

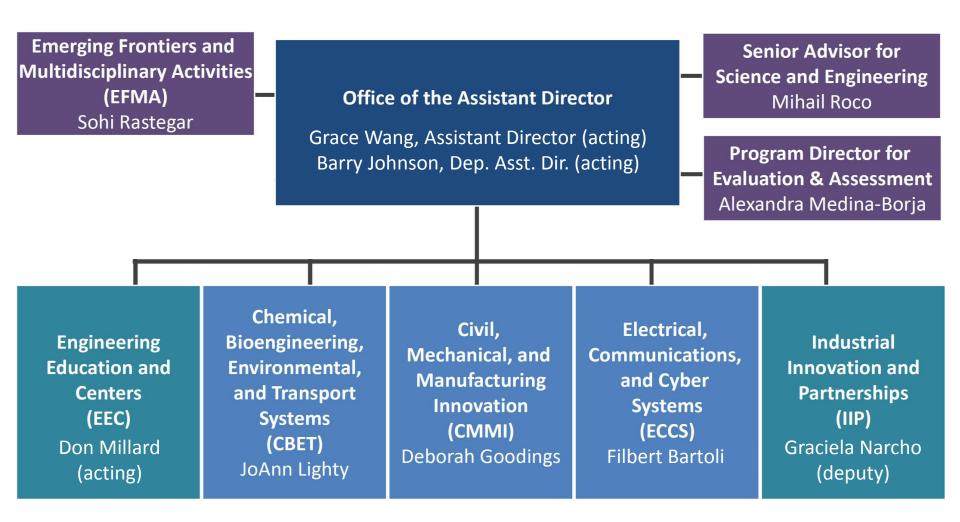
Opportunities in Manufacturing at NSF

Chris Paredis

Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering H. Milton Stewart School of Industrial and Systems Engineering Director, Model-Based Systems Engineering Center chris.paredis@me.gatech.edu

Disclaimer & Acknowledgment

- Any opinions, findings, and conclusions or recommendations expressed in these slides are those of the author/presenter and do not necessarily reflect the views of the National Science Foundation.
- Although the presenter used to work at NSF, he does not currently have any affiliation with NSF, and does not claim to represent NSF in any way.
- Acknowledgment: Some of the materials are based on a program briefing by ZJ Pei (former PD for MME)


Overview

- Quick overview of the NSF organization
- Some manufacturing-related NSF programs, solicitations and initiatives
- Key characteristics of a winning NSF proposal
- Q&A

