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ABSTRACT: The purpose of this contribution is to show how the use of the PMT can be expanded further than current practice. The
topics covered in a first part include the amount of soil testing necessary to meet a reliability target, the influence of the lack of tensile 
resistance of soils on the PMT modulus, how to recreate the small strain early part of the curve lost by the decompression-
recompression process associated with the preparation of the PMT borehole, best practice for preparing the PMT borehole, commonly 
expected values of PMT parameters, the use of the PMT unload-reload modulus, and correlations with other soil parameters. The 
second part deals with foundation engineering and includes the use of the entire expansion curve to predict the load settlement 
behavior of shallow foundations, the load displacement behavior of deep foundations under horizontal loading, foundation design of
very tall structures, long term creep loading, cyclic loading, and dynamic vehicle impact. Finally an attempt is made to generate 
preliminary soil liquefaction curves base on the normalized PMT limit pressure. 

RÉSUMÉ : Le but de cette contribution est de montrer comment l’utilisation du PMT peut être étendu au-delà de la pratique courante. 
Les sujets abordés dans une première partie comprennent la quantité de reconnaissance de sol nécessaire pour atteindre un objectif de 
fiabilité, l’influence de l’absence de résistance des sols à la traction sur le module du PMT, comment recréer la partie de la courbe en 
petites déformations perdue pendant la décompression-recompression associée à la préparation du trou de forage, les meilleures 
pratiques pour la préparation du trou de forage, les valeurs communes des paramètres PMT, l’utilisation du module décharge-
recharge, et des corrélations avec d’autres paramètres du sol. La deuxième partie traite des travaux de fondation et les sujets suivants 
sont abordés: l’utilisation de la courbe d’expansion du PMT pour prédire le comportement des fondations superficielles, et le 
comportement des fondations profondes sous charge horizontale, la conception des fondations des structures de grande hauteur, le
comportement de fluage, chargement cyclique, et chargement par impact de véhicules. Enfin, on propose des courbes préliminaires de 
liquéfaction du sol sur la base de la pression limite normalisée du PMT.  

KEYWORDS: pressuremeter, modulus, limit pressure, shallow foundations, deep foundations, retaining walls, liquefaction. 
 
 
1 HOW I GOT INTERESTED IN THE PMT? 

The year is 1974 and I am a Master student at the University of 
New Brunswick, Canada working with Arvid Landva. I had 
learnt that the triaxial test was the reference test in the 
laboratory. I had also read from Terzaghi that the action was in 
the field. So I sat down one late afternoon and tried to invent an 
in situ triaxial test. I drew some complex systems with double 
tube samplers and the pressure applied between the two tubes 
on an internal membrane. It was very complicated and failed the 
Einstein test of optimum simplicity. I had also learnt from many 
months behind a drill rig that anything complicated had very 
little chance of success in the field so I kept searching and 
designing and then it dawned on me. What if I inverted the 
problem, drew an inside out triaxial test, and applied the 
pressure from inside the tube and pushed outward on the soil. 
And so I designed my first pressuremeter. I was very excited 
about my new invention and could not sleep that night. I waited 
anxiously to go to the library the next morning to see what I 
could dig on this idea. I went to the library and there it was 
Louis Menard 1957, Jean Kerisel as his advisor, the Master in 
Illinois with Ralph Peck, the development of the design rules, 
Sols Soils, 1963 and on and on. I came out of the library that 
morning, very disappointed that my idea had already been 
invented. After much reflection that day, I finally decided that I 
should be happy because it was obviously a good idea since it 
had received that much attention. This is how I got interested in 
the pressuremeter. I then went to The University of Ottawa to 
work with Don Shields who was connected with Francois 
Baguelin and Jean Francois Jezequel writing the pressuremeter 
book. Don gave me the manuscript in early Sept 1976 and said 
read this and correct any mistake. I did and came back 3 months 

later with the corrected manuscript again rather depressed and 
telling Don, there is nothing left for me to do, everything has 
been done. Don smiled and told me don’t worry, there is much 
more to be done on the PMT; I feel that it is still true today and, 
in fact, it is the topic of this lecture. So this is my story on the 
PMT and I have been a fan of the PMT ever since.  
 
2 SPECIAL THANKS TO LOUIS MENARD 

I met Louis Menard (Fig. 1) on 15 December 1977, one month 
before he died of cancer. I was a PhD student at the University 
of Ottawa in Canada working on my pressuremeter research 
with Don Shields. I was coming back home for Christmas that 
year and Louis Menard was kind enough to take some time 
from his very busy schedule to visit with me at the Techniques 
Louis Menard in Longjumeau near Paris. I waited for 30 
minutes but finally got to meet the man who had invented the 
tool I was so fond of. Around 7 o’clock that day, I entered a 
huge deep office much like you see in castles. At the other end 
behind a big desk was Louis Menard waving at me to come 
closer and take a seat. I introduced myself and we started to talk 
about the pressuremeter. Very quickly, I found myself enjoying 
the discussion and time flew by. We talked and argued and 
talked again and quoted data and theory and reasoning so much 
so that at the end we had connected. I was mad because I 
promised myself that I would take notes of what Menard was 
saying but in the heat of the action I forgot all about it and was 
left with no notes and it was already 8 O’clock. This is where I 
got really lucky. Louis Menard asked me: “do you have any 
plans tonight? I said no and he said: “why don’t you stay for 
dinner?” Whaoh! That would be wonderful. We got up and he 
took his cane to walk from his office to his house which was a 
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door away. The cancer was very advanced but he explained to 
me as we walked to the dining room that he had a slight illness 
but that he would take care of that in no time! This is where I 
got my first clue of the remarkable strength of his will power, 
the steely determination of Louis Menard, a trait of character 
which helped him win against all odds while creating some 
slight antagonistic situations. The dinner was a delight. 
Honestly, I cannot tell you what I ate but I certainly remember 
the stories that he told me with his wife and his children around 
the table. One stands out in my mind: his first encounter with 
Ralph Peck. He said that he entered Professor Peck’s office and 
Peck proceeded to explain to young Louis Menard that he 
would have to take a certain number of core courses to get his 
Master degree. So Peck walked to the small blackboard in his 
office and wrote a list of these 4 or 5 courses, then went back to 
his desk. Louis Menard got up, took the eraser and wiped the 
courses out and said I am not interested in these courses; 
however I am interested in these courses instead. Menard was 
indeed a very bright, very determined independent thinker. On 
that day of 15 December 1977 he provided me with a wonderful 
moment in my life, one that I will never forget.  
 

 
 
Figure 1. Louis Menard (courtesy of Michel Gambin and Kenji 
Mori) 
 
3 INTRODUCTION 

There are many different types of pressuremeter devices and 
many ways to insert the pressuremeter probe in to the ground. 
This paper is limited to the preboring pressuremeter also called 
Menard pressuremeter where a borehole is drilled, the drilling 
tool is removed, and the probe is lowered in the open hole. The 
probe diameter is in the range of 50 to 75 mm and the length of 
the inflatable part of the probe in the range of 0.3 to 0.6 m. The 
paper starts with a general observation regarding site 
investigations, then deals with many aspects of the 
pressuremeter practice including the device itself, the 
installation, the test, the parameters that can be obtained, and 
their use in foundation engineering. In each topic, new 
contributions are made to expand the use of the PMT. 
 
4 HOW MANY BORINGS ARE ENOUGH? 

What percentage of the total soil volume involved in the soil 
response should be tested during the geotechnical investigation. 
This depends on many factors including the goal of the 
investigation. This goal may be that there is a high probability 
that the predictions will be within a target tolerance. As an 
example of calculations, assume that the block of soil which 
will be loaded by the structure is a cube 10 x 10 x 10 m in size. 
Further assume that the goal is to predict the elastic settlement 
of the structure with a precision of + or – 20% and that the soil 
cube has a modulus with a coefficient of variation equal to 0.3. 
The question is: what percentage of the total volume of soil 
must be tested to have a 98% probability that the predicted 
settlement will be within + or - 20% of the true settlement (i.e.: 
measured)? Since in this case the modulus is linearly 
proportional to the settlement, the question can be rephrased to 
read: what percentage of the soil volume must be tested so that 

the mean modulus measured on the soil samples has a 98% 
confidence level of being within + or – 20% of the true mean of 
the modulus? 

