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ADVANCED ABSTRACT ALGEBRA

Max. Marks : 100
Time : 3 Hours

Note : Question paper will consist of three sections. Section I consisting of one question with ten parts
of 2 marks each covering whole of the syllabus shall be compulsory. From Section II, 10 questions
from each unit. The candidate will be required to attempt any seven questions each of five marks.
Section III, five questions to be set, one from each unit. The candidate will be required to attempt
any three questions each of fifteen marks..

Unit I

Groups, Subgroups, Lagrange’s theorem, Normal subgroups, Quotient groups, Homomorphisms,
Isomorphism Theorems, Cyclic groups, Permutations, Cayley’s Theorem, Simplicity of An for n ≥ 5.

Unit II

Normal and Subnormal series. Composition Series, Jordan-Holder theorem, Solvable groups. Nilpotent
groups.

Unit III

Modules, submodules, cyclic modules, simple modules, Schure’s Lemma. Free modules, Fundamental
structure theorem for finitely generated modules over a principal ideal domain and its application to
finitely generated abelian groups. Similarity of linear transformations. Invariant subspaces, reduction to
triangular forms. Primary decomposition theorem and Jordan forms. Rational canonical form.

Unit IV

Rings, subrings ideals, skew fields, integral domains and their fields of quotients, Euclidean rings, polynomial
rings, Eisenstein’s irreducibility criterian. Prime field, field extensions, Algebraic and transcendental
extensions, Splitting field of a polynomial and its uniqueness. Separable and inseparable extensions.

Unit V

Normal extensions, Perfect fields, finite fields, algebraically closed fields, Automorphisms of extensions,
Galois extensions, Fundamental theorem of Galois theory. Solution of polynomial equations by radicals.
Isolvability of the general equation of degree 5 by radicals.
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Unit-I

Group
Definition
A non empty set of elements G is said to form a group if in G there is defined a binary operation, called the
product, denoted by., such that:

1.  a b G a b G. ,∈ ∀ ∈  (closed)

2.

a b c a b c a b c G. . . . , ,b gb g= ∀ ∈

(associative law)

3. ∃ an element 

e G∈

such that a.e = e.a = a 

∀ ∈a G

 (the existence of an identity element in G)

4.

∀ ∈ ∃ ∈a G b G,

such that

a b b a e. .= =  (The existence of an identity element in G)

Example 1:

Let 

G A
a a

a a
a Rational numbers Q Aij= =

F
HG

I
KJ ∈ ≠

RST
UVW

11 12

21 22

0: ,det( )

i.e. G is the set of nonsingular 2×2 matrix over rational numbers Q.

G forms a group under matrix–multiplication. Infact, we note that

1. Let a
a a

a a
b

b b

b b
=
F
HG

I
KJ =

F
HG

I
KJ

11 12

21 22

11 12

21 22

, be two non-singular 2×2 matrices over Q.

Now a.b under matrix multiplication is again 2×2 matrix over Q and det (a.b) = (det a) (det b) ≠ 0 , as
det a

≠ 0

, det b

≠ 0

.

∴ ∈ ∀ ∈a b G a b G. ,

2. We know that matrix multiplication is always associative. Therefore,

a b c a b c a b c G. . . . , ,b g b g= ∀ ∈

3. ∃ =
F
HG

I
KJ= ∈ = = ∀ ∈e I G a I I a a a G

1 0

0 1
suchthat . .

4. If a G∈ ,  say 

a
a a

a a
=
F
HG

I
KJ

11 12

21 22

,

then

we get a
a a a a

a a

a a
− =

−
−

−
F
HG

I
KJ1

11 22 21 12

22 12

21 11

1
b g

fgge( )1
1
2

−=
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= ≠1
0

det
, det

a
adj a abg bg bgc hΘ

a a a
a

adj a I e. .
det

− =
F
HG

I
KJ= =1 1

bg bg

similarly a a I e

a G

−

−

= =

∴ ∈

1

1

.

Thus G is a group.

Note that a b b a a b G. . ,≠ ∀ ∈ . Infact, let

 

a b a b G=
F
HG

I
KJ =

F
HG

I
KJ ∈

1 1

0 1

8 5

3 2
, , ,

but a.b =
F
HG

I
KJ ≠

F
HG

I
KJ=

11
3

7
2

8
3

13
5

b a.

Definition

A group G is said to be abelian (or commutative) if a.b = b.a.    ∀ ∈a b G, .

Therefore, example 1 gives us a noncommutative group with infinite number of elements in it, since elements
are taken from Q, rational numbers which are infinite.
Definition
The number of elements in a group G is called the order of G. Denote it by O (G). When g has finite number
of elements, G is a called a finite group.

Example 2:

G =
F
HG

I
KJ

−
−

F
HG

I
KJ

F
HG

I
KJ

−
−
F
HG

I
KJ

RST
UVW

1 0

0 1

1 0

0 1

0 1

1 0

0 1

1 0
, , ,

G is again a set of 2 x 2 matrices with entries in Z ,  integers, but containing only four elements.

Let e a b c=
F
HG

I
KJ =

−
−

F
HG

I
KJ =

F
HG

I
KJ =

−
−F

HG
I
KJ

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0
, , ,

we can verify a2 = b2 = c2 =  e I=
F
HG

I
KJ=

1

0

0

1
,

and a b = c = ba, ac = b = ca, bc = a = cb.
it can be easily verified that G is a group under matrix multiplication. Thus G is an abelian group containing
four elements only (Note that entries are from Z).
Therefore, G is a finite abelian group.

Remarks:
In this example every element of G is its own inverse i.e. a = a-1, b = b-1, c = c-1, e = e-1.
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2. In example 1, a b=
F
HG

I
KJ =

F
HG

I
KJ

1
0

1
1

8
3

5
2

, ,

Note that a b

a b

− −

−

=
−F

HG
I
KJ −

−F
HG

I
KJ=

−
−F

HG
I
KJ

≠
−

−F
HG

I
KJ=

1 1

1

1
0

1
1

2
2

5
8

5
3

13
8

2
3

7
11

,

.b g

3. In a group G, we can prove that (a b)-1 = b-1 a-1 ` , ,∀ ∈a b G

ab b a a b b a a ea a eb gd i d i− − − − − −= = = =1 1 1 1 1 1

Similarly (b-1 a-1) (a b)  = e.

Hence (a b)-1 = b-1  a-1

This rule can be extended to the product of n elements, we note that

a a a a a a a a

a G i n
n n n

i

1 2 3
1 1

1
1

2
1

1
1

1

− − − = − − − −

∈ ≤ ≤

− −
−

− − −b g
b g, ,

Example 3:

If every element of a group G is its own inverse (i.e. a2 = e for all a ∈G), then G is abelian. We note that

a e a a e a a a G2 1= � = � = ∀ ∈−.

and ∀ ∈a b G, ,

ab a b ab G

b a

b a

= ∈

=
=

−

− −

b g b g1

1 1

Θ

.

Definition:
A group G is said to be cyclic if every element of it is a power of some given element in it. This given element
is said to generate or a generator of the group G. Thus G is cyclic if ∃ ∈a G such that

x a n Z x Gn= ∈ ∀ ∈, , .  It is denoted by G a a n Zn= = ∈: ,n s
Remarks 1:

A cyclic group is necessarily abelian but the converse is not true.

Let 

x y G a then x a y a n m Z Nown m, , , , , ,∈ = = = ∈

xy a a a a a a yx x y Gn m n m m n m n= = = = = ∀ ∈+ + , .

Thus a cyclic group G is abelian. But example 2 shows that every abelian group is not cyclic. Every element
of G in example 2 can not be written as power of either a, b or c in it, verify it.
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Problem 1:
Let G be a non empty set closed under an associative product, which has left indentity e and left inverse for
all elements of g. show that G is a group.

Proof:

Let a ∈G and let b

∈G

such that b a = e. Now

b a b = (b a) b = e b = b ...................(i)

Θ b G c G∈ ∴ ∃ ∈,

such that c b = e

Hence c (b a b)  =  cb  =  e from  (i)

� =
� =

cb a b e

ab e

bgb g

∴ b is also right inverse of a.

Further,

a e = a (b a) = (a b) a = e a = a
Hence e is right identity also

Thus G is a group,

Subgroups
Let H be a non-empty subset of the group G such that

1.
a b H a b H∈ ∀ ∈, ,

2. a H a H− ∈ ∀ ∈1

We prove that H is a group with the same law of composition as in G.
Proof:
H is closed under multiplication from (1). All elements of H are from G and associative law holds in G,
therefore, multiplication is associative in H also.

Let a ∈ H , then a-1

∈ H

 from (2) and so from (1), a a-1

∈ H

, i.e. e = a a-1

∈ H

.

which implies, identity law holds in H, (2) gives inverse law in H. Thus H is a group. H is called a subgroup
of G. Thus a nonempty subset of a group G which is a group under the same law of composition is called a
subgroup G. Note that e, the identity element G is also the identity of H.

A group G is called nontrivial if G 

≠

(e). A nontrivial group has at teast two subgroups namely G and (e).
Any other subgroup is called a proper subgroup.

Definition:

Let b, a

∈

G, b is said to be Conjugate of a 

∈

G, if 

∃ ∈x G

 such that b = x-1 ax.

Problems:
1. Let a ∈G, let CG(a) = {x

∈

G: x-1 ax = a}
Prove that CG(a) is a sbgroup of G.

2.

Z G x G x a x a a Gbg= ∈ = ∀ ∈−{ : }1

 is a sub group of G.

3. Find the centre of the group GL (2, R) of nonsingular 2 x 2 matrics over real numbers,
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Solutions:

1. C aGbg≠ φ,because e∈CG(a).

Let x,y 

∈

 CG(a). Then

xy a x y y x a x y

y x ax y

y a y x C a

a y C a

xy C a

G

G

G

bg b g d i b g
d i

bgc h
bgc h

bg

− − −

− −

−

=

=

= ∈

= ∈

� ∈

1 1 1

1 1

1 Θ

Θ

.

Also, x a x x a x

x x ax x x C a

x x a x x

e a e

a

x C a

G

G

− − − −

− −

− −

−

=

= ∈

=

=
=

� ∈

1 1 1 1

1 1

1 1

1

d i d i
d i bgc h

d i d i

bg

Θ

Thus  xy, x-1 ∈CG(a), hence CG(a) is subgroup of G

Remarks:
x ax a ax xa− = ⇔ =1

so C
G
(a) is the set of all elements of G commuting with a.

we call CG(a), the centralizer of a

2. Let x y Z G, .∈ bg From above

x y C a a G henceG, ,∈ ∀ ∈bgxy x C a a GG, ,− ∈ ∀ ∈1 bg

 hence

xy x Z G, ,− ∈1 bg

 Thus Z (G) is a subgroup.

Note that

Z G C a
a G

Gbg bg=
∈
Ι

Definition
Z (G) is called the center of the group G.

3. let x
a
c

b
d

=
F
HG

I
KJ∈ centre of GL (2, IR)

∴   x commutes with all non-singular 2 x 2 matrices, So in particular x commutes with
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1 1

0 1

1 0

1 1
2

1 1
0 1

1 1
0 1

1

1 1
0 1

1 1
0 1

2

F
HG

I
KJ

F
HG

I
KJ∈

F
HG

I
KJ=

F
HG

I
KJ
F
HG

I
KJ=

+
+

F
HG

I
KJ

F
HG

I
KJ =

F
HG

I
KJ
F
HG

I
KJ=

+ +F
HG

I
KJ

, ,

.... ( )

.... ( )

GL IR

x
a b
c d

a a b
c c d

x
a b
c d

a c b d
c d

b g

(1) and (2)  gives

a a b
c c d

a c b d
c d

+
+

F
HG

I
KJ=

+ +F
HG

I
KJ

Hence c = 0, a = d

Similarly, 

x x
1 0

1 1

1 0

1 1
F
HG

I
KJ=

F
HG

I
KJ

 gives

b = 0.

Therefore x
a

a
where a o a=

F
HG

I
KJ ≠ ∈

0
0

, , R

is a scalar matrix and so commutes with all 2 x 2 matrices, (nonsingular or not) Hence Z (GL(Z,R), the
center of GL (2, R) Consists of all nonzero scalar matrices.

Remark:
This can be generalised that the center of GL (n, R), the general linear group of nonsingular n × n matrices
over IR, consists of all nonzero scalar matrices.

Coset of a subgroup H in G:
Let G be a group and H be a subgroup of G. For any a ∈G, Ha = {ha / h

∈

H}. This set is called right coset
of H in G. As e 

∈

H, so a = e a 

∈

Ha. Similarly aH = {ah / a

∈

h} is called left coset of H in G, containing a.

Some simple but basic results of Cosets:
Lemma 1: Let H be a subgroup of G and let a, b

∈

G.

Then
1. a 

∈

 Ha

2. Ha = H 

⇔

 a

∈

H

3. Either two right cosets are same or disjoint i.e. Ha = H b or 

Ha HbΙ =φ

4. Ha = H b 

⇔

b a-1

∈

H

5.

Ha Hb=

 i.e. there is one-one correspondence between two right Cosets

Proof:

1. a ea Ha e H= ∈ ∈Θb g
2. Let 

a H∈

, Now h 

a H∈

  

∀ ∈h H,

 due to closure in H.
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∴ ⊆Ha H.  To show 

H Ha⊆

 let h be any element of H.Since 

a H∈ ,

We get a-1

∈H

and h a-1 

∈H

. Hence h = he = h (a-1 a)

  = (h a-1)a 

∈H

a. So 

H Ha⊆

. Thus H = Ha.

Ha = H 

�

 e a 

∈H�

a 

∈H

.

3. Suppose 

Ha Hb let x Ha Hb∩ ≠ ∈ ∩φ .

Then x = h
1
a and x = h

2
 b, for some h

1
, h

2
 ∈H ,

Thus 

a h x h h b and Ha H h h b= = =− − −
1

1
1

1
2 1

1
2d i= =−H h h b Hb from1

1
2 2d i bg,

4. Ha Hb H H ba ba H= ⇔ = ⇔ ∈− −1 1 ,  from (2)

5. Define f Ha Hb by ha hb h H: .→ → ∀ ∈

Then f h a f h a h b h b h b b h b b h bb h bb h e h e h e a

h e a h a h a

, 1 2 1 2 1
1

2
1

1
1

2
1

2 2 1

2 1 2

b g b g b g b g d i d i b g
b g

= � = � = � = � = �

= � =

− − − −

∴f is one-one, By definition it is obvious that f is onto.
We again visit example 2, G = {e, a, b, c}

There are three proper subgroups of G, H1 = {e, a}, H2 = {e, b}, H3 = {e, c}order of each Hi, i = 1, 2,
3, is 2. Hence O (Hi) | O (G) = 4. ie.. /Hi/ divides /G/.

Now we are ready to prove a theorem called Lagrange's, Theorem.
Theorem 1. Lagrange's Theorem (1770): /H/ divides |G|.

If G is a finite group and H is a subgroup of G, then /H/ divides /G/. Moreover, the number of distinct right left

cosets of H in G is 

G
H

.

Proof:
Since G is a finite group, we have finite number of distinict right cosets of H in G, say Ha1, Ha2,............., Har.
Now for each a in G, We have Ha = Hai for some i. By property (i) of Lemma 1, a Ha∈ .Hence, each
element of G belongs to one of Cosets Hai, i.e.

G Ha Ha Har= ∪ ∪ ∪1 2 ................. ,

By property (3) of lemma 1,

Ha Ha

for i j
i j∩ =

≠

φ,

.

∴ = + +G Ha Ha Har1 2 ...  for each i.

(Because f H Ha defined by h hai i: → →

∀ ∈h H

 is one-one & onto).
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Therefore we get

G H H H
r times

i e G r H

= + + − − − − − − − − − +
→ ←

=. .

Warning:
Let G be a finite group of order 12. We may think that it has subgraps of order 12, 6, 4, 3, 2, 1 but no others.
Converse of Lagranges theorem is false. 6|12 but there exists a group of order 12 which does not have a
subgroup of order 6. We shall give this example some time later.
The number of right (or left) cosets of a subgroup H in a group G is called the index of a subgroup H in the

group G. This number is denoted by /G:H/. When G is finite, by Lagrange's theorem, we have G H G
H: = .

We can say:

G H index of H in G= × .

Corollary 1:

a dvides G

In a finite group, the order of each element of the group divides the order of the group.

Proof:

a a= < >0b g= order of the subgroup generated by 

a

, 

a G∈ .

Hence the corollary.

Corollary 2:
Groups of Prime order are cyclic.

Proof:

Let a G a e Then o a∈ ≠, . c h

divides 

G

.

but o a and G is prime Hence o a Gc h c h≠ =1 . .

Therefore a G G a ie G is cyclic≤ � = .. .

Corallary3:
a|G|  = e.

let G be a finite group, and let a G∈ .Then 

a eG = .

Proof:

G a n n= , is a positive integer, by Corollary 1.

Hence a a

a e

e

G a n

a n
n

=

= =

=
e j
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Corollary 4: (Feremat's Little Theorem):
For every integer a and every Prime p, ap ≡ a (mod p).

Proof:

By division algorithm, a = pm + r, 0 ≤ r < p. Hence

a ≡ r (mod p). The result will be proved if we prove rp 

≡

 r (mod p). If r = 0, the result is trivial. Hence

r p∈ −{ , , ,................. }1 2 3 1

which forms a group under multiplication module o p. Therefore by corollary 3,
rp-1 = 1. Thus  rp 

≡

r (mod p).

Normal Subgroups

If G is a group and H is a subgroup of G, it is not always true that aH = Ha,  

∀ ∈a G.

Definition:

A subgroup H of a group G is called a normal subgroup of G if a H = Ha for every a in G. This is denoted
by H ∆ G.

Warning:

H

∆

G does not indicate ah = ha   

∀ ∈ ∀ ∈a G h H, .

H ∆ G means that if 

a G∈

,  

h H∈ ,

 then ∃  some h1

∈

 H such that 

ah h a= 1 .

A subgroup H of G is normal in G if and only if x Hx H x G− ≤ ∀ ∈1 .

Θ xHx H x G xH Hx x G− ⊆ ∀ ∈ � ⊆ ∀ ∈1d i and 
x Hx x H x H hence Hx xH x G− − − −

= ⊆ ⊆ ∀ ∈1 1 1 1d i , )

Factor groups (or quotient groups):

Let H g∆ . The set of right (or left) cosets of H in G is itself a group. This group is called the factor group of
G by H (or the quotient group of G by H).

Theorem 2:

Let G be a group and H a normal subgroup of G. The set G
H Ha a G= ∈{ } forms a group under the

operation (Ha) (Hb) =  Hab.

Proof:

We claim that the operation is well defined. Let Ha = Ha
1
 and Hb = Hb

1
.

Then a1 = h1a and b1 = h2b, h1, h2 ∈H.

Therefore, Ha
1
b

1
 = Hh

1
 ah

2
b = Ha h

2
b = aHh

2
b = aHb = Hab

(In proving this we used Ha = H 

⇔

a 

∈

 H and H

∆

G).

Ha Hb Hc Hab Hc H ab Hc H ab c

Ha bc Ha H bc Ha H b Hc a b c G

b gb gc h b g b g b g
b g bgc h b gb gc h

= = =

= = = ∀ ∈, , .

Further He = H is the identity and Ha-1 is the inverse of Ha, ∀ a 

∈

 G.

(Ha)  (He)  =  Hae = Ha, and Ha Ha-1= Ha a-1 = He = H,
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Thus 

G
H

 is a group.

Theorem3: 

G
Z

Theorem.

Let G be a group and let Z (G) be the center of G. If 

G
Z Gbg

 is cyclic, then G is abelian.

Proof:

we claim

Z G Gbg∆ ,

we show that g Z G g Z G g G− ⊆ ∀ ∈1 bg bg .

let x Z G then∈ bg,
g xg g x g g g x x Z G

g g x ex x Z G

− − −

−

= = ∈

= = = ∈

1 1 1

1

b g b g bgc h
d i bg

Θ

Hence g xg Z G g G x Z G− ∈ ∀ ∈ ∀ ∈1 bg bg,

Therefore g Z G g Z G g G, .− ⊆ ∀ ∈1 bg bg
We can now form a factor group 

G
Z Gbg.Let G

Z G
x g G

Z Gbg bg bg= F
HG

I
KJ/ Θ is cyclic

Let a b G, .∈  To show ab=ba

aZ G bZ G G
Z Gbg bg bg, ,∈

hence

aZ G xZ G x Z G
n nbg bgc h bg= =

and  bZ G xZ G x Z G
m mbg bgc h bg= = , where n, m are integers.

Thus  a aZ G a x y y Z Gn∈ � = ∈bg bgfor some

and b x t t Gm= ∈for some bg
Now

ab x y x t x yx t x x y tn m n m n m= = =d id i d i d i= =x x yt x x tyn m m nd ibgd ibg= x t x ym nd id i

= b a

We often use it as: If G is not abelian, then 

G
Z Gbg

 is not cyclic.
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Definition: Group Homomorphism

Let

f

be a mapping from a group G to a group 

G

 defined by

f

: G 

 

 

G

            a 

 

 

f a a G Satisfyingbg∀ ∈ ,

f ab f a f b a b Gbg bgbg= ∀ ∈, .

f  is called homomorphism of groups.

Definition: Kernel of a Homomorphism

Let

f

: G 

 

 

G

 be a group homomorphism and 

e

 be the identify of 

G

. Then Kernel of 

f

denoted by Ker 

f

is defined by

Ker 

f

= 

x G f x e∈ =: bgm r
We note that ker 

f∆
G. (It is easy to show that ker f is a subgroup of G)

We show that 
g f g f g G− ⊆ ∀ ∈1 ker kerb g

Let x be any element of ker 

f

.

Then 

f g xg f g f x f g f g e f g x f− − −= = ∈1 1 1d i d i bgbg d i bg, kerΘ

f g f g f g g f− −=1 1d i bg d i b gΘ ishomomorphism

  
=
=

f e

e

bg

(

Θ

 Any homomorphism of groups carries identity of G to identity of 

G

)
Explanation:

( ) ( ) ( )( )GeGxfxfexf,Gx ofidentifytheisand∈=∈ Θ

    
( )
( ) ( ) Ginefxf

xef

=
=

So by cancellation property in 

G

, we have 

e

= 

f

(e).)

Hence

( ) ,fkerxexggf 1 ∈∀=−

fkerx,Ggfkerxgg 1 ∈∀∈∀∈�
− Gf∆ker�

 f

homomorphism

 

Ker 

f

G
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Lemma 2:

Let 

f

 be a homomorphism of G into 

G

, then

1.

f

(e) = 

e

, the identify element of 

G

2.

( ) ( ) Gxxfxf 11 ∈∀= −−

3. ( ) ( )( ) Gxxfxf nn ∈∀=

Proof :

(1) is proved above

(2) e f e f x x f x f x= = =− −bg d i bgd i1 1

( )( ) ( )( ) ( ) ( ) Ginxfxfxfexf 111 −−− =�

( )( ) ( ) ( ) Gx,xfxfexf 111 ∈∀==�
−−−

Example 4:

G = GL (2, R): group of nonsingular 2 × 2 matrices over reals and R* be the group of nonzero real number
under multiplication. Then

f: G = GL (2, R)  R* defined by

A 
 

 
f

(A) = det A 
GA∈∀

Then
f

(AB) = det (AB) = det A det B = 
f

(A) 
f

(B) 
GB,A ∈∀

Hence 

f

 is a homomorphism

( ) ( ) 1detker ==⇔∈ AAffA

( ),,2 RSLA ∈⇔  the group of nonsingular 2×2 matrices over R, whose determinant is 1. Therefore,

ker 

( ) ( )RSLf ,2=

Theorem 4: (Fundamental Theorem of Group Homomorphism)

Lef 

f

: G 

 G

 be a group homomorphism with K = ker 

( )f

. Then

( )Gfk
G ≅

i.e. ( ) ( )fageImfker
G ≅

( ≅ : Isomorphic, when 

f

 is homomorphism, 1–1 and onto).
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Proof:
Consider the diagram

where 

( ) Kgg =φ

The above diagram should be completed to

We shall use

to complete the previous diagram.

Define ( ) ( ) K
GKgcosetgfkgf s ∈∀=

f  is well defined: Let Gg,g,KgKg 2121 ∈=

Then ( ) ,Kfkerk,kgg 21 =∈= and

( ) ( ) ( ) ( ) ( ) ( )22221 gfgfegfkfkgfgf ====

f

 is a homomorphism since

( ) ( ) ( ) ( ) ( )21212121 gfgfggfgKgfKgKgf ===

(Θ  f is a homomorphism).

 

f
G

φG
K

G

 G
f

G
K

G
 g

f

Kg

( )gf

f

φ
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( ) ( ) Gg,g,KgfKgf 2121 ∈∀=

f  is 1–1 since ( ) ( )�= 21 kgfkgf

( ) ( ),21 gfgf =  hence ( ) ( ) egfgf
1

21 =
−  and f g g e( )1

1
2

− =  ( fΘ  is a homo).

So ,ker fKgg 1
21 =∈−  which shows that 21 kgkg = . Thus 

f

 is 1–1. By definition f  is onto. Hence f  is

homorphism. So ( ) .GGfk
G ⊆≅

Consider Again Example 4:

( ) ( )R,nGLRGL:f n =  

 

 R*

A 

 

 

( ) ( ) ( )RnGLAAAf ,det ∈∀=

( ) ( ) ( ) ( )BAABABf detdetdet ==

           

( ) ( ) ( )R,nGLB,ABfAf ∈∀=

So 

f

is a homomorphism.

( ) ,1AffkerA =⇔∈

the identity of R*.

               

( ) 1det =⇔ A

           ( ) ( ),, RnSLRSLA n =∈⇔ the subgroup of 

( )R,nGL

 of all n×n matrices with determinant 1.

By above fundmental homomorphism theorem, we get

( ) ( )fIm
fker
R,nGL ≅

i.e
( )
( ) ( )fIm

R,nSL
R,nGL ≅

But f  is onto, since for 

∃∈ ,*Ra

( )R,nGL
0

0a
A

nn

1..
.111 ∈

��
�

�

�

��
�

�

�
=

×

 such that ( ) aAAf == det

Hence 
( )
( )

*

,
,

R
RnSL
RnGL ≅

Theorem 5 (First Isomorphism Theorem)

Let G be a group with normal subgroup N and H such that HN ⊆

Then

N
G

N
H ∆

 and
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( )
( ) H

G

N
H

N
G

≅

Define N
Gf :  

H
G

by

    Na   Ha 

Ga ∈∀f

is well-defined, since Na = Nbfor 

,Gb,a ∈

 we get 

Nba ∈
−1

. Since ,HN ⊆  thus gives 

Hba ∈
−1

 and so

Ha = Hb. f  is a homomorphism:

( ) ( ) ( ) ( )NbfNafHaHbHabNabfNbNaf ==== ( ) ,ker HNaffNa =⇔∈

the identity of 

H
G

                  
Ha

HHa

∈⇔
=⇔

Hence ker 

f
N

H=

. As ker ,N
Gf ∆ so N

G
N

H ∆

The fundamental homomorphism theorem for groups implies that

N
Gff

N
G

=≅ Imker

H
G

N
H

N
G

≅∴

Theorem 6 (Second Isomorphism Theorem)

Let G be a group, and let ,GN ∆ let H be any subgroup of g. Then HN is a subgroup of G, 

,HNH ∆∩

and

( )NH
H

N
HN

∩≅

Proof:

Define f:H  

N
HN

 by a    

HaNa ∈∀,f

 is a homomorphism since

( ) ( ) ( ) HbabfafNaNbNabbaf ∈∀=== ,,

a  ( ) ,ker Naff =⇔∈ the identity element of HN and a

∈

H

        

NHa

HaandNa

NNa

∩∈⇔
∈∈⇔

=⇔

So 

NHf ∩=ker
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The arbitrary element of NaNis
N

HN
but GHa ⊆∈  and 

GN ∆

, so aN = Na, hence NaN = NNa = Na.

Therefore, f is onto. Now by fundamental homomorphism theorem for groups, we get

( )
N

HN
ff

H =≅ Imker

i.e.
N

HN
NH

H ≅∩

Some results about cyclic groups: we prove the following results:
Theorem 7:
Let g be a cyclic group

1. If G is infinite, then ZG ≅

2. If 

,nG =

 then ><≅ n
ZG

Proof:

1. Let g = <a> be infinite cyclic group.

Define Zf :   g by n 

 

 

Zna n ∈∀

.

f  is a homomorphism, since 
( ) ( ) ( )mfnfaaamnf mnmn ===+ +

f is onto: since G = <a>, so for any 
,>=<∈ aGx

we get max =  for some integer m,

Hence ( ) fxamf m
�== is onto f  is 1–1: Let 

nm aa =

 for m, ,zn ∈  with 

.nm ≥

Then multiplying by 

( ) 1−na

, we get ea nm =− and since a is not of finite order, we must have m = n.

Hence every infinite cyclic group is isomorphic to additive group of integers.

2. Let G be a finite group with n elements,

Define >< n
z

f :   G by [m] 

 

 

[ ] ><∈∀ n
zmam

f  is well-defined. We should show that if 

( ),mod nmk ≡

then 

,mk aa =

 where a  has finite order n.

( ) ( )nmkmkneaaa mkmk mod≡⇔−⇔=⇔= −

f  is onto, since G = <a>.

f

is 1–1: let 

[ ]( ) [ ]( ),mfkf =

 then as above 

( )nmk mod≡

Also

[ ] [ ]( ) [ ]( ) [ ]( )nfmfaaakmf kmkm ===+ +

f∴  is an isomorphism. Hence every finite cyclic group of order n  is isomorphic to additive group of integers

mudule n.
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Theorem 8.   Let H be a subgroup of a cyclic group < a > and m is the least positive integer such that am 
∈ H.  If an ∈ H , then m|n.  

