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ADVANCED ABSTRACTALGEBRA

Max. Marks : 100
Time : 3 Hours

Note : Question paper will consist of three sections. Section I consisting of one question with ten parts
of 2 marks each covering whole of the syllabus shall be compulsory. From Section II, 10 questions
from each unit. The candidate will be required to attempt any seven questions each of five marks.
Section 111, five questions to be set, one from each unit. The candidate will be required to attempt
any three questions each of fifteen marks..

Unit I

Groups, Subgroups, Lagrange’s theorem, Normal subgroups, Quotient groups, Homomorphisms,
Isomorphism Theorems, Cyclic groups, Permutations, Cayley’s Theorem, Simplicity of A forn>35.

Unit IT
Normal and Subnormal series. Composition Series, Jordan-Holder theorem, Solvable groups. Nilpotent
groups.

Unit III

Modules, submodules, cyclic modules, simple modules, Schure’s Lemma. Free modules, Fundamental
structure theorem for finitely generated modules over a principal ideal domain and its application to
finitely generated abelian groups. Similarity of linear transformations. Invariant subspaces, reduction to
triangular forms. Primary decomposition theorem and Jordan forms. Rational canonical form.

Unit IV

Rings, subrings ideals, skew fields, integral domains and their fields of quotients, Euclidean rings, polynomial
rings, Eisenstein’s irreducibility criterian. Prime field, field extensions, Algebraic and transcendental
extensions, Splitting field of a polynomial and its uniqueness. Separable and inseparable extensions.

Unit V

Normal extensions, Perfect fields, finite fields, algebraically closed fields, Automorphisms of extensions,
Galois extensions, Fundamental theorem of Galois theory. Solution of polynomial equations by radicals.
Isolvability of the general equation of degree 5 by radicals.
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Unit-I

Group
Definition

A non empty set of elements G is said to form a group if in G there is defined a binary operation, called the
product, denoted by., such that:

1. abeG Va,beG (closed)

2. (associative law)
3.  Jjanelement suchthata.e=e.a=a (the existence of an identity element in G)
4, such that
a.b =b.a = ¢ (The existence of an identity element in G)
Example 1:
Let

i.e. G is the set of nonsingular 2x2 matrix over rational numbers Q.

Now a.b under matrix multiplication is again 2x2 matrix over Q and det (a.b) = (deta) (detb) £ 0, as
deta ,detdh

2. We know that matrix multiplication is always associative. Therefore,

mbg = a.mcga,b,c eG

0
3. Ele:ﬁ ]kleG suchthat a./ =1l.a=a VYae G

4. If a € G, say then

1 1 2 Tdp
we get 4 —P -
182 — 43,4y 21 Qg
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1
aa’ = a.%@dj@l =e

similarly ¢ '.a=7I=e¢
~a'leG
Thus G is a group.
Note that a.b #b.a Va,b € G . Infact, let

buta.b= E 7i|k;t E'Bilk b.a
2 5

Definition
A group G is said to be abelian (or commutative) ifa.b=b.a. Va,beG.

Therefore, example 1 gives us anoncommutative group with infinite number of elements in it, since elements
are taken from Q, rational numbers which are infinite.

Definition

The number of elements in a group G is called the order of G. Denote it by O (G). When g has finite number
of elements, G is a called a finite group.

Example 2:

- H s b i

Gis again a set of 2 x 2 matrices with entries in Z, integers, but containing only four elements.

Gile-B “de-Bok-6

Letez a = = T =

1 -1 0 =1 0
0

we can verify 2’ =b?=c?= ¢= pf, = |

andab=c=ba,ac=b=ca,bc=a=cb.

it can be easily verified that G is a group under matrix multiplication. Thus G is an abelian group containing
four elements only (Note that entries are from Z).

Therefore, G is a finite abelian group.
Remarks:

In this example every element of G is its own inversei.c.a=a',b=b',c=cl,e=¢el.

q]
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Ril, Bl
2. Inexamplel, ¢ = ]ikb_ 21J

Note that ¢/ p~ = E‘i_]]m _gjil% E _filk
B kb

3. Inagroup G, we can prove that (ab)'=b'a' 'V a,b €G,

bbwj a™’ | =a db_I ia_I =aea'=al=e
Similarly (b a') (ab) =e.
Hence (ab)!'=b! a'

This rule can be extended to the product of n elements, we note that

B a a---a,0=a"a’~-—-a;' a
la eG,1<i<nC
<
Example 3:
If every element of a group G is its own inverse (i.e. a’> = e for all a € G), then G is abelian. We note that

o, Feetiata Hhenax =l € = a" , n,m € Z, Now

and Va,b G,

ab = bbg Base 6(
— b—] a—]
=b a.
Definition:
A group Gis said to be cyclic if every element of it is a power of some given element in it. This given element
is said to generate or a generator of the group G. Thus G is cyclic if 3a e G such that

x=a",ne?, ¥V xeG. Itisdenoted by G:<a> = m”: n GZS
Remarks 1:

A cyclic group is necessarily abelian but the converse is not true.

Let

xy=a" a"=a"=a""=a"a" = yx Vx, yeG.

Thus a cyclic group G is abelian. But example 2 shows that every abelian group is not cyclic. Every element
of G in example 2 can not be written as power of either a, b or c in it, verify it.
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Problem 1:

Let G be a non empty set closed under an associative product, which has left indentity e and left inverse for
all elements of g. show that G is a group.

Proof:
LetaeGandletb such thatba =e. Now
bab=(ba)b=eb=b.................. @)

suchthatcb=¢e
Hencec (bab) = cb = efrom (i)
= D@sG
=ab=c¢e

.. bis alsoright inverse of a.
Further,
ae=a(ba)=(ab)a=ea=a

Hence e is right identity also

Thus G is a group,

Subgroups
Let H be a non-empty subset of the group G such that
1.

2. a'eH VYaeH
We prove that H is a group with the same law of composition as in G
Proof:

H is closed under multiplication from (1). All elements of H are from G and associative law holds in G,
therefore, multiplication is associative in H also.

Leta € H,thena’! from (2) and so from (1), a a’! ,ie.e=aa'

which implies, identity law holds in H, (2) gives inverse law in H. Thus H is a group. H is called a subgroup
of G. Thus a nonempty subset of a group G which is a group under the same law of composition is called a
subgroup G. Note that e, the identity element G is also the identity of H.

A group Gis called nontrivial if G (e). A nontrivial group has at teast two subgroups namely G and (e).
Any other subgroup is called a proper subgroup.

Definition:
Letb,a G,bissaidtobe Conjugateofa G,if such that b =x" ax.
Problems:
1. LetaeG,letC (a)={x G:x'ax=a}
Prove that C (a) is a sbgroup of G.
2. is a sub group of G.

3. Find the centre of the group GL (2, R) of nonsingular 2 x 2 matrics over real numbers,
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Solutions:

. (g @: ¢,because e C ().
Letx,y C,(a). Then

Also, d] i_] ad] | =xax!
= xd]axix_] @ xeCq m
_dhiudr

=e ae

=da
- CG
=X (S

oY (J(@), hence C_(a) is subgroup of G

C,(a) is the set of all elements of G commuting with a.

= y_l ay @ xeCq
we <@ll C.(a centralizer of a
= ye

—xye CG@ Let x,yeZ gFrom above

hence

Thus Z (G) is a subgroup.
Note that

Definition
Z.(G) is called the center of the group G.

vl
3. et FE dike centre of GL (2, IR)

. x commutes with all non-singular 2 x 2 matrices, So in particular x commutes with
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(1)and (2) gives

E a+b| . ﬁc b+d|
C c+dik_ d i‘
Hencec=0,a=d

Similarly, gives

b=0.

0l
Therefore x = E ik where a #0, a€ R
a

is a scalar matrix and so commutes with all 2 x 2 matrices, (nonsingular or not) Hence Z (GL(Z,R), the
center of GL (2, R) Consists of all nonzero scalar matrices.

Remark:

This can be generalised that the center of GL (n, R), the general linear group of nonsingular n x n matrices
over IR, consists of all nonzero scalar matrices.

Coset of a subgroup Hin G:

Let G be a group and H be a subgroup of G. For any ac G, Ha= {ha/h H}. This set is called right coset
of HinG.Ase H,soa=ea Ha.SimilarlyaH={ah/a h}iscalledleft coset of Hin G, containing a.

Some simple but basic results of Cosets:
Lemma 1: Let H be a subgroup of Gand leta,b G.
Then

a Ha

Ha=H a H

1
2
3. Either two right cosets are same or disjointi.e. Ha=Hb or
4 Ha=Hb ba' H

5

i.e. there is one-one correspondence between two right Cosets

Proof:
1. a=eacHa @eeHg

2. Let ,Now h due to closure in H.

S ]
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. Ha cH. To show let h be any element of H.Since
We geta' andha’! .Hence h=he =h (a' a)
=(hal)a a. So . Thus H = Ha.
Ha=H ea a
3. Suppose

Thenx = hla andx = h2 b, for some hr h2 eH,

Thus

4, Ha= HhoH=Hba"' <ba™ € H, from (2)

5. Define f: Ha— Hb by ha—hb Vhe H.

~.fis one-one, By definition it is obvious that f is onto.

We again visit example 2,G= {e a,b,c}

i Do lRErs S Iyt e {eib).H.=fe c feachH,i=1,2,
W}% 35, Fencd O { /I? / Moot /G;I@b i2hie=ie g
- egj ha =hy “Now we are ready to prove a theorem called Lagrange's, Theorem.

1v1des
Theorem 1. Lagrange's Theorem (1770): /H/ divides IGl.
If Gis a finite group and H is a subgroup of G, then /H/ divides /G/. Moreover, the number of distinct right left

cosetsof Hin G is

Proof:

Since G is a finite group, we have finite number of distinict right cosets of Hin G say Ha , Ha,............. ,Ha.
Now for each a in G, We have Ha = Ha, for some i. By property (i) of Lemma 1, 4 e Hq. Hence, each
element of G belongs to one of Cosets Ha1 ie.

By property (3) of lemma 1,
Ha; "Ha;= ¢,
for i #].

~ l6l=

(Because f: H— Ha; defined by h— ha, is one-one & onto).
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Therefore we get

G = ] ] 4 ==~ ===~
—> r times —
i.e. |G| = r|H|
Warning:

Let G be a finite group of order 12. We may think that it has subgraps of order 12, 6, 4, 3,2, 1 but no others.
Converse of Lagranges theorem is false. 6|12 but there exists a group of order 12 which does not have a
subgroup of order 6. We shall give this example some time later.

The number of right (or left) cosets of a subgroup H in a group G is called the index of a subgroup H in the

group G. This number is denoted by /G:H/. When G is finite, by Lagrange's theorem, we have G:H| = % .
We can say:
|G| = |H| Xindex of H in G.
Corollary 1:
‘a‘ dvides ‘G‘
In a finite group, the order of each element of the group divides the order of the group.
Proof:

|a| = Oa >£= order of the subgroup generated by Hence the corollary.
Corollary 2:

Groups of Prime order are cyclic.
Proof:

divides
but 0@)“ land ‘G‘ is prime.Hence 0@}'} ‘G‘

Therefore <a> <G=>G= <a> ie..G is cyclic.

Corallary3:

aIGI

=e.
let G be a finite group, and let a e G. Then
Proof:

|G| = |a|n, nis a positive integer, by Corollary 1.

lajn

Hence a‘G‘ =a

= @a\j” _ o

e



UNIT-I 13

Corollary 4: (Feremat's Little Theorem):

For every integer a and every Prime p, a?=a (mod p).
Proof:

By division algorithm, a=pm +r, 0 <r < p. Hence

a =1 (mod p). The result will be proved if we prove r”  r (mod p). If r = 0, the result is trivial. Hence
which forms a group under multiplication module o p. Therefore by corollary 3,
r’!=1.Thus r» r(modp).

Normal Subgroups
If Gis a group and H is a subgroup of G, it is not always true that aH = Ha,
Definition:

A subgroup H of a group G is called a normal subgroup of G if a H = Ha for every a in G. This is denoted
byHAG.

Warning:
H Gdoesnotindicate ah =ha

H 4 G means that if , then 3 some h1 H such that

A subgroup Hof Gis normal in Gifand only if xHx'< HV x e G.

DA 35 G RO g < Ol and
Fﬂ(ﬁ@?@ﬂﬂ@@w@ﬂgl@ﬁ@c@ Va,b,ceG.

Let HAg. The set of right (or left) cosets of H in G is itself a group. This group is called the factor group of
G by H (or the quotient group of G by H).

Theorem 2:

Let G be a group and H a normal subgroup of G. The set % = { Ha/a € G} forms a group under the
operation (Ha) (Hb) = Hab.

Proof:

We claim that the operation is well defined. Let Ha=Ha and Hb=Hb..

Then a=ha and b1 = hzb, h,h, eH.

Therefore, Halb1 = th ahzb =Ha hzb = athb =aHb = Hab
(Inproving thisweused Ha=H a HandH G).

Further He = H is the identity and Ha'is the inverse of Ha, va G.
(Ha) (He) = Hae = Ha, and Ha Ha'=Ha a' = He = H,
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Thus is a group.

Theorem3: Theorem.
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Let G be a group and let Z (G) be the center of G. If is cyclic, then G is abelian.

Proof:

we claim

we show that g_I Zbgg Zbgfg eq.
let erthen

g_l xg = g_l Qgg: g_l Qx@ erbg]

= dlglx =ex =erb£

Hence g_jxge Ztagfg eq, Vxe Ztag
Therefore, g_IZbg cZ bng eq.

We can now form a factor group

Let %bg (x/bgﬁ%bg, cycncl,
Let a,beG. To show ab=ba
hence
azbg (674 bg]= x”Zbg
and 5200 Gz - "z Cwhere n, m are integers.

Thus aeaZbg>a=x"y for some yeZbg

and b = x"t for some t € tag

Now

=ba

We often use it as: If G is not abelian, then is not cyclic.
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Definition: Group Homomorphism

Let be a mapping from a group G to a group

:G

defined by

f@g f%wa,b eG.

f is called homomorphism of groups.

Definition: Kernel of a Homomorphism

Let G

be a group homomorphism and
denoted by Ker is defined by

be the identify of . Then Kernel of

We note that ker

7 A\ 2
& H

& ), i)
/

G. (Itis easy to show that ker f is a subgroup of G)
96 @hd beis DQecnitieof )

Let x be any element of ker

Then

f d_l if % f d_lgi b f ishomomorphismg
= le\
=e

( Any homomorphism of groups carries identity of G to identity of )
Explanation:

= f(xe)
= f(x)f(e)inG

So by cancellation propertyin ~ ,wehave = (e).)
Hence

= g 'xge ker fVge G,V xeker f =ker fAG

15
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Lemma 2:

Let beahomomorphismofGinto ,then

1. (e)= ,theidentify element of
2.
3. fle)=(f()yvxeG

Proof :

(1) isproved above
@ e=rBGrdxl=rBYAI
= (F(x)'e= ()" fx)(x")in G

= (f(x))" =€f(x'1)=f(x'1), Vxe G

Example 4:

ADVANCED ABSTRACT ALGEBRA

G =GL (2, R): group of nonsingular 2 x 2 matrices over reals and R* be the group of nonzero real number

under multiplication. Then
f: G=GL (2, R)——> R* defined by
A (A)=det A

Then (AB)=det(AB)=detAdetB= (A)

Hence is ahomomorphism

< Ae SL(2,R), the group of nonsingular 2x2 matrices over R, whose determinant is 1. Therefore,

ker

Theorem 4: (Fundamental Theorem of Group Homomorphism)

Lef :G be a group homomorphism with K = ker

.= £(G)

ie. %e,( 7)=Image(f)

(=:Isomorphic, when ishomomorphism, 1-1 and onto).
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Proof:
Consider the diagram
f
G
where

The above diagram should be completed to

Kg

f
We shall use
8 | (g )
Kg

to complete the previous diagram.

Define f(kg)= f (g)S V coset Kge %

? is well defined: Let Kg, =Kg,,g,,2,€ G

Then g, = kg, .k € ker (f )= K, and
flg)=rlkey)=fk)f (g.)=2f (,)=f(s.)

is ahomomorphism since

ke, Ke.)=T(Kee)=lee.)= e i)
(® fis ahomomorphism).

17
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fisl-lsince f (kg ,) = f (kg ,)=
f(g,)=f(g,). hence f(&)f(gz)_[ —¢ and f(g;'g,)=¢ (@ f is ahomo).
So g,¢5" € K =ker f, which shows that kg, = kg,.Thus  is 1-1. By definition f isonto. Hence f is
homorphism. So % = f(G)cG.
Consider Again Example 4:
f :GL,(R)=GL(n,R) R*
A

f(AB)=det(AB) = det(A)det(B)

So isahomomorphism.

the identity of R*.

& Ae SL, (R)= SL(n,R), the subgroup of of all nxn matrices with determinant 1.

By above fundmental homomorphism theorem, we get

GL(n,R)

Tkerf = Im(f)
. GLnR) _
1e SL(n,R) = Im(f)

But f is onto, since for

a,, 0
A= € GL(n,R) such that f(A)=detA=a

0

nxn

Hence m =

Theorem 5 (First Isomorphism Theorem)

GL(n,R) e

Let G be a group with normal subgroup N and H such that N ¢ H

Then and
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oo

Define fi%% by
Na proonor> Ha

is well-defined, since Na = Nbfor we get .Since N c H, thus gives and so

=Hb. f isahomomorphism:

the identity of
< Ha=H
S ae H
Hence ker . As ker fé%, SO %é%

The fundamental homomorphism theorem for groups implies that

Sae HNN /

Theorem 6 (Second Isomorphism Theorem)

Let G be a group, and let N 4G, let H be any subgroup of g. Then HN is a subgroup of G, and
Proof:
DefinefH — > by a pAnS>

is ahomomorphism since

a € ker f & f(a)= N,theidentity elementof HN anda H

So
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HN .
The arbitrary element of ~ is NaNbut ae H ¢ G and , s0 aN = Na, hence NaN = NNa = Na.

Therefore, f is onto. Now by fundamental homomorphism theorem for groups, we get

HN
. H =2
L.e. AImN_ N

Some results about cyclic groups: we prove the following results:
Theorem 7:

Let g be a cyclic group

1. IfGisinfinite,then G = Z

=7

2. If then G_/<n>

Proof:

1.  Let g=<a>beinfinite cyclic group.
Define f:Z—>gbyn

f isahomomorphism, since

f is onto: since G = <a>, so for any we get = 4 for some integer m,
Hence f(m)=a" =x= fisonto f is1-1:Let form, ne z, with
Then multiplying by ,we get 4" = o and since a is not of finite order, we must have m = n.

Hence every infinite cyclic group is isomorphic to additive group of integers.

2. Let G be afinite group with n elements,
. . %
Define /' ~,s——>Gbylm]
f is well-defined. We should show that if then where a has finite order n.
d=d"=d "= n|(k—m)(:) k = m(mod n)
f 1isonto, since G =<a>.

is 1-1: let then as above

Also

.. f isanisomorphism. Hence every finite cyclic group of order n is isomorphic to additive group of integers

mudule 7.
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Theorem 8. Let H be a subgroup of a cyclic group < a > and m is the least positive integer such that a™
€ H. Ifa" € H, then min.

Proof. By division algorithm, we have
n=qm+r, q,r € Z, 0<r<m
Therefore,
Ar — an—qm — an(a—qm)
=a" (@ 'e H
Hence r = 0, otherwise it will contradicts the fact that m is the least positive integer such that m is the

least positive integer such that a™ € H. Therefore
m

n=q
and so min . This completes the proof.
Let G = < a > be a cyclic group generated by a. Then a™' will also be a generator of G. In fact, if a" € G
,me Z,then
am — (a—l)—m
The question arises which of the elements of G other than a and a~' can be generator of G. We consider
the following two cases :
@) g is an infinite cyclic group
(ii) G is a finite group.
We discuss these cases in the form of the following theorems :

Theorem 9. An infinite cyclic group has exactly two generators.

Proof. Let a be a generator of an infinite cyclic group G. Then a is of infinite order and
G={..a",..,a'eaa,..,a,...}

Let a' € G be another generator of G, then
G={..,a* a'ea, a”....}.

Since a'"'e G, therefore

a™!'=a" for some integerr.
Since G is infinite, this implies
t+1 =rt

= (Dt =1
which holds only if t = 1+ 1. Hence there exist only two generators a and a~' of an infinite cyclic group
<a>.

Theorem 10. Let G = < a > be a cyclic group of order n. Then a" € G, m < n is a generator of G if and
onlyifgcd(m,n)= 1.

Proof. Let H be a subgroup of G generated by a™(m < n). If g cd (m,n) = 1, then there exist two
integers u, v such that

um + vn = 1

aum+vn — a

aum . avn = a

@.@"'=a

(@")'=a (@ (") =e)

ae H® @@")"'e H)

GcH.

But, by supposition, H < G.

Ltd sl il

Hence G =H =<a" >, thatis, a" is a generator of G.

Conversely, let a” (m < n) be a generator of G . Then
G={a":nelZ).

Therefore, we can find an integer u such that
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amu: a

— amu—l —e
= O@) |l (mu—1)
= n | (mu-1)
Hence, there exists an integer v such that
nv= mu—1
= mu-—nv= 1
= gcd(m,n)= 1.
This completes the proof of the theorem.

