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I. Introduction. 

Suppose a compact complex algebraic variety X has an action of an 

algebraic torus (c As a Lie group, the algebraic torus is the 

product of two topological subgroups: the compact torus 

(Sl) n c (C*) n and (R+) n c (e* n, ~+ ) where is the positive 

reals. In this note, we determine the following information: 

1. the topology of the orbit space B = X/(SI) n , and 

2. the topological structure of the (R+) n action on B. 

By the topological structure of the (~+)n 

orbits and the stabilizer subgroups 

Knowledge of this information goes a 

action, we mean the 

Stab (R+) n • (+)n(b) c 

long way towards 

reconstructing X topologically, as explained in ~ 8. 
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We express this information in terms of certain "torus action data" 

*)n 
which can be associated to the (c action on X. Torus action 

data is of two types: The first is a collection of polyhedra in 

Euclidean 

varieties 

them. If 

effective, then the varieties 

n-space. The second is a collection of algebraic 

Z F and some algebraic maps {FG: ZF , Z G between 

n 
X had dimension k and the (£) action is 

Z F have dimension at most k-n. 

The association of polyhedra to the torus action is done by the 

moment map ([All, [GS], [MW], [K]). The varieties Z F are the 

various symplectic quotients associated to different points in the 

image of the moment map. These may also be identified with the 

geometric invariant theory quotients of various subvarieties of 

semistable points in X. All of this is standard. The new 

ingredient here is the collection of algebraic maps ~FG: 

Z F ~ Z G and the role that they play in reconstructing the 

quotient space B. 

This is a largely expository paper. The results are easy 

consequences of what are by now standard techniques. Our main 

contribution consists of an efficient presentation of the rather 

complicated picture of the orbit structure of a torus action. 

% 2. Definitions. In this section we give some elementary 

topological definitions which will be used throughout the paper. 

A pi~cification of a topological space X is a partially 

ordered set ~ (with partial ordering denoted ~) and a choice for 

each F ~ ~ of a subset (or "piece") X F c X such that 

(a) If F ~ G then X F N X G = 

(b) u {X F I F ~ ~ ) = X 

(c) If X G N X F ~ @ then G < F 
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Remarks. A stratification is a piecificatlon, however a 

piecification is more general: the pieces may be singular, and a 

piecificatlon does not necessarily satisfy the axiom of the 

frontier (i.e. the closure of a piece is not necessarily a union of 

pieces). We allow the possibility that X F = @. The partial 

ordering axiom (c) implies that each piece is locally closed. 

Definition. A space-valued cofunGtor ~ on a partially ordered set 

is a collection of topological spaces Z F (indexed by the elements 

of ~) together with continuous maps 

~FG : ZF ' ZG 

whenever G ~ F, with the property that if H ~ G ~ F then ~FH = 

~GH~FG and ~FF is the identity. 

Definition. suppose ~ is a partially ordered set, X is a piecified 

space with pieces indexed by ~, and ~ is a space-valued cofunctor 

on ~. The realization R(~) over X of the triple (~, X, ~) is the 

topological space 

R(~) = J_L z F × XF / ~ 

F~ 

where ~ identifies a point (z,x) ~ Z F x X F with (~FG(Z), x) 

whenever x ~ X 8 A V. 

Example Of a realization: The mapping cylinder. Suppose the 

partially ordered set 9 consists of two elements G < F. Let X = 

[O,1] with piecifJcation X G = {0) and X F = (0,1]. A cofunctor 

over ~ is a pair of spaces Z F, Z G, together with a continuous map 

~FG: ZF , Z G. The realization R(~) over X is the mapping 

cylinder of gFG' 

Remarks. The realization is canonically piecified with pieces 
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F xF 
R(~) = Z F x 

The realization comes with an obvious projection ~: R(~) . X, 

which is proper if and only if each of the spaces Z F is compact. 

R(~) is Hausdorff if X is Hausdorff and each Z F is Hausdorff (this 

uses the commutation relations). R(~) is locally compact if X is 

locally compact, each Z F is locally compact and each ~FG is proper. 

% 3. Torus Action Data 

In this section we define a collection of data which can be 

obtained from any projective variety X with an action of an 

algebraic torus. In % 5 we will show how to reconstruct the 

topological space X/(Sl) n from this data. 

