FORM-1

FOR

PROPOSED PESTICIDE INTERMEDIATES AND SPECIALTY CHEMICALS IN EXISTING UNIT

OF

M/s. ACETO CHEM PVT. LTD. (UNIT-II) PLOT NO. 274/3/1, GIDC ESTATE, PANDESARA, DIST: SURAT – 394 221, GUJARAT

Prepared By:

NABL Accredited Testing Laboratory ISO 9001:2008 Certified Company Aqua-Air Environmental Engineers P. Ltd.

403, Centre Point, Nr. Kadiwala School, Ring Road, Surat - 395002

APPENDIX I

(See paragraph - 6)

FORM 1

(I) Basic Information

Sr. No.	ltem	Details		
1.	Name of the project/s	Aceto Chem Pvt. Ltd. (Unit-II)		
2.	S. No. in the schedule	5(b) & 5(f)		
3.	Proposed capacity/area/length/tonnage to be handled/command area/lease area/number of wells to be drilled	For detail Please refer Annexure – I		
4.	New/Expansion/Modernization	Expansion		
5.	Existing Capacity/Area etc.			
6.	Category of Project i.e. 'A' or 'B'	'A'		
7.	Does it attract the general condition? If yes, please specify.	No		
8.	Does it attract the specific condition? If yes, please specify.	No		
9.	Location			
	Plot/Survey/Khasra No.	Plot No. 274/3/1		
	Village	GIDC Estate, Pandesara,		
	Tehsil	Choryasi		
	District	Surat		
	State	Gujarat		
10.	Nearest railway station/airport along with distance in kms.	Surat: 10 Km		
11.	Nearest Town, city, District Headquarters along with distance in kms.	Surat: 10 Km		
12.	Village Panchayats, Zilla Parishad, Municipal Corporation, local body (complete postal address with telephone nos. to be given)	Not applicable		
13.	Name of the applicant	Aceto Chem Pvt. Ltd. (Unit-II)		
14.	Registered Address	M/s. Aceto Chem Pvt. Ltd. (Unit-II) Plot No. 274/3/1, GIDC Estate, Pandesara, Dist: Surat, Gujarat – 394 221		
15.	Address for correspondence:	M/s. Aceto Chem Pvt. Ltd. (Unit-II) Plot No. 274/3/1, GIDC Estate, Pandesara, Dist: Surat, Gujarat – 394 221		
	Name	Mr. Bansibhai D. Patel		
	Designation (Owner/Partner/CEO)	Director		
	Address	M/s. Aceto Chem Pvt. Ltd. (Unit-II) Plot No. 274/3/1, GIDC Estate, Pandesara, Dist: Surat, Gujarat – 394 221		
	Pin Code	394 221		
	E-mail	rnd@acetochemindia.com		
	Telephone No.	0261 - 2890998/88		
	Fax No.	0261 - 2892345		
		UZU1 ZUJZJ 1 J		

16.	Details of Alternative Sites examined, if any.	NA
	Location of these sites should be shown on a	
	topo sheet.	
17.	Interlinked Projects	No
18.	Whether separate application of interlinked	No
	project has been submitted?	
19.	If yes, date of submission	No
20.	If no, reason	No
21.	Whether the proposal involves	No
	approval/clearance under: if yes, details of the	
	same and their status to be given.	
	(a) The Forest (Conservation) Act, 1980?	
	(b) The Wildlife (Protection) Act, 1972?	
	(c) The C.R.Z. Notification, 1991?	
22.	Whether there is any Government Order/Policy	No
	relevant/relating to the site?	
23.	Forest land involved (hectares)	No
24.	Whether there is any litigation pending against	No
	the project and/or land in which the project is	
	propose to be set up?	
	(a) Name of the Court	
	(b) Case No.	
	(c) Orders/directions of the Court, if any and its	
	relevance with the proposed project.	

Capacity corresponding to sectoral activity (such as production capacity for manufacturing, mining lease area and production capacity for mineral production, area for mineral exploration, length for linear transport infrastructure, generation capacity for power generation etc.

(II) Activity

1. Construction, operation or decommissioning of the Project involving actions, which will cause physical changes in the locality (topography, land use, changes in water bodies, etc.)

Sr. No.	Information/Checklist confirmation	Yes/ No	Details thereof with approximate quantities frates, wherever possible) with source of information data
1.1	Permanent or temporary change in land use, land cover or topography including increase intensity of land use (with respect to local land use plan)	No	Proposed expansion is within existing unit in Pandesara GIDC Industrial Estate
1.2	Clearance of existing land, vegetation and Buildings?	Yes	Minor site clearance activities shall be carried out to clear shrubs and weed.
1.3	Creation of new land uses?	No	The project site is located on level ground, which does not require any major land filling for area grading work.
1.4	Pre-construction investigations e.g. bore Houses, soil testing?	No	
1.5	Construction works?	Yes	For detail Please refer Annexure – II
1.6	Demolition works?	No	There will not be any demolition work at the site.
1.7	Temporary sites used for construction works or housing of construction workers?	No	
1.8	Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations	No	
1.9	Underground works mining or tunneling?	No	
1.10	Reclamation works?	No	
1.11	Dredging?	No	
1.12	Off shore structures?	No	
1.13	Production and manufacturing processes?	Yes	For detail Please refer Annexure -III
1.14	Facilities for storage of goods or materials?	Yes	Areas for storage of raw materials and finished products will be developed for the proposed expansion project.
1.15	Facilities for treatment or disposal of solid waste or liquid effluents?	Yes	Details of the Liquid Effluent are given as Annexure – V and details of solid waste are given as Annexure –VI.
1.16	Facilities for long term housing of operational workers?	No	
1.17	New road, rail or sea traffic during	No	

