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Abstract. This report is mainly concerned about one of density-

matrix-functionals, namely Müller functional and the existence of

its minimizer. This functional is similar to the Hartree-Fock func-

tional, but with a modified exchange term in which the square of

the density matrix γ(x,x′) is replaced by its square root operator

γ1/2(x,x′). We show that minimizers exist for Müller functional

and furthermore, all minimizers have unique trace if N ≤ Z. More-

over, combing with the convexity of this functional with respect to

γ we show that this functional is convex with respect to the density

ρ(r) and the energy minimizing γ′s have unique densities ρ(r) as

well.
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1. Introduction

1.1. Density functional theory. In Quantum mechanics, the time-

independent state of a particle is described by a complex-valued func-

tion of position, namely wave function ψ(x),x ∈ R3. The space of all

possible states of the particle at a given time is called the state space.

For us, the state space of a particle will usually be the normalized

square-integrable functions:

{ψ : R3 → C;ψ ∈ L2(R3),

∫
R3

|ψ(x)|2dx = 1}.

It is a Hilbert space with an inner product given by

〈ψ, ϕ〉 =

∫
ψϕdx, ψ, ϕ ∈ L2(R3)

The classical electron structure methods, for example, Hartree-Fock

method, are based on these electronic wave function. Observables are

quantities that can be experimentally measured in a given physical

framework. Mathematically speaking, an observable is a self-adjoint

operator on the state space L2(R3). In this paper, for example, the

Hamiltonian operator: H = − ~2
2m
∇2 + V . For a N-electron system,

therefore, an observable will depend on 3N variables, since every elec-

tron has 3 spacial variables, and this may really lead us into thouble,

even in such a centrary that the computational power is fast developed.

For example, the electron wave function of the nitrogen atom, having

7 electrons, depends on 21 spatial variables. If we create a rough table
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of the electronic wave function of this system at 10 different positions

in each variable, this amounts to 1021 double precision entries. Storing

it on DVDs the stack of discs would easily reach the moon (See [14]).

Density Functional Theory aims to replace the wave function by elec-

tronic densities, for instance, express the energy of a quantum mechan-

ical state in terms of its one-particle density ρ(r), where

ρ(r) = N
∑

σ1,··· ,σN

∫
ψ2(x,x2, · · · ,xN)dr2 · · · drN (1.1)

and then minimize the resulting functional with respect to ρ(r), thereby

we can calculate the ground state energy of the system. Its idea can

go back to L. H. Thomas and E. Fermi in 1926 that a large atom, with

many electrons, can be approximately modeled by a simple nonlinear

problem for a ’charge density’ ρ(x). The exploration of its mathemat-

ical foundation can be traced to Hohenberg-Kohn theorem([15]).

However, Hohenberg and Kohn proved the remarkable theorem [15,

Theorem 1] which states that the non-degenerate ground-state wave

function of a many-particle system is a unique functional of the particle

density and that leads to the existence of a universal energy functional

of the external potential and particle density, but the proof was for the

case of a local external potential. Also, the external potential energy

can easily be expressed in terms of the one-particle density, whereas

it is unknown how to express the kinetic energy and the interaction

energy in terms of ρ(x). Nevertheless, all expectations of one-particle
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operators can be expressed in term of the one-particle density matrix.

So going from density-functional theory to density-matrix-functional

theory appears to be reasonable, and in fact, it does work and the new

model was established by Gilbert [9].(See also [19])

The most difficult part of the density-functional to estimate is the

exchange-correlation energy (exchange energy for short), and it is this

energy which concern us here. And recently, it has been the tendency

to replace the energy as a functional of ρ(x) by a functional of the

one-body density matrix γ(x,x′). In this case it is hoped to have more

flexibility and achieve more accurate answers.

1.2. Physical explanation. Fermions have spin and we write a par-

ticle’s coordinates as x = (r, σ) for a pair consisting of a vector r in

space and an integer σ taking values from 1 to q. Here q is the number

of spin states for the particles which in the physical case of electrons is

equal to 2. Moreover, we write for any function f depending on space

and spin variables

∫
f(x)dx =

q∑
σ=1

∫
R3

f(r, σ)dr, (1.2)

which means that
∫

dx indicates integration over the whole space and

summation over all spin indices. This allows us to take the density

matrix γ as an operator on the Hilbert space of spinors ψ for which∫
|ψ(x)|2dx = 1 with integral kernel γ(x,x′). Consider a system with

K nuclei and N electrons, the Schrödinger Hamiltonian we will consider
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is

H =
N∑
i=1

(
− ~2

2m
∇2
i − e2Vc(ri)

)
+ e2R (1.3)

where

Vc(r) =
K∑
j=1

Zj
|r−Rj|

(1.4)

is the Coulomb potential and

R =
∑

1≤i<j≤N

1

|ri − rj|
(1.5)

is the electron-electron repulsion. The jth nucleus has charge +Zje > 0

and is located at some fixed point Rj ∈ R3. Let Z =
∑K

j=1 Zj be

the total nuclear charge. Since through this paper we will consider

the model with all the nuclei fixed, we do not take into account the

nucleus-nucleus repulsion e2U , where

U =
∑

1≤i<j≤N

ZiZj
|Ri −Rj|

. (1.6)

What will be discussed is the one of three density-matrix-functionals,

namely Müller model, the other two, better known models, are Hartree-

Fock model and Thomas-Fermi model. The aim of this report which

is mainly following the work of R. L. Frank, E. H. Lieb, R. Seiringer

and H. Siedentop [7] in 2007 is to present a thorough understanding on

the Müller energy functional theory which was elaborately discussed

by R. L. Frank et al. As we will see, the energy functional in Müller
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theory is quite similar to the Hartree-Fock functional, but with a mod-

ified exchange energy. Thus next we introduce briefly the best known

Hartree-Fock functional.

1.3. Hartree-Fock Model. The Hartree-Fock functional is

EHF (γ) =
~2

2m
tr (−∇2γ)− e2

∫
R3

Vc(r)ργ(r)dr + e2D(ργ, ργ)− e2X(γ).

(1.7)

where

ργ(r) =

q∑
σ=1

γ(x,x) =

q∑
σ=1

γ(r, σ; r, σ) (1.8)

is the particle density,

D(ρ, µ) =
1

2

∫∫
ρ(r)µ(r′)

|r− r′|
drdr′ (1.9)

is the repulsion among electrons and

X(γ) =
1

2

∫∫
|γ(x,x′)|2

|r− r′|
dxdx′ (1.10)

is the exchange energy.

It is well known that the functional EHF is the expectation value of H

in a determinantal wavefunction Ψ made of orthonormal functions φi,

where

Ψ(x1,x2, · · · ,xN) = (N !)−1/2 detφi(xj)|Ni,j=1, (1.11)

in this case

γ(x,x′) =
N∑
i=1

φi(x)φi(x
′). (1.12)
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We refer people interested in the derivation of these forms above to

[26] and [5] for details. We want to mention here that any one-body

density matrix γ for fermions always has two properties:

a) γ as an operator is self-adjoint, i.e.,

γ(x,x′) = γ(x′,x)∗; (1.13)

b) It is necessary and sufficient to ensure that it comes from a normal-

ized N-body state satisfying the Pauli exclusion principle:

0 ≤ γ ≤ 1 as an operator and tr γ = N (1.14)

where tr denotes the trace=
∫
γ(x,x)dx =sum of the eigenvalues

of γ.

Recalling the definition of the integral given in (1.2), a consequence of

(1.14) is that the spin-summed density matrix

(tr σ γ)(r, r′) =
∑
σ

γ(r, σ; r′, σ), (1.15)

which satisfies

0 ≤ tr σ γ ≤ q as an operator and tr (tr σ γ) = N (1.16)

when γ acts on functions of space alone.

We define the HF energy (for all N ≥ 0) by

EHF (N) = inf
γ
{EHF (γ) : 0 ≤ γ ≤ 1, tr γ = N} (1.17)
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We choose infimum in (1.17) instead of minimum since perhaps there

is no actual minimizer for Hartree-Fock functional, for instance, the

minimizer does not exist in the case of N >> Z = ΣK
i=1Zi, but it does

really exist when N < Z + 1. E. H. Lieb showed in [23] that EHF (N)

is the infimum over all γ′s of the determinantal form (1.12). Therefore,

EHF (N) ≥ E0(N), where E0(N) is the true ground state energy of the

Hamiltonian (1.3).

Whereas the HF density-matrix-functional theory provides an upper

bound to E0, but it still has some disadvantage and inconsistency the-

oretically ([7]):

a) The energy minimizer γHF , if it exists, may not be unique.

Remark 1.1. This assertion shall not be completely correct any

longer to this very day. Since Dr. Fabian Clemens Hantsch had

shown in his doctoral thesis ([11]) in 2012 that the minimizer of H-

F functional is unique, if the number of electrons satisfies a certain

closed shell condition and the nuclear charge is large enough.

b) The quantity that replaces the two particle density ρ(2)(r, r′) does

not satisfy the correct integral condition.

In the HF theory the electron Coulomb repulsion is modeled byD(ργ, ργ)−

X(γ). This energy really should be
∫∫ ρ(2)(r,r′)

|r−r′| drdr′, where ρ(2)(r, r′) is
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the two-particle density,

ρ(2)(r, r′) =
N(N − 1)

2

∑
σ1,··· ,σN

∫
ψ2(x,x′,x3, · · · ,xN)dr3 · · · drN

(1.18)

which represents the probability to find one particle with arbitrary spin

at position r and simultaneously a second particle with arbitrary spin

at position r′. By direct calculation, one can conclude the integral

condition between one-particle density (1.1) and two-particle density

(1.18), that is

∫
ρ(2)(r, r′)dr′ =

N(N − 1)

2

∑
σ1,··· ,σN

∫
ψ2(x,x′,x3, · · · ,xN)dr3 · · · drNdr′

=
(N − 1)

2
N

∑
σ1,··· ,σN

∫
ψ2(x,x′,x3, · · · ,xN)dr′dr3 · · · drN

=
(N − 1)

2
ρ(r). (1.19)

In HF case, we replace ρ(2)(r, r′) by

G(2)(r, r′) =
1

2
ργ(r)ργ(r

′)− 1

2

q∑
σ,σ=1

|γ(x,x′)|2. (1.20)

If this G(2)(r, r′) is the two-body density of any state, G(2)(r, r′) is sup-

posed to satisfy (1.19), namely,
∫
G(2)(r, r′)dr′ = N−1

2
ρ(r). In fact, this

equality fails unless the state is a HF state since
∫∫

G(2)(r, r′)drdr′ ≥

N(N−1)
2

and the equality only holds for the HF state.

1.4. Müller density-matrix-functional theory. As we have men-

tioned before, we obtain Müller density-matrix-functional via replacing
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the operator γ in X(γ) by γ1/2. This square root operator is well de-

fined since γ is self-adjoint (1.13) and positive (1.14),see [18]. And the

Müller functional and the Müller energy become

EM(γ) =
~2

2m
tr (−∇2γ)−e2

∫
R3

Vc(r)ργ(r)dr+e2D(ργ, ργ)−e2X(γ1/2),

(1.21)

and

EM(N) = inf
γ
{EM(γ) : 0 ≤ γ ≤ 1, tr γ = N} (1.22)

For the density matrix operator, we have

γ(x,x′) =

∫
γ1/2(x,x′′)γ1/2(x′′,x′)dx′′, (1.23)

and in terms of spectral representations, with eigenvalues λi and or-

thonormal eigenfunctions φi,

γ(x,x′) =
∞∑
i=1

λiφi(x)φi(x
′)∗ (1.24)

γ1/2(x,x′) =
∞∑
i=1

λ
1/2
i φi(x)φi(x

′)∗. (1.25)

Note that in the spectral representations, we sum from i = 1 to ∞,

we shall prove that γ has infinitely many positive eigenvalues. This

feature holds for the whole Schrödinger theory (See [8] and [20]). But

the problem that how many orbitals are contained in a minimizing γ

is still open. As a comparison, we have known that there are only N

orbitals that are contained in a minimizing γ in HF theory.
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From now on we will use atomic units, i.e., ~ = m = e = 1. Then the

Müller functional becomes

EM(γ) = tr (−∇2γ)−
∫
R3

Vc(r)ργ(r)dr +D(ργ, ργ)−X(γ1/2) (1.26)

and we define the relaxed problem as

EM
≤ (N) = inf

γ
{EM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N} (1.27)

Müller’s functional (1.26) has several advantages ([7]):

a) The quantity that effectively replaces ρ(2)(r, r′) in the functional is

now

1

2
ργ(r)ργ(r

′)− 1

2

q∑
σ,σ=1

|γ1/2(x,x′)|2, (1.28)

and this satisfies the correct integral condition (1.19), namely,

1

2

∫ [
ργ(r)ργ(r

′)−
q∑

σ,σ=1

|γ1/2(x,x′)|2
]
dr′ =

N− 1

2
ργ(r). (1.29)

ργ(r)ργ(r
′) −

∑q
σ,σ=1 |γ1/2(x,x′)|2, however, is not necessarily pos-

itive as a function of r, r′, whereas the HF choice ργ(r)ργ(r
′) −∑q

σ,σ=1 |γ(x,x′)|2 > 0 which is true for any positive semi-definite

operator (See [16]).

b) A special choice of γ is a HF type of γ, namely one in which all

the eigenvalues are 0 or 1. In this case it follows from (1.24) and

(1.25) that γ1/2 = γ and the value of the Müller energy equals the

HF energy. Thus, the Müller functional is a generalization of the

HF functional , and its energy satisfies EM(N) ≤ EHF (N).
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1.5. Convexity. Dr. R. L. Frank et al. mentioned in [7] as a surprising

fact that EM is a convex functional of γ, which means that for any

0 < µ < 1 and density matrices γ1, γ2,

EM(µγ1 + (1− µ)γ2) ≤ µEM(γ1) + (1− µ)EM(γ2). (1.30)

To prove this convexity, the key step is to prove the concavity of the

functional X(γ1/2) ([7]). Following this idea, we shall prove this fact

in Subsection 9.3. This convexity will lead to several important prop-

erties. One is the convexity of the energies EM(N) with respect to N

(see Proposition 7.2), as it is in Thomas-Fermi theory. As for Thomas-

Fermi case, we refer readers to check papers [21] and [23]. Further, we

shall prove that the electron density ργ(r) of the minimizer, if it exists,

is the same for all minimizers with the same N by proving the strictly

convexity of EM with respect to ρ, see Subsection 9.4.

1.6. The Müller variation equations. If the Müller functional has

a minimizing γ with tr γ = N then this γ should satisfy an Euler

equation, but whether a γ that satisfies the Euler equation is necessarily

a minimizer?

In deed, a minimizer does exist when N ≤ Z as we shall show in

Theorem 3.4, but it is not trivial to write down an equation satisfied

by a minimizing γ. Now we are trying to find an equation defining a

minimizer of (1.26).

Suppose that γ satisfies tr γ = N and meanwhile minimizes EM(γ),
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i.e., EM(γ) = EM(N). Then by the definition of the minimizer we

have

EM((1− s)γ + sγ′) ≥ EM(γ) (1.31)

for any admissible γ′ with tr γ′ = N and all 0 ≤ s ≤ 1. Conversely, if

tr γ = N and if (1.31) is true for all possible γ′ and for some 0 < s ≤ 1

(not necessarily for all s ∈ [0, 1] and s could depend on γ′) then γ is a

minimizer. In other words, to identify the condition that a minimizer

γ satisfies, it suffices to require that for all such γ′,

d

ds
EM((1− s)γ + sγ′)

∣∣∣∣
s=0

= lim
s→0

EM((1− s)γ + sγ′)− EM(γ)

s
≥ 0.

(1.32)

Note that the convexity of EM with respect to γ (1.30) gives

EM((1− s)γ + sγ′) ≤ (1− s)EM(γ) + sEM(γ′). (1.33)

Hence from (1.31), (1.32) and (1.33) we conclude that EM(γ) ≤ EM(γ′).

1.7. Energy associated to the system of no nuclei. If there are

no nuclei at all (Z=0), and we try to minimize EM(γ) with tr γ = N ,

we shall show that there will be no energy minimizing γ (See Propo-

sition 4.1 ). We can surely find a minimizing sequence γj, j = 0, 1, · · ·

such that EM(γj) → EM(N) as n → ∞, such a sequence will tend to

”spread out” and get smaller and smaller as it spreads ([7]). But we

can prove exactly that EM(N) is given by EM(N) = −N/8 when all



16 B. LI

Zj = 0 (See Proposition 7.1). This situation is reminiscent of Thomas-

Fermi-Dirac theory where, in the absence of nuclei, the energy equals

−(constant)N (See [23]). This negative energy comes from balancing

the kinetic energy against the negative exchange. In such a case it is

convenient to add +(constant) tr γ to EM(γ) in order that EM(N) ≡ 0

for a system with no nuclei.

Another explanation for this case, given by R. L. Frank et al., is that

the energy, -N/8, is the self-energy of a N-particle system in this theory.

It has no physical or chemical meaning but we have to pay attention

to it. It is the quantity

ÊM(N) = EM(N) +
N

8
(1.34)

that might properly be regarded as the energy of N electrons in the

presence of the nuclei, in fact, −ÊM(N) is the physical binding energy.

On the other hand, if we are interested in the binding energy with fixed

N, for example, the binding energy fo two atoms to form a molecule,

then it is safe to use the ÊM(N) instead of EM(N).