For this we recall the student t distribution. Consider a large 
population (the big cube) of modulus E which is normally 
distributed with a mean μp and a standard deviation σp. Then 
consider a group of n randomly selected values of the modulus 
(E1, E2, E3, …, En) from the population (results of the site 
investigation and testing). The mean modulus value of the group 
E1, …, En, is μg and the standard deviation is σg. Let’s create 
many such groups of n modulus values (many options of where 
to drill and where to test), each time randomly selecting n 
values from the larger population of modulus and calculating 
the mean modulus μg of the group. In this fashion we can create 
a distribution of the means μg. It can be shown that the 
distribution of the means μg has a mean μμg equal to μp and a 
standard deviation σμg equal to σp/n0.5. If we form the 
normalized variable t: 

/
g p

g

t
n

 




       (1) 

then the distribution of t is the student t distribution for n 
degrees of freedom: t(n). The t distribution is more scattered 
than the normal distribution of E, depends on the number n of 
modulus values collected in each group, and tends towards the 
normal distribution when n becomes large (Fig. 2). 

 

 
 
Figure 2. The student t distribution 
 

The properties of the student t distribution together with Eq.1 
allow us to write: 
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      (2) 

Where t(α/2,n-1) is the value of t for n-1 degrees off freedom 
and a value of α/2, α is the area under the t distribution for 
values larger than t (Fig. 3). Eq.2 expresses that there is a (1-α) 
degree of confidence that the value of μp is between the values 
expressed in the parenthesis. 

For our example, we need to determine the number n of 
modulus values in the group (number of samples to be collected 
and tested during the site investigation) which will lead to a 
high probability P that the predicted modulus (μg) will be within 
a target tolerance ∆ from the true mean modulus of the 
population (μp). Therefore we wish to find the value of n which 
will satisfy the probability equation: 

  target(1 ) (1 )g p gP P               (3) 

 

 
Figure 3. Definition of the parameter α. 
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That is to say we have a Ptarget % degree of confidence that μp 
lies in the range μg(1+or-∆). We can rewrite Eq.3 as 

target
p g

g

P
 


 
      
 

P    (4) 

If the coefficient of variation of the population is δ, then we 
assume that the coefficient of variation of the group is also δ. 

p g

p g

 


 
        (5) 

Combining Eq.2, 4, and 5 we get. 
22

, 1 , 1
2 2

g
g n n

t or n t
n 

 
 

          
     (6) 

Eq. 6 is solved by iteration since n influences the value of t. 
Student t distribution solvers are available on the internet. The 
number n represents the number of soil samples to be tested in 
order to obtain the value of the modulus within plus or minus 
∆% from the exact answer with a Ptarget probability of success. If 
we assume that a triaxial test sample to obtain a modulus value 
has a volume of 10-3 m3, then the number n of samples gives the 
volume of soil that must be drilled during the investigation to 
satisfy the criterion. The percent volume tested becomes  

310s

t t

V n
V V


       (7) 

In our example the initial volume was 1000 m3, so we can 
calculate what percentage of the soil volume should be tested. 
Fig. 4 gives the results and indicates that in order to be 98% 
sure that the answer will be within plus or minus 20% from the 
true value, the amount of sampling is 0.001 percent of the total 
volume. 
 

 
 
Figure 4. Required volume of soil to be tested as a percent of 
the total volume involved in the soil response to predict a soil 
property with a 98% confidence level and within a percent error 
for given coefficients of variation of the soil property. 
 

Consider now an 8 story building which is 40 by 40 m at its 
base. The volume of soil involved in the response of the 
building to loading is at least 40 by 40 by 40 m or 64000 m3. 
The required sampling is 0.001% or 0.64 m3 which corresponds 
to 640 triaxial tests. Further assuming that we will drill 40 m 
deep borings allowing us to conduct 20 triaxial tests per boring, 
this would require some 32 borings. In practice, we would 
typically drill 4 or 5 borings for such a building. This shows that 
we do not test the soil enough in our current soil investigations 
to meet the set criterion. Note that the assumptions made in the 
student t distribution calculation include the assumption that the 
soil is uniformly variable. In other words, there are no 
heterogeneity trends or anomalies in the soil mass. If there were 

such anomalies, the amount of soil volume to test would 
increase. If we use the same approach for different volumes we 
can generate the number of borings necessary to meet the 
criterion of 98% confidence of predicting within + or – 20% for 
a soil with a coefficient of variation equal to 0.3. Fig. 5 shows 
the number of borings required as a function of the soil volume 
involved in the response to the loading. The estimated line for 
current practice is plotted on the same graph (based on the 
author’s experience) indicating that current practice does not 
meet the criterion established. Note that the discrepancy 
increases with the size of the project. Indeed the ratio between 
the required number of borings Nr and the current number of 
borings Nc increases with the size of the imprint. 

 

 
 
Figure 5. Comparison of number of borings in current practice 
and number of borings required for a precision of + or - 20% 
with a 98% degree of confidence for a soil parameter coefficient 
of variation of 0.3. 
 
5 WHAT CAN BE IMPROVED ABOUT THE PMT 

EQUIPMENT? 

Only a few things, I think. We are at the point of maturity in this 
area. If anything, we need to be able to run controlled stress 
tests or control strain tests equally well. Controlling strain or 
volume has the advantage of not having to guess at the limit 
pressure to decide on the pressure steps. Controlling pressure 
has the advantage of not having to wait for a long time if the 
hole is too big. The devices which control stress require 
compressed gas bottles which can be dangerous. Control 
volume devices are safer in that respect and still allow control 
stress tests. Most civil engineering structures apply stress 
control steps. 

With regard to the issue of the three cells versus mono-cell 
probes, it has been shown (Briaud, 1992) that for probes with a 
length to diameter ratio longer than 6, the difference between 
the expansion of the mono-cell and the expansion of an 
infinitely long cylinder for an elastic soil are within 5 % of each 
other. Therefore as long as the probe has a length to diameter 
ratio of 6 or more, there is no need for three cells in a 
pressuremeter probe. 

The diameter of the probe has an impact on the quality of the 
test for the following reason. The thickness of the ring of 
disturbed soil created by the carving or washing process during 
drilling is approximately constant regardless of the diameter of 
the drill bit. As such, the larger the pressuremeter diameter is, 
the less influence this disturbed zone will have on the 
pressuremeter curve. Therefore, it is best to increase the 
diameter of the pressuremeter probe. A larger diameter will also 
have a positive impact on the reliability of the borehole 
diameter as it is much easier to drill a well calibrated 150mm 
diameter hole than a 50mm diameter hole. Using lightweight yet 
rugged 150 mm diameter, 1 m long PMT probes will improve 
PMT test quality. 
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6 MAKING A QUALITY BOREHOLE IS THE MOST 
IMPORTANT STEP 

This is the most important and the most difficult step in a 
quality pressuremeter test. Much has been tried and written on 
the best way to prepare the hole. Special training is required for 
drillers to prepare a good PMT borehole as drilling for PMT 
testing is very different and almost opposite to drilling for soil 
sampling (Table 1). Table 2 gives some general 
recommendations to obtain a quality borehole with wet rotary 
drilling which I would recommend in most cases. 
 