	Construction or Operation?		
1.18	New road, rail, air waterborne or other transport infrastructure including new or altered routes and stations, ports, airports etc?	No	
1.19	Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements?	No	
1.20	New or diverted transmission lines or Pipelines?	No	
1.21	Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers?	No	
1.22	Stream crossings?	No	
1.23	Abstraction or transfers of water form ground or surface waters?	Yes	Water requirement is met through Surat Municipal Corporation (SMC).
1.24	Changes in water bodies or the land surface Affecting drainage or run-off?	No	
1.25	Transport of personnel or materials for construction, operation or decommissioning?	Yes	By road only.
1.26	Long-term dismantling or decommissioning or restoration works?	No	
1.27	Ongoing activity during decommissioning which could have an impact on the environment?	No	
1.28	Influx of people to an area either temporarily or permanently?	No	
1.29	Introduction of alien species?	No	
1.30	Loss of native species or genetic diversity?	No	
1.31	Any other actions?	No	

2. Use of Natural resources for construction or operation of the Project (such as land, water, materials or energy, especially any resources which are non-renewable or in short supply):

Sr. No.	Information/checklist confirmation	Yes/No	Details there of (with approximate quantities frates, wherever possible) with source of information data
2.1	Land especially undeveloped or agricultural land (ha)	No	
2.2	Water (expected source & competing users) unit: KLD	Yes	Water requirement is met through the SMC. Water balance is given as Annexure – IV.
2.3	Minerals (MT)	No	
2.4	Construction material - stone, aggregates, and / soil (expected source - MT)	Yes	Construction materials like steel, cement, crushed stones, sand, rubble, etc. required for the project shall be procured from the local market of the region.
2.5	Forests and timber (source - MT)	No.	
2.6	Energy including electricity and fuels (source, competing users) Unit: fuel (MT), energy (MW)		Fuel Natural Gas: 82 SCM/day (Existing) Diesel: 30 Lit/Hr (Existing) Natural Gas: 82 SCM/day (Total Proposed) Diesel: 75 Lit/Hr (Total Proposed) Energy : 90 HP from DGVCL.
2.7	Any other natural resources (use appropriate standard units)	No	

3. Use, storage, transport, handling or production of substances or materials, which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health.

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
3.1	Use of substances or materials, which are hazardous (as per MSIHC rules) to human health or the environment (flora, fauna, and water supplies)		For detail please refer Annexure – VIII
3.2	Changes in occurrence of disease or affect disease vectors (e.g. insect or water borne diseases)		
3.3	Affect the welfare of people e.g. by changing living conditions?	Yes	Direct/Indirect employment
3.4	Vulnerable groups of people who could be affected by the project e.g. hospital patients, children, the elderly etc.		

3.5	Any other causes	No	

4. Production of solid wastes during construction or operation or decommissioning (MT/month)

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
4.1	Spoil, overburden or mine wastes	No	
4.2	Municipal waste (domestic and or commercial wastes)	No	
4.3	Hazardous wastes (as per Hazardous Waste Management Rules)	Yes	Please refer Annexure –VI
4.4	Other industrial process wastes	No	
4.5	Surplus product	No	
4.6	Sewage sludge or other sludge from effluent treatment	No	
4.7	Construction or demolition wastes	No	
4.8	Redundant machinery or equipment	No	
4.9	Contaminated soils or other materials	No	
4.10	Agricultural wastes	No	
4.11	Other solid wastes	Yes	Please refer Annexure –VI

5. Release of pollutants or any hazardous, toxic or noxious substances to air (Kg/hr)

Sr. No	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
5.1	Emissions from combustion of fossil fuels from stationary or mobile sources	Yes	Please refer as Annexure – VII
5.2	Emissions from production processes	Yes	Please refer as Annexure – VII
5.3	Emissions from materials handling storage or transport	No	
5.4	Emissions from construction activities including plant and equipment	No	
5.5	Dust or odors from handling of materials including construction materials, sewage and waste		
5.6	Emissions from incineration of waste	Yes	Please refer as Annexure – VII
5.7	Emissions from burning of waste in open air (e.g. slash materials, construction debris)	No	
5.8	Emissions from any other sources	No	

6. Generation of Noise and Vibration, and Emissions of Light and Heat:

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data with source of information data
	From operation of equipment e.g. engines, ventilation plant, crushers	Yes	The Noise level will be within the prescribed limit. At noisy area, adequate preventive & control measures will be taken. No significant noise, vibration or emission of light & heat from the unit.
6.2	From industrial or similar processes	Yes	-do-
6.3	From construction or demolition	No	
6.4	From blasting or piling	No	
6.5	From construction or operational traffic	No	
6.6	From lighting or cooling systems	Yes	Adequate Lighting shall be provided in unit and also local ventilation system shall be provided.
6.7	From any other sources	No	

7. Risks of contamination of land or water from releases of pollutants into the ground or into sewers, surface waters, groundwater, coastal waters or the sea:

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
	From handling, storage, use or spillage of hazardous materials	Yes	For detail please refer Annexure – VIII
	From discharge of sewage or other effluents to water or the land (expected mode and place of discharge)		
	By deposition of pollutants emitted to air into the and or into water	No	
7.4	From any other sources	No	
	Is there a risk of long term build up of pollutants in the environment from these sources?	No	

8. Risk of accidents during construction or operation of the Project, which could affect human health or the environment

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
8.1	From explosions, spillages, fires etc. from storage, handling, use or production of hazardous substances		For detail please refer Annexure – VIII
8.2	From any other causes	No	
8.3	Could the project be affected by natural disasters causing environmental damage (e.g. floods, earthquakes, landslides, cloudburst etc)?		

