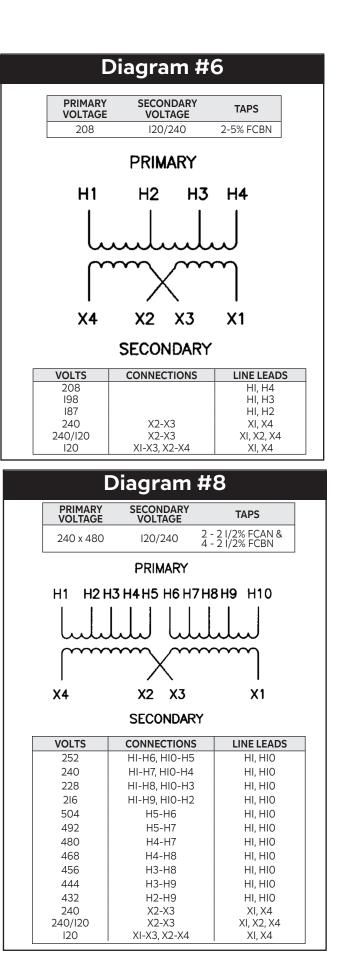
Conductor	Temp Rise	Electro static	Primary/	Part	ĸ	Wiring	Taps	Dimer	nsions (ii	nches)	Weight	Weather	Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		Н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-I50-K4				46	32	28	1205	WS-IOB	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-I50-K4	K4	18A		51	36	30.5	1645	WS-I2A	
	80°			T48SB2Y-I50-K4			+2/-4@2.5%	72.75	53.375	36.875	2500	WS-I6	N/A
	150°			T48CH2Y-I50-K4			+2/-4@2.5%	46	32	28	1355	WS-IOB	IN/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-I50-K4	K4	18A		51	36	30.5	1750	WS-I2A	
	80°			T48CB2Y-I50-K4				51	50	50.5	1750	WJ-IZA	
	150°			T48SH2Y-I50-KI3		18A	+2/-4@2.5%	51	36	30.5	1645	WS-I2A	N/A
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-I50-KI3	KI3	IOA	+2/-4@2.5%	72.75	53.375	36.875	2500	WS-I6	IN/A
	80°			T48SB2Y-I50-KI3				Co	onsult Fa	ctory			
	150°			T48CH2Y-I50-KI3		18A	+2/-4@2.5%	51	36	30.5	1750	WS-I2A	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-I50-KI3	KI3	IOA	+2/-4@2.5%	51	- 50	30.5	1750	WJ-12A	IN/A
	80°			T48CB2Y-I50-KI3				Co	onsult Fa	ctory			
	150°			T48SH2Y-I50-K20				Co	onsult Fa	ctory			
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-I50-K20	K20	18A	+2/-4@2.5%	72.75	53.375	36.875	2500	WS-I6	N/A
	80°			T48SB2Y-I50-K20	1			Co	onsult Fa	ctory			
	150°			T48CH2Y-I50-K20		18A	+2/-4@2.5%	51	36	30.5	1750	WS-I2A	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-I50-K20	K20			Co	nsult Fa	ctory			
	80°		,	T48CB2Y-I50-K20]	18A	+2/-4@2.5%	72.75	53.375	36.875	2550	WS-I6	N/A

Conductor	Temp Rise	Electro static	Primary/	Part	к	Wiring	Taps	Dime	nsions (i	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-225		23B	+2/-2@3%						
			480Δ-208Y/I20	T48LH2Y-225]	22A							
			480A-240A/I20LT	T48LH2D-225	KI	2IA							
		N	480Δ-380Y/2I9	T48LH3Y-225		30B	+2/-4@2.5%						
			480Δ-400Y/23I	T48LH40-225	1	27A							
	150°		480∆-480Y/277	T48LH42-225		20A		51	36	30.5	1645	WS-I2A	N/A
			208Δ-208Y/I20	T20SH2Y-225		19B	+2/-2@3%						
			2404-208Y/I20	T24SH2Y-225	1	26B	+2/-2@3%						
		Y	480Δ-208Y/I20	T48SH2Y-225	KI	18A							
			480A-240A/I20LT	T48SH2D-225	1	I7A	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-225	1	24A							
			208Δ-480Y/277	T20LF42-225		23C	+2/-2@3.5%						
			480Δ-208Y/I20	T48LF2Y-225	1	22A							
			480A-240A/I20LT	T48LF2D-225		2IA							
		N	480Δ-380Y/2I9	T48LF3Y-225	KI	30B	+2/-4@2.5%						
			480∆-400Y/23I	T48LF40-225		27A							
AL	ll5°		480Δ-480Y/277	T48LF42-225	1	20A							
			208Δ-208Y/I20	T20SF2Y-225		19C	+2/-2@3.5%						
			2404-208Y/I20	T24SF2Y-225]	26C	+2/-2@3.5%						
		Y	480Δ-208Y/I20	T48SF2Y-225	KI	18A							
			480A-240A/I20LT	T48SF2D-225]	I7A	+2/-4@2.5%						
			600∆-208Y/I20	T60SF2Y-225]	24A		63	46.5	30.875	2350	WS-14	N/A
			208∆-480Y/277	T20LB42-225		23C	+2/-2@3.5%	63	40.5	30.075	2350	VV5-14	IN/A
			480Δ-208Y/I20	T48LB2Y-225		22A							
		N	4804-2404/I20LT	T48LB2D-225	KI	2IA							
			480Δ-380Y/2I9	T48LB3Y-225		30B	+2/-4@2.5%						
			480Δ-400Y/23I	T48LB40-225		27A							
	80°		480∆-480Y/277	T48LB42-225		20A							
			208∆-208Y/I20	T20SB2Y-225		19C	+2/-2@3.5%						
			2404-208Y/I20	T24SB2Y-225]	26C	+2/-2@3.5%						
		Y	480Δ-208Y/I20	T48SB2Y-225	KI	18A							
			480A-240A/I20LT	T48SB2D-225]	I7A	+2/-4@2.5%						
			600∆-208Y/I20	T60SB2Y-225		24A							
	150°			T48CH2Y-225		18A		51	36	30.5	1750	WS-I2A	
CU	115°	Υ	480∆-208Y	T48CF2Y-225	KI	18A	+2/-4@2.5%	63	46.5	30.875	2400	WS-I4	N/A
	80°			T48CB2Y-225		18A		00	0.5	0.015	2700		

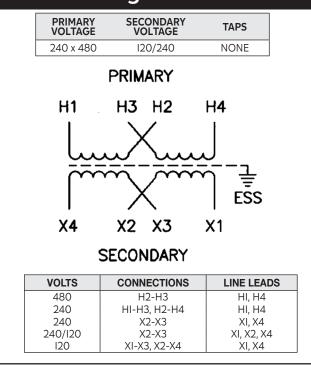

Conductor	Temp Rise	Electro static	Primary/	Part	_ K	Wiring	Taps	Dime	nsions (ii	nches)	Weight	Weather	Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		Н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-225-K4									
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-225-K4	K4	18A		63	46.5	30.875	2350	WS-I4	
	80°			T48SB2Y-225-K4			+2/-4@2.5%						N/A
	150°			T48CH2Y-225-K4			+2/-4@2.5%	51	36	30.5	1750	WS-I2A	IN/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-225-K4	K4	18A		63	46.5	30.875	2400	WS-I4	
	80°			T48CB2Y-225-K4				05	40.5	30.075	2400	VVJ-14	
	150°			T48SH2Y-225-KI3		IBA +2/-4@2.5%	63	46.5	30.875	2350	WS-I4	N/A	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-225-KI3	KI3	IOA	+2/-4@2.5%	05	40.5	30.075	2550	VVJ-14	N/A
	80°			T48SB2Y-225-KI3				C	onsult Fa	actory			
	150°			T48CH2Y-225-KI3		18A	+2/-4@2.5%	63	46.5	30.875	2400	WS-I4	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-225-KI3	KI3	IOA	+2/-4@2.5%	05	40.5	50.075	2400	VVJ-14	N/A
	80°			T48CB2Y-225-KI3				C	onsult Fa	actory			
	150°			T48SH2Y-225-K20		18A	+2/-4@2.5%	63	46.5	30.875	2350	WS-14	N/A
AL	II5°	Y	480∆-208Y/I20	T48SF2Y-225-K20	K20	IOA	+2/-4@2.5%	03	40.5	30.075	2350	VV-5-14	IN/A
	80°			T48SB2Y-225-K20	1			C	onsult Fa	actory			
	150°		+2/-4@2.5%	63	46.5	30.875	2400	WS-14	N/A				
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-225-K20	K20	IOA	+2/-4@2.5%	03	40.5	30.875	2400	vv-5-14	IN/A
	80°		,	T48CB2Y-225-K20	K20		C	onsult Fa	actory				

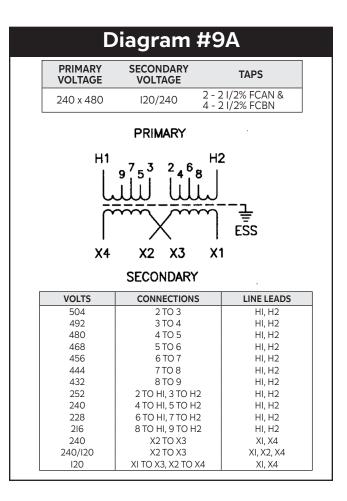

Conductor	Temp Rise	Electro static	Primary/	Part	К	Wiring	Tana	Dime	nsions (i	nches)	Weight		Wall Mount
Conductor	(Celsius)	Shield	Secondary	Number	Factor	Diagram	Taps	н	W	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-300		23C	+2/-2@3.5%						
			480∆-208Y/I20	T48LH2Y-300		22A							
		Ν	480∆-240∆/I20LT	T48LH2D-300	к	2IA							
		IN	480∆-380Y/2I9	T48LH3Y-300		30B	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-300		27A							
	150°		480∆-480Y/277	T48LH42-300		20A							
			208∆-208Y/I20	T20SH2Y-300		19C	+2/-2@3.5%						
			240∆-208Y/I20	T24SH2Y-300	1	26C	+2/-2@3.5%						
		Y	480∆-208Y/I20	T48SH2Y-300	KI	18A]					
			480Δ-240Δ/I20LT	T48SH2D-300	1	17A	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-300	1	24A		63	46.5	30.875	2350	WS-14	N/A
			208∆-480Y/277	T20LF42-300		23C	+2/-2@3.5%	03	40.5	30.075	2350	VV5-14	IN/A
			480∆-208Y/I20	T48LF2Y-300	1	22A		1					
		N	480A-240A/I20LT	T48LF2D-300	- KI	2IA							
		Ν	480∆-380Y/2I9	T48LF3Y-300		30B	+2/-4@2.5%						
			480∆-400Y/23I	T48LF40-300	1	27A							
AL	II5°		480∆-480Y/277	T48LF42-300	1	20A							
			208∆-208Y/I20	T20SF2Y-300		19C	12/2025%]					
			240∆-208Y/I20	T24SF2Y-300	1	26C	+2/-2@3.5%						
		Y	480∆-208Y/I20	T48SF2Y-300	KI	18A		1					
			480A-240A/I20LT	T48SF2D-300	1	17A	+2/-4@2.5%						
			600∆-208Y/I20	T60SF2Y-300	1	24A							
			208∆-480Y/277	T20LB42-300		23E	+I/I@5%						
			480∆-208Y/I20	T48LB2Y-300	1	22A		1					
		N	480A-240A/I20LT	T48LB2D-300	- KI	2IA							
		Ν	480∆-380Y/2I9	T48LB3Y-300		30B	+2/-4@2.5%						
			480∆-400Y/23I	T48LB40-300	1	27A							
	80°		480∆-480Y/277	T48LB42-300	1	20A							
			208∆-208Y/I20	T20SB2Y-300		19E	+I/I@5%	72.75	53.375	36.875	3340	WS-I6	N/A
			240∆-208Y/I20	T24SB2Y-300	1	26D	+1/1@4%	1					
		Y	480∆-208Y/I20	T48SB2Y-300	KI	18A		1					
			480A-240A/I20LT	T48SB2D-300	1	I7A	+2/-4@2.5%						
			600∆-208Y/I20	T60SB2Y-300	1	24A							
	150°			T48CH2Y-300		18A	+2/-4@2.5%	1					
CU	ll5°	Y	480∆-208Y	T48CF2Y-300	KI	18A	+2/-4@2.3%						
	80°			T48CB2Y-300				Co	onsult Fa	ctory			


Conductor	Temp Rise	Electro static	Primary/	Part	K	Wiring	Taps	Dime	nsions (i	nches)	Weight		Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		н	W	D	(lbs)	Shield	Bracket
	150°			T48SH2Y-300-K4				63	46.5	30.875	2350	WS-I4	
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-300-K4	K4	18A		05	40.5	30.075	2350	VVJ-14	
	80°			T48SB2Y-300-K4			+2/-4@2.5%	72.75	53.375	36.875	3340	WS-I6	N/A
	150°			T48CH2Y-300-K4		18A		63	46.5	30.875	2400	WS-I4	
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-300-K4	K4	IOA		05	40.5	50.075	2400	VVJ-14	
	80°			T48CB2Y-300-K4				Co	onsult Fa	ictory			
	150°			T48SH2Y-300-KI3		18A	+2/-4@2.5%	63	46.5	30.875	2350	WS-I4	N/A
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-300-KI3	KI3	IOA	+2/-4@2.5%	72.75	53.375	36.875	3340	WS-16	IN/A
	80°			T48SB2Y-300-KI3				Co	onsult Fa	ictory			
	150°			T48CH2Y-300-KI3		18A	+2/-4@2.5%	63	46.5	30.875	2400	WS-I4	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-300-KI3	KI3			C	onsult Fa	ctory			
	80°			T48CB2Y-300-KI3					ilisuit i a	ictory			
	150°			T48SH2Y-300-K20		18A	+2/-4@2.5%	63	46.5	30.875	2350	WS-I4	N/A
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-300-K20	K20			C	onsult Fa	octory			
	80°			T48SB2Y-300-K20						ictory			
	150°			T48CH2Y-300-K20		18A	+2/-4@2.5%	63	46.5	30.875	2400	WS-I4	N/A
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-300-K20	K20			Co	onsult Fa	story			
	80°			T48CB2Y-300-K20									


Conductor	Temp Rise	Electro static	Primary/	Part	К	Wiring	Tana	Dime	ensions (i	nches)	Weight	Weather	Wall Mount
Conductor	(Celsius)	Static	Secondary	Number	Factor	Diagram	Taps	н	w	D	(lbs)	Shield	Bracket
			208∆-480Y/277	T20LH42-500		23E	+1/-1@5%						
			480∆-208Y/I20	T48LH2Y-500	1	22A		1					
		N	480A-240A/I20LT	T48LH2D-500	- KI	2IA	1						
			480∆-380Y/2I9	T48LH3Y-500		30B	+2/-4@2.5%						
			480∆-400Y/23I	T48LH40-500	1	27A	1						
	150°		480∆-480Y/277	T48LH42-500	1	20A]	72.75	53.375	36.875	3340	WS-I6	N/A
			208∆-208Y/I20	T20SH2Y-500		19E	+1/-1@5%	1					
			240∆-208Y/I20	T24SH2Y-500	1	26D	+1/-1@4%	1					
		Y	480∆-208Y/I20	T48SH2Y-500	KI	18A		1					
			480A-240A/I20LT	T48SH2D-500	1	17A	+2/-4@2.5%						
			600∆-208Y/I20	T60SH2Y-500	1	24A	1						
			208∆-480Y/277	T20LF42-500									
			480∆-208Y/I20	T48LF2Y-500	1								
		N	480A-240A/I20LT	T48LF2D-500	- KI								
			480∆-380Y/2I9	T48LF3Y-500									
			480∆-400Y/23I	T48LF40-500	1								
AL	ll5°		480∆-480Y/277	T48LF42-500	1								
			208∆-208Y/I20	T20SF2Y-500									
			240∆-208Y/I20	T24SF2Y-500	1								
		Y	480∆-208Y/I20	T48SF2Y-500	KI								
			4804-2404/I20LT	T48SF2D-500	1								
			600∆-208Y/I20	T60SF2Y-500	1			C	onsult Fa	story			
			208∆-480Y/277	T20LB42-500		1		C		ictory			
			480∆-208Y/I20	T48LB2Y-500	1								
		N	480A-240A/I20LT	T48LB2D-500	- KI								
			480∆-380Y/2I9	T48LB3Y-500									
			480∆-400Y/23I	T48LB40-500	1								
	80°		480∆-480Y/277	T48LB42-500	1								
			208∆-208Y/I20	T20SB2Y-500		1							
			240∆-208Y/I20	T24SB2Y-500	1								
		Y	480∆-208Y/I20	T48SB2Y-500	KI								
			480A-240A/I20LT	T48SB2D-500	1								
			600∆-208Y/I20	T60SB2Y-500	1								
	150°			T48CH2Y-500]	18A	+2/-4@2.5%	72.75	53.375	36.875	3570	WS-I6	N/A
CU	ll5°	Y	480∆-208Y	T48CF2Y-500] KI			C	onsult Fa	ictory			
	80°			T48CB2Y-500									