Table 1. Differences between drilling for PMT testing and 
drilling for soil sampling 
 

DRILLING FOR PMT 
TESTING 

DRILLING FOR 
SAMPLING 

Slow rotation to minimize 
enlargement of borehole diameter 

Fast rotation to get to the 
sampling depth faster 

Care about undisturbed 
borehole walls left behind the bit 

Don’t care about borehole 
walls left behind the bit 

Don’t care about soil in front 
of the bit 

Care about undisturbed soil 
in front of the bit 

Advance borehole beyond 
testing depth for cuttings to settle 

in 
Stop at sampling depth 

Do not clean the borehole by 
running the bit up and down in 
the open hole; this will increase 

the hole diameter 

Clean borehole by running 
bit with fast mud flow up and 

down in open hole; avoids 
unwanted cuttings in sampling 

tube 

Care about borehole diameter Don’t care about borehole 
diameter 

 
Table 2. Recommendations for a quality PMT borehole by the 
wet rotary method. 
 

Diameter of drilling bit should be equal to the diameter of the probe 
Three wing bit for silts and clays (carving), roller bit for sands and 

gravels (washing) 
Diameter of rods should be small enough to allow cuttings to go by 

Slow rotation of the drill (60 rpm) 
Slow mud circulation to minimize erosion 

Drill 1 m past the testing depth for cuttings to settle 
One pass down and one withdrawal (no cleaning of the hole) 

One test at a time 
 
7 THE PMT PARAMETERS 

7.1 PMT Modulus and tension in the hoop direction 
A number of parameters are obtained from the PMT. One of the 
most useful is the PMT modulus Eo from first loading This 
modulus is calculated by using the theory of elasticity. One of 
the assumptions in elasticity is that the soil has the same 
modulus in compression and in tension. This may be true to 
some extent for clays but unlikely true for sands. When the 
PMT probe expands, the radial stress increases and the hoop 
stress decreases to the point where it can reach tension. In 
elasticity, the increase in radial stress is equal to the decrease in 
hoop stress, so if the pressure in the PMT probe is 500 kPa, the 
hoop stress at the borehole wall is -500 kPa (neglecting the at 
rest pressure). The soil is unlikely to be able to resist such 
tension and using elasticity theory in this case is flawed. The 
following derivation shows the influence of having a much 
weaker modulus in tension than in compression. 

The general orthotropic elastic equations are 
r

r r zr
r zE E






r
r z

r zE E E


  


z           (9) 
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
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E
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Where εr, εθ, εz are the normal strains in the r, θ, and z 
directions, σr, σθ, σz are the normal stresses in the r, θ, and z 
directions, Er, Eθ, Ez are the modulus in the r, θ, and z 
directions, and νθr, νrθ, νzr, νrz, νzθ, νθz are the Poisson’s ratios. 
Because of the symmetry rules, the following equations must 
also be satisfied 

r r rE E          (11) 

z zE E z          (12) 

r zr z rzE E        (13) 
Here it is assumed that a compression modulus E+ acts in the 
radial and vertical direction and a much reduced tension 
modulus E- acts in the hoop direction. 

z rE E E          (14) 

E E
         (15) 

Where E+ is the modulus of the soil when tested in compression 
and E- is the modulus of the soil when tested in tension. The 
problem is further simplified by assuming that 

1rz zr          (16) 

2z r           (17) 

3z r           (18) 
The plane strain condition of the cylindrical deformation gives 

0z          (19) 
The definition of the strains is, in small strain theory 

r
du
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u
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Now the equilibrium equation gives 

0rrd
dr r

  
       (22) 

Using Eq. 8 to 22 leads to the governing differential equation 
where the displacement u is the variable. The boundary 
conditions are a displacement equal to zero for an infinite radius 
and a pressure equal to the imposed pressure at the cavity wall. 
The solution is a bit cumbersome: 
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Where s11, s22, s12, s21 are defined as follows 
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Eq. 23 is to be compared with the equation for the isotropic 
solution which is  

1
o
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Consider the case where the ratio E+/E- = 10, ν1 = ν3 = 0.33, 
then ν2 equal to 0.033. Then Eq.23 and Eq. 28 give respectively: 

0.309 o
ro

o

uE
r

         (29) 

0.752 o
ro o

o

uE
r

          (30) 

Therefore,    E+ = 2.43Eo      (31) 
This can be repeated for different values of E+/E- to obtain Fig. 
6. The inverse of the modulus ratio is consistent with the values 
recommended by Menard for the α values in settlement analysis 
as shown in Fig.6. This observation about the tension in the 
hoop direction also impacts PMT tests in hard soils and rock 
which are sound enough to exhibit significant tensile strength. 
In this case, the PMT curve shows a break in the expansion 
curve (Fig. 7) at a pressure p where the hard soil or rock breaks 
in tension. This pressure is such that (Briaud, 1992): 

2t p oh         (32) 
Where σt is the soil tensile strength and σoh is the horizontal 
stress at rest before the PMT is inserted. 

 

 
 
Figure 6. Correction of PMT modulus for low tension soils 

 

 
 
Figure 7. Tensile strength from PMT test 

 
7.2 PMT first load modulus 
The PMT first load modulus Eo also called the Menard modulus 
is obtained from the initial straight line part of the PMT curve. 
This straight line exists over a range of relative increase in 
cavity radius which varies from one soil to another but is 
typically in the range of 2 to 6 % relative increase in cavity 
radius. At two sites in Texas, one in stiff clay the other in dense 
sand, the average range of 15 PMT tests was 3.47% for the clay 
site and 3.59% for the sand site. This refers to the value of 
ΔR/Ro at the cavity wall. The average radial strain in the soil 
mass involved in the response to the cylindrical cavity 
expansion is much smaller and averages 0.316 ΔR/Ro as shown 
in the following. The hoop strain εθ and the increase in radial 
stress Δσr decrease away from the wall of the cavity at a rate of 
1/R2 where R is the radial distance into the soil mass (Baguelin 
et al., 1978). If the radius of influence of the pressuremeter 

expansion is defined as the radius at which εθ and Δσr are 1/10th 
of the value at the cavity wall, that radius of influence is 100.5Ro 
= 3.16Ro. Within this radius of influence, the average strain εθ 
can be calculated as follows 
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23.16

2

1 0.316
3.16

o

o

R o o
av oR

o o

R dR
R R R


 
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where εθav is the average hoop strain within the radius of 
influence of the pressuremeter test, εθo is the hoop strain at the 
wall of the cavity, Ro is the initial radius of the cavity, and R is 
the radial distance in the soil. The modulus was mentioned as 
being associated with a strain level at the cavity wall εθo 
typically in the range of 2 to 6%; this means that the average 
strain εθav will be 0.6 to 2%. For the two Texas sites mentioned 
above, the average strain would be close to 1% (3.53% x 0.316). 
Note that this range of strain is consistent with the strain level 
associated with foundation engineering but is much higher than 
the range of strain associated with pavement design or 
earthquake shaking where a very low strain modulus is used.  

The fact that the small strain modulus is absent from the 
beginning of the PMT curve and that the strain range is between 
0.6 to 2%, is created in part by the recompression of the soil 
which was decompressed horizontally by the drilling process. 
This recompression makes the small strain part of the stress 
strain curve disappear as shown in the PMT test on Fig. 8. In 
this test, an unload-reload loop was performed by decreasing the 
pressure to zero and increasing it again to simulate a first 
expansion curve. Then a second unload-reload loop was 
performed over a much smaller pressure range. This test shows 
that the recompression modulus varies tremendously depending 
on the extent of the unloading. This test also shows that the low 
strain information is lost in the decompression and 
recompression loading process. Can we find a way to recreate 
the early part of the PMT curve from the information gathered 
during the test. 
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Figure 8. PMT stress strain curve with unload reload loops 

 
7.3 PMT modulus at small strain 
A soil modulus depends on several factors (Briaud, 2013) one 
of which is the strain level. The PMT curve is a stress strain 
curve where the stress is the radial stress σr (measured pressure 
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in the PMT) and the strain is the hoop strain εθ (relative increase 
in cavity radius). It is therefore possible to define a secant 
modulus as a function of strain from the PMT curve (Fig. 9). 