Theorem 11. Every subgroup H of a cyclic group G is cyclic.

Proof. If H = {e}, then H is obviously cyclic. So, let us suppose that H # {e}. If a" € H, then a™*e H.
So, we can find a smallest positive integer m such that a” € H. Therefore

<a">cH 6)
Moreover,

a'e H => A=qm, qe Z
Therefore

a?» — aqm

=(@M'e <a”>

S<at>c<a™>

= Hc<a"> (i1)
It follows from (i) and (ii) that

H=<a">
And hence H is cyclic.

Theorem 12. Let G= <a > be a cyclic group of order n and H be a subgroup of G generated by a™, m
<n. Then

OH)= ————
gcd(m,n)
Proof. We are given that
H=<a">
Let gcd(m,n) = d, then we can find an integer q such that

m = qd
= a"=a®
But a% € <a®>, where < a’ > is a subgroup generated by a’. Therefore
a"e <a’>
—H=<a">c<a’>.... i)
Since ged (m, n) = d, we can find u, v € Z such that
d=un+ vm

d un+vm

= a“=a
- aun . an
="M (@ Q™ = e)
Buta'™ e <a™> =H. Therefore
al e H
—=<a'>cH .. (i)
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From (i) and (ii), we have
H=<a'>
= O(H) =0(<a’>)

But
O(<a’>)= 2 @@ L=
(<a™>) 1 ( (a)d €)
Hence
n
oH)= ——,
H) gcd(m,n)

which completes the proof of the theorem.
Theorem 13. Any two cyclic groups of the same order are isomorphic.

Proof. Let G and H be two cyclic groups of the same order. Consider the mapping
f:G - H

defined by
f(a") =b'

Then f is clearly an homomorphism. Also,
f(a") =f(a®) = b =b’,

If G and H are of infinite order, then
r=s

andso a'=a’.

If their order is finite, say n, then
B'=b"= b7 =¢

= nl (r—s)
= nu= r-s, ue Z
: ar—s - anu
= (an)u =e
= a=2a.

Hence fis 1-1 mapping also. Therefore, G ~ H.
Theorem 14. Every isomorphic image of a cyclic group is again cyclic.

Proof. Let G =< a > be a cyclic group and let H be its image under isomorphism f. The elements of G
are given by

-2

- -3 -1 2 .3 r
G={..,a’,...,a",a"a ,aa,a,..,a,...}

Let be an arbitrary element of H. Since H is isomorphic image of G, there exists a" € G, r= 0, 1,....
Such that b = f(a"). Since f is homomorphism, we have

b= {@{Pyf6

r factors

= (f(a)’
Thus H is generated by f(a) and hence is cyclic.
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Permutations:

Let S be a non-empty set/ A permutation of a set S is a function from S to S which is both one-to-one and
onto.

A permulation group of a set S is a set of permutations of S that forms a group under function composition.

Example 5:
Let

Define a permutation ¢ by

This 1-1 and onto mapping  can be written as
Define another permutation

Then

We see (90)1)=0(c(1))=0(2)=1, and

Example 6: Symetric Groups

Let S, denote the set of all one-to-one function from {1, 2, 3} toitself. Then S, is a group of six elements,

under composition of mappings. These six elements are

1 2 3 12 3y, (1 2 3
e= , oL = L, =
1 2 3 2 3 1 3 1 2
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N " B 123¢123 B
op = =po
ote that 5> 7 3 3 2 g

Hence S, , the group of 6 elements, called symmetric group which is non-abelian. This is the smallest finite

non-abelian group, since groups of order 1, 2, 3, 5 are of prime order, hence cyclic and, therefore, they
are abelian. A group of order 4 is of two types upto isomophism, either cyclic or Klein 4-group, given in
example 2.

Cycle Notation

1 2345 6
G:
Let®Zl3 4 1 6 5 2

This can be seen as:

In cycle notation ¢ can be written as

Therefore from example 6:

It has 4 proper subgroups:

and

S0 A, is asubgroup of S, ofindex 2. It can be easily verified that A;A S, . Infact, it can

be generalised, that every subgroup of index 2 is a normal subgroup in its parent group. is called alternating

group.
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Example. Let

1 23 1 23
o= and B =
[231) [312J

be two permutations belonging to S;. Then

1 23 1 23
0

2 31 312

123

1 23

123
oo {123}

Thus oo = foa . Hence o and B commute with each other.

oo B

and

But the composition of permutations is not always commutative. For example, if we consider

(123} (123}
o= , B=
321 2 31

then
1 2 3
ool =
b (1 3 2}
and
1 2 3
oof =
b (2 1 3}
Hence

oof # Boat .
Definition. Let S be a finite set, x € Sand o € S, . The o fixes x if ou(x) = x otherwise o0 moves X.

Definition. Let S = {xy, X,,..., X, } be a finite set. If 6 € S, is such that
G(Xi) = Xi+1 » i= 1,2,..., k-1
O(xx) = X
and
oxj)=xj,]j#1, 2,.....k
then ¢ is called a cycle of length k. We denote this cycle by
0= (XiX2,..., Xk)
Thus, the length of a cycle is the number of objects permuted.

b

a
For example, (
b ¢

j € S; is a cyclic permutation because
a

fa)=b, f(b)= c, f(c)= a.
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In this case the length of the cycle is 3. We can denote this permutation by (a b c).

Definition. A cyclic permutation of length 2 is called a Transposition.

1 23

For example, [1 2) is a transposition.

Definition. Two cycles are said to be disjoint if they have no object in common.

Definition. Two permutations o, B € S, are called disjoint if
ax)=x = PE)# x
ax)#x = Px) =x

forallx € S.

In other words, o and P are disjoint if every x € S moved by one permutation is fixed by the other.
Further, if o and  are disjoint permutations, then oy = Ba. For example, if we consider

(123} (123}
o= ’B:
2 31 1 23

Definition. A permutation &L € S, is said to be regular if either it is the identity permutation or it has
no fixed point and is the product of disjoint cycles of the same length.

then o = Pot .

For example,

1 23456
=(123)@45606)

23156 4

is a regular permutation.
Theorem 15. Every permutation can be expressed as a product of pairwise disjoint cycles.

Proof. Let S = {xy, Xs,..., X,} be a finite set having n elements and f € S,. If f is already a cycle, we are
through. So, let us suppose that f is not a cycle. We shall prove this theorem by induction on n.

If n = 1, the result is obvious. Let the theorem be true for a permutation of a set having less than n
elements. Then there exists a positive integer k < n and distinct elements y;; ya,..., Yk in {X1, X2,..., Xpn}
such that

flyD=y2
f(y2) = ys
fyx-1) = yx
flyn) = y1

Therefore (y; y».... yx) is a cycle of length k. Next, let g be the restriction of f to
T = {Xl’ X2y ees Xn} - {Yl, Y2,.-.5 yk}
Then g is a permutation of the set T containing n—k elements. Therefore, by induction hypothesis,

g=00p... Oy ,
where o1, O ,..., Oy, are pairwise disjoint cycles. But
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f= (Y1 Yo ... yk) og
= (Y1 y2.... yk) o O ... Oy
Hence, every permutation can be expressed as a composite of disjoint cycles.

For example, let

1 234567289
[6 4725189 3)
be a permutation. Here 5 is a fixed element. Therefore, (5) is a cycle of length 1. Cycles of length 2 are
(1 6) and (2 4) whereas (3 7 8 9)is acycle of length 4. Hence
f=5)16) 24 B3 78 9

Theorem 16. Symmetric group S, is generated by transpositions, i.e., every permutation in S, is a
product of transpositions.

Proof. We have proved above that every permutation can be expressed as the composition of disjoint
cycles. Consider the m-cycle (xi, Xa,..., Xm). A simple computation shows that

(X1 X2.+0 Xm) = (X1 Xp) ... (X1 X3) (X1 X2),

that is, every cycle can be expressed as a product of transposition. Hence every permutation o € S, can
be expressed as a product of transpositions.

Remark. The above decomposition of a cycle as the product of transposition is not unique. For
example,

12 3)=13 d 2y=3B 231
However, it can be proved that the number of factors in the expression is always even or always odd.

Definition. A permutation is called even if it is a product of an even number of transpositions.

Similarly, a permutation is called odd if it is a product of odd number of transpositions.
Further,

@) The product of two even permutations is even.

(ii) The product of two odd permutations is even.

(iii))  The product of one odd and one even permutation is odd.

(iv)  The inverse of an even permutation is an even permutation.

Theorem 17. If a permutation is expressed as a product of transpositions, then the number of
transpositions is either even in both cases or odd in both cases.
Proof. Let a permutation ¢ be expressed as the product of transpositions as given below:
o =00, .... 0= BII32 BS
This yields
-1 p-1p-1
€e=0u0 ... 0 P BHﬁl

= 0 ... O BSBS—I [32[31 ,
since inverse of transposition is the transposition itself. The left side, that is, identity permutation is even

and therefore the right hand should also be an even permutation. Thus r+s is even which is possible if r
and s are both even or both odd. This completes the proof of the theorem.
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Theorem 18. The set of all even permutations in S, is a normal subgroup. Further O(A,) =

Proof. Let A, be the subset of S;, consisting of all even permutations. Since
@) the product of two even permutations is an even permutation.
(i1) the inverse of an even permutation is an even permutation,

it follows that A, is a subgroup of S,.

To prove that A, is a normal subgroup of S,, we proceed as follows :
Let W be the group of real numbers 1 and —1 under multiplication. Define

f: Sh,—>W
by

f() =1 if ais an even permutation
f(or) =1 if o is odd permutation

Then it can be verified that f is homomorphism of S, of W. The kernel (null space) of f is given by
K= {aeS,: flay=eW=1}

= {ae S,: fl)=1}
= {oa:aiseven }
= A,.

Thus A,, being the kernel of a homomorphism is a normal subgroup of S, .

Moreover, by Isomorphism Theorem,
S

L =W.
AII
Therefore,
S
oWwW) =0 o
W) (Aj
_ 0OG,)
O(A,)
But O(W) = 2, therefore,
,_ 06,
O(A,)
or
In
oAy =28 _ 2
2 2

This completes the proof of the theorem.

29

Definition. The normal subgroup of A, formed by all even permutation in S, is called the Alternating

Group of degree n.

In
We have shown above that order of A, is 7 .
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Theorem 19:

Cayley’s Theorem

Every finite group is isomorphic to a group of permutations.

Proof:

Let G be any group. We must get a group G of permutations such that it is isomorphic to G.

For any g in G, Define a function

Claim: ¢, isapermutationon G.

¢, onto: Let x be any element of G. So 3 g'x € G such that

9, (870 =g(g ') =(gg7) x=nx.
¢, is one-one:
Let ¢,(x) = ¢,(y)

so gx = gy; hence
= x=y.

Now,

Let

Claim:

is a group of permutations under composition of mappings.

=g (hx)

@, 0. 010 =@, 11 @
= Piom: (X)
=00y (0=(4, 6,)
=6, (B, ()
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=9, [, 9, (0

(associative)
@, istheidentiy and ¢, = (9"
P, 0. =0, =9, VgeG, and

9.0, =0,1 =0 hence (#,)" =0 )

g
Thus g = mg : g€ GSisa group of permutations.
Define y:

g —¢, VgeG

Le.y

If g=h, then is trivial, so yis a function.

VY is one-to-one:

If then ¢, (¢) =@, (e) or ge=he ie.
ikl ggﬁw‘%@}@(h) g=h,i.e. yisone-one.
by definition of y,
yis onto.
yis ahomomorphism:
v v v

Hence isanisomorphism and so

Remark:

g is called left regular representation of g.

Simplicity of A_for

Definition:

A group is simple if its only normal subgroups are the identity subgroup and the group itself.

The first non abelian simple groups to be discovered were the alternating groups The simplicity of
A was known to Galois and is crucial in showing that the general equation of degree 5 is not solvable by
radicals.

Theorem 20.

The alternating group A is simpleif n 2 5.
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For proving this we shall need a simple fact about 3 —cyclesin A

Lemma 3:
A is generated by cycles of length 3 (3 —cycles) if
Proof.

Every even permutation is the product of an even number if 2 — cycles. Since (a, b) (a, c) = (a, b, ¢) and
(a,b) (c,d)=(a, b, ) (a,d,c), an even permutation is also a product of 3 —cycles. Further, 3 —cycles are
even and thus belong to A .

(Here we have taken product from left to right).
Proof of Theorem:

Suppose it is false and there exists a proper nontrivial normal subgroup N.

Assume that a 3 —cycle If (a', b, ¢') is another 3 — cycle and such that

T =
alb'c'
» b'c' b ¢ bc
7' (a,b,c) = o
alb c c alNlalb' ¢

® r e S§,, so 7 may be odd, hence we replace it by even permutation

where e, f differ from a', b', ¢' without disturbing the conjugacy relation (here we use the fact n = 5.
Hence (a', b', ¢") and N = A by above lemma 3. Therefore, N can not contain a 3 —cycle.

Assume now that N contains a permutation ~ where disjoint cyclic decomposition involves a cycle of length
atleast4, say

Then N also contains

]
T = Q,az,ajg Em,az,ajg

Hence N contains 7~/ 7’

=(a,, a,, a,): Note that other cycles cancel here.

H
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This is impossible. So nontrivial elements of N must have cyclic decomposition involving cycles of length 2 or
3. Moreover, such elements can not involve just one 3 — cycle — otherwise by squaring we would contain a 3
—cyclein N.

Assume that N contains a permutation 7 = (a, b, ¢) (a', b', ¢') ———— (withdisjoint cycles). Then N contains
B, c.b) (@b o)@.b,c)-—-=(@.b.c)=(a.a,b)(cc, b')s
Hence N contains which is impossible. Hence each element of N is a product

of an even number of disjoint 2 — cycles.

If then N contains for all c unaffected
by 7.

Hence N contains

It follows that if then

But then N will also contain

7 =(a;, b,) (a,,by) 7 (a,, b)) (a;.b,)

=(a,,a,) (a;, b)) (b,,b;) (a,,b,) ———— and hence 7 7'=(a,, a;,b,) (a,,b;,b;) which is final
contradiction.

Hence A is simple for n > 5.

As promissed earliar, to give an example that converse of Lagranges theorem is false:
Example 7:

The elements of A , the alternating group of degree 4, are

(D,

(12) (34), (13) (24), (14) (23),

(123), (123)%,

(124), (124,

(134), (134),

(234), (234

Which are 12 in number.

A, has 3 cyclic sub-groups of order 2.
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A, has 4 cyclic subgroups of order 3.

The Klein’s four — group V,:

is anormal subgroup of A,

Each

But N, is not normal subgroup of A, i.e.
Hence Normality is not a transitive relation i.e.
AAB,BAC= A AC ingenral.
Converse of Lagrange’s Theorem:

but A, does not contain a subgroup of order 6.

Suppose 3 a subgroup Hin A, of order 6. Then[A,:H]=2 = H 4 A,

So we consider a quotient group A%_I .
(123),(124), (134), (234), (132), (142), (143), (243) are elements of A,.

A,

Q) ik 2, b’23) ng H, the identity of

= (23 H=H=(U32)H=H

= {U32)e H

Similarly, we can show

(123),(124), (142), (134),(143), (234), (243)

are elements of H. Therefore H contains 8 elements, which is absurd.

has no subgroup of order 6, although 6”144‘ .

Examples:

ADVANCED ABSTRACT ALGEBRA

1. Ifthere exists two relatively prime positive integers m and n such that a"b™ =b™a™ and a"b"=b"a", v a,

b eagroup g, then g is abelion.

Solution:

To show ab =ba wa, .As m, n are relatively prime positive integers, therefore, mx + ny = 1for some



UNIT-I 35

integers x and y. Note that x and y both cannot be +ve integers because if 1 in R.H.S. Let x be a +ve integer
and y be -ve integer. Hence

mx—ny bmx—ny

mx ﬁ -n"%f
a b
S @i diys

T dil @ e

Claim: g/'g) =g} ¢/ ¥ g,8,€G¥

ab=a

Consider

Caution:

We can not write mx times, if x ¢ N , X is -ve integer. Here mx is a+ve integer as

NS ?all.iy,léalnnumbers.
A ) 3

@l g7 where g, =@igrleG

Qi gye @as" =b"a"s a beG(
(H
i el Y
Also @' g5 | :{ '3 | }
.ny _]
_ {dz" gl } from above

as nye N.

Mo % i e P71 I @)

Hence from (1) and (2) we get

= v 8,8 €0, ¥ €))
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Therefore,

ab =

dx |m@L‘ |n d’v |ndx |m da", b” eGi
@Ly |ndx |m d” |md‘ |n @bx, a” eGi from (3)
@L’V |ndx |m dr |md‘ |n @ambm =b"a" ¥ a, beGg

=ba

isab=ba anda, b € g.

(2) (Groups of units modulo n)

Letnbeapositive integer. Theset ~ of units modulo n is an abelian group under multiplication of congruence

= od,'f | = ¢(n), the Eulers phi-function.

z;

classes. The group Z* is finite and

Special Case: Z;

Multiplication table in Z;

(] Bl 51 (7]
(R N B I ) I ) I V)
(Bl | B o1 [ Bl
51 | 61 71 01 B3l
(71| 71 61 B[]

zF ={[1],[3], [5], [7]} : Set of units (invertible elements) modulo 8, [3] [3] = [9] = [1] mod 8
[51(51=1[25] [1L[71[(71=[49] [1].

0(8) = 4.

3) ={[11, (2], [4], [7], (8], [11], [13], [14]}

Set of units modulo 15.
X [1] [2] (4] [7] [8] [11] [13] [14]
[1] [1] [2] (4] [7] [8] [11] [13] [14]
[2] [2] (4] [8] [14] [1] [7] [11] [13]
(4] (4] [8] [1] [13] [2] [14] [7] [11]
[7] [7] [14] [13] (4] [11] [2] [1] [8]
[8] [8] [1] [2] [11] (4] [13] [14] [7]
[11] [11] [7] [14] [2] [13] [1] [8] (4]
[13] [13] [11] [7] [1] [14] [8] (4] [2]
[14] [14] [13] [11] [8] [7] (4] [2] [1]

NI



UNIT-

I 37

O(7)=4,as7'=7,7"=4,7=28 =13,7*=91 1
0(1)=1,012)=4,0(4)=2,0(8)=4,0(13)=4,0(14) =2.
Note: To get calculation easier:

We do not calculate 13, 132, 133, 13*

We calculate as follows:

Q.1.

Q.2.

Q.3.

Q4.
Q.5.

Q6>
Q.7.

QsS8.

13 —2(mod 15), 13? (-2)’=4,
133=13x13 4(=2) -8
13* —8x—2 1(mod 15).

Show that the set of all 2x2 matrices over reals of the form with forms a group under

0
matrix multiplication. Find all elements that commute with element M ] t

Let S =R—{-1}. Define * on S by a * b = a+b+ab. Show that (S, *) is a group.

Find the inverse of inGL (2,Z,)).

For any elements a and b from a group and any integer n, prove that (a-'ba)" = a-'b"a.

Show that the set {[5], [15], [25], [35]} is a group under multiplication modulo 40. What is the identity
element of the group?

Construct Cayley table
For any pair of real numbers ¢ # 0 and b, define a functionf_, as follows:
Jar(X)=ax+b ¥

1. Provethatf  isapermutation of R
Ge‘ fa, b € Sn r
2. Prove that

3. Prove that fa_,,], = f%,_%

4. Show that g = ma,b/a’b € R,a#0Sisa group (a subgroup of S ).
For each integer n, define f by ¥

1. Prove that for each integer n, f_is a permutation of R.

2. Prove that and f'=f .

3. Provethat g = | fnne Z(is subgroup of S .

4. Prove that g is cyclic. Find a generator of g.



38 ADVANCED ABSTRACT ALGEBRA

Q.9.  Show that the set of all matrices of the form where is an abelian group under
matrix multiplication.

Q.10. Show that G = |f,,f2,f3,f4c where f (x) =x, {,(x) =—x,f,(x)= ,f,(x)= —%C

¥ y e R, 1s a group under composition of functions. Is this abelian?
(Construct Cayley table)
Example 4.

In a group G, for three consecutive integers i for all a,b€ gG. Show that g is an abelian group.

Solution:
Let )
Qg - @ ez
3)
by -bda(
= a'b' [
= from (2)
~a'blab=a""p™
=b'a=ab' “
Similarly laygz = a"2pi+?
= b'"a=ab™

= b@ai= ab™

= bdbi |=ab™', from (4)

= ba=ab v a,beG.

Example 5.

Let G be a group and has the order mn, m and n are relatively prime. Show that x can be expressed
uniquely as the product of two commutative elements b and a of g of orders m and n respectively.

Solution:

X = X1 - th+ns

= th Xl’lS
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Put g=x""pb=x"™
Then X = ab — ba g xmt‘H’L\' — xm’-ﬂm i

must have order n.

Thus d“ |t has order n, since (m, n) = 1 (if o(a) = n, o(a’) = m and (n, r) =d, then m = n/d)

Similarly x™ has order m. Hence

o(a)=n,o(b)=m

Uniqueness:

Letx=ab =ba,
o(a))=n,o(b)=m.