Conductor	Temp Rise	Electro static	Primary/	Part	_ K	Wiring	Taps	Dir	nen	sions	(inc	hes)	Weight		Wall Mount
	(Celsius)	Shield	Secondary	Number	Factor	Diagram		Н		W		D	(lbs)	Shield	Bracket
	150°			T48SH2Y-500-K4											
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-500-K4	K4										
	80°			T48SB2Y-500-K4]				Con	sult F	acto	251			
	150°			T48CH2Y-500-K4				,	COI	Suitr	acii	Лу			
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-500-K4	K4										
	80°			T48CB2Y-500-K4											
	150°			T48SH2Y-500-KI3											
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-500-KI3	KI3										
	80°			T48SB2Y-500-KI3				(Con	sult F	acto	2rv			
	150°			T48CH2Y-500-KI3				```	CUI	Suiti	acii	Jiy			
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-500-KI3	KI3										
	80°			T48CB2Y-500-KI3]										
	150°			T48SH2Y-500-K20											
AL	ll5°	Y	480∆-208Y/I20	T48SF2Y-500-K20	K20										
	80°			T48SB2Y-500-K20]			,	Con	sult F	acto	251			
	150°			T48CH2Y-500-K20				,	COL	Suit F	acti	Лу			
CU	ll5°	Y	480∆-208Y/I20	T48CF2Y-500-K20	K20										
	80°			T48CB2Y-500-K20											





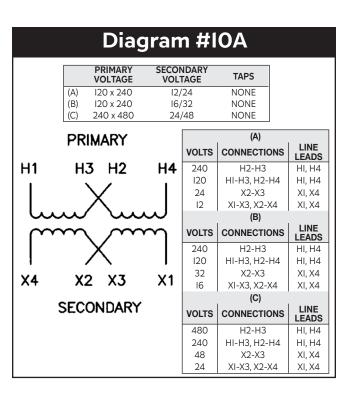
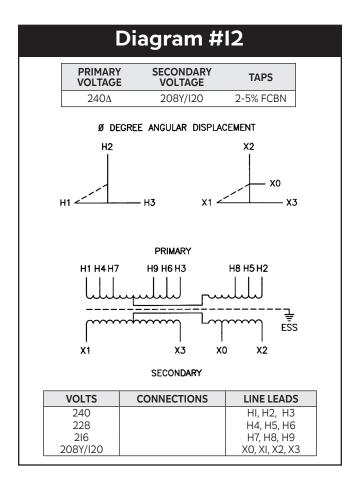
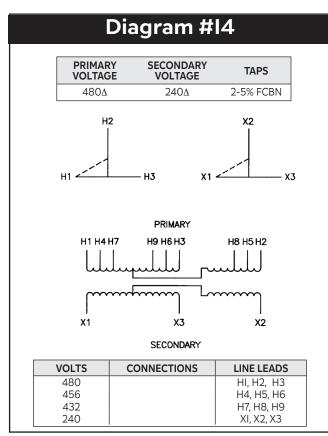
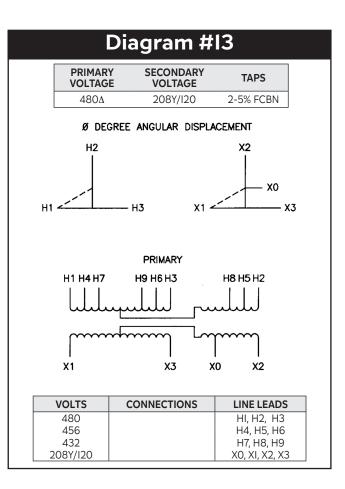


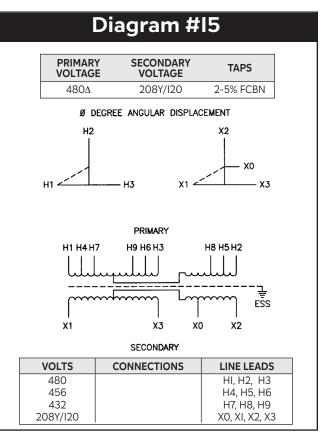
	Diagram #	! 9								
PRIMARY VOLTAGE	SECONDARY VOLTAGE	TAPS								
240 x 480		- 2 I/2% FCAN & - 2 I/2% FCBN								
	PRIMARY									
	H1 $9^{7}5^{3}2_{4}^{6}8$ H2 1000									
VOLTS	CONNECTIONS	LINE LEADS								
504 492 480 468 456 444 432 252 240 228 216 240 228 216 240 240/120 120	2 TO 3 3 TO 4 4 TO 5 5 TO 6 6 TO 7 7 TO 8 8 TO 9 2 TO HI, 3 TO H2 4 TO HI, 5 TO H2 6 TO HI, 7 TO H2 8 TO HI, 9 TO H2 X2 TO X3 X2 TO X3 X1 TO X3, X2 TO X4	HI, H2 HI, H2 XI, X4 XI, X4 XI, X2, X4 XI, X4								

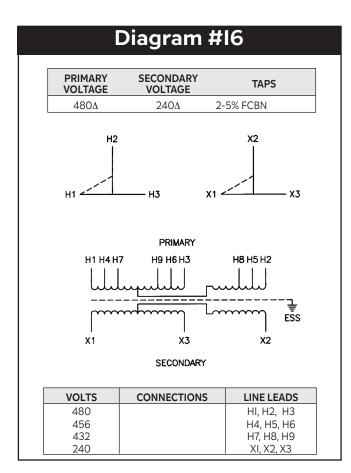
Diagram #10

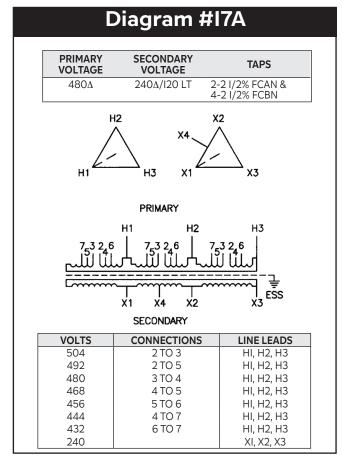


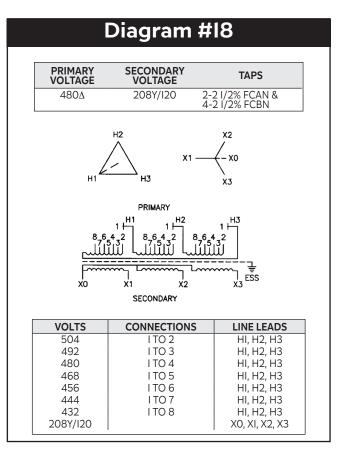


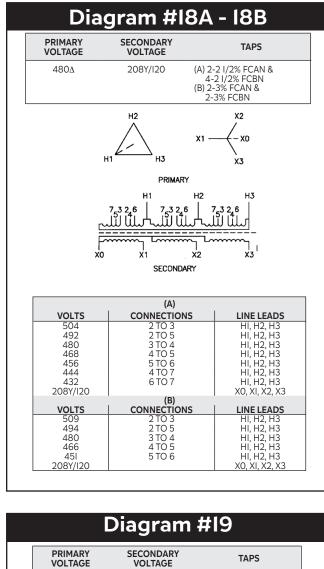



		D'	411
		Diagram #	4 <u>11</u>
	PRIMARY VOLTAGE	SECONDARY VOLTAGE	TAPS
	600		- 2 I/2% FCAN & - 2 I/2% FCBN
			21/2/01/0011
		PRIMARY	·
	H1	7326	12
	1	9 ⁷ 5 ³ 24 ⁶ 8	
	l	ulli Ulli	J
	7	mm mm	<u></u>
		Х	ESS
	X4	×2 ×3 >	K1
		SECONDARY	
Г	VOLTS	CONNECTIONS	LINE LEADS
	630	2 TO 3	HI, H2
	615 600	3 TO 4 4 TO 5	HI, H2
	600 585	4 10 5 5 TO 6	HI, H2 HI, H2
	570	6 TO 7	HI, H2
	555	7 TO 8	HI, H2
	540	8 TO 9	HI, H2
	240	X2 TO X3	XI, X4
	240/I20 I20	X2 TO X3 XI TO X3, X2 TO X4	XI, X2, X4 XI, X4
	120	1 10 //3, //2 10 //4	1 71,74


		Diagram #	11Δ
[PRIMARY	SECONDARY	TAPS
-	208	VOLTAGE 120/240 2	2 - 2 I/2% FCAN &
	200		- 2 I/2% FCBN
		PRIMARY	
	Н	1	H2
		$9^{7}5^{3}2_{4}^{6}$	B
			1
		un m	ω
		m	γ
	х	4 X2 X3	X1
		SECONDARY	, ,
	VOLTS	CONNECTIONS	LINE LEADS
	218	2 TO 3	HI, H2
	2 3 208	3 TO 4 4 TO 5	HI, H2
	208	5 TO 6	HI, H2 HI, H2
	198	6 TO 7	HI, H2
	240	X2 TO X3	XI, X4
	240/120	X2 TO X3	XI, X2, X4
	120	XI TO X3, X2 TO X4	XI, X4







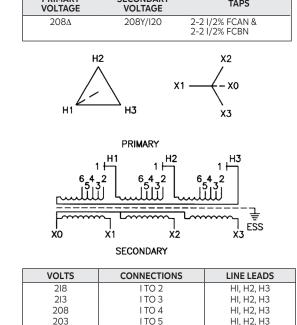
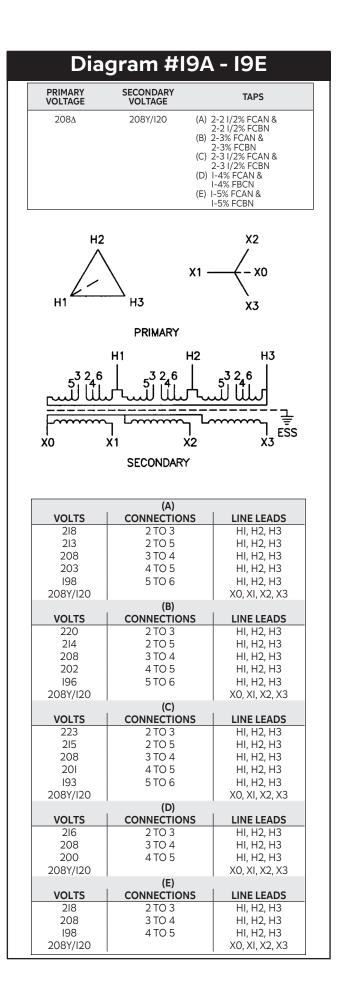
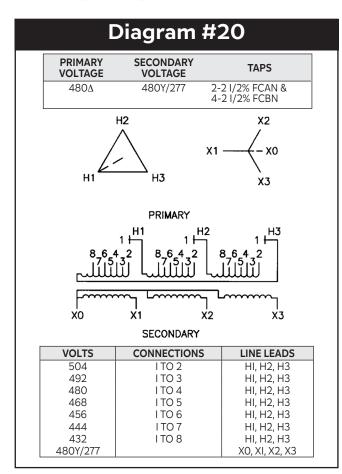
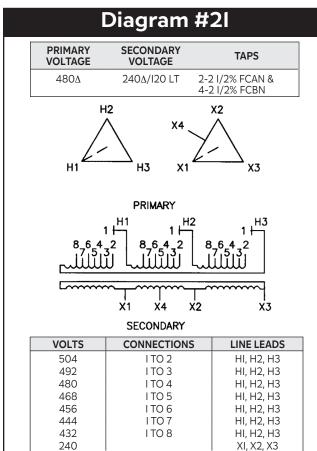


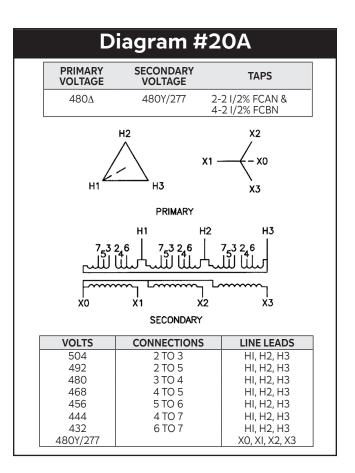
Diagram #17 PRIMARY SECONDARY TAPS VOLTAGE VOLTAGE 2-2 I/2% FCAN & 4-2 I/2% FCBN **480**Δ 2404/I20 LT H2 X2 X4 H1 H3 X1 Х3 PRIMARY H1 H2 H3 1 H 11 11 2 2 8 г ESS X1 x4 x2 х́з SECONDARY CONNECTIONS LINE LEADS VOLTS 504 I TO 2 HI, H2, H3 492 I TO 3 HI, H2, H3 480 I TO 4 HI, H2, H3 468 I TO 5 HI, H2, H3 HI, H2, H3 456 I TO 6 444 ITO 7 HI, H2, H3 432 I TO 8 HI, H2, H3 240 XI, X2, X3