Proof.  By division algorithm, we have  
  n = qm + r,  q, r  ∈  Z ,  0 ≤ r < m  
Therefore,  
  Ar = an−qm = an(a−qm)  
       = an (aqm)−1 ∈ H  
Hence r = 0 , otherwise it will contradicts the fact that m is the least positive integer such that m is  the 
least positive integer such that am ∈ H.   Therefore  
  n =  qm  
and so m|n .  This completes the proof.  
Let G = < a > be a cyclic group generated by a.  Then a−1 will also be a generator of G.  In fact, if am ∈ G 
, m ∈ Z , then 
  am = (a−1)−m  
The question arises which of the elements of G other than a and a−1 can be generator of G.  We consider 
the following two cases :  
(i) g is an infinite cyclic group  
(ii) G is a finite group.  
We discuss these cases in the form of the following theorems :  

Theorem 9.  An infinite cyclic group has exactly two generators.  

Proof.  Let a be a generator of an infinite cyclic group G.  Then a is of infinite order and  
  G = { …, a−r , …, a−1, e, a, a,…, ar,….} 
Let at ∈ G be another generator of G, then  
  G = {…, a−2t, a−t, e, at, a2t,….} .  
Since at+1∈ G, therefore 
  at+1 = art   for some integer r.  
Since G is infinite, this implies  
        t+1 = rt 

� (r−1)t  =  1  
which holds only if t = 1± 1.   Hence there exist only two generators a and a−1 of an infinite cyclic group 
< a > .   

Theorem 10.  Let G = < a > be a cyclic group of order n.   Then am ∈ G, m ≤ n is a generator of G if and 
only if g c d (m, n) =  1.  

Proof.  Let H be a subgroup of  G generated by am(m ≤ n).   If g c d (m,n) =  1, then there exist two 
integers u, v such that  
   um + vn =  1  

� aum+vn =  a  
� aum . avn =  a  
� (am).(an)v =  a  
� (am)u = a  (Θ (an)v = e)  
� a ∈ H (Θ (am)u ∈ H)  
� G ⊆ H .  

But, by supposition, H ⊆ G.  

Hence G = H = < am > , that is, am is a generator of G.  
Conversely, let am (m ≤ n) be a generator of G .  Then  
  G = { amn :  n ∈ Z ) .  
Therefore, we can find an integer u such that  
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  amu =  a 
  �  amu−1 = e  
  �  O(a) | (mu − 1)  
  �       n | (mu−1)  
Hence, there exists an integer v such that  
  nv =  mu−1  
 �  mu − nv =  1  
 �  gcd(m, n) =  1 .  
This completes the proof of the theorem.  

Theorem 11.  Every subgroup H of a cyclic group G is cyclic.  

Proof. If H = {e}, then H is obviously cyclic.  So, let us suppose that H ≠ {e}.  If aλ ∈ H , then a−λ∈ H.  
So, we can find a smallest positive integer m such that am ∈ H.  Therefore 
  < am > ⊆ H          (i) 
Moreover,  

  aλ ∈ H  �  λ = qm,  q ∈ Z 
Therefore  
  aλ = aqm   

      = (qm)q ∈ < am >  

  � < aλ > ⊆ < am >  

  �       H  ⊆ < am >          (ii)  

It follows from (i) and (ii) that  

  H =  < am >  
And hence H is cyclic.  

Theorem 12.   Let G =  < a  > be a cyclic group of order n and H be a subgroup of G generated by am, m 
≤ n.  Then  

  O(H) =   
)n,mgcd(

n  

Proof.  We are given that  
       H = < am >  
Let gcd(m,n) =  d, then we can find an integer q such that  
      m = qd  
      �      am = aqd  
But aqd ∈ < ad >, where < ad > is a subgroup generated by ad.  Therefore 
  am ∈ < ad > 
       � H = < am > ⊆ < ad > ….        (i)  
Since gcd (m, n) =  d, we can find u, v ∈ Z such that  
  d = un +  vm  
 �  ad = aun+vm  
 
      = aun . avm 
      = avm (Θ aun = e)  
But avm ∈ < am >  = H .   Therefore 
  ad  ∈ H  
   � < ad > ⊆ H   …..  (ii)  
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From (i) and (ii), we have  
  H =  < ad >  
 �  O(H)  = O( < ad > ) 
But  

 O ( < ad > ) =  
d
n   (Θ (ad) 

d
n = e)  

Hence  

 O(H) = 
)n,mgcd(

n  ,  

which completes the proof of the theorem. 

Theorem 13.  Any two cyclic groups of the same order are isomorphic.  

Proof.   Let G and H be two cyclic groups of the same order.   Consider the mapping  
  f : G  → H  
defined by  
  f(ar) = br  
Then f is clearly an homomorphism.  Also,  
  f(ar) = f(as) �   br = bs ,  
If G and H are of infinite order, then  
  r = s 
and so  ar = as .  
If their order is finite, say n, then  
  Br = bs �  br−s =  e  

� n | (r−s)  
� nu =  r−s ,   u ∈ Z  
� ar−s = anu  

      = (an)u =  e  
� ar = as  .  

Hence f is 1−1 mapping also.   Therefore, G ~ H.  

Theorem 14.  Every isomorphic image of a cyclic group is again cyclic.  

Proof.  Let G = < a > be a cyclic group and let H be its image under isomorphism f.  The elements of G 
are given by  
  G = {…, a−r,…, a−3, a−2, a−1, a, a2, a3,…, ar,…}  
Let be an arbitrary element of H.  Since H is isomorphic image of G, there exists ar ∈ G, r =  0, 1,…. 
Such that b =  f(ar).  Since f is homomorphism, we have  
  b =  44 344 21

factorsr
)c(f)....b(f).a(f  

     = (f(a)r 
Thus H is generated by f(a) and hence is cyclic.  
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Permutations:

Let S be a non-empty set/ A permutation of a set S is a function from S to S which is both one-to-one and

onto.

A permulation group of a set S is a set of permutations of S that forms a group under function composition.

Example 5:

Let 

{ }4,3,2,1=S

Define a permutation σ by

( ) ( ) ( ) ( ) 14,43,32,21 =σ=σ=σ=σ

This 1–1 and onto mapping 

σ

can be written as

��
�

�
��
�

�
=σ

14
43

  
32
21

Define another permutation

   ( ) ( ) ( ) ( ) 44,12,23,31 =φ=φ=φ=φ

Then       ��
�

�
��
�

�
=φ

42
43

   
13
21

   
��
�

�
��
�

�
��
�

�
��
�

�
=φσ

14
43

    
32
21

     
42
43

    
13
21

          

    
34

43
    

21

21
��
�

�
��
�

�
=

The multiplication is from right to left.

We see ( )( ) ( )( ) ( ) ,1211 =φ=σφ=φσ

( )( ) ( )( ) ( ) ,2322 =φ=σφ=φσ( )( ) ( )( ) ( ) 4433 =φ=σφ=φσ

 and

( )( ) ( )( ) ( ) 3144 =φ=σφ=φσ

.

Example 6: Symetric Groups 

3S

Let 3S denote the set of all one-to-one function from {1, 2, 3} to itself. Then 3S is a group of six elements,
under composition of mappings. These six elements are

��
�

�
��
�

�
=α��

�

�
��
�

�
=α��

�

�
��
�

�
=

2

3
    

13

21
,

1

3
    

32

21
,

3

3
    

21

21
e 2
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,
1

3
    

23

21
,

3

3
    

12

21
,

2

3
    

31

21 2
��
�

�
��
�

�
=βα��

�

�
��
�

�
=αβ��

�

�
��
�

�
=β

Note that βα=��
�

�
��
�

�
≠��

�

�
��
�

�
=αβ

1
3

    
23
21

3
3

    
12
21

Hence 3S , the group of 6 elements, called symmetric group which is non-abelian. This is the smallest finite
non-abelian group, since groups of order 1, 2, 3, 5 are of prime order, hence cyclic and, therefore, they
are abelian. A group of order 4 is of two types upto isomophism, either cyclic or Klein 4-group, given in
example 2.

Cycle Notation

Let ��
�

�
��
�

�
=σ

25
65

    
61
43

    
43
21

This can be seen as:

In cycle notation σ can be written as

( )( )( ) ( )( )24613524613 ==σ

Therefore from example 6:

( ) ( ) ( ) ( ) ( ){ }132,123,23,13,12,3 eS =

It has 4 proper subgroups:

( ){ } ( ){ } ( ){ }23,,13,,12, 321 eHeHeH ===

and

( ) ( ){ }132,123,3 eA =[ ] ,2:
3

3
33 ==

A

S
AS

so 3A  is a subgroup of 3S  of index 2. It can be easily verified  that 33 SA ∆ . Infact, it can

be generalised, that every subgroup of index 2 is a normal subgroup in its parent group. 

3A

 is called alternating
group.

σ
1

3

2

6
4

σσ

5

σ

σσ
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Example.  Let  

  α =  ��
�

�
��
�

�

132
321

  and   β  = ��
�

�
��
�

�

213
321

 

be two permutations belonging to S3.  Then  

 αo β  =  ��
�

�
��
�

�

132
321

 o ��
�

�
��
�

�

213
321

 

  = ��
�

�
��
�

�

321
321

  

and  

 βoα     = ��
�

�
��
�

�

321
321

 

Thus αoβ = βoα .  Hence α and β commute with each other.  

But the composition of permutations is not always commutative.  For example, if we consider  

 α = ��
�

�
��
�

�

123
321

 ,  β = ��
�

�
��
�

�

132
321

 

then  

 βoα = ��
�

�
��
�

�

231
321

 

and 

 αoβ = ��
�

�
��
�

�

312
321

 

Hence 
 αoβ ≠ βoα .  

Definition.   Let S be a finite set, x ∈ S and α ∈ Sn .  The αααα fixes x  if α(x) =  x otherwise α moves x.  

Definition.   Let S =  {x1, x2,…, xn} be a finite set.  If σ ∈ Sn is such that  
  σ(xi) = xi+1 ,   i =  1,2,…, k−1 
  σ(xk) = x1  
and  
  σ(xj) = xj , j ≠ 1,  2,…., k;  
then σ is called a cycle of length k.   We denote this cycle by  
  σ =  (x1x2,…, xk)  
Thus, the length of a cycle is the number of objects permuted.  

For example, ��
�

�
��
�

�

acb
cba

 ∈ S3 is a cyclic permutation because  

  f(a) = b ,  f(b) =  c, f(c) =  a.  
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In this case the length of the cycle is 3.   We can denote this permutation by (a b c).  

Definition.  A cyclic permutation of length 2 is called a Transposition.  

For example, ��
�

�
��
�

�

231
321

 is a transposition.  

Definition.  Two cycles are said to be disjoint if they have no object in common.  

Definition.   Two permutations α, β ∈ Sn are called disjoint if  
  α(x) =  x  �   β(x) ≠  x  
  α(x) ≠ x   �   β(x)  = x  
for all x ∈ S.  

In other words, α and β are disjoint if every x ∈ S moved by one permutation is fixed by the other. 
Further, if α and β are disjoint permutations, then αβ =  βα.  For example, if we consider  

  α = ��
�

�
��
�

�

132
321

,  β = ��
�

�
��
�

�

321
321

 

then αβ = βα .  

Definition.   A   permutation α ∈ Sn is said to be regular if either it is the identity permutation or it has 
no fixed point and is the product of disjoint cycles of the same length.  
For example,  

  ��
�

�
��
�

�

465132
654321

 = (1  2  3) (4  5  6)  

is a regular permutation. 

Theorem 15.  Every permutation can be expressed as a product of pairwise disjoint cycles.  

Proof.  Let S = {x1, x2,…, xn}  be a finite set having n elements and f ∈ Sn.  If f is already a cycle, we are 
through.  So, let us suppose that f is not a cycle.  We shall prove this theorem by induction on n. 
If n = 1, the result is obvious.  Let the theorem be true for a permutation of a set having less than n 
elements.  Then there exists a positive integer k < n and distinct elements y1; y2,…, yk in {x1, x2,…, xn} 
such that  
  f(y1) =  y2  
  f(y2) = y3 
  ……….. 
  ……….. 

  f(yk−1) =  yk 
  f(yk) = y1  

Therefore (y1 y2…. yk) is a cycle of length k.   Next, let g be the restriction of f to  
  T  = {x1, x2,…, xn} − {y1, y2,…, yk} 

Then g is a permutation of the set T containing n−k elements.  Therefore, by induction hypothesis,  
  g = α1α2… αm ,  
where α1, α2 ,…, αm are pairwise disjoint cycles.  But  



  ADVANCED ABASTRACT ALGEBRA 28 

  f = (y1 y2 … yk) o g  
    = (y1  y2 …. yk)  α1 α2 … αm  
Hence, every permutation can be expressed as a composite of disjoint cycles.  
 
For example, let  

  f = ��
�

�
��
�

�

398152746
987654321

 

be a permutation.  Here 5 is a fixed element.  Therefore, (5) is a cycle of length 1.  Cycles of length 2 are 
(1  6) and (2  4) whereas (3   7  8  9) is a cycle of length 4.  Hence  
  f = (5)  (1  6)  (2  4)  (3    7   8    9) 

Theorem 16.  Symmetric group Sn is generated by transpositions, i.e., every permutation in Sn is a 
product of transpositions.  

Proof.  We have proved above that every permutation can be expressed as the composition of disjoint 
cycles.  Consider the m-cycle (x1, x2,…, xm).  A simple computation shows that  
 (x1 x2…. xm) =  (x1 xm) …. (x1 x3)  (x1  x2),  
that is, every cycle can be expressed as a product of transposition.  Hence every permutation α ∈ Sn can 
be expressed as a product of transpositions.  

Remark.   The above decomposition of a cycle as the product of transposition is not unique.  For 
example,  
 (1   2    3) =  (1   3)  (1    2)  =   (3   2)  (3   1)  
However, it can be proved that the number of factors in the expression is always even or always odd.  

Definition.  A permutation is called even if it is a product of an even number of transpositions.   

Similarly, a permutation is called odd if it is a product of odd number of transpositions.  
Further,  
(i) The product of two even permutations is even.  
(ii) The product of two odd permutations is even.  
(iii) The product of one odd and one even permutation is odd.  
(iv) The inverse of an even permutation is an even permutation.  

Theorem 17.  If a permutation is expressed as a product of transpositions, then the number of 
transpositions is either even in both cases or odd in both cases.  

Proof.  Let a permutation σ be expressed as the product of transpositions as given below:  
  σ = α1α2 …. αr =  β1β2 … βs  
This yields  

  e = α1α2 … αr  βs
−1 1

1
1
1r

−− ββ
−

 

     =  α1α2 … αr βsβs−1 …. β2β1 ,  
since inverse of transposition is the transposition itself.  The left side, that is, identity permutation is even 
and therefore the right hand should also be an even permutation.  Thus r+s is even which is possible if r 
and s are both even or both odd.   This completes the proof of the theorem.  
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Theorem 18.  The set of all even permutations in Sn is a normal subgroup.  Further O(An) = 
2

n|
.  

 

Proof.  Let An be the subset of Sn consisting of all even permutations.  Since  
(i) the product of two even permutations is an even permutation.  
(ii) the inverse of an even permutation is an even permutation,  
it follows that An is a subgroup of Sn.  

To prove that An is a normal subgroup of Sn, we proceed as follows :  
Let W be the group of real numbers 1 and −1 under multiplication.  Define  
  f :  Sn → W  
by  
  f(α) = 1    if α is an even permutation  
  f(α) = −1  if α is odd permutation 
Then it can be verified that f is homomorphism of Sn of W.  The kernel (null space) of f is given by  
  K =  {α ∈ Sn :  f(α) =  eW = 1 }  
      =  {α ∈ Sn :  f(α) = 1} 
      =  { α : α is even } 
      =  An .  
Thus An, being the kernel of a homomorphism is a normal subgroup of Sn .  
Moreover, by Isomorphism Theorem,  

  
n

n

A
S

 ≅ W.  

Therefore,  

  O(W)  = O ��
�

�
��
�

�

n

n

A
S

 

   =  
)A(O
)S(O

n

n  

But  O(W) =  2,  therefore,  

           2 =  
)A(O
)S(O

n

n  

or 

  O(An)   = 
2

)S(O n  = 
2

n|
  

This completes the proof of the theorem.  

Definition.  The normal subgroup of An formed by all even permutation in Sn is called the Alternating 
Group of degree n.  

We have shown above that order of An is 
2

n|
.  
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Theorem 19:
Cayley’s Theorem
Every finite group is isomorphic to a group of permutations.
Proof:
Let G be any group. We must get a group G of permutations such that it is isomorphic to G.
For any g in G, Define a function

φ g G y: →x x g x x Gg→ = ∀ ∈φ ( ) .

Claim: φ g  is a permutation on G.

φ g  onto: Let x be any element of G. So ∃ ∈g x G–1  such that

φ g g x g g x gg x x( ) ( ) ( ) .– – –1 1 1= = =

φ g  is one-one:

Let φ φg gx y( ) ( )=

so gx = gy; hence 

g gx g gy– –( ) ( )1 1=

� =x y.

Now,

Let  
G g Gg= ∈φ :n s

Claim:

G

  is a group of permutations under composition of mappings.

∀ ∈ =g h G x xg h g h, , ( ) ( ( ))φ φ φ φ= φ g h x( )

= g h x( )

= ( )gh x= ∀ ∈φ gh x x G( )

Hence φ φ φg h gh g h g= ∀ ∈, .

         ( ) ( ) ( )φ φ φ φ φg h t g h tx xd i d ib g=

= φ ( ) ( )gh t x

= =φ φ φ φg ht g htx x( ) ( ) ( )

= φ φg ht x( ( ))
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= φ φ φg h t x( ) ( )b g

= ∀ ∈φ φ φg h t x x G( ) ( )d i∴ =( ) ( )φ φ φ φ φ φg h t g h t

 (associative)

φe  is the identiy and φ φ
g g

g
− =1

1( ) –

φ φ φ φg e ge g g G= = ∀ ∈ ,  and

φ φ φ φg g g g e− = =1 1– ,  hence ( )–φ φg g
1

1= − )

Thus g g Gg= ∈φ :n s is a group of permutations.

Define ψ : 

g g→

g g Gg→ ∀ ∈φ

i.e. ψ 

( )g g= φ

If g = h, then 

φ φg h=

 is trivial, so ψ is a function.

ψ ψ ψ ψ ψ is one-to-one:

If 

φ φg h= ,

 then φ φg he e or g e he( ) ( )= =  i.e. 

g h=∴  ψ (g) = ψ (h) �  g = h, i.e. ψ is one-one.Θ g g Gg= ∈ ∴φ : ,n s
 by definition of ψ,

ψ is onto.

ψ is a homomorphism:

ψ 

( )g h gh g h= = =φ φ φ

 ψ 

( )g

 ψ 

( )h

Hence

ψ

is an isomorphism and so

G G≅ .

Remark:

g is called left regular representation of g.

Simplicity of An for 

n ≥ 5.

Definition:
A group is simple if its only normal subgroups are the identity subgroup and the group itself.

The first non abelian simple groups to be discovered were the alternating groups 

A nn , .≥ 5

 The simplicity of
A5 was known to Galois and is crucial in showing that the general equation of degree 5 is not solvable by
radicals.
Theorem 20.

The alternating group An is simple if n ≥ 5.
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For proving this we shall need a simple fact about 3 – cycles in An.

Lemma 3:

An is generated by cycles of length 3 (3 – cycles) if 

n ≥ 3.

Proof.
Every even permutation is the product of an even number if 2 – cycles. Since (a, b) (a, c) = (a, b, c) and
(a, b) (c, d) = (a, b, c) (a, d, c), an even permutation is also a product of 3 – cycles. Further, 3 – cycles are
even and thus belong to An.
(Here we have taken product from left to right).

Proof of Theorem:
Suppose it is false and there exists a proper nontrivial normal subgroup N.

Assume that a 3 – cycle 

( , , ) .a b c N∈

 If (a', b', c') is another 3 – cycle and 

∃ ∈π Sn

 such that

π =
F
HG

I
KJ

a b c

a b c' ' '
,

π π– ( , , )
' ''

' ' '
1 a b c

a b c

a b c

a b c

b c a

a b c

a b c
=
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ

=
F
HG

I
KJ=

a b c

b c a
a b c

' ''
' ' '

( ', ', ').
Θ π ∈ Sn ,  so π  may be odd, hence we replace it by even permutation 

π
π

( , ) ,
,

e f odd odd even
e f

× =F
HG

I
KJb g

where e, f differ from a', b', c' without disturbing the conjugacy relation (here we use the fact n ≥ 5.

Hence (a', b', c') 

∈ N

 and N = An by above lemma 3. Therefore, N can not contain a 3 – cycle.

Assume now that N contains a permutation 

π

 where disjoint cyclic decomposition involves a cycle of length
at least 4, say

π = − − − − − − − − − −( , , , , ) .a a a a1 2 3 4

Then N also contains

π π1
1 2 3

1
1 2 3= a a a a a a, , , ,–b g b g

= − − − −a a a a a a a a a a1 3 2 1 2 3 4 1 2 3, , ( , , , , ) ( , , )b g= − −− − − − −−( , , , , ) .a a a a2 3 1 4

Hence N contains π π–1 1

=
− − − −
− − − −

F
HG

I
KJ− − − − −

− − −
− − −

F
HG

I
KJ− − − −

a a a a

a a a a

a a a

a a a
2 3 4 5

1 2 3 4

2 3 1

3 1 4

= ( , , ):a a a2 4 1  Note that other cycles cancel here.
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This is impossible. So nontrivial elements of N must have cyclic decomposition involving cycles of length 2 or
3. Moreover, such elements can not involve just one 3 – cycle – otherwise by squaring we would contain a 3
– cycle in N.

Assume that N contains a permutation π = − − − −( , , ) ( ', ', ')a b c a b c  (with disjoint cycles). Then N contains

π π' ( ', ', ) ( ', ', ) ( , , ') ( , ', ')–= = − − − −a b c a b c a b a c c b1

Θ ( ', , ') ( , , ) ( ', ', ') ( ', ', ) ( ', , ) ( , ', ')a c b a b c a b c a b c a a b c c b− − − − =b g
Hence N contains 

π π' ( , ', , , ')= − − − −a a c b c

 which is impossible. Hence each element of N is a product
of an even number of disjoint 2 – cycles.

Θ π π ' ( , , ) ( ', ', ') ( , , ') , ', ' ( , ', , , ') .= − − − − − − − − = − − − − − − − −a b c a b c a b a c c b a a c b cb gc h

If 

π = ∈( , ) ( ', ') ,a b a b N

 then N contains 

π π' ( , , ) ( , , ) ( , ) ( ', ')–= =a c b a c b a c a b1

 for all c unaffected
by π.

Θ π ' ( , , ) ( , ) ( ', ') ( , , ) ( , ) ( ', ') .= = − − − −a b c a b a b a c b a c a bb g

Hence N contains 

π π' ( , , )= a b cΘ π π ' ( , ) ( ', ') ( , ) ( ', ') ( , ) ( , ) ( , , )= = =a b a b a c a b a b a c a b cb g

It follows that if 

( ) ,1 ≠ ∈π N

 then

π = − − − −( , ) ( , ) ( , ) ( , ) ,a b a b a b a b1 1 2 2 3 3 4 4The number of 2 – cycles being at least 4.

But then N will also contain

π π= ( , ) ( , ) ( , ) ( , )a b a b a b a b3 2 2 4 2 1 3 2

= − − − −( , ) ( , ) ( , ) ( , )a a a b b b a b1 2 3 1 2 3 4 4  and hence π π' ( , , ) ( , , )= a a b a b b1 3 2 2 3 1  which is final
contradiction.

Hence An is simple for n ≥ 5.

As promissed earliar, to give an example that converse of Lagranges theorem is false:

Example 7:
The elements of A4, the alternating group of degree 4, are

(1),
(12) (34), (13) (24), (14) (23),

(123), (123)2,
(124), (124)2,

(134), (134)2,
(234), (234)2

Which are 12 in number.
A4 has 3 cyclic sub-groups of order 2.

H H1 21 12 34 1 12 34= =( ), ( ) ( ) , ( ), ( ) ( )l q l q



ADVANCED ABSTRACT ALGEBRA34

H3 1 14 23= ( ), ( ) ( ) .l q

A4 has 4 cyclic subgroups of order 3.

T1 1 123 132= ( ), ( ),( )l qT2 1 124 142= ( ), ( ), ( )l qT3 1 134 143= ( ), ( ), ( )l qT4 1 234 243= ( ), ( ), ( )l q

The Klein’s four – group V4:

V4 1 12 34 13 24 14 23= ( ), ( ) ( ), ( ) ( ), ( ) ( )l q

is a normal subgroup of A4.

Each 

N V ii ∆ 4 1 3, .≤ ≤

But Ni is not normal subgroup of A4 i.e. 

H Ai ∆ 4 .

Hence Normality is not a transitive relation i.e.

A B B C A C∆ ∆ ∆, /�  in genral.

Converse of Lagrange’s Theorem:

A4 12 6 12= . ,

 but A4 does not contain a subgroup of order 6.

Suppose ∃ a  subgroup H in A4 of order 6. Then [A4 : H] = 2 � H A∆ 4

So we consider a quotient group A
H

4 .

(123), (124), (134), (234), (132), (142), (143), (243) are elements of A4.

Θ A
H

H H4 2
2 123= ∴ =, ( ) ,b g  the identity of 

A
H

4

� = � =( ) ( )123 1322 H H H H

� ∈( )132 H

Similarly, we can show

(123), (124), (142), (134), (143), (234), (243)
are elements of H. Therefore H contains 8 elements, which is absurd.

∴ A4

 has no subgroup of order 6, although 6 4A .

Examples:
1. If there exists two relatively prime positive integers m and n such that ambm = bmam and anbn = bnan , v a,

b ∈a group g, then g is abelion.
Solution:
To show ab = ba va, 

b g∈

. As m, n are relatively prime positive integers, therefore, mx + ny = 1for some
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integers x and y. Note that x and y both cannot be +ve integers because if 1 in R.H.S. Let x be a +ve integer
and y be -ve integer. Hence 

mx ny mx ny+ = � − = ∈1 1,  x, y N, the set of natural numbers.

ab a bmx ny mx ny= − −

= a a
mx ny−F
HG

I
KJ b  b

-ny mx

= a
mx n n

 a  b  b-y -y
mxd i d i{ }

a a
mx

y n n
  a  b       a  b   G-y

mx
-y -y−RST UVW ∈d i d i d iΘ ,

Claim: g g gm n n
1 2 2= gm

1  v g g G1 2 ∈ v 

m,  n N.∈

Consider 

g g g g g g g mx timesm n mx m n n m n
1 2 1 2 2 1 2d i d i= − − − − − g1

m

Caution:
We can not write mx times, if x N∈ , x is -ve integer. Here mx is a+ve integer as

∴ = − − − −g g g g g g g g g gm n mx m n m n m n m n
1 2 1 2 1 2 1 2 1 2d i d id i d i

     = 

g g g gm n m mx n
1 2 1

1

2d i −
     = g g g g g gm n m mx n m n

1 2 1 2 1

1

2d i d i−

    = g g g g g Gm x m m n m
1 3 1 2 1d i d i− = ∈, where g3

    = g g g b b ax m m m m m m
3 1 1d i − = amΘ v a, b G∈ g

 

g g g g gm n mx x m n m mx

1 2 3 2 1d i d i d i= = ∈ where mx N

(1)

Also g g g gm n ny m n ny

1 2 1 2

1d i d i{ }− −

=

  = g gn m ny

2 1

1d i{ }
−

 from above

as ny N∈ .

∴ =
− −

g g g gm n ny n m ny

1 2 2 1d i d i (2)

Hence from (1) and (2) we get

g g g gm n mx ny n m mx ny

1 2 2 1d i d i− −
=

�

g1
mg g gn n m

2 2 1=

 v g g G1 2, ,∈  v 

m,  n N.∈

(3)
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Therefore,

    ab = 

a b a bmx y n y n x m− −d i d i d i 

= a b b Gx m y n n x md i d i d i d i d i− ∈ a   a  b-y x -yΘ ,

= b a b Gy n x m x m n− ∈d i d i d i d i d i a   b  a-y x -yΘ , from (3)

= b b a b b ay n x m x m n m m m− =d i d i d i d i d a   a-y mΘ v a,  b G∈ g
= 

bmx ny−  amx-ny

= b a

is ab = ba  and a ,  b g .∈

(2) (Groups of units modulo n)

Let n be a positive integer. The set 

Zn
x

 of units modulo n is an abelian group under multiplication of congruence

classes. The group Zn
x  is finite and Z o Z nn

x
n
x= =d i φ( ) , the Eulers phi-function.

Special Case: Z x
8

Multiplication table in Z x
8

[1] [3] [5] [7]

[1] [1] [3] [5] [7]
[3] [3] [1] [7] [5]

[5] [5] [7] [1] [3]
[7] [7] [5] [3] [1]

Zn
x  = {[1], [3], [5], [7]} : Set of units (invertible elements) modulo 8, [3] [3] = [9] ≡  [1] mod 8

[5] [5] = [25] 

≡

 [1], [7] [7] = [49] 

≡

 [1].

φ(8) = 4.

(3)

Z x
15

 = {[1], [2], [4], [7], [8], [11], [13], [14]}

Set of units modulo 15.

x15 [1] [2] [4] [7] [8] [11] [13] [14]

[1] [1] [2] [4] [7] [8] [11] [13] [14]

[2] [2] [4] [8] [14] [1] [7] [11] [13]

[4] [4] [8] [1] [13] [2] [14] [7] [11]

[7] [7] [14] [13] [4] [11] [2] [1] [8]

[8] [8] [1] [2] [11] [4] [13] [14] [7]

[11] [11] [7] [14] [2] [13] [1] [8] [4]

[13] [13] [11] [7] [1] [14] [8] [4] [2]

[14] [14] [13] [11] [8] [7] [4] [2] [1]
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O(7) = 4, as 71 = 7, 72 = 4, 73 = 28 ≡ 13, 74 = 91

≡

1

O(1) = 1, O(2) = 4, O(4) = 2, O(8) = 4, O(13) = 4, O(14) = 2.
Note: To get calculation easier:

We do not calculate 13, 132, 133, 134

We calculate as follows:

13

≡

–2 (mod 15), 132

≡

(–2)2 = 4,
133 = 132×13

≡

4(–2)

≡

–8

134

≡

–8×–2

≡

1 (mod 15).