 

 
 
Figure 9. PMT stress strain curve and secant modulus 

 
It can be shown in elasticity that the shear modulus is given 

by: 
1
2

ro

o

G









      (34) 

If we call Go the shear modulus associated with the straight 
portion of the curve, we can normalize the modulus at any strain 
with respect to Go. We calculate the secant shear modulus G1, 
G2, G3 and so on corresponding to points 1, 2, and 3 on the 
pressuremeter curve (Fig. 9). Then we can plot the ratio G1/Go, 
G2/Go, G3/Go as a function of the corresponding strain εθ1, εθ2, 
εθ3. Note that εθ is the strain at the cavity wall but that the mean 
strain εθmean induced in the soil within the zone of influence is 
only about 32% of that value (Eq. 33).  

The curve linking G/Go vs. εθmean is shown on Fig. 10c and 
10d. From zero strain to the strain value corresponding to the 
end of the straight part of the PMT curve (AB on Fig. 10a), the 
G/Go vs. εθmean curve is flat on Fig. 10c and 10d because within 
that strain range the modulus G is constant and equal to Go. 

In order to generate the non linear beginning of that curve 
(EB on Fig. 10a), it is convenient to assume a hyperbolic model 
as proposed by Baud et al. (2013) of the form 

max

1
2 LG p

 


     (35) 

This equation defines a hyperbola which describes the PMT 
curve with the limit pressure pL as the asymptotic value and 
2Gmax as the initial tangent modulus. The hyperbolic model has 
been shown to be very successful in describing the stress strain 
curve of soils (Duncan, Chang, 1970). In Eq. 35, pL is known 
and all the points on the PMT curve, after excluding the points 
on the straight line part, can be used to find the optimum value 
of Gmax by best fit regression. This can be done by plotting the 
data points as ε/σ vs. ε and fitting a straight line through the data 
points (Fig. 10b). Then 1/2Gmax is the ordinate at ε = 0 and 1/pL 
is the slope of the line. 

max

1
2 LG p

 

       (36) 

Then Eq. 35 gives the complete curve. This technique was used 
at two sites, a stiff clay site near Houston, Texas, and a medium 
dense sand site in Corpus Christi, Texas. Example results are 
presented in Fig. 11 which shows that the data fits well with a 
hyperbolic equation. For these two sites, the average ratio 
Gmax/Go was 1.75 for the stiff clay and 1.27 for the dense sand. 
 

 
a. REZEROED PMT CURVE 

 
b. HYPERBOLIC CURVE FITTING  

c . NORMALIZED SECANT SHEAR MODULUS VS 
STRAIN 

 
d . NORMALIZED SECANT SHEAR MODULUS VS 

LOG OF STRAIN 

 
 
Figure 10. Normalized secant shear modulus vs. strain 

 
Estimates of Gmax were calculated independently by using 

correlations proposed by Seed et al. (1986) based on SPT blow 
count for sand, Rix and Stokoe (1991) based on CPT point 
resistance for sand, and Mayne and Rix (1993) based on CPT 
point resistance and void ratio for clays. These estimates of 
Gmax were consistently much higher than the values obtained by 
the hyperbolic extension of the PMT curve; 25 times larger for 
the stiff clay and 44 times larger for the dense sand. This 
indicates that this hyperbolic fit to the PMT curve does not lead 
to accurate very small strain moduli. 
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a. PMT CURVE – STIFF CLAY 

 
b. HYPERBOLIC CURVE FITTING 

 
c. NORMALIZED SECANT SHEAR MODULUS VS STRAIN 

 
d. NORMALIZED SHEAR MODULUS VS LOG STRAIN 

 
 

e. PMT CURVE – DENSE SAND 

 
f. HYPERBOLIC CURVE FITTING 

 
g. NORMALIZED SECANT SHEAR MODULUS VS STRAIN 

 
h. NORMALIZED SHEAR MODULUS VS LOG STRAIN 

 
 
Figure 11. Examples of hyperbolic extension of the PMT curve 
(stiff clay, dense sand) 
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7.4 PMT modulus long term creep, and cyclic loading 
It is relatively easy to maintain the pressure constant during a 
PMT test while recording the increase in radius of the cavity 
(Fig. 12). A pressure holding step of 10 minutes is not very time 
consuming and can lead to very valuable information if the 
structure will be subjected to long term loading (e.g.: building, 
retaining wall). The pressure held for 10 minutes should be 
higher than 0.2pL because below that threshold the influence of 
the decompression-recompression effect and the disturbance 
effect is more pronounced (Briaud, 1992). The evolution of the 
secant modulus Et during the pressure holding test is well 
described by the following model: 

o

n

t t
o

tE E
t


 

  
 

     (37) 

Where t is the time after the start of the pressure holding step, to 
is a reference time after the start of the pressure holding step 
usually taken as 1 minute, Et and Eto are the secant modulus 
corresponding to t and to respectively, and n is the creep 
exponent. The value of n is obtained as the slope of the plot of 
log Et/Eto vs. log t/to. The creep exponent n increases with the 
stress applied over strength ratio and depends on the soil type 
and stress history. It has been found in the range of 0.01 to 0.03 
for sands and in the rnage of 0.03 to 0.08 for clays (Briaud, 
1992). For clays, the lower values are for overconsolidated 
clays while the higher values are for very soft clays. 
Measurements on large scale spread footings on an unsaturated 
silty sand (Briaud, Gibbens, 1999) demonstrated that the power 
law model works very well (Fig. 13) because the log settlement 
vs. log time curve was remarkably linear. These experiments 
also indicated that n increases with the load level but is 
significantly reduced by unload reload cycles. PMT tests with 
creep steps were performed next to the footings (Fig. 13c and 
13d); the parallel between the footing and the PMT is striking. 

 
a. CREEP TEST 

 
b. CYCLIC TEST 

 
 
Figure 12. Creep and cyclic PMT test 

 

a. FOOTING LOAD-SETTLEMENT CURVE 
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b. FOOTING SETTLEMENT VS TIME CURVE 
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c. PMT STRESS VS STRAIN CURVE 

 
d. PMT MODULUS VS TIME CURVE 

 
 
Figure 13. Creep response of a 3m by 3m spread footing and a 
PMT test (Briaud, Gibbens, 1999, Jeanjean, 1995).  

 
Similarly, one can conduct cyclic loading during the PMT 

test. A series of 10 cycles is not very time consuming and can 
lead to very valuable information if the structure will be 
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subjected to significant repeated loading (e.g.: large wave 
loading). The evolution of the secant modulus EN to the top of 
cycle N is well described by the following model 

1
m

NE E N        (38) 
Where N is the number of cycle using number 1 as the first 
loading cycle, EN the secant modulus to the top of the Nth cycle, 
E1 the secant modulus to the top of the first cycle (first time that 
the pressure is decreased), and m is the cyclic exponent. The 
value of m is obtained as the slope of the plot of log EN/E1 vs. 
log N. Fig. 14 shows a parallel example of a pile subjected to 
cyclic horizontal loading and a cyclic PMT test. As can be seen 
the power law model of Eq.38 describes the evolution of the 
deformation with the number of cycles (straight line on log-log 
scales) very well and the parallel between the pile and the PMT 
is striking. 
 
7.5 PMT unload-reload modulus 
The unload reload modulus Er is obtained by performing an 
unload reload loop during the PMT test. The main problem with 
Er is that, unlike Eo, it is not precisely defined. Indeed it 
depends on the strain amplitude over which the loop is 
performed and to a lesser extent on the stress level at which the 
loop is performed. As such, Er varies widely from one user to 
another and cannot be relied upon for standard calculations 
unless the strain amplitude and stress level have been selected to 
match the problem at hand. In my practice, I perform an unload 
reload loop at the end of the linear phase and unload until the 
pressure has reached one half of the peak pressure. This has the 
advantage of being consistent but does not necessarily 
correspond to a consistent strain amplitude from one test to the 
next. I would strongly discourage the use of the reload modulus 
because it is not a standard modulus. Instead I would 
recommend the use of a hyperbolic extension of the PMT curve 
to find the modulus at the right strain level. 