9. Factors which should be considered (such as consequential development) which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality

Sr. No.	Information/Checklist confirmation	Yes/No	Details there of (with approximate quantities/rates, wherever possible) with source of information data
9.1	Lead to development of supporting. lities, ancillary development or development stimulated by the project which could have impact on the environment e.g. • Supporting infrastructure (roads, power supply, waste or waste water treatment, etc.) • housing development • extractive industry • supply industry • other	Yes	For detail please refer Annexure – IX
9.2	Lead to after-use of the site, which could have an impact on the environment	No	
9.3	Set a precedent for later developments	No	
9.4	Have cumulative effects due to proximity to other existing or planned projects with similar effects	No	

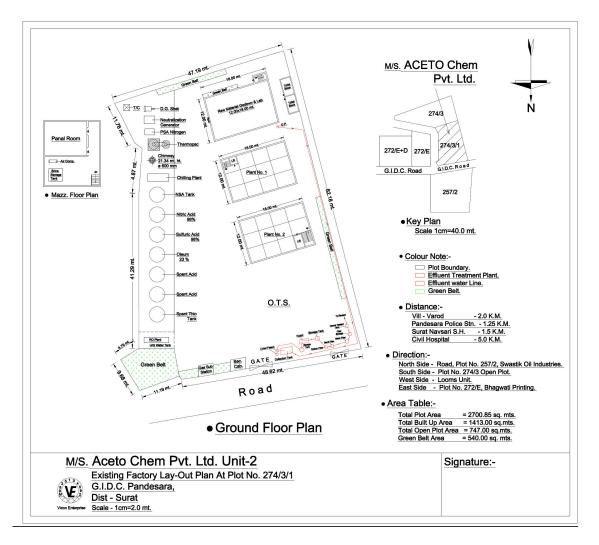
(II) Environmental Sensitivity

Sr. No.	Areas	Name/ Identity	Aerial distance (within 15km.) Proposed project location boundary
	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value		No protected area within 5 km from the proposed expansion project site.
	Areas which important for are or sensitive Ecol logical reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests		
	Area used by protected, important or sensitive Species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration		No protected area or sensitive species within 5 km from the proposed expansion project site.
4	Inland, coastal, marine or underground waters		
5	State, National boundaries	-	N.A.
6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas	-	N.A.
7	Defense installations	-	N.A.
8	Densely populated or built-up area	Surat	Pandesar GIDC is located within Municipal limit of Surat.
	Area occupied by sensitive man-made land uses Hospitals, schools, places of worship, community facilities)	-	N.A.
10	Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)	-	N.A.
	Areas already subjected to pollution environmental damage. (those where existing legal environmental standards are exceeded)or	-	N.A.
	Are as susceptible to natural hazard which could cause the project to present environmental problems (earthquake s, subsidence ,landslides, flooding erosion, or extreme or adverse climatic conditions)	-	N.A.

IV). Proposed Terms of Reference for EIA studies: For detail please refer Annexure – X

LIST OF ANNEXURES

SR. NO.	NAME OF ANNEXURE
I	List of products with their production capacity
II	Layout Map of the Plant
III	Brief Manufacturing Process Description with Chemical and Mass Balance
IV	Details of Water Consumption Wastewater Generation
V	Effluent Treatment Scheme
VI	Details of Hazardous /Solid Waste Generation, Handling and Disposal
VII	Details of Air pollution Control System (Stack & Vent)
VIII	Details of Hazardous Chemicals Storage & Handling
IX	Socio-economic Impacts
Х	Proposed Terms of Reference for EIA studies


ANNEXURE – 1

LIST OF PRODUCTS WITH THEIR PRODUCTION CAPACITY

C		Prod	uction
Sr. No.	Product Name	Existing	Proposed Total
INO.		MT/Month	MT/Month
1	Nytrosyl Sulphuric Acid (from Sulfur) *	132.08	132.08
	Nytrosyl Sulphuric Acid (from Sodium Thio		
2	Sulphate Solution and Spent Acid	468	468
	(H2SO4)) **		
3.1	4-Methoxy Acetophenone	0	60
3.2	4-Methyl Acetophenone	0	60
4.1	Diethyl Ketone		
4.2	Methyl Propyl Ketone	0	100
4.3	Dipropyl Ketone	0	100
4.4	Propiophenone		
5	Alpha Nitro Napthalene	0	100
6	Alpha Napthylamine	0	165
7	Phenyl Alpha Naphthylamine (PANA)	0	90
8	Epichlorohydrin Based Polyamide resin	0	116
9	3,5-Dichloroaniline	0	50
10	Bis-(2-Chloroethyl)-amine	0	30
	Total	600.08	1311.08
	By Products		
1	Sulphur	50.74	50.74
2	Sodium Sulphate	242.728	242.728
3	Di Ethyl Ketone	Nil	79
4	Acetic Acid	Nil	30.5

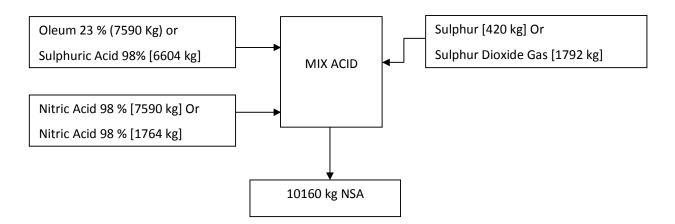
ANNEXURE – 2

PLANT LAYOUT

ANNEXURE – 3 MANUFACTURING PROCESS, CHEMICAL REACTION WITH MASS BALANCE

1. NITROSYL SULFURIC ACID (NSA) FROM SULFUR (OR SULFUR DIOXIDE GAS)

Process Description:


First make mix acid of Oleum 23 % and concentrate Nitric Acid . Charge Sulfur in to the mix acid from this process reaction takes place and generation SO₂ Gas (or charge Sulphur Dioxide gas in to the mix acid). SO₂ react with concentrate Nitric Acid and Oleum convert in to Sulphuric A cid after this reaction product will be Nitrosyl Sulfuric Acid (NSA).

