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A Fast Fault-Tolerant Architecture for Sauvola Local Image Thresholding
Algorithm Using Stochastic Computing

M. Hassan Najafi and Mostafa E. Salehi

Abstract— Binarization plays an important role in document image
processing, particularly in degraded document images. Among all
local image thresholding algorithms, Sauvola has excellent binarization
performance for degraded document images. However, this algorithm
is computationally intensive and sensitive to the noises from the
internal computational circuits. In this paper, we present a stochastic
implementation of Sauvola algorithm. Our experimental results show
that the stochastic implementation of Sauvola needs much less time
and area and can tolerate more faults, while consuming less power in
comparison with its conventional implementation.

Index Terms— Fault-tolerant computing, image binarization,
Sauvola image thresholding, stochastic computing (SC).

I. INTRODUCTION

Document binarization as the first step in optical character
recognition systems has been an active research area for many
years. The simplest way to accomplish this binarization is
thresholding, which selects a threshold value and then all pixel
intensities above/below this threshold are set to 1 (background)/
0 (foreground) [1]. Thresholding algorithms have been divided into
global and local methods. In global methods, a single threshold
is selected for the whole image, whereas for local methods, each
pixel threshold is selected according to its neighbors in local region.
Global methods, such as Otsu [2], are often very fast, and give good
results for typical scanned documents. However, in the cases that
illumination over the document is not uniform, global methods tend
to produce marginal noise along the page borders. Local methods,
such as Sauvola [3], try to solve the global method problems using
local neighbors information. Local methods usually achieve good
results even on severely degraded documents. Since in local methods
extracting image features is performed for each pixel, these methods
are often slow [4].

Local methods for degraded document images have been studied
in [5] and it has been concluded that Sauvola [3] performs better
than the others. Although some degraded results have been reported
in using Sauvola in images where the gray values of text and nontext
pixels are close to each other [6], this method, can usually achieve
ideal segmentation performance by considering the influence of value
variance of all pixels. Similar to the other local methods, processing
time of the Sauvola binarization is usually much long [4].

Sauvola method can somehow tolerate image noises due to snow,
rain, or camera shaking. However, it is still sensitive to the noises
from the internal circuits, such as the noises due to soft errors,
environmental noises, or process, voltage, and thermal variations.
Although the conventional fault-tolerance techniques, such as
triple modular redundancy (TMR), can increase the fault-tolerance
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ability of these kinds of methods, the overhead of these techniques
is usually more hardware resources and consequently higher power
consumption [7].

A solution for high computation time and fault-tolerance
problem of the conventional Sauvola implementation is stochastic
computing (SC) [8]. SC can gracefully tolerate a very large
number of errors at lower cost compared with the conventional
TMR techniques [9]. Since all bits have the same significance in
stochastic representation, a single bit flip in a long bit stream will
result in a small change in the value of the stochastic numbers.
Therefore, stochastic circuits are inherently more fault-tolerant.
Li and Lilja [7] present a new low-power fault-tolerant architecture
based on SC for the kernel density estimation image segmentation
algorithm. They extended their work to other image processing algo-
rithms, such as edge detection and noise reduction algorithms in [9].

In this paper, we propose a novel high-speed and, yet, low-power
and fault-tolerant stochastic architecture for Sauvola algorithm
using SC. To implement this architecture, we introduce a new
9-to-1 and 81-to-1 stochastic mean circuit (SMC), a novel stochastic
standard deviation circuit, and also a new accurate stochastic
comparator. We exploit both correlated and uncorrelated streams
in designing the standard deviation circuit using only a stochastic
square root circuit, an XOR gate, and an AND gate. In contrast
with other stochastic image processing architectures proposed in
the literature, which could work only with the bipolar bit streams,
we work only with the unipolar streams to increase the quality of
results. Solving the latency problem and also reducing the sensitivity
of this method to soft errors are other main contributions of this brief.

Section II introduces the background of Sauvola method and SC.
Section III presents the selected parameters, and introduces
both conventional and our proposed stochastic implementations.
Finally, the experimental results and conclusion are discussed
in Sections IV and V.