 
7.6 The yield pressure py.
The yield pressure py is found at the end of the straight line 
corresponding to the PMT modulus. Up to py, the amount of 
creep is reasonably small but becomes much larger beyond that. 
In geotechnical engineering it is always desirable to apply 
pressures on the soil below the value of py. Typically py is 0.5 
pL for clays and 0.33 pL for sands. Therefore, at working loads, 
it is advisable to keep the pressure under foundations at most 
equal to 0.5 pL in clays and 0.33 pL in sands to limit creep 
deformations. 

 
7.7 Correlations between PMT parameters and other soil 
parameters
Correlations based on 426 PMT tests performed at 36 sites in 
sand and 44 sites in clay along with other measured soil 
parameters were presented by Briaud (1992). These correlations 
exhibit significant scatter and should be used with caution. 
Nevertheless they are very useful in preliminary calculations 
and for estimate purposes. Table 3 gives the range of expected 
PMT limit pressure and modulus in various soils while Tables 4 
and 5 give the correlations. 

 
Table 3. Expected values of Eo and PL in soils 
 

CLAY
Soil 

strength Soft Medium Stiff Very Stiff Hard 

p*
L(kPa) 0–200 200–400 400–800 800-1600 >1600 

E0 (MPa) 0 – 2.5 2.5  - 5.0 5.0 - 12 12 - 25 > 25 
SAND

Soil 
strength Loose Compact Dense Very Dense 

p*
L(kPa) 0 – 500 500 - 1500 1500-2500 > 2500 

E0(MPa) 0 – 3.5 3.5 - 12 12 – 22.5 > 22.5 

a. PILE LOAD-DISPLACEMENT CURVE 

 
b. PILE STIFFNESS VS NUMBER OF CYCLES 

CURVE 

 
c. PMT STRESS STRAIN CURVE 

 
d. PMT MODULUS VS NUMBER OF CYCLES 

CURVE 

 
 
Figure 14. Cyclic response of a laterally loaded pile A and a 
PMT test (Little, Briaud, 1988).  
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Table 4. Correlations for Sand (Column A = Number in Table x 
Row B) 
 

Column A = number in table x row B 
B E0 ER p*

L qc fs N 
A (kPa) (kPa) (kPa) (kPa) (kPa) (bpf) 
E0 

(kPa) 1 0.125 8 1.15 57.5 383 

ER 
(kPa) 8 1 64 6.25 312.5 2174 

p*
L 

(kPa) 0.125 0.0156 1 0.11 5.5 47.9 

qc 
(kPa) 0.87 0.16 9 1 50 436 

fs 
(kPa) 0.0174 0.0032 0.182 0.02 1 9.58 

N 
(bpf) 0.0026 0.00046 0.021 0.0021 0.104 1 

 
Table 5. Correlations for Clay (Column A = Number in Table x 
Row B) 
 

Column A = number in table x row B 
B E0 ER p*

L qc fs su N 
A (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (bpf) 
E0 

(kPa) 1 0.278 14 2.5 56 100 667 

ER 
(kPa) 3.6 1 50 13 260 300 2000 

p*
L 

(kPa) 0.071 0.02 1 0.2 4 7.5 50 

qc 
(kPa) 0.40 0.077 5 1 20 27 180 

fs 
(kPa) 0.079 0.003

8 0.25 0.05 1 1.6 10.7 

su 
(kPa) 0.010 0.003

3 0.133 0.037 0.62
5 1 6.7 

N 
(bpf) 

0.001
5 

0.000
5 0.02 0.005

6 
0.09

1 0.14 1 

 
8 SHALLOW FOUNDATIONS 

8.1 Ultimate bearing capacity 
The general bearing capacity equation for a strip footing is: 

1'
2u cp c N BN DN    q

    (39) 

Where pu is the ultimate bearing pressure, c’ the effective stress 
cohesion intercept, γ the effective unit weight of the soil, Nc, Nγ, 
and Nq bearing capacity factors depending on the friction angle 
φ’. The assumptions made to develop this equation include that 
the unit weight and the friction angle of the soil are constant. 
Therefore the strength profile of the soil is linearly increasing 
with depth. For strength profiles which do not increase linearly 
with depth, this equation does not work and can severely 
overestimate the value of pu. However equations of the 
following form always take into account the proper soil 
strength: 

up k s D        (40) 
Where k is a bearing capacity factor, s is a strength parameter 
for the soil, γ is the unit weight of the soil, and D is the depth of 
embedment. The parameter s can be the PMT limit pressure pL, 
the CPT point resistance qc, or the SPT blow count N. Table 6 
gives the values of k for various soils and various tests in the 
case of a horizontal square foundation on horizontal flat ground 
under axial vertical load. 
 
 
 
 

Table 6. Bearing capacity factors k for in situ tests 
 

Strength parameter Clay Sand 
PMT pL(kPa) 1.25 1.7 
CPT qc(kPa) 0.3 0.2 

SPT N(bpf)* 60 75 
* Ultimate bearing capacity pu in kPa. 

 
8.2 Load settlement curve method for footings on sand 
The typical approach in the design of shallow foundations is to 
calculate the ultimate bearing capacity pu, reduce that pressure 
to a safe pressure psafe by applying a combined load and 
resistance factor, use that safe pressure to calculate the 
corresponding settlement, compare that settlement to the 
allowable settlement, and adjust the footing size until both the 
ultimate limit state and the serviceability limit state are satisfied. 
In other words the design of shallow foundations defines two 
points on the load settlement curve: one for the ultimate load 
and one for the service load. It would be more convenient if the 
entire load settlement curve could be generated. Then the 
engineer could decide where, on that curve, the foundation 
should operate. This was the incentive to develop the load 
settlement curve method (Briaud, 2007).  

Five very large spread footings on sand up to 3m x 3m in 
size were loaded up to 12 MN at the Texas A&M University 
National Geotechnical Experimentation Site (Fig. 15a). 
Inclinometer casings were installed at the edge of the footings 
as part of the instrumentation. They were read at various loads 
during the test and indicated that the soil was deforming in a 
barrel like shape (Fig. 15b). This is the reason why the 
pressuremeter curve was thought to be a good candidate to 
generate the load settlement curve for the footing. Note that, 
during these tests, the inclinometers never showed the type of 
wedge failure assumed in the general bearing capacity equation. 
It is reasonned that the footings were not pushed to sufficient 
penetration to generate this type of failure mechanism. 

The transformation required a correspondence principle 
between a point on the pressuremeter curve and a point on the 
footing load settlement curve (Fig. 16). This correspondence 
was established on the basis of two equations: the first one 
would satisfy average strain compatibility between the two 
loading processes and the second one would transform the PMT 
pressure into the footing pressure for corresponding average 
strains. These equations are: 

0.24
o

s R
B R


        (41) 

/ ,f L B e d pp f f f f p      (42) 
Where s if the footing settlement, B the footing width, ∆R/Ro 
the relative increase in cavity radius in the PMT test, pf the 
average pressure under the footing for a settlement s, fL/B, fe, fδ, 
fβ,d the correction factors to take into account the shape of the 
footing, the eccentricity of the load, the inclination of the load, 
and the proximity of a slope respectively, Γ a function of s/B, 
and pp the pressuremeter pressure corresponding to ∆R/Ro. The 
Γ function was originally obtained from the large scale footing 
load tests on sand at Texas A&M University (Jeanjean, 1995, 
Briaud, 2007) and then supplemented with other load tests. This 
led to the data shown on Fig. 17. Using all the curves (Fig. 17a), 
a mean and a design Γ function were obtained (Fig. 17b). The 
design Γ function curve is the mean Γ function curve minus one 
standard deviation.  