Thenab=ab,

Now (ab)™ = (a b )™

) Bap,=ba, ab=ba(
buto(b,) =o(b)=m

Hence (1) =a™ =a)"

I-ns _ ajj_’” ﬁmt +ns= Ig

ns

=a=a,.a;".a
e Bota) =n(
=a=a;.a;" e ldo(a)=n\

A

ns __ -n ns __
=aa, =a,;.a;" .a; =aq,

=ae=aq, @0(a1)=n£
Nowab=ab anda=a = b=b,

Example 5.

Find the generators of the following finite cyclic groups:

. G=(a),0(G)=13

2. G=(a),0(G)=12
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Solutions.

1.  Generators of G are a, a2, a3, a*, %, a®, a’, a8, a°, a'%, a'!, a'?, because 1, 2,3,4,5,6,7,8,9, 10, 11, 12,
are relatively prime to 13. Number of genertors = ¢(n) = ¢(13)=12 @ @(p) = p— ]g

2. Generatorsof Garea,a’,a’,a',as 1,5, 7, 11 are relatively prime to 12.

Example 6.
If , then prove that ,-mps,m — psnm Hence deduce that if then o(b) = 31.
Solution.

a’'ba=b"=a"(aba)a=a"b"a

=a’ba’ = d |n =b" =aba’ =b"

Given ¢ 'ba=b* =>n=2
125
=b* :d‘l =b=b" (ifs=1)

=b =1 :om 31

Q.11.  Give an example for each of the following:
(i) Finite non-abelion group.
(ii) Infinite non-abelian group.
(iii) Abelion group but not cyclic.
(iv) Finite non-abelian group which has only one normal subgroup.
(v) Finite non-abelian group which has all its subgroup normal.
(vi) Finite cyclic group.
(vii) Infinite cyclic group.

Example 7
Let defined by ¥ Let G=[)|azol
i.  Show that g is a group under composition of mapping.

i. Let . Show that
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i. N=I,,eGE show that
Solution.

Let 7, ,,7. , €G.

a(cx+d)+b
= ¥ xeR
cairy €C @ac;toinRg

T, 0T, =T,

a, a

= Tacefyalelrd)+b

= Ty 40T claa

ra,bod,do 7,1 -

b,d,leR

For identity ¢lement:
LTV
‘.'.C‘E’ v %@%ﬁaﬁ(@ Mlzgam

" T, 90€Gsuchthat T, ,0 T, y =T, 0up = T s

Hence | =e, theidentity of G.

For inverse element:

= ac=1,ad+b=0
wc=L,d=-a'b(®+acR)

Hence 7. 4 =7, 4, is therightinverseof 7, ,
s G= rTa],Ia 20l is a group.

@ H=

From above H is a subgroup of G.

To show v7.,€G¥

¥ r7,,€G.

41
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LHS.=

= T(ca) !, (ea) () eebrd Ta, -adwcbrd € H

(iii) from (i) and (ii).
Example 8.

Let G be a group in which, for some integer n>1, (ab)* = a"b" for all a, b € G . Show that

i is a normal subgroup of G.
1i. is a normal subgroup of G.
iil. ¥ a,beG.
iv. ¥ a,beG.

Solution:

(i)  First we show G™ is a subgroup of G.

Let

Now ab™ =x"(y") = x"(yy" = )" @ v, xegl

is a subgroup of g.
To show G"™ AG.
i.e. Toshow aza'eG™ ¥ aeG, ¥
7eG" = z=x", xeG.

aza”' =ax"a™ = (axa™")" b n is an integer >]£

(i) Toshow G™Visa subgroup of G

Let a, be G"" thena=x"", b=y"', x, yeG.
ab*] — xn—](yn—])—] — xn—](y—l)n—] — (y*]x)n*] c G(n—]) @ y-]x c GI
is a subgroup of G.

e b?g=a"b" ¥ a,b € G, for some integer n>1.



abab------ ab=a"b"

= a bzgjb =a"b"
— blg] :an—zbn—zj
To show G AG.
ie. Toshow gza’ e G" ", ¥ aeG, ¥ ;g

Let z=x"" xeG

Now aza”' =ax""a™ = dxa_] in_] eGP @ axa™ e Gi

= G"VAG.

@ii)) To show  n-ipn _pryn-1 ¥ a,beG

0

Also

@

BB o ~'va from (1) and (2)

— bnan—] =an—]bn
(iv) Toshow

Cha v 1" =¢ v a, beG

LH.S.=
- {@L-fb-f i"‘]a"-f}" e bzg] = a" " from abovej
I R

43
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=b"a " Dag (" dom (iii) ® a"'b" =b"a"" %

Example 9.
Let S be a semi-group. If for all Prove that S is an abelian group.
Solution:

xly=y=y? v xyes. (1)

2 2
= X X=X=XX

= x’=x ¥ xes. 2)
Also v x, yeS. 3)
Now from (3) and (1)

yd(yx)zi from (3)

=ng

= yx from (2)

v
Q.12.
1. Show that is not cyclic group.
2. Show that is a cyclic group.
Find its all generators.

Q.13. Ifinthe group G, a’=e, aba'=b’
for some

Q.14. If G has no nontrivial subgroups, show that G must be finite of prime order.

Q.15. If Gisagroup and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.
Q.16. IfNisasubgroup of G and H is any subgroup of G, prove that NH is a subgroup of G.
Q.17. If N and M are normal subgroups of G, prove that NM is also a normal subgroup of G.
Q.18. InQl17,if show thatxy=yx ¥ xe N, ¥ ye M.

Q.19. IfHis anormal cyclic subgroups of a group G, show that every subgroup of H is normal in G.
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Q.20. Show that Normality is not a transitive relation in a group G De HAKAG = HA Gg
Q.21.  Show that S is generated by (12) and (1, 2, 3, ---------- ,N).
Q.22. Find the product of
(1) (12) (123) (12) (23)
(2) (125) (45)(1,6,7,8,9) (15)
Q.23.  Which of the following are even or, odd permutations:
(1) (123) (13),
(2) (12345) (145) (15)
(3)(12) (13) (15) (25).
Q.24.  Prove that the cyclic group Z, and the Klein four-group are not isomorphic.
Q.25. Show that the group is isomorphic to the group if all matric
over R of the form
Example 10.
Let H be a subgroup of G and N a normal subgroup of G. Show that 7 ~ § is a normal subgroup of H.
Solution:
Let x be any element of and h be any element of H.

xeH heH=hxh' e H, NAG, he HCG=hxh"' e N

s hxh’eHNAN ¥ v

Example 11.

Let H be a subgroup of a group G, let

Prove that
(1) N(H)is asubgroup of G

(i) HANKD(
(ii)) N(H) is the largest subgroups of G in which H is normal.
@iv)

Solution:

() Let g, g eN@C
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To show

Now nggdg? i_I =@g2_1 I H@gI_I i= 81@11"]82 ig}—]

= gIHgI_I =H= g]gz_l e N(H)
Hence N(H) is a subgroup of G.

@) Let genger.
To show gxg™ € H.
geN@Q» gHg_I =H= gHg_I cH= gxg‘leH b erg
= HANID(
(i) LetK be any subgroup G and H be a normal of k, we must show that
(1
(2) HAK ,Hence kxk'e HVke HcG=ke N (H) = Kc N(H)

(iv) From (ii) and (iii) = N(H) = G. AlsoN(H) = Gand N(H) = {ge G/ gHg' =H} = HAG
Example 12

Given any group of G. Let 7 be the smallest subgroup of G which contains U. Such group  is called the
subgroup generated by U.

@ If , YuelU , show that

() Let UQu"y7|x,ye Al nthiscase s usually writtenas , called the commutator subgroup of

G. Show that

(i) Prove that is abelian.

v) If % is abelian, prove that G' — y -

(v) Provethatif H is a subgroup of G and , then
First we give the following definition.
Definition :
Let G be a group and let for , the indexing set. The smallest subgroup of G containing
is the subgroup generated by , If this subgroup is all of G, then generates Gandthe  are

generators of G. If there is a finite set rcﬂl e I that generates G, then G is finitely generated.
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Remark :

If G is abelian, then could be simplified to (a,)*(a,)’ , but this may not be true in the non
abelian group.

Solution :
(i Given gug’ eUV geG,VueU .Toshow LﬂéG
® is the subgroup generated by U.

= {all finite products of integral powers of  in U}

Let, ¢ (7, ,u, €U, neZ.

g = 85,18_1 g[}jg‘j Geenn g;’kk g

(gu]g_])’” (guzg_])"z ................. (gukg_])"k c bﬂ
because
Hence gxg™' e 7 VgeG

= 4G (ie. GAG)

G U= {xy;] Jlxye G}

= {all finite products of integral powers of element in U}

The Commutator subgroup of G

From (1) F= G'AG.

(ii) G/G’ = |xG'Ix € Gc, To show abelian,

We must show xG'yG’ =

ie. =
L.H.S.
= = (® is a commutator and so y/xyxG’=G")
= oy xT)mG = G’
= yG'xG" =R.H.S.
(iv) To show abelian & G’ N

=7 x_]Ny_]N = y_]Nx_]N = x_]y_]N = y_]x_]N = xyx_]y_]N =N= xyx_]y_] eN

i.e. every commutator to a group NV, hence all finite products of integral powers of commutators are in
N. . G'c N-
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Conversely, if ,then
XNyN = xyN = (© )
= (xyy 'x7) yxN = eyxN
= yxN = yNxN
(d) Given , to show HA G i.e. To show VegeG,Vhe H

= ghg”'h'h = (ghg'h""Yhe H (® )

Example 13

Final order of
1. (1527)(284)in

2. (153)(284697)in S,
Solution

Both are product of disjoint cycles. Hence order of each would be 1.c.m. of the lengths if its cycles. (i) 12 in
S, (i1)61n S,
Example 14
Write (12345) as a product of transpositions. It can be written in more than one way.
(12345)= (54) (53) (52) (51)
= (15) (14) (I13) (12)
= (54) (52) (51) (14) (32) (41)

Q.26. Let a=(a,a,a;........ a,) be acycle and let Z7be a permutationin . Then 7 is the cycle
(7 7 ) IR 7
Example 15

Compute ,p,-', Where

@ a=(35U2),b=(579)
i) a=(579), b= (123)
Solution

G) a= (135 (12) = (1235)
a (1579) -1 = lau)a(s)a(7)a(9)§
= (2179)

Iau)a(z)a@)g, Where (579)
(123)

(i)
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Ideals and Quotient Rings

Definition. Let S be a subring of aring R. If
xeS, ae R = axe S,
then S is called left ideal of R.
If xeS,ae R xaeS§S,
then S is called right ideal of R.
Ifxe S,ae R= xae Sand ax € S then S is called two sided ideal or simply ideal of R.
* If R is a commutative ring then all the three notions are same since in that case ax = xae€ S.
*# Every ring has two trivial ideals :
@) R itself and is called unit ideal.
(i1) Zero ideal [0] consisting of zero element only.
Any other ideal except these two trivial ideals is called proper ideal.

Theorem. The intersection of any two left ideals of a ring is again a left ideal of the ring.
Proof. Let S; and S, be two ideals of R. S; and S, being subring of R, S; N S, is also a subring of R.
Againletx e S; N S,.
= xe€ S;,xe S,.
Letae R. Then since S; and S, are left ideals,
aeR,xe S| = axe S,
aeR,xe S, = axe S,
= axe S$\NS,
= S; N S,is a left ideal.

Theorem :- Let K(T) be the kernel of a ring homomorphism T : R — S . Then K(T) is a two sided
ideal of R.

Proof. Leta,be K(T). Then

T(@)=Tb)= 0.
Therefore,

T(a+b)= T(a) + T(b)=0+0=0 (byring

T(ab) T().T(b)= 0.0=0 homomorphism)
which implies that a+b, ab € K(T). Hence K(T) is a subring of R.

Now leta e K(T) andr € R . It suffices to prove that ar, ra € K(T)
T(ar) = T(a).T(r)
=0.T(@) ®ae K(T)= T(a)=0)
=0
This implies that ar € K(T). Similarly,
T(ra) = T(r) T(a) = T(r).0=0
=rae K(T).
Hence K(T) is an ideal of R.

Theorem. A field has no proper ideal.
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Proof. Let us suppose that S is a proper ideal of a field F. Then
ScF @

Ifx € S,thenxx'e S. Butxx'=1. Therefore, 1 € S. AsSisanideal,ye F=y.le S. Thusy
€ F= ye S. Thatis Fc S. Therefore, F= S. This contradicts our supposition. Hence F has no
proper ideal.

Theorem. If a commutative ring R with unity has no proper ideal, then R is a field.

Proof. It suffices to prove that every non-zero element of R is invertible. Let a be a non-zero element of
R. Consider the set

S={xalxe R}.

We claim that S is an ideal of R. To show it, let p, q € S. Then
p=xia, q=xal X;,x,€ R

ptg=xja+x@a=(X;+x)a e S. O x1+x, € R)
Similarly

-p=—xa=(-xy)a € S.
Therefore, S is an additive subgroup of R.
Moreover, if r € R, then

p=r(x;a) = (rxy)ae S
Since R is commutative, tp € S = pr € S.
Hence S is an ideal of R. But by supposition

S={0} orS= R. Since

le R=> ae S ®1lael),

S is not equal to {O}. Hence S = R. By definition of S, 1 = xa, x € R. Therefore, every non-zero
element of R is invertible and hence R is a field.

Let A be an ideal of a ring R. Then R is an abelian group and A is an additive subgroup of R. But
every subgroup of an abelian group is normal, therefore A is a normal subgroup of R. So we can define
the set

R/ A={r+Alre R}
We shall prove that R/A is a ring. This ring will be called quotient ring.

Theorem. Let A be an ideal of R. Then the set
R/A={r+Alre R}

is a ring.

Proof. We define addition and multiplication compositions as follows :
(r+A) + (s+A) = (r+s) + A
} forallr,se R.
(r+A) (s+A) =rs+A
We show first that above defined binary operations are well defined. Let
+A = r+A
r;, s € R
s+A = s;+A
which implies r-1; € A, s—s; € A. Then
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(r+s) — (ry+s)) = (r—r)) + (s—s;)) € A
= (r+s)+ A=(r+s) + A
which proves that addition is well defined.

Moreover,
IS —I1S1 = 1S—TI1S + 1S —1S
=(r-r))s+ri(s—s;) € A

Therefore, rs + A =1;5; + A and hence multiplication composition is also well defined. We now prove
that these compositions satisfy all the properties of a ring.

(i) Associativity of addition :- If r+A, s+A, t+A € R/A, then
[(r+A) + (s+A)] + (t+A) = [(r+s)+A] + (t+A)
= [(r+s)+t]+A
= [r+(s+t)]+A
= (r+A) + [(s+t)+A]
= (r+A) + [(s+A) + (t+A)] .

(ii) Existence of the identity of addition :- If r+A € R/A, then
(0+A) + (r+A) = r+A

and
(r+A) + (0+A) =r+A

Therefore 0+A = A is identity element of addition.

(iii) Existence of additive inverse :- If r+A € R/A, then
(r+A) + (-r+A) = [r1+(-1)] + A
=0+A= A
and
(—r+A) + +A) = [(-1) + 1]+ A
=0+A=A
which shows that —r+A is the inverse of r+A.

(iv) Commutativity of addition :- If r+A, s+A € R/A, then
(r+A) + (s+A) = (r+s) + A
=(s+r) + A
= (s+A) + (r+A)

(v) Associativity of multiplication :- If r+A, s+A, t+A € R/A, then
[(r+A) (s+A)] (t+A) = (rs+A) (t+A)
=(Ts)t+ A
=r(st) + A
= (r+A) (st+A)
= (r+A) [(s+A)(t+A)] .

(vi) Distributivity of multiplication over addition :- If r+A, s+A, t+A € R/A, then
(r+A) [(s+A) + (t+A)] = (1+A) [(s+t)+A]
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=r(s+t) + A=(s+rt) + A
= (rs+A) + (rt+A)
= (r+A) (s+A) + (r+A)(t+A) .
Similarly,
[(r+A) + (s+A)] (t+A) = (T+A)(t+A) + (s+A) (t+A) .
Hence R/A is a ring.
* Jf R is commutative, then R/A will be abelian since if
r+A, s+A € R/A , then by the commutativity of R, we have
(r+A) (s+A) =r1s+A
= sr+A
= (s+A) (r+A)
In addition if R has unit element then R/A has also identity 1+A.

Theorem. Every ideal A of a ring R is a kernel of some ring homomorphism.

Proof. Let ¢ : R —> R/A be a mapping defined by ¢(r) = r+A. This mapping is known as natural
mapping. Ifr, s € R, then

O(r+s) = (r+s) +A
= (r+A) + (s+A)
=0(r) + ¢(s)
and
O(rs) =r1s+A
= (r+A) (s+A)
= 0(r) O(s)

Therefore ¢ is a homomorphism. Kernel of this homomorphism, is given by

K@) = {rlreR, ¢@r)=A}
={rlre R, r+A=A}
={rlre R}
=A

which proves the required result.

Theorem. Let ¢ : R - S be a ring homomorphism of R onto S. Then
R/K(9) ~ S .

Proof. We know that K(¢) is an ideal of R. Therefore, R/K(¢) is defined. Elements of this set are
cosets of K(¢ in R. Let r+K € R/K(¢. Then

o(r+x) = o(r) + O(x) for all x € K(¢)
=0(r)+0 (O®xe K@) = ¢0x)=0)
= 0(r)

Thus we can define a mapping Y(r+K) = ¢(r) for all r € R. We shall prove that y is an isomorphism.
Letr +K, s+K e R/K(¢). Then

Y [(+K) + (s+K)] =y [(r+s) + K]
= §(r+s)
=0(r) + ¢(s)
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= Y(r+K) + y(s+K)
and
VY [(r+K) (s+K)]= y(rs+K)
= ¢(rs)
= 0(1)o(s)
= yY(r+K) y (s+K)
Therefore Y is a ring homomorphism.

Ifx € S, then
x=0(r),r € R (O ¢ is onto mapping)
=V (r+K)

Therefore to each element x € S there corresponds an element r + K of R/K(¢) such that y(r+K) = x.
Hence v is surjective.

Moreover,

YE+K) = Y (s+K) = 00 = 6s)
= 0(r—s) =0
= r-s € K(¢9)
=>r+K=s+K

Therefore Y is one-to-one mapping also. Hence y is an isomorphism, as a consequence of which

R/K(9) =S
Theorem. A homomorphic image of a ring R is also a ring.

Proof. Let T : R — S be a ring homomorphism. Then homomorphic image of R is
Im(T)={x1xe S, x=T(), re R}
We know that T(0) = 0. Therefore, Im(T) is non-empty. If x, y € Im(T), then 3 r, s € R such that
x =T(r), y =T(s).
Therefore,
x+y = T(r) + T(s)
=T(r+s) € Im(T) (® T is a homomorphims)
and
xy =T(@)T(s)
=T(rs) € Im(T).

Hence Im(T) is a subring of S.

Types of Ideal
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Definition. Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R if for a, b €
R

abe P= aePorbeP.
Theorem. An ideal P of a commutative ring R is a prime ideal if and only if R/P is without zero divisor.

Proof. Let us suppose that R/P is without zero divisor and letr, S € R such that rs € P. Then
s € P = rs+P=P
= (r+P) (s+P) =P
=r1+P=P ors+P= P (® R/P is without zero divisor)
=>rePorSeP.
Hence P is a prime ideal.
Conversely, let P be a prime ideal and let
(r+P) (s+P)=P, rse P

Then
rs+P =P
= 1seP
= re Porse P (® Pis aprime ideal)

= 1r+P=P ors+P=P.
Hence R/P is without zero divisor.

Examples. 1. Let p be a prime. Then ring of integer mod p, is without zero divisor. Therefore, ideal of
Z/pZ is a prime ideal.

2. Zero ideal of the ring of integers is a prime ideal.
Definition. An ideal generated by a single element is called a principal ideal.
For example every ideal of the ring of integers is a principal ideal.

Let us suppose that I is an ideal of Z. If I = {0} then it is clearly a principal ideal. If I is a non-zero ideal
then x € I = —x € 1. Therefore, I certainly contains positive elements. Let m be the smallest positive
integer belonging to I. If y € 1 be an arbitrary element of I then by Euclidean algorithm there exist q, r €
Z such that

y=mq+r1, 0<r<m. @)
Sinceme I, qe Z , therefore mq € L.
Therefore,
y—-mq=r
= rel.

Hence by the minimality of m in (i) we have r = 0 . It follows therefore that

y=mq.
This implies that I = < m >. Hence I is a principal ideal.

Definition. A maximal ideal M of a ring R is a proper ideal which is not strictly contained in any ideal
other than R.

Thus M is a maximal ideal if and only if
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McMcR= M'=RorM' = M.
Example. An ideal generated by a prime number is a maximal ideal of the ring of integers. But

the zero ideal of the ring of integers is not maximal.

Proof. Let p be any prime integer and let S be any ideal containing the principal ideal generated by p.
Now the ring of integers being principal ideal ring the ideal S is a principal ideal and it is generated by
the integer q. We have therefore

(p)c(@ <R
= pe (@
= p=kq, ke R.
Since p is prime, p =kq = eitherk= lorg= 1.
Nowk=1 =>p=q
= (p)=(q)
andq=1 =(@=(1)=R (Since R is generated by 1) .
Hence (p) is maximal ideal.