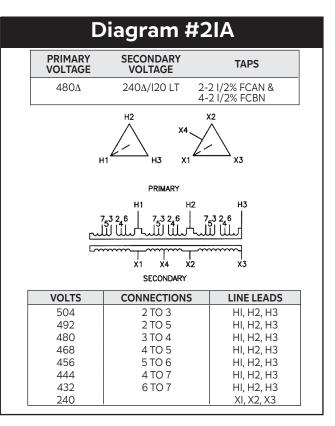


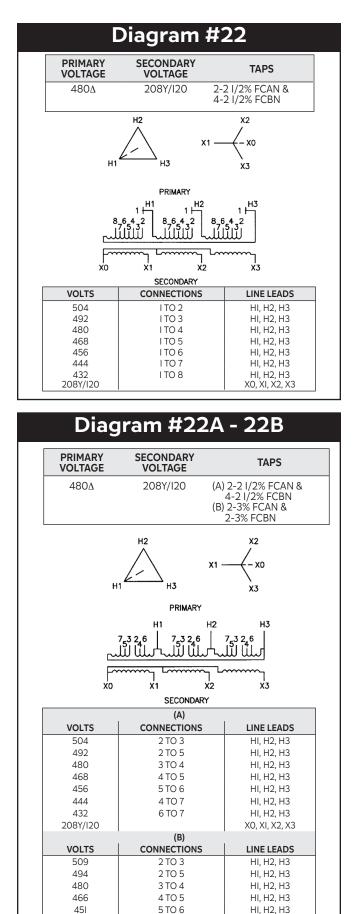
1 TO 6

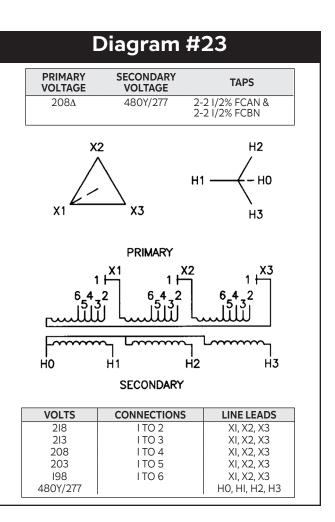

HI. H2. H3

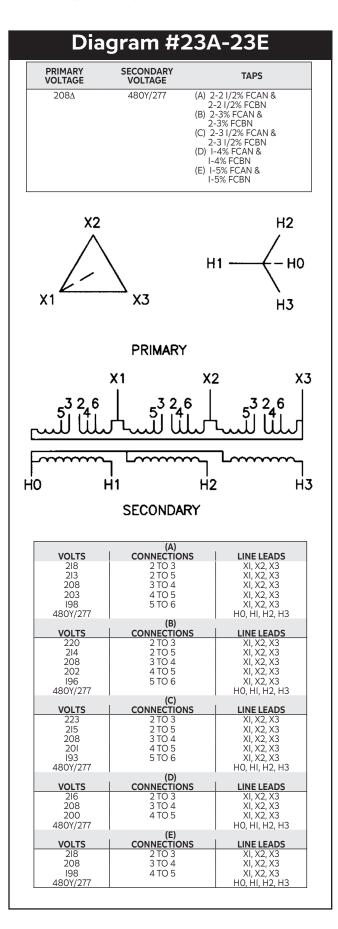

X0, XI, X2, X3

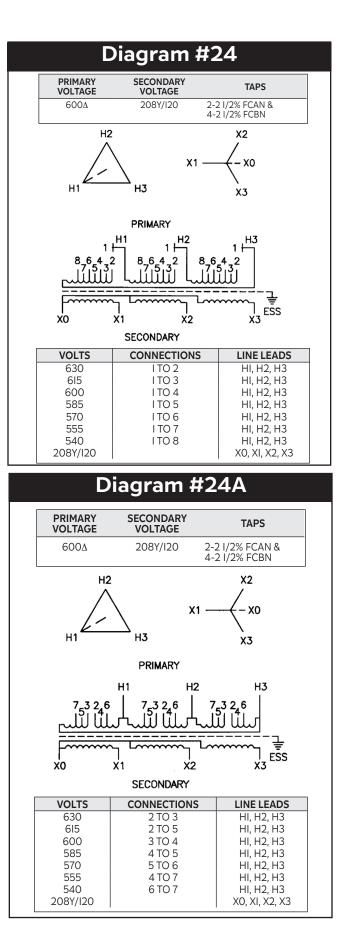


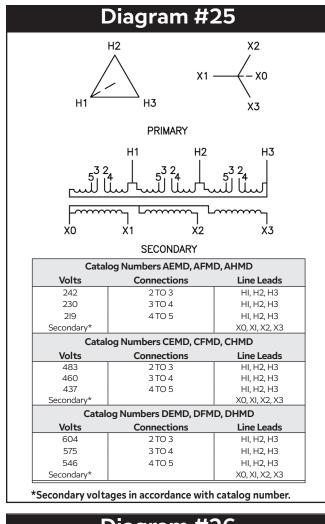

198


208Y/I20

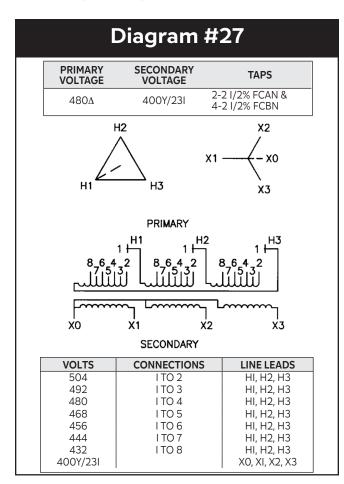


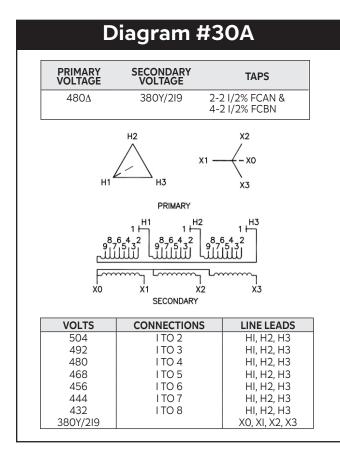


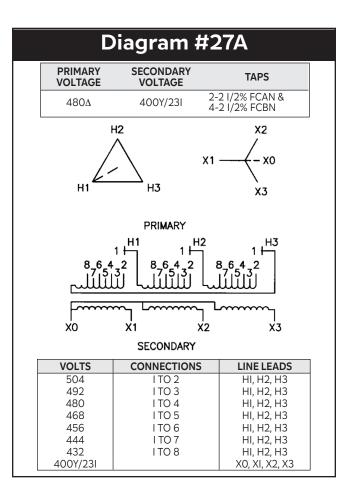


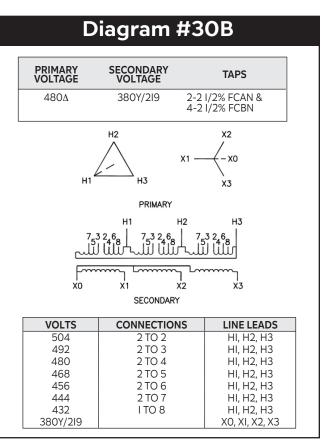

X0, XI, X2, X3

208Y/I20

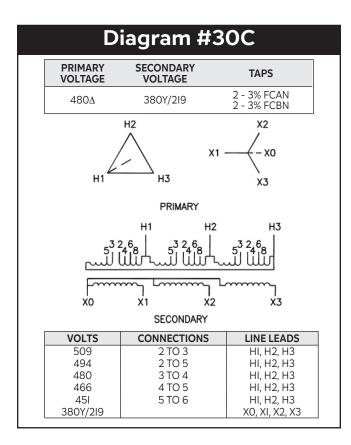



Diagram #26


PRIMARY VOLTAGE	SECONDARY VOLTAGE	TAPS
240Δ	208Y/I20	2-2 I/2% FCAN & 4-2 I/2% FCBN
H2	2 X1	$\begin{pmatrix} x_2 \\ -x_0 \\ x_3 \end{pmatrix}$
	PRIMARY	
1		
1 8_6_4_3 باباباباب	$\begin{bmatrix} H1 & 1 & H2 \\ 2 & 8_{76} & 4_{3} & 2 \\ 3 & 4_{75} & 4$	
1 8 ₇ 6 ₅ 4 ₃ الملليل		
1 8,6,4,3 JJJJJJJ 	$\begin{array}{c} H^{1} & H^{2} \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4$	
	2 8,6,4,2 8,6,4 1 1	
1 8,6,54,3 	2 8,6,4,2 4 4,4,2 4 4,4,2 4 4,4,4 4 4,4,4,4 4 4,4,4,4 4 4,4,4,4,4 4 4,4,4,4,4,4 4 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	
	1	
VOLTS	1 F 2 8,6,4,2 3 4,4,2 8,6,4,2 8,6,4 4,4,4,2 8,6,4 4,4,4,4 1,4,4,4 1,4,4,4 1,4,4,4 1,4,4,4 1,4,4,4 1,4,4,4,4 1,4,4,4,4 1,4,4,4,4,4 1,4,4,4,4,4,4 1,4,4,4,4,4,4,4 1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	
VOLTS 252	1 8,6,4,3 8,6,5 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	1 32 32 32 32 32 32 55 55 10 10 10 10 10 10 10 10 10 10
VOLTS 252 246	1 2 8.6 4 2 8.6 5 32	LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3
VOLTS 252 246 240	1 1 2 8,6,4,32 8,6,4,32	LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
VOLTS 252 246 240 234	1 1 8,6 4,32 8,6,5 1 1 2 8,6,4,32 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1	LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
VOLTS 252 246 240 234 228	1 8.6.4 3.2 8.6.5 1 1 1.1 8.6.5 1.1 2 8.6.4 3.2 1.1 1.1 2 1.1 1.2 1.1 1.1 1.1 2 SECONDARY 1.1 2.2 1.1	LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3


	gram #26A	
PRIMARY VOLTAGE	SECONDARY VOLTAGE	TAPS
240A		2-2 I/2% FCAN &
		4-2 I/2% FCBN
	(B)	2-3% FCAN & 2-3% FCBN
		2-3 I/2% FCAN &
		2-3 I/2% FCBN I-4% FCAN &
		I-4% FBCN
٢	12	X2
	$\overline{\mathbf{A}}$	/
	∑	
н1	нз	\mathbf{X}
	no	X3
	PRIMARY	
	H1 H2	Н3
7,32	6 7,32,6 7	53 2 ₄ 6
ىًا لىلىم	للملسلينا لللملسل	มี นี้ไม
F		Ţ ESS
X0	X1 X2	X3
	SECONDARY	
	(A)	
252	2 TO 3	LINE LEADS HI, H2, H3
246	2 TO 5	HI, H2, H3
240		
240	3 TO 4	HI, H2, H3
240	3 TO 4 4 TO 5	
		HI, H2, H3
234	4 TO 5	HI, H2, H3 HI, H2, H3
234 228	4 TO 5 5 TO 6	HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222	4 TO 5 5 TO 6 4 TO 7 6 TO 7	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/I20	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B)	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3
234 228 222 216 208Y/120 VOLTS	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3
234 228 222 216 208Y/120 VOLTS 254	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/I20 VOLTS 254 247 240 233	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/I20 VOLTS 254 247 240 233	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C)	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/I20 VOLTS 254 247 240 233 226 208Y/I20	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 KI, H2, H3 KI, H2, H3 KI, H2, H3 HI, H2, H3 KI, H3 KI, H2, H3 KI, H3 KI, H2, H3 KI, H2, H3 KI, H2, H3 KI, H3 KI
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 K0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 KI, H2, H3 HI, H3 HI
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 5	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 240	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 3 2 TO 5 3 TO 4	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 240 232	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 KI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 240 232 248 240 232 224 208Y/120	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D)	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 K0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3 K0, XI, X2, X3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 240 232 224 208Y/120	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 KI, H2, H3 HI, H3 HI, H2, H3 HI, H
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 248 240 232 224 208Y/120 VOLTS VOLTS	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 240 232 224 208Y/120 VOLTS 250 240	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 3 TO 4 4 TO 5 5 TO 6	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3
234 228 222 216 208Y/120 VOLTS 254 247 240 233 226 208Y/120 VOLTS 256 248 248 240 232 224 208Y/120 VOLTS VOLTS	4 TO 5 5 TO 6 4 TO 7 6 TO 7 (B) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (C) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO 5 3 TO 4 4 TO 5 5 TO 6 (D) CONNECTIONS 2 TO 3 2 TO	HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 HI, H2, H3 X0, XI, X2, X3 LINE LEADS HI, H2, H3 HI, H2, H3

Wiring Diagrams (Three-Phase)



Wiring Diagrams (Three-Phase)

Buck-Boost Transformers

Operation

Electrical and electronic equipment is designed to operate on a standard supply voltage. When the supply voltage is constantly too high or too low, (usually greater than \pm 5%), the equipment may fail to operate at maximum efficiency. A Buck-Boost transformer is a simple and economical means of correcting this off-standard voltage up to \pm 20%. A Buck-Boost transformer will NOT stabilize a fluctuating voltage.

Buck-Boost transformers are suitable for use in a three-phase autotransformer bank in either direction to supply 3-wire loads. They are also suitable for use in a three-phase autotransformer bank which provides a neutral return for unbalanced current. They are not suitable for use in a three-phase autotransformer bank to supply a 4-wire load when the source is only a 3-wire circuit, having no neutral.

Application

A Buck-Boost Transformer has four separate windings, two windings in the primary and two windings in the secondary. The unit is designed for use as an isolating transformer or as an auto-transformer. As an autotransformer the unit can be connected to Buck (decrease) or Boost (increase) a supply voltage.

As isolating transformers, these units can accommodate a high voltage of I20x240 volts (KIXGFI2 and KIXGFI6 series) or 240x480 volts (K2XGF24 series.) For the units with two I2 volt secondaries, the low voltage output can be I2 volts, 24 volts, or 3-wire 24/I2 volts. For the units with two I6 volt secondaries, the output voltages can be I6 volts, 32 volts, or 3-wire 32/I6 volts. For the units with two 24 volt secondaries, the output voltages can be 24 volts, 48 volts, or 3 wire 48/24 volts.

Autotransformers are more economical and physically smaller than equivalent two-winding transformers designed to carry the same load. They will perform the same function as two-winding transformers with the exception of isolating two circuits. Since autotransformers may transmit line disturbances directly, they may be prohibited in some areas by local building codes, before applying them, consult local codes.

Note: Three autotransformers are not used in closed Delta connections as they introduce into the circuit a phase shift.

Selection

To select the proper transformer for Buck-Boost applications, determine:

I. Input Line Voltage- the voltage that you want to Buck (decrease) or Boost (increase). This can be found by measuring the supply line voltage with a voltmeter.

2. Output Load Voltage- the voltage at which your equipment is designed to operate. This is listed on the nameplate of the load equipment.

3. Load KVA or Load Amps- you do not need to know both - one or the other is sufficient for selection purposes. This information usually can be found on the nameplate of the equipment that you want to operate.

4. Number of Phases-single-or three-phase line and load should match because a transformer is not capable of converting single-phase to three-phase. It is, however, a common application to make a singlephase transformer connection from a three-phase supply by use of one leg of the three-phase supply circuit. Care must always be taken not to overload the leg of the three-phase supply. This is particularly true in a Buck-Boost application because the supply must provide the load KVA, not just the nameplate rating of the Buck-Boost transformer.

5. Frequency- the supply line and required equipment frequency must both be 60HZ.

Buck-Boost Selection

Refer to the Buck-Boost Transformer Calculator/Selector at www. federalpacific.com/BuckBoostCalc.html or to use the tables on pages 4I, 42, and 43 see below

I. Choose the selection table with the correct number of phases. Tables I, III and V for single-phase applications and Tables II, IV and VI for three-phase applications. Tables I and II are for 120x240-12/24 volt units, tables III and IV are for 120x240-16/32 volt units and tables V and VI are for 240x480-24/48 volt units.

2. Line/Load voltage combinations are listed across the top of the selection table. Use the boosting or bucking columns where appropriate.

3. Follow the selected column down until you find either the load KVA or load amps of your application. If you do not find the exact value, go on to the next highest rating.

4. Follow across the table to the far left-hand side to find the catalog number of the transformer you need.

5. Follow the column of your line/load voltage to the bottom to find the connection diagram for this application. NOTE: Connection diagrams show low voltage and high voltage connection terminals. Either can be input or output depending on buck or boost application.

6. In the case of three-phase loads, two (open Delta) or three (Wye) single-phase transformers are required as indicated in the "quantity required" line at the bottom of Table II, IV or VI. Select depending on whether a Wye connected bank of three transformers with a neutral is required or whether an open Delta connected bank of two transformers for a Delta connected load will be suitable.

For line/load voltages not listed on table, use the pair listed on the table that is slightly above your application for reference. Then apply the first formula at the bottom of the page to determine "New" output voltage. The new KVA rating can be found using the second formula.