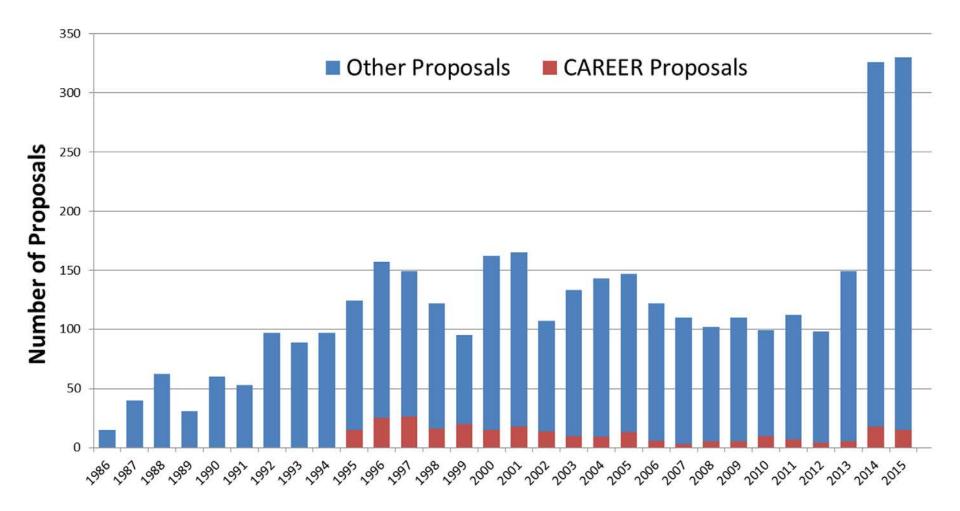
NSF Org Chart

NSF Directorate for Engineering

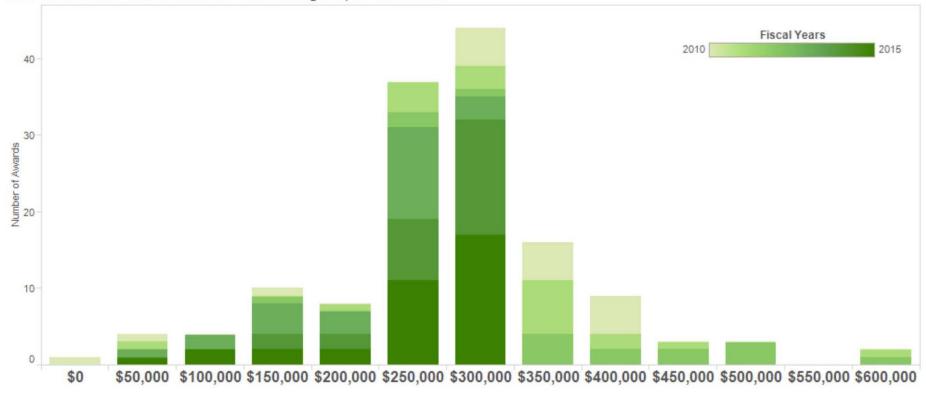
Division of Civil, Mechanical and Manufacturing Innovation (CMMI)

		Director Goodings George Hazelrigg	
Advanced Manufacturing	Mechanics and Engineering Materials	Operations, Design and Dynamical Systems	Resilient and Sustainable Infrastructures
Manufacturing Machines and Equipment	Biomechanics and Mechanobiology David Fyhrie Mechanics of Materials and Structures Kara Peters	Dynamics, Control and Systems Diagnostics Atul Kelkar	Civil Infrastructure Systems TBD
Steven Schmid Materials Engineering and Processing Mary Toney, Alexis Lewis, Tom Kuech		Jordan Berg Engineering and	Natural Hazards Engineering Research Infrastructure Joy Pauschke
	Design of Engineering Material Systems Rich Malak, Mary Toney, Kara Peters	Systems Design Rich Malak	Geotechnical Engineering and Materials Richard Fragaszy
NanoManufacturing Khershed Cooper		Systems Science Rich Malak	Structural and Architectural Engineering Grace Hsuan
Cybermanufacturing Systems Bruce Kramer		Service, Manufacturing and Operations Research Georgia-Ann Klutke	Infrastructure Mgmt. and Extreme Events David Mendonca

Division of Civil, Mechanical and Manufacturing Innovation (CMMI)


		Director Goodings George Hazelrigg	
Advanced Manufacturing	Mechanics and Engineering Materials	Operations, Design and Dynamical Systems	Resilient and Sustainable Infrastructures
Manufacturing Machines and Equipment	Biomechanics and Mechanobiology David Fyhrie	Dynamics, Control and Systems Diagnostics Atul Kelkar Jordan Berg Engineering and Systems Design Rich Malak Systems Science Rich Malak	Civil Infrastructure Systems TBD
Steven Schmid Materials Engineering and Processing	Mechanics of Materials and Structures Kara Peters		Natural Hazards Engineering Research Infrastructure Joy Pauschke
Mary Toney, Alexis Lewis, Tom Kuech	Design of Engineering Material Systems Rich Malak, Mary Toney,		Geotechnical Engineering and Materials Richard Fragaszy
NanoManufacturing Khershed Cooper	Kara Peters		Structural and Architectural Engineering Grace Hsuan
Cybermanufacturing Systems Bruce Kramer		Service, Manufacturing and Operations Research Georgia-Ann Klutke	Infrastructure Mgmt. and Extreme Events David Mendonca

Overview


- Quick overview of the NSF organization
- Some manufacturing-related NSF programs, solicitations and initiatives
 - Key characteristics of a winning NSF proposal
 - Q&A

- MME supports fundamental research that enables the development of new and/or improved manufacturing machines and equipment, and optimization of their use.
- Proposals relating to a wide range of manufacturing operations are encouraged, including both subtractive and additive processes, forming, bonding/joining, and laser processing.
- Of particular interest are proposals that relate to the manufacture of equipment and facilities that enable the production of energy products.
- For more details google: "nsf mme"
- Deadlines: Jan 13 (typically, Feb 15) and Sep 15