Reaction Mechanism

 $6 \text{ HNO3} + 2S \qquad 3N_2O_3 + 2SO_3 + 3H_2O$ $N_2O_3 + 2SO_3 + H_2O \longrightarrow 2NOHSO_4$ $6HNO_3 + 8H_2SO_4 + 4SO_3 + 2S \longrightarrow 6NOHSO_4 + 8H_2SO_4$ OR

 $H_2SO_4 + HNO_3 + SO_2 \longrightarrow NOHSO_4 + H_2SO_4$

Flow Chart

Nytrosyl Sulphuric Acid from Sulfur							
INPUT	KG	PROCESS	KG	OUTPUT			
Oleum 23 % <i>or</i> Sulphuric Acid 98 %	7590 <i>or</i> 6604		10160	NSA			
Nitric Acid 98 %	2151 or 1764	Mix Acid Vessel	1	SO ₂			
Sulphar or SO2 Gas	420 or 1792						
Total	10161		10161	Total			

PRODUCT [2] NITROSYL SULPHURIC ACID (NSA) AND SULPHUR RECOVERY FROM SODIUM

THIOSUIPHATE SOLUTION

1. Process Description with Chemical Reaction:

Nytrosyl Sulphuric Acid from the spent sodium thio solution shall be manufactured only after getting permission from the Central Pollution Control Board [i. e. utilization of the hazardous wastes under Rule 11 of the Hazardous Waste (Management, Handling & Transboundary) Rules, 2008].

Sulfur and Sodium Sulphate shall be generated, only from the manufacturing of Nytrosyl Sulphuric Acid from Sodium Thio Sulphate Solution (used as a raw material).

Take Sodium Thiosuiphate Solution. Now take this solution in one vessel and add spent acid in it, Reaction takes place and SO_2 librates, Scrub this gas in another vessel which is having mix acid of H_2SO_4 and HNO_3 .

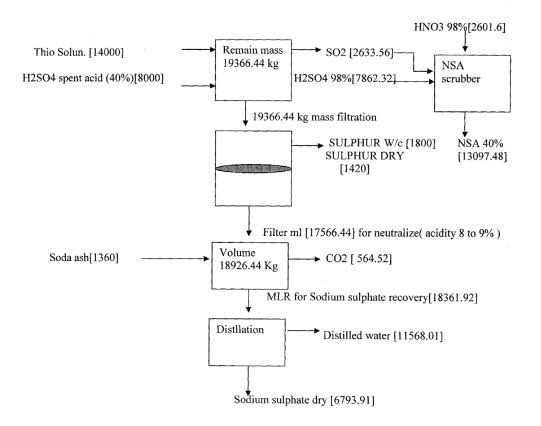
Mix Acid Vessel which has scrubbed SO₂ gas will make NITROSYL SULFURIC ACID [NSA].

$$SO_2 + HNO_3 \longrightarrow NOHSO_4$$

[NSA]

After completion of Spent Addition heat the solution till SO_2 librates then cool the mass and filter. Dry the residue to obtain SULPHUR.

Filtrate will be collected separately, neutralize this solution and make concentrate by distillation water, then cool the mass, and Filter it.


Residue will be dried and Product will be SODIUM SULPHATE, Filtrate will be used again.

$$Na_2S_2O_3 + H_2SO_4 \longrightarrow SO_2 + S + H_2O + NA_2SO_4$$

Flowchart:

Material balance

MATERIAL BALANCE FOR SULPHUR RECOVERY For 1.0 kg of product

Nytrosyl Sulphuric Acid

		1		1
INPUT	KG	PROCESS	KG	OUTPUT
Thio Solutio				
n	14000		2633.56	SO ₂
Spent				2
H_2SO_4		Acidifica tion	19366.4	Reaction
(40 %)	8000	Vessel	4	Mass
		, coser		
Total	22000		22000	Total
		Ļ		
Reacti				
on	19366.			Sulfur
Mass	44		1800	W/C
			17566.4 4	Reaction Mass
		Filtration	4	IVIdSS
	19366.		19366.4	
Total	44		4	Total
		Ļ		
Reacti				
on	17566.			
Mass	44		564.52	CO ₂
Soda		Neutraliz	18361.9	Reaction
Ash	1360	ation	2	Mass
		Vessel		
	40000		400000	
Total	18926.		18926.4	Tatal
iotai	44		4	Total
Reacti		T		1
on	18361.			Sodium
Mass	92		6793	Sulphate
		1		Condens
		MEE &		ate
		Centrifug	11568	Water
		е		M. L. to
			0.92	recycled
	18361.		18361.9	
Total	92		2	Total

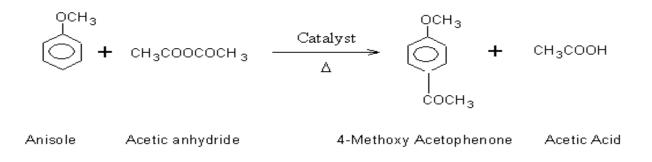
	INPUT	KG	PROCESS	KG	OUTPUT
^	SO ₂	2633.56		13097. 48	NSA 40 %
	H₂SO₄ 98 %	7862.32	NSA Scrubber		
	HNO₃ 98 %	2601.6			
	Total	13097.4 8		13097. 48	Total

Sulfur W/C	1800	Dryer	1420	Sulfur Dry
			380	Water Evaporated
Total	1800		1800	Total

 \rightarrow

Mass Balance:

INPUT :	kg/batch	Kg/month	Specific Consumption
Thio Solution	14000.00	500248.90	1.069
Spent H ₂ SO ₄ (40 %)	8000.00	285856.52	0.611
Soda Ash	1360.00	48595.61	0.104
H ₂ SO ₄ 98 %	7862.32	280936.93	0.600
HNO ₃ 98 %	2601.60	92960.54	0.199
Total	33823.92	1208598.49	


OUTPUT :	kg/batch	Kg/month
Sodium Sulphate	6793.00	242727.91
Condensate Water	11568.00	413348.52
M. L. to Recycled in MEE	0.92	32.87
NSA 40 %	13097.48	468000.00
Sulfur Dry	1420.00	50739.53
Water Evaporated	380.00	13578.18
CO ₂	564.52	20171.47
Total	33823.92	1208598.49

PRODUCT [3.1] 4- METHOXY ACETO-PHENONE

1. Process Description:

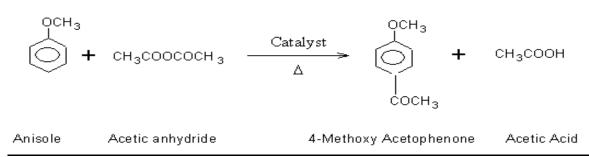
Catalyst 60. Kg is kept in stirred reactor. To this, total required Anisole 3459.54 kgs and Acetic Anhydride 723.40 kgs, are added over a period of 1 hour under constant stirring. After closing the reaction autoclave, the process temperature is raised to 120-130°C slowly and stepwise with constant stirring and maintain for 4-5 hours. The reaction process is terminated by putting off the heating. The autoclave was allowed to cool till the temperature of the mass drops down to below 50°C. The reaction mixture is drained out through the bottom drain valve of the autoclave in nutch filter for separation of catalyst. Finally, reaction mixture is taken for filtration. The wet cake is washed with small amount of anisole. The reaction mixture is subjected to fractional distillation to separate all the components. Anisole is recovered and recycled; acetic acid is recovered of desired grade. Finally 4-MAP is distilled out.