Q.1. Show that the set of all 2×2 matrices over reals of the form 

m b

0 1
L
NM

O
QP

 with 

m ≠ 0

forms a group under

matrix multiplication. Find all elements that commute with element 
2 0

0 1
L
NM

O
QP.

Q.2. Let S = R–{–1}. Define * on S by a * b = a+b+ab. Show that (S, *) is a group.

Q.3. Find the inverse of 

2 6

3 5
L
NM

O
QP

 in GL (2, Z11).

Q.4. For any elements a and b from a group and any integer n, prove that (a–1ba)n = a–1bna.

Q.5. Show that the set {[5], [15], [25], [35]} is a group under multiplication modulo 40. What is the identity
element of the group?

Q.6. Construct Cayley table Z x
12 .

Q.7. For any pair of real numbers a ≠ 0  and b, define a function fa, b as follows:

f x ax ba b, ( ) = +  v 

x R∈ 1

1. Prove that fa, b is a permutation of R

i e Sa n. . , f  b ∈c h
2. Prove that 

f o f fa b c d ac ad b, , ,= +

3. Prove that f fa b a
b

a, ,
−

−=1
1

4. Show that g f a b R a oa b= ∈ ≠, , ,n s is a group (a subgroup of Sn).

Q.8. For each integer n, define fn by 

f x x nn ( ) = +

           v 

x R∈

1. Prove that for each integer n, fn is a permutation of R. 

i e f Sn n. . ∈b g

2. Prove that 

f o f fn m n m= +

 and f fn n
−

−=1 .

3. Prove that g f n Zn= ∈,l qis subgroup of Sn.

4. Prove that g is cyclic. Find a generator of g.
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Q.9. Show that the set of all matrices of the form 

a o

o o
RST

UVW

 where 

a R o∈ − ( )

 is an abelian group under

matrix multiplication.

Q. 10. Show that G f f f f= 1 2 3 4, , ,l q where f1(x) = x, f2(x) = –x, f3(x)=

1
x

, f4(x) = − 1
x

v x R∈ , is a group under composition of functions. Is this abelian?

(Construct Cayley table)

Example 4.

In a group G, 

ab a bi i ibg=

 for three consecutive integers i for all a b gG, .∈  Show that g is an abelian group.

Solution:

Let

ab a bi i ibg=

(1)

ab a b
i i ibg+ + +=1 1 1 (2) i Z∈

ab a b
i i ibg+ + +=2 2 2

(3)

ab ab abi ibg bgbg+ =1

= a b abi ibg
= 

a bi i+ +1 1from (2)

∴ = + +a b ab a bi i i i1 1

� =b a abi i (4)

Similarly ab a bi i ibg+ + +=2 2 2

� =+ +b a abi i1 1

� = +b b a abi id i 1

� = +b ab abi id i 1 , from (4)

� =ba ab v a b G, .∈

Example 5.
Let G be a group and 

x G∈

 has the order mn, m and n are relatively prime. Show that x can be expressed
uniquely as the product of two commutative elements b and a of g of orders m and n respectively.
Solution:

m n mt ns t s Z, , , .b g= � + = ∈1 1

x = x1 = xmt+ns

= xmt.xns
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Put a x b xmt ns= =,

Then x ab ba x xmt ns ns mt= = = =+ +d i

o x mn xm( ) = �

 must have order n.

Thus xm td i has order n, since (m, n) = 1 (if o(a) = n, o(ar) = m and (n, r) = d, then m = n/d)

Similarly xns has order m. Hence
o(a) = n, o(b) = m

Uniqueness:
Let x = a1b1 = b1a1,

o(a1) = n, o(b1) = m.
Then ab = a1b1

Now (ab)mt = (a1b1)
mt

� =a b a bmt mt mt mt
1 1

(1) Θa b b a ab ba1 1 1 1= =,b g
but o(b1) = o(b) = m

∴ = =b b emt mt
1

Hence (1) � =a amt mt
1

� = + =− −a a mt nsns ns1
1
1 1Θb g

� =− −a a a ans ns. 1 1

� = −a a a ans ns
1 1. .

� = =−a a a e o a nns
1 1. ( )Θb g

= −a a ns
1 1.

� = =−aa a a a aa
ns ns ns

1 1 1 1. .

� = =ae a o a n1 1Θ ( )b g

� =a a1

Now ab = a1b1 and a = a1 �  b = b1

∴ = =a a b b1 1,

Example 5.
Find the generators of the following finite cyclic groups:

1. G a o G= =, ( ) 13

2. G a o G= =, ( ) 12
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Solutions.
1. Generators of G are a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, because 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

are relatively prime to 13. Number of genertors = φ(n) = φ(13) = 12 Θ φ( ) .p p= − 1b g
2. Generators of G are a, a5, a7, a11, as 1, 5, 7, 11 are relatively prime to 12.

≠ = = × =generators φ φ φ φ( ) ( ) ( ) ( )12 4 3 4 3Θ ( , ) . .4 3 1 2 2 4= = × =b g

Example 6.

If 

a ba bn− =1

, then prove that a b a bm s m snm− = .  Hence deduce that if 

o a a ba b( ) , ,= =−5 1 2

 then o b( ) .= 31

Solution.

a ba b a a ba a a b an n− − − −= � =1 1 1 1( )

= = = � =− −a ba b b a ba bn n n n2 2 3 32 3di

� =−a b a bm s m s nmdi� =−a b a bs s n5 5
5di� = =b b o as s ndi b g5

5Θ ( )
Given a ba b n− = � =1 2 2

� = � = =b b b b if ss sdi2 32
5

1( )

� = � =b o b31 1 31bg
Q.11. Give an example for each of the following:

(i) Finite non-abelion group.
(ii) Infinite non-abelian group.

(iii) Abelion group but not cyclic.
(iv) Finite non-abelian group which has only one normal subgroup.

(v) Finite non-abelian group which has all its subgroup normal.
(vi) Finite cyclic group.

(vii)Infinite cyclic group.
Example 7

Let 

a b R R Ra b, , :,∈ →τ

 defined by 

τ a b x ax b, ( ) ,= +

 v 

x R∈ .

Let G aab= ≠τ 0m r
i. Show that g is a group under composition of mapping.

ii. Let 

H G a is rationala b= ∈τ ,m r

. Show that 

H G∆ .
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iii. N Gb= ∈τ1,n s, show that 

N G∆ .

Solution.

Let τ τa c G, ,, . b  d ∈

τ τ τ τ τa a c ao x x cx d, , , , b c, d  b  d  bc hbg bgc h b g= = +

= a cx d b( )+ +

= 

acx ad b+ + ,

 v x R∈

= 

τ ac x, ( ) ad+b

∴ = ∈ ≠ ac o in Ra, b c, d  ad+bτ τ τo G  ac, Θb g

τ τ τ τ τ τa ac f l ac f ac l ab bo o o, , , ( ) ,( ) b c, d f, l  ad+bc h = = + +

= τ a cf a cl d b( ), ( )+ +

= τ τa b cf cl do, , +

= τ τ τa b c d f lo o, , ,d i v 

a c f R, , ∈ − 10

b d l R, , ∈

For identity element:
τ a b x x, ( ) =

V 
x R∈

= 

ax b+�  a = 1, b = 0

∴ ∈ = = t 1, 0 a, b 1, 0  o+b  bτ τ τ τ τG such tha o a a1, , V τ a b G, .∈

Hence 

τ

1,0 = e, the identity of G.

For inverse element:

τ τ τ τ τa b c do, , , ,= � =1 0 1 ac, ad+b 0

�  ac= 1, ad +b = 0

∴ ∈ c =  d = -a +a R)1
a

-1, b (Θ

Hence τ τc a b, , d  -a-1= −1 is the right inverse of τ a, b

∴ ≠ G = a,bτ |a 0m r is a group.

(ii) H = 

τa b G a isrational G, |∈ ⊆n s

From above H is a subgroup of G.

To show 

τ τ τc d a b c do o H, , ,
− ∈1

 v τ c d G, ∈  v 

τ a b H, ∈
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L.H.S.= 

τ τca d
o , , cb+d c  -c-1 -1

= τ τ
( ) , ) ,ca d cb d a H

 c  -(ca) (c  -ad+cb+d-1 -1 + +
= ∈

∴  H G.∆

(iii)

N Gb= ∈τ 1, ∆

 from (i) and (ii).

Example 8.

Let G be a group in which, for some integer n>1, (ab)n = anbn for all a ,  b G∈ . Show that

i.

G x x Gn n( ) = ∈{ }

 is a normal subgroup of G.

ii.

g x x gn n( ) = ∈−1{ }

 is a normal subgroup of G.

iii.

a b b an n n n( )− −=1 1

v a G,  b .∈

iv.

aba b e
n n− − −

=1 1 1d i ( )

  v a,  b G.∈

Solution:
(i) First we show G(n) is a subgroup of G.

Let 

a then a, , , , b G = x  b = y  x, y G.(n) n n∈ ∈Now ab x y x y xyn n n n n− − − −= = = ∈1 1 1 1( ) ( ) ( ) ,   y  x g-1Θd i
� ∈ ∈ ab    xy-1 -1G Gn( ) , Θd i∴  G(n)

 is a subgroup of g.

To show G n( ) ∆ G.

i.e. To show a z a G n− ∈1 ( )  v a G∈ ,  v 

z G n∈ ( )

.

z G n∈ � ∈( ) ,  z = x  x G.n

aza ax a axan n− − −= =1 1 1( )    n is an integer >1Θb g

� ∈ ∈ aza    axa-1 -1G Gn( ) Θd i�  G  G.(n) ∆

(ii) To show G(n-1) is a subgroup of G.

Let a then a, , , , b G = x  b = y  x, y G.(n-1) n-1 n-1∈ ∈

ab x y x y y x G x Gn n n n n n− − − − − − − − − −= = = ∈ ∈1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( )    y -1Θd i

�  G (n-1)

 is a subgroup of G.

Θ  abb ge n n na b=   v a b G, ,∈  for some integer n>1.
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abab------ab = anbn

�  a(ba) (ba) - - - - - (ba)b = anbn

� =−
 a babgn n nb a b

1

� =− − − babg jn n na b1 1 1

To show G n( )−1 ∆ G.

i.e. To show aza G n− −∈1 1( ) ,   v a G∈ ,   v z G n∈ −( )1

Let z x n= ∈−( ) ,1  x G

Now aza ax a axa G Gn n n− − − − − −= = ∈ ∈1 1 1 1 1 1d i d i( )    axa -1Θ

�  G  G.(n-1) ∆

(iii) To show a b b an n n n− −=1 1   v  a b G, ∈

b a ba b a b a
n n n n n− − −=1 1 1 1d i d i d i

(1)

Also 

b a ba b a ba
n n n− − − −=1 1 1 1( )d i d i d i= − −b a b an n1

(2)

a b a a b a
n n n n− −=1 1d i  from (1) and (2)� =

−
 a -1d in n n nb a b

1

� =− − bna a bn n n1 1

(iv) To show

aba b e
n n− − −

=1 1 1d i ( )
  v a,  b G∈

L.H.S. = 

a ba b
n n

( − − −1 1 1d i{ }

= ba b a a b
n n

n
n n n− − − − − − −=1 1 1 1 1 1 1d i{ } bge j   ba  from aboveΘ

= ba b an n n− − − −( )1 1 1d i
= 

b a b an n
n− − − −( )1 1 1d io t

= 

b a b an n n n− − − −( )1 1 1d i

= 

b a b an n n n− − − −( ) ( )1 1 1
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= b a a b b b an n n n n n n− − − − −=( ) ( )1 1 1 1  from (iii)  an-1Θd v 

a,  b G∈ g

= 

b b en n− = .

Example 9.

Let S be a semi-group. If for all 

x y y yx, . y S, x2∈ = = 2

 Prove that S is an abelian group.

Solution:

x y y yx2 2= =   v xy S∈ . (1)

� = = x2 x x xx2

� = x3 x   v x S∈ . (2)

Also 

y x x xy2 2= =

  v x,  y S.∈ (3)

Now 

xy y x yx= 2 2d id i

  from (3) and (1)

= 

y yx yx xbgbg

= 

y yx x y yx xbg bge j2 2=

= y x yx( )2d i   from (3)

= 
yx yxbgbg2

= yxbg3

= yx from (2)

∴  xy = yx

  v 

x,  y S.∈

Q.12.

1. Show that 

Z Ux
8 8=b g

 is not cyclic group.

2. Show that 

Z Ux
9 9=b g

 is a cyclic group.

Find its all generators.
Q.13. If in the group G, a5=e, aba-1=b2

for some 

a, . b G, find o b∈ bg

Q.14. If G has no nontrivial subgroups, show that G must be finite of prime order.
Q.15. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.

Q.16. If N is a subgroup of G and H is any subgroup of G, prove that NH is a subgroup of G.
Q.17. If N and M are normal subgroups of G, prove that NM is also a normal subgroup of G.

Q.18. In Q17, if 

N M e∩ =bg,

 show that xy = yx  v x N∈ ,  v y M∈ .

Q.19. If H is a normal cyclic subgroups of a group G, show that every subgroup of H is normal in G.
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Q.20. Show that Normality is not a transitive relation in a group G i e. . . H  K  G  H  G∆ ∆ ∆/�b g
Q.21. Show that Sn is generated by (12) and (1, 2, 3, ----------, n).

Q.22. Find the product of
(1) (12) (123) (12) (23)

(2) (125) (45) (1, 6, 7, 8, 9) (15)
Q.23. Which of the following are even or, odd permutations:

(1) (123) (13),
(2) (12345) (145) (15)

(3) (12) (13) (15) (25).

Q.24. Prove that the cyclic group Z4 and the Klein four-group 

Z Z2 2×

 are not isomorphic.

Q.25. Show that the group 

f R R f x ax b: ( ) ,→ = + ≠ a 0l q

 is isomorphic to the group if all 

2 2×

 matric

over R of the form 

a b

0 1
L
NM

O
QP ≠,  a 0.

Example 10.
Let H be a subgroup of G and N a normal subgroup of G. Show that H N∩  is a normal subgroup of H.

Solution:
Let x be any element of 

H N∩

 and h be any element of H.

To show hxh H N− ∈ ∩1 .x H N x H and x∈ ∩ � ∈ ∈ N

x H H N∈ ∈ � ∈ ∈ ⊆ � ∈, , h H hxh  N  G, h H G hxh-1 -1∆

∴ ∈ ∩ hxh -1 H N   v 

x H N∈ ∩

  v 

h H∈ .� ∩ H N  H.∆

Example 11.
Let H be a subgroup of a group G, let

N H g G gHg Hbgn s= ∈ =−1

Prove that
(i) N(H) is a subgroup of G

(ii) H∆ N Hbg
(iii) N(H) is the largest subgroups of G in which H is normal.

(iv)

H G∆ G  N H⇔ =bg .

Solution:

(i) Let g N H1, . g2 ∈ bg
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To show 

g N H1 , . g2
-1 ∈ bgg N H g Hg H N H g Hg H H g Hg1 1 1

1
2 2

1
2

1
2∈ � = ∈ = = � =− − −bg , ( ) . g2

Now g g H g g g g H g g g g Hg g1 2 1 2
1 1

1 2
1

2 1
1

1 2
1

2 1
1b gd i d i d i d i− − − − − −= =

= g Hg H g g N H1 1
1

1 2
1− −= � ∈ ( )

Hence N(H) is a subgroup of G.

(ii) Let g N H∈ ∈bg,  x H.

To show gxg H− ∈1 .

g N H gHg H gHg H gxg H  ∈ � = � ⊆ � ∈ ∈− − −bg b g1 1 1 Θ  x H

� H∆ N Hbg
(iii) Let K be any subgroup G and H be a normal of k, we must show that 

K N H⊂ bg

(1)  

H K k x k H k k G x G x H From∆ � ∈ ∀ ∈ ⊆ ∀ ∈ ∀ ∈−1 , , .

(2) H∆ K , Hence k x k H k H G k N H− ∈ ∀ ∈ ⊆ � ∈1 ( ) � ⊆K N H( )

(iv) From (ii) and (iii) ⇒ N(H) = G. Also N(H) = G and  N(H) = { / }g G gHg H H G∈ = �
−1 ∆

Example 12

Given any group of G. Let ∃U  be the smallest subgroup of G which contains U. Such group 
∃U

 is called the
subgroup generated by U.

(i) If 

gug U g G− ∈ ∀ ∈1

, ∀ ∈u U , show that 

∃U G∆

.

(ii) Let U xyx y x y G− − ∈1 1 ,o t, In this case 

∃U

 is usually written as 

G'

, called the commutator subgroup of

G. Show that 

G G'∆

.

(iii) Prove that 

G
G'

 is abelian.

(iv) If G N  is abelian, prove that G N'⊂ .

(v) Prove that if H is a subgroup of G and 

G H'⊂

, then 

H G∆

.

First we give the following definition.

Definition :

Let G be a group and let 

a Gi ∈

 for 

i I∈

, the indexing set. The smallest subgroup of G containing 

a i Ii ∈m r

is the subgroup generated by 

a i Ii ∈m r

, If this subgroup is all of G, then 

a i Ii ∈m r

 generates G and the 

ai

 are

generators of G. If there is a finite set a i Ii ∈m r that generates G, then G is finitely generated.
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Remark :

If G is abelian, then 

( ) ( ) ( )a a a1
3

2
5

1
7−

 could be simplified to ( ) ( )a a1
4

2
5 , but this may not be true in the non

abelian group.
Solution :

(i) Given gug U g G− ∈ ∀ ∈1 , ∀ ∈u U . To show ∃U G∆

Θ

∃U

 is the subgroup generated by U.

Θ∃U

 = {all finite products of integral powers of 

ai

 in U}

Let x U∈ ∃ , 

x u u
n n

u
n

k

k=
1 2

1 2 ........

, u Ui ∈ ,  n Zi ∈ .

Θgxg gu u
n n

u
n

k

k− =1
1 2

1 2 ........

g g gu
n− −=1 1

1

1 g gu
n

2

2 1− g g gu
n

k

k....... −1

= ( )gu g n
1

1 1− ( )gu g n
2

1 2− ................. ( )gu gk
nk−1 ∈ ∃U

because 

( )gu g U i Ii
ni− ∈ ∀ ∈1

Hence gxg U− ∈1 ∃

∀ ∈x U∃,

∀ ∈g G

⇒ ∃U G∆  (i.e. G G'∆ )

(ii) U xy x y Gx y= ∈− −1 1 ,{ }
∃U G U= ′ = � 	 = {all finite products of integral powers of element in U}

The Commutator subgroup of G

From (1) ∃U G G= ′∆ .

(iii) G
G ′  = xG x G'| ∈l q, To show 

G
G ′

 abelian,

We must show xG yG′ ′  = 

yG xG′ ′

i.e.   

xyG ′

 = 

yxG ′

L.H.S.

=

xyG′

 = 

xy y x yx G( )− − ′1 1

 (Θ

y x yx− −1 1

 is a commutator and so y x yxG G− − ′ = ′1 1 )

= ( )xyy x yxG yxG− − ′ = ′1 1

= yG xG′ ′  = R.H.S.

(iv) To show 

G
N

 abelian ⇔ ′ ⊂G N

⇒? x Ny N y Nx N− − − −=1 1 1 1
� =− − − −x y N y x N1 1 1 1

� = � ∈− − − −xyx y N N xyx y N1 1 1 1

i.e. every commutator to a group N, hence all finite products of integral powers of commutators are in
N.  ∴ ′ ⊂G N .
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Conversely, if 

′ ⊆G N

, then

xNyN xyN= =

xy y x yx N( )− −1 1

 (Θ

′ ⊆G N

)

= ( )xyy x yxN eyxN− − =1 1

= yxN yNxN=

(d) Given 

H G<

,

′ ⊂G H ,

 to show H G∆  i.e. To show 

ghg H− ∈1

∀ ∈g G , ∀ ∈h H

ghg −1

 = ghg h h− −1 1  = ( )ghg h h H− − ∈1 1  (Θ

′ ⊂G H

)

∴

H G∆

Example 13
Final order of

1. (15 27) (284) in 

S8

2. (153) (284697) in S9

Solution
Both are product of disjoint cycles. Hence order of each would be l.c.m. of the lengths if its cycles. (i) 12 in
S8  (ii) 6 in S9

Example 14
Write (12345) as a product of transpositions. It can be written in more than one way.

(12345) = (54) (53) (52) (51)
= (15) (14) (13) (12)

= (54) (52) (51) (14) (32) (41)

Q. 26. Let α = ( ........ )a a a as1 2 3  be a cycle and let π be a permutation in 

Sn

. Then π

α

 

π −1

is the cycle

(π

( )a1

π

( )a2

)..........π

( )as

.

Example 15

Compute aba −1 , Where

(i) a = (135) (12), b = (1579)

(ii) a = (579), b = (123)
Solution
(i) a = (135) (12) = (1235)

a (1579) a −1 = a a a a( ) ( ) ( ) ( )1 5 7 9b g
= (2179)

(ii)

a a( )123 1−

= a a a( ) ( ) ( )1 2 3b g, Where (579)

= (123)



UNIT-IV   81

Ideals and Quotient Rings  

Definition.  Let S be a subring of a ring R.   If  
  x ∈ S,  a ∈ R  �   ax ∈ S ,  
then S is called left ideal of R.  
If  x ∈ S , a ∈ R     xa ∈ S ,   
then S is called right ideal of R.   
If x ∈ S, a ∈ R �  xa ∈ S and ax ∈ S then S is called two sided ideal or simply ideal of R.    
*  If R is a commutative ring then all the three notions are same since in that case ax =      xa ∈ S .  
** Every ring has two trivial ideals :  
(i) R itself and is called unit ideal.  
(ii) Zero ideal [0] consisting of zero element only.  
Any other ideal except these two trivial ideals is called proper ideal.  

Theorem.    The intersection of any two left ideals of a ring is again a left ideal of the ring.  
Proof.  Let S1 and S2 be two ideals of R.  S1 and S2 being subring of R, S1 ∩ S2 is also a subring of R.  
Again let x ∈ S1 ∩ S2.  
  �  x ∈ S1, x∈ S2 .  
Let a ∈ R.    Then since S1 and S2 are left ideals,   
  a ∈ R, x ∈ S1 �  ax ∈ S1  
  a ∈ R , x ∈ S2 �  ax ∈  S2  

� ax ∈ S1 ∩ S2  
� S1 ∩ S2 is a left ideal.  

Theorem :-  Let K(T)  be the kernel of a ring homomorphism T : R → S .   Then K(T) is a two sided 
ideal of R.  
Proof.  Let a, b ∈ K (T).    Then  
  T(a) = T(b) =  0 .  
Therefore,  
  T(a+b) =  T(a) +  T(b) = 0 + 0 = 0   (by ring   
  T(ab)   =   T(a).T(b) =  0.0 = 0          homomorphism) 
which implies that a+b, ab ∈ K(T).  Hence K(T) is a subring of R.  

Now let a ∈ K(T) and r ∈ R .  It suffices to prove that ar, ra ∈ K(T)  
  T(ar) =  T(a).T(r) 
           = 0 . T(r)     (Θ a ∈ K(T) �  T(a) = 0) 
           = 0  
This implies that ar ∈ K(T).    Similarly,  
  T(ra) =  T(r) T(a) =  T(r).0 = 0   
         � ra ∈ K(T) .  
Hence K(T) is an ideal of R.  

Theorem.   A field has no proper ideal.  
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Proof.  Let us suppose that S is a proper ideal of a field F.   Then  
  S ⊆ F     (i)  

If x  ∈ S, then xx−1 ∈ S .  But xx−1 = 1.   Therefore, 1 ∈ S .   As S is an ideal, y ∈ F � y.1 ∈ S.   Thus y 
∈ F �  y ∈ S .  That is F ⊆ S .  Therefore, F =  S.  This contradicts our supposition.  Hence  F has no 
proper ideal.  

Theorem.  If a commutative ring R with unity has no proper ideal, then R is a field.  

Proof.  It suffices to prove that every non-zero element of R is invertible.  Let a be a non-zero element of 
R.  Consider the set  
  S = {xa | x ∈ R}. 
We claim that S is an ideal of R.   To show it, let p, q ∈ S.  Then  
      p = x1 a ,   q = x2a |  x1, x2 ∈ R  
  p+q = x1a + x2a = (x1+x2) a ∈ S .    (Θ x1+x2 ∈ R)  
Similarly  
  −p = −x1a = (−x1)a   ∈ S .  
Therefore, S is an additive subgroup of R.  
Moreover, if r ∈ R , then  
  rp = r(x1a) =  (rx1)a ∈ S  
Since R is commutative, rp ∈ S � pr ∈ S.  
Hence S is an ideal of R.   But by supposition  
  S = {0}  or S =  R.   Since  
   1 ∈ R �  a ∈ S     (Θ 1.a ∈ S),  
S is not equal to {0}.  Hence S  =  R.  By definition of S, 1 =  xa, x ∈ R.   Therefore, every non-zero 
element of R is invertible and hence R is a field.  

Let A be an ideal of a ring R.   Then R is an abelian group and A is an additive subgroup of R.  But  
every subgroup of an abelian group is normal, therefore A is a normal subgroup of R.  So we can define 
the set  
  R/A = {r + A | r ∈ R }  
We shall prove that R/A is a ring.  This ring will be called quotient ring.  

Theorem.  Let A be an ideal of R.   Then the set  
  R/A = {r+A | r ∈ R}  
is a ring. 

Proof.  We define addition and multiplication compositions as follows :  
  (r+A) + (s+A) = (r+s) + A 
       for all r , s ∈ R . 
  (r+A) (s+A)    = rs+A  
We show first that above defined binary operations are well defined.  Let  
  r+A =  r1+A  
     r1, s1 ∈ R      
  s+A =  s1+A  
which implies r−r1 ∈ A ,  s−s1 ∈ A.   Then  
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  (r+s) − (r1+s1) =  (r−r1) + (s−s1) ∈ A  
� (r+s) + A = (r1+s1) + A  

which proves that addition is well defined.  

Moreover, 
  rs − r1s1 =  rs−r1s + r1s − r1s1  
     = (r−r1)s + r1(s−s1) ∈ A  
Therefore, rs + A = r1s1 + A and hence multiplication composition is also well defined.  We now prove 
that these compositions satisfy all the properties of a ring.  

(i) Associativity of addition :-   If r+A, s+A, t+A ∈ R/A, then  
 [(r+A) + (s+A)] + (t+A) = [(r+s)+A] + (t+A)  
       = [(r+s)+t]+A  
       = [r+(s+t)]+A  
       = (r+A) + [(s+t)+A] 
       = (r+A) + [(s+A) + (t+A)] .  

(ii) Existence of the identity of addition :-  If r+A ∈ R/A, then  
 (0+A) + (r+A) =  r+A  

and  
  (r+A) + (0+A) = r+A  
Therefore  0+A = A is identity element of addition.  

(iii) Existence of additive inverse :-  If r+A ∈ R/A, then  
  (r+A) + (−r+A) = [r+(−r)] + A  
     = 0+A =  A  
and  
  (−r+A) + (r+A) = [(−r) + r] + A 
     = 0+A = A  
which shows that −r+A is the inverse of r+A.  

(iv) Commutativity of addition :-  If r+A, s+A ∈ R/A, then   
  (r+A) + (s+A) =  (r+s) + A  
    = (s+r) + A  
    = (s+A) + (r+A)  

(v) Associativity of multiplication :-  If r+A, s+A, t+A ∈ R/A, then  
  [(r+A) (s+A)] (t+A)    =  (rs+A) (t+A)  
     = (rs)t + A  
     = r(st) + A  
     = (r+A) (st+A)  
     = (r+A) [(s+A)(t+A)] . 

(vi) Distributivity of multiplication over addition :-  If r+A, s+A, t+A ∈ R/A, then  
  (r+A) [(s+A) + (t+A)] =  (r+A) [(s+t)+A]  
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     = r(s+t) + A = (rs + rt) + A 
     = (rs+A) + (rt+A)  
     = (r+A) (s+A) + (r+A)(t+A)  . 
Similarly,  
  [(r+A) + (s+A)] (t+A) =  (r+A)(t+A) + (s+A) (t+A) . 
Hence R/A is a ring.  
*   If R is commutative, then R/A will be abelian since if  
  r+A, s+A ∈ R/A , then by the commutativity of R, we have 
  (r+A) (s+A)  = rs+A  
      = sr+A  
    = (s+A) (r+A)  
In addition if R has unit element then R/A has also identity 1+A.  

Theorem.  Every ideal A of a ring R is a kernel of some ring homomorphism. 

Proof.  Let φ : R → R/A be a mapping defined by φ(r) =  r+A.   This mapping is known as natural 
mapping.  If r, s ∈ R, then  
  φ(r+s)  = (r+s) +A  
   = (r+A) + (s+A)  
   = φ(r) +  φ(s)  
and  
  φ(rs)  = rs+A  
   = (r+A) (s+A)  
   = φ(r) φ(s)  
Therefore φ is a homomorphism.  Kernel of this homomorphism, is given by  
  K(φ)  =  {r | r ∈ R,  φ(r) = A}  
   = {r | r∈ R, r+A = A}  
   = {r | r ∈ R}  
   = A  
which proves the required result.  

Theorem.  Let φ : R → S  be a ring homomorphism of R onto S.  Then  
  R/K(φ) ~ S .  