The idea is to ensure that the ground state energy of free electrons is

zero. This can be compared with the formulation in [10] in which the

”self-energy” corrections obtained by omitting certain diagonal terms

in the energy, and the energy is written in terms of the orbitals of γ.

This consideration allows us to consider the functional

ÊM(γ) = EM(γ) +
1

8
tr γ (1.35)
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and its corresponding infimum ÊM(N)

ÊM(γ) = inf
γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ = N}. (1.36)

Similarly, we define a relaxed problem for the new functional as

ÊM
≤ (γ) = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}. (1.37)

Note that ÊM(γ) is a convex functional of γ due to the convexity of

EM(γ) (See Subsection 9.3) and the linearity of the new term 1
8

tr γ.

Similarly, ÊM(N) is a convex function of N. The main problem that has

been addressed and solved in [7] is whether ot not there is a minimizer

γ for (1.36). The way to solve this problem, as E. H. Lieb and B. Simon

did for Thomas-Fermi model in [21], is to consider the relaxed problem

(1.37). The equivalence of these two energy ÊM(γ) and ÊM
≤ (γ) for all

N will be shown in the Proposition 7.1.
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2. Preliminaries

Lemma 2.1. Let l ∈ R and

χB(z,l)(r) =


1, |r− z| < l,

0, |r− z| ≥ l.

Then |r− r′|−1 can be written as

|r− r′|−1 =
1

π

∫ ∞
0

∫
R3

χB(z,l)(r)χB(z,l)(r
′)dz

dl

l5
.

(This expression was proposed in [6], here I specify the elementary

proof.)

Proof. Let’s consider first for a fixed l the integral

∫
R3

χB(z,l)(r)χB(z,l)(r
′)dz.

Initiating a spherical polar co-ordinates systems (l, θ, ϕ), let t = |r−r′|
2

.

In fact, the integral above is the volume of the intersection of two

l−radius balls that centered at r and r′. Thus

V :=

∫
R3

χB(z,l)(r)χB(z,l)(r
′)dz

= 2

∫ l

t

π(l2 − x2)dx

=
4

3
πl3 +

2

3
πt3 − 2πr2t.
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Noting that l = t/ cosϕ(t = l cosϕ), dl = td(secϕ) = t secϕ tanϕdϕ.

Therefore,

1

π

∫ ∞
0

∫
R3

χB(z,l)(r)χB(z,l)(r
′)dz

dl

l5

=
1

π

∫ ∞
0

4
3
πl3 + 2

3
πl3(cosϕ)3 − 2πl2l cosϕ

l5
dl

=

∫ π/2

0

(
4
3
(cosϕ)2 + 2

3
(cosϕ)5 − 2(cosϕ)3

)
secϕ tanϕ

t
dϕ

=
1

t

∫ π/2

0

(
4

3
cosϕ tanϕ+

2

3
(cosϕ)4 tanϕ− 2(cosϕ)2 tanϕ

)
dϕ

=
1

2t
,

which gives 1
π

∫∞
0

∫
R3 χB(z,l)(r)χB(z,l)(r

′)dzdl
l5

= |r− r′|−1. �

Next we deal with the monotonicity of the square root operator. We

will consider for a general case, namely

Aµ ≤ Bµ, 0 ≤ µ ≤ 1 (2.1)

provided that A and B are semi-positive definite operators and B is

bounded. This inequality (2.1) is one of several useful inequalities for

linear operators in Hilbert space that were deduced by E. Heinz in 1951

([13]). The proof we give here is due to T. Kato ([17]).

Lemma 2.2. Let A and B be self-adjoint operators and let A ≥ 0,

B ≥ 0, B is bounded. If A ≤ B, then Aµ ≤ Bµ for 0 ≤ µ ≤ 1.

Proof. Firstly, we assume that B has a positive lower bound ι. Suppose

now that the Lemma is already proved for µ = α and µ = β, 0 ≤ α < β,
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namely,

Aα ≤ Bα, Aβ ≤ Bβ. (2.2)

Let λ be any real number belonging to the spectrum of the bounded self-

adjoint operator H = Bα+β−Aα+β. Then for every ε > 0, there exists a

x0 ∈ H, H is a Hilbert space, such that ‖x0‖ = 1 and ‖(H−λI)x0‖ < ε.

Now set

y0 = (H − λI)x0 = Bα+βx0 − Aα+βx0 − λx0

Then we have ‖y0‖ < ε and

〈y0, Bβ−αx0〉 = ‖Bβx0‖2 − 〈Aβx0, AαBβ−αx0〉 − λ〈x0, Bβ−αx0〉. (2.3)

By applying Schwarz inequality several times to the equality (2.3) and

with the assumption (2.2) we have

‖Bβx0‖2 − λ〈x0, Bβ−αx0〉 ≤ ε‖Bβ−αx0‖+ ‖Bβx0‖2, (2.4)

hence we have

λ >
−ε‖Bβ−αx0‖
〈x0, Bβ−αx0〉

≥ −ε‖Bβ−αx0‖
ιβ−α‖x0‖

≥ −ε‖B‖β−α

ιβ−α
. (2.5)

Since (2.5) holds for every ε > 0, we must have λ ≥ 0—-that is , the

spectrum of H contains no negative numbers. This implies H ≥ 0. In
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deed, this can indicates that A
α+β
2 ≤ B

α+β
2 as well. On the one hand,

〈x0, (Bα+β − Aα+β)x0〉 = 〈x0, Hx0〉 ≥ 0. (2.6)

On the other hand,

〈x0, (Bα+β − Aα+β)x0〉 = 〈x0, Bα+βx0〉 − 〈x0, Aα+βx0〉

= 〈B
α+β
2 x0, B

α+β
2 x0〉 − 〈A

α+β
2 x0, A

α+β
2 x0〉

= ‖B
α+β
2 x0‖2 − ‖A

α+β
2 x0‖2. (2.7)

Combining (2.6) and (2.7), one has

‖B
α+β
2 x0‖ ≥ ‖A

α+β
2 x0‖,

i.e., B
α+β
2 ≥ A

α+β
2 .

So far we have shown that the set Ω of real numbers µ for which

the lemma holds contains α+β
2

whenever it contains α, β such that

0 ≤ α < β. Trivially Ω consists of 0 and 1, it follows that it contains

all µ of the form µ = m
2n

for n = 0, 1, 2, · · · ,m ≤ 2n. Thus we have

‖Aµx0‖ ≤ ‖Bµx0‖ for a set of µ dense in the interval 0 ≤ µ ≤ 1. As

‖Aµx0‖ and ‖Bµx0‖ are continuous functions of µ, it follows that it

holds for all µ of 0, 1, i.e.,Aµ ≤ Bµ for 0 ≤ µ ≤ 1.

Next we prove the Lemm with the only assumption thatB is bounded.

For any ε > 0, let Bε = (B2 + ε2I)1/2. Bε is bounded and has positive

lower bound. Indeed,

‖Bεx0‖2 = 〈Bεx0, Bεx0〉 = ‖Bx0‖2 + ε2‖x0‖2
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gives ‖Bε‖ ≥ ε. Also, from the equality above one has A ≤ B ≤ Bε.

This is the case we have proved above. So we have Aµ ≤ Bµ
ε for

0 ≤ µ ≤ 1, i.e., ‖Aµx0‖ ≤ ‖Bµ
ε x0‖. Let ε → 0, since ‖Bµ

ε x0‖ is

continuous in ε, ‖Aµx0‖ ≤ ‖Bµx0‖. �

Remark 2.3. A special case of the Lemma above is that the square

root function f(t) = t1/2 is operator monotone for all positive definite

operators. In fact, one can also reach this end by considering eigen-

values λ of the Hermitian T −H (see [2]). Without loss of generality,

let u be a unit vector that is an eigenvector with the eigenvalue λ of

T −H. We just need show λ > 0. Note that (T −H)u = λu gives that

(T − λI)u = Hu, and then we have

〈Tu, (T − λI)u〉 = 〈Tu,Hu〉. (2.8)

For the LHS of (2.8),

〈Tu, (T − λI)u〉 = 〈Tu, Tu〉 − λ〈Tu, u〉 = ‖Tu‖2 − λ〈Tu, u〉. (2.9)

For the RHS of (2.8), by Schwarz Inequality,

〈Tu,Hu〉 ≤ ‖Tu‖‖Hu‖

= 〈u, T 2u〉1/2〈u,H2u〉1/2

< 〈u, T 2u〉1/2〈u, T 2u〉1/2

= 〈u, T 2u〉

= ‖Tu‖2.



MÜLLER DENSITY-MATRIX-FUNCTIONAL THEORY... 23

Hence, ‖Tu‖2 − λ〈Tu, u〉 < ‖Tu‖2, which gives that λ〈Tu, u〉 > 0.

Since T is positive definite, we conclude that λ > 0.
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3. Assumption and main theorems

Definition 3.1. Let H be a separable Hilbert space. The trace class

G1 is the set of A ∈ L(H) so that tr (|A|) <∞. We define a G1-norm

on G1 by ‖A‖1 = tr (|A|).

Definition 3.2. Let H be a separable Hilbert space. For 1 ≤ p <∞,

we denote the space of Schatten-Von Neumann operator of class p as

Gp = {A ∈ L(H); |A|p ∈ G1}

with norm ‖A‖p = (tr (|A|p))1/p.

Especially when p = 2, we call G2 Hilbert-Schmidt space, A ∈ G2 is a

Hilbert-Schmidt operator and

‖A‖2 = (tr |A|2)1/2 = (tr |A∗A|)1/2 <∞.

Sometimes we also denote the norm ‖ · ‖2 by ‖ · ‖HS.

We always assume that (−∇2+1)1/2γ1/2 ∈ G2, then (−∇2+1)γ ∈ G1,

i.e.,

tr ((−∇2 + 1)γ) = tr (γ1/2(−∇2 + 1)1/2(−∇2 + 1)1/2γ1/2)

=

∫∫
(|∇γ1/2(x,x′)|2 + |γ1/2(x,x′)|2)dxdx′ <∞

As I have mentioned in the introduction, the main task that has

been addressed is whether ot not there is a minimizer γ for (1.36). Our

strategy is to consider the relaxed problem (1.37), inspired by what E.
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H. Lieb and B. Simon did for Thomas-Fermi model in [21]. I reformu-

late two main theorems as below, which readers can definitely find in

the work of R. L. Frank, E. H. Lieb, R. Seiringer and H. Siedentop [7]

and their elegant proofs. The rest of this report will go through his

proofs again, but with far more details.

Theorem 3.3. For any Z > 0 and N > 0, one has ÊM
≤ (N) < 0 and

ÊM
≤ (N) attained its infimum. Here

ÊM
≤ (N) = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}

Theorem 3.4. Assume that N ≤ Z. Then a minimizer of ÊM
≤ (N) has

trace N .
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4. case Z=0

In this section we shall show the energy of free electrons EM(N) is

not zero but is proportional to N . Precisely speaking, EM(N) = −N/8

when there are no nuclei. This negative energy could be −∞ if it were

not controlled by the positive kinetic energy, which leads to a finite

result. We recall that the Müller functional is

EM(γ) =
1

2
tr (−∇2γ)−

∫
Vc(r)ργ(r)dr +D(ργ, ργ)−X(γ

1
2 ). (4.1)

Since Z = ΣjZj = 0, it’s obvious that

∫
Vc(r)ργ(r)dr = 0

when

Vc(r) = ΣK
j=1

Zj
|r−Rj|

.

We just need to consider the functional

EM(γ) =
1

2
tr (−∇2γ) +D(ργ, ργ)−X(γ

1
2 ).

Proposition 4.1. If Z = 0,then for any N > 0,

EM(N) = EM
≤ (N) = −N/8

and there is no minimizing γ.
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Proof. Firstly, we use the lower semi-boundedness of the hydrogenic

Hamiltonian

− 1

2
∇2 − 1

2|r− r′|
≥ −1

8
, ∀r′ ∈ R3 (4.2)

(See [24, 11.10]) to find the lower bound. Indeed, by the direct calcu-

lation, and together with the fact (9.1), we have

EM(γ) =
1

2
tr (−∇2γ) +D(ργ, ργ)−X(γ

1
2 )

≥ 1

2
tr (−∇2γ)−X(γ

1
2 )

=
1

2
tr ((−∇2 + 1)γ)− 1

2
tr γ −X(γ

1
2 )

=
1

2

∫∫
dxdx′

(
|∇γ1/2(x,x′)|2 + |γ1/2(x,x′)|2

)
− 1

2
tr γ −X(γ

1
2 )

=
1

2

∫∫
dxdx′

(
|∇γ1/2(x,x′)|2)− 1

2

∫∫
|γ1/2(x,x′)|2

|r− r′|
dxdx′

=
1

2

∫∫ (
−∇2γ(x,x′)

)
dxdx′ − 1

2

∫∫
|γ1/2(x,x′)|2

|r− r′|
dxdx′

=

∫∫ (
− 1

2
∇2 − 1

2|r− r′|

)
|γ1/2(x,x′)|2dxdx′

≥ (−1

8
) tr γ. (4.3)

This exactly gives the lower bound on EM(N) and EM
≤ (N).

To show the non-existence of a minimizer we denote by g(r − r′) the

ground state of −∇2 − |r− r′|−1, such that

(
−∇2 − |r− r′|−1

)
g(r− r′) = E0g(r− r′) (4.4)

where

g(r− r′) = π−1/2e−|r−r
′| (4.5)
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and E0 = −1
4
.

It follows from the eigenvalue equation for g that the inequality ≤ in

(4.2) is strict except for multiples of the function g(r− r′). Hence the

above lower bound on EM(γ) is strict unless γ1/2(x,x′) = cσσ′(r′)g(r−

r′). For any φ(r) and ψ(r) ∈ L2(R3),

〈φ(r), cσσ′(r′)g(r− r′)ψ(r′)〉 =

∫
φ(r)

(∫
cσσ′(r′)g(r− r′)ψ(r′)dr′

)
dr

=

∫∫
φ(r)cσσ′(r′)g(r− r′)ψ(r′)dr′dr

=

∫ ∫
φ(r)cσσ′(r′)g(r− r′)drψ(r′)dr′

= 〈cσσ′(r′)g(r− r′)φ(r), ψ(r′)〉

= 〈cσσ′(r′)g(r− r′)φ(r), ψ(r′)〉

Because of the adjointness of γ1/2, we requires

cσσ′(r′)g(r− r′) = cσσ′(r)g(r− r′),

Thus cσσ′ is a real constant.

Moreover, since γ ∈ G1, i.e.,

∞ > tr γ =

∫∫
|γ1/2(x,x′)|2dxdx′

= Σσ,σ′

∫∫
|γ1/2(x,x′)|2drdr′

= Σσ,σ′

∫∫
c2σσ′g(r− r′)2drdr′

= Σσ,σ′c2σσ′

∫∫
π−1e−2|r−r

′|drdr′
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Since the integral is divergent, the constant cσσ′ has to be 0. This,

however, illustrates that there exists no minimizer.

Next we turn to the upper bound of the energy functional. We define

a trial density matrix γ̃ by defining its square root:

γ̃1/2(x,x′) = χ(r)∗g(r− r′)χ(r′)q−1/2δσ,σ′ . (4.6)

Here χ(r) is a smooth function on R3 and g(r− r′) = π−1/2e−|r−r
′| as

defined in (4.5). Applying Lemma 9.2 to the g(r− r′) we can calculate

the Fourier transform of g,

ĝ(p) : =
1

(2π)3/2

∫
R3

e−ip·xg(x)dx

=
1

(2π)3/2
1

k

∫ ∞
0

4πxg(x) sin(kx)dx

=
21/2

πk

∫ ∞
0

xe−x sin(kx)dx

=
21/2

πk
· 2k

(1 + k2)2

=
23/2

π

1

(1 + k2)2
,

which shows that the definition of γ̃1/2 given above does make sense,

since the operator is non-negative. Noting that in view of the eigenvalue

function of g, i.e.,

(
−∇2

r − |r− r′|−1
)
g(r− r′) = −1

4
g(r− r′)
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so

−∇2
rg(r− r′) = |r− r′|−1g(r− r′)− 1

4
g(r− r′).

Combining with the fact (see Lemma 9.4) that

tr (−∇2
rγ)

=

∫∫ (
|χ(r)|2|χ(r′)|2(−∇2

rg(r− r′))g(r− r′)− |∇χ(r)|2g(r− r′)2|χ(r′)|2
)

drdr′,

we have

tr (−∇2
rγ̃) = 2X(γ̃1/2)− 1

4
tr γ̃ +

∫∫
|∇χ(r)|2g(r− r′)2|χ(r′)|2drdr′.

The upper bound will be easily found from this if we can find functions

χL such that for γ̃L ≤ 1, as an operator, satisfying

tr γ̃L → N, (4.7)

∫∫
|∇χL(r)|2g(r− r′)2|χL(r′)|2drdr′ → 0 (4.8)

and

D(ργ̃L , ργ̃L)→ 0 (4.9)

as L → ∞. Indeed, assuming momentarily that (4.7)-(4.9) hold, then

we find that

tr (−1

2
∇2

rγ̃L) = X(γ̃
1/2
L )− 1

8
tr γ̃L +

1

2

∫∫
|∇χL(r)|2g(r− r′)2|χL(r′)|2drdr′

→ X(γ̃
1/2
L )− 1

8
N, L→∞.
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whence

EM(γ̃L) =
1

2
tr (−∇2γ̃L) +D(ργ̃L , ργ̃L)−X(γ̃

1
2
L )

→ X(γ̃
1/2
L )− 1

8
N −X(γ̃

1/2
L ) = −1

8
N, as L→∞.

Hence it suffices to prove the claims (4.7)-(4.9).