2. Reaction Mechanism

3. Flow Chart

INPUT	Kg		OUTPUT	Kg
Anisol	3459.54		Reaction Mass	4242.94
Catalyst	18.00	Asstulation		
Catalyst [Recover]	42.00	Acetylation Reaction		
Acetic Anhydride	723.40	Reaction		
Total	4242.94		Total	4242.94
		•		
INPUT	Kg	•	OUTPUT	Kg
Reaction Mass	4242.94		Catalyst [Recover]	42.00
		Filtration	Reaction Mass	4182.94
		Fillation	Catalyst to TSDF	18.00
Total	4242.94		Total	4242.94
	1	Ļ	<u> </u>	
INPUT	Kg	•	OUTPUT	Kg
Reaction Mass	4182.94		Acetic Acid (By Product)	401.00
			loss	24.50
		Distillation -1	Anisol	2679.30
			loss	34.13
			Reaction Mass	1044.01
Total	4182.94		Total	4182.94
INPUT	Kg	·	OUTPUT	
Reaction Mass	1044.01		4 Methoxy	1000.00
	1044.01		acetophenone	1000.00
		Distillation-2	loss	6.53
			Residue	37.48
Total	1044.01		Total	1044.01

Mass Balance


	4 - Methoxy Acetophenone						
Sr. No.	Input	Kg	Output	Кg			
1	Anisol	3459.54	4 - Methoxy Acetophenone	1000			
2	Acetic anhydride	723.4	loss	6.53			
3	catalyst	60	Catalyst	42			
4			Catalyst - Loss	18			
5			Acetic Acid	405			
6			Loss	20.5			
7			Anisol	2679.3			
8			Loss	34.13			
9			Residue to TSDF	37.48			
	TOTAL	4242.94	Total	4242.94			

PRODUCT [3.2] 4-Methyl Acetophenone

process Description:

Catalyst is kept in stirred reactor. To this, total required Toluene and Acetic Anhydride, are added over a period of 2 hour under constant stirring. After closing the reaction autoclave, the process temperature is raised to 120-130°C slowly and stepwise with constant stirring and maintain for 4-5 hours. The reaction process is terminated by putting off the heating. The autoclave was allowed to cool till the temperature of the mass drops down to below 50°C. The reaction mixture is drained out through the bottom drain valve of the autoclave in nutch filter for separation of catalyst. Finally, reaction mixture is taken for filtration. The reaction mixture is subjected to fractional distillation to separate all the components. Toluene is recovered and recycled; acetic acid is recovered of desired grade. Finally 4-MAP is distilled out.

Reaction Mechanism

Flowchart

INPUT	Kg	Acetylation	OUTPUT	Kg	
Toluene	24029.9	Reaction	Reaction Mass	26763.30	
Catalyst	18.00				
Catalyst [Recover]	42.00				
Water	9.20				
Acetic Anhydride	2664.20				
Total	26763.30	1	Total	26763.30	
` · _ · _ · _ · _ · _ · _ · _ · _ ·					

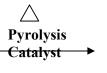
INPUT	Kg		OUTPUT	Kg
Reaction Mass	26763.30		Catalyst [Recover]	42.00
		Filtration	Catalyst to TSDF	18.00
		Filtration	Reaction Mass	26703.30
Total	26763.30		Total	26763.30

		V		
INPUT	Kg	Distillation -1	OUTPUT	Kg
Reaction Mass	26703.30		4 Methyl acetophenone (Crude)	1050.00
			Toluene	22144.00
			loss	1165.00
			Acetic anhydride	1812.70
			Acetic Acid	505.02
			Loss	26.58
Total	26703.30		Total	26703.30

INPUT	Kg		OUTPUT	Kg
4 Methyl acetophenone	1050.00	•	4 Methyl acetophenone	1000.00
[Crude]		Distillation -2	Loss	6.53
			Residue	43.47
Total	1050.00		Total	1050.00

Mass Balance

	4-Methyl Acetophenone					
Sr. No.	Input	Kg	Output	Kg		
1	Toluene	24029.9	4-Methyl Acetophenone	1000		
2	Catalyst	60	Catalyst	42		
3	Water	9.2	Toluene	22144		
4	Acetic Anhydride	2664.2	Loss	1216.11		
			Acetic anhydride	1812.7		
			Acetic acid	505.02		
			Residue	43.47		
	TOTAL	26763	Total	26763		


PRODUCT [4.1] Diethyl Ketone

Process Description

Propionic acid is vapourized in the vapourizer and feed to catalyst bed at higher temperature to get the desired product i.e. Diethyl Ketone which is found in the vapour form. The vapour is cool down in the heat exchanger. Carbon Dioxide is vent off and Water is separate out from DEK through phase separation.