Buck-Boost Technical Data

Temp	Electro	Primary/	Part	Wiring	.	Dim	ensions (in	ches)	Weight	Weather	Wall
Rise (Celsius)	static Shield	Secondary	Number	Diagram	Taps	н	W	D	(lbs)	shield	Mount Bracket
			KIXGFI2-0.05			8.25	3.25	4.25	8		
			KIXGFI2-0.I			0.25	5.25	4.25	10		
			KIXGFI2-0.I5			9.25	4	5	14		
			KIXGFI2-0.25			5.25	-		15		
			KIXGFI2-0.5						21	- Not	
		120x240V - 12/24V	KIXGFI2-0.75	IOA	Ν	II.25	5.25	6.5	25	Not Required	Built-In
			KIXGFI2-I						28		
			KIXGFI2-I.5						45		
			KIXGFI2-2			13.25	6.25	7.75	50		
			KIXGFI2-3						60		
			KIXLFI2-5			15	10.187	10.625	IIO		
			KIXGFI6-0.05	-		8.25	3.25	4.25	8	-	
			KIXGFI6-0.I	-					10	-	
			KIXGFI6-0.I5	-		9.25	4	5	14		
			KIXGFI6-0.25	-					15	-	
ll5°	N		KIXGFI6-0.5	105			- o		21	Not	
		120x240V - 16/32V	KIXGFI6-0.75	IOB	Ν	11.25	5.25	6.5	25	Required	Built-In
			KIXGFI6-I	-					28 45	-	
			KIXGFI6-I.5 KIXGFI6-2			13.25	6.25	7.75	45 50	-	
			KIXGFI6-2			15.25	0.25	1.15	60	-	
			KIXLFI6-5	-		15	10.187	10.625	110	-	
			K2XGF24-0.05			15	10.101	10.025	8		
			K2XGF24-0.I	-		8.25	3.25	4.25	10	-	
			K2XGF24-0.I5	-					14	-	
			K2XGF24-0.25	-		9.25	4	5	15	-	
			K2XGF24-0.5						21		
		240x480V -	K2XGF24-0.75	10C	Ν	II.25	5.25	6.5	25	Not	Built-In
		24/48V	K2XGF24-I						28	Required	
			K2XGF24-I.5						45	1	
			K2XGF24-2	1		13.25	6.25	7.75	50	1	
			K2XGF24-3	1					60	1	
			K2XLF24-5	1		15	10.187	10.625	IIO	1	

Buck-Boost Selection Tables

120 x 240 Volts Primary - 12/24 Volts Secondary · Buck - Boost Dry-Type Transformers

AMPS = Load Amps KVA = Load Circuit KVA

Single-Phase

								<u></u>	1 1145	•					
TABLE I					BOOS	STING						BUC	KING		
Catalog	Line Voltage	96	100	105	109	189	208	218	220	125	132	229	245	250	252
Number	Load Voltage	115	120	116	120	208	229	240	242	114	120	208	223	227	240
KIXGFI2-0.05	KVA	0.24	0.25	0.48	0.50	0.43	0.48	0.50	0.50	0.52	0.55	0.48	0.51	0.52 2.29	1.05 4.38
	AMPS KVA	2.08 0.48	2.08 0.50	4.17 0.96	4.17 1.00	2.08 0.87	2.08 0.95	2.08 1.00	2.08 1.01	4.58 1.04	4.58 1.10	0.95	2.29 I.02	1.04	2.10
KIXGFI2-0.I	AMPS	4.17	4.17	8.33	8.33	4.17	4.17	4.17	4.17	9.17	9.17	4.58	4.58	4.58	8.75
KIXGFI2-0.I5	KVA	0.72	0.75	1.44	1.50	1.30	1.43	1.50	1.51	1.56	1.65	1.43	1.53	1.56	3.15
NIX0FI2=0.15	AMPS	6.25	6.25	12.50	12.50	6.25	6.25	6.25	6.25	13.75	13.75	6.87	6.87	6.87	13.13
KIXGFI2-0.25	KVA	1.20	1.25	2.41	2.50	2.17	2.38	2.50	2.52	2.60	2.75	2.39	2.55	2.60	5.25
11/01/12-0.25	AMPS	10.42	10.42	20.83	20.83	10.42	10.42	10.42	10.42	22.92	22.92	11.46	11.46	II.46	21.88
KIXGFI2-0.5	KVA	2.40	2.50	4.81	5.00	4.33	4.77	5.00	5.04	5.21	5.50	4.77	5.10	5.21	10.50
	AMPS	20.83	20.83	41.67	41.67	20.83	20.83	20.83	20.83	45.83	45.83	22.92	22.92	22.92	43.75
KIXGFI2-0.75	KVA	3.60	3.75	7.22	7.49	6.5	7.15	7.49	7.56	7.81	8.25	7.16	7.66	7.81	15.75
11/10/12 0.15	AMPS	31.25	31.25	62.50	62.50	31.25	31.25	31.25	31.25	68.75	68.75	34.37	34.37	34.37	65.63
KIXGFI2-I	KVA	4.80	5.00	9.63	9.99	8.66	9.53	9.99	10.08	10.42	11.00	9.54	10.21	10.42	21.00
	AMPS	41.67	41.67	83.33	83.33	41.67	41.67	41.67	41.67	91.67	91.67	45.83	45.83	45.83	87.50
KIXGFI2-I.5	KVA	7.20	7.5	14.44	14.99	12.99	14.30	14.99	15.13	15.62	16.50	14.31	15.31	15.62	31.50
11/01/12-1.5	AMPS	62.50	62.50	125.00	125.00	62.50	62.50	62.50	62.50	137.50	137.50	68.75	68.75	68.75	131.25
KIXGFI2-2	KVA	9.60	10.00	19.25	19.98	17.32	19.07	19.98	20.17	20.83	22.00	19.08	20.42	20.83	42.00
NIAGFIZ=2	AMPS	83.33	83.33	166.67	166.67	83.33	83.33	83.33	83.33	183.33	183.33	91.67	91.67	91.67	175.00
KIXGFI2-3	KVA	14.40	15.00	28.88	29.98	25.99	28.60	29.98	30.25	31.25	33.00	28.62	30.62	31.25	63.00
	AMPS	125.00	125.00	250.00	250.00	125.00	125.00	125.00	125.00	275.00	275.00	137.50	137.50	137.50	262.50
KIXLFI2-5	KVA	24.00	25.00	48.13	49.96	43.31	47.67	49.96	50.42	52.08	55.00	47.71	51.04	52.08	105.00
	AMPS	208.33	208.33	416.67	416.67	208.33	208.33	208.33	208.33	458.33	458.33	229.17	229.17	229.17	437.50
	*DIAGRAM	В	В	Α	Α	D	D	D	D	А	A	D	D	D	C

Three-Phase

TABLE II					E	OOSTIN	G						BUCKING	;	
Catalog	Line Voltage	189Y/109	195Y/113	200Y/II5	208Y/I20	416Y/240	416Y/240	189	208	220	218	229	250	255	264
Number	Load Voltage	208Y/I20	234Y/I35	240Y/I39	229Y/I32	458Y/264	437Y/252	208	229	242	208	208	227	232	240
KIXGFI2-0.05	KVA	1.50	0.84	0.87	1.65	1.65	3.15	0.75	0.83	0.87	1.57	0.83	0.90	0.92	0.95
	AMPS	4.17	2.08	2.08	4.17	2.08	4.17	2.08	2.08	2.08	4.38	2.29	2.29	2.29	2.29
KIXGFI2-0.I	KVA	3.00	1.69	1.73	3.30	3.30	6.30	1.50	1.65	1.75	3.15	1.65	1.80	1.84	1.91
	AMPS	8.33	4.17	4.17	8.33	4.17	8.33	4.17	4.17	4.17	8.75	4.58	4.58	4.58	4.58
KIXGFI2-0.I5	KVA	4.5	2.53	2.60	4.95	4.95	9.46	2.25	2.48	2.62	4.72	2.48	2.71	2.76	2.86
11/01/12-0.15	AMPS	12.50	6.25	6.25	12.50	6.25	12.50	6.25	6.25	6.25	13.13	6.87	6.87	6.88	6.88
KIXGFI2-0.25	KVA	7.50	4.22	4.33	8.26	8.26	15.76	3.75	4.13	4.37	7.87	4.13	4.51	4.60	4.76
KIAGFIZ=0.25	AMPS	20.83	10.42	10.42	20.83	10.42	20.83	10.42	10.42	10.42	21.88	II.46	II.46	II.46	II.46
KIXGFI2-0.5	KVA	15.00	8.44	8.66	16.51	16.51	31.52	7.50	8.26	8.73	15.73	8.26	9.02	9.20	9.53
KIAGFIZ=0.5	AMPS	41.67	20.83	20.83	41.67	20.83	41.67	20.83	20.83	20.83	43.75	22.92	22.92	22.92	22.92
KIXGFI2-0.75	KVA	22.51	12.67	12.99	24.77	24.77	47.28	II.25	12.38	13.10	23.60	12.39	13.53	13.80	14.29
KIXOFIZ-0.75	IAMPS	62.50	31.25	31.25	62.50	31.25	62.50	31.25	31.25	31.25	65.63	34.37	34.37	34.37	34.38
KIXGFI2-I	KVA	30.01	16.89	17.32	33.02	33.02	63.05	15.00	16.51	17.46	31.47	16.53	18.04	18.40	19.05
NIAGEIZ-I	AMPS	83.33	41.67	41.67	83.33	41.67	83.33	41.67	41.67	41.67	87.50	45.83	45.83	45.83	45.83
KIXGFI2-I.5	KVA	45.0I	25.66	25.98	49.54	49.54	94.57	22.51	24.77	26.20	47.20	24.79	27.06	27.60	28.58
KIAGFIZ-I.5	AMPS	125.00	62.50	62.50	125.00	62.50	125.00	62.50	62.50	62.50	131.25	68.75	68.75	68.75	68.75
KIXGFI2-2	KVA	60.02	33.77	34.64	66.05	66.05	126.09	30.01	33.02	34.93	62.93	33.05	36.08	36.81	38.II
NIAGFIZ-2	AMPS	166.67	83.33	83.33	166.67	83.33	166.67	83.33	83.33	83.33	175.00	91.67	91.67	91.67	91.67
KIXGFI2-3	KVA	90.02	50.66	51.96	99.07	99.07	189.14	45.01	49.54	52.39	94.40	49.58	54.13	55.21	57.16
KIAGFIZ-3	AMPS	250.00	125.00	125.00	250.00	125.00	250.00	125.00	125.00	125.00	262.50	137.50	137.50	137.50	137.50
	KVA	150.04	84.44	86.60	165.12	165.12	315.23	75.02	82.56	87.32	157.33	82.63	90.21	92.02	95.26
KIXLFI2-5	AMPS	416.67	208.33	208.33	416.67	208.33	416.67	208.33	208.33	208.33	437.50	229.17	229.17	229.17	229.17
No. of Trans	formers	3	3	3	3	3	3	2	2	2	2	2	2	2	2
*DI	AGRAM	F	E	E	F	J	K	G	G	G	Н	G	G	G	G

Output voltage for lower input voltage can be found by:

 Rated Output Voltage
 x
 Input Actual Voltage = Output New Voltage.

Output KVA available at reduced input voltage can be found by:

<u>Actual Input Voltage</u> Rated Input Voltage x Output KVA = New KVA Rating.

Buck-Boost Selection Tables

120 x 240 Volts Primary - 16/32 Volts Secondary • Buck - Boost Dry-Type Transformers AMPS = Load Amps KVA = LoadCircuit KVA

								Jilly	IE-LIIG	356					
TABLE III					BOOS	TING						BUC	KING		
Catalog	Line Voltage	95	100	105	208	215	215	220	225	135	240	240	245	250	255
Number	Load Voltage	120	113	119	236	244	229	235	240	120	212	225	230	234	239
KIXGFI6-0.05	KVA	0.19	0.35	0.37	0.37	0.38	0.72	0.73	0.75	0.42	0.38	0.75	0.77	0.78	0.80
KI/GFI0-0.05	AMPS	1.56	3.13	3.13	1.56	1.56	3.12	3.13	3.12	3.54	1.77	3.33	3.33	3.33	3.33
KIXGFI6-0.I	KVA	0.38	0.71	0.74	0.74	0.76	1.43	1.47	1.50	0.84	0.75	1.50	1.53	1.56	1.59
KIAGFI6-U.I	AMPS	3.13	6.25	6.25	3.13	3.13	6.25	6.25	6.25	7.08	3.54	6.67	6.67	6.67	6.67
KIXGFI6-0.I5	KVA	0.56	1.06	1.12	1.11	1.14	2.15	2.20	2.25	1.27	1.13	2.25	2.30	2.34	2.39
KIXGFI6-0.15	AMPS	4.69	9.38	9.38	4.69	4.69	9.37	9.37	9.37	10.63	5.31	10.00	10.00	10.00	10.00
	KVA	0.94	1.77	1.86	1.84	1.90	3.58	3.67	3.75	2.11	1.88	3.75	3.83	3.91	3.98
KIXGFI6-0.25	AMPS	7.81	15.63	15.63	7.81	7.81	15.62	15.62	15.62	17.71	8.85	16.67	16.67	16.67	16.67
	KVA	1.88	3.54	3.72	3.68	3.81	7.17	7.33	7.50	4.22	3.75	7.50	7.66	7.81	7.97
KIXGFI6-0.5	AMPS	15.63	31.25	31.25	15.63	15.63	31.25	31.25	31.25	35.42	17.71	33.33	33.33	33.33	33.33
	KVA	2.82	5.31	5.58	5.53	5.71	10.75	11.00	II.25	6.33	5.63	11.25	II.48	11.72	II.95
KIXGFI6-0.75	AMPS	23.44	46.88	46.88	23.44	23.44	46.87	46.87	46.87	53.13	26.56	50.00	50.00	50.00	50.00
	KVA	3.76	7.08	7.44	7.37	7.61	14.33	14.67	15.00	8.44	7.50	15.00	15.31	15.62	15.94
KIXGFI6-I	AMPS	31.25	62.50	62.50	31.25	31.25	62.50	62.50	62.50	70.83	35.42	66.67	66.67	66.67	66.67
	KVA	5.64	10.63	II.I6	II.05	11.42	21.50	22.00	22.50	12.66	II.25	22.50	22.97	23.44	23.91
KIXGFI6-I.5	AMPS	46.88	93.75	93.75	46.88	46.88	93.75	93.75	93.75	106.25	53.13	100.00	100.00	100.00	100.00
	KVA	7.52	14.71	14.88	14.73	15.23	28.67	29.33	30.00	16.88	15.00	30.00	30.62	31.25	31.87
KIXGFI6-2	AMPS	62.50	125.00	125.00	62.50	62.50	125.00	125.00	125.00	141.67	70.83	133.33	133.33	133.33	133.33
	KVA	II.28	21.25	22.31	22.10	22.84	43.00	44.00	45.00	25.31	22.50	45.00	45.94	46.87	47.81
KIXGFI6-3	AMPS	93.75	187.50	187.50	93.75	93.75	187.50	187.50	187.50	212.50	106.25	200.00	200.00	200.00	200.00
	KVA	18.80	35.42	37.19	36.83	38.07	71.67	73.33	75.00	42.19	37.50	75.00	76.56	78.12	79.69
KIXLFI6-5	AMPS	156.25	312.50	312.50	156.25	156.25	312.50	312.50	312.50	354.17	177.08	333.33	333.33	333.33	333.33
*[DIAGRAM	В	A	A	D	D	С	С	С	A	D	С	С	С	С