We shall take χL(r) = L−3/4χ(r/L) for a fixed smooth function χ ≥ 0

satisfying

‖χ‖44 =

∫
R3

|χ(r)|4dr = N.

Indeed, ‖χL‖44 =
∫
R3 |L−3/4χ(r/L)|4dr = N. Here we define an operator

denoted by γ with its kernel γ(r, r′). We note that for any L2 function

ψ,

〈ψ(r), γ̃
1/2
L ψ(r′)〉 ≤ (2π)3/2‖ĝ‖∞‖χL‖2∞‖ψ‖22.
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Indeed,

〈ψ(r), γ̃
1/2
L ψ(r′)〉 =

∫
ψ(r)

(∫
γ̃
1/2
L (r, r′)ψ(r′)dr′

)
dr

=

∫
ψ(r)

∫
χ∗L(r)g(r− r′)χL(r′)ψ(r′)dr′dr

=

∫
ψ(r)χ∗L(r)

(∫
g(r− r′)χL(r′)ψ(r′)dr′

)
dr

=

∫
ψ̂χ∗L(p) ̂g ∗ (χLψ)(p)dp (Plancherel Theorem)

= (2π)3/2
∫
ψ̂χ∗L(p)ĝ(p)(̂χLψ)(p)dp

= (2π)3/2
∫
ĝ(p)|(̂χLψ)(p)|2dp

≤ (2π)3/2‖ĝ‖∞
∫
|(̂χLψ)(p)|2dp

= (2π)3/2‖ĝ‖∞
∫
|χL(r)ψ(r)|2dr (Plancherel Theorem)

≤ (2π)3/2‖ĝ‖∞‖χL‖2∞
∫
|ψ(r)|2dr

= (2π)3/2‖ĝ‖∞‖χL‖2∞‖ψ‖22,

which is less than or equal to ‖ψ‖22 for L large, since ‖ĝ‖∞ < ∞ and

‖χL‖∞ → 0. This proves γ̃L ≤ 1 provided L is large enough. To check∫∫
|∇χ(r)|2g(r− r′)2|χ(r′)|2drdr′ → 0, we note that

tr γ̃L = (2π)3/2
∫
ĝ2(p)|(̂χ2

L)(p)|2dp,

Then since

|(̂χ2
L)(p)|2 = |

∫
χ2
L(r)e−irpdr|2

= L3|χ̂2(Lp)|2
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and by the Lemma 9.5 we know that as L→∞

L3|χ̂2(Lp)|2 → Nδ(p).

Besides, in the spirit of Lemma 9.2 , one can calculate

ĝ2(p) =
25/2

π3/2

1

(4 + |p|2)2

and ‖g‖2 = 1. Therefore,

tr γ̃L → (2π)3/2ĝ2(0)N = N,

which proves (4.7). Next, (4.8) is a consequence of

∫∫
|∇χL(r)|2g(r− r′)2|χL(r′)|2drdr′ ≤ L−2‖χ‖2∞‖∇χ‖22,

which follows from the estimate

∫∫
|∇χL(r)|2g(r− r′)2|χL(r′)|2drdr′ =

∫
|∇χL(r)|2

(∫
g(r− r′)2|χL(r′)|2dr′

)
dr

≤ ‖χL‖2∞
∫
|∇χL(r)|2

(∫
g(r− r′)2dr′

)
dr

= ‖χL‖2∞‖g‖22
∫
|∇χL(r)|2dr

= ‖χL‖2∞‖∇χL‖2 (‖g‖22 = 1)

= L−2‖χ‖2∞‖∇χ‖22.
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where we used that ‖χL‖2∞ = L−3/2‖χ‖2∞ and ‖∇χL‖22 = L−1/2‖∇χ‖22.

To verify (4.9), we consider

ργ̃L(r) =

∫
|χL(r)|2g(r− r′)2|χL(r′)|2dr′

= |χL(r)|2
∫
g(r− r′)2|χL(r′)|2dr′

= L−3/2|χ(r/L)|2
∫
g(r− r′)2L−3/2|χ(r′/L)|2dr′ (let z = r/L, z′ = r′/L)

= L−3|χ(z)|2
∫
g(L(z− z′))2|χ(z′)|2L3dz′

= |χ(z)|2
∫
g(L(z− z′))2|χ(z′)|2dz′,

and therefore,

D(ργ̃L , ργ̃L) =
1

2

∫∫
ργ̃L(r)ργ̃L(r′)

|r− r′|
drdr′

=
1

2

∫∫ |χ(z)|2
∫
g(L(z− z′))2|χ(z′)|2dz′|χ(z′)|2

∫
g(L(z− z′))2|χ(z)|2dz

L|z− z′|

L6dzdz′

=
1

2L

∫∫
|χ(z)|2ϕL(z)ϕL(z′)|χ(z′)|2

|z− z′|
dzdz′,

where

ϕL(z) = L3

∫
g(L(z− z′))2|χ(z′)|2dz′.

Again using the fact that ‖g‖2 = 1, one can see Lemma 9.5 that

ϕL(z)→ χ2(z) (4.10)

as L→∞ with

L3g(L(z− z′))2 → δ(z− z′). (4.11)
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In fact, let’s denote the distribution of f(x) on R3 by Tf such that

〈Tf , ϕ(x)〉 =

∫
R3

f(x)ϕ(x)dx,

for any test function ϕ(x). By the continuity of ϕ, we know that for an

arbitrary small ε, there exists a δ > 0, such that

|ϕ(z′)− ϕ(z)| < ε whenever |z′ − z| < δ.

And for the same ε there also exists an M such that

∫
|x|≥M

g(x)2dx < ε.

Then when L > M/δ,

∣∣∣∣〈TL3g(L(z−z′))2 , ϕ(z′)〉 − 〈δ(z− z′), ϕ(z′)〉
∣∣∣∣

=

∣∣∣∣ ∫ L3g(L(z− z′))2ϕ(z′)dz′ − ϕ(z)

∣∣∣∣
=

∣∣∣∣ ∫ g(L(z− z′))2(ϕ(z′)− ϕ(z))d(Lz′)

∣∣∣∣
≤

∣∣∣∣ ∫
|z−z′|<δ

g(L(z− z′))2(ϕ(z′)− ϕ(z))d(Lz′)

∣∣∣∣
+

∣∣∣∣ ∫
|z−z′|≥δ

g(L(z− z′))2(ϕ(z′)− ϕ(z))d(Lz′)

∣∣∣∣
< 1 · ε+ ε ·max{ϕ}.

It follows from Lebesgue dominant convergence theorem that

D(ργ̃L , ργ̃L) = L−1D(χ4, χ4) + o(L−1). (4.12)
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Indeed, since ‖χ‖44 = N , χ is square integrable, i.e.,
∫
|χ(z)|2dz < ∞,

otherwise |χ(z)|2 must be unbounded on a subset of R2 with positive

measure, which ruins the convergence of |χ(z)|4. So that for any L

ϕL(z) = L3

∫
g(L(z− z′))2|χ(z′)|2dz′

=

∫
g(L(z− z′))2|χ(z′)|2d(Lz′)

=

∫
g(L(z− z′))2|χ(z′)|2d(Lz− Lz′)

=

∫
g(u)2|χ(z− u/L)|2du (u = Lz− Lz′)

:= G(z).

Clearly,
∫
G(z)dz exists. �
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5. Proof of Theorem 3.3

Firstly, let’s prove the first part of Theorem 3.3, that is for any

Z > 0 and N > 0, ÊM
≤ < 0.

Lemma 5.1. For any Z > 0 and N > 0 one has ÊM
≤ (N) < 0.

Proof. Without loss of generality, we may assume that there is only

one nucleus of charge Z located at the origin r = 0. We use the same

family γ̃L of trial density matrices as (4.6) in the proof of the upper

bound in Proposition 4.1.

We investigate the functional ÊM first. We have known that

ÊM(γ) = EM(γ) +
1

8
tr γ.

As L → ∞, one has ÊM(γ̃L) = −Z tr γ̃L
|r| + L−1D(χ4, χ4) + o(L−1).

Indeed, by using the asymptotic behavior in (4.12),

ÊM(γ̃L) = EM(γ̃L) +
1

8
tr γ̃L

= tr (−1

2
∇2γ̃L) +D(ργ̃L , ργ̃L)−X(γ̃

1/2
L )−

∫
Vc(r)ργ̃Ldr

+
1

8
tr γ̃L.

→ X(γ̃
1/2
L )− 1

8
tr γ̃L +

1

8
tr γ̃L −X(γ̃

1/2
L )− Z

∫
γ̃L
|r|

dr

+L−1D(χ4, χ4) + o(L−1) (use (4.12) here)

= −Z
∫
γ̃L
|r|

dr + L−1D(χ4, χ4) + o(L−1)

= −Z tr
γ̃L
|r|

+ L−1D(χ4, χ4) + o(L−1).
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Now we see that tr γ̃L
|r| → L−1

∫ χ4(r)
|r| dr+o(L−1) by using the argument

we claimed in (4.10) that ϕL(r) = L3
∫
g2(L(r−r′))χ2(r′)dr′ → χ2(r),

which comes from

tr
γ̃L
|r|

=

∫∫
χ2
L(r)g2(r− r′)χ2

L(r′)

|r|
drdr′

=

∫∫
L−

3
2χ2

L( r
L

)g2(r− r′)L−
3
2χ2

L(r
′

L
)

|r|
L6d

r

L
d

r′

L

=

∫∫
L3χ2

L(r)g2(L(r− r′))χ2
L(r′)

|Lr|
drdr′

= L−1
∫
χ2(r)

|r|

∫
L3g2(L(r− r′))χ2(r′)dr′dr

→ L−1
∫
χ4(r)

|r|
dr + o(L−1) as L→∞.

Hence,

ÊM(γ̃L) = L−1
(
− Z

∫
χ4(r)

|r|
dr +D(χ4, χ4)

)
+ o(L−1) as L→∞.

For Z > 0, by choosing an appropriate χ such that N = ‖χ‖44 being

small enough, one can impose the first term in brackets being negative.

And this completes the proof of Lemma 5.1. �

Next, we want to prove the existence of the infimum, namely

ÊM
≤ (N) = infγ{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}.

But note that a minimizing sequence {γj}, satisfying

ÊM(γ0) ≥ ÊM(γ1) ≥ ÊM(γ2) ≥ ... ≥ ÊM(γ),
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does not necessarily convergent. So let’s give a quick glance to the

frame of variational method. If there exists a minimizing sequence

{γj}∞0 for the functional ÊM(γ), i.e.,

ÊM(γj)→ ÊM
≤ (N) = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}, (5.1)

and if the functional turns out to be weakly lower semicontinuous,

namely,

lim inf
j→∞

ÊM(γj) ≥ ÊM(γ) (5.2)

provided γj ⇀ γ. Then γ is the minimizer, i.e., ÊM(γ) = ÊM
≤ (N), since

ÊM
≤ (N) = lim inf

j→∞
ÊM(γj) ≥ ÊM(γ) ≥ ÊM

≤ (N). (5.3)

The first problem therefore is whether there is a convergent mini-

mizing sequence {γj} such that γj → γ in G1. This question will be

answered in Proposition 5.4.

Then the problem remains to show is the weakly lower semicontinuity

of the energy functional that will be answered in Proposition 5.5.

First, however, we begin with two Lemmas.

Lemma 5.2. For every ε > 0

∫∫
|r−r′|<ε

|γ1/2(x,x′)|2

|r− r′|
dxdx′ ≤ 4ε tr (−∇2γ) (5.4)

and

X(γ1/2) ≤ ε

4
tr (−∇2γ) +

1

4ε
tr γ. (5.5)
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Proof. The first formula is a consequence of Hardy’s inequality 1
4|r|2 ≤

−∇2(see Lemma 9.6). Indeed,

∫∫
|r−r′|<ε

|γ1/2(x,x′)|2

|r− r′|
dxdx′ =

∫∫
|r−r′|<ε

|r− r′| |γ
1/2(x,x′)|2

|r− r′|2
dxdx′

≤ ε

∫∫
|r−r′|<ε

(
|γ1/2(x,x′)|
|r− r′|

)2

dxdx′

≤ 4ε

∫∫
|r−r′|<ε

(
∇γ1/2(x,x′)

)2

dxdx′

≤ 4ε

∫∫ (
∇γ1/2(x,x′)

)2

dxdx′

= 4ε tr (−∇2γ).

For the second inequality (5.5), we shall use the expression for the

ground state energy of the hydrogen atom, namely

−∇2 − z

|r|
≥ −z

2

4
.

Put z = 2/ε, one can shift this expression to

2

|r|ε
≤ −∇2 +

1

ε2

⇔ ε

4

2

|r|ε
≤ ε

4
(−∇2) +

ε

4

1

ε2

⇔ 1

2|r|
≤ ε

4
(−∇2) +

1

4ε
.

Thus

∫
|γ1/2(x,x′)|2

2|r− r′|
dx ≤ ε

4

∫
|∇xγ

1/2(x,x′)|2dx +
1

4ε

∫
|γ1/2(x,x′)|2dx
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and, by integrating on x′, we get

X(γ1/2) =
1

2

∫∫
|γ1/2(x,x′)|2

|r− r′|
dxdx′

≤ ε

4

∫∫
|∇xγ

1/2(x,x′)|2dxdx′ +
1

4ε

∫∫
|γ1/2(x,x′)|2dxdx′

=
ε

4
tr (−∇2γ) +

1

4ε
tr γ,

which is exactly what we want. �

Lemma 5.3. Let χ(r) satisfy |χ(r)| ≤ 1. Then

X(χ∗γ1/2χ) ≤ X((χ∗γχ)1/2). (5.6)

Proof. We introduce the characteristic function of a ball of radius l

centered at z as defined in the Lemma 2.1

χBz,l
(r) =


1 |r− z| < l

0 |r− z| ≥ l.

From Lemma 2.1 we know that the Coulmb kernel can be expressed as

|r− r′|−1 =
1

π

∫ ∞
0

∫
R3

χBz,l
(r)χBz,l

(r′)dz
dl

l5

Then for any density matrix δ

X(δ) =
1

2

∫∫
|δ|2|r− r′|−1dxdx′

=
1

2π

∫∫
|δ|2

∫ ∞
0

∫
R3

χBz,l
(r)χBz,l

(r′)dz
dl

l5
dxdx′

=
1

2π

∫ ∞
0

∫
R3

(∫∫
|δ|2χBz,l

(r)χBz,l
(r′)dxdx′

)
dz

dl

l5

=
1

2π

∫ ∞
0

∫
R3

tr (δχBz,l
δχBz,l

)dz
dl

l5
(5.7)
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It follows from |χ| ≤ 1 and the monotonicity of the operator square

root (Lemma 2.2) that

χ∗γ1/2χ = ((χ∗γ1/2χ)(χ∗γ1/2χ))1/2 ≤ (χ∗γ1/2γ1/2χ))1/2 = (χ∗γχ)1/2.

Hence

tr (χ∗γ1/2χχBz,l
χ∗γ1/2χχBz,l

) ≤ tr ((χ∗γχ)1/2χBz,l
(χ∗γχ)1/2χBz,l

).

and, in conjunction with (5.7) we conclude that

X(χ∗γ1/2χ) ≤ X((χ∗γχ)1/2).

�

Now we are ready to deal with the next Proposition.

Proposition 5.4. Let Z > 0 and N > 0. There exists a minimizing

sequence {γj} for

ÊM
≤ (N) = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}

which converges in G1, i.e., there is a γ such that tr |γj − γ| → 0.

Proof. Choose an arbitrary minimizing sequence (γj)j≥1, which is con-

vergent in the sense of trace, for

ÊM
≤ (N) = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}.
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If it is necessary, we can extract a convergent subsequence instead.

Thus assume that tr γj → Ñ ∈ [0, N ]. Recall that we have proved in

Lemma 5.2 that (5.5) holds, and we know the hydrogen bound,

tr (Zk|r−Rk|−1γ) ≤ (Zkε/4Z) tr (−∇2γ) + (ZkZ/ε) tr γ. (5.8)

It follows that

1

2
(1− ε) tr (−∇2γj) ≤ ÊM(γj) +

1

ε
(Z2 +

1

4
) tr γj,

as demonstrated below

ÊM(γj) = EM(γj) +
1

8
tr γj

= tr (−1

2
∇2γj) +D(ργj , ργj)−X(γ

1/2
j )−

∫
Vc(r)ργjdr

+
1

8
tr γj

≥ tr (−1

2
∇2γj)−X(γ

1/2
j )−

∫
Vc(r)ργjdr

≥ tr (−1

2
∇2γj)−

ε

4
tr (−∇2γj)−

1

4ε
tr γj − (Zkε/4Z) tr (−∇2)γj

−(ZkZ/ε) tr γj

(let Zk = Z)

=
1

2
(1− ε) tr (−∇2γj)−

1

ε
(Z2 +

1

4
) tr γj.
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Hence the sequence (−∇2 + 1)1/2γj(−∇2 + 1)1/2 is bounded in G1, this

is because

tr
(
(−∇2 + 1)1/2γj(−∇2 + 1)1/2

)
= tr

(
(−∇2 + 1)1/2(−∇2 + 1)1/2γj

)
= tr ((−∇2 + 1)γj) <∞.