Reaction Mechanism

ΟН

 $+ CO_2 + H_2O$

1. Propionic acid

Diethyl Ketone

Carbon Dioxide

Water

<u>F</u>

INPUT	KG	PROCESS	KG	OUTPUT
Propionic Acid	1.76		1	Diethyl Ketone
			0.54	CO2 gas
		Pyrolysis Reaction	0.22	Water
Total	1.76		1.76	Total

Mass Balance

	4.1 Diethyl Ketone					
Sr. No. Input Kg Output Kg						
1	Propionic Acid	176000	Product	100000		
			CO2 gas	54000		
			Water	22000		
	TOTAL	176000	Total	176000		

PRODUCT [4.2] Methyl Propyl Ketone

Process Description

Butyric acid and Acetic acid are vapourized in the vapourizer in equal propotion and feed to catalyst bed at higher temperature to get the desired product i.e. Methyl propyl ketone which is found in the vapour form. The vapour is cool down in the heat exchanger. Carbon Dioxide is vent off and Water is separate out from MPK through phase separation.

Reaction Mechanism

Butyric acid

Acetic acid

Methyl propyl Ketone

Water

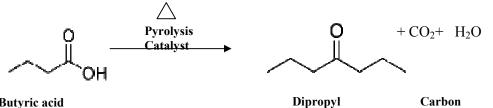
Carbon

Dioxide

Flowchart

INPUT	KG	PROCESS	OUTPUT	KG
Butyric acid	1.03		1	МРК
Acetic acid	0.69		0.51	CO2 GAS
		Pyrolysis Reaction	0.21	WATER
		Reaction		
Total	1.72		1.72	

Mass Balance


Methyl Propyl Ketone						
Sr. No.	Input Kg Output Kg					
1	Butyric acid	103000		Methyl Propyl Ketone	100000	
2	Acetic Acid	69000		CO2 Gas	51000	
				Water	21000	
	TOTAL	172000.00		Total	172000	

PRODUCT [4.3] **Dipropyl Ketone**

Process Description

Butyric acid is vapourized in the vapourizer and feed to catalyst bed at higher temperature to get the desired product i.e. Dipropyl Ketone which is found in the vapour form. The vapour is cool down in the heat exchanger. Carbon Dioxide is vent off and Water is separate out from DPK through phase separation.

Reaction Mechanism

Butyric acid

Ketone

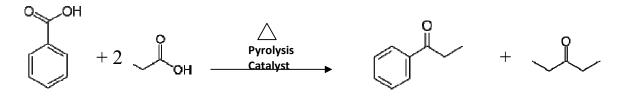
Water

Dioxide

Flowchart

INPUT	KG	PROCESS	KG	OUTPUT
Butyric acid	1.54		1	DPK
			0.4	CO2 GAS
		Pyrolysis Reaction	0.14	WATER
		Redection		
Total	1.54		1.54	Total

Mass Balance


4.3 Dipropyl Ketone						
Sr. No. Input Kg Output Kg						
1	Butyric Acid	154000	Dipropyl Ketone	100000		
			Water	14000		
			CO2 Gas	40000		
	TOTAL	154000.00	Total	154000.00		

PRODUCT [4.4] Propiophenone

Process Description

Benzoic acid and Propionic acid are vapourized in the vapourizer in equal molar proportion and feed to catalyst bed at higher temperature to get the desired product i.e. Ethylphenyl ketone and Diethyl Ketone which is found in the vapour form. The Ethyl phenyl and Diethy Ketone are separate out in the column due to their boiling point difference in the Fractional column. Carbon Dioxide is vent off and Water is separate out from DEK through phase separation.

Reaction Mechanism

Benzoic acid

Propionic acid

Propiophenone

Diethyl Ketone

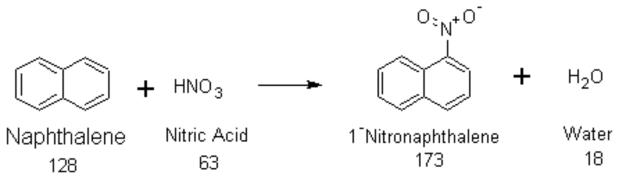
<u>Flowchart</u>

INPUT	KG	PROCESS	OUTPUT	KG
Benzoic acid	0.51		0.56	Propiophenone
Propionic acid	0.76		0.44	DEK
		Pyrolysis Reaction	0.18	CO2 GAS
		Reaction	0.09	WATER
Total	1.27		1.27	Total

Mass Balance

4.4 Propiophenone								
Sr. No.	Input	Kg		Output	Kg			
1	Benzoic acid	54212.598		Propiophenone	59528			
2	Propionic acid	80787.402		Diethyl Ketone	46772			
				CO2 Gas	19134			
				Water	9567			
	TOTAL	135000		Total	135000			

PRODUCT [5]


ALPHA NITRONAPHTHALENE

1. <u>Process Description</u>

Nitric Acid 60% is taken in the reactor and Naphthaleneis charged into reactor at desired flow rate and temperature. Output from the Reaction will contain 1-Nitronaphthalene [ANN] along with Dilute Nitric Acid 40-42% [Spent Acid].

Spent Acid is then removed through layer separation and then top organic mass is separate out. Organic layer is nothing but our finished product i.e. Alpha Nitro Naphthalene.

2. <u>Reaction Mechanism</u>

3. Flow Chart

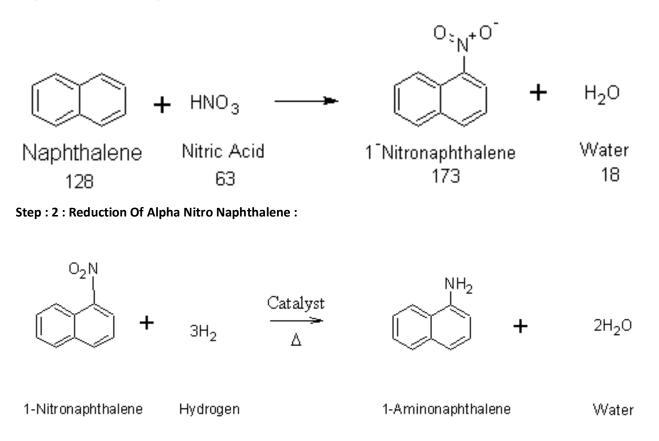
INPUT	KG	PROCESS	KG	OUTPUT
Naphthalene	520.00		694.00	1-Nitro Naphthalene
Nitric Acid 60%	853.13		642.00	Dilute acid for recover [42%]
		Nitration	37.13	Evaporation loss
Total	1373.13		1373.13	Total

4. Mass Balance

	5. Alpha Nitro Napthalene									
Sr. No.	Input	Kg	Output	Kg						
1	Napthalene	520	Alpha Nitro Napthalene	694						
2	Nitric Acid 60%	853.13	Dilute Acid (Nitric Acid)	642						
			Eva. Loss	37.13						
	TOTAL	1373	Total	1373						

PRODUCT [6] ALPHA NAPHTHYLAMINE

1. <u>Process Description</u>


Nitric Acid 60% is taken in the reactor and Naphthalene is charged into reactor at desired flow rate and temperature. Output from the Reaction will contain 1-Nitronaphthalene [ANN] along with Dilute Nitric Acid 40-42% [Spent Acid].