MME Unsolicited Research Award Size Histogram, FY2010-2015

Materials Engineering and Processing PDs: Mary Toney, Alexis Lewis, Tom Kuech

- MEP supports fundamental research addressing the processing and performance of engineering materials by investigating the interrelationship of materials processing, structure, properties and/or lifecycle performance for targeted applications.
- Manufacturing processes that convert material into a useful form as either intermediate or final composition: extrusion, molding, casting, forming, deposition, sintering and printing.
- For more details, google "nsf mep"

Nanomanufacturing PD: Kershed Cooper

- Focus: production of useful nano-scale materials, structures, devices and systems in an economically viable manner
- NM supports fundamental research in:
 - Novel methods and techniques for batch and continuous processes
 - Top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems.
 - Nanostructure and process design principles
 - Integration across length-scales, and system-level integration
 - Address quality, efficiency, scalability, reliability, safety and affordability issues relevant to manufacturing.
 - Processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
- For more details, google "nsf nanomanufacturing"

Cybermanufacturing Systems PD: Bruce Kramer

- CM supports fundamental research to enable the evolution of a wide range of network-accessed manufacturing services that:
 - employ applications (or "apps") that reside in the "cloud" and plug into an expansible, interactive architecture;
 - are broadly accessible, guarantee reliable execution and have capabilities that are transparent to users; and
 - are accessible at low cost to innovators and entrepreneurs, including both users and providers.
- Main idea: cybermanufacturing service layer
- For more details, google: "nsf cybermanufacturing"
- Important: No submission deadline. Send one-pager to PD to start the submission process.

Service, Manufacturing and OR PD: Georgia-Ann Klutke

- SMOR supports research leading to the creation of models, analyses, and algorithms that link data with decisions related to the design, planning, and operation of service and manufacturing systems
 - Advances in general-purpose optimization, stochastic modeling, and decision and game-theory methodology
 - Advances in customized methods (analytical and computational) required for the relevant applications
- Application areas of interest include
 - Supply chains and logistics; risk management; healthcare; environment; energy production and distribution; mechanism design and incentives; production planning, maintenance, and quality control; and national security.
- For more details, google: "nsf smor"

Other Related Solicitations and Initiatives

- ERC: Engineering Research Centers
- STC: Science and Technology Centers
- I/UCRC: Industry/University Cooperative Research Centers
- PFI:AIR-TT: Partnerships for Innovation: Accelerating Innovation Research – Technology Transfer
- PFI:BIC: Partnerships for Innovation: Building Innovation Capacity
- INSPIRE: Integrated NSF Support Promoting Interdisciplinary Research and Education
- EFRI: Emerging Frontiers in Research and Innovation

Overview

- Quick overview of the NSF organization
- Some manufacturing-related NSF programs, solicitations and initiatives
- Key characteristics of a winning NSF proposal
 - Q&A

What Makes a Good Proposal?

- NSF is all about basic research advancing the state of knowledge
- Be clear, explicit and up-front about what the new knowledge will be
 - First sentence of summary: "The research objective of this proposal is..."
- Ideally: Novel, innovative, transformative with broad impact
- A proposal is a plan for what you will do provide sufficient detail
- The "project summary" (i.e., abstract) is crucial
- Convince the reviewers you are qualified and will deliver
 - Good literature review
 - Some initial results
- Keep your audience in mind the review panel
- Letters of collaboration (no recommendation letters!)

Example: From MME Program Briefing (provided by ZJ Pei)

- Competitive projects will propose hypothesis-driven research that advances the frontiers of knowledge in relevant areas.
- Proposals submitted to the MME program should include a clearly articulated research (not developmental) objective and a coherent plan to accomplish the stated objective.
- Both experimental and theoretical work are supported.
- All proposals must include a statement outlining the societal benefits of the proposed activities.

Steps to Increase your Chances Further

- Get to know the NSF "system"
- Volunteer to serve on review panel for the program you plan to submit to
 - Send e-mail to PD with your areas of expertise and experience
- Get to know your PD
 - Interact at conferences
 - Get feedback on your proposal ideas send 1-pager
 - Try to understand the PD's perspective on the field
 - Get additional feedback in case your proposal is declined
- Read the GPG (Grant Proposal Guide) and stick to the guidelines & deadlines

Summary

- Quick overview of the NSF organization
 - NSF / ENG / CMMI / Advanced Manufacturing Cluster
- Some manufacturing-related NSF programs, solicitations and initiatives
 - MME, MEP, NM, CM, SMOR
- Key characteristics of a winning NSF proposal
 - Clearly articulate the contribution to new knowledge