Note that if (−∇2+1)1/2γj(−∇2+1)1/2 is bounded in G1, then (−∇2+

1)1/2γ
1/2
j is bounded in G2. Since G2 is reflexive, in view of the Banach-

Alaoglu theorem [24, Theorem 2.18], there exists a γ such that, after

passing to a subsequence (if necessary), tr (Kγj) → tr (Kγ) for any

operator K such that (−∇2 + 1)−1/2K(−∇2 + 1)−1/2 is compact (this

argument is given in [7], it is true because one can build an isomet-

ric isomorphism between G1 and the dual space of compact operators,

namely, G1(H) ∼= Com′(H), see [31, Theorem VI.26]. For the peda-

gogical purpose, we refer readers to [33] and [3]). This compactness

condition is satisfied if K is simply multiplication by some function

f ∈ Lp(R3) for some p = 3/2 (See Section 9.5). In this case we have

that

∫
f(r)ργj(r)dr = tr fγj → tr fγ =

∫
f(r)ργ(r)dr.

In particular one can take such an f to be the Coulomb potential since

this potential can be written as the sum of two functions, one of which

is in Lp(R3) and the other in Lq(R3) with p = 3/2 and q =∞.
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Observe that 0 ≤ γ ≤ 1. By the lower semi-continuity of the G1

norm,

M := tr γ ≤ lim inf
j→∞

tr γj = Ñ ≤ N.

Then γ 6≡ 0 and, consequently M > 0 as we shall demonstrate now.

From Lemma 5.1, ÊM
≤ (N) < 0, we can know that ÊM(γj) ≤ −ε for

some ε > 0 and all sufficiently large j. By Proposition 4.1,

−ε ≥ ÊM(γj) = EMZ=0(γj) +
1

8
tr (γj)− tr (Vcγj) ≥ − tr (Vcγj),

It follows that tr (Vcγj) ≥ ε, so that tr (Vcγ) ≥ ε. The assertion γ 6≡ 0

follows.

We have noted γj ⇀ γ in the sense of weak operator convergence. If

M = Ñ , then tr γj → tr γ, and thus γj → γ in G1 (See [29, Theorem

2.16]), we are done with the case M = Ñ for proposition 5.4 .

It remains to examine the case M < Ñ .

First we describe the strategy. We are supposed to construct a mini-

mizing sequence γ0j out of γj which converges to γ in G1.

On this purpose we choose a quadratic partition of unity, (χ0)2+(χ1)2 ≡

1, where χ0 is a smooth, symmetric decreasing function with χ0(0) =

1, χ0(r) < 1 if |r| > 0 and χ0(r) = 0 if |r| ≥ 2. Clearly, for a fixed j,

tr
(
(χ0(r/R))2γj

)
is a continuous function of R which increases from

0 to tr γj as R → ∞. When j large enough, we can restrict ourselves

to such j′s that tr γj > M and choose an appropriate Rj such that

tr
(
(χ0(r/Rj))

2γj
)

= M.
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We write χνj (r) = χν(r/Rj) and γνj = χνjγjχ
ν
j for ν = 0, 1. We prove

the following fact first.

Claim Rj →∞ as j →∞.

Verification We argue by contradiction.

Assume that there is a subsequence that converges to some R < ∞.

Then for this subsequence,

χ0
j(r)2 = χ0(r/Rj)

2 → χ0(r/R)2

in any Lp. In view of formula
∫
f(r)ργj(r)dr = tr fγj → tr fγ =∫

f(r)ργ(r)dr, ργj ⇀ ργ weakly in Lp for 1 < p < 3 and, therefore,∫
χ0
j(r)2ργj(r)dr→

∫
χ0(r/R)2ργ(r)dr.

Note that, by the definition, the left-hand side is independent of j and it

equals
∫
χ0
j(r)2ργj(r)dr = tr

(
(χ0(r/Rj))

2γj
)

= M = tr γ =
∫
ργ(r)dr.

But the right-hand side is strictly less than
∫
ργ(r)dr because (χ0)2 <

1 a.e. and γ 6≡ 0 . We reach a contradiction. Therefore limj→∞Rj =∞.

Now we observe that

γ0j = χ0
jγjχ

0
j = χ0(r/Rj)γjχ

0(r/Rj),

and as a consequence, tr γ0j = tr

(
χ0(r/Rj)γjχ

0(r/Rj)

)
→ tr γj in

G1, which means γ0j ⇀ γj in G1. Moreover, since γj ⇀ γ, we deduce

that γ0j ⇀ γ in the sense of weak operator convergence. On the other

hand, by the construction of γ0j and Rj, tr γ0j = tr γ = M, so that

γ0j → γ in G1.
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The last thing for completing the proof of Proposition 5.4 rests on the

minimizing property of γ0j .

For this purpose, we need to show that

lim inf
j→∞

ÊM(γj) ≥ lim inf
j→∞

ÊM(γ0j ). (5.9)

For the kinetic energy we use the IMS formula (Lemma 9.3),

tr (−∇2γj) = tr (−∇2γ0j ) + tr (−∇2γ1j )− tr [(|∇χ0
j |2 + |∇χ1

j |2)γj].

Since Rj →∞, we have ‖|∇χ0
j |2 + |∇χ1

j |2‖∞ → 0 and therefore

tr (−∇2γj) = tr (−∇2γ0j ) + tr (−∇2γ1j ) + o(1). (5.10)

For the attraction term, we again use the fact that Rj →∞, so

tr
γ1j

|r−Rk|
=

∫ χ1( r
Rj

)γjχ
1( r
Rj

)

|r−Rk|
dr→ 0

since χ1(0) = 0 . So

tr
γj

|r−Rk|
= tr

γ0j
|r−Rk|

+ o(1). (5.11)

For the repulsion term we use that ργ0j ≤ ργj pointwise and note that

γj = γ0j + γ1j ,

tr (γj) = tr (γ0j ) + tr (γ1j ),

and we get

D(ργ0j , ργ0j ) ≤ D(ργj , ργj). (5.12)
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At last, we turn to the exchange term , to which we apply the quadratic

partition of unity first:

X(γ
1/2
j ) =

1

2

∫∫ |γ1/2j |2

|r− r′|
dxdx′

=
1

2

∫∫ |(χ0
j)

2γ
1/2
j + (χ1

j)
2γ

1/2
j |2

|r− r′|
dxdx′

=
1

2

∫∫ |(χ0
j)

2γ
1/2
j |2

|r− r′|
dxdx′ +

1

2

∫∫ |(χ1
j)

2γ
1/2
j |2

|r− r′|
dxdx′

+
1

2

∫∫
2|(χ0

j)γ
1/2
j (χ1

j)|2

|r− r′|
dxdx′

= X(χ0
jγ

1/2
j χ0

j) +X(χ1
jγ

1/2
j χ1

j) + 2X(χ0
jγ

1/2
j χ1

j).

We claim that

X(γ
1/2
j ) ≤ X((γ0j )

1/2) +X((γ1j )
1/2) + o(1) (5.13)

holds. Indeed, it follows from Lemma 5.3 that

X(χνjγ
1/2
j χνj ) ≤ X((χνjγjχ

ν
j ))

1/2. (5.14)

For the off-diagonal term we decompose, for any ε > 0,

X(χ0
jγ

1/2
j χ1

j) =

∫∫
|r−r′|<ε/2

|χ0
j(r)γ

1/2
j (x,x′)χ1

j(r
′)|2

2|r− r′|
dxdx′

+

∫∫
|r−r′|≥ε/2

|χ0
j(r)γ

1/2
j (x,x′)χ1

j(r
′)|2

2|r− r′|
dxdx′.
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The term with the singularity is controlled by Lemma 5.2:

∫∫
|r−r′|<ε/2

|χ0
j(r)γ

1/2
j (x,x′)χ1

j(r
′)|2

2|r− r′|
dxdx′

≤ ε · tr
(
(−∇2)χ0

jγ
1/2
j (χ1

j)
2γ

1/2
j χ0

j

)
≤ ε · tr

(
(−∇2)χ0

jγjχ
0
j

)
.

Clearly this can be made arbitrarily small by choosing ε small enough.

For any A > 0, 0 < Rj − A < ε/2 as long as j large enough. We

decompose the term without singularity into two pieces,

∫∫
|r−r′|≥ε/2

|χ0
j(r)γ

1/2
j (x,x′)χ1

j(r
′)|2

2|r− r′|
dxdx′

≤
∫∫
|r−r′|≥ε/2,|r|≥A

|χ0
j(r)γ

1/2
j (x,x′)|2

2|r− r′|
dxdx′

+

∫∫
|r−r′|≥ε/2,|r|<A

|γ1/2j (x,x′)χ1
j(r
′)|2

2|r− r′|
dxdx′

≤ ε−1
∫∫
|r−r′|≥ε/2,|r|≥A

χ0
j(r)2|γ1/2j (x,x′)|2dxdx′

+(2(Rj − A))−1
∫∫
|γ1/2j (x,x′)|2dxdx′

= ε−1 tr
(
χ{|r| ≥ A}γ0j

)
+ (2(Rj − A))−1 tr γj. (5.15)

In the next to last line we used that |r−r′| ≥ ε/2 > Rj−A and χ1
j(r
′) 6=

0. Since γ0j → γ in G1, one has tr
(
χ{|r| ≥ A}γ0j

)
→ tr

(
χ{|r| ≥ A}γ

)
,

this can be made arbitrarily small by choosing A large enough. Since

Rj → ∞, the second summand converges to 0. Hence we have shown

that (5.13) holds. Finally, By (5.10)-(5.13)we obtain a lower bound of
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ÊM(γj),

ÊM(γj) = EM(γj) +
1

8
tr γj

=
1

2
tr (−∇2γj) +D(ργj , ργj)−X(γ

1/2
j )−

∫
Zkγj
|r−Rk|

dr

+
1

8
tr γj

≥ 1

2
tr (−∇2γ0j ) +

1

2
tr (−∇2γ1j ) + o(1) +D(ργ0j , ργ0j )−X((γ0j )

1/2)

−X((γ1j )
1/2) + o(1)− tr

Zkγ
0
j

|r−Rk|
+ o(1) +

1

8
tr γ0j +

1

8
tr γ1j

= ÊM(γ0j ) +

(
1

2
tr (−∇2γ1j )−X(γ1j ) +

1

8
tr γ1j

)
+ o(1).

Recall that in the proof of Proposition 4.1 we have shown that the term

in brackets is non-negative. Hence

lim inf
j→∞

ÊM(γj) ≥ lim inf
j→∞

ÊM(γ0j ).

This concludes the proof of Proposition 5.4. �

Proposition 5.5. Suppose γj → γ in G1. Then

lim inf
j→∞

ÊM(γj) ≥ ÊM(γ). (5.16)

Proof. The bound

1

2
(1− ε) tr (−∇2γj) ≤ ÊM(γj) +

1

ε
(Z2 +

1

4
) tr γj

shows that

E = lim inf
j→∞

ÊM(γj) > −∞. (5.17)
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Moreover, we may assume that E <∞, for otherwise there is nothing

to prove. After passing to a subsequence (if necessary), we may assume

that ÊM(γj) → E. As in the proof of Proposition 5.4, there exists a

γ such that, after passing to a subsequence (if necessary), tr (Kγj) →

tr (Kγ) for any operator K such that (−∇2 + 1)−1/2K(−∇2 + 1)−1/2 is

compact.

Since γj ⇀ γ in G1, by the weakly lower semi-continuity, we have

lim inf
j→∞

tr
(
(−1

2
∇2 +

1

8
)γj
)
≥ tr

(
(−1

2
∇2 +

1

8
)γ
)
. (5.18)

Next we turn to the repulsion term. Since D(ργj , ργj) is bounded,

passing to a subsequence (if necessary), we may assume that ργj ⇀ ρ

with respect to theD-scalar product, namelyD(ργj , ργj)→ D(ρ, ρ).On

the other hand, from the proof of Proposition 5.4, we have known that∫
f(r)ργj(r)dr = tr fγj → tr fγ =

∫
f(r)ργ(r)dr, then D(ργj , ργj) →

D(ργ, ργ). It follows that ρ = ργ. Again the weak convergence lead to

the weakly lower semi-continuity with respect to the D-norm:

lim inf
j→∞

D(ργj , ργj) ≥ D(ργ, ργ). (5.19)

For the attraction term, since the Coulomb potential Vc can be written

as v(r) + w(r), where v(r) ∈ L3/2, w(r) ∈ L∞. Therefore, using the
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equality
∫
f(r)ργj(r)dr = tr fγj → tr fγ =

∫
f(r)ργ(r)dr again

tr Vcγj =

∫
Vcγjdr

=

∫
Vcγjdr

=

∫
vγjdr +

∫
wγjdr

→
∫
vγdr +

∫
wγdr

=

∫
Vcγdr = tr Vcγ.

At last, we prove the continuity of the exchange term. We decompose,

for any ε > 0,

|X(γ
1/2
j )−X(γ1/2)|

=

∣∣∣∣ ∫∫ |γ1/2j |2 − |γ1/2|2

2|r− r′|
dxdx′

∣∣∣∣
=

∣∣∣∣ ∫∫
|r−r′|<ε/2

|γ1/2j |2 − |γ1/2|2

2|r− r′|
dxdx′ +

∫∫
|r−r′|≥ε/2

|γ1/2j |2 − |γ1/2|2

2|r− r′|
dxdx′

∣∣∣∣
≤

∣∣∣∣ ∫∫
|r−r′|<ε/2

|γ1/2j |2 − |γ1/2|2

2|r− r′|
dxdx′

∣∣∣∣+

∣∣∣∣ ∫∫
|r−r′|≥ε/2

|γ1/2j |2 − |γ1/2|2

2|r− r′|
dxdx′

∣∣∣∣
≤

∫∫
|r−r′|<ε/2

|γ1/2j |2 + |γ1/2|2

2|r− r′|
dxdx′ +

∫∫
|r−r′|≥ε/2

∣∣|γ1/2j |2 − |γ1/2|2
∣∣

2|r− r′|
dxdx′,

The first term can be bounded by ε tr
(
(−∇2)(γj + γ)

)
according to

Lemma 5.2 and tr
(
(−∇2)(γj+γ)

)
is bounded since 1

2
(1−ε) tr (−∇2γj) ≤

ÊM(γj) + 1
ε
(Z2 + 1

4
) tr γj. To treat the term without the singularity we

use the fact that the mapping K 7→ |K|1/2 is continuous from G1 to

G2 (See Lemma 9.18 in Appendix) . Hence γ
1/2
j → γ1/2 in G2, and we
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can estimate as follows(∫∫
|r−r′|≥ε/2

∣∣|γ1/2j |2 − |γ
1/2
j |2

∣∣
2|r− r′|

dxdx′
)2

=

(∫∫
|r−r′|≥ε/2

∣∣|γ1/2j | − |γ
1/2
j |
∣∣ ∣∣|γ1/2j |+ |γ

1/2
j |
∣∣

2|r− r′|
dxdx′

)2

≤
(∫∫

|r−r′|≥ε/2

∣∣γ1/2j − γ1/2j

∣∣2dxdx′
)(∫∫

|r−r′|≥ε/2

∣∣|γ1/2j |+ |γ
1/2
j |
∣∣2

4|r− r′|2
dxdx′

)
≤ ‖γ1/2j − γ1/2j ‖22ε−2

∫∫ ∣∣|γ1/2j |+ |γ
1/2
j |
∣∣2dxdx′

≤ 2‖γ1/2j − γ1/2j ‖22ε−2
∫∫ (

|γ1/2j |2 + |γ1/2j |2
)
dxdx′

= ‖γ1/2j − γ1/2j ‖22ε−2 tr (γj + γ).

The first factor tend to 0 by convergence of γ
1/2
j due to the fact men-

tioned above and the second one remains bounded. Hence we have

proved that

lim
j→∞

X(γ
1/2
j ) = X(γ1/2). (5.20)

Proposition 5.5 follows immediately. �

Proof of Theorem 3.3. By now, we have proved the existence of mini-

mizer of ÊM . That is to say we complete the proof of Theorem 3.3 �
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6. Proof of Theorem 3.4

Assume that N ≤ Z. Under this assumption we show that a mini-

mizer γ of ÊM(γ) satisfies the constraint tr γ = N .

Proof. We argue by contradiction. Assume tr γ < N . We shall find a

trace class operator σ ≥ 0 such that for

γε = (1− ε‖σ‖)γ + εσ

and all sufficiently small ε > 0,

ÊM(γε) < ÊM(γ).

In fact, the factor (1 − ε‖σ‖) guarantees that 0 ≤ γε ≤ 1 for 0 < ε ≤

‖σ‖−1. If tr γ < N , then tr γε < N for

ε <
N − tr γ∣∣‖σ‖ tr γ − tr σ

∣∣ ,

and this leads to a contradiction because γ was supposed to be a min-

imizer.

To prove ÊM(γε) < ÊM(γ), we use convexity of the homogeneous terms

in the functional ÊM and expand the repulsion term explicitly. We
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begin with

1

2
tr (−∇2γε) =

1

2
tr
(
(−∇2)

[
(1− ε‖σ‖)γ + εσ

])
≤ 1

2
tr (−∇2γ)− ε‖σ‖1

2
tr (−∇2γ) + ε

1

2
tr (−∇2σ).