Recall that a convex polyhedron C c ~n is the convex hull of a 

finite set of points. Its affine hull is the smallest affine 

subspace A containing C. The interior C ° of C is the topological 

interior of C, viewed as a subspace of A. The interior of a point 

is itself. The span of C is the Euclidean subspace span(C) which 

is obtained by translating the affine hull A so that it passes 

through the origin. 

Definition. TA Data consists of the following four ingredients: 

TAD1, TAD2, TAD3, TAD4 : 

TADI is a finite collection ~ of (closed) convex polyhedra (of 

various dimensions, possibly overlapping, possibly sharing interior 

points) in ~n such that 

(a) If C ~ w then each face D of C is also an element of ~. 

(b) Each C ~ • is rational, i.e. the Euclidean subspace span(C) c 

~n has a basis consisting of integral points b I ..... b r ~ Z n. 

Remarks: We obtain a partial order on w by defining 

D ~ C ~=~ D is a face of C 
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Define P = d 

to be the compact subset of Rn which is the union of all these 

polyhedra. There is a natural (coarsest) piecification ~ of the 

topological space P with the property that each C E ~ is a union of 

pieces: two points x,y ~ P are in the same piece of P if and only 

if they are contained in exactly the same convex polyhedra C ~ 4. 

Thus ~ is the set of subsets of • and is partially ordered by 

inclusion. The pieces of P are then given by 

pF = N {C I C ~ F} -- U {C I C ~ ~-F) 

for each subset F c ~. 

We remark that this plecification of P is in fact a Whitney 

stratification and in particular it satisfies the axiom of the 

frontier: pF A pG ~ ~ ~:~ c c=, pF V F c G 

TAD 2 is a cofunctor ~ of complex (not necessarily compact) 

algebraic varieties over the partially ordered set ~, i.e. for each 

C ~ T an algebraic variety R c, and for each face D < C an algebraic 

map PCD: RC ~ RD" 

TAD 3 is a cofunctor ~ of complex algebraic varieties over ~, i.e. 

for each F ~ ~ an algebraic variety Z F and for each relation G < F 

an algebraic map ~FG: ZF ' ZG" 

TAD 4 is a choice, for each F ~ ~ and for each C E ~ such that pF 

c C °, of an inclusion 

.C R C 
IF: ~ Z F 

C These data are We shall denote the image i (R c) by Z F 

furthermore assumed to satisfy the following axioms: 

C i~(R C) where C Axiom i. Each Z F is plecified by the images Z F = 

is allowed to vary over the partially ordered set 

~F = ( C ~ ~ I cO D pF} 



78 

(which is partially ordered by containment, i.e. 

D ~ C ~=~ D c C) 

Axiom 2. If G < F e ~, and if C e ~, with pF c C ° and pG c C ° then 

.C o = ~ 
ZF ~FG 

Axiom 3. If G ~ F e y and if D ~ C e ~ with pG c D ° and pF c C ° 

then the following diagram commutes: 

R C , R D 

F IG 
z, PFG ' zG 

% 4: A Torus Action G~ves Rise ~o TA Data. 

Suppose X is a projective complex algebraic variety with an action 

n 
of the algebraic torus (C) We assume the torus action extends 

to a linear action on the ambient projective space pN. Choose a 

Kaehler metric on pN which is invariant under the compact torus 

(sl) n c (E*) n and let p: X , R n be the (restriction to X of the) 

associated moment map ([K], [All, [MS], [A2], [GS]). This map 

factors 

X a p Rn J B ...... 

through the quotient space B = X/(SI) n. 

TAD I : 

fol lows : 

We define a collect~on ~ of convex polyhedra in R n as 

the closure in X 

= ( c *  n 
) . x  

of each torus orbit projects to a polyhedron C = p(T) and the torus 

n 
orbit itself (c) .x projects to the interior C ° of C ([A1], [GS], 

[K]) 

Proposition. The polyhedra obtained in this manner constitute TAD 

1, i.e. they satisfy the following hypotheses: 
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I. Each C = g(T) is a rational convex polyhedron 

2. Only finitely many polyhedra ppear in the collection 

3. If C = p(T) is a polyhedron in this collection then each face 

of C is also the g-image of a torus orbit closure. 

This collection ~ of polyhedra indexes a canonical piecification of 

X as follows : 

Definition. Let C ~ ~. A point x ~ X is in the piece X C if and 

only if the convex polyhedron corresponding to the orbit through x 

is equal to C, i.e. 