Spent Acid is then removed through layer separation and then top organic mass is separate out. Organic layer is nothing but our finished product i.e. Alpha Nitro Naphthalene.

Selected Catalyst is kept in stirred reactor with Solvent. To this, total required 1-Nitronaphthalne and is added over a period of 1 hour under constant stirring. After closing the reaction autoclave, the process temperature is raised up to 80-90°C slowly and stepwise with constant stirring and maintain for 1 hours. Hydrogen gas is passed through the reaction. Check for reaction completion. The reaction process is terminated by putting off the heating. The autoclave was allowed to cool till the temperature of the mass drops down to below 50°C. The reaction mixture is drained out through the bottom drain valve of the autoclave in filter for separation of catalyst. Finally, reaction mixture is taken for filtration. The reaction mixture is subjected to fractional distillation to separate all the components. Solvent is recovered and recycled;. Finally 1-Aminonaphthalene is recovered.

2. <u>Reaction Mechanism</u>

Step:1:Nitration Of Naphthalene:

3. Flow Chart

INPUT	KG	PROCESS	KG	OUTPUT
Naphthalene	520.00	Nitration	694.00	1-Nitro Naphthalene
Nitric Acid 60%	853.13		642.00	Dilute acid for recover [42%]
			37.13	Evaporation loss
Total	1373.13		1373.13	Total
		•	T	
INPUT	Kg		Kg	OUTPUT
1-Nitro Naphthalene	694.00		1738.07	Reaction Mass
IPA / METHANOL	950.00	Hydrogenation		
Hydrogen	24.07			
Catalyst	70.00			
Total	1738.07		1738.07	Total
		•		
INPUT	Kg	·	Kg	OUTPUT
Reaction Mass	1738.07		60.00	Catalyst [recover]
		Filtration	10.00	Catalyst to TSDF
			1668.07	Filtrate Reaction Mass
Total	1738.07		1738.07	Total
		Ļ		
INPUT	Kg		Kg	OUTPUT
Reaction Mass	1668.07		903.00	IPA / METHANOL OR
			47.00	loss
		Distillation	144.42	Distilled water
			545.00	Product ANA
			28.65	Residue
Total	1668.07		1668.07	Total

4. Mass Balance

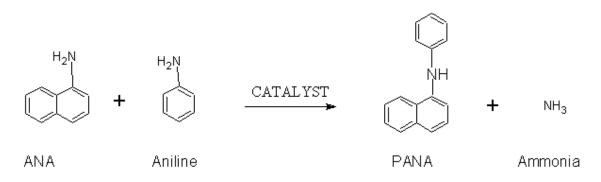
	6. Alpha Naphthylamine							
By Using	IPA / Methanol							
Sr. No.	Input	Kg		Output	Kg			
1	Napthalene	520		Alpha Naphthylamine	545			
2	Nitric Acid 60%	853.13		Dilute Acid (Nitric Acid)	642			
3	IPA / Methanol	950		Eva Loss	37.13			
4	Hydrogen	24.07		Catalyst	60			
5	catalyst	70		Catalyst Loss	10			
6				IPA / Methanol	903			
7				Loss	47			
8				Distilled Water	144.42			
9				Residue to TSDF Site	28.65			
	TOTAL	2417.20		Total	2417.20			

Using Aniline / ODCB as a Solvent :-

INPUT	KG	PROCESS	KG	OUTPUT
Naphthalene	520.00		694.00	1-Nitro Naphthalene
Nitric Acid 60%	853.13		642.00	Dilute acid for recover [42%]
		Nitration	37.13	Evaporation loss
Total	1373.13		1373.13	Total
INPUT	Kg	•	Kg	OUTPUT
1-Nitro Naphthalene	694.00		2088.07	Reaction Mass
ANILINE/ODCB	1300.00	Hydrogenation		
Hydrogen	24.07			
Catalyst	70.00			
Total	2088.07		2088.07	Total
		•		
INPUT	Kg		Kg	OUTPUT
Reaction Mass	2088.07		60.00	Catalyst [recover]
		Filtration	10.00	Catalyst to TSDF
			2018.07	Filtrate Reaction Mass
Total	2088.07		2088.07	Total
		•		
INPUT	Kg	·	Kg	OUTPUT
Reaction Mass	2018.07		1274.00	ANILINE/ODCB
			26.00	loss
		Distillation	144.42	Distilled water
			545.00	Product ANA
			28.65	Residue
Total	2018.07		2018.07	Total

5. <u>Mass Balance</u>

	6. Alpha Naphthylamine							
By Using	Aniline / ODCB							
Sr. No. Input		Kg	Output	Кg				
1	Napthalene	520	Alpha Naphthylamine	545				
2	Nitric Acid 60%	853.13	Dilute Acid (Nitric Acid)	642				
3	Aniline / ODCB	1300	Eva. Loss	37.13				
4	Hydrogen	24.07	Catalyst	60				
5	catalyst	70	Catalyst Loss	10				
6			Aniline / ODCB	1274				
7			Loss	26				
8			Distilled Water	144.42				
9			Residue to TSDF Site	28.65				
	TOTAL	2767.20	Total	2767.20				


PRODUCT [7]

PHENYL ALPHA NAPHTHYLAMINE [PANA]

1. <u>Process Description</u>

Selected Catalyst is kept in stirred reactor with Aniline. To this, total required 1-Aminonaphthalne 4000 kg is added over a period of 1 hour under constant stirring. After closing the reactor, the process temperature is raised up to 280°C slowly and stepwise with constant stirring. Ammonia Gas will liberate during reaction which is scrubbed in Scrubber. The reaction process is terminated by putting off the heating. The reactor was allowed to cool till the temperature of the mass drops down to below 50°C. The reaction mixture is transfer to distillation reactor and fractional distillation is done through which Aniline, Low Boiler and PANA will distilled out. Residue will be discharged from bottom which will be disposed to solid waste disposal site.