Theorem. Every maximal ideal M of a commutative ring R with unity is a prime ideal.

Proof. It suffices to prove that if a, b € R then
abe M=ae M orbe M.

Let us suppose that a ¢ M. If we prove that b € M then we are done. It can be seen that the set
N={ra+mlre R,me M}

is an ideal of R.

Since 1 € R, therefore a+ m € N. Buta+m ¢ M since a ¢ M. Therefore
McNcR, M #N.

M being a maximal ideal asserts that N = R. Therefore 1 € R = 1 € N. So we can find two elements r
€ R, m € M such that

l=ra+m
= b=r(ab)+mb, be R
Since M is an ideal of R, therefore
abe M, re R= r(ab)ye M
and me M, beR =D>mbe M.
Therefore be M.

Hence M is a prime ideal.
Theorem. An ideal M of a commutative ring R with unity is maximal if and only if R/M is a field.
Proof. Let M be a maximal ideal of R. Since R is a commutative ring with unity, R/M is also a
commutative ring with unity element. Let A* be an ideal of R/M and

A={rIr+M e A*}
Ifr,se A, then r+M, s+M € A*. Therefore

(r-s) + M = (r+M) — (s+M) € A*

= r-s€ A

Ifre A,te R,then r+M e A* and
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rt+ M= (r+M) (t+M) € A* (because A* is an ideal of R/M) .
= rte A.
R being commutative tr also belongs to A.

Hence A is an ideal of R.

If a e M, then
a+tM =M € R/M (since M is the zero element of R/M)
= a+M e A* (since (1+M) (a+m) € A*,
= ae A A* being ideal of R/M)
Therefore
McACcCR.
Let us suppose that A* # {0} then there exists an element r+M of A* such that
r+M+M

But itMe A*= re A,
HtM+#zM=re M= A=xM.
Thus we have proved that if A* # {0}, then
M c AcR

Since M is maximal therefore, A = R. If r € R then r € A which implies that r +M € A*. It follows
therefore, that A* = R/M.

We have proved therefore, that R/M has only two ideals {0} and R/M and hence R/M is a field.
Conversely, let R/M is a field. Then R/M has only two ideals {0} and R/M itself. Hence

A* = {0}
or A* =R/M.
If A* = {0} then A*=M (® M is zero element of R/M)

Therefore,
A={rlr+M e A*}
={rlr+M =M}
={rlre M}
=M
If A*=R/M then
A={rlr+M e R/M}
={rlre M}
=R.
Therefore, R has only two ideals M and R. Hence M is a maximal ideal.

Imbedding of a ring and an integral domain.

Definition. If a ring R is isomorphic to a subring T of a ring S then R is called imbedded in S. The ring
S is called extension or over ring of R.

Theorem. Every ring R can be imbedded in a ring S with unit element.

Proof. Let S be a set defined by
S=ZxR={(ma)Ilme Z, ae R}.
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We define addition and multiplication in S as follow :
(m, a) + (n, b) = (m+n, a+b)
(m, a) (n,b) = (mn, na+ mb + ab)

We now prove that S is a ring with unity under these binary operations. Let (m, a), (n, b), (p, ¢) € S.
Then

1)
[(m,a) + (n, b)] + (p, ) = (m+n, a+b) + (p,c)
= (m+n+p, a+b+c)
= (m+(n+p), a+(b+c))
(by Associativity of R and Z)
= (m,a) + (n+p, b+c)
= (ma) + [(n,b) + (p,c)]
(i1)
(0,0) + (m,a) = (m,a)
(m,a) + (0,0) = (m,a)
Therefore (0,0) is additive, identity.
(iii)
(m,a) + (—m, —a) = (0,0)
(—m,—a) + (m,a) = (0,0)

Therefore (—m, —a) is the inverse of (m,a).
(iv)
(m,a) + (n,b) = (m+n, a+b)
= (n+m, b+a) (by commutativity of R and Z)
= (n,b) + (m,a)
(v)
[(m,a) (n,b)] (p,c) = [mn, na + mb + ab] (p,c)
= [(mn)p, p(na+ mb + ab) + mnc + c(na+mb+ab)]
= [(mn)p, p(na) + p(mb) + p(ab)
+(mn)c +(na)c+(mb)c+(ab)c]
and
(m,a) [(n,b) (p,c)] = (m,a) [np, pb + nc + bc]
= [m(np), anp + m(pb) + m(nc) + m(bc) +a(pb+nc+bc)]
= [(mn)p, p(na) + p(mb) + p(ab) + (mn) ¢
+ (na) ¢ + (mb)c + (ab) c]
(by Associativity and commutativity of R and Z).
Hence
(m,a) [(n,b) (p,c)] = [(m,a) (n,b)] (p,c)
(vi)

[(m,a) + (n,b)] (p.,c) = (m+n, a+b)(p,c)
= [(m+n)p, p(a+b) + (m+n)c + (a+b)c]
= (mp-+np, pa + pb + mc+ nc + ac + bc)
and
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(m,a) (p,c) + (n, b) (p,c) = (mp, pa + mc + ac) + (np, pb + nc + be)
= (mp + np, pa + mc + ac + pb + nc + bc)

Therefore

[(m,a) + (n,b)](p,c) = (m,a) (p.c) + (n,b) (p.c)
Similarly we can check it for right distributive law.
(vii)

(1,0) (m, a) = (m,a) = (m,a) (1, 0)
Hence (1, 0) = 1 is unity of S.
Hence S is a ring with unit element.

Consider the set
T={(0,a)l Ae R}

Since
(0,a) + (0,b)=(0,a+b) e T
0 =@,0eT
—(0,a) = (0,-a)e T
and

(0,2)(0,b) = (0,ab)e T,
therefore T is a subring of S.

We define a mapping
f:R>T
by
f(a)=(0,a), ae R
Then
f(a+b) =(0, a+b)
=(0,2)+ (0, b)
= f(a) + f(b)
and

f(ab) =(0, ab)
=(0, a) (0, b)
=f(a) + f(b)
Thus f is a ring homomorphism. Also,
f(a) =f(b) = (0,a)=(0,b)
=a=b.
Therefore f is an isomorphism and hence R can be imbedded in S.

Theorem. Every integral domain can be imbedded in a field.

Proof. Let D be an integral domain and
S={(ab)la,be D,b#0}
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be the set of the ordered pairs of D. Then we claim that the relation
R = {((a,b), (c,d)) | (a,b), (c,d) € S and ad =bc}
is an equivalence relation.
1) Since D is commutative, therefore ab =ba for all a, b € D.
Hence for all (a,b) € S
((a,b), (a,b)) € R.

(i1) Symmetry. If ((a,b), (c,d)) € R, then
ad = bc
= cb=da (by commutativity of D)
= ((c,d), (a,b)) e R..

(i1) Transitivity. If ((a,b), (c,d)) € R, ((c, d), (e,f)) € R then ad = bc and cf =de
Therefore

adf = bcf = bde

(af —be)d=0

(af -be) =0 ©®d=+0)

af = be

= ((a,b), (e,f)) e R.

U4y

We represent the equivalence class of (a,b) by the fraction % . Thus

%: {(c.d)l(c,d)e S, ((ab),(c,d) e R}

Consider the set
F:{% la,be D,b#0}

Of these equivalence classes.

Let % , % € F. Then we define addition and multiplication in F as follows :

a c _ ad+bc
b d bd
and e .
b d bd
) ) ) ) ad + bc
Since D is an integral domain and b#0,d # 0. Therefore, bd # 0. Therefore od e F.
Now we shall prove that this addition is well defined. To show it, it suffices to show that if
a a, ¢ C, )
— = —, — = — 1
b b, d d, @
then
ad+bc ad, +bc
bd b,d,
that is

a(d+bc) (bldl) = bd(aldl + b101)
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Now (ad + bc) (bydy) = adb;d; + bcb,d,
= a(dby)d; + b(cby)d,
= ab;dd; + bb;cd; (by commutativity of D)
=ba;dd; + bbyc;d (using (1))
=bd (a;d; + bicy)
Therefore addition is well defined.
If a_h c_ 4
b bl dl
then
ac _ a.c
bd b,
that is
acb;d; = bda;c;
Now
acb;d; =ab;cd;
= ba;dc;
= bdajc;

multiplication is also well defined.

We now prove that F is a field under these operations of addition and multiplications.

Let 3, E,Ee F. Then
b d f
. a c) e ad+bc e (ad +be)f +bde
(i) |t =——+— =
b d) f bd f bdf
_adf +bcf +bde
bdf

and

a c e a cf+de

— 4| —+—=] ==+

b d f b df

_adf +bcf +bde
bdf

Therefore

a c)\ e a c e

=+ = =+ | =+=

(b dj f b (d fj
(ii) 9+3_0.b+ba_§_3

b b b b b
. . a O a
Similarly -+ — ==

b b b

Therefore % is additive identity.
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a —-a ab—ab 0 0 a  a
(iii) —+|—|=——===—=—- =+ —
b b b’ b> b b b
Thus every element of F is invertible.
. a ¢ ad+bc
@1v) —+— =
b d bd
and Chas cb+da = be+ad (by commutativity of D)
d b db bd
~v 1t 2 £ ScEF, then
b d f
acle_ace _afce
bd/f bdf bldf
(vi) afc e} _a (cf+de
b\d f b df
acf ade
= — 4 —
bdf bdf
_ac  ae
bd  bf

Similarly it can be shown that

a c\)¢ ac ce
—t— == —t—
[b djf bf  df

(vii)

a
and —.
a

a . e .
Hence — = 1 is multiplicative identity.
a

a)(b) _ a_b_

Vi (gj (‘) "
o)- -
alb) ab ab

Thus every element of F is invertible.

. alc)_ac
(i) (EJ(E) " bd

Hence Fis afield. This field F is called Quotient field or field of fractions.

We define a function
f:D—> F

93
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by
f(a) = % ,ae D.
Then
fatby= 2F2 2,0
1 1
=f(a) + f(b)
and
ab a\b
f(ab) = —= | — | —
== Y
=f(a) f(b) .
Therefore f is a ring homomorphism.
Also,
a_b

fla)= fo) = ==

=a=b.
It follows therefore that f is a isomorphism. Hence D can be imbedded in F.

Definition. The Quotient field of an integral domain :- By the quotient field K of an integral domain
D is meant the smallest field containing D. Thus a field K is a quotient field of an integral domain D if K
contains D and is itself contained in every field containing D.

For example, field Q of rational numbers is the quotient field of the integral domain Z of integers.
*The quotient field of a finite integral domain coincides with itself.

Definition. Let F be a field. If a subring F; of F form a field under the induced compositions of
addition and multiplication, then F; is called a subfield of F.

For example, field Q of rational numbers is a subfield of the field R of real numbers. The field R is a
subfield of the field C of complex numbers. Every field is a subfield of itself.

It is clear from the definition that a nonempty set K is a subfield of a field F if
(1) x,ye K =>x-ye K
(i1) xe K,ye K,yz0=>xy'e K.

Characteristic of a field :- Let K be a field and e be the multiplicative identity of K. Then, the
mapping f : Z — K defined by f(n) = ne, n € Z is a ring homomorphism. For,

f(m+n) = (m+n) e
= (me) + (ne)
=f(m) + f(n)
and
f(mn) = (mn)e
= (me)(ne)
= f(m)f(n) .
Let A be the kernel of this homorphism. Then
A= {nlf(n)=0}
={nlne =0} @)
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and
ZIA ~ Im(f)=f(z).

But Im f is a subring of K. Therefore, Im(f) is without zero divisor. It follows therefore that Z/A is
without zero divisor. Therefore either A = {0} or A is a prime ideal.

If A = {0}, then
ne= 0 ©&n=0.

If A is a prime ideal then we can find a prime number p such that

A= kerf=<p> (i1)
Hence from (i) and (ii)

ne=0 < pln.
Thus we have seen that if K is a field, then one of the following two cases, holds
@) ne=0 © n=0
(ii) ne=0 < pln where pisa prime.

In the first case we say that the field K is of characteristic zero while in the second case, K is called a
field of characteristic p. Thus characteristic of a filed is zero or a prime number.

It is clear that a field of characteristic zero is infinite since in that case Z/A = Z and therefore Z ~ Im(f) .
Hence Im(f) and K are infinite

Example 1. The characteristic of the field Q of rational numbers is zero, sincene=0=n=0 (0 e #0).
2. The characteristic of the field Z/ < p > is a prime number p.

Definition. Fields with non-zero characteristic are known as Modular Fields.
Definition. A field is said to be prime if it has no subfield other than itself.

Examples 1. If p is a prime, then Z/pZ is a prime field. Additive group Z/pZ . Hence Z/pZ is a prime
field.

2. Field Q of rational numbers is a prime field. To prove it let K be a subfield of Q. Then 1€ K. Since
K is an additive subgroup of Q, therefore 1+1 = 2e K. Similarly 3¢ K. Now K being a field, every non-

. . e 1
zero element of a K is invertible under multiplication. Therefore, neK, n#0 = —e K. Then meK,
n

1 m . . .
—e K= — e K. Hence K contains all rational numbers. Hence K = Q as a consequence of which Q

n n
is a prime field.

We have seen that the field Q of rational numbers and Z/pZ are prime fields. Now we shall prove that
upto isomorphism there are only two prime fields Q and Z/pZ.

Proof. Let K be any prime field and let e denote the unit element of the same. Since K is prime, the
subfield generated by e must coincide with K.

Consider the mapping f : Z — K defined by
f(n)=ne, ne Z.
This mapping is a ring homomorphism. For,
f(n+m) = (n+m)e
=ne+me = f(n) + f(m)
f(nm) = (nm)e = (ne) (me) = f(n)f(m)
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ie. A={nlf(n)=0}
={nlne=0}.
Let ker f = A. Since A is an ideal of Z and every ideal in Z is a principal ideal, therefore
A={0} orA=<p>, p#0.

If ker f = A = {0}, then f is one-to-one. Hence f(Z) is a subring of K isomorphic to the integral domain Z
The prime field K, being now the quotient field of the integral domain f(z) is isomorphic to the
quotient field of Z. But the quotient field of Z is the field Q of rational numbers. Hence K is isomorphic

to Q.
Ifkerf=A= <p>,p#=0, then pis a prime number. If fact, if
p=mn m #1,n#1
then
0 =mne = (me)(ne) .
Hence me =0 or ne =0 which is impossible for each integer x such that ne = 0 is a multiple of p.
Hence p is a prime. Hence

F(Z) ~ Z/pZ

Since Z/pZ is a field, f(Z) is itself a field necessarily identical with K. Hence
K ~Z/pZ

Hence apart from isomorphism there are only two prime fields.

Polynomial Rings

Definition. Let A be an arbitrary ring. By a polynomial over a ring A, is meant an ordered system (ay,
ai, a,..., an,...) of elements of A such that all except, at the most, a finite number of elements are zero.

Two polynomials (ag, aj, a,..., a,...) and (bg, by, ba,..., by,...) are said to be equal if and only if
a,= by, ne N

Let R be a ring and P be the set of all polynomials.

Let (ay, ai,..., ay,...) and (by, by, by,..., by,...) be any two elements of P. If
a,=0 foralln> jandb,=0 foralln> k

then
a, + b, =0 for all n > max (j, k)

Thus all except at the most, a finite number of elements in the ordered system (ap+by, a;+by,...) are zero.
Therefore (ag + by, a;+by, ax+by,..., ap+by,...) € P. Hence we can define addition composition in P by

(ap, a1, a2,..., ap,...) + (bg, by, ba,..., by,...) = (ag + by, a;+by,..., ay+by,...).
Multiplication P is defined by
(ap, a1, az,..., ay) (bg, by,..., by...)
=(Cg, C1, C2y.++» Cpy.-)
where
Co = a()b()
c; = agbi+a;bg
Cy = agby + a1b; + asbg

n
Cn= aobyt+aiby; + ... +abp= Da b,
=0
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If a,=0 foralln> j and b, =0 foralln> k, then
cp,=0 forall n2(j+k).
Thus product of two polynomials is again a polynomial.

The set P of all polynomials over a ring R form a ring under these operations of addition and
multiplication.

Let (ao, aj, a,..., an,...) , (bo, by, ba,...), (co, C1, C2,...) € P.
Then
@) (ao, a1, az,....) + [(bg, by, ba,....) + (co, €1, C2,...)]
= (ag, a1, a,..) + [(bg + cp, by+cy, byt+ca,...)
= (ap+bo+co, a1+b+cy, ar+by+cs,...)
= (ap+by, a;+by, ax+bs,...) + (co, C1, C25...)
= [(ap, a1, az,...) + (b, by, by,...)] + (co, C1, C25...)
(i) (ag, a1, a,....)+ (0,0,0,...)=(ap+0,a,+0,a,+0, ...)

= (aop, a1, A,....)

and
0,0,0,...)+(ap, aj, az,...) =(0+ap, 0+ a;, 0 +ay,...)
= (agp, aj, az,....)
(i11) (ap, ay, ap,...) + (—ag, —a;, —a,...)
= (ap — ap, a;—ay, ay—ay,...)
=(0,0,0,...)
and
(—ap, —aj, —ay,...) + (agp, a, as,....)
=(0,0,0,...)
@iv) (ag, a1, a,...) + (bg, by, by,...) = (ap + by, a;+by, ar+by,...)

= (by + ag, bj+ay, by+ay,...)
= (bg, by, by,...) + (ap, a1, a3,...)
W) [(ag, ai, az,...) (bg, by, ba,...)] (co, €1, C25...)
= (do, dy, da,...) (co, C1, C2,..)
where
d,= Yab,
j+k=n

= (eo, €1, €2,...)
where

em = 2, d,c,

p+q=m

> [ zajbkjcq

p+q=m \ j+k=p

Y.abc,.

jrk+gq=m

Similarly, it can be shown that
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(a(), ai, 3.2,....) [(bo, bl, bz,....) (C(), Ci, C2,....)] = (fo, fl, fz,...)
where
fn= Zajbkcq .
jtk+g=m
Hence
[(a(), aj, 3.2,...) (b(), bl,..) ] (C(), Ci, C2,....)
= (ao, a1, a,...) [(bg, by, ba,..) (co, €1, €2,..)]

(vi) (ap, a1, az,...) [(bo, by, ba,...) + (co, ci, C2,...)]
= (a(), ai, 3.2,...) (b() + Cop, b1 + Cq, b2 + C2,....)
= (do, di, dz,---)

where
dn= > a;(b, +c,)
j+k=m
= Yab + Yac,
j+k=m j+k=m
=fn + Zm, say .
Also
(ap, a1, a,...) (bg, by, by )= (fy, f1, £2,....),
(ao, a1, a,...) (co, C1, C2,...) = (Lo, 15 L25---)
Hence

(ap, ai, az,...) [(by, by, ba,...) + (co, ci, C2,...)]
= (ag, aj, a,...) (bo, by, ba,...) + (ag, aj, az,....) (Co, C15...)
Hence P is a ring. We call this ring of polynomials as polynomial ring over R and it is denoted by R[x].
Let
Q={(a,0,0,...)lae R}
Then a mapping f : R — Q defined by f(a) = (a, 0, 0,...) is an isomorphism. In fact,
f(a+b) =(a+b,0,0,...)
=(a,0,0,...)+(b,0,0,...)
=f(a) + f(b),
f(ab) =(ab, 0,0, ....)
=(a,0,0,...)(b,0,0, ...)

= f(a) f(b)
and
fa) =f(b)= (a,0,0,...)=(b,0,0,....)
=a=b.
Hence
R~ Q 1)

So we can identify the polynomial (a, 0, O, ...) with a.
If we represent (0, 1, 0, ...) by x then we can see that
x>=(0,0,1,0,...)
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x>=(0,0,0,1,...)

Xn:(Q’Q’Q"ZBO 1,0.,....)

n terms

Therefore for (a, 0, 0, ....) € Q we have
(a,0,0,...)x= (0,a,0, .....)
(a,0,0,...)x>=(0,0,a,...)
(a,0,0,...)0x"= (9,9,9,.430, a,0,...) (i1)
nterms

If (ag, aj, .., ap, O, ...) be any arbitrary element of the polynomial ring P, then by (ii) we have
(ap, a1, a2,....,a,,0,...)=(a9, 0, ....)+ (0, a,...) +...+ ((1),9,9,.430, a, 0,....)

n terms

=(ap, 0, ...)+(a;,0,...)(0,1,0,...) + ...

+ (8, 0,0,...) (090,00, 1,0,...)

n terms
= (20,0, ..)+ (2, 0,0, ..) X + ... +(ay, 0,0,...) x"
=ap+ a;X + a,x" (by (i)

Hence every element (ay, a;, ap,...) of P can be denoted by
Ao+ X + AX° + ... a,x".

* The numbers ay, ay,..., a, are called coefficients of the polynomial. If the coefficient a, of x" is non-
zero, then it is called leading coefficient of ap + a;x + ... + a,x" .

* A polynomial consisting of only one term ay is called constant polynomial.
Example. IfR is a commutative ring with unity, prove that R[x] is also a commutative ring with unity.

Degree of Polynomial. Let f(x) = ap + a;x + ... a,x" be a polynomial. If a, # 0, then n is called the
degree of f(x). We denote it by deg f(x) = n.

It is clear that degree of a constant polynomial is zero.