X C = (x • X I P((£~)n'x) = C) 

TAD 2: Define a space-valued cofunctor R of complex algebraic 

varieties over ~ as follows: for each convex polyhedron C e ~ let 

R C = X c / (c*) n 

_ R C R D If D < C then there is a unique map PCD : ~ which can be 

characterized as follows: suppose x ~ X C is a llft of x ~ R C and 

suppose y ~ X D is a lift of y ~ R D. Then PcD(x) = y if and only if 

* n y e  ( c )  . x  . 

ProPosition. Each map PCD is well defined and algebraic. 

Now let P = g(X) denote the union of the convex polyhedra defined 

above and let • be the natural piecification of P as described in % 

2. 

TAD 3. Define a space-valued cofunctor ~ over ~ as follows: given 

F ~ ~ choose any p e pF and set 

ZF = ~-l(p) = -1(p)/(sl)n 

(This is the "symplectic quotient" which is identified with a 

particular "geometric invariant theory" algebro-geometrlc quotient 

[K], [M], [A2]. It is known that the symplectic quotient does not 



depend on the point p ~ pF). 
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If G < F G ~ then we obtain a map 

~FG: ZF ~ ZG 

which iS characterized in the following way: Let p' E Z F. This 

means that p = p(p') E pF. Choose a lift p ~ a-l(p'). Choose q E 

pG. Then the closure of the torus orbit (c*)n.p intersects 

in a single (sl) n orbit, thus determining a single point 

q' e M-l(q)/(s1)n = Z G. 

-1 (q) 

We define ~FG(P') = q'. 

Proposition. The preceding choices of Z F and gFG are well defined 

and satisfy the criteria of TAD 2, i.e. each Z F is an algebraic 

variety and each ~FG is an algebraic map. 

TAD 4. If pF c C ° then there is an inclusion iC: R C , F ZF 

because (by [K]) for any choice of point P ~ pF c C ° there is a 

natural identification 

R C = X C / (c*)n ~ (p-1(p) N X C) / (SI) n 

and it is clear that this second description of R C is a subset of 

ZF = p-1(p) / (s1)n. 

Proposition. The data TAD1, TAD2, TAD3, TAD4 defined here satisfy 

the axioms AXI, AX2, AX3. 

~n 
Sketch of Drool. For each F ~ ~ there is a (c) - invariant set 

of semistable points, 

ss 
x F = u (x c I PFc c) 

consisting of the union of those pieces X c such that the closure of 

the p-image of X C contains the stratum pF A/though the 

ss )n 
topological quotient X F /(c* may not even be Hausdorff, there is 

a categorical quotient ([M]), i.e. an algebraic variety (which we 
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S S  t )n still denote by X F /~c* ) with the property that whenever f: XFS 

, Y is an algebraic map which takes each torus orbit to a single 

point, then f factors through an algebraic map 

s s  )n 
g: X F I(C* , Y. 

By [K], the categorical quotient can be identified with 

- I  lln 
Z F = ~ (p)/(S 

for any p ~ pF (Neither Mumford nor Kirwan emphasize the fact 

that X ss and Z vary with F. In Mumford's language, [M] p.148, a 

*)n 
choice of lift of the action of S = (E to the invertible sheaf 5 

must be made, while Kirwan chooses a basepoint p = {0}, or 

equivalently, an embedding [K]p. I02 of G into PGL(n+I). Kirwan's 

choice of basepoint p does not necessarily correspond to Mumford's 

choice of X ss.) 

s s  c s s  
If S < F then X F X G so we obtain an algebraic map 

ss * n x~s/(c*)n 
CFG: X F /(C ) ........ , 

This agrees with the map ~FG as defined above because Mumford's 

categorical quotient is homeomorphlc to the universal Hausdorff 

quotient. 

% 5: Construction of the spa p~ ~ from TA Data 

suppose we are given a collection of TA data, i.e. 

TADI: a finite collection • of convex polyhedra in ~n with union P 

= u ~ which is piecified by the decomposition ~, 

TAD2: a space-valued cofunctor ~ of algebraic varieites defined 

over • , 
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TAD3:  

over ~, 

c R C TAD4: a system of inclusions i F : ..... , Z F 

pieces indexed by the partially ordered set 

~F = ( C ~ • I pF c C ° ) 

a space-valued cofunctor ~ of algebraic varieties defined 

which piecify Z F into 

Construction I. Define a topological space B to be the realization 

(over P) B = R(~) of the cofunctor triple (~, P, ~). 