(6.1)

Moreover,

−
∫
Vcργεdr = −

∫
Vc(r)

[
(1− ε‖σ‖)γ + εσ

]
(r)dr

= −
∫
Vc(r)γ(r)dr + ε‖σ‖

∫
Vc(r)γ(r)dr− ε

∫
Vc(r)σ(r)dr;

(6.2)

D(ργε , ργε) =
1

2

∫∫ [
(1− ε‖σ‖)γ + εσ

]
(r)
[
(1− ε‖σ‖)γ + εσ

]
(r′)

|r− r′|
drdr′

= D(ργ, ργ) + ε
1

2

∫∫
γ(r)σ(r′)

|r− r′|
drdr′ + ε

1

2

∫∫
γ(r′)σ(r)

|r− r′|
drdr′

−ε‖σ‖1

2

∫∫
γ(r)γ(r′)

|r− r′|
drdr′ − ε‖σ‖1

2

∫∫
γ(r)γ(r′)

|r− r′|
drdr′

ε2D(ρσ − ‖σ‖ργ, ρσ − ‖σ‖ργ); (6.3)

−X(γ1/2ε ) = −1

2

∫∫
(1− ε‖σ‖)γ + εσ

|r− r′|
dxdx′

= −X(γ1/2) + ε‖σ‖X(γ1/2)− εX(σ1/2); (6.4)

In this way,

1

8
tr γε =

1

8

∫ (
(1− ε‖σ‖)γ + εσ

)
dr

=
1

8
tr γ − ε‖σ‖1

8
tr γ + ε

1

8
tr σ. (6.5)



56 B. LI

Collecting all the formulas above we arrive at

ÊM(γε) ≤ ÊM(γ)+ε
(

tr (−∇
2

2
−ϕγ+

1

8
)σ−X(σ1/2)

)
−εA1+ε2A2 (6.6)

where

ϕγ(r) = Vc(r)−
∫

ργ(r
′)

|r− r′|
dr′,

A1 = ‖σ‖
(
ÊM(γ) +D(ργ, ργ)

)
,

A2 = D(ρσ − ‖σ‖ργ, ρσ − ‖σ‖ργ).

We proceed as we did in the proof of Proposition 4.1, letting σ = σL,

where

σ
1/2
L (x,x′) = L−3/2χ(r/L)g(r− r′)χ(r′/L)q−1/2δσ,σ′ .

Here g(r− r′) = π−1/2e−|r−r
′| and χ is a smooth function satisfying

‖χ‖44 = 1, χ ≥ 0.

Asymptotically, as |r| → ∞,

ϕγ(r) = Vc(r)−
∫

ργ(r
′)

|r− r′|
dr′

→ Z

|r|
− tr γ

|r|
= (Z − tr γ)|r|−1 > 0

since Z − tr γ > 0 by our assumption. Similar to the proof of Propo-

sition 4.1, we find that

tr (−∇2σL)→ 2X(σ
1/2
L )− 1

4
tr (σL),

tr (−ϕγσL)→ −
∫∫

(Z − tr γ)|r|−1σLdrdr′.
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Thus

tr (−∇
2

2
σL) + tr (−ϕγσL) +

1

8
tr (σL)−X(σ

1/2
L )

→ X(σ
1/2
L )− 1

8
tr (σL)−

∫∫
(Z − tr γ)|r|−1σLdrdr′ +

1

8
tr (σL)−X(σ

1/2
L )

= −
∫∫

(Z − tr γ)|r|−1σLdrdr′

= −
∫∫

(Z − tr γ)|r|−1L−3χ2(
r

L
)g(r− r′)2χ2(

r′

L
)drdr′

→ −Z − tr γ

L

∫
|z|−1χ(z)4dz

by using again the formula L3
∫
g2(L(r − r′))χ2(r′)dr′ → χ2(r), as

L→∞ and substituting z for r
L

, z′ for r′

L
.

From the proof of Proposition 4.1 and Lemma 5.1, it follows that

D(ρσL , ρσL) = O(L−1) and ‖σL‖ = O(L−3), the latter is seen as follows.
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indeed

‖σL‖1 =

∫∫
|σ1/2
L (x,x′)|2dxdx′

=

∫∫
χ2
L(r)g(r− r′)2χ2

L(r′)q−1δσ,σ′dxdx′

= Σ2
σ=σ′=1

∫∫
χ2
L(r)g(r− r′)2χ2

L(r′)2−1drdr′

=

∫
χ2
L(r)

(∫
g(r− r′)2χ2

L(r′)dr′
)

dr

=

∫
χ̂2
L(p)ĝ2 ∗ χ2

L(p)dp

= (2π)3/2
∫
χ̂2
L(p)ĝ2(p)χ̂2

L(p)dp

≤ (2π)3/2‖ĝ2‖∞
∫
χ̂2
L(p)χ̂2

L(p)dp

= (2π)3/2‖ĝ2‖∞
∫
χ2
L(r)χ2

L(r)dr (Plancherel theorem)

= (2π)3/2‖ĝ2‖∞
∫
L−3χ4(r/L)dr

= L−3(2π)3/2‖ĝ2‖∞‖χ‖44

= O(L−3)

since ‖χ‖44 = N and

ĝ2(p) =
25/2

π3/2

1

(4 + |p|2)2

as given before are bounded. This implies that A1 = O(L−3) and

A2 = O(L−1). Then ÊM(γε) < ÊM(γ) follows naturally if we choose L

large enough and ε being tiny. �
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7. Further Properties

Recall that

EM(N) = inf{EM(γ)|0 ≤ γ ≤ 1, tr γ = N}.

We will see in Proposition 7.1 that this energy EM(N) is closely related

to ÊM
≤ (N).

7.1. Properties of the minimal energy.

Proposition 7.1. For any Z > 0 and N > 0 one has

EM(N) = ÊM
≤ (N)−N/8.

Proof. First, notice that

ÊM
≤ (N) = inf{ÊM(γ)| 0 ≤ γ ≤ 1, tr γ ≤ N}

= inf{EM(γ) +
1

8
tr γ| 0 ≤ γ ≤ 1, tr γ ≤ N}

≤ inf{EM(γ) +
1

8
tr γ| 0 ≤ γ ≤ 1, tr γ = N}

= inf{EM(γ)| 0 ≤ γ ≤ 1, tr γ ≤ N}+
1

8
N

= EM(N) +
1

8
N. (7.1)

Then let γ′ = γ + δγ, such that δ > 0, tr γ = N, tr γ′ = N ′. If we can

show that

EM(γ′) ≥ EM(γ)− δN

8
, (7.2)
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then

ÊM(γ′) ≥ EM(γ) +
N

8
, (7.3)

indeed,

ÊM(γ′) = EM(γ′) +
1

8
tr γ′

≥ EM(γ)− δN

8
+
N

8
+
δN

8

= EM(γ) +
N

8
. (7.4)

Since (7.3) should hold for all such γ′ and γ, we have

ÊM
≤ (N ′) ≥ EM(N) +

1

8
N. (7.5)

Hence

EM(N) +
1

8
N ≤ ÊM

≤ (N ′) ≤ EM(N ′) +
1

8
N ′,

i.e.,

EM(N) +
1

8
N ≤ ÊM

≤ (N + δN) ≤ EM(N + δN) +
1

8
N +

δ

8
N.

Let δN → 0, we conclude that ÊM
≤ (N) = EM(N) + 1

8
N .

Now it remains to show that (7.2) holds. Insert γ′ = γ + δγ into the

Müller energy functional and expand explicitly, we have

EM(γ′) = EM(γ) + δ
[1
2

tr (−∇2γ) +D(ργ, ργ)−X(γ1/2)
]

+ δ2D(ργ, ργ).

(7.6)

With (4.3) and Lemma 9.1, one can conclude that

EM(γ′) ≥ EM(γ)− δN

8
.
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�

Proposition 7.2. For any Z > 0, the energies ÊM
≤ (N) and EM(N)

are convex functions of N . They are strictly convex for 0 < N ≤ Z.

Proof. By Proposition 7.1 it suffices to consider ÊM
≤ (N). Let N =

λN1 + µN2 where λ + µ = 1, N1 < N < N2 ≤ Z. That ÊM
≤ (N) are

convex functions of N means that ÊM
≤ (N) ≤ λÊM

≤ (N1) + µÊM
≤ (N2),

i.e.,

inf{ÊM(γ); tr γ ≤ N} ≤ λinf{ÊM(γ); tr γ ≤ N1}+µinf{ÊM(γ); tr γ ≤ N2}.

(7.7)

If γ1, γ2 are the minimizer of ÊM(N1) and ÊM(N2) respectively, write

γ = λγ1 + µγ2, then tr γ = N , but γ is not necessarily a minimizer

of ÊM(N). However, in Section 9.3 we have proved that EM(γ) is a

convex functional of γ:

EM(γ) ≤ λEM(γ1) + µEM(γ2),

thus we have

ÊM(γ) ≤ λÊM(γ1) + µÊM(γ2),

and it follows that

ÊM
≤ (N) = ÊM(N) ≤ ÊM(γ) ≤ λÊM(N1) + µÊM(N2)

= λÊM
≤ (N1) + µÊM

≤ (N2).
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It gives the convexity of ÊM
≤ (γ).

To see the strict convexity we consider the minimizers γ1 and γ2 which

have different traces due to the theorem 3.4. We claim the densities

ργ1 and ργ2 are different.

In fact, if ργ1(r) = ργ2(r), i.e.,

∑
σ

γ1(x,x) =
∑
σ

γ2(x,x),

then

tr γ1 =

∫
γ1(x,x)dx =

∫
γ2(x,x)dx = tr γ2,

this ruins the condition that tr γ1 6= tr γ2. Hence by the positive prop-

erties of the Coulomb energy ([24, Theorem 9..8]) we conclude that

D(λργ1 + µργ2 , λργ1 + µργ2) < λD(ργ1 , ργ1) + µD(ργ2 , ργ2).

This leads to

ÊM
≤ (N) = ÊM(N) < λÊM

≤ (N1) + µÊM
≤ (N2).

�

In Theorem 3.3 we have conclude that the energy ÊM
≤ (N) < 0 for

all N > 0, Z > 0. Now we will show in the following proposition that

the energy is bounded from below uniformly in N for fixed Z.

Proposition 7.3. There is a constant C > 0 such that for all Z > 0

and N > 0, ÊM
≤ (N) ≥ −CZ3.
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Proof. First, we consider the atomic case with a nucleus of charge Z

located at the origin R = 0.

Recall the formulas:

ÊM(γ) = EM(γ) +
1

8
tr γ,

EM(γ) =
1

2
tr (−∇2γ)−

∫
R3

Zργ(r)

|r−Rj|
dr+D(ργ, ργ)−

1

2

∫∫
|γ1/2(x,x′)|2

|r− r′|
dxdx′,

γ(x,x) =

∫
|γ1/2(x,x′)|2dx′.

And let ψ(x,x′) = γ1/2(x,x′) in L2(R6). We are going to check several

facts below.

Fact 1 (Symmetry)

ÊM(γ) =
1

2
〈ψ| − 1

2
∇2

r−
1

2
∇2

r′ −
Z

|r|
− Z

|r′|
− 1

|r− r′|
+

1

4
|ψ〉+D(ργ, ργ).

(7.8)

Verification. Firstly, consider about the kinetic energy:

tr (−∇2
rγ) =

1

2

(
tr (−∇2

rγ) + tr (−∇2
r′γ)
)

=
1

2

(∫∫
(−∇2

rγ)dxdx′ +

∫∫
(−∇2

r′γ)dxdx′
)

=
1

2

(∫∫
(−∇2

r|ψ|2)dxdx′ +

∫∫
(−∇2

r′|ψ|2)dxdx′
)

= 〈ψ| − 1

2
∇2

r|ψ〉+ 〈ψ| − 1

2
∇2

r′ |ψ〉.
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Then for the attraction term

1

2

∫
R3

Zργ(r)

|r|
dx =

1

2

∫
R3

Z

|r|
γ(x,x′)dx

=
1

2

∫
R3

Z

|r|

(∫
R3

|γ1/2(x,x′)|2dx′
)

dx

=
1

2

∫∫
Z|ψ(x,x′)|2

|r|
dx′dx

=
1

2
〈ψ| Z
|r|
|ψ〉.

Moreover, we have

1

2

∫∫
|γ1/2(x,x′)|2

|r− r′|
dxdx′ =

1

2
〈ψ| 1

|r− r′|
|ψ〉.

At last the assertion follows immediately. �

Fact 2. (Positive Definiteness)

D(ργ, ργ) +D(σZ , σZ) ≥ 2D(ργ, σZ) (7.9)

for any σZ .

Verification. We use the positive definiteness of the Coulomb kernel.

D(ργ, ργ) +D(σZ , σZ)− 2D(ργ, σZ) =
1

2

∫∫
(ργ + σZ)(r)(ργ + σZ)(r′)

|r− r′|
drdr′

= D(ργ + σZ , ργ + σZ) ≥ 0 �

Fact 3.

D(ργ, σZ) =
1

2
〈ψ|
∫

σZ(r′)

|r− r′|
dr′|ψ〉. (7.10)
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Verification. Direct calculation leads to the assertion.

1

2
〈ψ|
∫

σZ(r′)

|r− r′|
dr′|ψ〉 =

1

2

∫∫
|ψ(x,x′)|2

(∫
σZ(r′)

|r− r′|
dr′
)

dxdx′

=
1

2

∫ (∫
σZ(r′)

|r− r′|
dr′
)(∫

|ψ(x,x′)|2dx′
)

dx

=
1

2

∫ (∫
σZ(r′)

|r− r′|
dr′
)
γ(x,x)dx

=
1

2

∫ (∫
σZ(r′)

|r− r′|
dr′
)

Σσγ(r, r)dr

=
1

2

∫∫
σZ(r′)ργ(r)

|r− r′|
dr′dr

= D(ργ, σZ). �

From Facts (7.8)-(7.10) we conclude that

ÊM(γ) =
1

2
〈ψ| − 1

2
∇2

r −
1

2
∇2

r′ −
Z

|r|
− Z

|r′|
− 1

|r− r′|
+

1

4
|ψ〉+D(ργ, ργ)

≥ 1

2
〈ψ| − 1

2
∇2

r −
1

2
∇2

r′ −
Z

|r|
− Z

|r′|
− 1

|r− r′|
+

1

4
|ψ〉+ 2D(ργ, σZ)

−D(σZ , σZ)

=
1

2
〈ψ| − 1

2
∇2

r −
1

2
∇2

r′ −
Z

|r|
+

∫
σZ(r′)

|r− r′|
dr′ − Z

|r′|
+

∫
σZ(r)

|r− r′|
dr

− 1

|r− r′|
+

1

4
|ψ〉 −D(σZ , σZ)

=
1

2
〈ψ| − 1

2
∇2

r −
1

2
∇2

r′ − VZ(r)− VZ(r′)− 1

|r− r′|
+

1

4
|ψ〉 −D(σZ , σZ)

where

VZ(r) =
Z

|r|
−
∫

σZ(r′)

|r− r′|
dr′.

We shall choose σZ in such a way that

−1

2
∇2

r −
1

2
∇2

r′ − VZ(r)− VZ(r′)− 1

|r− r′|
+

1

4
≥ 0,
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and this leads to

ÊM(γ) ≥ −D(σZ , σZ).

In this case we shall choose σZ of the form

σZ(r) = Z4σ(Zr)

for some fixed σ, which yields D(σZ , σZ) = Z3D(σ, σ) :

D(σZ , σZ) =
1

2

∫∫
σZ(r)σZ(r′)

|r− r′|
drdr′

=
1

2

∫∫
Z4σ(Zr)Z4σ(Zr)Z

Z|r− r′|
drdr′

=
1

2

∫∫
Z3σ(Zr)σ(Zr)

|Zr− Zr′|
d(Zr)d(Zr′)

= Z3D(σ, σ).

To prove that

−1

2
∇2

r −
1

2
∇2

r′ − VZ(r)− VZ(r′)− 1

|r− r′|
+

1

4
≥ 0,

we make an orthogonal change of variables:

 s

t

 =

 1√
2
− 1√

2

1√
2

1√
2


 r

r′

 or


s = r−r′√

2

t = r+r′√
2
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Then

−1

2
∇2

r −
1

2
∇2

r′ − VZ(r)− VZ(r′)− 1

|r− r′|
+

1

4

= −1

4
∇2

s −
1

2
∇st −

1

4
∇2

t −
1

4
∇2

s +
1

2
∇st −

1

4
∇2

t

−VZ
(s + t√

2

)
− VZ

(t− s√
2

)
− 1√

2|s|
+

1

4

=

(
− 1

2
∇ss −

1√
2|s|

+
1

4

)
+

1

4

(
−∇tt − 4VZ

(s + t√
2

))
+

1

4

(
−∇tt − 4VZ

(t− s√
2

))
.

Recall the ground state energy of the hydrogen atom (see (4.2)): −∇2−

z
|r| + z2

4
≥ 0, from which it follows that

(
− 1

2
∇ss − 1√

2|s| + 1
4

)
≥ 0.

Hence it suffices to choose σ such that the operator

−∇tt − 4VZ
(t + a√

2

)
≥ 0 (7.11)

for any a ∈ R3. Note that with V (r) = 1
|r| −

∫ σ(r′)
|r−r′|dr′ we deduce that

VZ(r) =
Z

|r|
−
∫

σZ(r′)

|r− r′|
dr′ =

Z2

|Zr|
−Z2

∫
σ(Zr′)

|Zr− Zr′|
d(Zr′) = Z2V (Zr).