II. BACKGROUND

A. Sauvola Local Thresholding Algorithm

In Sauvola, the threshold t (x, y) is computed using the mean
m(x, y) and the standard deviation s(x, y) of the pixel intensities
in a W ∗ W window centered on the pixel (x, y)

t (x, y) = m(x, y) ∗
[

1 + K

(
s(x, y)

R
− 1

)]
(1)

where R is the maximum value of the standard deviation
(often 128 for gray-scale documents), and K is a parameter, which
takes a positive value in the range [0.2, 0.5] [4]. To compute t (x, y),
local mean and standard deviation have to be computed for all image
pixels. Computing m(x, y) and s(x, y) in a traditional way results
in a computational complexity of O(W 2 N2) for an N ∗ N image in
a W ∗W window [4]. Our proposed architecture not only significantly
improves the computation time of the conventional implementation
but also improves the required area, power consumption, and capa-
bility of tolerating faults.
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B. Stochastic Computing

In SC, computations in the deterministic Boolean domain are
transformed into probabilistic real domain [7]. In this approach,
numbers are represented by streams of random bits in two simple
formats: 1) unipolar and 2) bipolar. Bipolar format can deal with
negative numbers directly, while given the same stream length, the
precision of the unipolar format is twice that of the bipolar format [8].
For accuracy purposes, in this brief, we will work only with the
unipolar representation of stochastic bit streams.

1) Stochastic Architecture: The stochastic architectures are
usually composed of three parts: 1) the randomizer unit (RU), which
generates stochastic bit streams from deterministic input values;
2) the processing unit, which processes the generated bit streams and
produces the results in stochastic format; and 3) the de-RU, which
converts back the resulting stochastic bit streams to output values in
deterministic format [10].

2) Stochastic Operations:
a) Scaled addition and multiplication: Since all numbers in

the unipolar format are in [0, 1] interval, we use scaled addition,
instead of normal addition. A simple MUX can do this operation.
Besides that, in unipolar representation of stochastic bit streams,
multiplication can be done just by a simple AND gate. Note that
for correct functionality, the input streams of these operations should
be uncorrelated [9], [10].

b) Stochastic mean circuit (SMC): To average 2n input bit
streams, we need a 2n to 1 MUX with n uncorrelated select bit
streams, each one representing the 0.5 value.

c) Square root: Toral et al. [11] presented a stochastic square
root circuit that uses two different pulse streams to represent the same
value with a different pattern of pulses. Their circuit is looking for a
stochastic pulse stream that tends to the input stream when multiplied
by itself [12].

d) Absolute valued subtraction: New studies on correlation
between stochastic bit streams have shown that correlation in SC is
not always harmful [13], [14]. An XOR gate with independent inputs
performs the function z = x1(1 − x2) + x2(1 − x1). However, when
fed with correlated inputs where x1 and x2 have maximum overlap
of 1s, the circuit computes z = |x1 − x2| [13].

III. IMPLEMENTATION OF THE SAUVOLA ALGORITHM

A. Sauvola Parameters

Performance of Sauvola algorithm depends on three parameters:
1) R; 2) K ; and 3) the window size [15]. Based on [4], R = 128
and K = 0.5 could have the best performance of Sauvola for most
gray-scale document pictures. The computation cost and the quality
of the resultant binary document images produced by Sauvola are
very sensitive to the selected window size. Choosing larger than
necessary window sizes just incurs higher computation cost while
could not increase the quality of the binarized images [3].

Based on our experiments on several image data sets,
as exemplified with a sample in Fig. 1, we claim that for most
document images, such as the captured images from newspapers,
selecting 9 × 9 as the window size not only can produce acceptable
outputs but also can make our implementation more scalable.
Scalability gives us the opportunity of changing the size of the
window dynamically. Hence, for the rest of this paper, we set 9 × 9
as the window size.

B. Conventional Implementation

The main step of calculating t (x, y) for each image pixel in
Sauvola is to compute m(x, y) and s(x, y). Since we fixed the
window size to 9 ∗ 9, we have to calculate the mean and the standard

Fig. 1. Window size effect on the quality and quality reduction of binarization
of a 360 × 160 document image using Sauvola. (a) Original image.
Binarized image using (b) 3 × 3, (c) 5 × 5, (d) 7 × 7, (e) 9 × 9, and
(f) 13 × 13 windows.

Fig. 2. Simple view of the conventional process of calculating threshold
value for each pixel of an input image using Sauvola method.

deviation of 81 local numbers using

mean = a1 + a2 + a3 + · · · + a81

81
(2)

standard deviation =
√

|mean(x2) − mean(x)2|. (3)

To implement the required square root function used in the
standard deviation, we use Newton–Raphson, a method for finding
successively better approximations to the root of a real value
number [16]. Fig. 2 shows the implemented block diagram of the
conventional architecture of Sauvola method.

C. Stochastic Implementation

In stochastic implementation, we have to scale down all
pixel intensities from [0, 255] to [0, 1] interval. Therefore, the
R constant in the Sauvola equation changes to 1. The new modified
Sauvola equation for our stochastic design will be

t (x, y) = m · [1 + 0.5(S − 1)] = m · (s + 1)/2. (4)

Now, to process all pixels, we need to do three steps: 1) converting
pixel values into stochastic streams; 2) generating threshold
streams; and 3) determining the output binary values.
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Fig. 3. Proposed (a) 9-to-1 SMC and (b) 81-to-1 SMC.