Three-Phase

TABLE IV				BOOSTING					BUCI	KING		
Catalog	Line Voltage	183Y/106	208Y/I20	195	208	225	240	245	250	256	265	272
Number	Load Voltage	208Y/I20	236Y/I36	208	236	240	208	230	234	240	234	240
KIXGFI6-0.05	KVA	1.12	1.28	1.13	0.64	1.30	0.56	1.33	1.35	1.39	0.72	0.74
	AMPS	3.13	3.13	3.12	1.56	3.12	1.56	3.33	3.33	3.33	1.77	1.77
KIXGFI6-0.I	KVA	2.25	2.55	2.25	1.28	2.60	1.13	2.65	2.71	2.77	1.43	1.47
KIX0FI0-0.1	AMPS	6.25	6.25	6.25	3.13	6.25	3.13	6.67	6.67	6.67	3.54	3.54
KIXGFI6-0.I5	KVA	3.37	3.83	3.38	1.91	3.90	1.69	3.98	4.06	4.16	2.15	2.21
	AMPS	9.38	9.38	9.37	4.69	9.37	4.69	10.00	10.00	10.00	5.31	5.31
KIXGFI6-0.25	KVA	5.61	6.38	5.63	3.19	6.50	2.81	6.63	6.77	6.93	3.59	3.68
KIAGFI0-0.25	AMPS	15.63	15.62	15.62	7.81	15.62	7.81	16.67	16.67	16.67	8.85	8.85
KIXGFI6-0.5	KVA	II.23	12.76	II.26	6.38	12.99	5.63	13.26	13.53	13.86	7.17	7.36
KINGFID-U.5	AMPS	31.25	31.25	31.25	15.63	31.25	15.63	33.33	33.33	33.33	17.71	17.71
KIXGFI6-0.75	KVA	16.84	19.14	16.89	9.58	19.49	8.44	19.89	20.30	20.78	10.76	II.04
KINGFID-0.75	IAMPS	46.88	46.88	46.87	23.44	46.87	23.44	50.00	50.00	50.00	26.56	26.56
KIXGFI6-I	KVA	22.45	25.52	22.52	12.76	25.98	II.26	26.52	27.06	27.71	14.34	14.72
KIXGFID-I	AMPS	62.50	62.50	62.50	31.25	62.50	31.25	66.67	66.67	66.67	35.42	35.42
KIXGFI6-I.5	KVA	33.68	38.28	33.77	19.14	38.97	16.89	39.78	40.59	41.57	21.52	22.08
KINGFID-1.5	AMPS	93.75	93.75	93.75	46.88	93.75	46.88	100.00	100.00	100.00	53.13	53.13
KIXGFI6-2	KVA	44.90	51.04	45.03	25.52	51.96	22.52	53.04	54.13	55.43	28.69	29.44
KINGFID-2	AMPS	125.00	125.00	125.00	62.50	125.00	62.50	133.33	133.33	133.33	70.83	70.83
	KVA	67.36	76.56	67.55	38.28	77.94	33.77	79.57	81.19	83.14	43.03	44.17
KIXGFI6-3	AMPS	187.50	187.50	187.50	93.75	187.50	93.75	200.00	200.00	200.00	106.25	106.25
	KVA	112.26	127.59	112.58	63.80	129.90	56.29	132.61	135.32	138.56	71.72	73.61
KIXLFI6-5	AMPS	312.50	312.50	312.50	156.25	312.50	156.25	333.33	333.33	333.33	177.08	177.08
No. of Tran	sformers	3	3	2	2	2	2	2	2	2	2	2
*D	IAGRAM	F	F	Н	G	Н	L	Н	Н	Н	G	G

Rated Output Voltage Rated Input Voltage Output voltage for lower input voltage can be found by: x Input Actual Voltage = Output New Voltage. <u>Actual Input Voltage</u> x Output KVA = New KVA Rating. Rated Input Voltage Output KVA available at reduced input voltage can be found by:

Buck-Boost Selection Tables

240 x 480 Volts Primary - 24/48 Volts Secondary • Buck - Boost Dry-Type Transformers

AMPS = Load Amps KVA = Load Circuit KVA

Single-Phase

TABLE V					E	BOOSTIN	G						BUCKING		
Catalog	Line Voltage	230	380	416	425	430	435	440	450	460	132	277	480	480	504
Number	Load Voltage	276	418	458	468	473	457	462	495	483	126	231	436	457	480
	KVA	0.29	0.44	0.48	0.49	0.49	0.95	0.96	0.52	1.01	0.28	0.29	0.50	1.00	1.05
K2XGF24050	AMPS	1.04	1.04	1.04	1.04	1.04	2.08	2.08	1.04	2.08	2.19	1.25	1.15	2.19	2.19
	KVA	0.58	0.87	0.95	0.97	0.99	1.90	1.93	1.03	2.01	0.55	0.58	1.00	2.00	2.10
K2XGF24100	AMPS	2.08	2.08	2.08	2.08	2.08	4.17	4.17	2.08	4.17	4.38	2.50	2.29	4.38	4.38
	KVA	0.86	1.31	1.43	1.46	1.48	2.85	2.89	1.55	3.02	0.83	0.87	1.50	3.00	3.15
K2XGF24I50	AMPS	3.13	3.13	3.13	3.13	3.13	6.25	6.25	3.13	6.25	6.56	3.75	3.44	6.56	6.56
K2X0524 250	KVA	1.44	2.18	2.38	2.43	2.46	4.76	4.81	2.58	5.03	1.38	1.44	2.50	5.00	5.25
K2XGF24250	AMPS	5.21	5.21	5.21	5.21	5.21	10.42	10.42	5.21	10.42	10.94	6.25	5.73	10.94	10.94
K2X0524 500	KVA	2.88	4.35	4.77	4.87	4.93	9.52	9.63	5.16	10.06	2.75	2.89	5.00	10.00	10.50
K2XGF24500	AMPS	10.42	10.42	10.42	10.42	10.42	20.83	20.83	10.42	20.83	21.88	12.50	11.46	21.88	21.88
K2X0524 750	KVA	4.31	6.53	7.15	7.30	7.39	14.27	14.44	7.73	15.09	4.13	4.33	7.50	15.00	15.75
K2XGF24750	AMPS	15.63	15.63	15.62	15.63	15.63	31.25	31.25	15.63	31.25	32.81	18.75	17.19	32.81	32.81
K2X6524 I	KVA	5.75	8.71	9.53	9.74	9.85	19.03	19.25	10.31	20.13	5.50	5.77	10.00	20.00	21.00
K2XGF24-I	AMPS	20.83	20.83	20.83	20.83	20.83	41.67	41.67	20.83	41.67	43.75	25.00	22.92	43.75	43.75
K2X6524 L5	KVA	8.63	13.06	14.30	14.61	14.78	28.55	28.88	15.47	30.19	8.25	8.66	15.00	30.00	31.50
K2XGF24-I.5	AMPS	31.25	31.25	31.25	31.25	31.25	62.50	62.50	31.25	62.50	65.63	37.50	34.37	65.63	65.63
KOX6524.2	KVA	II.50	17.42	19.07	19.48	19.71	38.06	38.50	20.63	40.25	11.00	11.54	20.00	40.00	42.00
K2XGF24-2	AMPS	41.67	41.67	41.67	41.67	41.67	83.33	83.33	41.67	83.33	87.50	50.00	45.83	87.50	87.50
1/0)/0504.0	KVA	17.25	26.13	28.60	29.22	29.56	57.09	57.75	30.94	60.38	16.50	17.31	30.00	60.00	63.00
K2XGF24-3	AMPS	62.50	62.50	62.50	62.50	62.50	125.00	125.00	62.50	125.00	131.25	75.00	68.75	131.25	131.25
	KVA	28.75	43.54	47.67	48.70	49.27	95.16	96.25	51.56	100.63	27.50	28.85	50.00	100.00	105.00
K2XLF24-5	AMPS	104.17	104.17	104.17	104.17	104.17	208.33	208.33	104.17	208.33	218.75	125.00	114.58	218.75	218.75
*DI	AGRAM	В	D	D	D	D	С	С	D	С	С	В	D	С	С

Three-Phase

TABLE VI					BOOS	TING							BUCK	ING			
Catalog	Line Voltage	399Y/230	380	430	440	460	460	480	480	440	440	460	460	480	480	500	500
Number	Load Voltage	480Y/277	418	473	462	506	483	528	504	400	419	438	418	457	436	455	476
K2XGF24050	KVA	0.86	0.75	0.85	1.67	0.91	1.74	0.95	1.82	0.79	1.59	1.66	0.83	1.73	0.87	0.90	1.80
	AMPS	1.04	1.04	1.04	2.08	1.04	2.08	1.04	2.08	1.15	2.19	2.19	1.15	2.19	1.15	1.15	2.19
K2XGF24100	KVA	I.73	I.5I	1.71	3.33	I.83	3.49	1.91	3.64	I.59	3.I8	3.32	I.66	3.46	I.73	I.80	3.6l
	AMPS	2.08	2.08	2.08	4.17	2.08	4.17	2.08	4.17	2.29	4.38	4.38	2.29	4.38	2.29	2.29	4.38
K2XGF24I50	KVA	2.59	2.26	2.56	5.00	2.74	5.23	2.86	5.46	2.38	4.76	4.98	2.49	5.20	2.60	2.7I	5.4l
	AMPS	3.I3	3.I3	3.13	6.25	3.13	6.25	3.I3	6.25	3.44	6.56	6.56	3.44	6.56	3.44	3.44	6.56
K2XGF24250	KVA	4.32	3.77	4.27	8.34	4.56	8.71	4.76	9.09	3.97	7.94	8.30	4.I5	8.66	4.33	4.5I	9.02
	AMPS	5.2l	5.21	5.21	10.42	5.2l	10.42	5.21	10.42	5.73	10.94	10.94	5.73	10.94	5.73	5.73	10.94
K2XGF24500	KVA	8.64	7.54	8.53	16.67	9.I3	17.43	9.53	18.19	7.94	15.88	16.60	8.30	17.32	8.66	9.02	18.04
	AMPS	10.42	10.42	10.42	20.83	10.42	20.83	10.42	20.83	11.46	21.88	21.88	11.46	21.88	11.46	11.46	21.88
K2XGF24750	KVA	12.96	II.3I	12.80	25.01	13.69	26.14	14.29	27.28	11.91	23.82	24.90	12.45	25.98	12.99	13.53	27.06
	IAMPS	15.62	I5.63	15.63	31.25	15.63	31.25	15.63	31.25	17.19	32.8I	32.8I	17.19	32.8I	17.19	17.19	32.81
K2XGF24-I	KVA	17.28	15.08	17.07	33.34	18.26	34.86	19.05	36.37	15.88	3I.75	33.20	16.60	34.64	17.32	18.04	36.08
	AMPS	20.83	20.83	20.83	41.67	20.83	41.67	20.83	41.67	22.92	43.75	43.75	22.92	43.75	22.92	22.92	43.75
K2XGF24-I.5	KVA AMPS	25.92 3I.25	22.62 3I.25	25.60 3I.25	50.0I 62.50	27.39	52.29 62.50	28.58 3I.25	54.56 62.50	23.82 34.38	47.63 65.63	49.80 65.63	24.90 34.38	5I.96 65.63	25.98 34.37	27.06 34.37	54.I3 65.63
K2XGF24-2	KVA AMPS	34.55 4I.67	30.I7 4I.67	34.I4 4I.67	66.68 83.33	36.52 41.67	69.72 83.33	38.II 4I.67	72.75	3I.75 45.83	63.5l 87.50	66.40 87.50	33.20 45.83	69.28 87.50	34.64 45.83	36.08 45.83	72.17
K2XGF24-3	KVA	5I.83	45.25	5I.20	100.03	54.78	104.57	57.I6	109.12	47.63	95.26	99.59	49.80	103.92	5I.96	54.I3	108.25
	AMPS	62.50	62.50	62.50	125.00	62.50	125.00	62.50	125.00	68.75	131.25	131.25	68.75	131.25	68.75	68.75	131.25
K2XLF24-5	KVA	86.39	75.42	85.34	166.71	91.29	174.29	95.26	181.87	79.39	158.77	165.99	82.99	173.21	86.60	90.21	180.42
	AMPS	104.17	104.17	104.17	208.33	104.17	208.33	104.17	208.33	114.58	218.75	218.75	114.58	218.75	114.58	114.58	218.75
No. of Trans	formers	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
*DI	IAGRAM	E	G	G	H	G	H	G	H	G	H	H	G	H	G	G	H

Output voltage for lower input voltage can be found by:

 $\frac{- Rated \ Output \ Voltage}{Rated \ Input \ Voltage} \quad x \quad Input \ Actual \ Voltage = Output \ New \ Voltage.$

Output KVA available at reduced input voltage can be found by:

Actual Input Voltage Rated Input Voltage x Output KVA = New KVA Rating.

Buck-Boost Connection Diagram (Single-Phase)

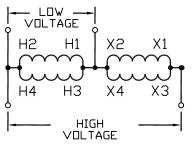


FIGURE A

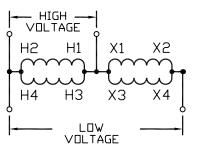
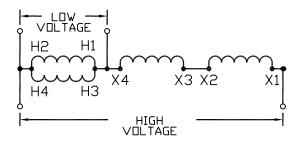



FIGURE A1

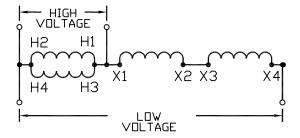


FIGURE B

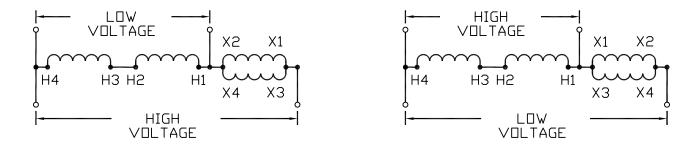


FIGURE C

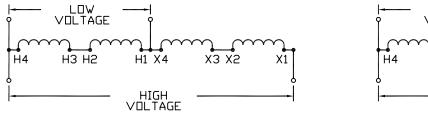


FIGURE D

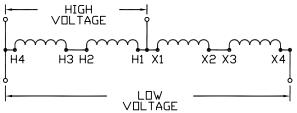
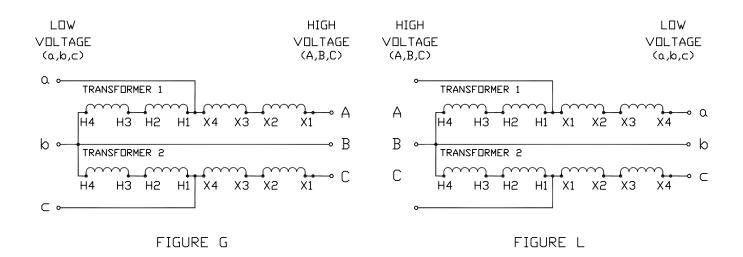
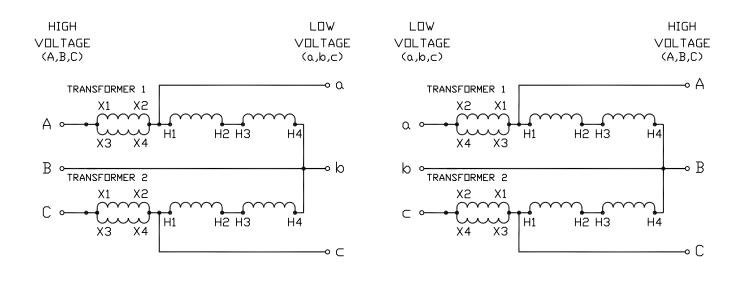




FIGURE D1

Buck-Boost Connection Diagram (Three-Phase Open Delta)

Buck-Boost Connection Diagram (Three-Phase Open Delta)