If

m

f(x) =ap+a;x + a2x2 +...apX, an7z0
and

g(x)=bo+bx+...b,x", b, #0
are two elements of R[x], then

deg f(x) = m and deg g(x) = n and

f(x) + 2(X) = (A + a;X + aX> + ... + apx™) + (bo+bix+byx> + ... + byx")

If m = n and a,, + b, # 0, then

f(x) + g(x) = (ap + bg) + (a;+b)Xx + ... + (ay + by)x™
Therefore in this case

deg [f(x) + g(0)] = m.
It is also clear that if m =n and a,, + by, = 0, then

deg [f(x) + g(x)] < m.
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If m >n, then

f(x) + g(x) = (ap + bg) + (a;+b)x + ... + (a,+b,)x"

+a X"+ +a, X"

Therefore in this situation

deg [f(x) + g(x)] =m
Similarly it can be seen that if m < n, then

deg [f(x) + g(x)] = n
It follows therefore that if m # n, then

deg [f(x) + g(x)] = max (m, n)
Also ,

f(x) g(x) = agby + (agb; + ajbg)x + ... + apb,x™™"
Therefore

deg[f(x) 2(0)] = { m+n ifa b #0 ‘
<m+n, wherea b =0
If R is without zero divisor, then
amb, #0 sincea,#0,b,#0.
Hence for such a ring R we have
deg [f(x) g(x)] = m+n = deg f(x) + deg g(x)
If R is without zero divisor and f(x) and g(x) are non-zero polynomial of R[x], then
deg f(x) < deg [f(x) gx)]  (® deg g(x) 2 0).

Theorem. IfR is an integral domain, then so is also polynomial ring R[x].

Proof. R is a commutative ring with unity. Therefore R[x] is commutative with unit element. It suffices
to prove that R[x] is without zero divisor. Let

fx)= Yax , an#z0
i=0

and gx)= Ybx', b,#0,
i=0
be two non-zero polynomials of R[x] and let m and n be their degrees respectively.

Since R is an integral domain and a,,# 0, b, # 0, therefore a;b, # 0 . Hence f(x) g(x) # 0. Hence R[x]
is without zero divisor and therefore an integral domain.

Division Algorithm for polynomials over a field.

Theorem. Corresponding to any two polynomials f(x) and g(x) # 0 belonging to F[x] there exist
uniquely two polynomials q(x) and r(x) also belonging to F[x] such that

f(x) = gx) q(x) + 1(x)
where

r(x)=0 ordegr (x)< deg g(x) .
Proof. Let

fx)= Sax, an#0
i=0
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g(x) = ibixi, b,#0 .

i=0
Then either
@) deg f(x) < deg g(x)
or
(i1) deg f(x) = deg g(x)
In the first case we write
f(x) = g(x) 0+ f(x)
so that q(x) = 0 and r(x) = f(x).
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In respect of the second case we shall prove the existence of q(x) and r(x) by mathematical induction on
the degree of f(x). If deg f(x) = 1, then the existence of q(x) and r(x) is obvious. Let us suppose that the

result is true when deg f(x) <m-—1. If

h(x) = (x) - [i—“‘j X" g(x) (ii1)

f(x)= ag+a;x + ... + apx"
=am by ' X™™ (bg+ bix + ... byx")
+ (@mt — am by b)) X" + (Amen — ambn ! by ) X
= amby, ' X" g(x) +h(x)
then deg h(x) <m-1.
Hence by supposition
h(x) = g(x) qi(x) +r(x) , (iv)
where r(x) =0 or deg r(x) < deg g(x) .

m-2

From (iii) and (iv) we have

f(x) - [z—mJ K" g(x) = g(x) qi(x) + r(x)

n

That is,
£x) = 200 [qi(x) + z—mj X" + 1(x)
= g(x) q(x) + ()
where q(x) = qi(x) + (Z—m xmn

Thus existence of q(x) and r(x) is proved.

Now we shall prove the uniqueness of q(x) and r(x).

Let us suppose that q;(x) and r;(x) are two polynomials belonging to F[x] such that
f(x) = g(x) qi(x) + 11(x)

where 11(x) =0 or degri(x) < deg g(x).

But by the statement of the theorem, q(x) and r(x) are two elements of F(x) such that
f(x) = g(x) q(x) + r(x)

where r(x) =0 or deg r(x) < deg g(x).

Hence
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g(x) q(x) +r(x) = g(x) i(x) + 1(x)

that is,

gx) [q(x) — qi(x)] = 11(x) — r(x) (v)
But deg g(x) [q(x) —q1 ()] 2n
and

deg [r;(x) —r(x)] <n.
Hence (v) is possible only when
gx) [q(x) —qi(x)] =0
and
1(x) —r(x) =0
That is, when
q(x) = qi(x) and r(x) = 11(x)
Hence q(x) and r(x) are unique.
With the help of this theorem we shall prove that a polynomial domain F[x] over a field F is a principal

ideal domain.

Theorem. A polynomial domain F[x] over a field F is a principal ideal domain.

Proof. Let S be any ideal of F[x] other than the zero ideal and let g(x) be a polynomial of lowest degree
belonging to S. If f(x) is an arbitrary polynomial of S, then by division algorithm there exist uniquely
two polynomials q(x) and r(x) belonging to F[x] such that

f(x) = g(x) q(x) +1(x)
where 1(x) =0 or degr(x) < deg g(x) .
Thus
1(x) =f(x) —g(x)qx) € S .
Also, since g(x) is a polynomial of lowest degree belonging to S, we see that deg r(x) cannot be less than
of g(x). Thus r(x) = 0 and we have

f(x) = g(x) q(x)
Since f(x) is arbitrary polynomial belonging to S, therefore

S=(gx)
Hence F[x] is principal ideal domain.

Example. Show that the polynomial ring I[x] over the ring I of integers is not a principal ideal ring.

To establish this we have to produce an ideal of I[x] which is not a principal ideal. In fact we shall show
that the ideal (x, q) of the ring I[x] generated by two elements x and q of I[x] is not a principal ideal.

Let if possible (x, q) be a principal ideal generated by a member f(x) of I[x] so that we have

x, @)= (fx)

Thus we have relations of the form

q= f(x) g(x)
x = f(x) h(x)
where g(x) and h(x) are members of I[x]. These imply
deg f(x) + deg g(x) = degq =0 @)
deg f(x) + degh(x)= degx =1 (i1)

From (ii) we get
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deg f(x) = 0 and deg g(x) =0
So f(x) and g(x) are non-zero constant polynomials i.e. are non-zero integers.
Again since
f(x) g(x) = 2
where f(x) and g(x) are non-zero integers, we have the following four alternatives
fx)=1, gx)= 2
f(x) =-1, g(x) =2
fx)= 2, gx)=1
f(x)=-2,gx)= -1.
If
fx)=1 or-1,
we have
(f(x)) = I[x].
Thus we arrive at a contradiction in that
(f(x)) = I[x]
and
Ix]#(x,2).
Now suppose that f(x) = £ 2, then x = f(x) h(x) and we have a relation of the form x = T2 (co+

CciX + ....). This gives 1 =+ 2 ¢y which is again a contradiction in as much as there is no integer ¢, such
that 1 = £ 2c¢;. Thus it has been shown that (x, 2) is not a principal ideal.

Unique Factorisation Domain

Definition. An element a is called a unit if there exists b such that ab= 1.

Let D be an integral domain. Then multiplicative identity of D is a divisor of each element of the same.
In fact we have

a=1l.a forallae D
= 1lla forallae D.

Besides 1, there may also exist other elements which are divisors of each element of the domain. In fact
if e is any invertible element and a be any arbitrary element, then

a=ele'a)=> el a
Thus all invertible element are divisors of every element of the domain D.

Definition. The invertible elements of an integral domain are known as its units.
Thus each unit is a divisor of every element of the domain.
* An element a is a unit of an integral domain iff it has a multiplicative inverse.

Proof. Let a be a unit. The a | 1, where 1 is the unit of the integral domain D. Hence 1 = ab. Hence a
has a multiplicative inverse b.

Again, if the multiplicative inverse of aisbthenab= 1. Henceall and 1l a for every a € D showing
that a is a unit.

For example each non-zero element of a field is a unit thereof.

+ 1 are the only two units in domain I of integers.



104 ADVANCED ABSTRACT ALGEBRA

Definition. A non-zero element of integral domain D, which is not a unit and which has no proper
divisors is called a prime or irreducible (indecomposible) element.

Definition. An element a is said to be an associate of b if a is a divisor of b and b is a divisor of a.
For example each of 3 and —3 is a divisor of the other in the domain I of integrals.

Definition. A ring R is called a factorisation domain if every non-zero non-unit element of the same can
be expressed as a product of irreducible elements. Thus if a is non-zero unit element of a F.D. then

a =DPip2P3 -.- Pn>
where p;’s are irreducible elements.

Definition. A F.D. is called a unique factorisation domain if whenever

a= pip2p3..-pn =qiq2 ... qs
then r=s and after rearrangement, if necessary,

Pit~q,P2~qQ2.-s Pr~ Qs -

Definition. An integral domain D is said to be principal ideal domain if every ideal A in D is principal
ideal.

Theorem. A principal ideal domain is a unique factorisation domain.

Proof. Firstly we show that principal ideal domain is a factorisation domain.

Let a be a non-zero non-unit element of a principal ideal domain D. If a is prime we are done. If a is
not a prime, there exist two non-unit elements b and c such that

a= bc
= ae (b)
= (@c(@®), (b)#().

In case b, ¢ are both irreducible, then again we have finished. If they are not prime, we continue as
above. That is, there exists two non-unit elements ¢ and d such that

b= cd
= be (c)
= (b)yc(©) (b)=(c)
Thus two cases arise :

@) After a finite number of steps, we arrive at an expression of a as a product of irreducible
elements.
(ii) Howsoever far we may continue, we always have a composite element occurring as a factor in

the expression of a as product of elements of D.
In case (i) we have finished.
In case (ii), there exists an infinite system of elements aj, ay,..., a,,... such that
(a)c(a)c(az)...c(ay)c....(h
no two of these principal ideals being the same.
Consider the union
A = U(a)
We assert that A is an ideal of D. In fact
Oe(a) = 0e€ A
=>A%0.
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If x, y € A, then there exist integers i and j such that

X € (a),y€ (a)
Without loss of generality suppose thati > j. Then x, y € (a;) . This implies that x —y € (a;) and o €
(a;) where e € D. Hence x—y, ax € A.

Since D is a principal ideal domain, therefore 3 an element 3 of D such that
A= P).

There exists, therefore, an ideal member (a,,,) of the system such that
B e (am)

and accordingly
Be (a,) foralln> m

= (B) < (ay) foralln>m (II)
Also since (B) is the union of the ideals, we have

(B) o (a,) foralln (I1I)
Thus from (II) and (III)

(B) = (a,) foralln>m,

= (am) = (am+l) = (am+2) =....
which is a contradiction to (I). Hence case (ii) cannot arise.

Thus we have proved that every non-zero non-unit element of a principal ideal domain is expressible as a
product of prime element. Hence D is a F.d.

To prove the uniqueness, let

a=pip2-..- pr=q192---qs av)
where each p and q is prime. We shall prove the result by induction on r. The result is obvious if r = 1.
Suppose now that the result is true for each natural number < r. Since D is a principal ideal domain,
every prime element generates a prime ideal. Therefore pips... pn € (p1)

which implies qiqz.... qs € (p1)

Therefore one of the factors qiq.... gs should belong to (p;). Without loss of generality say, q; € (p1).
Then pylq;. As q; is prime, this implies q;/p; and therefore p; and q; are associates. Let

qi = €1p1 V)
where €; 1S a unit.
From (IV) and (V) we have

p2ps .- P2= (€192) Q3 -~ s (VD
By the assumed hypothesis
r-1= s-1

and each factor, on the right of (VI) is an associate of some factor on the left and vice-versa. This proves
the theorem.

Theorem. In a principal ideal domain a prime element generates a maximal ideal.

Proof. Let p be a prime element in a principal ideal domain R and let

p= (p)
be an ideal of R generated by p.
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Letp cQwhere Q= (a), ae R.
+

Now since p is a prime, greatest common divisor of a and pis p or 1. If (a, p) = p then plaand so
ae (p)=p
= (@Acp
= Qcp
But then Q = p which is not the case.
Therefore g.c.d. of a and p is one. Thus there exist x and y such that
1 =ax + py
Let us suppose thatb € R .
Now bpy ep c Q and bax € Q

. beQ
= R cQ
But Q being an ideal of R we have
QcR.
Hence Q=R

This proves that p is maximal.

Cor. If Dis a P.LD and p is a prime, then (p) is a prime ideal, in fact, since for a commutative ring D
every maximal ideal is a prime ideal.

Euclidean Domain. An integral domain R is said to be a Euclidean domain (Euclidean ring) if there
exists a mapping ¢ of the set of non-zero members of R into the set of positive integers such thatif a, b
be any two non-zero members of R then

1) there exists g, r € R such that
a= bq+r

where either r =0 or ¢(r) < ¢p(b)

(i)  ¢(ab) 2 ¢(a) or ¢(b).

Example 1. The domain I of integer is Euclidean, for the mapping ¢ defined by
0 (a) = lal

satisfies the properties in question.

2. The domain K[x] of polynomials over a field K is Euclidean with the mapping defined by
f(ax) = 2%€*™ where a(x) € K [x].

Theorem. Euclidean domain is a principal ideal domain.

Proof. Let D be any Euclidean domain and ¢ a mapping referred to in the definition. Let I be any ideal
of D. If Iis zero ideal, then it is a principal ideal. Now suppose that I # (0) so that it contains some non-
zero members.

Consider the set of ¢ images of the non-zero members of I which are all positive integers. Let a # 0 be a
member of I so that ¢(a) is minimal in all the ¢ images.

Let b be any arbitrary member of I. Then there exist two members q and r of D such that
b=qa+r
where either r = 0 or ¢(r) < ¢(a)
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The possibility 0(r) < ¢(a) is ruled out in respect of the choice of a. Therefore, r = 0 and we have
b=aq
= I=(a)
and I is accordingly a principal ideal.

Note :- Since P.I.D. is U.F.D, it follows that Euclidean domain is unique factorisation domain.

* We know that a polynomial domain F[x] over a field F is a principal ideal domain, therefore F[x] is
also a unique factorisation domain.

Definition. Let D[x] be a polynomial ring over a unique factorisation domain D and let f(x) = ap + a;x +
. + a,x" be a polynomial belonging to D[x]. Then f(x) is called primitive if the greatest common
divisor of ag, ai,..., a,1s 1.

Definition. The content of the polynomial f(x) = ap + a;x + .... a,x" is the greatest common divisor of
ag, d1y..., Ap.
If a polynomial f(x) = ¢ g(x) where g(x) is primitive polynomial, then c is called content of f(x).

Definition. A polynomial p(x) is F[x] is said to be irreducible over F if whenever p(x) = a(x) b(x) €
F[x] then one of a(x) or b(x) has degree zero (i.e. is a constant).

Definition. Let D[x] be the polynomial ring over a unique factorisation domain D. Then a polynomial
f(x) € DI[x] is called primitive if the set {ay, ai,.., a;, ... a,} of coefficients of f(x) has no common factor
other than a unit. For example x* —3x+1 is a primitive member of I[x] but the polynomial 3x* —6x +3 is
not a primitive member of I[x] since in the later case 3 is a common factor.

* f(x) € D[x] is called primitive if the g.c.d. of agy, aj,..., a, is 1. Every irreducible polynomial is
necessarily primitive but the converse need not be true. For example the primitive polynomial x* + 5x +
6 is reducible since x* + 5x + 6 = (x+2) (x+3).

Lemma 1. The product of two primitive polynomials is primitive.

Proof. Let f(x) = ap + a;x + X’ + ... anx™ and g(x) = by + bix + byx? + ... byx" be two primitive
polynomials belonging to D[x]. Let

h(x) = f(x) g(x)
=Co+ C1X 4+ X2 X ... + Cpyy X"

Let if possible, a prime element p be a common divisor of each of the coefficients of the product f(x)
g(x).
Also let a; and b; be the first coefficients of f(x) and g(x) which are not divisible by p. Then
Cij = @ibj + 2 by + aiobjn + ... 4+ ag biyj + iy bioy + aiabjo + ... ai bo

= abj=ciyj— (@i b + a2 b + ... ) — (aibj—r + @ bjo + ..0)

Since p is a divisor of each of the terms on the right, we have
p lab;

= pla; orpl b;

so that we arrive at a contradiction. Hence the Lemma.

Lemma 2. If f;(x) and f5(x) are two primitive members of D[x] and are also associates in K[x], then they
are also associates in D[x], K being the quotient field of the domain D.

Proof. Since f;(x) and f,(x) are associates in K[x], we have
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fi(x) =kfp(x) where 0 #ke K
Wehavek= gh™' wherege D, he D
- hfi(x) = gf, (%)
s fi(x) ~f,(x) in D[x]  (Application of Lemma III).
Lemma 3. Every non-zero member f(x) of D[x] is expressible as a product cg (x) of ce Dandofa
primitive member g(x) of D[x] and this expression is unique apart from the differences in associateness.
Proof. Let c be the H.C.F. of the set
{ao, ap,..., aj,..., an}
of the coefficients of f(x).
Let
aj=cb;,0 <i<n

Consider the set

{bg,...., bj,.....,b,}
This set has no common factor other than units. Thus
g(x) = Zbixi
i=0

is a primitive polynomial member of D[x] and we have f(x) = cg(x)
which expresses f(x) as required.

We now attend to the proof of the uniqueness part of the theorem.
If possible let

fx)= ¢ g (x)

f(x) = d h(x)
where g(x) and h(x) are primitive members of D[x].

We have therefore
cg (x) = dh(x)
= Cbi = dCi

This implies that each prime factor of ¢ is a factor of dc; for all 0 <i < n. This prime factor of ¢ must
not, however be a factor of some c; .

It follows that each prime factor of c is a factor of d = that c is a factor of d.

Similarly, it follows that d is a factor of c. Thus c and d are associates. Let ¢ = ed where e is a unit.
Also since

cg(x) = dh(x)
it follows that

eg(x) = h(x)
implying that g(x) and h(x) are associates.
Hence the lemma.

Definition. A polynomial p(x) in F[x] is said to be irreducible over F if whenever p(x) = a(x) b(x), with
a(x), b(x) € F[x], then one of a(x) or b(x) has degree zero (i.e. is constant).
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Lemma 4. If f(x) is an irreducible polynomial of positive degree in D[x], it is also irreducible in K[x]
where K is the quotient field of D.

Proof. Let if possible, f(x) be reducible in K[x] so that we have a relation of the form
f(x) = g(x) h(x)

where g(x), h(x) are in K[x] and are of positive degree.

Now

g(x) = % gi(x)

1
h(x)= =2 hy(x)
b2
where a;, by, a;, b, € D and g;(x) and h;(x) are primitive in D[x].
Thus we have

fx) = 22

gi1(x) hi(x)

12

= (biby) f(x) = (aia2) g1(x) hi(x)
But by Lemma 1, g;(x) h;(x) is primitive. The constant of right hand side in a;a,. Also f(x) being
irreducible in D[x] is primitive and the constant of the left hand side is b;b,. Therefore, a;a; = b;b,.
Therefore

f(x) = g1(x) hi(x)
This contradicts the fact that f(x) is irreducible in D[x].
Therefore f(x) is irreducible in K[x].

Theorem. The polynomial ring D[x] over a unique factorisation domain D is itself a unique factorisation
domain.

Proof. Let a(x) be any non-zero non-unit member of D[x]. We have
a(x) = gao(x)
where g € D and ay(x) is a primitive polynomial belonging to D[x].
Since D is a U.F.D. we have
g=PiP2 ---- Pr
where p;’s are prime elements of D.
If now ay(x) is reducible, we have
ap(x) = ag1(x) ag(x)
where ag;(x) and ap(x) are both primitive of positive degree.

Proceeding in this manner, we shall after a finite number of steps, arrive at a relation of the form
a(x)=pip2 ... prai(x) .... a(x)

where each factor on the right is irreducible.

This shows that D[x] is a f.d.

To show uniqueness, let us suppose that
ax) =pip2 .... pray(x) ....axX) = p1’p2 ....p/ (X)) @ (X) ... Ay (X)
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where each of the factors is irreducible and degree of each of a;(x) and a;’(x) is positive. By Lemma 1,
a1(x) ax(x).... ag(x) and a;’(x) a,’(x) are primitive. The constant of R.H.S. is p;” p,’... ps’ and that of
L.H.S.ispip2 ... pr- Therefore

Pip2---Pr=pi’p2 ... P/ (D
and hence
a(X) a(x) ....ax) = a;’X) &' (X) ... an'(X)
Since each of aj(x) a)(x) .... a(x) and a;” ... a,’(x) are irreducible in D[x], by Lemma 4 there are

irreducible in K[x]. Now K[x] being a unique f.d. we see that two sets of polynomials.
a1(x),..., a(x) and a;"(x), ... an'(x)

and the same except for order and the difference in associateness. Thus by a possible change of notation
we have

a1(x) ~a;’(x), axx)~a)’(x) ....in K[x].
By Lemma II this relation of associateness also hold good in D[x].
Also, D being a u.f.d. we see from (i) that each p; is associate of some p; and vice versa.
Thus the two factorisations of a(x) in D[x] are the same except for the difference in order and
associateness. Hence D[x] is a u.f.d.