Fig. 4. Simple view of the process of calculating threshold bit stream
stochastically for each pixel of an input image using Sauvola method.

1) Phase 1 (Generating Stochastic Bit Streams): To convert pixel
intensities from binary format into stochastic streams, we use the
stochastic number generator (SNG) presented in [8]. In generating
pseudorandom numbers required in this SNG, we used different
maximum period linear feedback shift registers (LFSRs)
corresponding to each different lengths of streams (n-bit LFSR
for 2n stream).

2) Phase 2 (Generating Threshold Bit Streams):
a) First step (averaging local window bit streams): The

SMC discussed in Section II can only be used when we have
2n input streams, whereas we need to average 81 streams. To build
an 81-to-1 SMC, we propose to combine nine 16-to-1 SMCs, each
one as a 9-to-1 SMC. We use a simple technique to convert the
existing 16-to-1 SMC to a new 9-to-1 SMC. We use a predefined
16-to-1 SMC, connect its first eight inputs to eight uncorrelated input
streams, and then connect eight copies of the ninth bit stream, to
the eight remaining inputs. Now, by connecting the most significant
select line of MUX to a 0.11 corresponded bit stream, as shown in
Fig. 3(a), all nine input bit streams will have the same worth for
MUX, and their average will be produced at the output. Now, by
combining nine separate 9-to-1 SMCs and averaging their results
using another extra 9-to-1 SMC, we have the final stream that is
exactly the average of 81 input streams. Fig. 3(b) shows our proposed
81-to-1 SMC.

Notice that selecting 16-to-1 MUX as the base of our 9-to-1 SMC
gives the architecture the opportunity of increasing the size of local
window to 11 × 11, 13 × 13, and even 15 × 15 dynamically just
by making a little change in the select bit streams and also in
the number of instantiations required in building the final average
circuit.

Fig. 5. Our proposed stochastic comparator.

Fig. 6. Our sample (80 × 75) and output of binarization using the
conventional and all stochastic implementations, in addition to their produced
error rate in output images, and the required time and the dynamic power for
binarization.

b) Second step (generating standard deviation bit stream):
Based on (3), in order to determine the standard deviation of
some input numbers, we need to have: 1) the average value of
the squares and 2) the square of the average values. The proposed
81-to-1 SMC in Fig. 3 can average 81 input streams. Since this
average is in stochastic form, generating its square will only need
an AND gate with two uncorrelated versions of the input. The
simplest way to have these two uncorrelated versions is to just
shift the stream for one or a few bits. Besides that, to have the
average value of the square of input numbers, we generate the
average of the power two of all input streams right after con-
verting pixel intensities to stochastic bit streams using an extra
81-to-1 SMC.

Having mean(x2) and mean(x)2 bit streams, the next step is to
calculate (|mean(x2) − mean(x)2|)1/2 stochastically. Using a simple
XOR gate, we could do the subtraction part of this function only
if the two input bit streams of XOR gate had maximal correlation.
We intuitively use the same patterns of select lines for both
81-to-1 SMCs, and hence, the outputs of these stochastic circuits
will be almost correlated automatically. Finally, by connecting the
outputs of XOR gates to the inputs of the stochastic square root circuit,
we have a bit stream, which represents the standard deviation of
local 81 input bit streams.

c) Third step (generating threshold bit stream): Considering (4),
to generate threshold bit streams, we need to perform two other
simple operations. First, we should do a simple scaled addition to
convert the s bit stream to (s + 1)/2. Second, multiplying m and
(s +1)/2 bit streams by a simple AND gate. Fig. 4 shows the process
of producing the threshold bit stream for each pixel of image in
Sauvola method.

3) Phase 3 (Generating Output Binary Values): Now we reach
to the final step, the estimation of 0 or 1 output binary values by
comparing the produced threshold bit stream with the corresponded
pixel intensity bit stream. This function will be the responsibility of
a specific circuit, stochastic comparator.

Li and Lilja [17] proposed a stochastic comparator, which uses an
FSM-based stochastic tanh function developed in [18] in addition to a
stochastic-scaled subtraction unit [9] to compare two bipolar streams
and produce an approximate 0 or 1 stream. The comparator proposed
by Li and Lilja can only produce a perfect 0 or 1 output stream
when the difference between the two input streams is more than 0.2
and both the inputs are in the bipolar format. This would be a major
problem for us if we wanted to use their comparator in our stochastic
architecture. Therefore, we propose a new stochastic comparator
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Fig. 7. Comparison of the fault-tolerance capabilities of different hardware implementations for the Sauvola image thresholding algorithm.