Proof.   We know that K(φ) is an ideal of R.  Therefore, R/K(φ) is defined.  Elements of this set are 
cosets of K(φ in R.  Let r+K ∈ R/K(φ.  Then  
  φ(r+x) =  φ(r) +  φ(x)   for all x ∈ K(φ) 
   = φ(r) + 0   (Θ x ∈ K(φ) �  φ(x) = 0 )  
   =  φ(r)  
Thus we can define a mapping ψ(r+K) =  φ(r)  for all r ∈ R.  We shall prove that ψ is an isomorphism.  
Let r +K, s+K ∈  R/K(φ) .  Then  
        ψ [(r+K) + (s+K)]  = ψ [(r+s) + K] 
    =  φ(r+s) 
    = φ(r) + φ(s)  



UNIT-IV   85

    = ψ(r+K) + ψ(s+K)  
and  

 ψ [(r+K) (s+K)]= ψ(rs+K) 
   = φ(rs) 
   = φ(r)φ(s)  
   = ψ(r+K) ψ (s+K)  

Therefore ψ is a ring homomorphism.  

If x ∈ S, then  

  x = φ(r), r ∈ R  (Θ φ is onto mapping)  

     = ψ (r+K)  

Therefore to each element x ∈ S there corresponds an element r + K of R/K(φ) such that ψ(r+K) = x.  
Hence ψ is surjective.  
Moreover,  

  ψ(r+K) =  ψ (s+K)   �  φ(r) =  φ(s)  
      � φ(r−s) = 0 
     � r−s ∈ K(φ)  
     � r+K = s+K 

Therefore ψ is one-to-one mapping also.  Hence ψ is an isomorphism, as a consequence of which  
  R/K(φ) ~ S . 

Theorem.  A homomorphic image of a ring R is also a ring.  

Proof.  Let T : R → S be a ring homomorphism.  Then homomorphic image of R is  
  Im(T) = {x | x ∈ S,  x = T(r), r ∈ R } 
We know that T(0) = 0 .  Therefore, Im(T) is non-empty.  If x, y ∈ Im(T), then ∃  r, s ∈ R such that  
  x = T(r), y = T(s).  
Therefore,  
  x+y = T(r) + T(s) 
         = T(r+s) ∈ Im(T)    (Θ T is a homomorphims) 
and  
  xy   = T(r)T(s)  
         = T(rs) ∈ Im(T).  

Hence Im(T) is a subring of S.  

 

 

 

Types of Ideal 
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Definition.   Let R be a commutative ring.  An ideal P of R is said to be a prime ideal of R if for a, b ∈ 
R  
  ab ∈ P �  a ∈ P  or b ∈ P .  

Theorem.  An ideal P of a commutative ring R is a prime ideal if and only if R/P is without zero divisor.  

Proof.  Let us suppose that R/P is without zero divisor and let r, S ∈ R such that rs ∈ P.  Then  
  rs  ∈ P  �  rs+P =  P  
    � (r+P) (s+P) = P  
    � r+P = P  or s+P =  P     (Θ R/P is without zero divisor)  
    � r ∈ P  or S ∈ P .  
Hence P is a prime ideal.  
Conversely, let P be a prime ideal and let  
  (r+P) (s+P) = P,  r,s ∈ P 
Then  
   rs+P = P 

� rs ∈ P  

� r ∈ P or s ∈ P  (Θ P is  a prime ideal)  
� r + P =  P   or s + P =  P .  

Hence R/P is without zero divisor.  

Examples.  1.  Let p be a prime.  Then ring of integer mod p, is without zero divisor.  Therefore, ideal of 
Z/pZ is a prime ideal.  
2. Zero ideal of the ring of integers is a prime ideal.  

Definition.  An ideal generated by a single element is called a principal ideal.  

For example every ideal of the ring of integers is a principal ideal. 

Let us suppose that I is an ideal of Z.  If I = {0} then it is clearly a principal ideal.  If I is a non-zero ideal 
then x ∈ I �  −x ∈ I.  Therefore, I certainly contains positive elements.  Let m be the smallest positive 
integer belonging to I.  If y ∈ I be an arbitrary element of I then by Euclidean algorithm there exist q, r ∈ 
Z such that  
  y = mq + r,  0 ≤ r < m .   (i) 
Since m ∈ I ,  q ∈ Z  ,  therefore mq ∈ I.  
Therefore, 
  y − mq = r 
 �  r ∈ I . 
Hence by the minimality of m in (i) we have r = 0 .  It follows therefore that  
  y = mq . 
This implies that I = < m > .  Hence I is a principal ideal.  

Definition.   A maximal ideal M of a ring R is a proper ideal which is not strictly contained in any ideal 
other than R.  
Thus M is a maximal ideal if and only if  
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  M ⊂ M′ ⊂ R �  M′ = R or M′ =  M.  

Example.  An ideal generated by a prime number is a maximal ideal of the ring of integers.  But 
the zero ideal of the ring of integers is not maximal.  
Proof.  Let p be any prime integer and let S be any ideal containing the principal ideal generated by p.   
Now the ring of integers being principal ideal ring the ideal S is a principal ideal and it is generated by 
the integer q.  We have therefore  
  (p) ⊂ (q)   ⊂ R  

� p ∈ (q)  
� p = kq,  k ∈ R . 

Since p is prime, p = kq �  either k =  1 or q=  1 .  
Now k = 1    � p = q  

� (p) = (q)  
and q = 1 � (q) = (1) = R  (Since R is  generated by 1) .  
Hence (p) is maximal ideal.  

Theorem.  Every maximal ideal M of a commutative ring R with unity is a prime ideal.  

Proof.  It suffices to prove that if a, b ∈ R then  
  ab ∈ M � a ∈ M  or b ∈ M .  
Let us suppose that a ∉ M.  If we prove that b ∈ M then we are done.   It can be seen that the set  
  N = {ra + m | r ∈ R, m ∈ M}  
is an ideal of R.  

Since 1 ∈ R, therefore a + m ∈ N.   But a+m ∉ M since a ∉ M.  Therefore  
  M ⊂ N ⊂ R ,   M ≠ N.  
M being a maximal ideal asserts that N = R.  Therefore 1 ∈ R �  1 ∈ N.  So we can find two elements r 
∈ R, m ∈ M such that  
   1 = ra + m  
    � b = r(ab) + mb,  b ∈ R  
Since M is an ideal of R, therefore  
  ab ∈ M,  r ∈ R �  r(ab) ∈ M  
 and  m ∈ M ,  b ∈ R  � mb ∈ M .  
Therefore   b ∈ M.  

Hence M is a prime ideal.  

Theorem.  An ideal M of a commutative ring R with unity is maximal if and only if R/M is a field.   

Proof.  Let M be a maximal ideal of R.  Since R is a commutative ring with unity, R/M is also a 
commutative ring with unity element.  Let A* be an ideal of R/M and  
  A = {r | r+M ∈ A*}  
If r , s ∈ A , then r+M,  s+M ∈ A*.  Therefore 
  (r−s) + M = (r+M) − (s+M) ∈ A*  
 �  r−s ∈ A  
If r ∈ A, t ∈ R, then   r+M ∈ A* and  



  ADVANCED ABSTRACT ALGEBRA 88

  rt + M = (r+M) (t+M) ∈ A*     (because A* is an ideal of R/M) . 
 �  rt ∈ A.  
R being commutative tr also belongs to A.  

Hence A is an ideal of R.  
If a ∈ M, then  
  a+M = M ∈ R/M   (since M is the zero element of R/M)  
 � a+M ∈ A*    (since (1+M) (a+m) ∈ A* ,  
 �  a ∈ A      A* being ideal of R/M) 
Therefore 
  M ⊂ A ⊂ R .  
Let us suppose that A* ≠ {0}  then there exists an element r+M of A* such that  
  r +M ≠ M  
But   r+M ∈ A* �  r ∈ A ,  
  r+M ≠ M � r ∉ M �  A ≠ M.  
Thus we have proved that if A* ≠ {0}, then  

  M ⊂  A ⊂ R  

Since M is maximal therefore, A = R.  If r ∈ R then r ∈ A which implies that r +M ∈ A*.   It follows 
therefore, that   A* = R/M.  
We have proved therefore, that R/M has only two ideals {0} and R/M and hence R/M is a field.  
Conversely, let R/M is a field.   Then R/M has only two ideals {0} and R/M itself.  Hence  
  A* = {0} 
or   A* = R/M. 
If A* = {0} then A* = M  (Θ M is zero element of R/M)  
Therefore, 
  A = {r | r +M ∈ A*}  
     = {r | r+M = M} 
     = {r | r ∈ M} 
     = M  
If A* = R/M   then  
  A = {r | r +M ∈ R/M} 
     = {r | r ∈ M}  
     = R .  
Therefore, R has only two ideals M and R.  Hence M is a maximal ideal.  

Imbedding of a ring and an integral domain.  

Definition.   If a ring R is isomorphic to a subring T of a ring S then R is called imbedded in S.  The ring 
S is called extension or over ring of R.  

Theorem.  Every ring R can be imbedded in a ring S with unit element.  

Proof.  Let S be a set defined by  
  S = Z × R = {(m,a) | m ∈ Z,  a ∈ R}. 
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We define addition and multiplication in S as follow :  
  (m, a) + (n, b) =  (m+n, a+b)  
  (m, a)  (n, b)   = (mn, na+ mb + ab)  
We now prove that S is a ring with unity under these binary operations.  Let  (m, a), (n, b), (p, c) ∈ S.  
Then  
(i) 
  [(m,a) + (n, b)] + (p, c) =  (m+n, a+b)  + (p,c)  
       = (m+n+p, a+b+c)  
       = (m+(n+p), a+(b+c))     

(by Associativity of R and Z)  
       = (m,a) + (n+p, b+c)  
       =  (ma) + [(n,b) + (p,c)]  
(ii) 
  (0,0) + (m,a) =  (m,a)  
  (m,a) + (0,0) = (m,a)  
Therefore (0,0) is additive, identity.  
(iii) 
  (m,a) + (−m, −a) = (0,0) 
  (−m,−a) + (m,a)  =  (0,0)  
Therefore  (−m, −a) is the inverse of (m,a).  
(iv) 
  (m,a) + (n,b) = (m+n, a+b) 
    = (n+m, b+a)   (by commutativity of R and Z)  
    = (n,b) + (m,a)  
(v)  
       [(m,a) (n,b)] (p,c) = [mn, na + mb + ab] (p,c)  
                = [(mn)p, p(na+ mb + ab) + mnc + c(na+mb+ab)] 
    = [(mn)p, p(na) + p(mb) + p(ab)  

+(mn)c +(na)c+(mb)c+(ab)c]  
and  
    (m,a) [(n,b) (p,c)]  = (m,a) [np, pb + nc + bc]  
    = [m(np), anp + m(pb) + m(nc) + m(bc) +a(pb+nc+bc)] 
    = [(mn)p, p(na) + p(mb) + p(ab) + (mn) c  
     + (na) c + (mb)c + (ab) c]  
   (by Associativity and commutativity of R and Z). 
Hence  
   (m,a) [(n,b) (p,c)]  = [(m,a) (n,b)] (p,c) 
(vi) 
 [(m,a) + (n,b)] (p,c) = (m+n, a+b)(p,c)  
    = [(m+n)p, p(a+b) + (m+n)c + (a+b)c] 
    = (mp+np, pa + pb + mc+ nc + ac + bc)  
and  
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        (m,a) (p,c) + (n, b) (p,c) = (mp, pa + mc + ac) + (np, pb + nc + bc)  
    = (mp + np, pa + mc + ac + pb + nc + bc)  
Therefore  
 [(m,a) + (n,b)](p,c)  = (m,a) (p,c) +  (n,b) (p,c)  
Similarly we can check it for right distributive law.  

(vii)  

 (1,0) (m, a) =  (m,a) =  (m,a)  (1, 0)  
Hence (1, 0) =  1 is unity of S.  
Hence S is a ring with unit element.  

Consider the set  
        T = {(0,a) |  A ∈ R}  
Since  
 (0,a) + (0,b) = (0, a+b) ∈ T  

  0      = (0, 0) ∈ T  
        − (0,a)   =  (0, −a) ∈ T  
and  
  (0,a)(0,b)    =  (0, ab) ∈ T,  
therefore  T is a subring of S.  

We define a mapping   
  f : R  → T 
by  
  f(a) = (0,a) ,  a ∈ R  
Then  
  f(a+b)  = (0, a+b)  
   = (0, a) + (0, b)  
   = f(a) + f(b)  
and  
  f(ab)  = (0, ab)  
   = (0, a) (0, b)  
   = f(a) +  f(b)  
Thus f is a ring homomorphism.  Also,  
      f(a)  = f(b)  �  (0, a) = (0, b)  
    � a = b .  
Therefore f is an isomorphism and hence R can be imbedded in S.  

Theorem.  Every integral domain can be imbedded in a field.  

 
Proof.  Let D be an integral domain and  
  S = {(a,b) | a, b ∈ D, b ≠ 0}  
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be the set of the ordered pairs of D.   Then we claim that the relation  
  R = {((a,b), (c,d)) | (a,b), (c,d) ∈  S and ad = bc}  
is an equivalence relation.  
(i) Since  D is commutative, therefore ab = ba  for all a, b ∈ D.  
Hence for all (a,b) ∈ S  
  ((a,b), (a,b)) ∈ R.  

(ii) Symmetry.  If ((a,b), (c,d)) ∈ R, then  
  ad = bc  
 � cb = da  (by commutativity of D)  
 � ((c,d), (a,b)) ∈ R . 

(ii) Transitivity.   If ((a,b), (c,d)) ∈ R, ((c, d), (e,f)) ∈ R then ad = bc and cf  = de  
Therefore 
  adf =  bcf = bde 
 � (af − be)d = 0 
 �  (af −be)   = 0   (Θ d ≠ 0)  
 �  af =  be 
 � ((a,b), (e,f)) ∈ R .  

We represent the equivalence class of (a,b) by the fraction 
b
a  .    Thus  

  
b
a = {(c,d) | (c,d) ∈ S,    ((a,b), (c,d)) ∈ R}  

Consider the set  

  F = {
b
a  | a, b ∈ D, b ≠ 0 }  

Of these equivalence classes.  

Let  
b
a , 

d
c

 ∈ F.  Then we define addition and multiplication in F as follows : 

  
b
a  + 

d
c

 = 
bd

bcad +
 

and   �

�

�
�

�

�

b
a

 �

�

�
�

�

�

d
c

 = 
bd
ac

 . 

Since D is an integral domain and b ≠ 0, d ≠ 0 .   Therefore, bd ≠ 0. Therefore        
bd

bcad + ∈ F.  

Now we shall prove that this addition is well defined.  To show it, it suffices to show that if  

            
b
a  =   

1

1

b
a

,  
d
c

 =  
1

1

d
c

     (i) 

then  

     
bd

bcad +
= 

11

1111

db
cbda +

 

that is  
  a(d+bc) (b1d1)    = bd(a1d1 + b1c1)  
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Now   (ad  + bc) (b1d1) = adb1d1 +  bcb1d1  
   = a(db1)d1 + b(cb1)d1  
   = ab1dd1 + bb1cd1      (by commutativity of D)  
   = ba1dd1 + bb1c1d     (using (i))  
   = bd (a1d1 + b1c1) 

Therefore addition is well defined.  

If      
b
a  = 

1

1

b
a

 , 
d
c

  =  
1

1

d
c

 

then  

           
bd
ac

 = 
11

11

db
ca

 

that is   
       acb1d1 =  bda1c1  
Now  
      acb1d1  = ab1cd1  
       = ba1dc1  
       = bda1c1  
∴ multiplication is also well defined.  

We now prove that F is a field under these operations of addition and multiplications.  

Let    
b
a ,  

d
c

 , 
f
e

 ∈  F .   Then  

(i) 
f
e

d
c

b
a +�

�

�
�

�

� +  = 
f
e

bd
bcad ++

  = 
bdf

bdef)bcad( ++
 

=  
bdf

bdebcfadf ++
 

and  

  
b
a  + �

�

�
�

�

� +
f
e

d
c

  = 
b
a  + 

df
decf +

 

    = 
bdf

bdebcfadf ++
 

Therefore  

  
f
e

d
c

b
a +�

�

�
�

�

� +    =  
b
a  + �

�

�
�

�

� +
f
e

d
c

 

(ii)  
b
0

 + 
b
a  = 2b

bab.0 +
 = 2b

ab
 = 

b
a . 

Similarly  
b
a  +  

b
0

 = 
b
a  

Therefore   
b
0

 is additive identity.  
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(iii)  
b
a  + �

�

�
�

�

� −
b
a

 = 2b
abab −

 = 2b
0

 = 
b
0

 = − 
b
a  + 

b
a  

Thus every element of F is invertible.  

(iv)  
b
a  + 

d
c

 = 
bd

bcad +
 

and   
d
c

 +
b
a  = 

db
dacb +

 = 
bd

adbc +
 (by commutativity of D)  

(v) If  
b
a ,  

d
c

, 
f
e

 ∈ F ,  then  

     �

�

�
�

�

�==�

�

�
�

�

�

f
e

.
d
c

b
a

bdf
ace

f
e

.
d
c

.
b
a

 

(vi)   
b
a

�

�

�
�

�

� +
f
e

d
c

 = 
b
a . �

�

�
�

�

� +
df

decf
 

       = 
bdf
ade

bdf
acf +  

               = 
bd
ac

 + 
bf
ae

.  

Similarly it can be shown that 

  
f
e

.
d
c

b
a

�

�

�
�

�

� +  = 
df
ce

bf
ae +  

(vii) 

  �

�

�
�

�

�
�

�

�
�

�

�

a
a

b
a

 =  �

�

�
�

�

�

ba
aa

= 
b
a

 

and   
b
a

.
a
a

 =  
b
a

 .  

Hence   
a
a

 =  1 is multiplicative identity.  

(viii)  �

�

�
�

�

�

b
a

�

�

�
�

�

�

a
b

 =  
ba
ab

 =  1  

  �

�

�
�

�

�
�

�

�
�

�

�

b
a

a
b

 =  
ab
ba

ab
ba =  =  1  

Thus every element of F is invertible.  

(ix) 
bd
ac

d
c

b
a =�

�

�
�

�

�
�

�

�
�

�

�  

  = �

�

�
�

�

�
�

�

�
�

�

�

b
a

d
c

 . 

Hence  F is a field.   This field F is called Quotient field or field of fractions.  

We define a function  
  f : D →  F  
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by  

  f(a)  = 
1
a

 , a ∈ D .  

Then  

  f(a+b) =  
1

ba +
 = 

1
b

1
a +  

      = f(a) + f(b)  
and  

  f(ab)  =  
1
ab

=  �

�

�
�

�

�
�

�

�
�

�

�

1
b

1
a

 

           = f(a) f(b) .  
Therefore f is a ring homomorphism.  
Also,  

  f(a) =  f(b) �  
1
b

1
a =  

         � a =  b .  
It follows therefore that f is a isomorphism.  Hence D can be imbedded in F.  

Definition.   The Quotient field of an integral domain :- By the quotient field K of an integral domain 
D is meant the smallest field containing D.  Thus a field K is a quotient field of an integral domain D if K 
contains D and is itself contained in every field containing D.  

For example, field Q of rational numbers is the quotient field of the integral domain Z of integers.  
*The quotient field of a finite integral domain coincides with itself. 

Definition.   Let F be a field.  If a subring F1 of F form a field under the induced compositions of 
addition and multiplication, then F1 is called a subfield of F.  
For example, field Q of rational numbers is a subfield of the field R of real numbers.  The field R is a 
subfield of the field C of complex numbers.  Every field is a subfield of itself.   
It is clear from the definition that a nonempty set K is a subfield of a field F if  

(i) x, y ∈ K  � x−y ∈ K  
(ii) x∈ K, y ∈ K, y ≠ 0 � xy−1 ∈ K .  

Characteristic of a field :-   Let K be a field and e be the multiplicative identity of K.  Then, the 
mapping f : Z → K defined by f(n) =  ne, n ∈ Z is a ring homomorphism.  For,  
  f(m+n) =  (m+n) e 
   = (me) + (ne)  
   = f(m) + f(n)  
and  
  f(mn)   =  (mn)e  
   = (me)(ne) 
              = f(m)f(n) . 
Let A be the kernel of this homorphism.  Then  
  A =  {n | f(n) = 0 }  
     = {n | ne = 0}        (i) 
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and  
  Z/A  ~  Im(f) = f (z) . 

But Im f is a subring of K.  Therefore, Im(f) is without zero divisor.  It follows therefore that Z/A is 
without zero divisor.  Therefore either A = {0} or A is a prime ideal.  
 If A = {0}, then  
   ne =  0   ⇔ n = 0 .  
If A is a prime ideal then we can find a prime number p such that  
  A =  ker f = < p >     (ii) 
Hence from (i) and (ii)  
  ne = 0  ⇔  p |  n .  
Thus we have seen that if K is a field, then one of the following two cases, holds 
(i) ne = 0  ⇔  n = 0   
(ii) ne = 0  ⇔ p | n   where p is a prime.  

In the first case we say that the field K is of characteristic zero while in the second case, K is called  a 
field of characteristic p.  Thus characteristic of a filed is zero or a prime number.  
It is clear that a field of characteristic zero is infinite since in that case Z/A = Z and therefore Z ~ Im(f) .   
Hence Im(f) and K are infinite  

Example 1.  The characteristic of the field Q of rational numbers is zero, since ne = 0 � n = 0 (Θ e ≠ 0).   
2. The characteristic of the field Z/ < p > is a prime number p.  

Definition.   Fields with non-zero characteristic are known as Modular Fields.  

Definition.  A field is said to be prime if it has no subfield other than itself.  

Examples 1.   If p is a prime, then Z/pZ is a prime field.  Additive group Z/pZ .  Hence Z/pZ is a prime 
field.  
2.  Field Q of rational numbers is a prime field.  To prove it let K be a subfield of Q.  Then 1∈K.  Since 
K is an additive subgroup of Q, therefore 1+1 =  2∈K.  Similarly 3∈K.  Now K being a field, every non-

zero element of a K is invertible under multiplication.  Therefore, n∈K, n ≠ 0 �  
n
1

∈ K.   Then m∈K, 

n
1

∈ K � 
n
m

 ∈ K.  Hence K contains all rational numbers.  Hence K = Q as a consequence of which Q 

is a prime field. 
We have seen that the field Q of  rational numbers and Z/pZ are prime fields.  Now we shall prove that 
upto isomorphism there are only two prime fields Q and Z/pZ.    

Proof.  Let K be any prime field and let e denote the unit element of the same.  Since K is prime, the 
subfield generated by e must coincide with K.  
Consider the mapping f : Z → K defined by  
  f(n) = ne,  n ∈ Z .  
This mapping is a ring homomorphism.  For,  
  f(n+m) =  (n+m)e  
   = ne+me =  f(n) + f(m)  
  f(nm)  = (nm)e  = (ne) (me) =  f(n)f(m)  
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i.e.           A = {n | f(n) = 0 } 
   = {n | ne = 0 } . 
Let ker f  = A.  Since A is an ideal of Z and every ideal in Z is a principal ideal, therefore 
  A = {0}  or A = < p > ,  p ≠ 0 .  
If ker f = A = {0}, then f is one-to-one.  Hence f(Z) is a subring of K isomorphic to the integral domain Z 
.   The prime field K, being now the quotient field of the integral domain f(z) is isomorphic to the 
quotient field of Z.  But the quotient field of Z is the field Q of rational numbers.  Hence K is isomorphic 
to Q.   
If ker f = A =  < p > , p ≠ = 0, then p is a prime number.  If fact, if  
  p =  mn,  m  ≠ 1, n ≠ 1  
then  
  0 = mne =  (me)(ne) . 
Hence me = 0  or ne = 0   which is impossible for each integer x such that ne = 0 is a multiple of p.   
Hence p is a prime.  Hence  
  F(Z) ~  Z/pZ  
Since Z/pZ is a field, f(Z) is itself a field necessarily identical with K.   Hence  
  K ~ Z/pZ  
Hence apart from isomorphism there are only two prime fields.  
 

Polynomial Rings  

Definition.  Let A be an arbitrary ring.  By a polynomial over a ring A, is meant an ordered system (a0, 
a1, a2,…, an,…) of elements of A such that all except, at the most, a finite number of elements are zero.  
Two polynomials (a0, a1, a2,…, an,…) and (b0, b1, b2,…, bn,…) are said to be equal if and only if  
  an =  bn,  n ∈ N  
Let R be a ring and P be the set of all polynomials.  
Let (a0, a1,…, an,…) and (b0, b1, b2,…, bn,…)  be any two elements of P.  If  
  an = 0   for all n ≥  j and bn = 0  for all n ≥  k  
then  
  an + bn = 0  for all n ≥  max (j, k)  
Thus all except at the most, a finite number of elements in the ordered system (a0+b0, a1+b1,…) are zero.  
Therefore (a0 + b0, a1+b1, a2+b2,…, an+bn,…) ∈ P.  Hence we can define addition composition in P by  
  (a0, a1, a2,…, an,…) + (b0, b1, b2,…, bn,…) = (a0 + b0, a1+b1,…, an+bn,…). 
Multiplication P is defined by  
  (a0, a1, a2,…, an) (b0, b1,…, bn…)  
    = (c0, c1, c2,…, cn,…)  
where  
    c0 =  a0b0 
    c1 = a0b1+a1b0 
    c2 = a0b2 + a1b1 + a2b0  
    . . . . . . . . . . . . . . . . . . .  

    cn =  a0bn+a1bn−1 + … + anb0 =  �
=

−

n

0m
mnmba  
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If  an = 0  for all n ≥  j  and  bn = 0  for all n ≥  k , then  
  cn = 0   for all  n ≥ (j+k) .  
Thus product of two polynomials is again a polynomial.  

The set P of all polynomials over a ring R form a ring under these operations of addition and 
multiplication.  
Let   (a0, a1, a2,…, an,…) , (b0, b1, b2,…) ,  (c0, c1, c2,…) ∈ P.  
Then 
(i)  (a0, a1, a2,….) + [(b0, b1, b2,….) +  (c0, c1, c2,…)] 
   =  (a0, a1, a2,..) + [(b0 + c0, b1+c1, b2+c2,…)  
   = (a0+b0+c0, a1+b1+c1, a2+b2+c2,…)  
   = (a0+b0, a1+b1, a2+b2,…) + (c0, c1, c2,…)  
   = [(a0, a1, a2,…) + (b0, b1, b2,…)] + (c0, c1, c2,…)  
(ii)   (a0, a1, a2,….) +  (0, 0, 0, …) = (a0 + 0, a1+ 0, a2 + 0, …)  
   = (a0, a1, a2,….)  
and  
  (0, 0, 0,….) + (a0, a1, a2,…) = (0 + a0, 0 + a1, 0 + a2,…)  
              =  (a0, a1, a2,….)  
(iii) (a0, a1, a2,…) +  (−a0, −a1, −a2,…)  

          = (a0 − a0, a1−a1, a2−a2,…)  
          = (0, 0, 0, ….)  

and  
  (−a0, −a1, −a2,…) + (a0, a1, a2,….)  
      = (0, 0, 0,….)  
(iv) (a0, a1, a2,…) +  (b0, b1, b2,…) = (a0 + b0, a1+b1, a2+b2,…)  

 =  (b0 + a0, b1+a1, b2+a2,…)  
 =  (b0, b1, b2,…) + (a0, a1, a2,…)  

(v)   [(a0, a1, a2,…) (b0, b1, b2,…)]  (c0, c1, c2 ,…)  
   =  (d0, d1, d2,…) (c0, c1, c2,..)  
where  

          dn = �
=+ nkj

kjba   

    = (e0, e1, e2,…)  
where  

          em  = �
=+ mqp

qpcd  

     = � �
=+ =+

�
�

�

�

�
�

�

�

mqp
q

pkj
kj cba  

     =  �
=++ mqkj

qkj cba .  

Similarly, it can be shown that  
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(a0, a1, a2,….) [(b0, b1, b2,….) (c0, c1, c2,….)] =  (f0, f1, f2,…)  
where  

 fm = �
=++ mqkj

qkj cba  . 

Hence  
  [(a0, a1, a2,…) (b0, b1,..) ] (c0, c1, c2,….)   
    = (a0, a1, a2,…) [(b0, b1, b2,..) (c0, c1, c2,..)]  
 
(vi)  (a0, a1, a2,…) [(b0, b1, b2,…) + (c0, c1, c2,…)] 

= (a0, a1, a2,…) (b0 + c0, b1 + c1, b2 + c2,….) 
=  (d0, d1, d2,…) 

where  

          dm = )cb(a kk
mkj

j +�
=+

 

    = ��
=+=+

+
mkj

kjk
mkj

j caba  

    = fm + gm, say .  
Also  
 (a0, a1, a2,…) (b0, b1, bn ) =   (f0, f1, f2,….) , 
 (a0, a1, a2,…) (c0, c1, c2,…) =  (g0, g1, g2,…)  
Hence  
 (a0, a1, a2,…) [(b0, b1, b2,…) + (c0, c1, c2,…)] 
  = (a0, a1, a2,…) (b0, b1, b2,…) + (a0, a1, a2,….) (c0, c1,…)  
Hence P is a ring.  We call this ring of polynomials as polynomial ring over R and it is denoted by R[x].  
Let  
  Q = {(a, 0, 0,…) | a ∈ R} 
Then a mapping f : R → Q  defined by  f(a) =  (a, 0, 0,…) is an isomorphism.  In fact,  
  f(a+b)  = (a + b, 0, 0,…) 
   = (a, 0, 0, …) + (b, 0, 0,…)  
   = f(a) + f(b),  
  f(ab)  = (ab, 0, 0, ….)  
   = (a, 0, 0, …) (b, 0, 0, …) 
   = f(a) f(b)  
and  
  f(a)  = f(b) �  (a, 0, 0,…) = (b, 0, 0, ….)  
   � a = b .  
Hence  
  R ~  Q    (i)  
So we can identify the polynomial (a, 0, 0, …) with a.    
If we represent (0, 1,  0, …) by x then we can see that  
  x2 = (0, 0, 1, 0, …)  
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  x3 = (0, 0, 0, 1,…)  
  . . . . . . . ..  . . . . . . 
  . . . . . . . ..  . . . . . . 

  xn = ( 434 21
termsn

0,....,0,0,0       1, 0,….)  