The f correction factors have been determined through a 
series of numerical simulations previously calibrated against the 
large scale loading tests (Hossain, 1996, Briaud, 2007). Their 
expressions are as follows 
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a. LOAD TEST SET UP 

Settlement
Beam
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Drilled shaft
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Telltates

 
b. PRESSUREMETER-LIKE LATERAL 

DEFORMATION FROM INCLINOMETER 

 
 
Figure 15. Analogy between the soil deformation under a 
shallow foundation and around a pressuremeter expansion test 
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0.15

, 0.7 1d
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B

   
 

   (49) 

Where B is the width of the footing, L its length, e the load 
eccentricity, δ the load inclination in degrees, and d the 
horizontal distance from the slope-side edge of the footing to 
the slope crest. 

The shape of the Γ function indicates that at larger strain 
levels the need to correct the PMT curve is minimal. Indeed for 
s/B larger than 0.03, the mean value of Γ is constant and equal 
to about 1.5. For values of s/B smaller than 0.03, there is a need 
to correct the value of the PMT pressure because of a lack of 
curvature on the PMT curve compared to the curvature on the 
footing load settlement curve. 
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Figure 16. Transformation of the pressuremeter curve into the 
footing load settlement curve 
 

a. Γ FUNCTION: ALL DATA 

 
b. Γ FUNCTION: DESIGN RECOMMENDATIONS 

 
 
Figure 17. The Γ function for the load settlement curve method 
(Briaud 2013) 
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8.3 Load settlement curve method for footings on stiff clay 
The load settlement curve method developed for sand was 
extended to stiff clay by using some footing load tests and 
parallel PMT tests. O’Neill and Sheikh (1985) load tested a 2.4 
m diameter bored and under-reamed pile in Houston (Fig. 18a). 
The pile was 2.4 m deep (relative embedment depth D/B = 1) 
and the shaft friction was disabled by a casing. The soil was a 
stiff clay with an undrained shear strength of about 100 kPa. 
The load was increased in equal load steps and the resulting 
load settlement curve is shown in Fig. 18b. At failure, the 
average pressure under the footing was 680 kPa as measured by 
pressure cells on the bottom of the under-ream. Briaud et al. 
(1985) performed pressuremeter tests at the same site around 
the same time. The PMT test was carried out at a depth of 3.6 m 
or half a diameter below the bottom of the footing; this PMT 
curve (Fig.19a) was used to generate the Γ function for that stiff 
clay (Fig. 19b). As can be seen, the curve for that stiff clay is 
very close to the recommended mean curve for sand. Load tests 
on stiff clay using a 0.76m diameter plate at a depth of 1.52m 
(Tand, 2013) were also analyzed together with parallel PMT 
tests (Briaud, 1985) and gave the other Γ functions on Fig.19b. 
These tests on stiff clay give an indication that the design Γ 
function of Fig. 17b is equally applicable to sands and stiff 
clays. Note that the load settlement curve method gives the 
response of the footing as measured in load tests. These load 
tests are carried out in a few hours; if the loading time is very 
different (one week or more or one second or less), the time 
effect must be considered separately (Section 7.4). 
 

a. LOAD TEST SET UP 

 
b. LOAD TEST RESULTS 

 
 
Figure 18. Large scale footing load test in stiff clay in Houston 
(O’Neill, Sheikh, 1985) 

 
 
 
 
 
 
 
 
 
 

a. PMT CURVE 

 
b. THE Γ FUNCTION 

 
 
Figure 19. Pressuremeter test (Briaud et al, 1985) and Γ 
function for stiff clay 
 
9 DEEP FOUNDATIONS UNDER VERTICAL LOADS 

The rules developed by the French administration (Fascicule 62, 
1993) for calculating the vertical capacity of piles are based on 
a very impressive database of load tests carried out by 
Bustamante and Gianeselli and the Laboratoires des Ponts et 
Chaussees from about 1975 to 1995. These rules were recently 
updated (NF P94-262, 2012) and represent one of the most 
complete and detailed axial capacity methodology in existence. 
These rules should be followed closely as there is no viable 
alternative for the PMT. 

One area of deep foundations where the pressuremeter has 
seen some expanded use is the foundation design of very tall 
buildings such as the 452 m high Petronas Towers in Kuala 
Lumpur, Malaysia (Baker, 2010), the 828 m high Burj Khalifa 
in Dubai, UAE (Poulos 2009), the planned 1000 m high 
Nakheel Tower in Dubai, UAE (Haberfield, Paul, 2010), and 
the planned 1000m+ Kingdom Tower in Jeddah, Saudi Arabia 
(Poeppel, 2013). It is also seeing increased use for very large 
foundations such as the I10/I19 freeway interchange in Tucson, 
USA (Samtani, Liu, 2005). The use of the PMT for very tall 
buildings started with the work of Clyde Baker between 1965 
and 1985 (Baker, 2005) for the Chicago high-rises where the 
use of the pressuremeter in the glacial till allowed Clyde Baker 
to increase the allowable pressure at the bottom of bored piles 
from 1.4 MPa to 2.4 MPa. The 1.4 MPa value was based on 
unconfined compression tests; the use of the pressuremeter 
along with observations led to using the 2.4 MPa value as 
confidence was gained.  
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In making settlement calculations for such structures, some 
use the rules proposed by Menard and some use the elastic 
equations often with an unload-reload modulus. Those who use 
the Menard rules, use α values based on local experience and 
influenced by the ratio between the unload-reload modulus Er 
and the first load modulus Eo. While the value of the ratio Eo/Er 
varies within a range somewhat similar to the range of α values, 
it is not clear why one should be related to the other. The ratio 
Eo/Er is influenced by the development of plastic deformation 
around the probe while the value of α is argued to be related to 
the combination of lack of strength in tension (hoop direction as 
shown in Section 7.1) and recompression process through an S 
shape curve (Fig. 8). Those who use the elastic equation 
together with an unload-reload modulus face the problem that 
the unload reload modulus is ill defined and depends in 
particular on the extent of the unloading and the stress level at 
which the unloading takes place. 

The case of the foundation of the tallest tower on Earth, the 
828m high Burj Khalifa in Dubai, UAE, is studied further to 
investigate the issue of the first load modulus and the reload 
modulus (Poulos, 2009). The Burj Khalifa weighs 
approximately 5000MN and has a foundation imprint of about 
3300m2. The foundation is a combined pile raft 3.5 m thick 
founded at a depth of about 10 m below ground level on 1.5 m 
diameter bored piles extending some 50 m below the raft. To 
predict the settlement of the tower, a number of methods were 
used including numerical simulations. For these simulations a 
modulus profile was selected from all soil data available 
including 40 PMT tests. The PMT first load modulus profile is 
shown in Fig. 20 along with the selected design profile as input 
for settlement calculations by numerical simulations. As can be 
seen the design profile splits the PMT first load modulus profile 
with some conservatism. The settlement of the tower was 
predicted to be 77mm; it was measured during construction and 
reached 45 mm at the end of construction (Fig. 21). The 
reasonable comparison between measured and predicted 
settlement for this major case history gives an indication that it 
is appropriate to use the PMT first load modulus for settlement 
estimates. 
 

 
 
Figure 20. First load PMT modulus profile and selected design 
modulus values for the Burj Khalifa, Dubai, UAE (after Poulos, 
2009) 
 

 
 
Figure 21. Measured and predicted settlement of the Burj 
Khalifa, Dubai, UAE (after Poulos, 2009) 
 
10 DEEP FOUNDATIONS UNDER HORIZONTAL LOADS 

10.1 Single pile behavior 
For vertically loaded piles, it is common to calculate the 
ultimate capacity of the pile due to soil failure and then the 
settlement at working load. For horizontally loaded piles, an 
ultimate load due to soil failure is not usually calculated. Briaud 
(1997) proposed an equation to calculate the ultimate horizontal 
load due to soil failure for a horizontally loaded pile. 