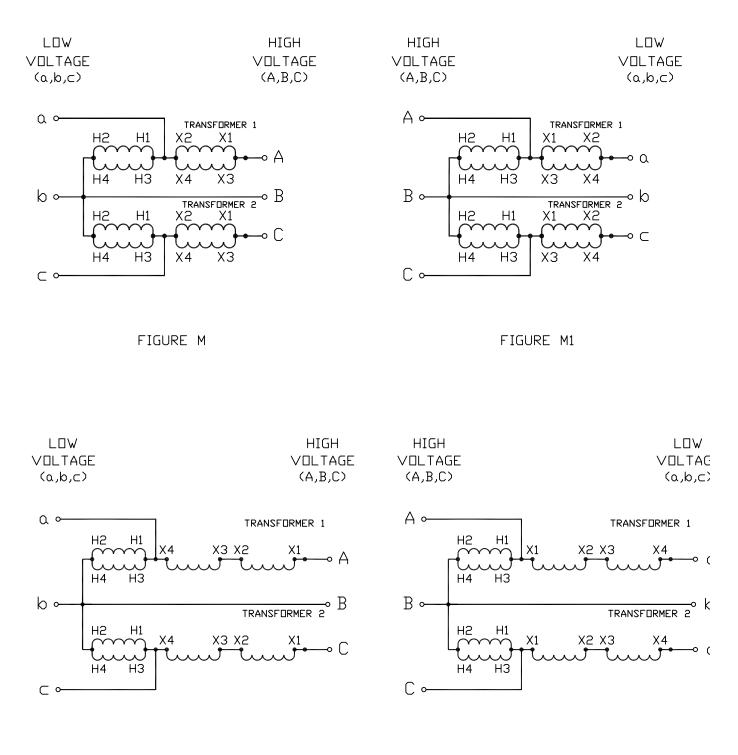


FIGURE N

FIGURE N1

Buck-Boost Connection Diagram (Three-Phase WYE)

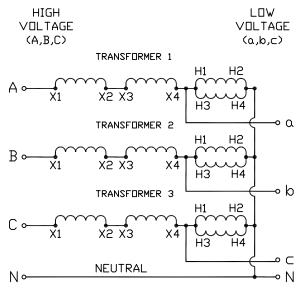


FIGURE E

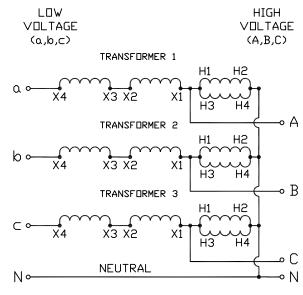
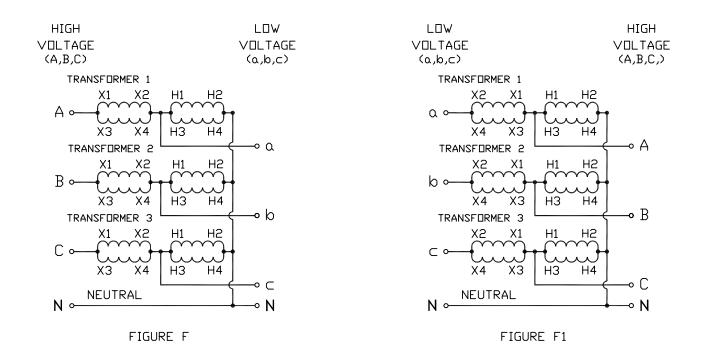



FIGURE E1

NOTE: All Wye connected buck-boost connections MUST have a source neutral for proper operation. They can not be used to create or derive a neutral from a 3-phase 3-wire system.

Buck-Boost Connection Diagram (Three-Phase WYE)

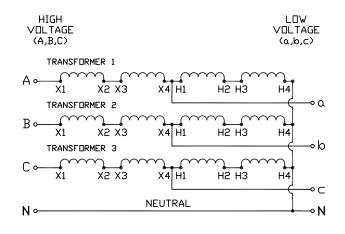


FIGURE J

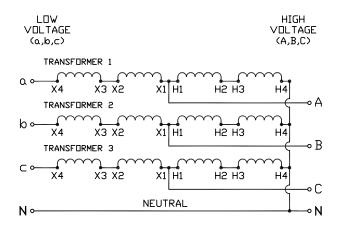


FIGURE J1

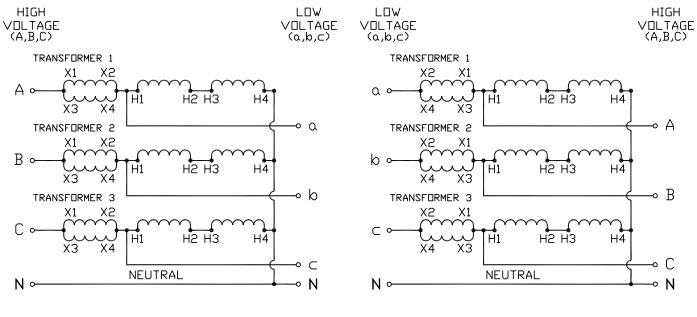


FIGURE K

FIGURE K1

NOTE: All Wye connected buck-boost connections MUST have a source neutral for proper operation. They can not be used to create or derive a neutral from a 3-phase 3-wire system.

Epoxy Encapsulated Copper-Wound Industrial Control Transformers

Features

- Epoxy encapsulated coils
- Secondary fuse clips where applicable
- Optional Primary Fusing
- Molded terminal barriers
- IO-32 screw terminals
- Molded-in terminals
- Phil-slot screws
- Laminations of the finest silicon steel minimize core losses and increase performance and efficiency.

- Copper magnet wire assures efficient operation.
- UL[®] 506 Listed
- CSA Certified
- Insulation materials of the highest rating available for the temperature class.
- Mounting brackets are heavy gauge steel to add strength to core construction and provide stable mounting. Slotted mounting feet permit easy installation.
- Attractive black finish; easy-to read nameplate with complete rating data and wiring diagram.

Industrial Control Transformer Selection Considerations

Selecting a transformer for industrial control circuit applications requires knowledge of the following terms:

INRUSH VA is the product of load voltage **(V)** multiplied by the current **(A)** that is required during circuit start-up. It is calculated by adding the **Inrush VA** requirements of all devices (contactors, timers, relays, pilot lights, solenoids, etc.), which will be energized together. **Inrush VA** requirements are best obtained from the component manufacturer.

SEALED VA is the product of load voltage **(V)** multiplied by the current **(A)** that is required to operate the circuit after initial start-up or under normal operating conditions. It is calculated by adding the **Sealed VA** requirements of all electrical components of the circuit that will be energized at any given time. **Sealed VA** requirements are best obtained from the component manufacturer. **Sealed VA** is also referred to as steady state VA.

PRIMARY VOLTAGE is the voltage available from the electrical distribution system and its operational frequency, which is connected to the transformer supply voltage terminals.

SECONDARY VOLTAGE is the voltage required for load operation which is connected to the transformer load voltage terminals.

Once the circuit variables have been determined, transformer selection is a simple 5-step process as follows:

I. Determine the Application Inrush VA by using the following industry accepted formula:

Application Inrush VA = $(Inrush VA)^2 + (Sealed VA)^2$

2. Refer to the Regulation Data Chart. If the primary voltage is basically stable and does not vary by more than 5% from nominal, the 90% secondary voltage column should be used. If the primary voltage varies between 5 and 10% of nominal, the 95% secondary voltage column should be used.

3. After determining the proper secondary voltage column, read down until a value equal to or greater than the Application Inrush VA is found. In no case should a figure less than the Application Inrush VA be used.

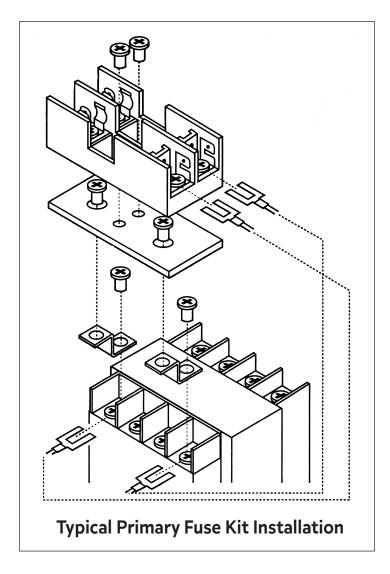
4. Read left to the Transformer VA Rating column to determine the proper transformer for this application. As a final check, make sure that the Transformer VA rating is equal to or greater than the total sealed requirements. If not, select a transformer with a VA rating equal to or greater than the total Sealed VA.

5. Refer to the specification section of this catalog to determine the proper catalog number based on the transformer VA, and primary and secondary voltage requirements.

To comply with NEMA standards, which require all magnetic devices to operate successfully at 85% of rated voltage, the 90% secondary voltage column is most often used in selecting a transformer.

Regulation Data Chart

T	Inrush	VA at 20% Powe	r Factor
Transformer VA Rating	95% Sec. Voltage	90% Sec. Voltage	85% Sec. Voltage
25	100	130	150
50	170	200	240
75	310	410	540
100	370	540	730
150	780	930	1150
200	810	1150	1450
250	1400	1900	2300
300	1900	2700	3850
350	3100	3650	4800
500	4000	5300	7000
750	8300	11000	14000


Primary Fusing

Primary Fusing Capability

In compliance with the requirements of UL508 and the National Electrical Code, industrial control transformers, rated 50VA and larger, can be ordered with the provision for factory-mounted dual primary class cc fusing capability. The primary fuse block is mounted by the customer on the transformer and wired to the primary terminals. The primary fusing option will add I-3/8" to the "C" dimension of the transformer.

Primary Fuse Kit

In addition to factory installed primary fusing capability, Federal Pacific offers a primary fuse kit for field installation. The primary fuse kit includes a 2-pole class cc fuse block, instructions and all associated mounting and wiring hardware. Additionally, this fuse kit will fit most competitor's units. To order this kit, use catalog number FPFK-I. The primary fuse kit, when installed, will add a maximum of II/I6" to the transformer "A" dimension and I-I5/I6" to the "C" dimension.

Primary Overcurrent Protection Industrial Control Transformers

Overcurrent protection on both the primary and secondary sides of transformers is specified in UL508 and the National Electrical Code. The maximum acceptable ratings are shown below. Due to prevent nuisance trips during startup.

to high inrush currents present when a transformer is initially energized, it is recommended that the primary fuse be time delay,

	MAXIMU	M ACCEP	TABLE R	ATING OI			URRENT	PROTEC	TION	
Primary Voltage	50	75	100	150	200	250	300	350	500	750
115	I-I/4 (2)	I-8/I0 (3-2/I0)	2-I/2 (4)	3-I/2 (6-I/4)	5 (8)	5	6-I/4	7-1/2	10	15
120	I-I/4 (2)	I-8/I0 (3)	2-1/4 (4)	3-I/2 (6-I/4)	5 (8)	5	6-I/4	7	10	15
200	3/4 (I-I/4)	I-I/8 (I-8/I0)	I-I/2 (2-I/2)	2-I/4 (3-I/2)	3 (5)	3-I/2 (6-I/4)	4-I/2 (7-I/2)	5 (8)	6-1/4	9
208	6/I0 (I-I/8)	ا (I-8/IO)	I-4/I0 (2-I/4)	2 (3-I/2)	2-8/I0 (4-I/2)	3-I/2 (6)	4 (7)	5 (8)	6	9
220	6/I0 (I-I/8)	l (I-6/I0)	I-I/4 (2-I/4)	2 (3-2/10)	2-I/2 (4-I/2)	3-2/I0 (5-6/I0)	4 (6-I/4)	4-I/2 (7-I/2)	5-6/10	8
230	6/I0 (I)	8/I0 (I-6/I0)	I-I/4 (2)	I-8/I0 (3-2/I0)	2-1/2 (4)	3-2/I0 (5)	3-I/2 (6-I/4)	4-I/2 (7-I/2)	5	8
240	6/I0 (I)	8/I0 (I-I/2)	I-I/4 (2)	I-8/I0 (3)	2-1/2 (4)	3 (5)	3-I/2 (6-I/4)	4 (7)	5	7-1/2
277	I/2 (8/I0)	8/I0 (I-I/4)	l (I-8/I0)	I-6/I0 (2-I/2)	2 (3-I/2)	2-I/2 (4-I/2)	3-2/I0 (5)	3-I/2 (6/I/4)	5 (9)	6-1/4
380	3/I0 (6/I0)	I/2 (8/I0)	3/4 (I-I/4)	I-I/8 (I-8/I0)	I-I/2 (2-I/2)	I-8/I0 (3-2/I0)	2-I/4 (3-I/2)	2-I/2 (4-I/2)	3-I/2 (6-I/4)	5-6/IO (9)
400	3/I0 (6/I0)	I/2 (8/I0)	3/4 (I-I/4)	I-I/8 (I-8/I0)	I-I/2 (2-I/2)	I-8/I0 (3)	2-I/4 (3-I/2)	2-1/2 (4)	3-I/2 (6-I-4)	5-6/IO (9)
415	3/I0 (6/I0)	I/2 (8/I0)	6/I0 (I-I/8)	 (I-8/I0)	I-4/I0 (2-I/4)	I-8/I0 (3)	2 (3-I/2)	2-1/2 (4)	3-I/2 (6)	5 (9)
440	3/IO (I/2)	I/2 (8/I0)	6/I0 (I-I/8)	l (I-6/I0)	I-I/4 (2-I/4)	I-6/I0 (2-8/I0)	2 (3-2/10)	2-I/4 (3-I/2)	3-2/I0 (5-6/I0)	5 (8)
460	3/IO (I/2)	4/I0 (8/I0)	6/IO (I)	8/I0 (I-6/I0)	I-I/4 (2)	I-6/I0 (2-I/2)	I-8/I0 (3-2/I0)	2-I/4 (3-I/2)	3-2/I0 (5)	4-I/2 (8)
480	3/I0 (I/2)	4/I0 (3/4)	6/I0 (I)	8/I0 (I-I/2)	I-I/4 (2)	I-I/2 (2-I/2)	I-8/I0 (3)	2 (3-I/2)	3 (5)	4-I/2 (7-I/2)
550	1/4 (4/I0)	4/I0 (6/I0)	I/2 (8/I0)	8/I0 (I-I/4)	l (I-8/I0)	I-I/4 (2-I/4)	I-6/I0 (2-I/2)	I-8/I0 (3)	2-I/2 (4-I/2)	4 (6-I/4)
575	1/4 (4/I0)	3/I0 (6/I0)	I/2 (8/I0)	3/4 (I-I/4)	l (I-6/I0)	I-I/4 (2)	I-I/2 (2-I/2)	I-8/I0 (3)	2-1/2 (4)	3-I/2 (6-I/4)
600	2/I0 (4/I0)	3/I0 (6/I0)	l/2 (8/I0)	3/4 (I-I/4)	8/I0 (I-6/I0)	I-I/4 (2)	I-I/2 (2-I/2)	I-6/I0 (2-8/I0)	2-I/4 (4)	3-I/2 (6-I/4)

If the rated primary current is less than 2 amps, the maximum rating of the overcurrent device is 300% for power circuits, shown above, or 500% for control circuits, shown above in (brackets). If the rated primary current is 2 amps or more, the maximum rating of the overcurrent device is 250%.

All figures assume secondary overcurrent protection per UL/NEC.