Therefore for (a, 0, 0, ….) ∈ Q  we have 
 (a, 0, 0,…) x =  (0, a, 0, …..)  
 (a, 0, 0, …) x2 = (0, 0, a, ….)  
 . . . . . . . ..  . . . . . . . . . . . . . . 
 (a, 0, 0, ….) xn =  ( 434 21

termsn

0,....,0,0,0 , a, 0, ….)     (ii) 

If  (a0, a1, .., an, 0, …) be any arbitrary element of the polynomial ring P, then by (ii) we have  
(a0, a1, a2,…., an , 0, …) = (a0, 0, ….) + (0, a1,…)  + … +  ( 434 21

termsn

0,....,0,0,0 , an, 0, ….)  

      = (a0, 0, …) + (a1, 0, ….) (0, 1, 0,…) + …. 
    + (an, 0, 0,…) ( 44 344 21

termsn

,0,0,...,0,0,0( 1, 0,…)  

      = (a0, 0, …) + (a1, 0, 0, …) x + … + (an, 0, 0,…) xn  
   = a0 + a1x + anxn   (by (i)) 
Hence every element (a0, a1, a2,…) of P can be denoted by  
  a0 + a1x + a2x2 + … anxn .  
* The numbers a0, a1,…, an are called coefficients of the polynomial.  If the coefficient an of xn is non-
zero, then it is called leading coefficient of a0 + a1x + … + anxn .  
* A polynomial consisting of only one term a0 is called constant polynomial.  

Example.   If R is a commutative ring with unity, prove that R[x] is also a commutative ring with unity. 

Degree of Polynomial.   Let f(x) = a0 + a1x + … anxn be a polynomial.  If an  ≠ 0 , then n is called the 
degree of f(x).   We denote it by deg f(x) = n.     
It is clear that degree of a constant polynomial is zero.  
If  
  f(x) = a0 + a1x + a2x2 + … amxm ,  am ≠ 0  
and  
  g(x) =  b0 + b1x + … bn xn, bn ≠ 0  
are two elements of R[x], then  
  deg f(x) =  m and deg g(x) =  n and  
         f(x) +  g(x) =  (a0 + a1x + a2x2 + … + amxm) + (b0+b1x+b2x2 + … + bnxn) 
If m =  n and am + bn ≠ 0, then  
  f(x) +  g(x) = (a0 + b0) +  (a1+b1)x + … + (am + bm)xm  
Therefore in this case  
  deg [f(x) + g(x)] = m.  
It is also clear that if m = n and am + bm =  0 ,  then 
  deg [f(x) + g(x)] < m. 



  ADVANCED ABSTRACT ALGEBRA 100

If   m > n, then  
  f(x) + g(x) =  (a0 + b0) + (a1+b1)x + … + (an+bn)xn  
     + an+1 xn+1 + … + am xm  
Therefore in this situation  
  deg [f(x) + g(x)] = m 
Similarly it can be seen that if m < n, then  
  deg [f(x) + g(x)] =  n 
It follows therefore that if m ≠ n, then  
  deg [f(x) + g(x)] = max (m, n)  
Also ,  
  f(x) g(x) =  a0b0 + (a0b1 + a1b0)x + … + ambnxm+n  
Therefore  

  deg[f(x) g(x)] = 
	




�

=+<
≠+

0bawhere,nm
0baifnm

nm

nm  . 

If R is without zero divisor, then  
  ambn  ≠ 0   since am ≠ 0, bn ≠ 0 . 
Hence for such a ring R we have  
  deg [f(x) g(x)] =  m+n = deg f(x) + deg g(x) 
If R is without zero divisor and f(x) and g(x) are non-zero polynomial of R[x], then  
  deg f(x) ≤  deg [f(x) g(x)]    (Θ deg g(x) ≥ 0).   

Theorem.  If R is an integral domain, then so is also polynomial ring R[x].  

Proof.  R is a commutative ring with unity.  Therefore R[x] is commutative with unit element.  It suffices 
to prove that R[x] is without zero divisor.  Let  

  f(x) =  �
=

m

0i

i
ixa  ,  am ≠ 0  

and   g(x) = �
=

n

0i

i
ixb ,   bn ≠ 0 ,  

be two non-zero polynomials of R[x] and let m and n be their degrees respectively.  

Since R is an integral domain and am ≠ 0 ,  bn ≠ 0 , therefore ambn ≠ 0 .  Hence f(x) g(x) ≠ 0.  Hence R[x] 
is without zero divisor and therefore an integral domain.  
Division Algorithm for polynomials over a field.  

Theorem.  Corresponding to any two polynomials f(x) and g(x) ≠ 0 belonging to F[x] there exist 
uniquely two polynomials q(x) and r(x) also belonging to F[x] such that  
  f(x) =  g(x) q(x) +  r(x)  
where  
  r(x) = 0   or deg r (x) <  deg g(x) .  
 
Proof.  Let  

  f(x) = �
=

m

0i

i
i ,xa   am ≠ 0   
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  g(x) = �
=

n

0i

i
i ,xb  bn ≠ 0  .  

Then either  
(i) deg f(x) <  deg g(x)  

or  
(ii) deg f(x) ≥ deg g(x)  

In the first case we write 
  f(x) =  g(x) 0 +  f(x) 
so that q(x) = 0 and r(x) =  f(x).  

In respect of the second case we shall prove the existence of q(x) and r(x) by mathematical induction on 
the degree of f(x).  If deg f(x) =  1, then the existence of q(x) and r(x) is obvious.  Let us suppose that the 
result is true when deg f(x) ≤ m−1.  If  

  h(x) = f(x) −  
�
�

�

�

�
�

�

�

n

m

b
a

 xm−n g(x)   (iii)  

  f(x) =  a0 + a1x + … + amxm  
         = am bn

−1 xm−n (b0+ b1x + … bnxn)  
   + (am−1 − am bn

−1 bn−1) xm−1 + (am−2 − ambn
−1 bn−2 ) xm−2  

         = am bn
−1 xm−n g(x) + h(x)  

then deg h(x)  ≤ m−1.  
Hence by supposition  
  h(x) = g(x) q1(x) +r(x) ,    (iv) 
where r(x) = 0  or deg r(x) < deg g(x) .  
From (iii) and (iv) we have  

 f(x) − 
�
�

�

�

�
�

�

�

n

m

b
a

 xm−n g(x) =  g(x) q1(x) + r(x)  

That is,  

  f(x) = g(x) [q1(x) + 
�
�

�

�

�
�

�

�

n

m

b
a

xm−n] + r(x)  

         = g(x) q(x) + r(x)  

where   q(x) = q1(x) + 
�
�

�

�

�
�

�

�

n

m

b
a

 xm−n  

Thus existence of q(x) and r(x) is proved.  
Now we shall prove the uniqueness of q(x) and r(x).  
Let us suppose that q1(x) and r1(x) are two polynomials belonging to F[x] such that  
  f(x) = g(x) q1(x) + r1(x)  
where  r1(x) = 0  or  deg r1(x) < deg g(x).  
But by the statement of the theorem, q(x) and r(x) are two elements of F(x) such that  
  f(x) = g(x) q(x) + r(x)  
where   r(x) = 0  or deg r(x) < deg g(x).  
Hence 
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  g(x) q(x) + r(x) =  g(x) q1(x) + r1(x) ,  
that is,  
  g(x) [ q(x) − q1(x)] =  r1(x) − r(x)     (v) 
But   deg g(x) [q(x) − q1 (x)]  ≥ n  
and  
  deg [r1(x) − r(x)]  < n .  
Hence (v) is possible only when  
  g(x) [q(x) − q1(x)] = 0 
and  
  r1(x) − r(x) = 0   
That is, when  
  q(x) = q1(x) and r(x) =  r1(x) 
Hence q(x) and r(x) are unique.  
With the help of this theorem we shall prove that a polynomial domain F[x] over  a field F is a principal 
ideal domain.  

Theorem.   A polynomial domain F[x] over a field F is a principal ideal domain. 

Proof.  Let S be any ideal of F[x] other than the zero ideal and let g(x) be a polynomial of lowest degree 
belonging to S.  If f(x) is an arbitrary polynomial of S, then by division algorithm there exist uniquely 
two polynomials q(x) and r(x) belonging to F[x] such that  
  f(x) =  g(x) q(x) + r(x) 
where  r(x) = 0  or deg r(x) < deg g(x) . 
Thus  
  r(x) = f(x) − g(x) q(x) ∈ S .  
Also, since g(x) is a polynomial of lowest degree belonging to S, we see that deg r(x) cannot be less than 
of g(x).  Thus r(x) = 0 and we have  
  f(x) =  g(x) q(x) 
Since f(x) is arbitrary polynomial belonging to S, therefore  
  S =  (g(x)) 
Hence F[x] is principal ideal domain.  

Example.   Show that the polynomial ring I[x] over the ring I of integers is not a principal ideal ring.  

To establish this we have to produce an ideal of I[x] which is not a principal ideal.  In fact we shall show 
that the ideal (x, q) of the ring I[x] generated by two elements x and q of I[x] is not a principal ideal.  

Let if possible (x, q) be a principal ideal generated by a member f(x) of I[x] so that we have  
  (x, q) =  (f(x)) 
Thus we have relations of the form  
         q =  f(x) g(x)  
         x = f(x) h(x)  
where g(x) and h(x) are members of I[x].  These imply  
  deg f(x) +  deg g(x) =  deg q  = 0   (i) 
  deg f(x) +  deg h(x) =  deg x =  1   (ii) 
From (ii) we get  
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  deg f(x) =  0  and deg g(x) = 0 
So f(x) and g(x) are non-zero constant  polynomials i.e. are non-zero integers.  
Again since  
  f(x) g(x) =  2 
where f(x) and g(x) are non-zero integers, we have the following four alternatives  
  f(x) = 1 ,  g(x) =  2  
  f(x) = −1, g(x) = −2  
  f(x) =  2,  g(x) =  1  
  f(x) = −2, g(x) =  −1 .  
If  
  f(x) = 1  or −1 ,  
we have  
  (f(x)) = I[x].  
Thus we arrive at a contradiction in that  
  (f(x)) = I[x] 
and  
  I[x] ≠ (x, 2) . 
Now suppose that f(x) = ± 2, then x  =  f(x) h(x) and we have a relation of the form x =           ± 2 (c0 + 
c1x + ….) .  This gives 1 = ± 2 c1 which is again a contradiction in as much as there is no integer c1 such 
that 1 =  ± 2c1.  Thus it has been shown that (x, 2) is not a principal ideal.  

 
Unique Factorisation Domain  

 
Definition.   An element a is called a unit if there exists b such that ab =  1.  
Let D be an integral domain.  Then multiplicative identity of D is a divisor of each element of the same.  
In fact we have  
  a = 1.a   for all a ∈ D  
  �  1| a   for all a ∈ D .  
Besides 1, there may also exist other elements which are divisors of each element of the domain.  In fact 
if e is any invertible element and a be any arbitrary element, then  
  a =  e(e−1 a) �  e |  a. 
Thus all invertible element are divisors of every element of the domain D.  

Definition.   The invertible elements of an integral domain are known as its units.  
Thus each unit is a divisor of every element of the domain.  
* An element a is a unit of an integral domain iff it has a multiplicative inverse.  
Proof.  Let a be a unit.  The a | 1, where 1 is the unit of the integral domain D.  Hence 1 = ab.   Hence a 
has a multiplicative inverse b.  
Again, if the multiplicative inverse of a is b then ab =  1 .   Hence a | 1 and  1| a for every a ∈ D showing 
that a is a unit.  
For example each non-zero element of a field is a unit thereof.  
± 1 are the only two units in domain I of integers. 
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Definition.   A non-zero element of integral domain D, which is not a unit and which has no proper 
divisors is called a prime or irreducible (indecomposible) element.  

Definition.   An element a is said to be an associate of b if a is a divisor of b and b is a divisor of a.  

For example each of 3 and −3 is a divisor of the other in the domain I of integrals. 

Definition.  A ring R is called a factorisation domain if every non-zero non-unit element of the same can 
be expressed as a product of irreducible elements.  Thus if a is non-zero unit element of a F.D. then  
  a = p1p2p3 … pn,  
where pi’s are irreducible elements.  

Definition.  A F.D. is called a unique factorisation domain if whenever  
  a =  p1p2p3…pn  = q1q2 … qS  
then   r = s and after rearrangement, if necessary,  
 p1 ~ q1, p2 ~ q2…, pr ~ qs .  

Definition.   An integral domain D is said to be principal ideal domain if every ideal A in D is principal 
ideal.  

Theorem.  A principal ideal domain is a unique factorisation domain.   

Proof.  Firstly we show that principal ideal domain is a factorisation domain.  
Let a be  a non-zero non-unit element of a principal ideal domain D.  If a is prime we are done.  If a is 
not a prime, there exist two non-unit elements b and c such that  
  a =  bc 
 �  a ∈ (b)  
 �  (a) ⊂ (b) ,  (b) ≠ (a) .  
In case b, c are both irreducible, then again we have finished.  If they are not prime, we continue as 
above.  That is, there exists two non-unit elements c and d such that  
  b =  cd 
 �  b ∈ (c) 
 �  (b) ⊂ (c)   (b) ≠ (c)  
Thus two cases arise :  
(i) After a finite number of steps, we arrive at an expression of a as a product of irreducible 

elements.  
(ii) Howsoever far we may continue, we always have a composite element occurring as a factor in 

the expression of a as product of elements of D. 
In case (i) we have finished.  
In case (ii), there exists an infinite system of elements a1, a2,…, an,… such that  
 (a1) ⊂ (a2) ⊂ (a3) … ⊂ (an) ⊂ …. (I)  
no two of these principal ideals being the same.  
Consider the union  
  A =  U(ai)  
We assert that A is an ideal of D.  In fact  
  0 ∈ (a1)  �  0 ∈ A  
      � A ≠ φ .  
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If x, y ∈ A , then there exist integers i and j such that  
  x ∈ (ai) , y ∈ (aj)  
Without loss of generality suppose that i ≥  j .  Then x, y ∈ (ai) .  This implies that x − y ∈ (ai) and α ∈ 
(ai) where α ∈ D.  Hence x−y, αx ∈ A.    
Since D is a principal ideal domain, therefore ∃ an element β of D such that  
  A =  (β) . 
There exists, therefore, an ideal member (am) of the system such that 
  β ∈ (am)  
and accordingly 
  β ∈ (an)  for all n ≥  m  
  � (β) ⊂ (an)  for all n ≥ m    (II) 
Also since (β) is the union of the ideals, we have  
  (β) ⊃ (an)   for all n     (III) 
Thus from (II) and (III)  
  (β) = (an)  for all n ≥ m,   
   �    (am) = (am+1) = (am+2) = …. 
which is a contradiction to (I).  Hence case (ii) cannot arise.  

Thus we have proved that every non-zero non-unit element of a principal ideal domain is expressible as a 
product of prime element.  Hence D is a F.d.  
To prove the uniqueness, let  
  a = p1p2 … pr = q1q2…qs     (IV)  
where each p and q is prime.  We shall prove the result by induction on r.  The result is obvious if r  = 1.  
Suppose now that the result is true for each natural number < r.  Since D is a principal ideal domain, 
every prime element generates a prime ideal.  Therefore  p1p2… pn ∈ (p1)  
which implies   q1q2…. qs  ∈ (p1) 

Therefore one of the factors q1q2…. qs  should belong to (p1).  Without loss of generality say, q1 ∈ (p1).  
Then p1|q1.  As q1 is prime, this implies q1/p1 and therefore p1 and q1 are associates.  Let  
  q1 = e1p1       (V) 
where e1 is a unit.  
From (IV) and (V) we have  
  p2p3 … p2 =  (e1q2) q3 … qs    (VI) 
By the assumed hypothesis 
  r−1 =  s−1  
and each factor, on the right of (VI) is an associate of some factor on the left and vice-versa.  This proves 
the theorem.  
 
Theorem.  In a principal ideal domain a prime element generates a maximal ideal.  

Proof.  Let p be a prime element in a principal ideal domain R and let  
  p =  (p)  
be an ideal of R generated by p.  
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Let p 
≠
⊂ Q where Q =  (a),  a ∈ R .  

Now since p is a prime, greatest common divisor of a and p is p or 1.  If (a, p) =  p then         p | a and so  
  a ∈ (p) =  p 

� (a) ⊆ p 
� Q  ⊆ p  

But then Q =  p which is not the case.  
Therefore g.c.d. of a and p is one.  Thus there exist x and y such that  
  1 = ax + py  
Let us suppose that b ∈ R  .  
Now bpy ∈p ⊆ Q and bax ∈ Q  
  ∴  b ∈ Q  
 �     R  ⊂ Q  
But Q being an ideal of R we have  
  Q ⊂ R .  
Hence   Q =  R  
This proves that p is maximal.  

Cor.  If D is a P.I.D and p is a prime, then (p) is a prime ideal, in fact, since for a commutative ring D 
every maximal ideal is a prime ideal.  

Euclidean Domain.  An integral domain R is said to be a Euclidean domain (Euclidean ring) if there 
exists a mapping φ of the set of non-zero members of R into the set of positive integers such  that if a, b 
be any two non-zero members of R then  
(i) there exists q, r ∈ R such that  

a =  bq + r  
where either r = 0  or φ(r) < φ(b)  
(ii) φ(ab) ≥  φ(a) or φ(b).  

Example 1.   The domain I of integer is Euclidean, for the mapping φ defined by  
  φ (a) =  |a|  
satisfies the properties in question. 
2. The domain K[x] of polynomials over a field K is Euclidean with the mapping defined by  
  f(ax) =  2deg ax  where a(x) ∈ K [x].  

Theorem.   Euclidean domain is a principal ideal domain.  

Proof.  Let D be any Euclidean domain and φ a mapping referred to in the definition.  Let I be any ideal 
of D.  If I is zero ideal, then it is a principal ideal.  Now suppose that I ≠ (0) so that it contains some non-
zero members.  

Consider the set of φ images of the non-zero members of I which are all positive integers.  Let a ≠ 0 be a 
member of I so that φ(a) is minimal in all the φ images.  

Let b be any arbitrary member of I. Then there exist two members q and r of D such that  
  b = qa +  r  
where either r = 0 or φ(r) < φ(a) 
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The possibility φ(r) < φ(a) is ruled out in respect of the choice of a.  Therefore, r = 0 and we have  
  b = aq  
 �  I = (a) 
and I is accordingly a principal ideal.  

Note :-  Since P.I.D. is U.F.D,  it follows that Euclidean domain is unique factorisation domain.  
* We know that a polynomial domain F[x] over a field F is a principal ideal domain, therefore F[x] is 
also a unique factorisation domain.  

Definition.   Let D[x] be a polynomial ring over a unique factorisation domain D and let f(x) = a0 + a1x + 
… + anxn be a polynomial belonging to D[x].  Then f(x) is called primitive if the greatest common 
divisor of a0, a1,…, an is 1.  

Definition.   The content of the polynomial f(x) =  a0 + a1x + …. anxn is the greatest common divisor of 
a0, a1,…, an.  
If a polynomial f(x) =  c g(x) where g(x) is primitive polynomial, then c is called content of f(x).  

Definition.   A polynomial p(x) is F[x] is said to be irreducible over F if whenever p(x) = a(x) b(x) ∈ 
F[x] then one of a(x) or b(x) has degree zero (i.e. is a constant).  

Definition.    Let D[x] be the polynomial ring over a unique factorisation domain D.   Then a polynomial 
f(x) ∈ D[x] is called primitive if the set {a0, a1,.., ai, … an} of coefficients of f(x) has no common factor 
other than a unit. For example x3 −3x+1 is a primitive member of I[x] but the polynomial 3x2 −6x +3 is 
not a primitive member of I[x] since in the later case 3 is a common factor.  
* f(x) ∈ D[x] is called primitive if the g.c.d. of a0, a1,…, an is 1.  Every irreducible polynomial is 
necessarily primitive but the converse need not be true.  For example the primitive polynomial x2 + 5x + 
6 is reducible since x2 + 5x + 6 = (x+2) (x+3).  

Lemma 1.   The product of two primitive polynomials is primitive.   

Proof.  Let f(x) = a0 + a1x + a2x2 + … amxm  and g(x) = b0 + b1x + b2x2 + … bnxn be two primitive 
polynomials belonging to D[x].  Let  
  h(x) = f(x) g(x) 
         = c0 + c1x + c2x2 x … + cm+n xm+n  

Let if possible, a prime element p be a common divisor of each of the coefficients of the product f(x) 
g(x).  

Also let ai and bj be the first coefficients of f(x) and g(x) which are not divisible by p.  Then  
 ci+j = aibj + ai−1 bj+1 + ai−2bj+2 + … + a0 bi+j + ai+1 bj−1 + ai+2bj−2 + … ai+j b0  

� aibj = ci+j − (ai−1 bj+1 + ai−2 bj+2 + … ) − (ai+1bj−1 + ai+2 bj−2 + …)  
Since p is a divisor of each of the terms on the right, we have  
   p | aibj 

� p | ai  or p |  bj  
so that we arrive at a contradiction.  Hence the Lemma.  

Lemma 2.  If f1(x) and f2(x) are two primitive members of D[x] and are also associates in K[x], then they 
are also associates in D[x], K being the quotient field of the domain D.  

Proof.  Since f1(x) and f2(x) are associates in K[x], we have  
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  f1(x) = kf2(x)   where 0   ≠ k ∈ K  
We have k =  gh−1   where g ∈ D ,  h ∈ D  
 ∴  hf1(x) = gf2 (x)  
 ∴  f1(x) ~ f2(x)  in D[x]      (Application of Lemma III). 

Lemma 3.   Every non-zero member f(x) of D[x] is expressible as a product cg (x) of       c ∈ D and of a 
primitive  member g(x) of D[x] and this expression is unique apart from the differences in associateness.  

Proof.  Let c be the H.C.F. of the set  
  {a0, a1,…, ai,…, an} 
of the coefficients of f(x).  
Let  
  ai = cbi , 0   ≤ i ≤ n  
Consider the set  
  {b0,…., bi,….,bn} 
This set has no common factor other than units.  Thus  

  g(x) = �
=

n

0i

i
i xb  

is a primitive polynomial member of D[x] and we have f(x) =  cg(x) 
which expresses f(x) as required.  

We now attend to the proof of the uniqueness part of the theorem.  
If possible let  
  f(x) =  c g (x) 
  f(x) =  d h(x) 
where g(x) and h(x) are primitive members of D[x].   

We have therefore 
  cg (x) =  dh(x) 
 �     cbi   = dci  
This implies that each prime factor of c is a  factor of dci for all 0 ≤ i ≤ n.   This prime factor of c must 
not, however be a factor of some ci .  

It follows that each prime factor of c is a factor of d � that c is a factor of d.  

Similarly, it follows that d is a factor of c.  Thus c and d are associates.  Let c = ed where e is a unit.  
Also since  
  cg(x) = dh(x)  
it follows that  
  eg(x) =  h(x)  
implying that g(x) and h(x) are associates. 
Hence the lemma.  

Definition.   A polynomial p(x) in F[x] is said to be irreducible over F if whenever p(x) =  a(x) b(x), with 
a(x), b(x) ∈ F[x], then one of a(x) or b(x) has degree zero (i.e. is constant).  



UNIT-IV   109

Lemma 4.  If f(x) is an irreducible polynomial of positive degree in D[x], it is also irreducible in K[x] 
where K is the quotient field of D.  

Proof.  Let if possible, f(x) be reducible in K[x] so that we have a relation of the form  
  f(x) = g(x) h(x)  
where g(x), h(x) are in K[x] and are of positive degree.  
Now  

 g(x) = 
1

1

b
a

 g1(x)  

  h(x) = 
2

2

b
a

 h1(x)  

where a1, b1, a2,  b2 ∈ D and g1(x) and h1(x) are primitive in D[x].  
Thus we have 

  f(x) =  
21

21

bb
aa

  g1(x) h1(x)  

� (b1b2) f(x)  = (a1a2) g1(x) h1(x) 
But by Lemma 1, g1(x) h1(x) is primitive.  The constant of right hand side in a1a2.  Also f(x) being 
irreducible in D[x] is primitive and the constant of the left hand side is b1b2.   Therefore, a1a2 = b1b2.   
Therefore  
  f(x) = g1(x) h1(x) 
This contradicts the fact that f(x) is irreducible in D[x].  
Therefore  f(x) is irreducible in K[x].  

Theorem.  The polynomial ring D[x] over a unique factorisation domain D is itself a unique factorisation 
domain.  

Proof.  Let a(x) be any non-zero non-unit member of D[x].  We have 
  a(x) = ga0(x) 
where g ∈ D and a0(x) is a primitive polynomial belonging to D[x].  
Since D is a U.F.D. we have  
  g = p1p2 …. pr 
where pi’s are prime elements of D.  
If now a0(x) is reducible, we have  
  a0(x) =  a01(x) a02(x) 
where a01(x) and a02(x) are both primitive of positive degree.   

Proceeding in this manner, we shall after a finite number of steps, arrive at a relation of the form  
  a(x) = p1p2 …. pr a1(x) …. as(x)  
where each factor on the right is irreducible.  
This shows that D[x] is a f.d.  
To show uniqueness, let us suppose that  
a(x) = p1p2 …. pr a1(x) …. as(x) =  p1′ p2′ …. pl′ a1′(x) a2′ (x) … am′(x)  



  ADVANCED ABSTRACT ALGEBRA 110

where each of the factors is irreducible and degree of each of ai(x) and ai′(x) is positive.  By Lemma 1, 
a1(x) a2(x)…. as(x) and a1′(x) a2′(x) are primitive.  The constant of R.H.S. is p1′ p2′… ps′ and that of 
L.H.S. is p1p2 … pr .    Therefore  
  p1 p2…. pr = p1′p2′ … pl′    (1) 
and hence  
  a1(x) a2(x) …. as(x) = a1′(x) a2′(x) … am′(x) 

Since each of a1(x) a2(x) …. as(x) and a1′  … am′(x) are irreducible in D[x], by Lemma 4 there are 
irreducible in K[x].  Now K[x] being a unique f.d. we see that two sets of polynomials.  
  a1(x),…, as(x)  and a1′(x), … am′(x) 
and the same except for order and the difference in associateness.  Thus by a possible change of notation 
we have  
  a1(x) ~ a1′(x),   a2(x) ~ a2′(x) …. in K[x]. 
By Lemma II this relation of associateness also hold good in D[x].  
Also, D being a u.f.d. we see from (i) that each pi is associate of some pi′ and vice versa.    
Thus the two factorisations of a(x) in D[x] are the same except for the difference in order and 
associateness.  Hence D[x] is a u.f.d.  

Theorem.  If the primitive polynomial f(x) can be factored as the product of two polynomials having 
rational coefficients it can be factored as the product of two polynomials having integer coefficients.  

Proof.   Suppose that  
  f(x) =  g(x) h(x) 
where g(x) and h(x) have rational coefficients.  By clearing of denominators and taking out common 
factors we can write  

  f(x) = �

�

�
�

�

�

b
a λ(x) µ(x)  

where a and b are integers and where both λ(x) and µ(x) have integer coefficients and are primitive.  
Thus  
  bf(x) =  a λ(x) µ(x) 
The content of the left hand side is b, since f(x) is primitive.  Since both λ(x) and µ(x) are primitive, 
therefore, λ(x) µ(x) is also primitive so that the content of the right hand side is a.  Therefore a =  b and  
  f(x) =  λ(x) µ(x) 
where λ(x) and µ(x) have integer coefficients.  This is the assertion of the theorem.  

Definition.  A polynomial is said to be integer monic if all its coefficients are integer and the coefficient 
of its highest power is 1.  
 

Eienstein Criterion of Irreducibility 
 

Statement.  Let a(x) = a0 +a1x + a2x2 + … + anxn be a polynomial belonging to D[x] and p is a prime 
element of D such that  
  p | a0 , p|a1,…, p | an−1 
whereas p is a not a divisor of an and p2 is not a divisor of a0.   Then a(x) is irreducible in D[x] and hence 
also in K[x].   
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Proof.  Let, if possible,  
  a0+a1x + … anxn = (b0 + b1x + … bl xl) (c0 + c1x + … cm xm)   
where l > 0 ,  m > 0 .  
We have  
  a0 = b0 c0  
Therefore  p | a0  �  p | b0 or p | c0  

Now, since p2 is not a divisor of a0 ,  therefore, p cannot be a divisor of both b0 as well as c0 .   
Suppose that p | c0 .  
Also, we have 
  an = blcm  
implying that p is not a divisor of cm .  

Let r ≤ m be the smallest index such that each of  
  c0,  c1,… cr−1  
is divisible by p.  
Also  
  ar = b0cr + b1cr−1 + …. + br c0  
Since neither b0 nor cr is divisible by p, and each of  
  c0, c1,…., cr−1  
is divisible by p, we deduce that ar is not divisible by p.  This shows, that r =  n so that the degree of the 
second of the two factors is n and accordingly the polynomial is actually irreducible.  

Theorem.  If a,b are arbitrary elements of a unique factorisation domain D and p is a prime element of 
D, then  
  p  | ab �  p | a   or p |b. 

Proof.  Let  
  a = p1p2 …. Pr  
  b = p1′p2′ … ps′  
where each of p1, p2,…, pr ;  p1′ p2′, …., ps′ is a prime element of D.  Then we have  
  ab = p1p2 … pr p′1p′2 …. ps′      (i) 
By virtue of the fact that expression as product of primes occur as a factor on the right side of (i) so that 
we have 
  either p|a or p|b .  
* Examples of rings which are not U.F.D.  
We know that if a, b are two arbitrary element of a unique factorisation domain, then p|ab � either p | a 
or p|b.   