Theorem. If the primitive polynomial f(x) can be factored as the product of two polynomials having
rational coefficients it can be factored as the product of two polynomials having integer coefficients.
Proof. Suppose that

f(x) = g(x) h(x)

where g(x) and h(x) have rational coefficients. By clearing of denominators and taking out common
factors we can write

fx) = (%j M(X) LX)

where a and b are integers and where both A(x) and [(x) have integer coefficients and are primitive.
Thus

bi(x) = a Mx) u(x)

The content of the left hand side is b, since f(x) is primitive. Since both A(x) and W(x) are primitive,
therefore, A(x) W(x) is also primitive so that the content of the right hand side is a. Therefore a = b and

f(x) = AMx) u(x)
where M(x) and p(x) have integer coefficients. This is the assertion of the theorem.

Definition. A polynomial is said to be integer monic if all its coefficients are integer and the coefficient
of its highest power is 1.

Eienstein Criterion of Irreducibility

Statement. Let a(x) = ap +a;X + ax> + ... + a,x" be a polynomial belonging to D[x] and p is a prime
element of D such that

plag,plag,...,plas
whereas p is a not a divisor of a, and p2 is not a divisor of a;. Then a(x) is irreducible in D[x] and hence
also in K[x].



UNIT-IV 111

Proof. Let, if possible,

apta ;X + ... apx" = (bp +bix + ... by x)) (co+ 1X + ... ¢ X™)
where [>0, m>0.
We have

ap = by Co

Therefore plag = plbporplcy

Now, since p2 is not a divisor of ay , therefore, p cannot be a divisor of both by as well as ¢y .
Suppose thatp | cg .
Also, we have
a, = by
implying that p is not a divisor of ¢y, .

Let r < m be the smallest index such that each of
Co, Ciye.. Crj

is divisible by p.

Also
a,=bgc; + bic_; +.... + by o

Since neither by nor c; is divisible by p, and each of
C0» Clyernns Crt

is divisible by p, we deduce that a, is not divisible by p. This shows, that r = n so that the degree of the
second of the two factors is n and accordingly the polynomial is actually irreducible.

Theorem. If a,b are arbitrary elements of a unique factorisation domain D and p is a prime element of
D, then

plab= pla orplb.

Proof. Let
a=pip2.... P
b=p/p ... pY

where each of py, p2,..., prs p1”p2s -..., Ps is a prime element of D. Then we have
ab=pip2... prP1P2 ... PS @

By virtue of the fact that expression as product of primes occur as a factor on the right side of (i) so that
we have

either pla or plb .
* Examples of rings which are not U.F.D.

We know that if a, b are two arbitrary element of a unique factorisation domain, then plab = either p | a
or plb.

The ring Z[ V=5 ] of numbers a+b V=5 where a and b are any integers is not a u.f.d. For,
9=(2++-5)(2--5)=33

The prime 3 is a divisor of the product (2 + \/—_5 ) (2—\/—_5 ) without being a divisor of either (2+\/—_5 )

or of (2— \/—_5 ).

Similarly Z [+ —3 ] is not a u.f.d. For,
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12=3++/-3)3-+-3)=34

The prime 3 divides the product but does not divides the individual elements.

Theorem. The domain of Gaussian integers is an Euclidean domain.

Proof. The set of numbers a+ib where a, b are integers and i = +/—1 is an integral domain relatively to
usual addition and multiplication of numbers as the two rings compositions. This domain is called
domain of Gaussian integers.

We shall show that the mapping ¢ of the set of non-zero Gaussian integers into the set of positive
integers satisfies the two conditions of the Euclidean domain.

We write
d(a+ib) = a’+b?
Then
O[(a+ib)(c+d)] = (a®+b?) (c*+d?)
= [¢(a+ib)] [0(c+id)]

so that condition (i) is satisfied.
We now write o= a+ib, B = c+id. Then

o
— = A= p+iq, say

B

where p and q are rational numbers.

There exist integers p’, q” such that

N | =

1
lp'—pl < =, Ig’—ql <
p-P > qa—q

We write
AM=p +iq
so that A” is a Gaussian integer. We have
oA = (a-AB) + (A-L)P
=0+ (A-LA)B
=(A-}) B
o =APB+ A1)
Now a, B, A" being Gaussian integers it follows that (A—A")B is also Gaussian integer.
Here

O{A-A)B) = {(p™~p)* + (q"~)} &(B)
< (5+) 0B < 0(B)
Thus for every pair of Gaussian integers o, 3 there exist Gaussian integers A" and (A-A")B such that
o=BA +(A-L)B
where O {A-A)B} < 9(P) .

Hence the domain of Gaussian integers is Euclidean.
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Unit-11

Composition Series
Definition:
A series of subgroups G=G AG AG,A----AG =(1)
of a group G is called a Composition series of G if
G,

and (2) if each successive quotient G,/ G, is simple

G, foreveryi

The above composition series is said to have length r. The successive quotients of a composition series are
called the Composition factors of the series.

Examples:

Ss

1. Consider the symmetric group S... It has a normal subgroup A, which is simple from unit I. Since A = Z
5

is also simple, we see that A, S, A A, A (1) is a composition series of S,. This is the only composition series
of S, because only non-trivial proper normal subgroup of S_is A..
2. Consider S, From unit I we have
S,AA, AV, AE, A(1), the composition peries of S,.
H, AH, AH pdeairv, = dh, @4/034), (13) 24). (14) 23)}
is Klein’s four group and
E,={(1),(12) 34)}, Further

A,

Vi

=3, =2,
E,

S _
A4

E—") =2 tells

il

S, AV, E,
each successive quotients A_4’ 74’ E_4 and 6 is of prime order, hence are simple.
Theorem 1:
Every finite group has a composition series.
Proof:
Let G be a finite group. Use induction on |G| .IfGisasimple then G A(]) is acomposition series of G. So

let G be not simple, Hence G has some maximal normal subgroup H, which has a composition series
byi . . G .
y induction. Since H,1s simple, so

G=G, AH, AH, A ———— AH, = (I) isacomposition series of G.
Note that infinite groups need not have composition series. We can consider infinite cyclic group Z.

As every non-trivial sub group of infinite cyclic group Z is isomorphic to Z; as Z is not simple, we see that Z
has no simple subgroups. So we can not construct composition series of Z.
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Z A27 A4Z A8Z Al6Z A ————————

We can not end to =(1).

Definition:

Let G=G, AG, AG, A————- AG, =(I) be a composition series and suppose that

G=H, AH, A———— AH, = (])

is another composition series of the same length r. We say that these series are equivalent if 3 some
such that

G[/G[ - Ha(t)%{g(i) Y

Example 3.

Let G=<x>,0(G) =

(from unit I).

Let G,=<x’>and H, =< x’ >
We have two composition series:

G AH, AH, = (I)

These two series are equivalent, as

%}EH/(])E » and
G/J) Y, =7
Eﬁ/

and take 0 = (I12) € S,

|
:31‘

/ <x>
H, <’

1

Theorem 2:

Jorden-Holder Theorem:

This theorem asserts that, upto equivalence, a group has at most one composition series.
Statement:

Suppose that G is a group that has a composition series. Then any two composition series of G have the same
length and are equivalent.

Proof:
Let G=G,>G,>---->G, =(])
and G=H,>H,>---->H =)

be two composition series of G. We use induction on r, the length of one of the composition series.
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If r =1, then G is simple and so is the only composition series of G. So let r > 1 and assume by
induction that the result holds for any group having some composition series of length less than .

If G,=H,, then G, has two composition series of respective length r— 1 and s — 1. Therefore by induction we
see thatr = s and two composition series of G, and equivalent. Hence G has two composition series which
are equivalent.

Therefore, we suppose G, # H, .

But issimple, so G, £ H, , hence

and so because %I is simple.
Let K=G, "H, AG. Now

G _ G H, H, _i
Gl G, GmH K

and

G _GH _ G _G
H  H GnH K

® K A G and G has a composition series,

K has a composition senes say
%WI éﬁgﬂ(%ﬁ%-js&@
1
G, now have two composition series
G, 4G, AG; A———— AG, = () and
G, AK AK, AK, A———— AK, = (1).

These are of lengths r — 1 and t + 1, respectively. By induction, we get t =r — 2 and that the series are
equivalent. Similarly, H, has two composition series:

H, AH, A———— AH, = (I) and
H, AK AK, AK, A————K, ,=(I) @t=r-2)

These have respective length s — 1 and r — 1, so by induction we see r = s and the series are equivalent.

‘We now conclude that the composition series

and G=H, AH, AK AK, A————AK__, = (1)

are equivalent, because we have proved above

%1 = H%( and
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Hence we finally conclude that our two initial composition series of B are equivalent.
Definition:
A series of sub groups

G=G,AG, AG, A———— AG, = (1) of group Gis called asubnormal series of G if G,,; 4 G; for
eachi.

A subnormal series is called a normal series of G if

Solvable groups:

First we define Commutators in a group G. Let a, b € G. The element is called a
Commutator and is denoted by [a, b]. The Commutator [a, b] = 1, only when ab = ba.

[a,b]” =[b, a], i.e., the element, inverse to the Commutator is itself a Commutator. But a product of

Commutators need not be a Commutator. Thus, in general, the set of Commutators of a group is not a sub
group. The smallest sub group G, of the group G containing all Commutators is called its Commutator sub
group. Note that the commutator sub group G, is the set of all possible products of the form [a,, b,] ----[a,

b ], where @;,b; € G, and r is a natural number. From

IS\ ... ¢

which, as a consequence, implies that G’ 4 G.

—
o~

Remarks:

1. The commutator sub group G of an abelian group is trivial.

2. The Commutator sub group of § isA , n > 1.

3. The Commutator sub group of GL (n, F) is SL (n, F), Fis a field.

4. The Commutator sub group A7 of A IS A ,is An= A, because the non-commutative groupA ,
has no non-trivial proper normal subgroups.

Theorem 4:

The Commutator sub group G of a group G is the smallest among the normal sub group H of the group G for

which is an abelian group.
Proof:
The Commutator [xH, yH] =[x, y]| H
is trivial is

is abelian

From [a, b]?> =[a, be], a,b, g € G, we get the second Commutator sub group G", i.e. the Commutator sub
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group of the Commutator sub group of the group G, is a normal sub group in G. The same result holds for the
k-th Commutator sub group G%, i.e. the Commutator subgroup of the (k—1) -th Commutator subgroup
G*-D k 2. Thus, any group G has a sequence of Commutator subgroups

(Here G =G,G" =G',G? =G, ———-)
Definition:

If for some k, we have G = (1), then G is called solvable (Also soluble). Note that in the case of = A , n
> 5, all members of above sequence coincide. i.e. A,n  Snot soluable.

Fromunit I, we see that S, S, are solvable. An abelian group is solvable, and non-abelian simple group is not
solvable.

or
A group is solvable if it has a subnormal series with each factor abelian.
Theorem 5:

1. Asubgroup of a solvable group is solvable.

2. A homomorphic image of a solvable group is solvable.

3. If ,then Gissolvable = Nand ar solvable groups.

4. A group of p", where p is a prime number, is solvable.
5. If Gand H are solvable, then GxH is solvable.

Wﬁ@@@%ﬁAMGW AGP A————

for all k, and G® = (1) for some k, as G is solvable, -, His solvable.

2. Let¢:G  Hbeahomomorphism. Then ¢ (G)=Im issolvable because

3. ToshowN and (%V are solvable:

Itis trivial from above 1 and 2).
Now N and are solvable, so we get subnormal series

and

((V
N, N) =67
G/ G%VA————AG%V:(]) such that /VHJ and %Jr%v) G,

are abelian V i . Now we get

G=G,AG, A-——-AG,=N=N, AN, 4———— AN, =(])
is a subnormal series of G having abelian successive quotients. Hence G is solvable.

or
We can use
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e/]\’j(k) - G(k)%

4.  The centre Z (G) and the quotient group % (G) are finite p — groups of strictly smaller order. So by

induction and using above parts of this thorem, we get G is solvable.

5. 1 xH = Hisasolvable normal subgroup of G xH, and is also solvable. Hence from part

(3) Gis solvable.
Nilpotent Groups
Definition:

Central Series of a group G:

A normal series G =G, 4 G, A———— A G, = (1) of a group G is called a central series of G if, for

. G . ) ) G
eachi, /G;+ , 18 contained in the center of /G[+ , 1e

A group G is said to be nilpotent if it has a central series.

Examples: 1.

1. Anabelian group G has the central series G > (/) , and abelian groups are nilpotent.

2. S,,S,, the symmetric groups of degree 4 and 3 are solvable groups but they are not nilpotent.

Recall are subnormal series in which each factor is abelian and
hence S, and S, are solvable.

Butcenterof S,,i=3,4,i.e. Z (S,) = (I).

Eému doesnothold V i,

where G = S4or SS.

Remarks:

1. The least number of factors in a central series in G is called nilpotency class (or just the class) of G.

G,
2. The condition /G‘+1 cZ @641 IJ is equivalent to the Commutator condition that

[Gi+1x’ Giyy g] =G, VxeG and V geG.

ﬁ X E / ufor any

G,
z+ +1+

—. | &n
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= i+1xidi+1gi:di+1gidi+1xiv geG

= [Gi+1x’ Gi+1g] =G,

i+1°

VxeG,VxeG.

However,

G,xG.,,8 Gi+1x7] Gi+]g7] =G, [x, gl

1

So the condition can be restated as

[x, gl€ G,

i+1

Vi,VxeGandV geG.

Hence in words, whenever, we take a commutator of an element of G, with an arbitrary element of the group,
weendupinG, .

Remarks

1. The trivial group has nilpotency class O.

2. Non-trivial abelian groups hare nilpotency class 1.

Theorem 6 : Nilpotent group are solvable.

Proof : Let G be anilpotent group. So it has a central servies, which is a normal series with abelian successive
quotients and hence G is solvable.

Converse is not true. There are solavble groups that are not nilpotent. For example S, can not have a central

Z 7

Z
Theorem 7 : Finite p-group are nilpotent

Proof : Let P be a finite p-group, we prove it by induction on |P| if |P| =p, then P is abelian and hence

nilpotent. Let Z=Z(P). Since Z # (I) (because finite p-group ha non-trival center), by P/Z has a central
series.

We get easily that the series
P=P,AP, AP, A-——-4P, = 20k

a central series of P.

Theorem 8 : Let G be a nilpotent group and suppose that H<G is a propersubgroup of G. Then the
normalzer of H in G is strictly larger than H i.e.

A niloptent group has no proper self-normlizing subgroups.

Proof : Let

be a Central Serie sof the nilpotent group G. Let \  and let k be such that G,, and %ﬁ hsuch ak

exists since G =(1) Now



56 ADVANCED ABSTRACT ALGEBRA

Let xeG,andge G
Since Gk/Gk+]SZB/Gk+] g, we get
Hence [G,.Gl<G,,, and so [G, H|<H

We now get that G, <N, mgi’ut G.xH

Hence we must have H§ N, @g

Corollary : Every maximal subgroup of nil potent G is normal in G.

Proof : Let H be a maximal subgroup of G. Since  \ , by hypothesis we must have and
hence HAG

Theorem 9 : If any finite group G is direct product of its. Sylow subgroups, then G is nilpotent,

Proof : From above theorem 7, it suffices to show that the direct product of two nilpotent groups is nilpotent.
It can be verified easily.

Example 1:

Normal series of Z under addition:
1. loQsz a4z 4z
2. 10Qyzaz
Examples 2:
l0Q 722 482 4z
can be refined to a series
l0Qh 724242 282 2424
Note that two new terms, 247 and 47 have been insertd.

Example 3 :

We consider two series of Z1 5

loQs5)4 2,
and  loQi(3)4 2,

These series are isomorphic

We see that z,, /(5)= Z; = <3>/|0qand

z,5/(3)=2,=(5)/loC
Example 4 :

We now find isomorphic refinements of the series given in Example 1

ie. )

loQ9z 4z ?)
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we write the refinement

10Q 722 487244742 3)
of (1) and the refinement

10Q 722 418249742 @)
of (2)

Both refinements have four factor groups :

Z 4z 87

—=Zy—=2,——=Z
3. has4Z 1 gy Sl =

72

Z~7220}’2

0

Z 97 187
. — =2y /99— =2,,—=2,,
4. has oo 9/ 182 7zt

727

=727 or7Z
Tocr

Hence (3) and (4) have four factor groups isomorphic to Z,, Z,, Z, and 72Z or Z.
EEZ4 E](gl, 4_ZEZZ EQ_Z,
47 727 87 187
B2,/ 2, AT 724 2,0 TN M= 7.
)

727 97" (0 or Z)

Note carefully the order in which the factor groups occur in (3) and (4) is different.

Exmple 5 :

Consider G=V,=2,xZ,

We write a norml series for G=V, :
G=2,x2,47, x [Tha MT< T

This is a composition series, because

ButZ, is a simple group. Therefore, above normal series is a composition series. The composition factors for
G=V,=72,XZ,areZ,and Z,
Exmple 6 :

Let G=S,, anormal series for G is given by
G=5,44,411C
S,/ A, 522,A3/|1q Z,

Both Z, and Z, are simple group. Therefore, normal series for S, is a composition series. The composition
factors for S, are Z, and Z..
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Example 7 :

For n > 5, the composition factors of the normal series
s,44,411C
are

But A is simple. Hence above is a compositin series for S . However, for ,A_isnotabelian. Hence S
isnot solvable.

Example 8 :

Let G, and G, be two groups and N,A4G,,N,4G,are normal subgroups. Then the product
N,x N,AG,x G,and

Solution

Letp,: be the projection. Then defined by

is an epimorphism.
The Ker @G N, x N, Hence
0, xGZ@I XN, =G,/N, xGZ/st
Tllustration

Bx rYPIxzG B/ 2G 1B/ (
Example 9 :

Consider the product let and . Then by above and

Pxc@d=xnGIo/NGIO/N(

Now subnormal series

give two subnormal series of G x G':

If factors are suitably permuted, they are isomorphic in these series.
Example 10 :

Let C be a cyelic group generated by a and O (c) be of prime power order p°. We write the composition
series of length e:
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of length e in which each C: is the Cyclic subgroup generated by  this can be easily verified that above is
the only composition series for C.

Example 11 :

Let G be a cyclic group of order 30 units generator a.

G:<a>= @a,az,a3 ___—,0!28,a29t

The only subgroups of G other than G itself are:

G.: raaﬁ’ a2 a’®. a24S

G,: ra &.a a's a®, a25S
G102m03,06,———,024,0275
ij:maz,a4,———,a26,a28s

Note that the subscripti on G" indicates the order of the group. (e,g, 0 (G, ) =10). Since G is cyclic, all the
subgroups are normal. Now we construct their composition series :

GAG;;4G.4G = (1)

GretiQc, «°G, a’'Gaea 846,
G 150, 5, G, S  GAGAGsAG,
e G,,AG,AG,

. 10 1, 20 g
6, (6 @& Lo A G,4G,AG, (2)

GAG,AG,AG,
The factor groups of (1) are
G/G;:1G ;a6
G,5/Gs:[®;, a’G;,a’G,S
G;/G:I¥,a°G, a”G,. a"*G, a”G, S

The factor groups of (2) are

We are clearly, G/G,; = G;/G, under the mapping
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G,s/G, = G; /G, under the mapping

G; &G,
a’G; <> a"G,

a’G, < a” G,

Gs /G, = G; /Gy under the mapping

G, <G

d’ G, < aG,
a]ZG] Haz(%
d* G, Haj(%

24 4
i G <agG;

Multiplication table for factor groups for G, /G,

G, a’G, a’G,

Gs
a’G,
a’G,

G, a’G, a’G,
a’G, a’G, G,
a’G, G, dG,

The multiplication table for G,/G

G] a]() G] 20 G]

; . a]() G] 20 G]
a]() G] a]() G] aZO G] G]

20 G aZO G G a]OG

ADVANCED ABSTRACT ALGEBRA

The isomorphism of G /G, and G,/G, can be easily seen from above tables.

Remark : Above is very good example of the Jordan-Holder Theorem.

Example 12 :

Any nilpotent group is solvable.

Solution :

By the definition of the k™ center, each Z, mglk Bgs abelin, so any commutator of two elements of Z (G)

mustlieinZ_(G) (see (iv) of example 12 of section I). Hence, if G is nilpotent of class ¢, (A finite group G
is defined to be nilpotent when there is some index ¢ with Z (G)=G, the first such index c is called the class
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of nilpotency of G),s0 Z_(G) =G. Now G'( .So we get the derived series

Hence G is solvable.

Note that the converse is not true i.e. a solvable group need not be nilpotent. For example :

G, A
S, is solvable but is not nilpolent because center of S, is (1). (Every nilpotent group has a non-trivial center)
Exmple 13 :
Consider .Now Z, Bz xS g Z, X @ld everyZ, Bz xS g Z, X q Therefore, ascending

central series (or upper central series) never reach G. Hence Z, x S, is not niloptent.

gﬂ_ﬁ%"&ﬁﬂq ,————AC%QQ é:(i?c= |1C
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Unit-I11

Modules
Definition
Let R be a commutative ring with identity 1. (M ,+e,) is called and R-module M if (M, +) is an abelian

group, together with a scalar multiplication —— M, written ———r.m satisfying

L. r.(m,+m,)
2. =

3. =

4. =m
forall and

Remarks

Above are precisely the axioms for a vector space. In F-module is just an F-vector space, where F is a field.
Hence modules are the natural generalizations of vector spaces to rings. But modules are more complicated
as elements of rings need not be invertible.