Let ξ = Z(t+a)√
2

, then ∇t = ∇ξ · Z√2 ,∇tt = ∇ξξ · Z
2

2
. Thus if (7.11) holds,

0 ≤ −∇tt−4VZ
(t + a√

2

)
= −∇tt−4Z2V

(Z(t + a)√
2

)
= −∇ξξ·

Z2

2
−4Z2V (ξ),

Therefore what remains to be proved is that−∇ξξ−8V (ξ) ≥ 0. For this

purpose we choose σ a non-negative, spherically symmetric function

with
∫
σ(r)dr = 1 and with support in {|r| ≤ 1/32}. By Theorem 9.7(

in ”Analysis” written by Lieb & Loss), we have V (r) = 0 for |r| ≥ 1/32,

and for |r| ≤ 1/32 one has 8V (r) ≤ 1/(4|r|2). Next I shall apply the
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so-called Newton’s Theorem.

First we see that

V (r) = |r|−1 −
∫
|r− r′|−1σ(r′)dr′

=

∫
(|r|−1 − |r− r′|−1)σ(r′)dr′

=

∫
(
|r− r′| − |r|
|r||r− r′|

)σ(r′)dr′. (7.12)

Let µ+, µ−be the positive measures on R3 such that

dµ+ =
1 + |r− r′| − |r|

2
σ(r′)dr′, (7.13)

dµ− =
−1 + |r− r′| − |r|

2
σ(r′)dr′. (7.14)

Then

dµ = dµ+ − dµ− = σ(r′)dr′,

dν = dµ+ + dµ− = (|r− r′| − |r|)σ(r′)dr′.

Hence when |r| ≥ 1/32, by the Newton theorem [24, Theorem 9.7],

V (r) =

∫ (
|r− r′| − |r|
|r||r− r′|

σ(r′)

)
dr′ = 0 ·

∫
σ(r′)dr′.
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For |r| < 1/32, however,

V (r) =

∫ (
|r− r′| − |r|
|r||r− r′|

)
σ(r′)dr′

=

∫
1

|r||r− r′|

(
|r− r′| − |r|

)
σ(r′)dr′

=

∫
1

|r||r− r′|
dν

≤ 1

|r|2

∫ (
|r− r′| − |r|

)
σ(r′)dr′

≤ 1

|r|2
· 1

32

∫
σ(r′)dr′

=
1

32|r|2
.

with an observation that |r− r′| − |r| ≤ 1/32 when both r and r′ are

inside the ball with radius 1/32. Consequently, by the Hardy’s inequal-

ity (see Lemma 9.6)

−∇2 ≥ 1

4|r|2
,

we conclude that −∇ξξ − 8V (ξ) ≥ 0. This completes the proof in the

atomic case.

In the molecular case we recall that we are not taking into account

the nuclear repulsion U , which is fixed, and this means that we freely

locate the nuclei so that minimizing the energy ÊM(N). We assert

that the best choice of the Rj is one in which they are all equal and,

by translation invariance, this common point can be the origin. The

problem thus reduces to the atomic case with a nucleus whose charge

is the total charge Z. �
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7.2. Properties of the Minimizer.

Proposition 7.4. Let γ be a minimizer of

ÊM
≤ = inf

γ
{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}

and let Mγ = {r : ργ(r) > 0}. Then the null-space of the spin-summed

density matrix, N (tr σ γ), coincides with the set of L2(R3) functions

that vanish identically on Mr.

Proof. Write ργ(r) = Σσγ(r, σ; r, σ) = ΣσΣjλjψ(r)ψ(r)∗ and (tr σ γ)(r, r′) =

ΣσΣjλjψj(r)ψj(r
′)∗ with ψj(r) orthonormal and 0 < λj ≤ q. And we

can see R3 \Mγ = ∩j{r : ψj(r) = 0}. These reveal another explanation

of this proposition that if tr σ γ has a zero eigenvalue then the eigen-

function vanishes wherever the density ργ is non-zero. Meanwhile, if

ργ > 0 almost everywhere then the so-called eigenfunction vanishes

almost everywhere in R3, so 0 could not be an eigenvalue of the spin-

summed density matrix tr σ γ. Now we prove the proposition. If ϕ = 0

a.e. on Mγ then

(tr σ γ)ϕ =

∫
Σjλjψj(r)ψj(r

′)∗ϕ(r′)dr′

=

∫
Mγ

Σjλjψj(r)ψj(r
′)∗ϕ(r′)dr′ +

∫
R3\Mγ

Σjλjψj(r)ψj(r
′)∗ϕ(r′)dr′

≡ 0.

Conversely, let ϕ ∈ N (tr σ γ), That is

(tr σ γ)ϕ =

∫
Σjλjψj(r)ψj(r

′)∗ϕ(r′)dr′ ≡ 0.
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Thus ψj ⊥ ϕ. Moreover, (|ϕ〉〈ϕ|) ⊥ (|ψj〉〈ψj|). We conclude from this

that

tr (|ϕ〉〈ϕ| − |ψj〉〈ψj|) = tr (|ϕ〉〈ϕ|)− tr (|ψj〉〈ψj|) = 1− 1 = 0

Then consider

γε = tr σ γ + ε(|ϕ〉〈ϕ| − |ψ1〉〈ψ1|)

= Σ∞j=1λjψj(r)ψj(r
′)∗ + εϕ(r)ϕ(r′)∗ − εψ1(r)ψ1(r

′)∗

= Σ∞j=2λjψj(r)ψj(r
′)∗ + εϕ(r)ϕ(r′)∗ + (λ1 − ε)ψ1(r)ψ1(r

′)∗

.

One has tr γε = tr γ ≤ N, 0 ≤ γε ≤ 1 for 0 ≤ ε ≤ λ1. And

γ1/2ε = Σ∞j=2

√
λjψj(r)ψj(r

′)∗ +
√
εϕ(r)ϕ(r′)∗ +

√
λ1 − εψ1(r)ψ1(r

′)∗

= Σ∞j=1

√
λjψj(r)ψj(r

′)∗ +
√
εϕ(r)ϕ(r′)∗ + (

√
λ1 − ε−

√
λ1)ψ1(r)ψ1(r

′)∗

= (tr σ γ)1/2 +
√
ε|ϕ〉〈ϕ|+

(√
λ1 − ε−

√
λ1
)
|ψ1〉〈ψ1|.

It follows from convexity that minimizing ÊM for density matrices 0 ≤

γ ≤ 1 with q spin states is equivalent to minimizing under the condition
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0 ≤ γ ≤ q without spin. We calculate directly as follows:

tr (−∇2
rγε)

=

∫∫
(−∇2

rγε)drdr′

=

∫
(−∇2

r)

(∫ (
Σ∞j=1λjψj(r)ψj(r

′)∗ + εϕ(r)ϕ(r′)∗ − εψ1(r)ψ1(r
′)∗
)
dr′
)

dr

= tr (−∇2
rγ)− ε

∫∫ (
ϕ′′(r)ϕ(r′)∗ − ψ′′1(r)ψ1(r

′)∗
)
drdr′

= tr (−∇2
rγ) +O(ε),

since ϕ, ψ1 ∈ L2.

∫
Vc(r)ργε(r)dr

=

∫
Vc

∫
γε(r, r

′)dr′dr

=

∫
Vcργ(r)dr + ε

∫∫
Vc
(
ϕ(r)ϕ(r′)∗ − ψ1(r)ψ1(r

′)∗
)
dr′dr

=

∫
Vcργ(r)dr +O(ε).

D(ργε , ργε)

=
1

2

∫∫
ργε(r)ργε(r)

|r− r′|
drdr′

=
1

2

∫∫
γε(r, r)γε(r

′, r′)

|r− r′|
drdr′

=
1

2

∫∫
|r− r′|−1

{∫ (
tr σ γ(r, r′) + ε(|ϕ〉〈ϕ| − |ψ1〉〈ψ1|)

)
dr′
}

{∫ (
tr σ γ(r, r′) + ε(|ϕ〉〈ϕ| − |ψ1〉〈ψ1|)

)
dr

}
drdr′

=
1

2

∫∫
|r− r′|−1ργ(r)ργ(r

′)drdr′ +O(ε).
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For exchange energy, we have

X(γ1/2ε )

=
1

2

∫∫
|γ1/2ε |2

|r− r′|
drdr′

=
1

2

∫∫
|r− r′|−1

{
(tr σ γ) + ε(|ϕ〉〈ϕ|)2 + (2λ1 − ε− 2

√
λ21 − ελ1)(|ψ〉〈ψ|)2

+2(tr σ γ)1/2(
√
λ1 − ε−

√
λ1)|ψ〉〈ψ|+ 2

√
ε|ϕ〉〈ϕ|(tr σ γ)1/2

}
drdr′

=
1

2

∫∫
|r− r′|−1(tr σ γ)drdr′ +

1

2

∫∫
|r− r′|−12

√
ε|ϕ〉〈ϕ|(tr σ γ)1/2drdr′ +O(ε)

=
1

2

∫∫
|r− r′|−1(γ1/2)2dxdx′ +

√
ε

∫∫
|r− r′|−1|ϕ〉〈ϕ|γ1/2dxdx′ +O(ε)

Hence we conclude that

EM
≤ (N) ≤ ÊM(γε) = ÊM(γ)−

√
εC(ϕ) +O(ε),

where

C(ϕ) =

∫∫
|r− r′|−1|ϕ〉〈ϕ|γ1/2dxdx′

=

∫∫
ϕ(r)∗Σj

√
λjψj(r)ψj(r

′)∗ϕ(r′)

|r− r′|
dxdx′

= Σj

√
λj

∫∫
ϕ(r)∗ψj(r)ψj(r

′)∗ϕ(r′)

|r− r′|
dxdx′

≥ 0.

Since γ is a minimizer, one has C(ϕ) = 0, which by the positive defi-

niteness of the Coulomb kernel means ϕψ∗j = 0 a.e.for all j. It follows

that ϕ = 0 a.e. on Mγ. �
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At the other end of the spectrum of γ, we comment on the eigenvalue

1 of the minimizer. Consider the minimization problem

Êboson
≤ = inf{ÊM(γ) : γ ≥ 0, tr γ ≤ N}.

This energy can be interpreted as the ground state energy of N bosons

in the Müller model. Clearly, Êboson
≤ ≤ ÊM

≤ with equality for N ≤ 1.

This is because tr γ = Σj〈ψj, γψj〉 ≤ 1 with Σj〈ψj, ψj〉 = 1 leading to

‖γ‖ ≤ 1. We will see in the next proposition, however, for the large

valued of N, they are different values.

Proposition 7.5. Assume that Êboson
≤ (N) < ÊM

≤ (N) for some N and

Z. Then any minimizer γ of ÊM
≤ = infγ{ÊM(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N}

has at least one eigenvalue 1.

Proof. Assume that γ < 1. Let γb denote a minimizer for Êboson
≤ (N).

Then

γε = (1− ε)γ + εγb

satisfies tr γε ≤ N and 0 ≤ γε ≤ 1 for sufficiently small ε > 0.

Moreover, by the convexity of ÊM(γ) with respect to (Section 9.3),

ÊM(γε) ≤ (1− ε)ÊM(γ) + εÊM(γb)

= (1− ε)ÊM
≤ (N) + εÊboson

≤ (N)

< ÊM
≤ (N)

contradicting the fact that γ is a minimizer. �
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7.3. Virial Theorem.

Proposition 7.6. (Virial Theorem)Let K = 1(i.e., consider an atom)

and let γ be a minimizer for ÊM
≤ (N). Then

2 tr (−1

2
∇2γ) = tr (

Z

|r|
γ)−D(ργ, ργ) +X(γ1/2).

Proof. For any λ > 0 the density matrix γλ defined by

γλ(x,x
′) = λ3γ(λr, σ;λr′, σ′)

is unitarily equivalent to γ, i.e., ‖γ‖ = ‖γλ‖, and hence satisfies 0 ≤

γλ ≤ 1 and tr γλ = tr γ ≤ N . Therefore, the functional

ÊM(γλ) = tr (−1

2
∇2γλ)− tr (Z|r|−1γλ) +

1

8
tr γλ +D(ργλ , ργλ)−X(γ

1/2
λ )

= λ2 tr (−1

2
∇2γ)− λ tr (Z|r|−1γ) +

1

8
tr γ + λD(ργ, ργ)− λX(γ1/2)

has a minimum at λ = 1 whence γ is a minimizer for ÊM
≤ (N). So

differentiate the functional above with respect to λ:

d

dλ
ÊM(γλ)

∣∣∣∣
λ=1

= 2 tr (−1

2
∇2γ)−tr (Z|r|−1γ)+D(ργ, ργ)−X(γ1/2) = 0.

The assertion follows immediately. �
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8. The Müller’s functional as a lower bound to quantum

mechanics

We are going to show in this section that the Müller energy EM(N)

without the addition of N/8 is a lower bound to the true Schrödinger

energy when N = 2, with arbitrarily many nuclei.

Consider the N-particle Hamiltonian

H = Σj(−
1

2
∇2
j − Vc(rj)) +R

in either the symmetric or the anti-symmetric N-fold tensor product of

L2(R3,Cq), where Vc(r) = ΣK
i=1

Zi
|r−Ri|

and R = Σ1≤i<j≤N |ri − rj|−1. We

recall that the one particle density matrix γψ for a symmetric or the

anti-symmetric ψ is defined by

γψ(x,x′) = N

∫
ψ(x,x2, ...,xN)ψ(x′,x2, ...,xN)∗dx2 · · · dxN

Proposition 8.1. Assume that N = 2. Then for any symmetric or

anti-symmetric normalized ψ,

〈ψ|H|ψ〉 ≥ EM(γψ).

Proof. In this case,

H = Σ2
j=1(−

1

2
∇2
j − Vc(rj)) +

1

|r1 − r2|
,

and

γψ(x,x′) = 2

∫
ψ(x,x2)ψ(x′,x2)∗dx2



MÜLLER DENSITY-MATRIX-FUNCTIONAL THEORY... 77

Then

〈ψ| − 1

2
∇2

1|ψ〉 =

∫∫
(−1

2
∇2

1)|ψ(x1,x2)|2dx1dx2

=

∫
(−1

2
∇2)

(∫
|ψ(x1,x2)|2dx2

)
dx1

=
1

2

∫
(−1

2
∇2)γψ(x1,x1)dx1

=
1

2
tr (−1

2
∇2γψ),

〈ψ| − Vc(r1)|ψ〉 =

∫∫ (
− Vc(r1)

)
|ψ(x1,x2)|2dx1dx2

=

∫ (
− Vc(r1)

) ∫
|ψ(x1,x2)|2dx2dx1

=
1

2

∫ (
− Vc(r1)

)
γψ(x1,x1)dx1

=
1

2
tr (−Vc(r1)γψ).

So we can see that 〈ψ|Σ2
j=1(−1

2
∇2
j−Vc(rj))|ψ〉 = tr [(−1

2
∇2−Vc(r))γψ].

Thus we just have to prove

〈ψ| 1

|r1 − r2|
|ψ〉 ≥ D(ργψ , ργψ)−X(γ

1/2
ψ ).

For the Coulomb repulsion term,

D(ργψ , ργψ) =
1

2

∫∫
ργψ(r)ργψ(r′)

|r− r′|
drdr′

=
1

2

∫∫
Σσγψ(r, r)Σ′σγψ(r′, r′)

|r− r′|
drdr′

=
1

2

∫∫
γψ(x,x)γψ(x′,x′)

|x− x′|
dxdx′.
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For the exchange energy,

X(γ
1/2
ψ ) =

∫∫ |γ1/2ψ (x,x′)|2

2|r− r′|
dxdx′.

What we are going to prove is simply

∫∫
|ψ(x1,x2)|2

|r1 − r2|
dx1dx2 +

∫∫ |γ1/2ψ (x,x′)|2

2|r− r′|
dxdx′

≥ 1

2

∫∫
γψ(x,x)γψ(x′,x′)

|x− x′|
dxdx′.

Applying the representation of Coulomb Kernel in Lemma 2.1

|r− r′|−1 =
1

π

∫ ∞
0

∫
R3

χz,r(r)χz,r(r
′)dz

dr

r5
.

and the Fubini’s theorem to the formula above, we have for any char-

acteristic function χ(r) of a ball (or, more generally, for any real-valued

function χ)

2

∫∫
χ(r1)|ψ(x1,x2)|2χ(r2)dx1dx2 +

∫∫
χ(r)|γ1/2ψ (x,x′)|2χ(r)dxdx′

≥
(∫

χ(r)γψ(x,x)dx

)2

.

Introducing Ψ as an operator in L2(R3) with kernel
√

2ψ(x,x′), that is

for all ϕ ∈ L2,

Ψϕ =
√

2

∫
ψ(x,x′)ϕ(x′)dx′,
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So

〈ϕ,Ψϕ〉 =

∫
ϕ(x)

(√
2

∫
ψ(x,x′)ϕ(x′)dx′

)
dx

=

∫ (√
2

∫
ϕ(x)ψ(x,x′)dx

)
ϕ(x′)dx′

=

∫ (√
2

∫
ψ(x,x′)ϕ(x)dx

)
ϕ(x′)dx′.

Since 〈ϕ,Ψϕ〉 = 〈Ψ∗ϕ, ϕ〉, Ψ∗ is an operator such that

Ψ∗ϕ =
√

2

∫
ψ(x,x′)ϕ(x)dx.

moreover,

ΨΨ∗ϕ =

∫
2ψ(x,x2)

∫
ψ(x′,x2)ϕ(x′)dx′dx2

=

∫ (
2

∫
ψ(x,x2)ψ(x′,x2)dx2

)
ϕ(x′)dx′

=

∫
γψ(x,x′)ϕ(x′)dx′.