The ring Z[ 5− ] of numbers a+b 5− where a and b are any integers is not a u.f.d.   For,  

  9 = (2 + 5− ) (2− 5−  ) = 3.3 

The prime 3 is a divisor of the product (2 + 5− ) (2− 5− ) without being a divisor of either (2+ 5− ) 

or of (2− 5− ).  

Similarly Z [ 3− ] is not a u.f.d.   For,  
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  12 = (3 + 3− ) (3− 3− ) = 3.4 

The prime 3 divides the product but does not divides the individual elements.  

Theorem.  The domain of Gaussian integers is an Euclidean domain.  

Proof.  The set of numbers a+ib where a, b are integers and i = 1−  is an integral domain relatively to 
usual addition and multiplication of numbers as the two rings compositions.  This domain is called 
domain of Gaussian integers.  

We shall show that the mapping φ of the set of non-zero Gaussian integers into the set of positive 
integers satisfies the two conditions of the Euclidean domain.  
 
We write  
  φ(a+ib) = a2+b2  
Then  
  φ[(a+ib)(c+id)] = (a2+b2) (c2+d2) 
     = [φ(a+ib)] [φ(c+id)] 
so that condition (i) is satisfied.  

We now write  α =  a+ib,  β =  c+id .  Then  

  
β
α

 =  λ =  p+iq,  say  

where p and q are rational numbers.  
There exist integers p′, q′ such that  

  | p′−p|  ≤ 
2
1

 ,  |q′−q| ≤ 
2
1

 

We write  
  λ′ = p′ + iq′ 
so that λ′ is a Gaussian integer.  We have 
  α−λ′β  =  (α−λβ) + (λ−λ′)β 
   = 0 + (λ−λ′)β  
   = (λ−λ′) β  
∴        α = λ′β + (λ−λ′)β  
Now α, β, λ′ being Gaussian integers it follows that (λ−λ′)β is also Gaussian integer.  
Here  
  φ{(λ−λ′)β} = {(p′−p)2 + (q′−q)2} φ(β)  

          ≤ (
4
1

4
1 + ) φ(β) < φ(β)  

Thus for every pair of Gaussian integers α, β there exist Gaussian integers λ′ and (λ−λ′)β such that  
  α = βλ′ + (λ−λ′)β  
where    φ {(λ−λ′)β} < φ(β) .  
Hence the domain of Gaussian integers is Euclidean.  
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Unit-II
Composition Series

Definition:
A series of subgroups G = G0 ∆ G1 ∆ G2 ∆ ---- ∆ Gr = (1)
of a group G is called a Composition series of G if

(1) Gi + 1 Gi for every i
and (2) if each successive quotient Gi / Gi + 1 is simple

The above composition series is said to have length r. The successive quotients of a composition series are
called the Composition factors of the series.

Examples:

1.  Consider the symmetric group S5. It has a normal subgroup A5 which is simple from unit I. Since 
S
A

5

5

≅ Z2

is also simple, we see that A5 S5 ∆ A5  ∆ (1) is a composition series of S5. This is the only composition series
of S5, because only non-trivial proper normal subgroup of S5 is A5.

2.  Consider S4, From unit I we have
S4 ∆A4 ∆V4 ∆E4 ∆(1), the composition peries of S4.

Recall V4 = {(1), (12) (34), (13) (24), (14) (23)}
is Klein’s four group and

E4 = {(1), (12) (34)}, Further

S
A

A
V

V
E

E
tells4

4

4

4

4

4

42 3 2
1

2= = = =, , ,
( )

each successive quotients 
S
A

A
V

V
E

4

4

4

4

4

4

, ,  and 
E4

1( )  is of prime order, hence are simple.

Theorem 1:
Every finite group has a composition series.

Proof:

Let G be a finite group. Use induction on G . If G is a simple then G ∆ ( )1  is a composition series of G. So
let G be not simple, Hence G has some maximal normal subgroup H, which has a composition series

H H H Hr1 2 3 1∆ ∆ ∆ ∆− − − − = ( )

 by induction. Since G H1
 is simple, so

G G H H Hr= − − − − =0 1 2 1∆ ∆ ∆ ∆ ( )  is a composition series of G.

Note that infinite groups need not have composition series. We can consider infinite cyclic group Z.

As every non-trivial sub group of infinite cyclic group Z is isomorphic to Z; as Z is not simple, we see that Z
has no simple subgroups. So we can not construct composition series of Z.
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Z Z Z Z Z∆ ∆ ∆ ∆ ∆2 4 8 16 − − − − − − − −

We can not end to 

Zr

 = (1).

Definition:

Let G G G G Gr= − − − − =0 1 2 1∆ ∆ ∆ ∆ ( )  be a composition series and suppose that

G H H Hr= − − − − =0 1 1∆ ∆ ∆ ( )

is another composition series of the same length r. We say that these series are equivalent if ∃  some

σ ∈ Sr

 such that

G
G

H
H ii

i

i

i

– ( )–

( )
.1 1≅ ∀σ

σ

Example 3.

Let G x G= < > =, ( )0 6

∴ = < > ≅G x Z6

 (from unit I).

Let G x1
2= < >.  and H x1

3= < >
We have two composition series:

G G G∆ ∆1 2 1= ( )  and

G H H∆ ∆1 2 1= ( )

These two series are equivalent, as

G
G

H Z
1

1
21≅ ≅( )  and

G G
H Z1

1
31( ) ≅ ≅

Θ G
G

x
x

G
G

G
H

x
x

G
H1

2
1 1

3
1

2 3= < >
< >

= = < >
< >

=
F
HG

I
KJ, , ,

and take σ = ∈( )12 2S

Theorem 2:
Jorden-Holder Theorem:
This theorem asserts that, upto equivalence, a group has at most one composition series.
Statement:
Suppose that G is a group that has a composition series. Then any two composition series of G have the same
length and are equivalent.

Proof:

Let G G G Gr= − − − − =0 1 1> > > ( )

and G H H Hs= − − − − =0 1 1> > > ( )

be two composition series of G. We use induction on r, the length of one of the composition series.

NG' '∆
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If r = 1, then G is simple and so 

G ∆( )1

 is the only composition series of G. So let r > 1 and assume by
induction that the result holds for any group having some composition series of length less than r.

If G1 = H1, then G1 has two composition series of respective length r – 1 and s – 1. Therefore by induction we
see that r = s and two composition series of G1 and equivalent. Hence G has two composition series which
are equivalent.

Therefore, we suppose G H1 1≠ .

Θ G G H G G H G1 1 1 1∆ ∆ ∆, , .∴

But 

G
G1

 is simple, so G H1 1/≤ , hence

H G H1 1 1<

 and so 

G H G1 1 = ,

because G H1
 is simple.

Let K G H G= ∩1 1 ∆ .  Now

G
G

G H

G
H

G H
H
K1

1 1

1

1

1 1

1= ≅
∩

=  and

G
H

G H
H

G
G H

G
K1

1 1

1

1

1 1

1= ≅
∩

=

Θ K G∆  and G has a composition series,

∴  K has a composition series, say
K K K K Kt= − − − − =0 1 1 1> > > > ( ).

G1  now have two composition series

G G G Gr1 2 3 1∆ ∆ ∆ ∆− − − − = ( )  and

G K K K Kt1 1 2 1∆ ∆ ∆ ∆ ∆− − − − = ( ).

These are of lengths r – 1 and t + 1, respectively. By induction, we get t = r – 2 and that the series are
equivalent. Similarly, H1 has two composition series:

H H Hs1 2 1∆ ∆ ∆− − − − = ( )  and

H K K K K t rr1 1 2 2 1 2∆ ∆ ∆ ∆ − − − − = =– ( ) ( – )Θ

Θ

 These have respective length s – 1 and r – 1, so by induction we see r = s and the series are equivalent.

We now conclude that the composition series

G G G K K Ks= − − − − =0 1 1 2 1∆ ∆ ∆ ∆ ∆ – ( )

and G H H K K Ks= − − − − =0 1 1 2 1∆ ∆ ∆ ∆ ∆ – ( )

are equivalent, because we have proved above

G
G

H
K1

1≅  and

NG''∆
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G
H

G
K1

1≅

.

Hence we finally conclude that our two initial composition series of B are equivalent.
Definition:
A series of sub groups

G G G G Gs= − − − − =0 1 2 1∆ ∆ ∆ ∆ ( )  of  group G is called a subnormal series of G if G Gi i+1 ∆  for
each i.

A subnormal series is called a normal series of G if 

G G ii ∆ ∀ .

Solvable groups:

First we define Commutators in a group G. Let a, b G∈ .  The element 

C a b a b= – –1 1

 is called a
Commutator and is denoted by [a, b]. The Commutator [a, b] = 1, only when ab = ba.

[ , ] [ , ],–a b b a1 =  i.e., the element, inverse to the Commutator is itself a Commutator. But a product of
Commutators need not be a Commutator. Thus, in general, the set of Commutators of a group is not a sub
group. The smallest sub group G1 of the group G containing all Commutators is called its Commutator sub
group. Note that the commutator sub group G1 is the set of all possible products of the form [a1, b1] ---- [ar,
br], where a b Gi i, ∈ , and r is a natural number. From

ab G gabg gag gbg a b

a b g G

a b a b

g g

g g g

bg = =
∈

=

− − −1 1 1

, ,

, ,

the following is esaily desired
which, as a consequence, implies that G G1 ∆ .

Remarks:
1. The commutator sub group G'

 of an abelian group is trivial.

2. The Commutator sub group of Sn is An, n ≥ 1.

3. The Commutator sub group of GL (n, F) is SL (n, F), F is a field.

4. The Commutator sub group A'n of An is An, is A'n = An, 

n ≥ 5,

 because the non-commutative group An,

n ≥ 5,

 has no non-trivial proper normal subgroups.

Theorem 4:
The Commutator sub group G' of a group G is the smallest among the normal sub group H of the group G for

which 

G
H

 is an abelian group.

Proof:
The Commutator [xH, yH] = [x, y] H

is trivial 

⇔ ∈[ , ] ,x y H

 is

G
H

 is abelian 

⇔ ⊂G H1 .

From [a, b]2
  = [ag, bg], a, b, g ∈ G, we get the second Commutator sub group G", i.e. the Commutator sub
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group of the Commutator sub group of the group G, is a normal sub group in G. The same result holds for the
k-th Commutator sub group G(k), i.e. the Commutator subgroup of the (k–1) -th Commutator subgroup
G(k – 1), k 

≥

2. Thus, any group G has a sequence of Commutator subgroups

G G G G G Gk k= − − − − − − − −0 1 2 1∆ ∆ ∆ ∆ ∆ ∆( ) ( ) ( – ) ( )

(Here G G G G G G( ) ( ) ( ) '', ', , )0 1 2= = = − − − −

Definition:
If for some k, we have G(k) = (1), then G is called solvable (Also soluble). Note that in the case of = An, n
≥  5, all members of above sequence coincide. i.e. An, n 

≥

 5 not soluable.

From unit I, we see that S4, S3 are solvable. An abelian group is solvable, and  non-abelian simple group is not
solvable.

or

A group is solvable if it has a subnormal series with each factor abelian.
Theorem 5:
1. A subgroup of a solvable group is solvable.
2. A homomorphic image of a solvable group is solvable.

3. If 

N G∆

, then G is solvable 

⇔

 N and 

G
N

 ar solvable groups.

4. An group of pm, where p is a prime number, is solvable.
5. If G and H are solvable, then G×H is solvable.

Proof:

1.
∴ ≤φH Gk k( )

 for all k, and G(k) = (1) for some k, as G is solvable, ∴  H is solvable.

2. Let φ: G 

→

 H be a homomorphism. Then φ (G) = Im 

φ

 is solvable because

φ φ( ) ( ( )) .( ) ( )G G kk k⊆ ∀

3. To show N and G N  are solvable:

It is trivial from above 1 and 2).

Now N and 

G
N

 are solvable, so we get subnormal series

 

N N N Nr= − − − − =0 1 1∆ ∆ ∆ ( )

 and

G
N

G
N

G
N

G
N

s= − − − − =0 1 1∆ ∆ ∆ ( )  such that 
N

N
i

i +1
 and 

(
)
(

)

G
N

G
N

G
G

i

i

i

i+ +
≅

1 1

are abelian ∀ i . Now we get

G G G G N N N N= − − − − = = − − − − =0 1 2 0 1 2 1∆ ∆ ∆ ∆ ∆ ∆ ( )

is a subnormal series of G having abelian successive quotients. Hence G is solvable.
or

We can use
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G
N

G N
N

k ke j( ) ( )
⊂

4. The centre Z (G) and the quotient group G Z G( )  are finite p – groups of strictly smaller order. So by

induction and using above parts of this thorem, we get G is solvable.

5. 1 ×H ≅  H is a solvable normal subgroup of G ×H, and 

G H
H

G
×
×

≅
1

 is also solvable. Hence from part

(3) G is solvable.

Nilpotent Groups
Definition:
Central Series of a group G:

A normal series G G G Gr= − − − − =0 1 1∆ ∆ ∆ ( )  of a group G is called a central series of G if, for

each i, 
G

Gi +1
 is contained in the center of 

G
Gi +1

 i.e.

G
G

Z G
G ii

i i+ +
≤ F

HG
I
KJ∀

1 1

A group G is said to be nilpotent if it has a central series.
Examples: 1.

1. An abelian group G has the central series G > ( )1 , and abelian groups are nilpotent.

2. S4, S3, the symmetric groups of degree 4 and 3 are solvable groups but they are not nilpotent.

Recall 

S A V E S A4 4 4 4 3 31 1> > > > > >( ), ( )

 are subnormal series in which each factor is abelian and
hence S4 and S3 are solvable.

But center of S i i e Z Si i, , , . . ( ) ( ).= =3 4 1

∴ ⊆ F
HG

I
KJ+ +

G
G

Z G
G

i

i i1 1
 does not hold ∀ i,

where G = S4 or S3.
Remarks:
1. The least number of factors in a central series in G is called nilpotency class (or just the class) of G.

2. The condition 
G

G Z G
G

i

i i+ +
⊆ F

HG
I
KJ1 1

 is equivalent to the Commutator condition that

G x G g G x Gi i i i+ + += ∀ ∈1 1 1,  and ∀ ∈g G.

G x G
Gi

i

i
+

+
∈F

HG
I
KJ1

1
 for any x G

G
G

Z
G

Gi
i

i i

∈ ⊆
F
HG

I
KJ+ +

,
1 1
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� = ∀ ∈+ + + +G x G g G g G x g Gi i i i1 1 1 1d id i d id i

� =+ + + + +G x G g G x G g Gi i i i i1 1 1
1

1
1

1
– –

� = ∀ ∈ ∀ ∈+ + +[ , ] , , .G x G g G x G x Gi i i i1 1 1

However,

G x G g G x G g G x gi i i i i+ + + + +=1 1 1
1

1
1

1
– – [ , ]

So the condition can be restated as

[ , ] , .x g G i x G and g Gi i∈ ∀ ∀ ∈ ∀ ∈+1

Hence in words, whenever, we take a commutator of an element of Gi with an arbitrary element of the group,
we end up in Gi+1 .

Remarks
1.  The trivial group has nilpotency class O.

2.  Non-trivial abelian groups hare nilpotency class 1.
Theorem 6 :  Nilpotent group are solvable.

Proof : Let G be a nilpotent group. So it has a central servies, which is a normal series with abelian successive
quotients and hence G is solvable.

Converse is not true. There are solavble groups that are not nilpotent. For example S3 can not have a central
series, as the last but one term of  a such a series must have to be a non-trivial subgroup of Z(S3)=(1), which
is not possible.
Theorem 7 : Finite p-group are nilpotent

Proof : Let P be a finite p-group, we prove it by induction on P  if P =p, then P is abelian and hence

nilpotent. Let Z=Z(P). Since Ζ ≠ ( )1 (because finite p-group ha non-trival center), by P/Z has a central
series.

p Z
Po
Z

P
Z

P
Z

P
Z

r= − − −∆ ∆ ∆ ∆1 2 ,  and

We get easily that the series

P P P Zo r= − − − − =∆ ∆ ∆ ∆ ∆ P   P   is21 1bg
a central series of  P.
Theorem 8 : Let G be a nilpotent group and suppose that H<G is a propersubgroup of G. Then the
normalzer of H  in G  is strictly larger than H i.e.
A niloptent  group has no proper self-normlizing subgroups.

Proof : Let 

G Go= − − −∆ ∆ ∆ ∆ G  G  G = 12 r1 bg

be  a Central Serie sof the nilpotent group G. Let 

H  g<

and let k be such that Gk+1 and 

Gk

<  h such a k

exists since Gr =(1) Now 

G H G Gr k, ,<
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Let x Gk∈ ∈ and g  G

Since G G Z G Gk k k+ +<1 1b g, we get 

x G,   Gk+1∈

Hence G G Hk , < < G and so G  Hk+1 k, 

We now get that G H But Gk < N g kbg. < H

Hence we must have H N HG≤ bg
Corollary : Every maximal subgroup of  nil potent G is normal in G.

Proof : Let H be a maximal subgroup of G. Since 

H N HG≤ bg

, by hypothesis we must have 

N H GGbg=

and

hence  H∆ G

Theorem 9 : If any finite group G is direct product of its. Sylow subgroups, then G is nilpotent,
Proof : From above theorem 7, it suffices to show that the direct product of two nilpotent groups is nilpotent.
It can be verified easily.
Example 1:
Normal series of Z under addition:

1. 0l q∆ ∆ ∆ 8Z  4Z Z

2. 0l q∆ ∆ 9Z  Z

Examples 2:

0l q∆ ∆ ∆ 72Z  8Z Z

can be refined to a series

0 4l q∆ ∆ ∆ ∆ ∆ 72  24Z  8Z Z

Note that two new terms, 24Z and 4Z have been insertd.

Example 3 :
We consider two series of Z15 :

0 5 15l q∆ ∆ Z

and 0 3 15l q∆ ∆ Z

These series are isomorphic

We see that Z Z15 55 3 0≅ ≅ l q and

Z Z15 33 5 0≅ ≅ l q
Example 4 :
We now find isomorphic refinements of the series given  in Example 1

i.e.

0l q∆ ∆ ∆ 8Z  4Z Z

(1)

0l q∆ ∆ 9Z  Z (2)
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we write the refinement

0 72 8 4l q∆ ∆ ∆ ∆ Z   Z Z Z (3)

of (1) and the refinement

0 72 18 9l q∆ ∆ ∆ ∆ Z    Z Z Z (4)

of (2)
Both refinements have four factor groups :

3. has 
Z
Z

Z
Z
Z

Z
Z
Z

Z
4

4
8

8
724 2 9≅ ≅ ≅, ,

72
0

72
z

Z or Zl q≅

4. has 
Z
Z

Z
Z
Z

Z
Z
Z

Z
9

9
9

18
18
729 2 4≅ ≅ ≅, ,

72
0

72
Z

Z or Zl q≅

Hence (3) and (4) have four factor groups isomorphic to Z4, Z2, Z9 and 72Z or Z.

Z
Z

Z
Z
Z

Z
Z
Z4

18
72

9
184 2≅ ≅ ≅ ≅, , 

4Z
8Z

8
72 9

72
0

729
Z
Z

Z
Z
Z

A
Z≅ ≅ ≅,

( )  (or Z)

Note carefully the order in which the factor groups occur in (3) and (4) is different.
Exmple 5 :

Consider G V Z Z= = ×4 2 2

We write a norml series for G=V4 :

G Z Z= × × ×2 2 ∆ ∆ Z   1  1 12 mr mr mr
This is a composition series, because

Z Z Z Z Z2 2 2 2 2× ≅ × × ≅1  Z 1 1 12mr mr mr mr,

But Z2 is a simple group. Therefore, above normal series is a composition series. The composition factors for
G=V4= Z2 × Z2 are Z2 and Z2

Exmple 6 :
Let G=S3, a normal series for G is given by

G S

S A Z A Z

=

≅ ≅
3 3

3 3 2 3 3

1

1

∆ ∆ A l q
l q,

Both Z2 and Z3 are simple group. Therefore, normal series for S3 is a composition series. The composition
factors for S3 are Z2 and Z3.
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Example 7 :

For n > 5 , the composition factors of the normal series

Sn ∆ ∆ An 1l q
are 

S A Z A An n n n≅ ≅2 1, l q

But Anis simple. Hence above is a compositin series for Sn. However, for 

n>5

, An is not abelian. Hence Sn

is not solvable.
Example 8 :

Let G1 and G2 be two groups and  N N1 1 2 2∆ ∆ G  G, are normal subgroups. Then the product

N G1 1 2× × N   G2 ∆ and

G G N N G N G N1 2 1 2 1 1 2 2× × ≅ ×b gb g

Solution

Let pi : 

G G Ni i i→

be the projection. Then 

Ψ:G G G N G N1 2 1 1 2 2× → ×

defined by

Ψ g g p g g for gi1 2 1 1 2,c h bg bgc h= ∈, p  G  2 i

is an epimorphism.

The Ker Ψbg= ×N N1 2 Hence

G G N N G N G N1 2 1 2 1 1 2 2× × ≅ ×b gb g
Illustration : 

Z R and, ,+ +b gb g∆

R R Z Z R Z R Z× × ≅ ×b gb gb gb g
Example 9 :

Consider the product 

G G× ',

let 

N G∆

and 

N G' '∆

. Then by above 

N N G G× ×' 'b gb g∆

 and

G G N N G N G N× × ≅ ×' ' ' 'b gb gb gb g
Now subnormal series

G N G N∆ ∆ ∆ ∆1 1bg l q, ' '

give two subnormal series of G G× ':

G G G N G N

G G N G G N

× × × × ×

× × × × ×

' ' ,

' ' ' '

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

1 1 1 1

1 1 1 1

l q l ql q l q
l q l q l q l q

If factors  are suitably permuted, they are isomorphic in these series.
Example 10 :
Let C be a cyelic group generated by a and O (c) be of prime power order pe. We write the composition
series of length e:

C C C C Ci e∆ ∆ ∆ ∆ ∆ ∆1 2 1− − − − − − − − = l q
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of length e in which each C
i
 is the Cyclic subgroup generated by 

a pi

this can be easily verified that above is
the only composition series for C.

Example 11 :
Let G be a cyclic group of order 30 units generator a.

G a e a a a a= = − − − −, , , , ,2 3 28 29αo t
The only subgroups of G other than G itself are:

I G e

G e a

G e a a

= 1

2
15

3
10 20

:

: ,

: , ,

l q
o t
o t

   

G e a a a a

G e a a a a a

G e a a a a

G e a a a a

5
6 12 18 24

6
5 10 15 20 25

10
3 6 24 27

15
2 4 26 28

: , , , ,

: , , , , ,

: , , , , ,

: , , , , ,

n s
n s
n s
n s

− − −

− − −
Note that the subscript i on G's indicates the order of the group. (e,g, o (G10) =10). Since G is cyclic, all the
subgroups are normal. Now we construct their composition series :

G e

G

G

G
G

G

∆ ∆ ∆
∆ ∆ ∆
∆ ∆ ∆
∆ ∆ ∆
∆ ∆ ∆
∆ ∆ ∆

 G  G  G          (1)

 G  G  G

 G  G  G

 G  G  G
 G  G  G                     

 G  G  G

15 5 1

1 3 1

10 5 1

10 2 1

6 3 1

6 2 1

= l q

(2)

The factor groups of (1) are

G G G aG

G G G a G a G

G G G a G a G a G a G

15 15 15

15 5 5
2

5
4

5

5 1 1
6

1
12

1
18

1
24

1

: ,

: , ,

: , ,, ,

l q
n s
n s

The factor groups of (2) are

G G G aG a G a G a G

G G G a G

G G G a G a G

6 6 6
2

6
3

6
4

6

6 3 3
5

3

3 1 1
10

1
20

1

: , , ,

: ,

: , ,

,n s
n s
n s

We are clearly, G G G G15 6 3≅ under the mapping

G G

aG a G
15 3

15
5

3

↔

↔
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G G G G15 1 5 1≅  under the mapping

G G

a G a G

a G a G

5 1

2
5

10
1

4
5

20
1

↔

↔

↔

G G G G5 1 3 6≅  under the mapping

G G

a G aG

a G a G

a G a G

a G a G

1 6

6
1 6

12
1

2
6

18
1

3
6

24
1

4
6

↔

↔

↔

↔

↔

Multiplication table for factor groups for G G
15 5

G a G a G

G G a G a G
a G a G a G G
a G a G G a G

5
2

5
4

5

5 5
2

5
4

5
2

5
2

5
4

5 5
4

5
4

5 5
2

5

The multiplication table for  G G3 1

G a G a G
G G a G a G

a G a G a G G
a G a G G a G

1
10

1
20

1

1 1
10

1
20

1
10

1
10

1
20

1 1
20

1
20

1 1
10

1

The isomorphism of G G
15 5 and G G

3 1
can be easily seen from above tables.

Remark : Above is very good example of the  Jordan-Holder Theorem.
Example 12 :
Any nilpotent group is solvable.

Solution :

By the definition of the kth center, each Z G Z Gk kbg bgis abelin, so any commutator of two elements of Zk(G)

must lie in Zk-1(G) (see (iv) of example 12 of section I). Hence, if G is nilpotent of class c, (A finite group G
is  defined to be nilpotent when there is some index c with Zc(G)=G, the first such index c is called the class
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of nilpotency of G) , so Zc (G) = G. Now G'(

Z G cZ Gc e
c

− − − − − =1 2 1, '' , ,
( ) l q

. So we get the derived series

G G G G
c c∆ ∆ ∆ ∆ ∆' ''

( )
− − − =

−1
1

b g l q G

.

Hence G is solvable.

Note that the converse is not true i.e. a solvable group need not be nilpotent. For example :

G A3 3 1∆ ∆bg
S3 is solvable but is not nilpolent because center of S3 is (1). (Every nilpotent group has a non-trivial center)

Exmple 13 :

Consider 

G Z S= ×2 3

. Now Z Z S Z and every Z S Z1 2 3 2 2 3 21 1× = × × = ×b g bg b g bgZk . Therefore, ascending

central series (or upper central series) never reach G. Hence Z S2 3×  is not niloptent.
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Unit-III

Modules
Definition

Let R be a commutative ring with identity 1. ( , )M R+ •  is called and R-module M if (M, +) is an abelian

group, together with a scalar multiplication 

R M×

–––→ Μ, written 

( , )r m

——→r.m satisfying

1. r m m.( )1 2+ =

r m r m. .1 2+

2.

( ).r s m+

=

r m s m. .+

3.

( ).rs m

=

r s m.( . )

4.

1.m

= m

for all 

r s R, ∈

 and 

m m m M1 2, , ∈

Remarks
Above are precisely the axioms for a vector space. In F-module is just an F-vector space, where F is a field.
Hence modules are the natural generalizations of vector spaces to rings. But modules are more complicated
as elements of rings need not be invertible.
Submodule

A submodule of an R-module M is a non empty subset 
M1

such that

1. x y M x y M+ ∈ ∀ ∈1 1,

2. α αx M x M R∈ ∀ ∈ ∀ ∈1 1

Cyclic Modules

An R-module M is cyclic if in M there is a generating element xo , such that

M Rx rx ro= = ∈{ }0 R

Remark

Any ring R is both a left and a right R-module over itself and also a ( , )R R -module. These modules are

donated by R R R RR R R, , .

The submodules of the module R R  are the left ideals, etc.

Simple (or irreducible) module : The R-module, M is called simple if it does not contain proper non-trival
submodules.
Examples
1. When R ≡ Z , the ring of integers :– Any abelian group V, with law of composition addition, is a module

over the ring Z, if
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n.v =

v v ...... v, n integer
n times

v v v m.v n m

m v m integer

O n

+ + + +
↵

− + − + + − = − = −
= − +

=

R

S
|||

T
|||

→
isa ve

when

and is ve

if zero

( ) ( ) ( ) ( ),
( ).

i.e. abelian group ≡ Z -module

2. A vector space V over a field F is an F-module

3. A linear Vector space 

F n

 is an Mn (F)-module if A.V is usual product, where

A a M Fi n n nj
= ∈×( ) ( ) , 

v

x
x

x
n

=

F

H

GGGG

I

K

JJJJ
×

1

2

2 1

Μ , the column vector v of length n from F n .

4. Let V be a vector space over the field F. T : V –––→ V is a linear operator. V can be made F x[ ] -
module by defining

f x v f T v( ). ( ) ,=

f x F x( ) [ ],∈v V∈

.

Free modules

Let M be a module over a ring R, and S be a subset of M.S is said to be a basis of M if

1.

S ≠ φ

2. S generates M

3. S is linearly independent.

If S is a basis of M, then in particular 

M ≠ ( )0

, if 

R ≠ ( )0

 and every element of M has a unique expression
as a linear combination of elements of S.

If R is a ring, then as a module over itself, R admits a basis, consisting of unit element 1 

( )1 ∈R

.

Free Module

A module which admits a basis. We include in definition, the zero module also for free module

Remarks

1. An ordered set ( , )....., )m m mk1 2 of element of a module M is said to generate (or span) if every

m M∈  is a linear combination :

m r v r vk k= + +1 1 ........

, ri ∈R

Here elements vi  are called generators. A module M is said to be finitely generated if there exists
a finite set of generators.

A Z-module M is finitely generated ⇔  it is finitely generated abelian group.

2. Consider,
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R

a

a

a

ain

i

n

=

F

H

GGGG

I

K

JJJJ
∈

R
S
||

T
||

U
V
||

W
||

2

Μ
: the ring R

( , )Rn
R+ ⋅  is a module over R, where +,. are defined :

a

a

a

b

b

b

a b

a b

a bn n n n

1

2

1

2

1 1

2 2

Μ Μ Μ

F

H

GGGG

I

K

JJJJ
+

F

H

GGGG

I

K

JJJJ
=

+
+

+

F

H

GGGG

I

K

JJJJ
 and  

r

a

a

a

ra

ra

ran n

.