Submodule

A submodule of an R-module M is a non empty subset
such that

. x+yeM/\Vx,yeM,

2. axeM,\VxeM\NaeR

Cyclic Modules

An R-module M is cyclicif in M there is a generating element x_, such that

M=Rx,={rx,/reR)}
Remark

Any ring R is both a left and a right R-module over itself and also a (R, R) -module. These modules are
donated by xR,Ry,zRy.

The submodules of the module , R are the left ideals, etc.

Simple (or irreducible) module : The R-module, M is called simple if it does not contain proper non-trival
submodules.

Examples

1. When R = Z, thering of integers :— Any abelian group V, with law of composition addition, is a module
over the ring Z, if
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ny =

i.e. abelian group = z -module

2. Avector space Vover afield Fis an F-module

3. Alinear Vectorspace ~ isan M, (F)-module if A.Vis usual product, where

V=
A=(a; ) xn €M, (F), , the column vector v of length n from g

nx1

4. Let V be a vector space over the field F. T : V—— Vis a linear operator. V can be made F[x]-
module by defining

S )= f(T)v,
Free modules
m[ﬂi@:@mﬁm-& madweever aring R, and S be a subset of M.S is said to be a basis of M if

—ntimesd

D)+ () SHCY S ldyhenn =
=(—m).v and m is + ve integer
" Sis linearly independent.

if n=zero
If Sis a basis of M, then in particular ,if and every element of M has a unique expression

as a linear combination of elements of S.

If Ris aring, then as a module over itself, R admits a basis, consisting of unit element 1

Free Module

A module which admits a basis. We include in definition, the zero module also for free module

Remarks

1. An ordered set (m,,m,).....,m, ) of element of a module M is said to generate (or span) if every
me M 1s alinear combination :

,LER

Here elements v, are called generators. A module M is said to be finitely generated if there exists
a finite set of generators.

A Z-module M is finitely generated « itis finitely generated abelian group.
2. Consider,
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(R"+,,) isamodule over R, where +,. are defined :

X I -
+b,
M
a al+b,

and

3. A module isomorphic to any of the modules s called a free module.

Thus a finitely generated module M is free if there is an isomorphism. ¢: R" —— M .
4.  Asetofelements {m,,m,,.....,m, } of amodule M independent if

rm; +rm,+......4+r,m, =0, r, € R, thering, then foreach U.

5. Suppose amodule M has a basis

(F,Fyeeeinaly)) ———— K+, +rm, VreR
@is clearly module-homomorphism. @ is surjective : Let m be any element of M

then m=a,m, +a,m,+......... +a,m, , a; € thering
such that

¢(a;,a,,....a,)=m

@isinjective :

= (a,=b))m+........ +(a, —b,)m, =0,

= (since {m,,.....m, } is a basis for M)

= a,=b Vi

.. @ is abijective <& M has a bases; in this case M is a free module . So a module M has a

basis & it is free.

The following result shows how homomorphisms are affected when there are no proper submodules.
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Theorem 1

Let M, Nbe R-modules and let f : M — N be a non-zero R-morphism. Then
1. If Missimple, fis a monomorphism.

2. IfNissimple, fis an epimorphism.

Proof

1.  Kerfisasubmodule of M, since fis not the zero morphism, we must have ker f= (0), because M is
simple, so only submodules of M are (0) and M itself (if Ker f=M, then fiM)=(0) = f = 0, but

).
Hence Ker is a monomorphism.
2. Imfis asubmodule of N, But N is simple, so Imf or f then
but . Therefore, Here fis an epimorphism.
Corollary : (Shur's Lemma) If M is a simple R-module, then the ring End of R-morphisms.
f M —— Misadivision ring.
Proof
From (1) and (2) above, every non-zero f € End is an isomorphism and so is an invertible element in

the ring. Hence End (M) is adivisionring.
Fundamental structure theorem for finitely generated modules over a principal ideal domain :
Before proving this we have to build some tools needed to prove above theorem :

Wwbuppose we have a sequence of modules with a homomorphism from each module to the next :
f 4 f 1 f 2 f 3

......... — M, —->M, — M, —......

This sequence is said to exact at M, if
Im f, =Ker f,
The sequence is exact if it is exact at every module

An exact sequence of the form

a o B
0O)—>M,—M-—M,— (0
is called a short exact sequence.

Recall that every module over a general ring R is a homonorphic image of a free module. Every R-module M
forms part of a short exact sequence.

0)y— G—> F—> M — (0)

where F is free, this is called a presentation of M; If M is finitely generated, F can be taken to be of finite
rank.

We shall use the result (without proving it)
"If Ris a principal ideal domain, then for any integer n, any submodule of  is free of rank at most n."

Using this, we assume that above G is free, at least when M is finitely generated. More precisely, when M is
generated by n elements, then it has a presentation
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0)— R"— R"— M — (0)

where m<n.

Fundamental Structure Theorem for finitely generated modules over a principal ideal domain :
Theorem 2

Let R be a Principal Ideal Domain and M a finitely generated R-module. Then M is direct sum of cyclic
modules :

,where d,/d.,,i=1,......m—1

i+1°

(Recall that a module M over a using R is cyclic if M has an element x for which ps = Ry . Thus a cyclic
group is the same as a cyclic module over Z, the ring of integers. Every cyclic module is representable in the
form of a quotient module of the free cyclic module, i.e., in the case of a ring of Principal ideals it has the form

Proof

Suppose M is generated by n elements, then M has a presentation

¢
©O)— R"—> R"— M — (0)-

Where m < n, where M = CoKernel if ahomomorphism ¢: R” —s R", whichis given by m x n matrix A.
Now we Claim:

invertible matrices P and Q of orders m, n respectively over R such that

Where d,/d,,, fori=1,.......... ,r — 1; more precisely PAQ = diag

i+1
Two vector u,v are called right associated if 35 € GL,(R) such that u =vS.

We show here that any vector (a, b) is right associated to (%, 0), where his an HCF of a and b. Since R is
a PID, a and b have an HCF h, a=h; a', b = hb', a’, b'c R. Since h generates the ideal generated by a
and b, we have h = ha'd'— hb' ¢, cancelling h we getor h = ha'd’ - hb'c’, Cancelling hwe get 1 =a'd’- b'c/,
Hence

(h.o)=(a.0)@. 7]

Which shows (a, b) is right associated to (%, 0).

Now we prove the general case, i.e. we find a matrix right associated to A which all entries of the 1st row
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after the first one are zero. We continue in this way, we find a matrix right associated to A, such

that b; = o for i<j. We shall now have to operate with invertible matrices on the left. We say two matrices
A and A' are associated if , for invertible matrices S and T of suitable size.

By multiplying B on the left by an invertible matrix we can reduce the entries of the first column after the first
one to zero. By doing this we may get more non-zero elements in the 1st row, if it so happens, it will reduce

the length of the (/, /) - entry, which allows us to use induction on the length of =~ and we find that A is
associated to

where  is an (m-1) x (n-1) matrix. Now by induction on m+n, A, is associated to a matrix in diagonal

form, say diag (a,,a;,........ a,,o,0......... 0) . Now we combine this with previous statements we find that A
is associated to a diagonal matrix :

SAT = dig (a,,a,,........ a

If a,/a,,, for i=12,.....r—1,we get the required form. So we assume a, xa, and consider the 2 x 2
matrix formed by first two rows and columns. We get an equation

TSR

If we reduce the matrix on the right to diagonal form as before we again reach the form SAT = diag
, but with q, if shorter length than before. After a finite number of steps we have

a,,d;,....... ,a,_, and so we get the required form. Hence our claim is proved i.e.
. : . . d,
3 invertible matrix P and Q such that PAQ = diag , where /4 , for
1+
i=12,......... ,r—1 and r =m, because @is 1-1. Here P and Q correspond to changes if bases in and
R respectively; but these changes do not affect the Cokernel, soif v,,.......... v, is the new basis in R”, then

the submodule R has the basis d,,v,,......d,,v, and Cokernel takes the form

m-m

Where Cokernel ¢ = M, and

0 R __R
(00— R"— R"— M —(0)> mp  §(R™)
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Corollary (application to finitely generated abelian groups)
Since every abelian group is Z-module, so every f.g. abelian group G by above theorem, can be written as
direct sum of finitely many cyclic groups of infinite. or prime-power orders.

Primary Decomposition

Theorem 3
Let Rbe a PID and M af.g. torsion module over R. Then M can be written as a direct sum of sub modules

M , , where p are different primes in R and M, consists of elements that are annihilated by a power of p.

(A module of the form M, is called p-primary)
Proof
Let xe M, suppose that xa=o0,aeR.Let =a=gq, q,.......... g, be the factorization of a into powers of

a
different primes, say ¢, = a powerof .Put 5 = q_ .Now the .1 <i < r have no common factor, so

1
§,C;+ Sy F oyt +s.c, =1,c; e R

Hence x = xs,¢; + x8,¢5+.cnenee. +xs,c, and xs,c;q; = xac; = 0. Therefore, xs,c; € M,

Itis easy to prove that above sum is direct
M=®M, B
i=1 !
Rational Canonical form
See, "Topics in Algebra' Herstein, Pages 305-308. Nicely given there.
Canonical forms

We can get linear transformation in each similarity class whose matrix, in some basis, is of a particular nice
form. These matrices will be called the canonical forms.

Definition

The sub space W of Vis invariant under a linear transformation 7on Vif T(W)cW i.e.

Reduction to triangular form

Theorem 5

If alinear transformation 7 on a vector V over a field F, has all its eigenvalues in F, has all its then there exists
abasis of Vin which the matrix of T'is triangular.

Proof

We shall prove it by induction on the dimension of V over F.

If dim V = I, then every linear transformation is scalar, have proved.

Letdim V=n> I. Suppose that the theorem is true for all vector spaces over F of dimension n-1.

By hypothesis, T has all its eigen values in F. Solet T have eigen value ~ in f 3 acorresponding eigen

vector such that Let ={a,v,:a, € F} be aone-dimensional
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Vector spaceover F. Let xe W.x=a,v,,a, € F and T(x)=a,T(v,) = a,;A,v, € W. Hence Wis T-invariant.

Let V =V, =dim, dim (V) =dim @] =din V-din W =n-1.

Tinduces a linear transformation on = defined by

Also minimal polynomial over F of T , divides the minimal polynomial of 7 over F: Hence all the roots of the
minimal polynomial of  are roots of minimal polynomial of 7. Therefore all eigen values, of  liein F. Now

satisfies the hypothesis of the theorem. Since dim so by induction hypothesis, 3 a basis

of VeV/WJ over Fsuchthat istriangular.

Le.
T(v;)=a3v, +a;v;
M MMM
Th,)=a,v,+a, v;+..... +a,,v,
Let v,,v;,........ v, be elements of V mapping to v,,v;,.....v, respectively, then it is easy to prove that

nn-n

T(v,) =0, v+ 0, VyFenn, +a,,v
= T(v,)=0a,v,+a,v,

Similarly,
Also T(v,)=A,v, = a,,v, (Taking ).
Hence abasis of Vover F, such that 7(v,) =linear combination of v, and its predecessors

in the basis. Therefore, matrix of 7'in this basis :

Q3 Qs

Qp Ay Ay
_______ (0]
——————— (0]

anZ an3 ————— 8nn

is triangular.
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Jordan Forms
Theorem 4

If a square matrix A of order n has s linearly independent eigen vectors, then it is similar to a matrix J of the
following form, called the Jordan Canonical form,

/>
oo MO
(0]

J

s

in which each J; called a Jordan block, is a triangular matrix of the form

l

]
2 O
O 0
]

0
0
0
0
A
where A, is a single eigen value of A and s is the number of linearly independent eigen vectors of A.
Remarks

1.  If A has more than one linearly independent eigen vector, then same eigen value A, may appear in
several blocks.

2. IfAhasafull set of n linearly independent eigen vectors, then there have to be n Jordan blocks so that
each Jordan block is just 1.x1 matrix, and the corresponding Jordan canonical form is just the diagonal
matrix with eigen values on the diagonal. Hence, a diagonal matrix is a particular case of the Jordan
canonical form.

The Jordan canonical form of a matrix can be completely determined by the multiplicites of the eigen
values and the number of linearly independent eigen vectors in each of the eigen spaces.

Definition
Let V be an n-dimensional vector space over a field F. Two linear transformations S, 7on V is said to similar
if 3 aninvertible linear transformation C and V such that

In terms of matrix form :

Two n x n matrices A and B over F is said to be similar if 3 an invertible n x n matrix C over F such that

Proof of Theorem 4 is not important but its application is very important. (Interested readers may see proof
in Herstein P. 301-303)

Example 1

Let A be a5 x 5 matrix with eigen value A of multiplicity 5. Write all possible Jordan Canonical forms :

We can get 7 Jordan canonical forms :
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1. only one linearly independent eigen vector belonging to

This Jordan canonical form consists of only one Jordan block with eigen value 4 on the diagonal

2. two linearly independent eigen vectors belonging to
Then the Jordan canonical form of A is either one of the forms

A1 0
J= 0 A 0
0 0 1
0 0 A

S x» Lo

Each of which consists of two Jordan blocks with eigen value A on the diagonal.

3. 3 three linearly independent eigen vectors belonging to
Then the Jordan Canonical form of A is either one of the forms

2
1 A
I=Nfom1o0 e 110
0R1I , Or 0 a1
00 A 00 A

Each of which consists of three Jordan blocks with eigen value A on the diagonal.

4. four linearly independent eigen vectors belonging to
Then the Jordan canonical form of A is of the form

This consists of four Jordan blocks with eigen value 4 on the diagonal.

5. five linearly independent eigen vectors belonging to

Then the Jordan canonical form of A is of the form.
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This is just the diagonal matrix.
Remark

We see from (5) that the Jordan form of the matrix A consists entirely of | x | blocks « the algebraic and
geometric multiplicities coincide for each eigen value of A. This is of course precisely the criterion for
diagonalizability. (The algebraic multiplicity of the eigen value A4 of the n x n matrix A is its multiplicity as
aroot of the characteristic polynomial of A).

(The geometric multiplicity of the eigen value A of the n x n matrix A is the dimension of the eigen space
corresponding A. i.e.maximum number of linearly independent eigen vectors corresponding to eigen value A).

Useful Information to determine J :

1. The sum of the sizes of the blocks involving a particular eigen value of A = algebraic multiplicity of that
eigen value.

2. The number of blocks involving a particular eigen value of A = the geometric multiplicity of the eigen
value.

3. Thelargest block involving a particular eigen value of A = the multiplicity of the eigen value as a root of
the minimal polynomial of A.

(The minimal polynomial of the n X n matrix A is the monic polynomial of leastdegree such
that . The minimal polynomial of A always divides characteristic polynomial of A).
Example 2

1.
A has only the eigen value A which has algebraic multiplicity 3 and geometric multiplicity 1. E(A4):
Eigen space for A=0=
-1 -3
, A= 3 3
1 -1

Characteristic polynomial of A = (2 - 1)?(—4— 1) A =2 occurs with geometric multiplicity

S



UNIT-III 73

Hence J= @ I

3. LetAbea 7 x 7 matrix whose characteristic polynomial is (2 - 1)*(3— 1)’ and whose minimal

S N O
N~ O

polynomialis (2 - 1)? (3 - 1)°.
Corresponding to 4 = 3 there must be one 2 x2 Jordan block and | x | Jordan block.

Corresponding to 4 =2 there must be at least one 2 x 2 Jordan block. Hence there must be either two
or three Jordan blocks for 4 =2, according as to whether the geometric multiplicity of 4 =2 istwo or
three.

Two possibilities for the Jordan form of A depending on the geometric multiplicity of the eigen value
A=2:

00
00
21
02

S o

310
030

J: gi
YREBD =M, Vr € R. 00 3
J=
or

00 0
00
20
02

S

310
030
003
Example 1
Anirreducible right R-module is cyclic.

(Let R be aring and M be a nontrivial right R-module M, M is called an irreducible right R-module if its only
submodules are (0) and M. Since MR # (0) and MR is a submodule of M, MR = M and so an irreducible

module is unital. A right R-module M is called trivial if MR = (0), i.e. Aright R-
module M is called cyclic if 3o = M such thatmR = M. Thus a cyclic module is unital).

Proof

Let M be an irreducible right R-module. Let N = {x € M/xR =0} . N is a submodule of M and hence
N =(0), i.e. lims P - 103 Therefore, any non zero element of M generates M. For if

and , then yR is a non zero submodule of M and, therefore, yR = M.
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Example 2
Any homomorphic image of a module M is isomorphic to a quotient module of M.
Proof

Let —— M, be a module epimorphism and let Ker ¥ = N. Now we define a mapping
M
finy —— M, definedby f (x+N)=y(x).Vx+ N e Mﬁv

fx+y+N)=f(x+y+N)=yw(x+y)=

From above fis a module homomorphism. Further fis injective since Ker , the zero element of

fis surjective also since ¥ is.

M
Hence Imf=M1=y/(M)i.e.WEl//(M)

Q. 1. LetIbeanidealin acommutative ring R with 1. If M is an R-module, show that the set
S={xm/xel,me M}

is not in general an R- module. When is S an R- module?

Q.2. IfMisan R-module andif ¢ g, prove that the set is an R-module.

Q.3. LetMbearight R-module. Show that is anideal of R. Itis called
annihilator of M.

Example 3

If M is a finitely generated R-module, it does not follow that each submodule of N & M is also finitely
generated.

Let M be a cyclic right R-module, i.e. M = mR for some of M. The right R-submodules of M is if
the form mS, where S is a right ideal in the ring R. Suppose S is a finitely generated right ideal,

say . Now the submodule mS is generated by the elements ma,;,ma, ............ ,ma,,
i.e. ms=(ma,,ma,,.....ma,)and so is a finitely generated R-module. Actually, ms is a cyclic
S-module.

If R is a Noetherian ring (i.e. R has the ascending chain condition on rightideals. 7, <1, <I;<.............
<ly=1y,,=1,,....forsomeinteger N), then every ideal is finitely generated. Butif R is not a Noetherian
ring, then the ideal S need not be finitely generated and hence the submodule ms of M would not be a finitely

generated R-module. (See: F[x;,,%;,cccccuu.... | is not Noetherian, F is a field).

Example 4

A finitely generated module is not in general a free module, for its generators are not necessarily linearly
independent. Consider a cyclic R-module M is generated by a single element ;¢ A1, i.e. .Butisnota
free module unless

~ |
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Example 5

The direct sum of free modules over R is a force module over R, its basis being the union of the bases of the
direct summands.

Example 6

A submodule of a free module over aring R, is not necessarily a free module. However, every submodule of
a free module over a principal ideal domain (P1.D.) is free.

We mention the following results without proof (can be seen in a standard book of algebra):—
Results

1. LetMbea free module over a P.I.D. with a finite basis . Then every submodule N &
M is free and has a basis of < n elements.

2. From (1) we can deduce that a submodule N & a finitely generated Module M over a P.I.D. is finitely
generated.

Recall that for each finite abelian group G # (0) there is exactly one list of integers

m; > 1, each a multiple of the next, for which there is an isomorphism.
G=Z,®........ @Z

my

the first integer m, is the least +ve integer m =m, with mG = (0) and the product

Example 7
%Mfg.@@;gms;ikge@%han group of order 36 are

No two of these group are isomorphic.
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Unit-1V

Definition: Ring
Let R be a non empty set with two binary operations, called addition and multiplication, denoted by +and .,
(R, +, .)iscalled aring if

1. Closure: a+beR, a.beR Va,beR.
2. Commutative low with respectto +: a+b=b+a Va,beR.
3. Associative laws:
a+(b+c) = (atb)+c
a.(b.c)=(a.b).c Va,b,ceR.
4.  Distributive Laws:
. (b+c) = a.b+a.
?b-(i-c).a)= ba.a+cilC vab,ceR.
5. Additive identity: R contains an additive idenity element, denoted by 0, such that a+o=a and o+a=a
VaeR.
6. Additive inverses: Va € R, 3 x € R such that a+x=0 and x+a=0
x is called additive inverse of a, and is denoted by —a.
Remarks: (R, +,.) is abelian additive group and (R, .) is a semigroup, closure and associative law with
respect to ., so (R, +,.) is aring.
7.  Aring (R, +,.)is called a commutative ring if a.b=b.a Va,beR
8. Aring (R, +,.) iscalled a ring with identity if suchthata.l =aandl.a=a
In this case 1 is called a multiplicative identity element or simply an identity element.
Examples
1. (Z+,.)iscommutative ring with identity 1 (Ring of integers under ordinary addition and multiplation.
2. E:setofevenintegers. (E, +, .) is a commutativering without identity element.
3.

0]
then @12 D?g-h ' is a non-commutative ring with identity / = ﬁ ]k © IeR.

whose +, ; are defined as addition of matrices and multiplication of matrices.