Construction 2. Construct a piecificatlon of B indexed by • as 

follows: for each C e • define a partially ordered set 

~C = {F e ~ I pF c cO}. 

This set indexes the pieces in the piecification of C ° and admits a 

cofunctor of spaces, ~C which associates to any F E ~C the 

algebraic subvariety 

C 
Z F c Z F 

Definition. The piece B C in the piecification of B is the 

realization R(~C) of the cofunctor triple (~C' Co, ~C ) 

C 
Remark. Since each Z F is identified with R C, and since C ° is a 

cell, there is a canonical homeomorphism 

B C ~ C ° x R C 

and so B C is foliated by subsets C ° x (point). 

ConstFuCtion 3. For each C ~ • we associate a subgroup 

St C = exp (~ Ann(span(C))) c (~+)n 

as follows: Span(C) is a subspace of Rn which [AI], [GS] has been 

identified with the dual of the Lie algebra of (sl) n. Therefore 

its annihilator lies in the Lie algebra of (SI) n , and 

multiplication by ~ = J(il) identifies this with the Lie algebra 

of (~+)n The exponential map 

exp : Lie (R+) n , (R+) n 

iS an isomorphism. This is summarized in the diagram 
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(Rn)* ~ Lie (sl) n = ~ , Lie (m+) n = ~ (R+) n 

u exp U 

Ann(span(C) ) St C 

Theorem. Suppose X i s  a projective algebraic variety wlth an 

action of the algebraic torus (c*) n Extract the corresponding TA 

Data, TAD1...TAD4. Let B be the space obtained from construction 1 

as applied to this TAD, let B C be the pieces obtained from 

construction 2 and let St C be the subgroups obtained from 

construction 3. Then: 

(1) there is a canonical homeomorphism h : B , X / (Sl) n such 

that, for each C E ~ we have: 

(2) h takes B C homeomorphically to xC/ ($I) n 

(3) h takes each leaf C°x(point} c B C homeomorphically to a single 

(~+)n orbit in X/(S1) n 

(4) for each x G xC/(sI) n, the isotropy subgroup Stab (x) is (~+)n 

precisely the subgroup St C. 

Example. See [GGMS] for a family of examples where the polyhedra C 

are explicitly described and are ~n one to one correspondance with 

matrolds of rank k on n elements, and where X is the Grassmann 

n 
manifold G_ ,.(£n) with the usual action of the torus (c) . The 

nonempty pieces in the pieciflcation of the Grassmann~an correspond 

to matroids which are representable over the complex numbers. 

t~6 An e x a m p l e .  

2 S u p p o s e  t h a t  ( c )  a c t s  on  

s p a c e  w i t h  h o m o g e n e o u s  c o o r d i n a t e s  

f o r m u l a  

(S, t) • (Zl: Z2: Z3: Z4) = 

The moment map is then given by 

X = CP 3, complex projective three 

(zl: z2: z3: z4), by the 

(Zl: sz2: tz3: stz 4) 
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M([Zl:Z2:Z3:Z4]) 

The image 

= ( }z212  + Iz412 , Iz312 + 1=412) 

I z l l  2 + Iz212 + Iz312 + Iz412 

i n  R 2 . 

P is the square 

{ ( x , y )  • ~21 o < x < i ,  o ~ y ~ l  } 

The various polygons C in ~ are listed below, along 

with the part of X which projects to their interior (where we 

make the convention that no coordinate typed z .  is zero): 
1 

TYPE I : 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
::::::::::::::::::::::::::::::::::::::::::::: 
i:!:i:!:i:i:i:i:!:i:i:i:i:i:i:i:i:i:i:i:i:i:! :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 i::i i iiiiiii::iii::i iiiil;ilili i::i::i::i::i: 

( I :  O: O: O) 

. , . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . .  
- . - . . . , . . . . . . . . .  • • . . . . . . . . . . . . . . ,  . . .  
, . . . . . . . . .  • . . . . . . . . . . . . . / / /  , . . . . . . . .  