Reference: NEC 430 - 72(c) exception #2, 450 - 3(b) I & 2, UL508 32.7, UL845 II.I6 & II.I7

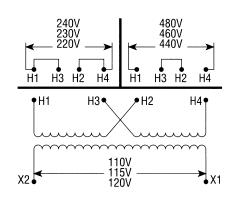
Secondary Overcurrent Protection Industrial Control Transformers

MAXIMUM ACCEPTABLE RATING OF SECONDARY OVERCURRENT PROTECTION

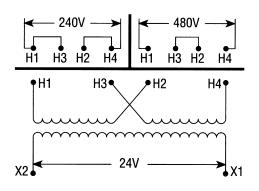
Primary Voltage	50	75	100	150	200	250	300	350	500	750
23	3-1/2	5	7	10	12	15	20	20	30	45
24	3-2/10	5	6-1/4	10	12	15	20	20	30	40
25	3-2/10	5	6-1/4	10	12	15	15	20	25	40
90	8/10	1-1/4	I-8/I0	2-1/2	3-1/2	4-1/2	5	6-I/4	9	12
95	8/10	1-1/4	I-6/I0	2-1/2	3-1/2	4	5	6	8	12
100	8/10	1-1/4	I-6/I0	2-1/2	3-2/10	4	5	5-6/10	8	12
IIO	3/4	I-I/8	I-I/2	2-1/4	3	3-1/2	4-1/2	5	7-1/2	10
115	6/10		1-4/10	2	2-8/10	3-1/2	4	5	7	10
120	6/10		1-1/4	2	2-1/2	3-2/10	4	4-I/2	6-1/4	10
220	3/10	I/2	3/4	I-I/8	I-I/2	I-8/I0	2-1/4	2-1/2	3-1/2	5-6/10
230	3/10	I/2	6/10	I	1-4/10	I-8/I0	2	2-1/2	3-1/2	5
240	3/10	I/2	6/10	I	1-1/4	1-6/10	2	2-1/4	3-2/10	5

If the rated secondary current is less than 9 amps, the maximum rating of the overcurrent device is I67%.

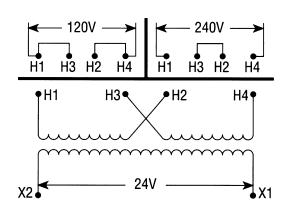
If the rated secondary current is 9 amps or more, the maximum rating of the overcurrent device is 125%.

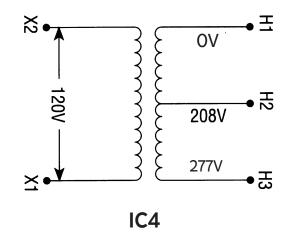

If I25% does not correspond to a standard fuse rating, the next highest standard rating may be used.

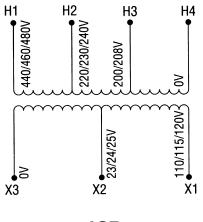
Reference: NEC 430 - 72(c) exception #2, 450 - 3(b) I & 2, UL508 32.7, UL845 II.I6 & II.I7.


Industrial Control Transformers Technical Data

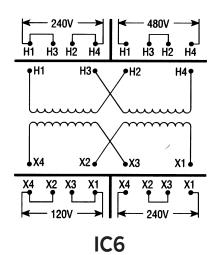
	Temp	Electro-	Primary/	Part	VA	Wiring		Dime	ensions (in	ches)	Weight
Conductor	Rise (Celsius)	static Shield	Secondary	Number	Rating	Diagram	Taps	н	w	D	(lbs)
				FA050JK	50			2.562	3	3	2.6
				FA075JK	75	1		2.562	3	3.5	3.5
				FAIOOJK	100			2.875	3.375	3.375	4.2
				FAI50JK	150]		3.187	3.75	4	6.7
			240x480V - 120V	FA200JK	200		N	3.812	4.5	4	8.5
			230x460V - II5V 220x440V - II0V	FA250JK	250		Ν	3.812	4.5	4.375	10
				FA300JK	300	1		3.812	4.5	4.75	II.3
				FA350JK	350			3.812	4.5	5.25	13.6
				FA500JK	500			4.75	5.25	5.5	19.2
				FA750JK	750]		4.75	5.25	7	28.1
				FB050JK	50			2.562	3	3	2.7
				FB075JK	75	1		2.562	3	3.5	3.5
				FBIOOJK	100	1		2.875	3.375	3.375	4.2
				FBI50JK	150	1		3.187	3.75	4	6.7
			240x480V - 24V	FB200JK	200	IC2	Ν	3.812	4.5	4	8.5
				FB250JK	250			3.812	4.5	4.375	10.1
				FB300JK	300			3.812	4.5	4.75	11.4
				FB350JK	350			3.812	4.5	5.25	13.4
				FB500JK	500			4.75	5.25	5.625	17.5
				FC050JK	50			2.562	3	3	2.6
				FC075JK	75	-		2.562	3	3.5	3.6
				FCIOOJK	100			2.875	3.375	3.375	4.4
				FCI50JK	150			3.187	3.75	4	6.7
			120x240V - 24V	FC200JK	200	IC3	Ν	3.812	4.5	4	8.3
				FC250JK	250			3.812	4.5	4.375	10.1
				FC300JK	300	-		3.812	4.5	4.75	11.2
				FC350JK	350			3.812	4.5	5.25	13.2
				FC500JK	500	-		4.75	5.25	5.625	17.5
CU	55°	N		FF050XK	50			2.562	3	3	2.9
				FF075XK	75			2.562	3	3.5	3.8
				FFIOOXK	100			2.875	3.375	3.375	4.5
				FFI50XK	150	-		3.187	3.75	4	6.9
			208/277V - I20V	FF200XK	200	-		3.812	4.5	4	8.7
			200/2110 1200	FF250XK	250	IC4	Ν	3.812	4.5	4.375	10.2
				FF300XK	300			3.812	4.5	4.75	11.4
				FF350XK	350			3.812	4.5	5.25	13.7
				FF500XK	500			4.75	5.25	5.375	17.2
				FF750XK	750	-		4.75	5.25	7	25.7
				FJ050XK	50			2.562	3	3.25	3.4
				FJ075XK	75	-		2.875	3.375	3.5	4.8
				FJIOOXK	100	1		3.187	3.75	3.625	5.9
			200/220/440V -	FJI50XK	150	1		3.187	3.75	4.375	7.9
			23/IIOV 208/230/460V -	FJ200XK	200	IC5	Ν	3.812	4.5	4.5	10.6
			24/II5V	FJ250XK	250			3.812	4.5	5.25	13.9
			240/480V - 25/I20V	FJ300XK	300	1		4.75	5.25	5.125	15.5
				FJ350XK	350	1		4.75	5.25	5.375	16.8
				FJ500XK	500	1		4.75	5.25	6.875	23.4
				FK050JJ	50			2.562	3	3	2.6
				FK075JJ	75	1		2.562	3	3.5	3.5
				FKIOOJJ	100	-		2.875	3.375	3.375	4.2
				FKI50JJ	150	1		3.187	3.75	4	6.7
				FK200JJ	200	1		3.812	4.5	4	8.5
			240x480 - I20x240	FK250JJ	250	IC6	Ν	3.812	4.5	4.375	10
				FK300JJ	300	-		3.812	4.5	4.875	10
				FK350JJ	350	-		3.812	4.5	5.25	13.6
				FK500JJ	500	-		4.75	5.25	5.25	13.6
				FK500JJ FK750JJ	750	-		4.75	5.25	5.25	26.4
				T KTSUJJ	150			4.10	5.25	I	20.4


Wiring Diagrams (Industrial Control)


ICI



IC2



IC5

Motor Drive Isolation Transformers

Motor drive isolation transformers are designed to meet the requirements of SCR controlled variable speed motor drives. They are specifically constructed to with-stand the mechanical forces associated with SCR drive duty cycles and to isolate the line from most SCR generated voltage spikes and transient feedback. Similarly, the two-winding construction also aids in reducing some types of line transients that can cause misfiring of the SCR's.

The units are UL^{\circ} Listed and incorporate all the features of Federal Pacific's three-phase ventilated transformers. The transformers can also be supplied as core and coil units with UL^{\circ} component recognition.

Delta-Wye designs are available for all commonly used primary and secondary voltages. All units include primary taps consisting of one 5% FCAN and one 5% FCBN.

7.5 KVA - 220 KVA

275 KVA - 750 KVA

Motor Drive Isolation Technical Data

Conductor	Motor HP	KVA		Primary/S	Secondary		Appro	ximate Dime (Inches)	nsions	Weight	Weather Shield
	HP		230∆ - 230Y	230∆ - 460Y	460∆ - 230Y	460∆- 460Y	Н	W	D	(lbs)	Shield
	3&5	7.5	7.5AEMD	7.5AFMD	7.5CEMD	7.5CFMD				145	
	7.5	Ш	IIAEMD	IIAFMD	IICEMD	IICFMD	29	17.125	19.375	160	WS-2
	10	15	I5AEMD	I5AFMD	I5CEMD	I5CFMD				185	
	15	20	20AEMD	20AFMD	20CEMD	20CFMD				285	
	25	34	34AEMD	34AFMD	34CEMD	34CFMD	34	22.375	19.875	320	WS-4
	30	40	40AEMD	40AFMD	40CEMD	40CFMD	34	22.375	19.075	340	VV 5 -4
	40	51	5IAEMD	5IAFMD	5ICEMD	5ICFMD				380	
	50	63	63AEMD	63AFMD	63CEMD	63CFMD	37	26	19.875	485	WS-18A
	60	75	75AEMD	75AFMD	75CEMD	75CFMD	51	20	19.075	485	W3-10A
AL	75	93	93AEMD	93AFMD	93CEMD	93CFMD	43	28.5	23.5	665	WS-18
AL	100	118	II8AEMD	II8AFMD	II8CEMD	II8CFMD	43	20.5	23.5	675	W3-10
	125	145	I45AEMD	I45AFMD	I45CEMD	I45CFMD	46	32	28	915	WS-IOB
	150	175	I75AEMD	I75AFMD	I75CEMD	175CFMD	51	42.125	26	1270	WS-12
	200	220	220AEMD	220AFMD	220CEMD	220CFMD	1 31	42.125	20	1320	VV3-12
	250	275	275AEMD	275AFMD	275CEMD	275CFMD	55.25	44.375	27.25	1450	
	300	330	330AEMD	330AFMD	330CEMD	330CFMD	60.5	50.375	34.25	1720	
	400	440	440AEMD	440AFMD	440CEMD	440CFMD	00.5	50.575	34.23	2085	N/A
	500	550	550AEMD	550AFMD	550CEMD	550CFMD	72	53.375	44.375	2750	IN/A
	600	660	660AEMD	660AFMD	660CEMD	660CFMD	12	55.575	44.375	3100	
	700	750	750AEMD	750AFMD	750CEMD	750CFMD	76.75	53.375	44.375	3150	

Conductor	Motor HP	r KVA	Voltages - Primary-Delta, Secondary - Wye, 60 Hz				Approximate Dimensions (Inches)		Weight	Weather		
			230∆ - 575Y	460∆ - 575Y	575∆ - 230Y	575∆ -460Y	575∆ -575Y	н	W	D	(lbs)	Shield
	3&5	7.5	7.5AHMD	7.5CHMD	7.5DEMD	7.5DFMD	7.5DHMD		17.125	25 19.375	145	WS-2
	7.5		IIAHMD	IICHMD	IIDEMD	IIDFMD	IIDHMD	29			160	
	10	15	I5AHMD	I5CHMD	I5DEMD	I5DFMD	I5DHMD				185	
	15	20	20AHMD	20CHMD	20DEMD	20DFMD	20DHMD		22.375		285	- WS-4
	25	34	34AHMD	34CHMD	34DEMD	34DFMD	34DHMD	34		19.875	320	
	30	40	40AHMD	40CHMD	40DEMD	40DFMD	40DHMD				340	
	40	51	5IAHMD	5ICHMD	5IDEMD	5IDFMD	5IDHMD				380	
	50	63	63AHMD	63CHMD	63DEMD	63DFMD	63DHMD	37	26	19.875	485	WS-I8A
	60	75	75AHMD	75CHMD	75DEMD	75DFMD	75DHMD				485	
AL	75	93	93AHMD	93CHMD	93DEMD	93DFMD	93DHMD	43 46 51 55.25	28.5	23.5	665	- WS-18
AL	100	118	II8AHMD	II8CHMD	II8DEMD	II8DFMD	II8DHMD				675	
	125	145	I45AHMD	I45CHMD	I45DEMD	I45DFMD	145DHMD		32	28	915	WS-IOB
	150	175	175AHMD	175CHMD	175DEMD	I75DFMD	175DHMD		42.125	26	1270	- WS-12
	200	220	220AHMD	220CHMD	220DEMD	220DFMD	220DHMD				1320	
	250	275	275AHMD	275CHMD	275DEMD	275DFMD	275DHMD		44.375	27.25	1450	
	300	330	330AHMD	330CHMD	330DEMD	330DFMD	330DHMD		50.375 34.25	1720		
	400	440	440AHMD	440CHMD	440DEMD	440DFMD	440DHMD	60.5		54.25	2085	
	500	550	550AHMD	550CHMD	550DEMD	550DFMD	550DHMD	72	53.375	4 4 27E	2750	N/A
	600	660	660AHMD	660CHMD	660DEMD	660DFMD	660DHMD	12	55.375	44.375	3100	
	700	750	750AHMD	750CHMD	750DEMD	750DFMD	750DHMD	76.75	53.375	44.375	3150	

Transformer Accessories

Terminal Lug Kits

Catalog Number	KVA Sizes	Terminal Lug Quantity	Lug Cable Range	Quantity Cables Per Lug	Hardware Quantity - Bolt Size	Approximate Weight in Pounds
50400	15 - 25 (IØ) 15-25 -30-37-1/2 (3Ø)	7	#14 - 1/0	I	(7) - 1/4 - 20 x I"	I
50401	37 I/2 - 50 (IØ) 45-50-60-75 (3Ø)	3 7	#I4 - I/0 #6 - 250MCM		(3) - I/4 - 20 x I" (7) - 5/I6 - I8 x I I/2"	3
50402	75-100 (1Ø) 100-112-150 (3Ø)	6 6	#6 - 350MCM #6 - 350MCM	2 I	(6) - 1/2 - 13 x 2" (3) - 5/16 - 18 x 1 1/2" (6) - 3/8 - 16 x 1 1/2"	6
50403*	225 (3Ø)	3 4	#4 - 500MCM #2 - 600MCM	 2	(3) - 3/8 - 16 x 1/2" (4) - 1/2 - 13 x 2"	6
50404*	300 (3Ø)	3 12	#6 - 350MCM #4 - 500MCM	2 	(3) - I/2 - I3 x 2" (9) - 3/8 - I6 x 2"	8
50405*	400-500 (3Ø)	l6 3	300-800MCM #2 - 600MCM	 2	(I3) - I/2 - I3 x 2 I/2"	15

Notes:

I. Primary and secondary lug kits included with transformers rated I5 KVA - 75 KVA, I50° C rise. Primary lug kits are included with transformers rated II2.5 KVA, I50° C rise. Consult factory for lug kits for for all other ratings.

 Screw type lugs suitable for aluminum or copper conductor.
 * 3. Catalog numbers 50403, 50404, and 50405 to be used only on transformers with one primary and one secondary (two windings total) and at lease one delta winding. Also, one winding must have a voltage of 480V or above while the other winding must have a voltage of 208V or above or be 240 Delta with a I20 lighting tap (high-leg). For example, voltages of 480-208Y/I20 and 480-240/I20LT are acceptable connections for these lugs.

Weather	Shield Kits
---------	-------------

Catalog Number	Overhang Extension (2 top & 2 bottom)	Approximate Weight in Pounds	Catalog Number	Overhang Extension (2 top & 2 bottom)	Approximate Weight in Pounds
WS-2	2 - I/I6 inches each side	10	WS-IOA	2 - I/I6 inches each side	16
WS-3	2 - I/I6 inches each side	10	WS-IOB	2 - I/I6 inches each side	16
WS-4	2 - I/I6 inches each side	15	WS-I2	2 - I/I6 inches each side	22
WS-5	2 - I/I6 inches each side	15	WS-I2A	2 - I/I6 inches each side	20
WS-6	2 - I/I6 inches each side	16	WS-I4	2 - I/I6 inches each side	28
WS-7	2 - I/I6 inches each side	16	WS-16	2 - I/I6 inches each side	35
WS-8	2 - I/I6 inches each side	17	WS-18	2 - I/I6 inches each side	15
WS-9	2 - I/I6 inches each side	18	WS-I8A	2 - I/I6 inches each side	12
WS-I0	2 - I/I6 inches each side	20			

WEATHERSHIELD NOTE: Weathershield catalog numbers are listed in the technical data sections for each product. Addition of a weathershield kit converts the transformer from NEMA 2 to NEMA 3R - UL® listed product.