1

2

1

2

Μ Μ

F

H

GGGG

I

K

JJJJ
=

F

H

GGGG

I

K

JJJJ

.

3. A module isomorphic to any of the modules 

Rn

 is called a free module.

Thus a finitely generated module M is free if there is an isomorphism. φ : ––~Rn M→ .

4. A set of elements { , ,....., }m m mk1 2 of a module M independent if

r m r m r mk k1 1 2 2 0+ + + =....... , r Ri ∈ , the ring, then 

ri = 0

 for each U.

5. Suppose a module M has a basis

{ , ,......, }m m mk1 2 . Then R Mk ≅

Define 
φ : R k

––––––→ M

( , ...... )r r rk1 2  ––––––→ r m r m r Rk k i1 1 + + ∀ ∈.........

φ is clearly module-homomorphism. φ is surjective : Let m be any element of M

then m a m a m a mk k= + + +1 1 2 2 ......... , ai ∈the ring 

R i∀

∴ 

∃ ∈( , ,......, )a a a Rk
k

1 2

 such that

φ ( , ,...., )a a a mk1 2 =

φ is injective :

φ φ( , ,...., ) ( , ,......... )a a a b b bk k1 2 1 2= �a m a m a m b m b m b mk k k k1 1 2 2 1 1 2 2+ + + = + +.... ....

⇒ ( ) ........ ( ) ,a b m a b mk k k1 1 1 0− + + − =

⇒

( )a b ii i− = ∀0

(since { ,..... }m mk1 is a basis for M)

⇒ a b ii i= ∀

∴ φ is a bijective ⇔ M has a bases; in this case M is a free module 

( )Θ R Mk ≅

. So a module M has a
basis ⇔ it is free.
The following result shows how homomorphisms are affected when there are no proper submodules.
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Theorem 1

Let M, N be R-modules and let f M N: →  be a non-zero R-morphism. Then

1. If M is simple, f is a monomorphism.
2. If N is simple, f is an epimorphism.

Proof
1. Ker f is a submodule of M, since f is not the zero morphism, we must have ker f = (0), because M is

simple, so only submodules of M are (0) and M itself (if Ker f = M, then f(M) = (0)  ⇒ f = 0, but

f ≠ 0

).

Hence Ker 

f f= �( )0

 is a monomorphism.

2. Imf is a submodule of N, But N is simple, so Imf 

= =f M( ) ( )0

or 

f M N( ) =

. If 

f M( ) ( ),= 0

 then

f = 0

 but 

f ≠ 0

. Therefore, 

f M N( ) .=

 Here f is an epimorphism.

Corollary : (Shur's Lemma) If M is a simple R-module, then the ring End

R M( )

of R-morphisms.

f M:  –––→ M is a division ring.

Proof

From (1) and (2) above, every non-zero f ∈ End 

R M( )

is an isomorphism and so is an invertible element in

the ring. Hence End R M( )  is a division ring.

Fundamental structure theorem for finitely generated modules over a principal ideal domain :
Before proving this we have to build some tools needed to prove above theorem :
Suppose we have a sequence of modules with a homomorphism from each module to the next :

......... – – – – ...........→ → → →
f

M
f

M
f

M
fo

o

1

1

2

2

3

This sequence is said to exact at M1  if

Im f1  = Ker f2

The sequence is exact if it is exact at every module

An exact sequence of the form

( ) – – – – ( )0 01 2→ → → →
α α β

M M M

is called a short exact sequence.
Recall that every module over a general ring R is a homonorphic image of a free module. Every R-module M
forms part of a short exact sequence.

( ) – – – – ( )0 0→ → → →G F M

where F is free, this is called a presentation of M; If M is finitely generated, F can be taken to be of finite
rank.

We shall use the result (without proving it)

"If R is a principal ideal domain, then for any integer n, any submodule of 

Rn

 is free of rank at most n."

Using this, we assume that above G is free, at least when M is finitely generated. More precisely, when M is
generated by n elements, then it has a presentation
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( ) – – – – ( )0 0→ → → →R R Mm n

where m n< .

Fundamental Structure Theorem for finitely generated modules over a principal ideal domain :
Theorem 2
Let R be a Principal Ideal Domain and M a finitely generated R-module. Then M is direct sum of cyclic
modules :

M R
Rd

R
Rd R

m

n m= ⊕ ⊕ ⊕ −

1
...........

, where d d i mi i+ = −1 1 1, ,......,

(Recall that a module M over a using R is cyclic if M has an element x for which M Rx= . Thus a cyclic
group is the same as a cyclic module over Z, the ring of integers. Every cyclic module is representable in the
form of a quotient module of the free cyclic module, i.e., in the case of a ring of Principal ideals it has the form

M
R
Rr

=

).

Proof
Suppose M is generated by n elements, then M has a presentation

( ) – – – – ( )0 0→ → → →R R Mm n
φ

,

Where m n< ,  where M = CoKernel if a homomorphism φ : –R Rm n→ , which is given by m n×  matrix A.
Now we Claim:

∃ invertible matrices P and Q of orders m, n respectively over R such that

PAQ

d

O d

dr
=

F

H

GGGGGGG

I

K

JJJJJJJ

1

2

0 0 0

0 0

0 0 0

0 0 0

..............

..............

..............................
........... .....

..............................
...................

Where d di i+1  for i r= −1 1,.........., ;  more precisely PAQ = diag 

( , ,....... , ,.......... )d d dr1 2 0 0

Two vector u,v are called right associated if ∃ ∈S GL R2 ( )  such that u = vS.

We show here that any vector (a, b) is right associated to (h, o), where h is an HCF of a and b. Since R is
a PID, a and b have an HCF h,  a = h; a', b = hb', a', b' ∈R . Since h generates the ideal generated by a
and b, we have h = ha'd' – hb' c', cancelling h we get or h = ha'd' - hb'c', Cancelling h we get 1 = a'd' - b'c',
Hence

( , ) ( . )
' '

' '
,a b h o

a b

c d
=

F
HG

I
KJ

( , ) ( , ) ' '
' 'h o a b c a

d b= −
−d i

Which shows (a, b) is right associated to (h, o).

Now we prove the general case, i.e. we find a matrix right associated to A which all entries of the 1st row
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after the first one are zero. We continue in this way, we find a matrix 

B bij= ( )

 right associated to A, such

that b oij =  for i<j. We shall now have to operate with invertible matrices on the left. We say two matrices
A and A' are associated if 

A SAT'=

, for invertible matrices S and T of suitable size.

By multiplying B on the left by an invertible matrix we can reduce the entries of the first column after the first
one to zero. By doing this we may get more non-zero elements in the 1st row, if it so happens, it will reduce
the length of the (1, 1) - entry, which allows us to use induction on the length of 

a11

 and we find that A is
associated to

a

A

1

1

0 0
0

0

............

Μ

F

H

GGGG

I

K

JJJJ
where 

A1

 is an (m-1) × (n-1) matrix. Now by induction on m+n, A1 is associated to a matrix in diagonal

form, say diag ( , ,........ , , ......... )a a a o o or2 3 . Now we combine this with previous statements we find that A
is associated to a diagonal matrix :

SAT = dig ( , ,........ , , ......... )a a a o o or1 2

If a ai1 1+  for i r= −1 2 1, ,...... , we get the required form. So we assume a a1 2×  and consider the 2 × 2
matrix formed by first two rows and columns. We get an equation

1 1

1
1

2

1 2

2o

a o

o a

a a

o a
F
HG

I
KJ
F
HG

I
KJ=

F
HG

I
KJ

If we reduce the matrix on the right to diagonal form as before we again reach the form SAT = diag

( , ,......., , ,....... )a a a o or1 2

, but with a1  if shorter length than before. After a finite number of steps we have

a
a

1

2
. By repeating this process we find that 

a
a i r

i
1 2, ,......., .= The same process can be used for

a a an2 3 1, ,......., −  and so we get the required form. Hence our claim is proved i.e.

∃  invertible matrix P and Q such that PAQ = diag 

( , ,......., , ,....... )d d d o or1 2

, where 
d

d
i

i+1
 for

i r= −1 2 1, ,.............,  and r m= , because φ is 1-1. Here P and Q correspond to changes if bases in 

Rm

and

Rn respectively; but these changes do not affect the Cokernel, so if v vn1 ,..........  is the new basis  in Rn, then

the submodule Rm has the basis d v d vm m1 1, ,......  and Cokernel takes the form

R
Rd

R
Rd

R
m

n m

1

⊕ ⊕ ⊕ −.............. , d
d i mi

i +
= −

1
1 1, ,....... ,

Where Cokernel φ = M ,  and

( ) – – – – ( )o R R M om n→ → → →
φ ,

R
m

R

R

n n

mφ φ
=

( )
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Corollary (application to finitely generated abelian groups)

Since every abelian group is Z-module, so every f.g. abelian group G by above theorem, can be written as
direct sum of finitely many cyclic groups of infinite. or prime-power orders.

Primary Decomposition
Theorem 3
Let R be a PID and M a f.g. torsion module over R. Then M can be written as a direct sum of sub modules

M p , where p are different primes in R and M p  consists of elements that are annihilated by a power of p.

(A module of the form M p  is called p-primary)

Proof

Let x M∈ ,  suppose that xa o a R= ∈, . Let = =a q q qr1 2 ..........  be the factorization of a into powers of

different primes, say q ai =  power of  

pi

. Put s
a
qi

i

= . Now the s i ri
s ,1 < < have no common factor, so

s c s c s c c Rr r i1 1 2 2 1+ + + + = ∈............ ,

Hence x xs c xs c xs cr r= + + +1 1 2 2 ............  and xs c q xaci i i i= = 0.Therefore, xs c Mi i pi
∈

∴

M M M Mp p pr
= + + +

1 2
..........

It is easy to prove that above sum is direct

M M
i

r

pi
= ⊕

=1

Rational Canonical form
See, 'Topics in Algebra' Herstein, Pages 305-308. Nicely given there.
Canonical  forms
We can get linear transformation in each similarity class whose matrix, in some basis, is of a particular nice
form. These matrices will be called the canonical forms.
Definition

The sub space W of V is invariant under a linear transformation T on V if T W W( ) ⊂  i.e. 

T x W x W( ) ∈ ∀ ∈

.

Reduction to triangular form
Theorem 5
If a linear transformation T on a vector V over a field F, has all its eigenvalues in F, has all its  then there exists
a basis of V in which the matrix of T is triangular.

Proof
We shall prove it by induction on the dimension of V over F.

If dim V = 1, then every linear transformation is scalar, have proved.
Let dim V = n > 1. Suppose that the theorem is true for all vector spaces over F of dimension n-1.

By hypothesis, T has all its eigen values in F. So let T have eigen value 

λ 1

 in F.∃  a corresponding eigen

vector 

v v o1 1( )≠

 such that 

T v v( ) .1 1 1= λ

Let 

W v= � �1

 = ∈{ : }α α1 1 1v F be a one-dimensional
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Vector space over F. Let x W x v F∈ = ∈, ,α α1 1 1  and T x T v v W( ) ( ) .= = ∈α α λ1 1 1 1 1  Hence W is T-invariant.

Let V V
W=  = dim, dim ( )V  = dim V

We j = din V-din W = n-1.

T induces a linear transformation 

T

on 

V

= 

V
We j

 defined by

T v W T v W v W V
W( ) ( )+ = + ∀ + ∈

Also minimal polynomial over F of T , divides the minimal polynomial of T over F. Hence all the roots of the
minimal polynomial of 

T

 are roots of minimal polynomial of T. Therefore all eigen values, of 

T

lie in F. Now

T

satisfies the hypothesis of the theorem. Since dim 

V n= − 1,

 so by induction hypothesis, ∃  a basis

v v vn2 3, ,......

 of V V
W=e j over F such that 

T

 is triangular.

i.e.

T v v( )2 22 2= α

T v v v

T v v v vn n n nn n

( )

( ) ........

3 32 2 33 3

2 32 3

= +

= + + +

α α

α α α
Μ Μ Μ Μ

Let v v vn2 3, ,........ be elements of V mapping to v v vn2 3, ,.....  respectively, then it is easy to prove that

v v vn1 2, ,........  form a basis of V. Now T v v( )[2 22 2 0− =α = W i.e.,

T v W v W W( ) ( )2 22 2+ + =α� − ∈T v v W( )2 22 2α
].

Now T v v W v( ) ,2 22 2 1− ∈ = � �α  HenceT v v v( ) ,2 22 2 21 1− =α αα 21 ∈F

⇒ T v v v( )2 21 1 22 2= +α α

Similarly, 

T v v v v

T v v v vn n n nn n

( )

( ) ............

3 31 2 32 2 33 3

1 21 2

= + +

= + + +

α α α

α α α
Μ Μ Μ Μ

Also T v v v( )1 1 1 11 1= =λ α  (Taking 

λ α1 11=

).

Hence 

∃

a basis 

v v vn1 2, ,........

 of V over F, such that T vi( ) = linear combination of vi  and its predecessors
in the basis. Therefore, matrix of T in this basis :

α
α α
α α α
α α α α

α α α α

11

21 22

31 32 33

41 42 43 44

1 2 3

− − − − − − − − −− − − − − − − − −

L

N

MMMMMMMMM

O

Q

PPPPPPPPPn n n nn_ _ _ _ _

Ο
Ο

Ο

is triangular.
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Jordan Forms
Theorem 4
If a square matrix A of order n has s linearly independent eigen vectors, then it is similar to a matrix J of the
following form, called the Jordan Canonical form,

J Q AQ

J
J

J s

= =

L

N

MMMMMM

O

Q

PPPPPP

−1

1

2

Ο
Ο

in which each Ji  called a Jordan block, is a triangular matrix of the form

Ji

i

i

i

=

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ

1

1

Ο
Ο

Ο
Ο

Ο
Ο

Ο
Ο

where λ i  is a single eigen value of A and s is the number of linearly independent eigen vectors of A.

Remarks

1. If A has more than one linearly independent eigen vector, then same eigen value λ i  may appear in
several blocks.

2. If A has a full set of n linearly independent eigen vectors, then there have to be n Jordan blocks so that
each Jordan block is just 1x1 matrix, and the corresponding Jordan canonical form is just the diagonal
matrix with eigen values on the diagonal. Hence, a diagonal matrix is a particular case of the Jordan
canonical form.
The Jordan canonical form of a matrix can be completely determined by the multiplicites of the eigen
values and the number of linearly independent eigen vectors in each of the eigen spaces.

Definition
Let V be an n-dimensional vector space over a field F. Two linear transformations S, T on V is said to similar
if ∃  an invertible linear transformation C and V such that

T CSC= −1

In terms of matrix form :

Two n × n matrices A and B over F is said to be similar if ∃  an invertible n × n matrix C over F such that

A CBC= −1

Proof of Theorem 4 is not important but its application is very important. (Interested readers may see proof
in Herstein P. 301-303)

Example 1

Let A be a 5 × 5 matrix with eigen value λ of multiplicity 5. Write all possible Jordan Canonical forms :

We can get 7 Jordan canonical forms :
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1.

∃

 only one linearly independent eigen vector belonging to 

λ

J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

0 0 0 0

This Jordan canonical form consists of only one Jordan block with eigen value λ on the diagonal

2.

∃

 two linearly independent eigen vectors belonging to 

λ

.
Then the Jordan canonical form of A is either one of the forms

J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

1
0

1 0

0 1
0 0

,  or  
J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

1 0 0

0 1 0

0 0 1
0 0 0

Each of which consists of two Jordan blocks with eigen value λ on the diagonal.

3. ∃  three linearly independent eigen vectors belonging to 

λ
Then the Jordan Canonical form of A is either one of the forms

J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

1

0
1

0
, or 

J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

1 0
0 1

0 0

Each of which consists of three Jordan blocks with eigen value λ on the diagonal.

4.

∃

 four linearly independent eigen vectors belonging to 

λ

.
Then the Jordan canonical form of A is of the form

J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ
1

0

This consists of four Jordan blocks with eigen value λ on the diagonal.

5.

∃

 five linearly independent eigen vectors belonging to 

λ

.

Then the Jordan canonical form of A is of the form.
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J =

L

N

MMMMMM

O

Q

PPPPPP

λ
λ

λ
λ

λ

This is just the diagonal matrix.

Remark
We see from (5) that the Jordan form of the matrix A consists entirely of | x | blocks ⇔  the algebraic and
geometric multiplicities coincide for each eigen value of A. This is of course precisely the criterion for
diagonalizability. (The algebraic multiplicity of the eigen value λ of the n × n matrix A is its multiplicity as
a root of the characteristic polynomial of A).
(The geometric multiplicity of the eigen value λ of the n × n matrix A is the dimension of the eigen space
corresponding λ. i.e.maximum number of linearly independent eigen vectors corresponding to eigen value λ).
Useful Information to determine J :
1. The sum of the sizes of the blocks involving a particular eigen value of A = algebraic multiplicity of that

eigen value.

2. The number of blocks involving a particular eigen value of A = the geometric multiplicity of the eigen
value.

3. The largest block involving a particular eigen value of A = the multiplicity of the eigen value as a root of
the minimal polynomial of A.

(The minimal polynomial of the n × n matrix A is the monic polynomial 
m( )λ

 of  least degree such

that 

m A O( ) =

. The minimal polynomial of A always divides characteristic polynomial of A).

Example 2

1.

A =
L

N
MMM

O

Q
PPP

0 1 2

0 0 1

0 0 0

A has only the eigen value λ which has algebraic multiplicity 3 and geometric multiplicity 1. E( )λ :

Eigen space for λ = 0 = 

{ ( , , ) : }α α1 0 0 ∈⊄

J =
L

N
MMM

O

Q
PPP

0 1 0
0 0 1

0 0 0

2. A =
− − −

− −

L

N
MMM

O

Q
PPP

2 1 3

4 3 3

2 1 1

Characteristic polynomial of A = − − −( ) ( )2 42λ λ λ = 2  occurs with geometric multiplicity



73UNIT-III

Hence J =
−L

N
MMM

O

Q
PPP

4 0 0

0 2 1

0 0 2

3. Let A be a 7 × 7 matrix whose characteristic polynomial is ( ) ( )2 34 3− −λ λ  and whose minimal

polynomial is ( ) ( )2 32 2− −λ λ .

Corresponding to λ = 3  there must be one 2 ×2 Jordan block and | x | Jordan block.

Corresponding to λ = 2  there must be at least one 2 × 2 Jordan block. Hence there must be either two
or three Jordan blocks for λ = 2 , according as to whether the geometric multiplicity of λ = 2  is two or
three.

Two possibilities for the Jordan form of A depending on the geometric multiplicity of the eigen value
λ = 2  :

J =

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

2 1 0 0 0

0 2 0 0 0

0 0 2 1
0 0 0 2

3 1 0

0 3 0

0 0 0 0 3

or
J =

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

2 1 0 0 0

0 2 0 0 0

0 0 2 0
0 0 0 2

3 1 0

0 3 0

0 0 0 0 3

Example 1
An irreducible right R-module is cyclic.
(Let R be a ring and M be a nontrivial right R-module M, M is called an irreducible right R-module if its only
submodules are (0) and M. Since MR ≠ ( )0  and MR is a submodule of M, MR = M and so an irreducible

module is unital. A right R-module M is called trivial if MR = (0), i.e. 

xr x M r R= ∀ ∈ ∀ ∈0 , .

 A right R-
module M is called cyclic if ∃ ≠o M such that mR = M. Thus a cyclic module is unital).

Proof

Let M be an irreducible right R-module. Let N x M xR= ∈ ={ }0 . N is a submodule of M and hence

N = ( ),0  i.e. lims P - 103 

xR x= � =0 0.

 Therefore, any non zero element of M generates M. For if

y M∈

 and 

y ≠ 0

, then yR is a non zero submodule of M and, therefore,  yR = M.
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Example 2
Any homomorphic image of a module M is isomorphic to a quotient module of  M.
Proof

Let 

ψ : M

––––→ M1  be a module epimorphism and let Ker ψ = N .  Now we define a mapping

f
M
N

: ––––→ M1  defined by f x N x x N M
N( ) ( ).+ = ∀ + ∈ψ

f x y N f x y N x y( ) ( ) ( )+ + = + + = +ψ = 

ψ ψ( ) ( ) ,x y x y M+ ∈f x N r f xr N xr x r f x N r( ) ( ) ( ) ( ) ( )+ = + = = = +ψ ψ∀ ∈r R

From above f is a module homomorphism. Further f is injective since Ker 

f N=

, the zero element of 

M
N ,

f is surjective also since ψ  is.

Hence 

M
Ker f

≅

Im f M M= =1 ψ ( ) i.e. 
M
N

M≅ ψ ( )

Q. 1. Let I be an ideal in a commutative ring R with 1. If M is an R-module, show that the set

S xm x I m M= ∈ ∈{ , }

is not in general an R- module. When is S an R- module?

Q. 2. If M is an R-module and if r R∈ , prove that the set 

rM rm m M= ∈l q
 is an R-module.

Q. 3. Let M be a right R-module. Show that ( : ) ,0 0M r R mr m M= ∈ = ∈l qis an ideal of R. It is called
annihilator of M.

Example 3
If M is a finitely generated R-module, it does not follow that each submodule of N & M is also finitely
generated.

Let M be a cyclic right R-module, i.e. M = mR for some 

m ≠ 0

of M. The right R-submodules of M is if
the form mS, where S is a right ideal in the ring R. Suppose S is a finitely generated right ideal,

say 

S a a ak= � �1 2, ,........,

. Now the submodule mS is generated by the elements ma ma mak1 2, ............, ,,

i.e. ms ma ma mak= � �1 2, ,...... and so is a finitely generated R-module. Actually, ms is a cyclic
S-module.

If R is a Noetherian ring (i.e. R has the ascending chain condition on right ideals. I I I1 2 3< < <.............

< = =+ +I I IN N N1 2 ......for some integer N), then every ideal is finitely generated. But if R is not a Noetherian
ring, then the ideal S need not be finitely generated and hence the submodule ms of M would not be a finitely

generated R-module. (See : F x x1 2, ,...........  is not Noetherian, F is a field).

Example 4
A finitely generated module is not in general a free module, for its generators are not necessarily linearly
independent. Consider a cyclic R-module M is generated by a single element m M∈ , i.e. 

mR

. But is not a
free module unless 

mr r= � =0 0.
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Example 5
The direct sum of free modules over R is a force module over R, its basis being the union of the bases of the
direct summands.

Example 6
A submodule of a free module over a ring R, is not necessarily a free module. However, every submodule of
a free module over a principal ideal domain (P.I.D.) is free.
We mention the following results without proof (can be seen in a standard book of algebra):–

Results

1. Let M be a  free module over a P.I.D. with a finite basis 

x x xn1 2, ,..........

. Then every submodule N &
M is free and has a basis of < n elements.

2. From (1) we can deduce that a submodule N & a finitely generated Module M over a P.I.D. is finitely
generated.

Recall that for each finite abelian group G ≠ ( )0  there is exactly one list 

m mk1 ,........

 of integers

mi > 1,  each a multiple of the next, for which there is an isomorphism.

G Z Zm mk
≅ ⊕ ⊕

1
............

the first integer m1  is the least +ve integer m m= 1  with mG = ( )0  and the product

m m m Gk1 2 0........ ( )=

Example 7
The possible abelian group of order 36 areZ Z Z Z Z Z Z36 18 2 12 3 6 6, , ,⊕ ⊕ ⊕

No two of these group are isomorphic.
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Unit-IV

Definition: Ring
Let R be a non empty set with two binary operations, called addition and multiplication, denoted by + and .,
(R, +, .) is called a ring if
1. Closure: a+bεR, a.bεR          ∀a, b ε R.

2. Commutative low with respect to +:   a+b=b+a ∀a, b ε R.
3. Associative laws:

a+(b+c) = (a+b)+c
a.(b.c) = (a.b).c     ∀a, b, c ε R.

4. Distributive Laws:
a. (b+c) = a.b+a.c

 ∀a.b, c ε R.(b+c).a = b.a+c.a
5. Additive identity: R contains an additive idenity element, denoted by 0, such that a+o=a and o+a=a

∀a ε R.
6. Additive inverses: ∀a ε R, ∃ x ε R such that a+x=0 and x+a=0

x is called additive inverse of a, and is denoted by –a.
Remarks: (R, + ,.) is abelian additive group and (R, .) is a semigroup, closure and associative law with
respect to ., so (R, + ,.) is a ring.

7. A ring (R, + ,.) is called a commutative ring if a b b a a b R. . ,= ∀ ∈

8. A ring (R, +, .)  is called a ring with identity if 

∃ ∈ ≠1 1R o,b g

such that a.1 = a and1.a = a 

∀ ∈a R.

In this case 1 is called a multiplicative identity element or simply an identity element.
Examples
1. (Z +, .) is commutative ring with identity 1 (Ring of integers under ordinary addition and multiplation.

2. E: set of even integers. (E, +, .) is a commutativering without identity element.

3.

M R
a b

c d
a b c d IR reals

x
2

2 2

1b g=
F
HG

I
KJ ∈

RS|T|
UV|W|, , , ,

then  M R2 1bgc h, , .+  is a non-commutative ring with identity I R=
F
HG

I
KJ ∈

1 0

0 1
1, .Θ

whose  +,  ;  are defined as addition of matrices and multiplication of matrices.

A B M IR=
F
HG

I
KJ =

F
HG

I
KJ∈

1 0

0 0

0 0

1 0 2, bg and

A B. , ,=
F
HG

I
KJ

F
HG

I
KJ =

F
HG

I
KJ

1 0
0 0

0 0
1 0

0 0
0 0

u L∈
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B A. ,=
F
HG

I
KJ

F
HG

I
KJ =

F
HG

I
KJ

0 0
1 0

1 0
0 0

0 0
1 0

A B B A. . .≠

If IR, the set of real numbers is replaced by E, the set of even integers, then

(M2  (E), +  ;) is a non-commutative ring without identity, as 

1 ∉ E .

4. Z4 : Set of integers module 4. 

Z o4 1 2 3: , , ,= m rZ4 , , ;+b g

 is a commutative ring with identity 

1

, where +, ; are defined shown in following tables:

             

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

     

.4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Important Remark:
As we saw in a group that Cancellation law holds but in a ring the cancellation law may fail for multiplication:

In Z but6 2 3 0 4 3 2 4, , . , . . .+ = = ≠b g
Definition Subring:

Let (R, +, .) is a ring and 
φ ≠ S ,

a non-empty subset of R. Then S , , .+b g(with same binary operations) is called
a subring if
1. Closure

a b R a b R a b R+ ∈ ∈ ∀ ∈, . ,

2. ∀ ∈ − ∈a R a R, .

Examples:

(1) Z6 , ,.+b g is a commutative ring with identity. 

S = 0 2 4, ,m r

(S, +, .) is a subring with identity (multiplicative)

4

, since 

4 0 0 4 2 2 4 4 4. , . , . .= = =

Note that parent ring Z6 , ;+b ghas identity 

1
~

. This shows that a
subring may have a different identity from that of a given ring.

Definitions: Units in a ring

Let R be a commutative righ with identity 1. An element a R∈  is said to be invertible if 

∃ ∈b R

 such

that a.b = l. The element a R∈  is called a Unit of R.

Divisiors of Zero

If 

a R∈

 and ab = 0 for some non zero 

b R∈

. Then ‘a’ cannot be unit in R, since multiplying ab = 0, by the
universe of a (if it exists)

a ab a b− −= � =1 1 0 0bgu L∈
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An element 

a R∈

such that ab = 0 for some 

b o≠

in R, is called a divisor of zero.

In 

Z4 2, ,. ,+b g

 is a divisor of  zero.

In  

Z4 2 3, ; , ,+b g

are divisors of zero.

2.  Let  IR be the set of real numbers, and

     

R f f IR IR R
function

=  →  +: . , ..{ } b g

is acommutative ring wth identity. + : defined by

f g x f x g x f g R

x IR

f g x f x g x x IR f g IR

+ = + ∀ ∈
∀ ∈

= ∀ ∈ ∀ ∈

b gbg bg bg

b gbg bgbg

,

. , ,

(Addition and multiplication are defined pointwise).

I x x R Ibg= ∀ ∈1 , is identity of the ring R.

Note that (R, +, .) is a commutative ring with identity and also with divisors of zero.

If f x
x

x
bg=

<
≥

RST
0 0

1 0

,
,

and g x
x

x
bg=

<
≥

RST
1 0

0 0

,
,

then f g x f x g x x R. .b gbg bgbg= = ∀ ∈0 1 In above example,  (f.I) (x)

= ∀ ∈

= ∀ ∈

= ∀ ∈

f x I x x IR

f x x IR

f x x IR

bgbg
bg
bg

1

If f g x f x g x I x x IR.b gbg bgbg bg= = = ∀ ∈1

and f x g x x Rbg bg≠ ≠ ∀ ∈0 0, ,  then f has a multiplicative inverse ⇔

 

f x x IR( ) ≠ ∀ ∈0

. Hence for example

f x xbg= +2 sin has a multiplicative inverse, but g x Sin xbg= does not.

Definition: Integral Domain:
If R + ,.b gis a commutative ring with identity such that for all 

a b R ab a or b o, , .∈ = � = =0 0

Examples:
1. Z6 , , .+b g is not an integral domain.

2.

R f f IR IRfunction=  →: : ,o t

 the ring of real valued functions, the example given on page 5 is not an

Integral domain.