1/4

3
4

3 3
4 4

2.3

v o

v o
ou L v

p
o

o

oD l for L l

LD for L l
H p BD

E I
l

K
K E

      


  
  
   
  
 

  (50) 

Where Hou is the horizontal load corresponding to a horizontal 
displacement equal to 0.1B, B the pile diameter, pL the PMT 
limit pressure, Dv the depth corresponding to zero shear force 
and maximum bending moment, lo the transfer length, L the pile 
length, Ep the modulus of the pile material, I the moment of 
inertia of the pile around the bending axis, K the soil stiffness, 
and Eo the PMT first load modulus.  

In order to expand that solution to create the entire load 
displacement curve for horizontally loaded piles, it is proposed 
to first use a strain compatibility equation such that the relative 
displacement to reach the ultimate load on the pile (y/B = 0.1) 
corresponds to the relative PMT expansion at the limit pressure 
(∆R/Ro = 0.41). 

0.24
o

y R
B R


       (51) 

Then the load on the pile can be transformed into a pressure 
within the most contributing zone as  

o
pile

v

Hp
BD

       (52) 

The Γ value is the ratio of the pressure on the pile divided by 
the pressure on the PMT for a corresponding set of values of 
y/B and ∆R/Ro which satisfy Eq. 51. That way and point by 
point, the Γ function can be generated as a function of y/B or 
0.24∆R/Ro. This approach is consistent with the approach taken 
for the load settlement curve method for shallow foundations. 
This was done for 5 piles including driven and bored piles as 
well as sand and clay soils. The piles are described in Briaud 
(1997) and in Briaud et al. (1985). They ranged from 0.3 to 1.2 
m in diameter and from 6 to 36 m in length. In each case, the 
pile dimensions were known, the load displacement curve was 
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known and the PMT curves were measured at various depths 
within the depth Dv. An average PMT curve was created within 
Dv if more than one test was available. The Γ functions obtained 
from these load tests and parallel PMT tests are shown in Fig. 
22. They have a shape similar to the one for the shallow 
foundations but the pile installation seems to make a difference. 
The driven piles lead to one class of Γ functions while the bored 
pile leads to a lower function. More data would help refine this 
first observation. 
 

 
 
Figure 22. The Γ functions for transforming the PMT curve into 
a horizontal load – displacement curve for a pile. 
 
10.2 Pile group behavior 
The behavior of vertically loaded pile groups is often predicted 
by making use of an efficiency factor of the form 

g v sQ e nQ        (53) 

Where Qg is the vertical load on the group, ev the efficiency of 
the vertically loaded group, n the number of piles in the group, 
and Qs the vertical load on the single pile for the same 
settlement as the pile group. This approach can be extended to 
the problem of horizontal loading on a pile group by writing 

g h sH e nH       (54) 

Where Hg is the horizontal load on the group, eh the efficiency 
of the horizontally loaded group, n the number of piles in the 
group, and Hs the horizontal load on the single pile for the same 
horizontal movement as the pile group. Fig. 23 shows the plan 
view of a group of horizontally loaded piles. 

A distinction is made between the leading piles on the front 
row of the group and the trailing piles behind the front row. 
Using data by Cox et al. (1983), Briaud (2013) proposed to 
extend Eq. 54 to read: 

( ) lp
g lp lp tp tp s lp lp tp s

e
H n e n e H n e n H


 

    
 

   (55) 

Where nlp and ntp are the number of leading piles and trailing 
piles in the group respectively, elp and etp are the efficiency 
factors for the leading pile and trailing pile respectively, and λ is 
the ratio of elp over etp. Fig. 24 and 25 give the efficiency factors 
as a function of the relative pile spacing based on the data by 
Cox et al. (1983). 

 
 
Figure 23. Plan view of a group of horizontally loaded piles. 
 

 
 
Figure 24. Leading pile and trailing pile efficiency factors 
 

 
 
Figure 25. Ratio of leading over trailing pile efficiency factor 
 

Eq. 52 was developed based on ultimate load observations at 
large horizontal displacements. The use of the same equation for 
all range of horizontal movements was investigated by 
comparing measured and predicted movements for two major 
pile group experiments by Brown and Reese (1985) in stiff clay 
and by Morrison and Reese (1986) in medium dense sand. The 
plan view of the group is shown in Fig.23. The piles were 
0.273m in diameter, 13.1m long steel pipe piles driven in a 3 by 
3 group with a spacing of 3 diameter center to center. The group 
was built to simulate a rigid cap condition which is most 
common. The clay was a stiff clay which had an undrained 
shear strength of about 100kPa within the top 3 m from the 
ground surface. The sand was a medium dense fine sand with a 
CPT point resistance increasing from zero at the ground surface 
to 3000 kPa at a depth of 2 m. Fig. 26 presents the result for the 
test in clay and Fig. 27 for the test in sand. In each case, the 
measured load-displacement curve for the single pile is 
presented as well as the measured curve linking the average 
load per pile in the group and the group displacement. The 
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efficiency in Eq. 55 was calculated as follows using Fig. 24 and 
25: 

0.953 0.95 6 9 0.82
1.25

lp
g lp lp tp s s s

e
H n e n H H H


            

  
  (56) 

The predicted curve describing the average horizontal load per 
pile in the group versus the group horizontal displacement was 
obtained by using the horizontal load versus horizontal 
displacement curve for the single pile and multiplying the single 
pile load by 0.82 for any given movement. The curve predicted 
using this approach is shown on Fig. 26 (clay) and 27 (sand) 
along with the measured curves. 
 

 
 
Figure 26. Predicted by Cox efficiency factor method and 
measured load-displacement curve for Brown-Reese group 
test in clay (1985) 
 
 

 
 
Figure 27. Predicted by Cox efficiency factor method and 
measured load-displacement curve for Morrison-Reese group 
test in sand (1986) 

 
O’Neill (1983) suggested that the best and simplest 

efficiency factor to use for the settlement of a group of 
vertically loaded piles was: 

g g

s s

s B
s B

        (57) 

Where ss is the settlement of the single pile under the working 
load Q, sg the settlement of the group under nQ, n the number of 
piles in the group, Bg the width of the group and Bs the width of 
the single pile. This efficiency factor for the Brown and Reese 
pile group was (Fig. 23) 

1.91 2.65
0.273

g g

s s

y B
y B

      (58) 

The curve linking the average load per pile in the group versus 
group displacement was obtained by using the load versus 
displacement curve for the single pile and, for any given 
horizontal movement, multiplying the single pile movement by 
2.65. That predicted curve is shown on Fig. 28 and 29 along 
with the curve measured by Brown and Reese for their test in 
clay (1985) and Morrison and Reese for their test in sand (1986) 
respectively. The measured single pile curve is also shown for 
reference. 
 

 
 
Figure 28. Predicted by O’Neill efficiency factor method 
and measured load-displacement curve for Brown-Reese 
group test in clay (1985) 
 
 

 
 
Figure 29. Predicted by O’Neill efficiency factor method 
and measured load-displacement curve for Morrison-Reese 
group test in sand (1986) 

 
11 HORIZONTAL IMPACT LOADING FROM VEHICLE 

In the case of road side safety, embassy defense against terrorist 
trucks, ship berthing, piles are impacted horizontally. To predict 
the behavior of piles subjected to horizontal impact, it is 
possible to use 4D programs (x, y, z, t) such as LSDYNA 
(2006). This is expensive and time consuming. The problem can 
be simplified by using a P-y curve approach generalized to 
include the effect of time. In this case the governing differential 
equation is  
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4 2

4 2 0y y yEI M C K y
z t t

  
  

  
    (59) 

where E (N/m2) is the modulus of elasticity of the pile, I (m4) 
the moment of inertia of the pile against bending around the 
horizontal axis perpendicular to impact, y (m) the pile 
horizontal displacement at a depth z and a time t, M (kg/m) the 
mass per unit length of pile (mass of pile Mp plus mass of 
associated soil Ms), C (N.s/m2) the damping of the system per 
unit length of pile, and K (N/m2) the soil spring stiffness per 
unit length of pile. Note that the soil horizontal resistance is 
limited to pu (kN/m2). The boundary conditions are zero 
moment and zero shear at the point of impact, and zero moment 
and zero shear at the bottom of the pile. The initial condition is 
the displacement of the impact node during the first time step; 
this displacement is equal to vo x Δt where vo is the velocity of 
the vehicle and Δt the time step. Other inputs include the mass 
and velocity of the impacting vehicle, and the parameters in Eq. 
59 for the soil and the pile. The differential equation is then 
solved by the finite difference method and it turns out that the 
parameter matrix is a diagonal matrix so that no inversion is 
necessary. As a result the solution can be provided in a simple 
Excel spread sheet (Mirdamadi, 2013).  