Wall Mount Brackets

Catalog Number	Туре	Approximate Weight in Pounds	Use With		
WMB-3	Indoor/Outdoor	24	Wall mount bracket catalog number are listed in technical data sections		
WMB-4	Indoor/Outdoor	60	for each product.		

Primary Fuse Kit

Catalog Number	Approximate Weight in Pounds	Use With
FPFK-I	I	Industrial Control Transformers

GLOSSARY

A

Air-Cooled - A transformer cooled by the natural circulation of air over and/or through the core and coils or forced air by using fans.

Ambient Noise Level - The sound level of the surrounding area of a transformer as measured in decibels.

Ambient Temperature - Temperature of the surrounding air which comes in contact with the transformer.

Ampere - Unit of current flow.

ANSI - American National Standards Institute.

ANSI-6I - A light grey paint used on dry-type transformers.

ASTM - American Society for Testing Materials.

Autotransformer - A transformer in which at least two windings have a common section.

В

Banked Transformers - When two or more single-phase transformers are connected together to supply a three-phase load.

BIL - Acronym for basic impulse insulation levels, a specific insulation level expressed in kilovolts of the crest value of a standard lightning impulse.

Buck-Boost Transformers - An insulating transformer which has two primary windings and two secondary windings. These windings can be interconnected so that the transformer will be changed from an insulating transformer to a "bucking" or "boosting" autotransformer.

С

C° - Temperature in degrees Centigrade (Celsius).

Cast-coil Transformer - A transformer with coils cast in an epoxy resin.

Center Tap - A reduced-capacity tap at the mid-point in a winding.

Coil - A number of turns of wire wound on a form.

Conductor Losses - Losses caused by the resistance of a transformer winding, measured at 25, 50, 75, and 100% of load.

Continuous Duty - A requirement of service that demands operation at a constant load for an indefinite period.

Continuous Rating - The load that a transformer can handle indefinitely without exceeding the specified temperature rise.

Control Transformer - A transformer which is designed for good voltage regulation characteristics when low power factor, large inrush currents are drawn.

Core - The steel which carries the magnetic flow.

Core Loss - Losses caused by a magnetization of the core and its resistance to magnetic flux.

Current Transformer - A transformer designed to have its primary winding connected in series with the circuit and used for transforming current into a value suitable for measurement of control.

D

 $\ensuremath{\text{Decibel}}$ - (DB) The standard unit for the measurement of sound intensity.

Delta - (Δ) A standard three-phase connection with the ends of each phase winding connected in series to form a closed loop, I20 degrees from the other.

Delta-Wye - $(\Delta$ -Y) A term used indicating the method of connection for both primary (Δ) and secondary (Y) windings of a three-phase transformer bank.

Dielectric Test - A test conducted at higher than rated nameplate voltage to determine the effectiveness of insulating materials and electrical clearances.

Distribution Transformer - A transformer for transferring electrical energy from a primary distribution circuit to a consumer service circuit.

Dry-Type Transformer - A transformer that is cooled by air as opposed to a transformer that is immersed in oil.

Dual Winding - A winding that consists of two separate windings connected in series to handle a specific voltage and KVA, or in parallel to handle the same KVA at one half the series connected voltage.

Ε

Electrostatic Shield - A grounded conductor sheet placed between the primary and secondary winding to reduce or eliminate line-to-line or line-to-ground noise.

Exciting Current - (No-Load Current) Current which flows in any winding used to excite the transformer when all other windings are open-circuited, expressed in per cent of the rated current of a winding.

F

FCAN - Full capacity above normal taps.

FCBN - Full capacity below normal taps.

Fan Cooled - A mechanical means of accelerating heat dissipation to lower the temperature rise of the transformer.

Frequency - The number of times an AC voltage will alternate from positive to negative and back again within a specified period of time, expressed in cycles per second and identified as Hz.

Full Capacity Tap - A tap designed to deliver the rated capacity of the transformer.

G

Ground - Connected to earth or to some conducting body that serves in place of earth.

Grounding Transformer - A special three-phase autotransformer for establishing a neutral on a threewire delta secondary. (Also referred to as a "Zig-Zag transformer".) Hertz - A term meaning cycles per second, abbreviated Hz.

High Voltage Windings - A term applied to two winding transformers, designates the winding with greater voltage, identified by HI, H2, etc.

Hi Pot - A standard test on dry-type transformers consisting of extra-high potentials (high voltage) impressed on the windings.

IEEE - Institute of Electrical and Electronic Engineers.

Impulse Tests - Dielectric tests consisting of the application of a high-frequency steep-wave-front voltage between windings and between windings and ground. (Used to determine BIL.)

Impedance - The vector sum of resistance and reactance which limits the current flow in an AC circuit. Impedance is identified in percentage and is used to determine the interrupting capacity of circuit breakers which protect the primary circuit. (Symbol Z)

Induced Potential Test - A standard dielectric test which verifies the integrity of insulating materials and electrical clearances between turns and layers of a transformer winding.

Insulating Materials - Those materials used to electrically insulate the transformer windings from each other and ground. (Rated 80° C rise, II5° C rise and I50° C rise.)

Insulating Transformer - A transformer that insulates the primary from the secondary winding. (Also called an isolating transformer.)

Κ

K-Factor - A rating optionally applied to transformers indicating its suitability for use with loads that draw non-sinusoidal currents.

KVA - Kilovolt Ampere rating designates the output which a transformer can deliver at rated voltage and frequency without exceeding a specified temperature rise.

L

Line Conditioner - Portable or hard wire devices that will stabilize voltage, suppress electrical noise and act as surge suppressors against lightning discharges.

Liquid Transformer - A transformer with core and coils immersed in liquid (as opposed to a dry-type transformer).

Load - The KVA or VA requirement which the transformer must supply.

Load Losses - The losses which are the result of a current flowing to the load. Load losses would include all losses incurred above and beyond the no-load losses.

Μ

Mid-tap - A reduced-capacity tap midway in a winding, usually the secondary.

Multiple Winding - A winding which consists of two or more sections that can be paralleled for a specific mode of operation.

Ν

NEC - National Electric Code.

NEMA - National Electrical Manufacturers Association.

Noise Isolation Transformer - A transformer that is designed to provide both common and transverse mode noise attenuation.

Noise Level - The relative intensity of sound, measured in db.

No-Load Losses - The losses incurred when a transformer is excited but without a load connected to the secondary. These include core loss, dielectric loss, and exciting current I^2R loss.

0

OSHA - Occupational Safety and Health Act. Federal regulation setting minimum safety standards for compliance in industrial and commercial installations.

Ρ

Parallel Operation - Transformers may be connected in parallel, provided that the electrical characteristics are suitable for such operation.

Percent IR - (%IR) Percent Resistance. The voltage drop due to conductor resistance at rated current expressed in percent of rated voltage.

Percent IX - (%IX) Percent Reactance. The voltage drop due to reactance at rated current expressed in percent of rated voltage.

Percent IZ - (%IZ) Percent Impedance. The voltage drop due to impedance at rated current expressed in percent of rated voltage.

Phase - Classification of an AC circuit. Usually, circuits are rated single-phase two wire or three wire or three-phase three wire or four wire. Single-phase transformers can be used on a three-phase source when two wires of the three-phase system are connected to the primary of the transformer. The secondary will be single-phase.

Polarity Tests - A standard test on transformers to determine instantaneous direction of the voltages in the primary compared to the secondary.

Potential Transformer - A transformer that is designed to have its primary winding connected parallel with a circuit and used for transforming voltage to a value suitable for measurement or control.

Power Conditioning - The means to correct voltage fluctuations and electrical noise problems common to incoming power sources.

Power Factor - The ratio of watts to volt amperes in a circuit. (% watts/VA)

Primary Voltage - The input circuit voltage for which the primary winding is designed.

R

Rating - The characteristics such as volt-ampere capacity, voltages, frequency and temperature rise that a transformer is designed to.

Ratio Test - A standard test of transformers to determine the ratio of the primary to the secondary voltage.

Reactance - A component of impedance produced by either inductance or capacitance in an AC circuit.

Reactor - A device for introducing inductive reactance into a circuit for motor starting, operating transformers in parallel and controlling current.

Regulation - The per cent change in output voltage from full load to no-load.

S

Scott Connection - A transformer connection usually used to get a two-phase output from the secondary of a transformer with a three-phase input to the primary or vice versa. It can also be used to provide three-phase to threephase transformation.

Secondary Voltage Rating - Designates the load-circuit voltage for which the secondary winding is designated.

Series/multiple - A winding of two similar coils that can be connected for series operation or multiple (parallel) operation.

Star Connection - Same as WYE connection.

Step Down Transformer - High voltage winding is connected to the power source input and the low voltage winding to the output load.

Step Up Transformer - Low voltage winding is connected to the power source (input) and the high voltage winding is connected to the output load.

T

T-Connection - A Scott connected three-phase transformer utilizing two primary and two secondary coils.

Tap - A connection in a transformer winding which has the effect of changing the nominal voltage ratio of the transformer. (Taps are usually placed on the high voltage winding to correct for high or low voltage conditions found on the low voltage output side.)

Temperature Rise - The increase over ambient temperature of the winding due to energizing and loading.

Total Losses - Losses represented by the sum of the no-load and the load losses.

Transformer - A transformer is a static electrical device, which by electro-magnetic induction, transfers electrical energy from one circuit to another circuit, usually with changed values of voltage and current.

U

UL - Underwriters' Laboratories. Establishes standards for transformers.

Universal Taps - A combination of six primary voltage taps consisting of 4-2 I/2% FCBN and 2-2 I/2% FCAN.

V

Volt Amperes - The current flowing in a circuit multiplied by the voltage of that circuit. (The output rating of a transformer.)

W

WYE Connection (Y) - A three-phase connection in which similar ends of each phase winding are connected together at a common point which forms the electrical neutral and is often grounded.

Ζ

Zig-Zag Transformer - Commonly used term for a grounding transformer.

Electro-Mechanical Overview

Electro-Mechanical is an American-owned company founded in 1958. It is headquartered in Bristol, Virginia (USA) and for more than 60 years has manufactured a wide variety of products used in the generation, transmission, distribution and control of electricity. These products, along with various electrical equipment repair and maintenance services, are used by a diverse mix of Energy (coal, oil and gas), Electric Utility and Industrial customers worldwide. Federal Pacific medium voltage metering, collector, and gird connection gear for the renewable markets is offered under the GridConnex[®] trade name.

Electro-Mechanical has earned a "customer oriented" reputation by keeping its focus on providing the best value to its customers through quality products and services. With six manufacturing companies and two repair and service companies, Electro-Mechanical has over 650,000 square feet of modern manufacturing facilities, located in Virginia and Mexico.

Electro-Mechanical consists of:

Federal Pacific - Dry-type transformers from .050 KVA through I0,000 KVA single and three phase, up to 25 kV, II0 kV BIL with UL[®] approval through I5 kV; Vacuum pressure impregnation and vacuum pressure encapsulation. Medium voltage switchgear including air-insulated live-front, dead-front, SCADA-controlled, automatic transfer, primary metering and wall-mounted pad-mounted and metal-enclosed switchgear. The quality systems of Federal Pacific have been certified by DQS Inc. to the ISO 900I:20I5 Standard.

Line Power Manufacturing - Custom engineered electrical distribution and control apparatus including low and medium voltage metal-enclosed switchgear, power control centers, motor controls, and substations. Electrical power distribution systems and components used in mining. The quality systems of Line Power have been certified by DQS Inc. to the ISO 900I:20I5 Standard.

MAFESA-Electro-Mechanical's manufacturing facility in Mexico for stock low-voltage transformers.

Engineered Solutions - Innovative engineered solutions are offered by Federal Pacific and Line Power meeting specific customer application needs. Products include custom medium voltage switchgear serving data centers and renewable energy, switchgear value propositions, and portable substations.

Line Power Parts & Rebuild - New parts, complete electrical equipment remanufacturing and onsite electrical equipment service. The parts service department provides replacement components manufactured by Electrical Group companies as well as commonly used OEM parts.

Mirus International, Inc. - Designs and develops world class power quality improvement products for mission critical operations. Our specialized product line includes highly efficient harmonic filters, transformers, autotransformers and Data Center power distribution equipment. Mirus' solutions minimize disruption to the power supply, improve reliability and adhere to the strictest of regulatory requirements while also saving energy and reducing operating costs.

Federal Pacific

Line Power Manufacturing

Mirus International

Federal Pacific Dry-Type Transformer Products

Industrial Control - 50 through 750 VA

Encapsulated 600 Volt Class

Three-Phase 3 through I5 kVA • Buck-Boost 50 VA through 5 kVA • Single-Phase 50 VA through 25 kVA

Ventilated 600 Volt Class

Single-Phase I5 through I67 kVA • Three-Phase I5 through I000 kVA • K-Factor Rated Three-Phase I5 through 500 kVA • Motor Drive Isolation Three-Phase 7.5 through 750 kVA

High Voltage General Purpose

Three-Phase 2.4 and 5 kV Class, I5 through I500 kVA • Three-Phase 8.6 and I5 kV Class, II2.5 through I500 kVA

Pad-Mounted

Single- and Three-Phase 2.4, 5 and 15 kV Class, 112.5 through 2500 kVA

Unit Substation and High Voltage Power

Three-Phase 2.4 through 25 kV Class, II2.5 through IOOOO kVA High Voltage General Purpose Three-Phase 2.4 and 5 kV Class, I5 through I500 kVA • Three-Phase 8.6 and I5 kV Class, s,

II2.5 through I500 kVA

Vacuum Pressure Impregnated (VPI) and Vacuum Pressure Encapsulation (VPE)

600 Volt Class through 25 kV Class, II2.5 through I0000 kVA

Specialty Transformers

600 Volt Class through 25 kV Class, 50 VA through 10000 kVA

ABS Certified Marine Duty Transformers for Marine, Petro-Chem and Offshore Applications

Federal Pacific Switchgear Products

```
Live-Front Pad-Mounted Switchgear - 15 kV + 27 kV
   Manual, Automatic Transfer, Remote Supervisory Controlled Models
Live-Front/Dead-Front Pad-Mounted Switchgear - 15 kV + 27 kV
   Manual, Automatic Transfer, Remote Supervisory Controlled Models
Dead-Front Pad-Mounted Switchgear - 15 kV + 27 kV
   Manual, Automatic Transfer, Remote Supervisory Controlled Models
Pad-Mounted Capacitor Banks
Primary Metering Dead-Front Pad-Mounts - 15 kV + 27 kV + 38 kV
Fused Sectionalizer Dead-Front Pad-Mounts - 15 kV + 27 kV
Metal-Enclosed Switchgear - 5 to 38 kV
   Manual, Automatic Source Transfer, Remote-Supervisory Control, Shunt Trip
Wall-Mounted Equipment - 15 kV + 27 kV
   Wall-Mounted Switch Cabinets, Wall-Mounted Fuse Cabinets
Unit Substations - 5 to 38 kV
Vacuum Reclosers - 15 kV
Custom-Engineered Products - 5 to I2I kV
   Portable Substations - Trailer, Skid and Track Mounted
```

Components

Micro-Processor and Stored-Energy Switch Operators, SCADA-Controlled Switch Operators

FP-600VTRANS-I2/22 © 202I Electro-Mechanical, LLC

ISO 900I:20I5 Registered

1075 Old Airport Road + Bristol, VA 24201 (276) 669-4084 + FAX (276) 669-1869 www.federalpacific.com

Every effort is made to ensure that customers receive up-to-date publications for our products; however, from time to time, modifications may occur to our products without notice and make the information contained herein subject to alteration.