B kB e B
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A.B # B.A.
If IR, the set of real numbers is replaced by E, the set of even integers, then

(M, (E), + ;) is a non-commutative ring without identity, as
4. Z,:Setof integers module 4.

is a commutative ring with identity , where +, ; are defined shown in following tables:

S| S

N
|| W S| W

~I| S|~
N Q)

NSRS
S|
N

w|
B
B
NI
==

Important Remark:
As we saw in a group that Cancellation law holds but in a ring the cancellation law may fail for multiplication:

mB .+ .g§.§=5=4_.§ but 2 #4.

’"%'l

9¥d anon-empty subset of R. Then B+, .g(with same binary operations) is called

2. Y ae R, —aeR.

Examples:
€)) Q , +, S is acommutative ring with identity. (S, +, .) isasubring with identity (multiplicative)
, since Note that parent ring @ , + ;ghas identity . This shows that a

subring may have a different identity from that of a given ring.

Definitions: Units in a ring

Let R be a commutative righ with identity 1. An element a € R is said to be invertible if such
thata.b =1. The element a € R is called a Unit of R.

Divisiors of Zero

If and ab =0 for some non zero . Then ‘a’ cannot be unit in R, since multiplying ab =0, by the

universe of a (if it exists)
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An element such that ab = 0 for some in R, is called a divisor of zero.
In is adivisor of zero.
In are divisors of zero.

2. Let IR be the set of real numbers, and

is acommutative ring wth identity. + : defined by

(Addition and multiplication are defined pointwise).
I% | Vx € IR, I is identity of the ring R.

Note that (R, +, .) is a commutative ring with identity and also with divisors of zero.
I‘f f m , X < 0
,x =20
d m , X < 0
a8 , x 20
then O gg@t f @@t 0 Vx € IR.In above example, (f.I) (x)

= fRGRY  vaxer
=fm V x €lR
=fm V x €lR

if 0..G rPGRG- /G- VxelR
and f mt 0, gmt 0 Vxe |R, then fhas a multiplicative inverse <

. Hence for example

f [@: 2+sin x has amultiplicative inverse, but g @t Sin xdoes not.

Definition: Integral Domain:
It [D +, .gis a commutative ring with identity such that for all
Examples:

1. @5 ,+, S is not an integral domain.

2. the ring of real valued functions, the example given on page 5 is not an
Integral domain.
Definition:

A non-commutative ring with identity is a skew field (or Division ring) if every non-zero element has its
inverse in it.
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Example:

as

where 1=

R=-1, 1J
B%gz%%ﬂ+a3 %
+|32

-0, 5.1, +p,
+ oL oc2J+oc
+0u+062]+ock :@+[311+[32]+

= boBo - OC1[31 - ai[[ifer_l Qyﬁ;k 1 —&fﬁy—_}_%ﬁE—ijL))Z

omD

boBz _0‘260 - 0‘361 _0‘163 0[33 %‘360 + 0‘162 0‘2619
such that
xy=1,
where =+, + 05 + o #0

Definition:

(D, +, .)is adivision ring, where +

A commutative ring with identity is a field if its every non-zero element has inverse in it.

Example:
m?, +, g the ring of real numbers is a field.

Theorem. Every field is without zero divisor.
Proof. Let Fbe a field and x,y € F, x #0. Then
xy== x—'(xy)=x-'=0
= (x-'x)y=0
= y=0
Similarly, if y # 0, then

79

,. are defined
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xy=0 = xyy—'=0.y-'
= x.e=0
=x =0
Hence xy=0= x=0 ory=0and so F is without zero divisor.

Remark. It follows from this theorem that every field is an integral domain. But the converse is not true.
For example, ring of integers is an integral domain but it is not a field.

Theorem:

Any finite integral domain is a field.
Proof:

Let D be a finite integral domain

let D" =D - (0).

Since cancellation law holds in integral domain D. Since D is finite set, so one-to-one function  from finite

set to itself must be onto, so f is onto. Hence
Ja €D such that f% 1
ie.da=1,aeD CD

and so d is invertible. Hence every non-zero element in D is invertible, i.e. D is a field.
Remark:

Does there exist an integral domain of 6 elements? No, we shall explain in Unit V that every finite integral

domain mustbe p”", for some prime p, every + ve integar n.
Ring homomorphism:

LetR and S be rings. A function

w: R ——— S is called ring homomosphism

if 7% D+bg: y/m y/m\and
for all

a,beR.

Kernel of ring homomorphism:
is called the zero elements of S.

,thekernel of , denoted by ker
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Examples

1. The polynomial is irreducible over Q, where p is a prime.

Proof
(x=Df(x)=x"—1.Putx=y+1,then

Where ﬁd

Not that and  divides the product . Hence p divides

I
/\'
=

Dividing (1) by y, we see that

satisfies the hypothesis of Eisentein criterion and so it is irreducible over Q. Hence f(x) isirreducible

2. is irreducible over Q, since p=35, , , 5 divide,

N PP D G- 2
y U P SEE R +
3. is irréducible over Q, p is a prime number.

4. f(x)=x"+x’ +x? + x+1 isirreducible over Q. Put x = (y+1)

=y 45y +10y’ +10y+5
Take p=5,s0 is irreducible over Q, hence is irreducible over Q.
Field Extensions
Definition
Let kbe a field. A field K is calld an extension of k if k is subfield of K.

Let S be a subset of K. k(S) is defined by smallest subfield of k, which contains both k and S.k(S) is an
extension of k. We say k(S) is obtained by adjoining S to k. If a finite set, then

k(S):=k(a,,a,,........ ,a ).

If K is an extension of k, then K is a vector space over k. so K has a dimension over k, it may be infinite. The
dimension of K, as a vector space over k is called degree of K over k. Denote it by

dim K, =degree of K overk
=[K: k]
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Unit-V

Normal Extension:

An extension K of k is said to be a normal extension of k if

1. Kisanalgebraic extension of k and

2. every irreducible psynomial f % k[x] which has one root in K splits in K[x] (i.e. has all its roots
in K).

Theorem 1.

If K is a splitting field over k of some polynomial f % k[x] , then K is a normal extension of k.

Proof:

Leta,a,......... a_beroots of f(x) in K. So K =k(a ,a,,........ ,a ). Let pm\ be any irreducible polynomial

in k[x] which has one root b in K. Let L be a splitting field of over K and let b, be any root of
in L. Now from unit I'V, we get a k-isomorphism  of k(b) onto k(b,) such that (b) =b . Also
(f(x))=f(x), since and o is k-isomorphism. Since K is a splitting field of

So K is a splitting field of f(x) over k(b). Now K(b)) =k(a, a,, ......... ,a,b)is
a splitting field of f(x) over k(b ). Hence from Unit IV, 3 an isomorphism  of K onto K(b,) such that
for all In particular, Sincea, a, ....... a, € K are roots of f(x)

over k, so  (a)), (@), ......... , (a) are roots of in K(b,), so

Ip(al), ————— , p(an)q= |a1,a2,————,anq may be indifferent order. Let h(x,, x,, ------ X ) be a
polynomial be a polynomial in k[x] such that h(a, a,, ----- ,a) =D, say then

G P, 0, - - a, @ o GG -—. o0, G, G - —. o0, QR &

Hence pm K, i.e. b € K. As b, is arbitrary root of an irreducible polynomial P(x) in k[x] such that

b, € K, p(x) splits in K[x]. Therefore K is normal extension of k.

A partial converse is also true.

Theorem 2.

If K is a finite normal extension of k, then K is the splitting field over k of same polynomial in k[x].
Proof:

Let K = k(a,, a,,-------- ,a)and let p, m\ be irreducible polynomial over k such that v 1.
Since K is a normal extension of k, each p, m\ splits in K[x]. So p,(X) p,(X) -------- p,(x) = f(x) say,
splits in K[x]. K is got by adjoincing roots of to k. Hence K is a splitting field of f(x) over k.
Perfect fields

Definition:

A field k is called perfect if k has characteristic o or if k has characteristic p, some prime p, and
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(Characteristic of a ring with identity:- Let R be a ring with identity 1. If 1 has infinite order under
additon, then the characteristic of R is O. If 1 has order n under addition, then the characteristic of R
is n). Note that the characteristic of a field is O or a prime.

Theorem 3.
Every finite field is perfect.
Proof:

Letk be a finite field of characteristic p. Define

Yaeck

Then

|
—a’+b”’ E’p/ﬁkléiép-lil

= vlog viX
® a’” #0 whena+0ink, so ker y/:m\_

Now V¥ is one-to-one and since k is finite, so  is onto,

e, pid) 0+
we et k=K, is pe -

Theorem 4.

If p(x) is irreducible polynomial over a perfect field k, then p(x) has no multiple roots.

Proof:

Casel: Characteristic k =0 (i.e. char k = 0). Let K be an algebraic extension of k. Let 4 ¢ Kk and p(x) be an

irreducible polynomial over k s.t p(a) = 0 (i.e. p(x) = Irr (k, a). Then and p' (x) is of smaller
degree than p(x). Therefore .Hence Thus is seperable over k and so p(x) has
no multiple roots.

Case II: Let char k =p.

Let p(x) have multiple roots

Since p'(a) =0 and since deg p'(x) < deg p(x) so fork=1,2 ------- .1,

where p(x)=x"+a, x" +————- +axt +————— +a,x+a,, a, €k ¥i

. a, =0 when px k. Hence only powers of x that appear in
are those of the form x” = d”ll Hence pm gd”l for some g(x)e k[x]. (for example: if

p(x) = x%7 +3x% + 5x%7 + x” + 1, then g% X043 +5°7 +x+1D).
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Now pt@t gdp | g@ k[x] and k? = k, so each coefficient a, of g(x) in k can be written as b for
some b, € k.

Therefore we get

p(x)= gd”lz X" +b? 4+ x4 ———— 4P x? + b}

= d’ +b " ————4bx+b, |
( Chark=pandsop =0Wi)

But then p(x) is not irreducible over k.

Finite Fields:

We know d,, +e] is a finite field containing p elements with addition and
multiplication module a prime p.

Theorem 5.

Let k be a finite field such that char k = p. Then k has p" elements, for some positive integer n.
Proof:

Define

Vne?

Where

m times

Clearly y is a ring homomorphism.
ker =p#% p=chark

Z
But g =Z,, afield of p elements, so Im y is a subfield of k, isomorphic to . Since k is finite, so
k is vector space of finite dimension over a field which is isomorphic to Z,. Let [k:F] = n. Let
Uy, Uy, ------- u, be a basis of k over F. Now each element x of k can be written as:

X=0,u, +0,u, +————+0,u, o, € F ¥i

n’n?
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As |F | =p @ F=Z, | cach o, € F canbe chosen p ways. Hence that total number of ways in which an

element in k can be defined in p" ways. So
Theorem 6.

1. Letkbe afinite field with p elements. Then k is the splitting of the polynomial ,.»" _
subfield of k.
Two finite fields are isomorphic ~ they have the same number of elements.

+ over the prime

3. Letkbe afinite field with p” elements. Then each subfield of k has p™ elements for some divisor m of

n. Conversely, for each +ve divisormofn  aunique subfield of k with  elements.

4. ¥prime p and ¥ positive integer n, 3 afield with  elemetns.

Proof:

I. © khas elements, then k*, the multiplicative group of k has p"—1 elements. Hence for any
xe k ck,x" =180y =y ¥ . The polynomial has atmost p" roots

and so its roots must be precisely the elements of k. Hence k is the splitting field of f Kx\ over the
prime subfield of k.

2. isthecorollary of (1).Let  and k, be two finite fields with p" elements, containing prime subfields
F andF, respectively. But F; = Z, = F,. By (1), k, and k, are splitting fields ,.»" _ ,. overisomorphic
%ﬁﬂ; s fk"l*ﬂ| kz}ields F and F, Hence from unit (IV),
3. Let F, be the prime subfield of k. Let k, be a subfield of k. Then
n=k:F,]=[kikJ[k,:F]= [k, F]/n

Let [k ; :F]][ =m, so any subfield k, of k musthave p™ elements such that % .

Conversely, suppose for some positive integer m. Then -1 is a divisor of p" —] and so q(x) =
"1 _ 1 isadivisor of As Kk is the splitting field of y?" — y = xf (x) over F . We know
that {Cl eka” = Cl} is a subfield of k and has distinct roots. So k must contain all p”

distinct roots of xg(x). Hence these roots form a subfield of k. Moreover, any other subfield with p™ elements

must be a splitting field of xg(x) = x”" — x. Hence there exists unique subfield of k with p™ elements.

4. Let k be the splitting field of f(x)= x?" —x over its prime subfield isomorphic to Z,. Now

p

XT —Xx= x@” - —IJ and p X dn —1l soitis easy to see that f(x) = x”" — x has distinct roots.

{a cka’ = a} is a subfield of k and so set of all roots of f(x) is a subfield of k. Hence k consists of
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precisely the roots of f(x), and it has exactly ~ elements.

Now we prove the beautiful result given below:
Theorem 7.
The multiplicative group of non-zero elements of a finite field is cyclic.

Proof:
Letk be afinite field of p" elements. k" =k—(0). So k"

order, say m, i.e. o(a) =m,. Now we use the following result: (Let G be a finite abelian group. Let g € G
be an element of maximal order. Then order of every element of G is a divisor of this order of a).

= p" —1=m say. Let ;¢ }* be of maximal

By above result, each element of  satisfies f(x)=x" — 1. Since k is a field, so there are at most m,

roots of f(x), hence m <m,. But m; <m, so m=m,,and <a>=m. Therefore * - ., implies the
result.

Algebraically Closed field:

A field k is said to be algebraically closed, if every polynomial of +ve degree has a root
in K.
Example (Fundamental Theorem of Algebra):

Every nonconstant polynomial with complex coefficients has a complex root i.e. splits into linear
factors.

Automorphism of extension:
Let K be an extension of the field k.
Define w: K - K

SVL

such that

v (G w1 A6,
yw is 1-1 and onto
and (O)=C ¥
Then  is k—automorphism of an extension field K.

The group of all k—automorphisms of K is called the Galois group of the field extension K. This
group is denoted by

Galois extension:
An extension K of the field k is called Galois extension if

1. Kis algebraic extension of k.

2. The fixed field of is ki.e. =k
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In this case is called the Galois group of

Fundamental Theorem of Galois Theory:
Theorem 8.

Let K be a finite Galois extension of k. Then

1. Thereis a one-to-one order-reversing correspondence between the fields L such that k — L < K and

the subgroups of . This correspondence is given by

2. IfkcLcK, then is Galois

In this case G%J = GW% @ J

Proof:
1. Define S"-‘lL ckecLc Kq—> {Ge/LJ : Ge/LJS Ge/kj}
i.e. ¥ is amapping from set of all fields between k and K into set of all subgroups as follows:

e k/_rL

Since K i 1s Galois, is separable. Let M be another field such that and So
we assume that Since % separable and is separable, hence
such that This shows that G%J # Gey MJ“

Now stfbg Ge/LJ and L+ M = Ge/LJ * Ge/Mj
SoL+M=Y¥ mg v'd @Ig Hence there is a one-one mapping L — G%J from the set of all

fields between k and K into the set of all subgroups of

To show y is onto:

Let H be a subgroup of and let L be the fixed field of N. Since finite Galois extension,
SO is normal and separable, is normal and separable. Hence is Galois and L is the
fixed field of Each element of H leaves each element of L fixed and so H < Ge/LJ

(Now we use the result: If G be a finite group of automorphisms of a field of K and F be the fixed
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field of G, then
Hence [K:L]=0O(H). Also O(G(V/L)=[K:L], as K/L is seperate

Therefore and Hence y is onto.

If are subgroups of , then the subfield left fixed by H,, will be left fixed by all elements
of H,,so this subfield is contained in the subfield left fixed by H,.Onthe other hand if , then itis
obvious that

Consider the field L such that . Suppose is normal and ,

Claim: ¥

Let 4 € L, then each conjugate of aisin L.

( LetKbe anextension ofk,a,b Kbe algebraic over k, then a and b are said to be conjugate over k if
they are the roots of the same minimal polynomial overk.).

Since is a conjugate of a.
( minimal polynomial p(x) over k s.t p(a) = 0,

, a are roots of same minimal

0”/)(3@ 0”(3%} a= G”pdim a

polynomial over k).

Now to show % is Galois:

If suffices to show is normal, because we know that is separable. Let p(x) be nonconstant

irreducible polynomial in k[x] which has one root, say a, in L. Since is normal, p(x) splits in k[x]

and all of roots of p(x) can be expressed in the form (a) for some

Let pe Ge/LJ ,then  an element such that , for some O € Ge/kj

Now po = ot = o @PG B:0PG -Gl
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:pG@G@@ aeLand‘EeGe%lj,

= am\ is left fixed by each element of

135

for all . Hence p(x) splits in L[x].
which implies is normal, is already separably, so is Galois extension.
Finally, to show :
Define ¥ G%J - G%J
oo Y Bg
such that = the restriction of Y oe G%J = Oo%
( normal, VY oe G%J, so  induces an automorphism of L defined by b=

Now ¥O‘1,02€Ge’4j

but VielL
= VieL

= VielL

is ahomomorphism.

VieL

V 1.e.

leaves every element of k fixed, hence
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S o, eGe/Lj

Hence ker

Therefore

Ge/ J
=ImY c Gg
Ge/LJ J
Claim: Y is onto:

Now we use the result: Let k be a finite normal extension k and let F and L be k-isomorphic fields between
k and K. Then every k-isomorphism of F onto L can be extended to a k-automorphism of K:

is extended to k-automorphism . K 0= K
Hence ¥
such that ¥ D o.,Hence y onto,solm =
¢ : L
Finally, we get
Solution of Polynomial equations by radicals: k ) k

Definition:

An extension field K of k is called a radical extension of k if 5 elements

such that
. k=kld,. a,----- a,(and
2.

For f % k[x] , the polynomial equaton f(x) = 0 is said to be solvable by radicals if 5 aradical extension
K of k that contains all roots of f(X).

Theorem 9.
is solvable by radicals over k « the Galois group over k of f(x) is a solvable group.

Definition:

Let k be a field, let and let K be a splitting field for f(x) over k. Then Ge/kj is called the

Galois group of f(x) over k or the Galois group of the equation f(x) = 0 over k. It can be shown that any

o || .
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element of defines a permutation of the roots of f(x) that lie in K.
as Gmgt a ¥ aeksoof =o0. Hence are roots of f(x). Sinc there are only finitely many roots of
f(x) isone-to-one so  defines a permutation of those roots of f(x) that lie in K).

See Proof of the theorem : Topics in Algebra, by Hersteim.

Theorem 10.

The general polynomial of degree is not solvable by radicals.

Note: is called general polynomial of degree over k.
Proof:

If F(a,a,,------- a) is the field of rational functions in the n variables a,a,,------- a, then the Galois group of
the polynomial f(x)=x"+a,x"" +————— a, overF(a,a,,------- a )is S , the symmetric group of degree

n (see thu 5.6.3, Hersteins Topics in Algebra). But S_is not solvable group when 5 > 5. Hence by thu 9, f(x)
is not solvable by radicals over F(a,a, ------- a) when

Summary of basic results, questions and examples:

1.  LetFbeasubfield of a field K. K may be regarded as a vector space over F. If is a finite dimensional
vector space, we call K a finite extension of F. If the dimension of the vector space K is n, we say

: %ﬁ%%%?@ﬁ@%%@boﬁgg?@ﬁ@o

This is read, "the degree of K over Fis equal ton."

2. Let be algebraic over F and let p(x) be the minimal polynomial of e over F. Let degree of p(x) be

n. Then n elements are linearly independent over F and generate the smallest

field F(c) which contains F and e. Now F(e) is a vector space of dimension n over the field F. Hence the
degree of F(c) over F is equal to the degree of the minimal polynomial of e over F.

[Fm"] = degl,,G,Cg

Example 1.

[Q QEJ : Q]I = deg of irreducible

polynomial p(x) = x>-2 over Q=deg 1,, e, \/E J

3. IfKisafinite extension of Fand K=F(a ,a , ------- a ) thena,a,,------- a_have to be algebraic over
F

This is a consequence of important theorem:
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4. IfKis afinite extension of F, every element of K is algebraic over F.

Example 2.

(062. 3] 0]=[062. 3]: 062]| [06%2]: 0|=+
Put 062]= L. 062, ¥3]= LE5].
Then [ 062, V3] - 062]=[L65] L]=2.
the degree of independent polynomial G x* - 3 over L= 062].
ie. [L€§j L|=degl, @, \/§j =2.

[Q@EJ : Q] =deg!, @, \/EJ =2 (from example 1)

Hence the result.

Flx
5. Ifp(x)is anirreducible polynomial of degree n in F[x], then [%)ms F h\, where e is a root of
p(x). By (2), F(c) is of degree n over F.

If are roots of the same inducible polynomial p(x) over F, then F Bg F mg
Example 3.

We construct a field of four elements. p% x* +x+1 is ireducible in Z,[x], as p@l #0, pd £0.

Z,|x
Hence i%mi Z, H\, where e is a root of p(x).

i.e.

Now elements of Z,(e) are {0, 1, ¢, c+1} which is illustrated from the following tables:

+, 0 1 c c+l
0 0 1 c c+l
1 1 0 1I+c ¢
c c I+c O 1
c+l|c+l ¢ 1 0
., 1 c c+l

1 1 c c+l

c c c+1 1
c+l|c+l 1 c
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