Definition:
A non-commutative ring with identity is a skew field (or Division ring) if every non-zero element has its
inverse in it.
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Example:

D i j k R= + + + + + + ∈α α α α α α α α0 1 2 3 0 1 2 3 1, , ,m r

(D, +, .) is a division ring, where + , .  are defined

as

+ + + + + + + +

= + + + + + + +

∴ + + + • + + +

= − − − + − + − +

− − − + +

:

,

α α α α β β β β

α β α β α β α β

α α α α β β β β

α β α β α β α β α β α β α β α β

α β α β α β α β α β α

0 1 2 3 1 2 3

0 1 1 2 2 3 3

0 1 2 3 1 2 3

0 1 1 2 2 3 0 1 1 0 2 3 3 2

0 2 2 0 3 1 1 3 0 3 3

i j k i j k

i j k

i j k i j k

k i

j

o

o

o

o

b g b g
b g b g b g b g

b g b g
b g b g
b g β α β α β0 1 2 2 1+ −b gk ,

where i2 = j2  = k2  = i j R = -1,  ij = -ji = k,

jk = -kj = i, ki = -ik = j.

Let x i j k o in D= + + + ≠α α α α0 1 2 3 .

Then ∃ = − − − ∈y i j k D
α
β

α
β

α
β

α
β

0 1 2 3 .

such that

x y

where o

. ,=

= + + + ≠

1

0
2

1
2

2
2

3
2β α α α α

Definition:
A commutative ring with identity is a field if its every non-zero element has inverse in it.

Example:

IR, , . ,+b g the ring of real numbers is a field.

Theorem.   Every field is without zero divisor.

Proof.  Let F be a field and x,y ∈ F, x ≠ 0.  Then

xy = ⇒  x−1 (xy) = x−1 = 0
⇒ (x−1 x)y = 0

⇒ y = 0
Similarly, if y ≠ 0, then

ij

k
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xy = 0  ⇒  xyy−1 = 0. y−1

⇒ x.e = 0

⇒ x  = 0

Hence xy = 0 ⇒  x = 0  or y = 0 and so F is without zero divisor.

Remark.  It follows from this theorem that every field is an integral domain. But the converse is not true.
For example, ring of integers is an integral domain  but it is not a field.

Theorem:

Any finite integral domain is a field.

Proof:

Let D be a finite integral domain 

let o d in D≠

let D* = D - (o).

Define f D
x dx x D

D: * * *
 → ∀ ∈

 →f is one one price f x f y d x d y x y− = � = � =, bg bg

Since cancellation law holds in integral domain D. Since D is finite set, so one-to-one function 

f

from finite

set to itself must be onto, so f  is onto. Hence

∃ ∈ =

= ∈

a D such that f a

i e da a D CD

*

*

.

. . ,

bg 1

1

and so d is invertible. Hence every non-zero element in D is invertible, i.e. D is a field.

Remark:

Does there exist an integral domain of 6 elements? No, we shall explain in Unit V that every finite integral

domain must be pn , for some prime p, every + ve integar n.

Ring homomorphism:

Let R and S be rings. A function

ψ : R S → is called ring homomosphism

if ψ ψ ψa b a b+ = +b g bg bgand

ψ ψ ψa b a bb g bg bg= +

for all

a b R, .∈

Kernel of ring homomorphism:

Ker a R a oψ ψ= ∈ =: ,bgm r

is called the zero elements of  S.

Ker ψ

, the kernel of 

ψ

, denoted by ker

ψ

.
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Examples

1. The polynomial 

f x x x xp p( ) ...........= + + + +− −1 2 1

 is irreducible over Q, where p is a prime.

Proof

( ) ( )x f x x p− = −1 1 . Put x y= + 1 , then 

yf y y p( ) ( )+ = + −1 1 1

= y
p

y
p

y
p

p
yp p p+

F
HG

I
KJ +

F
HG

I
KJ + +

−
F
HG

I
KJ− −

1 2 1
1 2 ........... (1)

Where  
p

i
F
HG
I
KJ =

p p p p i
i

( )( ).............( )
!

− − − −1 2 1

, i p<

Not that 

p i× !

 and 

i!

 divides the product 

p p p p i( )( ).............( )− − − −1 2 1

. Hence p divides 

p

i
F
HG
I
KJ

Dividing (1) by y, we see that

f y y
p

y
p

p
p p( ) ............+ = +

F
HG
I
KJ + +

−
F
HG

I
KJ− −1

1 1
1 2

satisfies the hypothesis of Eisentein criterion and so it is irreducible over Q. Hence f x( )  is irreducible

2.
f x x x x x( ) = + − + +3 15 20 10 205 4 3

 is irreducible over Q, since p = 5 ,
5 3×

, 
5 202 ×

, 5 divide,
15, -20, 10, 20.

3.

f x x pn( ) = −

 is irreducible over Q, p is a prime number.

4. f x x x x x( ) = + + + +4 3 2 1  is irreducible over Q. Put x y= +( )1

f y( )+ 1

=

( ) ( ) ( ) ( )y y y y+ + + + + + + +1 1 1 1 14 3 2

= y y y y4 3 25 10 10 5+ + + +

Take p = 5 , so 

f y( )+ 1

 is irreducible over Q, hence 

f x( )

 is irreducible over Q.

Field Extensions
Definition
Let k be a field. A field K is calld an extension of k if k is subfield of K.

Let S be a subset of K. k(S) is defined by smallest subfield of k, which contains both k and S.k(S) is an
extension of k. We say k(S) is obtained by adjoining S to k. If 

S a a an= { , ........... )1 2

 a finite set, then

k S k a a an( ) : ( , ,........., )= 1 2 .

If K is an extension of k, then K is a vector space over k. so K has a dimension over k, it may be infinite. The
dimension of K, as a vector space over k is called degree of K over k. Denote it by

dim  Kk  = degree of K over k

          = [ : ]K k
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Normal Extension:
An extension K of k is said to be a normal extension of k if
1. K is an algebraic extension of k and

2. every irreducible psynomial f x k xbg∈  which has one root in K splits in K[x] (i.e. has all its roots
in K).

Theorem 1.
If K is a splitting field over k of some polynomial f x k xbg∈ , then K is a normal extension of k.
Proof:
Let a1, a2, ..........an be roots of f(x) in K. So K = k(a1,a2,........, an). Let p xbg be any irreducible polynomial

in k[x] which has one root b in K. Let L be a splitting field of 

p xbg

over K and let b1 be any root of

p xbg

 in L. Now from unit IV, we get a k-isomorphism 

σ

 of k(b) onto k(b1) such that 

σ

(b) = b1. Also

σ

(f(x))=f(x), since

f x k xbg∈ [ ]

 and σ  is k-isomorphism. Since K is a splitting field of

f x k x k b xbg∈ ⊆[ ] ( )[ ],

 So K is a splitting field of f(x) over k(b). Now K(b1) = k(a1, a2, ........., an, b1) is

a splitting field of f(x) over k(b1). Hence from Unit IV, ∃  an isomorphism 
ρ

 of K onto K(b1) such that
ρ σ( ) ( )a a= for all a k b∈ ( ). In particular, ρ σ( ) ( ) .b b b= = 1 Since a1, a2 ....... a Kn ∈  are roots of f(x)

over k, so 

ρ

(a1), 

ρ

(a2), ........., 

ρ

(an) are roots of 

ρ σf x f x f xb gbgb gbg bg= =

 in K(b1), so

ρ ρ( ), ) , , , ,a a a an1 1 2- - - - -,  (a nl q l q= − − −−  may be indifferent order. Let h(x1, x2, ------ xn) be a
polynomial be a polynomial in k[x] such that h(a

1
, a

2
, -----, a

n
) = b, say then

ρ ρ ρ ρ ρ ρ ρb h a a a h a a h a a Kn n nbg b gc h bg bgc h bg bgc h= − − − − − = − − −− = − − −− ∈1 2 1 1, , , ( ) , , , , .

Hence ρ b Kbg∈ ,  i.e. b K1 ∈ .  As b1 is arbitrary root of an irreducible polynomial P(x) in k[x] such that

b K p x1 ∈ , ( )  splits in K[x]. Therefore K is normal extension of k.
A partial converse is also true.
Theorem 2.
If K is a finite normal extension of k, then K is the splitting field over k of same polynomial in k[x].
Proof:
Let K = k(a1, a2,--------, an) and let p xibg be irreducible polynomial over k such that 

p ai ibg= 0

 v i.

Since K is a normal extension of k, each p xibg splits in K[x]. So p1(x) p2(x) --------pn(x) = f(x) say,

splits in K[x]. K is got by adjoincing roots of 

f xbg

 to k. Hence K is a splitting field of f(x) over k.
Perfect fields
Definition:
A field k is called perfect if k has characteristic o or if k has characteristic p, some prime p, and

k a a k kp p= ∈ =: .n s

Unit-V
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(Characteristic of a ring with identity:- Let R be a ring with identity 1. If 1 has infinite order under
additon, then the characteristic of R is O. If 1 has order n under addition, then the characteristic of R
is n). Note that the characteristic of a field is O or a prime.

Theorem 3.
Every finite field is perfect.

Proof:

Let k be a finite field of characteristic p. Define 

ψ:k k→

.

a a p→

  v a k∈

Then 

ψ a b a b a
p

a b
p

a b
p

p
ab bp p p p p p+ = + = +

F
HG
I
KJ +

F
HG
I
KJ + − − − − +

−
F
HG

I
KJ +− − −b gb g

1 2 1
1 2 2 1

= a bp p+
F
HG
I
KJ ≤ ≤

F
HG

I
KJ   p

p

i
 1 i p -1Θ ,

= ψ ψa bbg bg+

Θ  a  when a 0 in k, so ker = 0p ≠ ≠0 ψ bg.
Now ψ  is one-to-one and since k is finite, so 

ψ

 is onto,

∴ ≅ ⊆ = 
k

ker 
 k p

ψ
k k kp ,

we get k=k, hence k is perfect.

Theorem 4.
If p(x) is irreducible polynomial over a perfect field k, then p(x) has no multiple roots.

Proof:
CaseI: Characteristic k =0 (i.e. char k = 0). Let K be an algebraic extension of k. Let a K∈  and p(x) be an
irreducible polynomial over k s.t p(a) = 0 (i.e. p(x) = Irr (k, a). Then  

p a'( ) .≠ 0

 and p1 (x) is of smaller

degree than  p(x). Therefore 

p x p x( ) × 1bg

. Hence 

p a'( ) .≠ 0

 Thus 

a k∈

 is seperable over k and so p(x) has
no multiple roots.

Case II: Let char k = p.
Let p(x) have multiple roots

Since p'(a) = 0 and since deg p'(x) < deg p(x) so 

p x p x p x kak( ) '( ) ' ( )� = � =0 0

 for k = 1, 2 -------, n,

where p x x a x a x a x an
n

n
k

k( ) ,= + + − − − − − + + − − − − − + + ∈−
−

1
1

1 0   a k i  v i.

∴ = ak 0  when p k× .  Hence only powers of x that appear in 

p x x a x a x an
n

n( ) = + + − − − − + +−
−

1
1

1 0

are those of the form x xpi p i
= d i .  Hence p x g x pbg d i=  for some g x k x( ) .∈  (for example: if

p x x x x xp p p p( ) ,= + + + +6 4 23 5 1  then g x x x x xbg= + + + +6 4 23 5 1).
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Now p x g x k xpbg d i bg= ∈,  g x  and k kp = ,  so each coefficient ai of g(x) in k can be written as bi
p  for

some b ki ∈ .

Therefore we get

p x g x x b x b x bp pn
n
p p n p p p( ) ( )= = + + + − − − − + +−

−d i 1
1

1 0

= x b x b x bn
n

n p
+ + − − − − + +−

−
1

1
1 0d i

(

Θ

 Char k = p and so pi = 0 V i)

= 

Θ h x k x
pbgc h bg,  h x ∈

But then p(x) is not irreducible over k.

Finite Fields:

We know Z p + •d i is a finite field containing p elements 

0, , , , 1  2  - - - - - -, p -1n s

 with addition and

multiplication module a prime p.
Theorem 5.
Let k be a finite field such that char k = p. Then k has pn elements, for some positive integer n.
Proof:

Define 

Ψ :Z k→n n→ = nΨbg 1  V n Z∈

Where 

n
n tims

n is a 

1

1 1 1

 =  
0,

(-1)+(-1)+ - - - - -+(-1)= -m1,

 

+ ve integer

n = 0
n = -m, where m is a + ve integer

+ + − − − − +R
S
||

T
||

,

   m times

Clearly Ψ  is a ring homomorphism.
ker 

Ψ

 = pZ,  p = char k

∴ ≅ ⊆ ≅ ⊆ 
Z

ker 
e. 

Z
pZΨ

Ψ ΨIm Im .k  i. k

But 
Z
pZ

≅ Zp ,  a field of p elements, so Im Ψ  is a subfield of k, isomorphic to 

Zp

. Since k is finite, so

k is vector space of finite dimension over a field which is isomorphic to Z p . Let [k:F] = n. Let

u1 , , u  - - - - - - - u2 n  be a basis of k over F. Now each element x of k can be written as:

x u u un n i= + + − − − − + ∈α α α α1 1 2 2 ,  F   V i.
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As F p  = ≅Θ  F Z pd i,  each α i F∈  can be chosen p ways. Hence that total number of ways in which an

element in k can be defined in pn ways. So 

k pn=

.

Theorem 6.

1. Let k be a finite field with pn elements. Then k is the splitting of the polynomial x xpn

−  over the prime
subfield of k.

2. Two finite fields are isomorphic 

⇔

 they have the same number of elements.

3. Let k be a finite field with pn elements. Then each subfield of k has pm elements for some divisor m of

n. Conversely, for each +ve divisor m of n 

∃

 a unique subfield of k with 

pm

 elements.

4. V prime p and V positive integer n, ∃  a field with 

pn

 elemetns.

Proof:

1. Θ  k has 

pn

 elements, then k*, the multiplicative group of k has pn –1 elements. Hence for any

x k k∈ ⊂ =
∗

−, , x pn 1 1  so x xpn

=   V 

x k∈ .

. The polynomial 

f x x xpn

( ) = −

 has atmost pn roots

and so its roots must be precisely the elements of k. Hence k is the splitting field of f xbg over the
prime subfield of k.

2. is the corollary of (1). Let 

k1

 and k2  be two finite fields with pn  elements, containing prime subfields

F1 and F2 respectively. But F Z Fp1 2≅ ≅ .  By (1), k1  and k2  are splitting fields x xpn
−  over isomorphic

fields F1 and F2. Hence from unit (IV), 
k k k k1 2 1 2≅ ⇔ = .

3. Let F1 be the prime subfield of k. Let k1  be a subfield of k. Then

n k F k k k F k F n= = �: : : :1 1 1 1 1 1

Let k F m1 1: ,=  so any subfield k1  of k must have pm  elements such that mn .

Conversely, suppose 

m
n

 for some positive integer m. Then 

pm

–1 is a divisor of pn − 1  and so q(x) =

x pm − −1 1  is a divisor of 

f x x pn

( ) .= −−1 1

 As k is the splitting field of x x xf xpn

− = ( )  over F1. We know

that a k a apn

∈ =:{ } is a subfield of k and 

xf x x xpn

( ) = −

 has distinct roots. So k must contain all pm

distinct roots of xg(x). Hence these roots form a subfield of k. Moreover, any other subfield with pm  elements

must be a splitting field of xg x x xpm

( ) .= −  Hence there exists unique subfield of k with pm  elements.

4. Let k be the splitting field of f x x xpn

( ) = −  over its prime subfield isomorphic to Zp . Now

x x x xp pn n

− = − × −−1 1 1e j d i and p pn .  So it is easy to see that f x x xpn

( ) = −  has distinct roots.

a k a apn

∈ =:{ } is a subfield of k and so set of all roots of f(x) is a subfield of k. Hence k consists of
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precisely the roots of f(x), and it has exactly 

pn

 elements.

Now we prove the beautiful result given below:

Theorem 7.
The multiplicative group of non-zero elements of a finite field is cyclic.

Proof:

Let k be a finite field of pn  elements. k k p mn* ( ).= − = − =0 1 So k *  say. Let a k∈ *  be of maximal

order, say m1 i.e. o(a) = m1. Now we use the following result: (Let G be a finite abelian group. Let a G∈
be an element of maximal order. Then order of every element of G is a divisor of this order of a).

By above result, each element of 

k *

 satisfies f x xm( ) .= −1 1  Since k is a field, so there are at most m1

roots of f(x), hence m m≤ 1.  But m m1 ≤ ,  so m m= 1 , and <a> = m. Therefore k * =  < a >  implies the
result.

Algebraically Closed field:

A field k is said to be algebraically closed, if every polynomial 

f x K x( ) ∈

 of +ve degree has a root
in K.

Example (Fundamental Theorem of Algebra):
Every nonconstant polynomial with complex coefficients has a complex root i.e. splits into linear
factors.
Automorphism of extension:
Let K be an extension of the field k.

Define ψ  :  K  K→

a    aα Ψ bg

  V 

a K∈

such that 

Ψ Ψ Ψ a +bb g bg bg= +a b

Ψ Ψ Ψ abbg bg bg= •a b

Ψ  is 1–1 and onto

and 

Ψ 

(C) = C  V 

C k∈ .

Then 

Ψ 

is k–automorphism of an extension field K.

The group of all k–automorphisms of K is called the Galois group of the field extension K. This

group is denoted by 

G K
ke j

.

Galois extension:
An extension K of the field k is called Galois extension if
1. K is algebraic extension of k.

2. The fixed field of 

G K
ke j

 is k i.e. 

K KG = ∈ = ∈α α α;   for all  G K
kΨ Ψbg e j{ }

 = k
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In this case 

G K
ke j

 is called the Galois group of 

K
k .

Fundamental Theorem of Galois Theory:
Theorem 8.
Let K be a finite Galois extension of k. Then

1. There is a one-to-one order-reversing correspondence between the fields L such that k L K⊆ ⊆  and

the subgroups of 

G K
ke j

. This correspondence is given by

L K
L↔  Ge j.

2. If k L K⊆ ⊆ ,  then 

L
k

 is Galois 

⇔

 

G K
Le j e j  G K

k∆ .

In this case G
L

k G K
L

e j e j
e j  

G K
k≅ .

Proof:

1. Define Ψ : L : k L K  : G K
L⊆ ⊆ → ≤l q e j e j e j{ }G K

L G K
k

i.e. Ψ  is a mapping from set of all fields between k and K into set of all subgroups 

G K
ke j

 as follows:

Ψ L G K
Lbg e j=

Since K
k  is Galois, 

K
k

 is separable. Let M be another field such that 

k M K⊆ ⊆

 and 

M L≠ .

 So

we assume that 

a M∈ ∉,  a L.

 Since K
k  separable and 

k L K⊆ ⊆ ,  so K
L

 is separable, hence

∃ ∈ G K
Lρ e j

 such that 

ρ abg≠ a.

 This shows that G K
L G K

Me j e j≠ . .

Now Ψ L  and L M G K
Lbg e j e j e j= ≠ � ≠G K

L G K
M

So L M L M≠ � ≠Ψ Ψbg b g.  Hence there is a one-one mapping L G K
L→ e j from the set of all

fields between k and K into the set of all subgroups of 

G K
ke j.

To show Ψ  is onto:

Let H be a subgroup of 

G K
ke j

 and let L be the fixed field of N. Since 

K
k

 finite Galois extension,

so 

K
k

 is normal and separable, 

K
L

 is normal and separable. Hence 

K
L

 is Galois and L is the

fixed field of 

G K
Le j.

 Each element of H leaves each element of L fixed and so H G K
L≤ e j .

(Now we use the result: If G be a finite group of automorphisms of a field of K and F be the fixed
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field of G, then 

K : G F = 0bgh

.

Hence [K:L]=O(H). Also O(G(V/L)=[K:L], as K/L is seperate

Therefore 

H G K
L= e j

 and 

Ψ L G K
L Nbg e j= = .

 Hence Ψ  is onto.

If 

H H1 2≤

 are subgroups of 

G G K
k= e j

, then the subfield left fixed by H2, will be left fixed by all elements

of H1, so this subfield is contained in the subfield left fixed by H1. On the other hand if 

E E1 2⊆

, then it is

obvious that 

G K
E G K

E2 1

FH IK≤ FH IK

.

Consider the field L such that 

k L K⊆ ⊆

. Suppose 

L
k

 is normal and 

σ ∈G K
ke j

, 

ρ ∈G K
Le j

.

Claim: 

σ ρσ− ∈1 G K
Le j

  V 

σ ρ∈ ∈G K
ke j e j,  G K

L

Let a L∈ , then each conjugate of a is in L.

(

Θ

 Let K be an extension of k, a, b

∈

K be algebraic over k, then a and b are said to be conjugate over k if
they are the roots of the same minimal polynomial over k.).

Since 

σ abg

 is a conjugate of a.

(

Θ

 minimal polynomial p(x) over k s.t p(a) = 0,

σ σ σ σ σ σ∈ = � = � =G K
k p a p a ae j bgc h b gbgc h bgc h bg,  p a  i.e. 0 0 0

, a are roots of same minimal

polynomial over k).

∴

σ ρ ρ σ σa L a abg e j bgc h bg∈ ∈ � = �,  G K
L

σ ρ σ σ σ σ ρσ− − −= = � =1 1 1a a a a abgc h bgc h d ibg

� ∈−σ ρσ1 G K
Le j e j e j. Hence G K

L  G K
k∆

.

Now to show L
k  is Galois:

If suffices to show

L
k

 is normal, because we know that

L
k

 is separable. Let p(x) be nonconstant

irreducible polynomial in k[x] which has one root, say a, in L. Since 

K
k

 is normal, p(x) splits in k[x]

and all of roots of p(x) can be expressed in the form 

σ

(a) for some 

σ ∈G K
ke jp a p a p abg bgc h bgc hd i= � = � =0 0 0σ σ

.

Let ρ ∈G K
Le j , then 

∃

 an element 

T G K
L∈ e j

 such that 

ρ σ τσ= −1

, for some σ ∈G K
ke j

Θ  G K
L   G K

ke j e je j∆

.

Now ρσ στ ρσ στ σ τ= � = =b gbgb gbg bgc ha a a
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� = ∈ ∈ρ σ σ τa abgc h bg e j   a L and G K
LΘ .

� σ abg is left fixed by each element of  

G K
Le j

.

� ∈σ a Lbg

 for all 

σ ∈G K
ke j

. Hence p(x) splits in L[x].

which implies 

L
K

 is normal, 

L
K

 is already separably, so 

L
K

 is Galois extension.

Finally, to show :

G L
K

G K
k

G K
L

e j e j
e j≅ .

Define Ψ :  G K
k   G L

Ke j e j→

σ σ  α Ψbg
such that 

Ψ σbg

 = the restriction of 

σ to L,

 V σ σ∈ = ∗G K
ke j

(

Θ  L
k

 normal, 

σ L Lbg⊂

 V σ ∈G K
ke j, so 

σ

 induces an automorphism 

σ∗

 of L defined by 

σ∗

(l) =

σ (l) V 
l L∈ . Further 
σ α σ α α∗ = =bg bg  V α ∈k ,

 i.e. 
σ ∗

 leaves every element of k fixed, hence

σ ∗ ∈G L
ke jj

Now 

Ψ σ σ σ σ1 2 1 2b gb g=
∗

  V σ σ1 2, ∈G K
ke j

but 

σ σ σ σ σ σ1 2 1 2 1 2b gbgb gbg bg bg∗
= =l l l l

  V l L∈

= 

σ σ1 2b gbgb gbg∗ ∗
l l

  V l L∈

= 

σ σ1 2b gb gbg∗ ∗
l

  V l L∈

� =
∗ ∗ ∗

σ σ σ σ1 2 1 2b g b gb g

= 

Ψ Ψσ σ1 2b gb g∴ = 1Ψ Ψ Ψσ σ σ σ2 1 2b g b gb g

  V 

σ σ1 2, ∈G K
ke j

.

�  Ψ

 is a homomorphism.

σ σ  ker   Identity map on L∈ ⇔ =Ψ Ψbg⇔ = =∗ σb gbgl I l l( )

  V l L∈

+ +
+

+
+

+ +

2 0 1 1
0 0 1 1
1 1 0 1

1 0 1

1 1 1 0

c c
c c
c c

c c c

c c c
V
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⇔ ∈∗ σ G K
Le j

Hence ker 

Ψ = G K
Le j

.

Therefore 

G K
k G L

k
e j e jker

Im
 Ψ

Ψ≅ ⊆

� ≅ ⊆ 
G K

ke j
e j e j

G K
L

G L
kImΨ

Claim: Ψ  is onto:

Now we use the result: Let k be a finite normal extension k and let F and L be k-isomorphic fields between
k and K. Then every k-isomorphism of F onto L can be extended to a k-automorphism of K:

∴ ∈∗ σ G L
ke j

 is extended to k-automorphism 

σ ∈G K
ke j

.

Hence V 

σ σ∗ ∈ ∃ ∈G L
ke j e j  G K

k

such that Ψ σ σbg= ∗ , Hence Ψ  onto, so Im

Ψ

 = 

G L
ke j

.

Finally, we get

G K
k

G K
L

G L
ke j e j≅

Solution of Polynomial equations by radicals:
Definition:

An extension field K of k is called a radical extension of k if ∃  elements 

α α α1 , , ,  2 m− − − − − ∈ K

such that

1. K k= α α α1, , - - - - --, 2 mb g and

2.

α α α α α1 1 0 1
1n k and k∈ ∈ − − − − − −i

n
2

i   for , , ,b gi = 1, , , 2, - - - - - -m, and integers n  n  - - - - - -n1 2 m

For f x k xbg∈ , the polynomial equaton f(x) = 0 is said to be solvable by radicals if ∃  a radical extension
K of k that contains all roots of f(x).

Theorem 9.

f x k xbg∈

 is solvable by radicals over k ⇔  the Galois group over k of f(x) is a solvable group.

Definition:

Let k be a field, let 

f x k xbg∈

 and let K be a splitting field for f(x) over k. Then G K
ke j is called the

Galois group of f(x) over k or the Galois group of the equation f(x) = 0 over k. It can be shown that any

K

k

f

φ≅

≅
φ

V

K

L

k
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element of 

G K
ke j

 defines a permutation of the roots of f(x) that lie in K.

Θ  G K
k  f aiσ σ σ σ σ∈ = � = � = � =e j bg bgc h b gbgc h bgc h, 0 0 0 0f a f a f ai i i

as σ α αbg=   V α σ σ∈k so f = . Hence 

σ aibg

 are roots of f(x). Sinc there are only finitely many roots of

f(x)  

σ G K
ke j

 is one-to-one so 

σ

 defines a permutation of those roots of f(x) that lie in K).

See Proof of the theorem : Topics in Algebra, by Hersteim.

Theorem 10.
The general polynomial of degree 

n ≥ 5

 is not solvable by radicals.

Note: 

f x x a x a x an n
n n( ) ,= + + − − − − − + ∈−

−1
1

1  a ki

 is called general polynomial of degree over k.

Proof:
If F(a1, a2, -------an) is the field of rational functions in the n variables a1, a2, -------an, then the Galois group of

the polynomial f x x a x an n
n( ) = + + − − − − −−

1
1  over F(a1, a2, -------an) is Sn, the symmetric group of degree

n (see thu 5.6.3, Hersteins Topics in Algebra). But Sn is not solvable group when n ≥ 5 . Hence by thu 9, f(x)
is not solvable by radicals over F(a1, a2, -------an) when 

n ≥ 5

.

Summary of basic results, questions and examples:
1. Let F be a subfield of a field K. K may be regarded as a vector space over F. If is a finite dimensional

vector space, we call K a finite extension of F. If the dimension of the vector space K is n, we say
that K is an extension of degree n over F. We write

[K : F] = n
This is read, "the degree of K over F is equal to n."

2. Let 

e K∈

 be algebraic over F and let p(x) be the minimal polynomial of e over F. Let degree of p(x) be

n. Then n elements 

1, , , c, c  c2 n-1− − − − −

 are linearly independent over F and generate the smallest
field F(c) which contains F and e. Now F(e) is a vector space of dimension n over the field F. Hence the
degree of F(c) over F is equal to the degree of the minimal polynomial of e over F.

F c F I F Crrbg b g: deg ,=

Example 1.

Q 2e j :  Q = deg of irreducible

polynomial p(x) = x2–2 over Q = deg I Frr ,  2e j.

∴ = Q 2  : Qe j 2

.

3. If K is a finite extension of F and K = F(a1, a2, -------an), then a1, a2, -------an have to be algebraic over
F.
This is a consequence of important theorem:
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4. If K is a finite extension of F, every element of K is algebraic over F.

Example 2.

Q Q Q2 2 2 4, , 3  : Q  3  : Q 2   : Qe j e j e j e j= =

Put Q L L2 3e j e j e j= =, , Q 2  3 .

Then Q 2  3  : Q 2  : L, ,e j e j e j= =L 3 2

the degree of independent polynomial p x xbg e j= −2 3 over L = Q 2 .

i.e. L I Lrr3 2e j e j :  L  3= =deg , .

Q I Qrr2 2e j e j : Q  2= =deg ,  (from example 1)

Hence the result.

5. If p(x) is an irreducible polynomial of degree n in F[x], then 
F x

p x F c
� �

≅bg bg, where e is a root of

p(x). By (2), F(c) is of degree n over F.

If 
α β,   

are roots of the same inducible polynomial p(x) over F, then F Fα βbg bg≅ .

Example 3.

We construct a field of four elements. p x x xbg= + +2 1  is ireducible in Z x2 , as p 0 0 1 0di di≠ ≠,  p .

Hence 
Z x

p x Z c2
2� �

≅bg bg, where e is a root of p(x).

i.e. 

c c c cH cH2 21 0+ + = � = − =b gb gb g   in Z  1+ 1= 02Θ ,

Now elements of Z2(e) are {0, 1, c, c+1} which is illustrated from the following tables:

+ +
+

+
+

+ +

2 0 1 1

0 0 1 1

1 1 0 1

1 0 1

1 1 1 0

c c

c c

c c

c c c

c c c

• +
+

+
+ +

2 1 1

1 1 1

1 1

1 1 1

c c

c c

c c c

c c c
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