: . F : - : . : . Z . Z . Z . : . : . : - Z . Z - : , : . Z . Z . : . : - : - : - : . :  . , . . . . . . . . . . . . . . . . . , . , . , . . . . . . . . . . . . . .  
. - . - . . . . . . . . . . . u . . . . . . . . , . . . . . . , . / . . . . . . . . .  

• . . ' . ' . ' . ' . ' / . . . . . . . , . . . v  / / . . . . . . . . . . .  . . . , . . . . . .  • • . . . .  • ,  • .  • . /  . / . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . .  • . . . . . . . . , . . . . .  

iiiiiiiii!i!iiii!i!i!iiiiiiii!iiii!iiiiiiiiii ::::::::::::::::::::::::::::::::::::::::::::: 
" ' " " " ' " ' ~  . . . . .  I '1 '1 '1  . . . . . . .  

(Zl:Z2: O: O) 

: - : - i ' b i ' : ' : ' i ' Z ' Z O : ' : ' F Z ' D : ' : ' ; - b F : ' :  

- . . . . . . . . , . . . . . . . . . . . . .  • . . . . . . . . . . . . . . .  

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
::::::::::::::::::::::::::::::::::::::::::::: 
iiiiiiiiiiiiiiiii!iii!i!i!ii!ii!iii!ii!iiiiii 

( O: I :  O: O) 

I I  . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

iii?i!iiiiii!iliiiiii?iiiii!iliiiii?ii!ili!. 
: ' ; - : - F : ' : ' : ' : ' : - : - : . : - F I . : - ; . : . : . : . : . : - :  
. . . . . . . . . . . . . . . . . . . , . , . . . . . . . . . . . . . . .  

ii:i i i:! iiiiiiiiiiii!:i i:i:i:i:iiiii!i:i 
iiiii~iiiiiii!i[iiiii!iiii!iii[~i!i!iiiiii: 
:::::::::::::::::::::::::::::::::::::::::::: 

( O: O : z 3 : z 4 )  

il !i iiiiiiiii ii !iiiiiiiiiiiiiiiiiiiiiiii 

J 
iiil ii ii iiliil i! ii ii iiliii iliii iiil 
: - : .  F : G :  : : G : - : - ' - ' . ' . ' . ' . ' . ' . ' . - . - . ' .  

( O: O: 1: O) 

liiiiiiiiiiiiiiiiiiiii ilii 
( z l :  O : z 3 :  O) 

)iiiiiiiiiiii!iii;i!iiiiiii;i!ii)iiii;i i{iii 
. . . . . . . . . . . . . . . . . . . . . . . , . . , . . .  

::::::::::::::::::::::::::::::::::::::::::::: 

. . . . , . , . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . , . .  

( O: O: O: i )  

( O:z2 :  O:z 4) 

TYPE II 

( Z l : Z 2 : Z 3 : 0 )  ( O : z 2 : z 3 : 0 )  ( O : z 2 " z 3 : z  4) 
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TYPE IIl 

(Zl:Z2:O:z 4) (O:z2:O:z 4) 

m 

i 

(Zl:O:z3:z 4) 

TYPE IV 

(ZI: Z2: z3: z 4) 

The R C is a point for C of TYPES I, II, or III, and is £ for 

TYPE IV. The piecification • of P is like this: 

Over each piece F on the edge of the square, Z F is a point. 

For each piece F which is contained in the interior of the square, 

Z F is a complex projective line, which we may identify with the 

standard complex projective line (with homogeneous coordinates 

[yl:Y2 ]) and we may take each of the maps CFG to be the identity. 

.C R C The inclusions IF: , Z F have as their image (1 : O) if C 

is of TYPE II, (0 : I) if C is of TYPE III, and the rest of 

1 
cF for the C of TYPE IV. 

It is easy to see that the realization of s is the four sphere 

S 4, so it follows from the theorem that the orbit space B is S 4. 
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%7 Sketch Of the prQof. First we consider a lemma in pure 

topology. Suppose that we have: 

1. a compact Hausdorff space B mapping to a piecewise linear 

subset of R n, ~: B ~ P 

2. a piecification of P (indexed by a partially ordered set ~) 

into finitely many piecewise linear subsets pF, and which satisfies 

the axiom of the frontier: the closure pF of any piece is a union 

of pieces, 

3. a disjoint decomposition of B into (possibly uncountably 

many) topological ("open") balls of various dimensions, 

such that: 

a. the map ~ takes each open ball homeomorphical/y onto a union 

of pieces F ° of P 

b. the closure of each open ball is a "closed" ball which @ takes 

homeomorphlcally to a union of pieces of P. 