This means ΨΨ∗ = γψ. And 2
∫∫

χ(r1)|ψ(x1,x2)|2χ(r2)dx1dx2 =

2
∫∫

χ(r1)ψ(x1,x2)ψ(x1,x2)χ(r2)dx1dx2 = tr χΨ∗χΨ, so that what

we want to prove reduces to the inequality that

tr χΨ∗χΨ + tr χγ
1/2
ψ χγ

1/2
ψ ≥ (tr χγψ)2.

We have mentioned that ΨΨ∗ = γψ, so Ψ = γ
1/2
ψ V for a partial isometry

V , such that ΨΨ∗ = γ
1/2
ψ VV∗γ

1/2
ψ = γψ. Since ψ is (anti-)symmetric,

Ψ∗Ψ = CγψC, where C denotes complex conjugation. This can be
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obtained by direct calculation as below,

Ψ∗Ψϕ = Ψ∗(
√

2

∫
ψ(x,x′)ϕ(x′)dx′)

= 2

∫
ψ(x,x′′)

∫
ψ(x,x′)ϕ(x′)dx′dx

= 2

∫∫
ψ(x,x′′)ψ(x,x′)ϕ(x′)dx′dx,

and

CγψCϕ = C(
∫
γψ(x,x′)ϕ(x′)dx′)

= C(2
∫∫

ψ(x,x′′)ψ(x′,x′′)dx′′ϕ(x′)dx′)

= 2

∫∫
ψ(x,x′′)ψ(x′,x′′)ϕ(x′)dx′′dx′

= 2

∫∫
ψ(x,x′′)ψ(x′,x′′)ϕ(x′)dx′′dx′

= 2

∫∫
ψ(x′′,x)ψ(x′′,x′)ϕ(x′)dx′dx′′

(whenever ψ is symmetric or anti− symmetric )

Hence,

Ψ∗Ψ = V∗γ1/2ψ γ
1/2
ψ V = V∗γψV = CγψC.

Since the square root is uniquely defined [25, Theorem 9.4-2],

V∗γ1/2ψ V = Cγ1/2ψ C.

Write δ = γ
1/2
ψ , and consider the quadratic form

Q(X, Y ) =
1

4
(2 tr X∗δY δ + tr X∗δVY V∗δ + tr VX∗V∗δY δ).
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Here we consider this quadratic form on the real vector space of real

operators, i.e., operators assigning a L2(R3)-function a real value, in

other words, CXC = X. Note that

Q(X,X) =
1

4
(2 tr X∗δXδ + tr X∗δVXV∗δ + tr VX∗V∗δXδ)

=
1

2
(tr X∗δXδ + tr X∗δVXV∗δ),

since tr VX∗V∗δXδ = tr δVX∗V∗δX = tr X∗δVXV∗δ, and that, by

Schwarz’s inequality,

(tr X∗δVXV∗δ)2 ≤ (tr X∗δXδ)(tr VX∗V∗δVXV∗δ)

Since V∗δV = CδC and CXC = X, the inequality above can be written

as

(tr X∗δVXV∗δ)2 ≤ (tr X∗δXδ)2,

so that

| tr X∗δVXV∗δ| ≤ tr X∗δXδ.

From this we can conclude that Q(X,X) ≥ 0. Since that Q(X, Y )

is a positive semi-definite sesquilinear form, according [1, Theorem

(41.14)], Q(X, Y ) satisfies (Q(X, Y ))2 ≤ Q(X,X)Q(Y, Y ). In particu-

lar, (Q(χ,1))2 ≤ Q(χ, χ)Q(1,1). In this case,

Q(χ,1) =
1

4
(2 tr χδ2 + tr χδ2 + tr χδ2) = tr χδ2 = tr χγψ,
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Q(χ, χ) =
1

2
(tr χδχδ + tr χδVχV∗δ)

=
1

2
(tr χδχδ + tr χΨχΨ∗),

and

Q(1,1) = tr γψ = 2.

This is exactly what we want. �
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9. Appendix

9.1. Some Lemmas.

Lemma 9.1. ([24, Theorem9.8]) If ργ(r) : Rn → C satisfiesD(|ργ|, |ργ|) <

∞, then

D(ργ, ργ) > 0. (9.1)

Proof. Since one can easily consider the real and imaginary parts sepa-

rately, it suffices to assume that ργ is real valued. Let h ∈ C∞c (Rn) with

h(r) ≥ 0 for all r and with h spherically symmetric, i.e., h(r) = h(r′)

when |r| = |r′|, especially h(r) = h(−r) for all r ∈ Rn. Let k(r) :=

(h ∗ h)(r) = K(|r|) where

(h ∗ h)(r) =

∫
Rn
h(r− r′)h(r′)dr′.

By multiplying h by a suitable constant, we can assume henceforth

that ∫ ∞
0

tn−3K(t)dt =
1

2
.

Now one can calculate

I(r) : =

∫ ∞
0

tn−3k(tr)dt

=

∫ ∞
0

tn−3

|r|n−3
K(t)|r|−1dt (scaling t 7−→ t|r|−1)

= |r|2−n
∫ ∞
0

tn−3K(t)dt

=
1

2
|r|2−n.
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However,

I(r− r′) =

∫ ∞
0

tn−3k(t(r− r′))dt

=

∫ ∞
0

tn−3
(∫

Rn
h(tr− ts)h(ts− tr′)d(ts− tr′)

)
dt

=

∫ ∞
0

tn−3
(∫

Rn
h(t(r− s))h(t(s− r′))tnds

)
dt

=

∫ ∞
0

t2n−3
∫
Rn
h(t(s− r))h(t(s− r′))dsdt.

Finally, as we have defined in (1.9),

D(ργ(r), ργ(r)) =
1

2

∫
Rn

∫
Rn

ργ(r)ργ(r
′)

|r− r′|n−2
drdr′

=

∫
Rn

∫
Rn
ργ(r)ργ(r

′)I(r− r′)drdr′

=

∫
Rn

∫
Rn
ργ(r)ργ(r

′)

[ ∫ ∞
0

t2n−3
∫
Rn
h(t(s− r))h(t(s− r′))dsdt

]
drdr′

=

∫ ∞
0

t−3
∫
Rn

[
tn
∫
Rn
ργ(r)h(t(s− r))dr

][
tn
∫
Rn
ργ(r

′)h(t(s− r′))dr′
]

=

∫ ∞
0

t−3
∫
Rn

[
tn
∫
Rn
ργ(r)h(t(s− r))dr

]2
ds

It follows that

D(ργ(r), ργ(r)) ≥ 0. (9.2)

�

Lemma 9.2. (Transforms of Symmetrical Functions in three dimen-

sions) For any symmetrical functions h(r), i.e., h(r) = h(r), in which

|r| = r, ∫
R3

e−ik·rh(r)dr =
1

k

∫ ∞
0

4πrh(r) sin(kr)dr,
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where |k| = k.

Proof. Initiating a spherical polar co-ordinates systems (r, θ, ϕ). Then

we have

dr = r2 sin θdrdθdϕ,

k · r = kr cos θ.

So that if h(r) = h(r) then

∫
R3

e−ik·rh(r)dr =

∫ ∞
0

dr

∫ π

0

dθ

∫ 2π

0

dϕ

(
e−ikr cos θh(r)r2 sin θ

)
=

∫ ∞
0

2πr2h(r)dr

∫ 1

−1
eikr(− cos θ)d(− cos θ)

=

∫ ∞
0

2πr2h(r)dr

∫ 1

−1
eikrηdη

=
1

k

∫ ∞
0

4πrh(r) sin(kr)dr.

�

Next Lemma is given in [30, Lemma 3.1], now we give a detailed

proof.

Lemma 9.3. (IMS localization formula) Let {Ja}ka=0 be any smooth

partition of unity with J1, ...Jk ∈ C∞0 normalized by Σk
a=0J

2
a = 1. Let V

be any potential so that the form sum H = −4+ V has form domain

Q(H0)
⋂
Q(V+), here H0 = −4. Then

H = Σk
a=0JaHJa − Σk

a=0(∇Ja)2.
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Proof. In one hand, by the definition of commutator, one has

[Ja, [Ja, H]] = [Ja, JaH −HJa] = J2
aH − 2JaHJa +HJ2

a .

In the other hand, as for the Hamiltonian H = −∇2 + V , and for any

function Ψ ∈ L2, we have

[Ja, H]Ψ = (JaH −HJa)Ψ

= (Ja(−∇2 + V )− (−∇2 + V )Ja)Ψ

= Ja(−∇2Ψ) +∇2(JaΨ)

= Ja(−∇2Ψ) + (∇2Ja)Ψ + Ja(∇2Ψ) + 2∇Ja∇Ψ

= (∇2Ja)Ψ + 2∇Ja∇Ψ.

So [Ja, H] = ∇2Ja + 2∇Ja∇, then

[Ja, [Ja, H]]Ψ = [Ja,∇2Ja + 2∇Ja∇]Ψ

= Ja(∇2Ja)Ψ + 2Ja∇Ja∇Ψ− (∇2Ja)JaΨ− 2∇Ja∇(JaΨ)

= 2Ja∇Ja∇Ψ− 2(∇Ja)2Ψ− 2(∇Ja)Ja(∇Ψ)

= −2(∇Ja)2Ψ,

which means [Ja, [Ja, H]] = −2(∇Ja)2. Combining these two respects

we have

J2
aH − 2JaHJa +HJ2

a = −2(∇Ja)2.
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Summation on a we conclude that

H = Σk
0JaHJa − Σk

0(∇Ja)2.

�

Lemma 9.4. Let g(r− r′) = π−1/2e−|r−r
′| and χ(r) be any smooth

function on R3. Then

tr (−∇2
rγ)

=

∫∫ (
|χ(r)|2|χ(r′)|2(−∇2

rg(r− r′))g(r− r′)− |∇χ(r)|2g(r− r′)2|χ(r′)|2
)

drdr′.

Proof. Assume q = 2.

tr (−∇2
rγ) = tr

(
(1−∇2

r)γ − γ
)

= tr (1−∇2
r)γ − trγ

=

∫∫
dxdx′

(
|∇rγ

1/2(x,x′)|2 + |γ1/2(x,x′)|2
)
−
∫∫

γ(x,x′)dxdx′

=

∫∫
|∇rγ

1/2(x,x′)|2dxdx′

= Σ2
σ=1Σ

2
σ′=2

∫∫
|∇rγ

1/2(x,x′)|2drdr′

Now let’s see ∇rγ
1/2(x,x′):

∇rγ
1/2(x,x′) =

(
∇χ∗(r)

)
g(r− r′)χ(r′)q−1/2δσ,σ′+χ∗(r)

(
∇rg(r− r′)

)
χ(r′)q−1/2δσ,σ′ .
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So

|∇rγ
1/2(x,x′)|2

= |∇χ∗(r)|2g(r− r′)2|χ(r′)|2q−1δσ,σ′ + |χ∗(r)|2|χ(r′)|2|∇rg(r− r′)|2q−1δσ,σ′

+2
(
∇χ∗(r)

)(
χ∗(r)

)(
∇rg(r− r′)

)
g(r− r′)|χ(r′)|2q−1δσ,σ′ .

Then in the second term, we integral by parts:

∫∫
|χ∗(r)|2|χ(r′)|2|∇rg(r− r′)|2q−1δσ,σ′drdr′

= q−1δσ,σ′

∫
|χ(r′)|2

(∫
|χ∗(r)|2∇rg(r− r′)∇rg(r− r′)dr

)
dr′

= q−1δσ,σ′

∫
|χ(r′)|2

(∫
|χ∗(r)|2∇rg(r− r′)d(g(r− r′))

)
dr′

= q−1δσ,σ′

∫
|χ(r′)|2

(
g(r− r′)(∇rg(r− r′))|χ∗(r)|2

∣∣∣∣
|r|→∞

)
dr′

−q−1δσ,σ′

∫
|χ(r′)|2

(∫
g(r− r′)2|χ∗(r)||∇rχ

∗(r)|∇rg(r− r′)dr

)
dr′

−q−1δσ,σ′

∫
|χ(r′)|2

(∫
g(r− r′)|χ∗(r)|2∇2

rg(r− r′)dr

)
dr′

For the boundary term, we have that

g(r− r′)(∇rg(r− r′))|χ∗(r)|2
∣∣∣∣
|r|→∞

= 0,
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since g(r− r′) = π−1/2e−|r−r
′| = 0 as r → ∞, remember that r′ is any

fixed number. Hence

tr (−∇2
rγ) = Σ2

σ=1Σ
2
σ′=2

∫∫
|∇rγ

1/2(x,x′)|2drdr′

= Σ2
σ=1Σ

2
σ′=2

[ ∫∫
|∇χ∗(r)|2g(r− r′)2|χ(r′)|2q−1δσ,σ′

+q−1δσ,σ′

∫
|χ(r′)|2

(∫
g(r− r′)|χ∗(r)|2(−∇2

rg(r− r′))dr

)
dr′
]

= Σ2
σ=σ′=1

[ ∫∫
|∇χ∗(r)|2g(r− r′)2|χ(r′)|2q−1δσ,σ′

+q−1δσ,σ′

∫
|χ(r′)|2

(∫
g(r− r′)|χ∗(r)|2(−∇2

rg(r− r′))dr

)
dr′
]

=

∫∫ (
|∇χ∗(r)|2g(r− r′)2|χ(r′)|2

+|χ(r′)|2|χ∗(r)|2g(r− r′)(−∇2
rg(r− r′))

)
drdr′.

�

Lemma 9.5. ([25, Theorem 2.5]) (approximate identities) Let f(x)

be a piecewise continuous function such that
∫∞
−∞ |f(x)|dx < ∞ and∫∞

∞ f(x)dx = 1. We write fa(x) = af(ax). Then as a→∞

fa(x) = af(ax)→ δ(x).

Proof. The idea is that , as a→∞, fa(x) becomes a narrow pulse, with

its height growing at the same rate that its width shrinks, the integral

of fa remains equal to 1. Take any test function ϕ, and take ε > 0.

Choose δ > 0 so that |ϕ(x)− ϕ(0)| < ε for |x| < δ. Choose M so that
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−∞+

∫∞
M

)
|f(x)|dx < ε. Finally take any a > M/δ, letK1 denote the

fixed value
∫∞
−∞ |f(x)|dx <∞ and let K2 denote max{|ϕ(x)|, x ∈ R}.

Then af(ax)→ δ(x) in the sense of distribution. Indeed,

∣∣〈Taf(ax), ϕ〉 − 〈δ, ϕ〉∣∣ =

∣∣∣∣ ∫ ∞
−∞

af(ax)ϕ(x)dx− ϕ(0)

∣∣∣∣
u=ax
=

∣∣∣∣ ∫ ∞
−∞

f(u)[ϕ(u/a)− ϕ(0)]du

∣∣∣∣
≤

∣∣∣∣ ∫ M

−M
f(u)[ϕ(u/a)− ϕ(0)]du

∣∣∣∣
+

∣∣∣∣( ∫ M

−∞
+

∫ ∞
M

)
f(u)[ϕ(u/a)− ϕ(0)]du

∣∣∣∣
≤

(∫ ∞
−∞
|f(u)|du

)
max{|ϕ(u/a)− ϕ(0)|}

+

[(∫ −M
−∞

+

∫ ∞
M

)
|f(u)|du

](
max{|ϕ(u/a)− ϕ(0)|}

)
≤ K1ε+ 2K2ε.

�

9.2. Hardy’s inequality.

Lemma 9.6. (Hardy’s inequality) For F (r) ∈ H1
0(R3),

∫
R3

|F |2

|r|2
dr ≤ 4

∫
R3

|∇F |2dr.

Proof. First we state the classical Hardy’s inequality in one dimensional

which presented by Hardy ([12, Theorem 327]) in 1920 and give its brief

proof.

Claim. If p > 1, f(x) ≥ 0, and F (x) =
∫ x
0
f(t)dt, where f(x) is an
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integrable function on R. Then

∫ ∞
0

(
F

x

)p
dx ≤

(
p

p − 1

)p ∫ ∞
0

f pdx ,

the equality holds for f ≡ 0.

Verification. For 0 < ε < X,

∫ X

ε

(
F

x

)p
dx = − 1

p− 1

∫ X

ε

F pdx 1−p

=
F (ε)pε1−p

p− 1
− F (X)pX1−p

p− 1
+

p

p− 1

∫ X

ε

x1−pF p−1 · fdx

Let ε→ 0, X →∞, then F (ε)→ 0, 0 ≤ F (X) <∞, so that

∫ ∞
0

(
F

x

)p
dx ≤ p

p − 1

∫ ∞
0

x 1−pF p−1 · f dx .

By Hölder inequality,

∫ ∞
0

(F/x)pdx ≤ p

p− 1

∫ ∞
0

x1−pF p−1 · fdx

≤ p

p− 1

(∫ ∞
0

[(F/x)p−1]αdx

) 1
α
(∫ ∞

0

f pdx

) 1
p

(
1

α
+

1

p
= 1)

=
p

p− 1

(∫ ∞
0

(F/x)pdx

) 1
α
(∫ ∞

0

f pdx

) 1
p

.