Because the problem is a horizontal load problem on a pile, 
the PMT is favored to obtain the soil data. The PMT in this case 
is a mini PMT called the Pencel (Fig. 30) which is driven in 
place or driven in a predrilled slightly smaller diameter hole if 
the soil is hard. As a result of many static and impact horizontal 
load tests at various scales (Lim, 2011, Mirdamadi, 2013), the 
following recommendations are made for the input parameters. 

0.036 L
s

PM B
g

        (60) 

  2. /   240 LC N s m P kPa    (61) 

2.3 oK E  and     (62) up p L

Where B is the pile width, pL the PMT limit pressure, g the 
acceleration due to gravity, and Eo the first load PMT modulus. 
 

EQUIPMENT 

TEST 

 
Figure 30. Mini pressuremeter test 
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Figure 31. Pick-up truck impact test 
 
Fig. 31 shows a photo sequence of an impact test where a 2300 
kg pick up truck impacted a pile at 97.2 km/h. The pile was a 
steel pipe with a 356mm diameter and a 12.7mm wall thickness. 
It was embedded 2 m into a very stiff clay which gave the PMT 

parameters shown in Table 7. PMT tests were performed with a 
Pencel pressuremeter by first driving a slightly smaller diameter 
rod in the very stiff clay and then driving the Pencel probe in 
the slightly undersized hole. A comparison between the 
measured and calculated behavior of the pile (movement, load, 
and time) is presented in Fig. 32. The calculations were based 
on the simple Excel program (TAMU-POST, Mirdamadi, 2013) 
and a 4D FEM simulation using LS-DYNA (2006). The load 
was obtained by measuring the deceleration of the truck by 
placing an accelerometer on the bed of the truck and the 
movement by using high speed cameras. 
 
Table 7. PMT results by driven Pencel pressuremeter 
 

DEPTH OF TEST MODULUS LIMIT PRESSURE 
1 m 45 MPa 1400 kPa 

1.8 m 25 MPa 1200 kPa 
 
 

a. STATIC TEST: LOAD VS. MOVEMENT 

0 14 28 42 56 70
0

40

80

120

160
0.00 0.04 0.08 0.12 0.16 0.20

0.0

3.0

6.0

9.0

12.0

 DISPLACEMENT/WIDTH
(/B)

 P
R

ES
SU

R
E 

(P
/B

D
v)

(k
Pa

)

LO
A

D
 (k

N
)

DISPLACEMENT (mm)

Hou=0.75x1300x
0.35x0.38=129.7

 
kN

 
b. IMPACT TEST: MOVEMENT VS. TIME 
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d. IMPACT TEST: FORCE VS. MOVEMENT 
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Figure 32. Pick-up truck impact test results 
 
12 LIQUEFACTION CHARTS 

Liquefaction charts have been proposed over the years to 
predict when coarse grained soils will liquefy. In those charts 
(Fig. 33), the vertical axis is the cyclic stress ratio CSR defined 
as τav / σ’ov where τav is the average shear stress generated 
during the design earthquake and σ’ov is the vertical effective 
stress at the depth investigated and at the time of the in situ soil 
test. On the horizontal axis of the charts is the in situ test 
parameter normalized and corrected for the effective stress level 
in the soil at the time of the test. There is a chart based on the 
normalized SPT blow count N1-60 (Youd and Idriss, 1997). 
There is another chart based on the normalized CPT point 
resistance qc1 (Robertson and Wride, 1998). Using the 
correlations in Table 4, it is possible to transform the SPT and 
CPT axes into a normalized PMT limit pressure axis as shown 
in Fig. 34. The normalized limit pressure pL1 is 

0.5

1 '
a

L L
ov

pp p

 

  
 

     (63) 

Where pL is the PMT limit pressure, pa is the atmospheric 
pressure, and σ’ov is the vertical effective stress at the depth of 
the PMT test. Note that the data points on the original charts are 
not shown on the PMT chart not to give the impression that 
measurements have been made to prove the correctness of the 
chart. Some degree of confidence can be derived from the fact 
that the two charts give reasonably close boundary lines. 
Nevertheless, these two charts are very preliminary in nature 
and must be verified by case histories. 
 
 

a. PMT CHART BASED ON CORRELATION WITH 
SPT (adapted from Youd and Idriss, 1997) 

 
 

b. PMT CHART BASED ON CORRELATION WITH 
CPT (adapted from Robertson and Wride, 1998) 

 
 
Figure 33. Preliminary liquefaction charts based on the 
pressuremeter limit pressure 
 
13 ANALOGY BETWEEN PMT CURVE AND EARTH 

PRESSURE-DEFLECTION CURVE FOR RETAINING 
WALLS 

The load settlement curve method for shallow foundations 
shows how one can use the PMT curve to predict the load 
settlement curve of a shallow foundation. This load settlement 
curve method was extended to the case of horizontally loaded 
piles. Can a similar idea be extended to the earth pressure versus 
deflection curve for retaining walls? One of the issues is that the 
PMT is a passive pressure type of loading so the potential for 
retaining walls may be stronger on the passive side than on the 
active side. Another issue is that the PMT test is a cylindrical 
expansion while the retaining wall is a plane strain problem. 
Fig. 34 shows the curves generated by Briaud and Kim (1998) 
based on several anchored wall case histories. The earth 
pressure coefficient K was obtained as the mean pressure p on 
the wall divided by the total vertical stress at the bottom of the 
wall. The mean pressure p was calculated by dividing the sum 
of the lock-off loads of the anchors by the tributary area of wall 
retained by the anchors. For each case history the lock off loads 
were known and the deflection of the wall was measured. Then 
the data was plotted with K on the vertical axis and the 
horizontal deflection at the top of the wall divided by the wall 
height on the horizontal axis. The shape of the curve is very 
similar to the shape of a PMT curve and a transformation 
function like the Γ function for the shallow foundation may 
exist but this work has not been done. 
 

 
 
Figure 34. Earth pressure coefficient vs. wall deflection (after 
Briaud, Kim, 1998). 
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14 CONCLUSIONS 

The purpose of this contribution was to show how the use of the 
PMT can be expanded further than current practice. In a first 
part, it is shown that more soil testing should take place in 
geotechnical engineering to reach a reasonable target of 
reliability. Then, it is theoretically demonstrated that if the lack 
of tensile resistance of soils is taken into account, the true soil 
modulus in compression is higher than what is obtained from 
conventional PMT data reduction. Then a procedure is 
investigated to recreate by hyperbolic extension the small strain 
early part of the curve lost by the decompression-recompression 
process associated with the preparation of the PMT borehole. 
The limitations of that procedure are identified. Best practice for 
preparing the PMT borehole, commonly expected values of 
PMT parameters, and correlations with other soil parameters are 
given. Reasoning is presented against the general use of the 
PMT unload reload modulus. 

It is shown that instead of limiting the use of the PMT test 
results to the modulus and the limit pressure, the entire 
expansion curve can be used to predict the load settlement 
behavior of shallow foundations and the load displacement 
curve of deep foundations under horizontal loading. Long term 
creep loading and cyclic loading are addressed. A solution is 
presented for the design of piles subjected to dynamic vehicle 
impact. It is also shown how the PMT can be very useful for the 
foundation design of very tall structures. Finally an attempt is 
made to generate preliminary soil liquefaction curves base on 
the normalized PMT limit pressure. 
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