For each piece pF of P, choose a point p E pF and let 

the fiber ~-l(p) over p. Whenever G is a face of 

~FG: ZF ~ ZG be defined by the condition that ~FG(Z) 

the closure of the open ball through z. 

cofunctor on • which we call ~. 

Lemma Under these hypotheses, the 

Z F be 

F let 

lles in 

This forms space valued 

space B is canonically 

homeomorphic to the realization R(~) over P of the cofunctor triple 

(~, p, ~). 

For example, in the following picture, B is a subset of the 

plane, P is a subset of the llne, ~ is vertical projection, and 

the open balls in B and pieces of P are sketched in. 
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In this example, the Z F and the maps CFG are as follows: 

- | @ J 

The proof of the lemma is straightforward: fix a stratum pF of P 

and a point p G pF. By (3a) and (3c) there exists a unique 

homeomorphism 

pF 1 -i 
hF: x @- (p) ......... , @ (pF) c B 

which commutes with the projection to pF and such that each hF(P F × 

(point)) is a leaf of the foliation (i.e. lies in a single ball). 

Furthermore, by (3b), h F extends to a continuous map 

hF: V x ~-l(p) ~ ~ l(pF) c B 

and it is easy to check that this is compatible with the relations 

defining the realization of ~. 

To apply this topological lemma to the theorem of ~5 ,  we take the 

decomposition of B into open balls to be the decomposition by 

(R+) n orblts. We claim that these satisfy the conditions of the 
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topological lemma. 

composition 

This follows from the following facts about the 

X ........ 

*)n 
I .  A single (C orbit 

open disk which is a single 

, B # ~ R n 

O in X projects to a topological 

(R+) n orbit 0 in B, which projects 

homeomorphically to the interior C ° of a convex polyhedron C in 

P. 

* n 
2. The closure of 0 in X consists of finitely many (c) 

orbits. It projects to the closure of O in B, which is a 

topological closed disk consisting of finitely many (~+)n orbits, 

each of which projects to the interior of a face of C in P. 

To prove these facts, we observe that the moment map for the 

closure of 0 is the restriction to the closure of 0 of the 

moment map for X. However the closure of O is a toric variety, 

and these facts are standard for toric varieties. 

% 8. Reconstructing X. 

In ~5, we constructed the topology of B = X/(SI) n and the 

stabilizer subgroups Stab(~+)n(b ) from TAD. To what extent can 

the topology of X itself be reconstructed from this information? 

The first remark is that the stabilizer subgroup Stab (x) of 
(sl) n 

any point x e X projecting to b is determined by Stab (b). (~+)n 

This is because Stab , n(X) is determined by 
(c) 

*n 
Stab (x) = Stab (b) since the (e) action is algebraic. 

(R+)n (~+)n 

In terms of TAD, the group (SI) n identifies with (R n) (z n) , 

the space of linear functionals on R n modulo those that take 

integral values on integral points. If x projects to b ~ B c, 
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then Stab n(X) is the subtorus 
( s  1 ) 

Stab n(X) = Ann(span(C))/Ann(span(C)) (z n) 
(s I ) 

We call X a "piecified torus bundle" over B. The preimage of 

each piece B c in B fibers over B C with fiber the quotient 

torus (sl)n/stab (x) = span(C) / A C where a covector in 
(sl)n 

span(C) is in A iff it has some extension to ~n which takes 

integral values on Z n. The cohomology of X can be computed from 

the Leray spectral sequence for the projection from X to B. The 

above remarks imply that the E 2 term of this Leray spectral 

sequence can be computed from TAD alone. 

The question of topologically reconstructing X from TAD reduces 

to the purely topological question of classifying "piecified torus 

bundles". For example, if the torus is a circle and all of the 

1 
stabilizer subgroups are the identity, then X is a principal S 

bundle over B, and its topology is determined by the first Chern 

class. It would be interesting to have a theory of first Chern 

classes classifying such "bundles" in general. 

In case that the map from X to B admits a section, there is no 

twisting in the "piecified torus bundle" and the topology of X is 

determined by the TAD alone. This is the case, for example, when 

X is a toric variety. 
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