TABLE I
COMPARISON OF HARDWARE USAGE [NUMBER OF LOOKUP TABLE

(LUT) FLIP-FLOP PAIRS USED] AND DELAY OF THE CONVENTIONAL

TO THE STOCHASTIC IMPLEMENTATIONS

that: 1) can work with the unipolar presentation of bit streams and
2) has the ability of producing accurate 0 and 1 output streams even
for nearly equal input bit streams.

Our proposed comparator (Fig. 5) is based on a simple counter.
According to the length of the input streams (2n), we choose an
n bit counter. Now, by starting from the first bit of A stream, if it
is 1, we increase the counter by one unit, and continue this process
for all bits of A. After processing A, we start with the first bit of
the second stream B. If this bit is 1 and the counter is not empty,
we decrease the counter by one unit, and continue for all B bits.
By this simple two stage process, we would know that which one of
two input streams has more 1s and so is greater than the other one.
In the last step, after processing A and B streams, if the counter
was showing zero value, the output of the proposed comparator will
be zero, otherwise the output will be a stream with all bits 1.

IV. EXPERIMENTAL RESULTS

To build the conventional implementation of Sauvola, we used
MATLAB and Mathworks HDL coder to implement the algorithm
and convert the codes to Verilog HDL. The stochastic implementation
of Sauvola is also implemented using Verilog. To have a tradeoff
between accuracy, hardware resource, and computation time,
we implemented all 16-, 32-, 64-, 128-, and 256-bit stream stochastic
architectures. Notice that in our implementations, we will reuse
a single window circuit to move across all pixels of the image.
All architectures have been synthesized and placed and routed
on the Xilinx Virtex6 XC6VLX760-2FF1760 FPGA as the target
device. After successful verification of all implementations,
we selected a sample gray-scale degraded document image (Fig. 6)
to compare different implementations from performance, area, power,
and fault-tolerance points of view.

TABLE II
AVERAGE OUTPUT ERROR OF DIFFERENT STOCHASTIC

IMPLEMENTATIONS WHEN FAULT INJECTION RATE

CHANGES FROM 0% TO 50% IN BINARIZATION

OF SELECTED SAMPLE DOCUMENT IMAGE

A. Performance Comparison

Fig. 6 shows the results of binarization, comparing the conventional
and all stochastic implementations. As can be seen in this figure,
the stochastic implementation, in the worst case, had just 3.1%
error rate, which is a negligible error rate for human eyes [7].
The required execution times for binarization of our sample image are
also shown in the figure. The stochastic implementation reduces the
required execution time ∼40 times in the 16-bit stream architecture.

B. Power Consumption Comparison
To estimate the dynamic power consumption, we used Xilinx

XPower Analyzer in addition with the value change dump files
extracted from the post place and route simulations. As shown
in Fig. 6, the conventional approach consumes ∼3 times more
power than the 256-bit streams stochastic approach, and ∼60 times
more than 16-bit streams for binarization of the sample image.
Since the leakage power is proportional to area [13], the leakage
power of the stochastic circuits is much lesser than the conventional
implementation.

C. Hardware Resource Comparison
Implementation reports from the synthesis tool can give us enough

information to compare the required hardware resources of all the
approaches. As shown in Table I, the conventional implementation
requires ∼500 times more hardware resources than the 16-bit
stochastic implementation.

D. Fault-Tolerance Comparison

We injected noise in the same way, as proposed in [10].
Soft errors are simulated by independently flipping a given fraction
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of the input or output bits of each computing element. For example,
a soft error rate of 10% means that 10% of the total number of
the signal bits is randomly chosen and flipped [7]. The images
in Fig. 7 visually and the values in Table II statistically illustrate
the fault-tolerance capabilities of the stochastic implementations.
Note that when the injected soft error rate is >2%, all stochastic
implementations, even the one with 16-bit bit streams outperform
the conventional implementation.

V. CONCLUSION

In this paper, we proposed a novel fault-tolerant low-power
fast architecture for the computation intensive Sauvola local image
thresholding algorithm based on the SC approach. Our proposed
architecture not only is able to tolerate high rates of faults in noisy
environments but also requires less area and consumes less power
than the conventional implementation of this algorithm. To implement
the Sauvola method using stochastic approach, we introduced a
novel 9-to-1 and also an 81-to-1 SMC to average 9, and 81 input
bit streams. Furthermore, we proposed a new stochastic standard
deviation circuit and a new stochastic comparator for the unipolar
stochastic bit streams. Implementation reports show that reducing
the window size from 9 × 9 to 7 × 7 could reduce the hardware
resource usage ∼52%; however, for the quality reasons, we made our
architecture based on 9 × 9 window size.
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