Note that
∫∞
0

(F/x)pdx ≥ 0 , it follows that

(∫ ∞
0

(F/x)pdx

) 1
p

≤ p

p − 1

(∫ ∞
0

f pdx

) 1
p

,

which is exactly what we want:

∫ ∞
0

(F/x)pdx ≤
(

p

p − 1

)p ∫ ∞
0

f pdx .



92 B. LI

Next turn back to the case of 3-dimensional. The proof presented here

is from B. Simon [32]. In this case, note that

∇r(r
1/2F ) = r1/2∇rF +

1

2
r−1/2

r

r
F = r1/2∇rF +

1

2
r−3/2rF

So

|∇rF |2 = |r−1/2∇r(r
1/2F )− 1

2
r−2rF |2

≥ r−1|∇r(r
1/2F )|2 − r−3/2F |∇r(r

1/2F )|+ 1

4
r−2|F |2

≥ 1

4
r−2|F |2 − r−3/2F∇r(r

1/2F )

=
1

4
r−2|F |2 − 1

2
r−2∇r(r|F |2),

where

− 1

r3/2
F∇r(r

1/2F ) = − 1

2r2
2(r1/2F )∇r(r

1/2F ) = − 1

2r2
∇r(r|F |2)

in the last equality.

Now integrate on the whole space, we have

∫
R3

|∇rF |2dr ≥
∫
R3

1

4
r−2|F |2dr− 1

2

∫
R3

r−2∇r(r |F |2 )dr

=

∫
R3

1

4
r−2|F |2dr− 1

2

∫ ∞
0

1

r2
∇r

(∫
S2

(r |F |2 )dΩ

)
r2dr

=

∫
R3

1

4
r−2|F |2dr− 1

2

(∫
S2

(r |F |2 )dΩ

)∣∣∣∣∞
0

=

∫
R3

1

4
r−2|F |2dr.

�
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9.3. The convexity of EM with respect to γ. The convexity of

EM(γ) is not at all obvious. By the linearity of the trace operator and

the laplacian and the linearity of ργ(r) with respect to γ, we can see

the convexity of the first two terms in the expression

EM(γ) =
1

2
tr (−∇2γ)−

∫
R3

Vc(r)ργ(r)dr + D(ργ, ργ)− X(γ1/2).

And the strict convexity of the term D(ργ, ργ) is shown by E.H.Lieb

[24, Theorem 9.8]. Thus it remains to show the convexity of the term

−X(γ1/2), in other words, the concavity of the functional X(γ1/2).

Towards this end, we firstly introduce a theorem given by E.H.Lieb in

[22].

Theorem 9.7. Let K be a linear operator (not necessarily bounded)

on some certain Hilbert space H. Let T,H be positive operators on H,

and let λ, 0 < λ < 1 be given. Form the convex combination,

G = λT + (1− λ)H.

Let p and r be given positive real numbers with p + r = s ≤ 1. If

M := Gp/2KGr/2 has an extension to G2(Hilbert-Schmidt operator

ideal), then (1) T p/2KT r/2 and Hp/2KHr/2 have extensions to G2(H);

(2) G 7→ tr (Gr/2K†GpKGr/2) is concave, i.e.,

tr (Gr/2K†GpKGr/2) ≥ λ tr (T r/2K†T pKT r/2)+(1−λ) tr (Hr/2K†HpKHr/2).
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Corollary 9.8. Let γ be the density operator, then γ 7→ tr (γ1/2K†γ1/2K)

is concave for any fixed function K.

Proof. Let r = 1/2, p = 1/2, and let G = γ in the above theorem,

we can conclude that γ 7→ tr (γ1/4K†γ1/2Kγ1/4) is concave. Since γ

is bounded, tr (γ1/4K†γ1/2Kγ1/4) = tr (γ1/2K†γ1/2K) according to B.

Simon [29, Theorem 3.1] �

Corollary 9.9. X(γ1/2) is concave with respect to γ.

Proof. As shown in Lemma 2.1, |r− r′|−1 can be written as

|r− r′|−1 =
1

π

∫ ∞
0

∫
R3

χB(z,l)(r)χB(z,l)(r
′)dz

dl

l5
.

Then

X(γ1/2) =
1

2π

∫ ∞
0

∫
R3

tr (γ1/2χB(z,l)γ
1/2χB(z,l))dz

dl

l5
.

The concavity follows from the concavity of the map γ 7→ tr (γ1/2K†γ1/2K)

immediately. �

9.4. strictly convexity of EM with respect to ρ.

Theorem 9.10. (strictly convexity of EM with respect to ρ) For 0 <

λ < 1, ρ1 6= ρ2,

EM(λρ1 + (1− λ)ρ2) < λEM(ρ1) + (1− λ)EM(ρ2). (9.3)
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Proof. Given a ρ0 such that EM(ρ0) = EM(λN1 + (1− λ)N2), i.e.,

∫
ρ0 = λN1 + (1− λ)N2.

Then we can find ρ1, ρ2 such that ρ0 = λρ1 + (1− λ)ρ2, and

∫
ρ1 = N1,

∫
ρ2 = N2.

Next, apply Proposition 7.2 directly, we have

EM(λρ1 + (1− λ)ρ2) < λEM(ρ1) + (1− λ)EM(ρ2)

Indeed,

EM(λρ1 + (1− λ)ρ2) = EM(λN1 + (1− λ)N2)

< λEM(N1) + (1− λ)EM(N2)

≤ λEM(ρ1) + (1− λ)EM(ρ2).

�

After identifying the strictly convexity of EM w.r.t. ρ, we consider

the uniqueness of ρ.

Suppose γ1, γ2 are two different minimizers of constraint problem EM
≤N ,

tr γ1 = tr γ2 = N , let ρ1, ρ2 be corresponding densities.
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Assume ρ1 6= ρ2. Then by the convexity of EM w.r.t. ρ, we have

EM(λρ1 + (1− λ)ρ2) < λEM(ρ1) + (1− λ)EM(ρ2)

= λEM(N) + (1− λ)EM(N)

= EM(N).

On the left hand side, however, EM(λρ1 + (1 − λ)ρ2) ≥ EM(N). This

is a contradiction. Hence ρ1 = ρ2.

9.5. Compactness of (−∇2 + 1)−1/2V (−∇2 + 1)−1/2 for V ∈ L3/2.

Definition 9.11. A function V (x),x ∈ R3 is said to be of Rollnik class

if

‖V ‖2R :=

∫∫
|V (x)||V (y)|
|x− y|2

dxdy <∞.

We write V ∈ R briefly.

Lemma 9.12. (Hardy-Littlewood-Sobolev inequality)

Let p, r > 1 and 0 < λ < n with 1
p

+ λ
n

+ 1
r

= 2. Let f ∈ Lp(Rn) and

h ∈ Lr(Rn). Then there exists a constant C(n, λ, p), independent of f

and h, such that

∫∫
|f(x)||h(y)|
|x− y|λ

dxdy ≤ C(n, λ, p)‖f‖p‖h‖r.

Proof. The proof of this lemma, we refer the reader to [24] and [28]. �

Corollary 9.13. If V ∈ L3/2, then V ∈ R.
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Proof. Applying Hardy-Littlewood-Sobolev inequality to V , let n =

3, p = 3/2, r = 3/2, λ = 2. Then

∫∫
|V (x)||V (y)|
|x− y|λ

dxdy ≤ C(n, λ, p)‖V‖2L3/2 <∞.

�

We write the Fourier transform of a function f as f̂ = Ff and

the inverse f̌ = F−1f . Let H0 = −∇2, we now turn to comput-

ing explicit formulas for (H0 + 1)−1/2V (H0 + 1)−1/2, V ∈ R. Since

H0 = F−1p2F , f(H0) = F−1f(p2)F where f is any bounded measur-

able function [32, Section IX.7], (H0 +1)−1/2 can be expressed in terms

of multiplication operator: (H0 + 1)−1/2 = F−1(p2 + 1)−1/2F .

Lemma 9.14. The operator (H0 + 1)−1/2V (H0 + 1)−1/2, V ∈ R has an

integral kernel of the form

V̂ (p− q)
(q2 + 1)1/2(p2 + 1)1/2

in momentum space.
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Proof. Let φ ∈ Ran (H0), we have

〈φ, (H0 + 1)−1/2V (H0 + 1)−1/2φ〉

= 〈φ,
(
F−1/2(q2 + 1)−1F

)
V
(
F−1/2(p2 + 1)−1F

)
φ〉

= 〈Fφ, (q2 + 1)−1/2F
(
V F−1(p2 + 1)−1/2φ̂

)
〉

= 〈φ̂, (q2 + 1)−1/2V̂ ∗ (p2 + 1)−1/2φ̂〉

= 〈φ̂, V̂ (p− q)
(q2 + 1)1/2(p2 + 1)1/2

φ̂〉

�

Theorem 9.15. (H0 + 1)−1/2V (H0 + 1)−1/2 is a Hilbert-Schmidt oper-

ator.

Proof. Let A = (H0 + 1)−1/2V (H0 + 1)−1/2, U = V̂ . Let τ̃ = tr (AA∗).

To prove that A is a Hilbert-Schmidt operator, it is equivalent to prove

that τ̃ <∞. We express τ̃ in the momentum space as

τ̃ = tr (AA∗)

=

∫∫
|V̂ (p− q)|2

(p2 + 1)(q2 + 1)
dpdq

=

∫∫
|U(p− q)|2

(p2 + 1)(q2 + 1)
dpdq

=

∫
|U(s)|2ds×

∫
1

(p2 + 1)((p− s)2 + 1)
dp (9.4)

= π3

∫
|U(s)|2

s
ds
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The p integral in (9.4) can be calculated by Feynman’s method It re-

mains to show that

τ̃ = π3

∫
|U(s)|2

s
ds (9.5)

exists. In [27], the author pointed that if local potential

∫
R3

|V (r)|dr <∞ (9.6)

then U(s) is finite for all p, and the integral (9.5) will then exist if

U(s) = O(|s|−1−ε) (9.7)

as |s| → ∞. And (9.7) will hold if

V (r) = O(|r|−2+ε). (9.8)

as |r| → ∞. And the inequality (9.6) will hold if V (r) is finite for all

finite r, satisfies (9.8), and if

V (r) = O(|r|−3−ε). (9.9)

as |r| → ∞. Since V ∈ R gives V is locally L1 ([28, Theorem I.7]).

Antonio claimed in [4, 10.22] that if V ∈ L1 ∩R, (9.5) exists. �

9.6. Grümm’s convergence theorem on Gp and its application.

For the completeness, we introduce Grümm’s convergence theorem

here, readers can also find more details in [29].
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Lemma 9.16. Let An, A,B be bounded operators on a Hilbert space

H, with B∗ = B > 0. Suppose that |An| ≤ B and |A∗n| ≤ B for all n,

|A| ≤ B, |A∗| ≤ B, and that An → A weakly. If p < ∞ and B ∈ Gp,

then ‖A− An‖p → 0.

Proof. Fix ε > 0. We can find a finite rank projection P so that for

Q = 1− P , we have that

‖QBQ‖p < ε.

For instance, by choosing P to be the projection onto the span of the

first few eigenvectors of B in the canonical expansion. Thus for n large,

‖Q|An|Q‖p ≤ ε,

since |An| ≤ B. So

‖|An|1/2Q‖22p ≤ ε

and likewise

‖|A∗n|1/2Q‖22p ≤ ε.
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Using Hölder’s inequality, we have ‖AnQ‖p ≤ ‖|An|1/2‖2p‖|An|1/2Q‖2p.

Indeed,

‖AnQ‖p =

(∫
|AnQ|p

)1/p

=

(∫
|An|p/2|An|p/2|Q|p

)1/p

≤
(∫

|An|p
)1/2p(∫

|An|p|Q|2p
)1/2p

= ‖|An|1/2‖2p‖|An|1/2Q‖2p.

Moreover, since |An| < B,

‖AnQ‖p ≤ ‖|An|1/2‖2p‖|An|1/2Q‖2p ≤ ‖B‖1/2p ε1/2.

Similarly, for ‖QAnP‖p, we have

‖QAnP‖p = ‖QAn(1−Q)‖p ≤ ‖QAn‖p = ‖A∗nQ‖p ≤ ‖B‖1/2p ε1/2.

Finally, look at ‖A − An‖p. Using triangular inequality, we come out

with

‖A− An‖p ≤ 4ε1/2‖B‖1/2p + ‖P (A− An)P‖p.

In fact,

‖A− An‖p = ‖(P +Q)(A− An)(P +Q)‖p

≤ ‖P (A− An)P‖p + ‖PAQ+QAP − PAnQ−QAnP‖p

+‖QAQ‖p + ‖QAnQ‖p

≤ 4ε1/2‖B‖1/2p + ‖P (A− An)P‖p.
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Since P is finite rank,

‖P (A− An)P‖p → 0 as n→∞

in light of the weak convergence of An. Hence lim ‖A − An‖p ≤

4ε1/2‖B‖1/2p . Since ε is arbitrary and ‖B‖p < ∞, ‖A − An‖p → 0

as n→∞. �

Lemma 9.17. Fix p < ∞. Suppose that An → A, |An| → |A|, and

|A∗n| → |A∗| all weakly, and that ‖An‖p → ‖A‖p. Then ‖An−A‖p → 0.

Proof. Without loss of generality, suppose ‖A‖p = ‖An‖p = 1. Fix

ε > 0. Find a finite-dimensional projection P so that ‖P |A|P‖p ≥ 1−ε

and ‖P |A∗|P‖p ≥ 1−ε. For instance, P can be the projection onto the

span of the first few eigenvectors for |A| and for |A∗|.

By the weak convergence of An, we can find such N that for all n > N ,

‖P |An|P‖ ≥ 1 − 2ε and ‖P |A∗n|P‖ ≥ 1 − 2ε. In the other hand,

according [29, Theorem 1.20], for Q=1-P,

‖Q|An|Q‖ ≤
(
1− (1− 2ε)p

)1/p
.

Similarly, ‖Q|A∗n|Q‖ ≤
(
1 − (1 − 2ε)p

)1/p
. Then just repeat the proof

of Lemma 9.16 above and reach the conclusion. �

Theorem 9.18. (Grümm’s convergence theorem on Gp )

Fix p < ∞. Let A ∈ Gp. Suppose that An → A and A∗n → A∗ in the

strong operator topology and that ‖An‖p → ‖A‖p. Then ‖An−A‖p → 0.
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Proof. Firstly, we claim that A∗nAn → A∗A in the strong operator

topology. Indeed, for an arbitrary ϕ ∈ H,

‖(A∗nAn − A∗A)ϕ‖p ≤ ‖(A∗n − A∗)Anϕ‖p + ‖A∗(An − A)ϕ‖p.

The first term on the right hand side can be arbitrarily small because

of the strong operator convergence of A∗n to A∗, and the second term

on the right hand side can be arbitrarily small because of the strong

operator convergence of An to A and the linearity of the operator A∗.

Besides, since
√
· and (·)α, α ∈ R are strongly continuous,

|An| =
√
A∗nAn →

√
A∗A = |A| strongly

and therefore

|An|α → |A|α strongly forα ∈ R.

Likewise, we have |A∗n| → |A∗|, |A∗n|α → |A∗|α. Finally applying 9.17

leads to the conclusion. �

Remark 9.19. (A→ |A|1/2 is continuous between G1 and G2)

If An → A in G1, i.e., ‖An‖1 → ‖A‖1, then by the same argument

in 9.18, |An|1/2 → |A|1/2 strongly. Since ‖|An|1/2‖2 = ‖An‖1/21 and

‖|A|1/2‖2 = ‖A‖1/21 , ‖|An|1/2‖2 → ‖|A|1/2‖2. Now by Grümm’s theorem

9.18, |An|1/2 converges to |A|1/2.
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PhD thesis, University of Paris Sept Dauphine, 2004. http://tel.archives-

ouvertes.fr/documents/archives0/00/00/63/06/index.html.



106 B. LI

[21] E. H. Lieb and Barry Simon. The thomas-fermi theory of atoms, molecules

and solids. Advances in Mathematics, 23:22–116, 1977.

[22] E.H. Lieb. Convex trace functions and the wigner-yanase-dyson conjecture.

Advances in Mathematics, II:207–288, 1973.

[23] E.H. Lieb. Thomas-fermi and related theories of atoms and molecules. Review

of Modern Physics, 53:603–641, 1981.

[24] Elliott H. Lieb and Michael Loss. Analysis. American Mathematical Society,

Rhode Island, 2nd edition, 2001.

[25] J. Ian Richards and Heekyung K. Youn. Theory of distributions-A Nontechnical

Introduction. Cambridge University Press, Cambridge, UK, 1990.

[26] C. C. J. Roothaan. New developments in molecular orbital theory. Review of

Modern Physics, 23:69–89, 1951.

[27] M. Scadron, S. Weinberg, and J. Wright. Functional analysis and scattering

theory. Physics Review B, 135:202–207, 1964.

[28] Barry Simon. Quantum mechanics for Hamiltonians defined as quadratic

forms. Princeton University Press, Princeton, 1971.

[29] Barry Simon. Trace ideals and its applications, volume 35 of London Math-

ematical Society Lecture Note Series. Cambridge University Press, London,

1979.

[30] Barry Simon. Semiclassical analysis of low lying eigenvalues i non-degenerate

minima: asymptotic expansions. Annales de Institut Henri Poincare (A) Non

Linear Analysis, 3:295–308, 1983.

[31] Barry Simon and Michael Reed. Methods of Modern Mathematical Physics I:

Functional Analysis. Academic Press, New York, 1st edition, 1978.
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