2. <u>Reaction Mechanism</u>

3. Flow Chart

INPUT	KG	PROCESS	KG	OUTPUT
Aniline [Fresh]	2600.00	Condensation	9724.50	Reaction Mass
Aniline (Recovered]	3500.00		475.50	Ammonia to Scrubber
Alpha Naphthylamine	4000.00			
Catalyst	100.00			
Total	10200.00	I	10200.00	Total
		+		
INPUT	KG		KG	OUTPUT
Reaction Mass	9724.50		5600.00	Phenyl Alphanaphthylamine
			3500.00	Aniline [Recovered]
		Distillation	21.50	Loss
			3.00	Evaporation loss
			600.00	Distillation Residue
Total	9724.50		9724.50	Total

4. Mass Balance

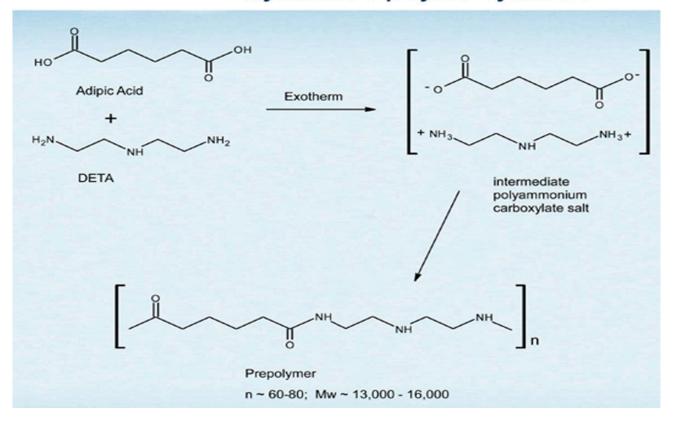
	7. Phenyl Alpha Napthylamine						
Sr. No.	Input	Kg		Output	Kg		
1	Aniline (Fresh)	2600		Phenyl Alpha Napthylamine	5600		
2	Aniline (Recovered)	3500		Ammonia	475.5		
3	Alpha Napthylamine	4000		Aniline	3500		
4	Catalyst	100		Eva. Loss	24.5		
				Distillation Residue	600		
	TOTAL	10200		Total	10200		

PRODUCT [8]

EPICHLOROHYDRIN BASED POLY AMIDE RESIN

1. <u>Process Description</u>

Take Diethylene triamine (DETA) in the reactor and Charge Adipic Acid in DETA . Heat the reaction Mixture to 125Deg.C. Maintain temperature 3 Hours. Now, Cool the reaction mass 90 Deg.C. After that Dilute the reaction Mass with water and Add Epichlorohydrin in above reaction mass and stir 45 mins.


Reaction take Place and Product will be EPICHLOROHYDRIN BASED POLY AMIDE RESIN.


2. <u>Reaction Mechanism</u>

PROCESS REACTION : STEP -

1:

Polyamide Prepolymer Synthesis

Polyamide Epichlorohydrin Resin Synthesis

3. Flow Chart

INPUT	KG		KG	OUTPUT
DETA	585		2765	Reaction mass
Adipic Acid	780	Prepolymer Reaction		
Water	1400			
Total	2765		2765	Total
INPUT	KG		KG	OUTPUT

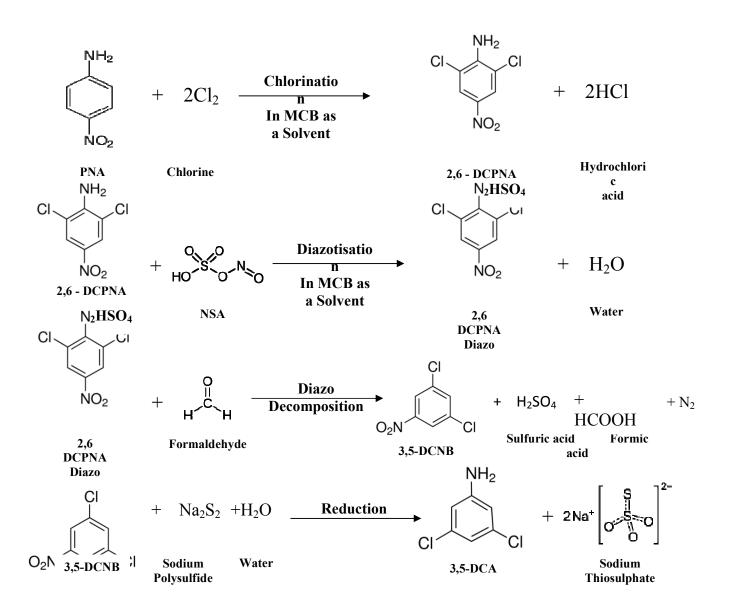
INPUT	KG		KG	UUIPUI
Reaction Mass	2765	Dolyomido	11600	PAR
EPI	351	Polyamide Epichlorohydrin		
WATER	8484	Reaction		
		Reaction		
Total	11600		11600	Total

4. <u>Material Balance</u>

	ECH based Polyamide Resin							
Sr. No.	Input	Kg	Output	Kg				
1	DETA	585	ECH based Polyamide Resin	11600				
2	Adipic Acid	780						
3	Water	9884						
4	EPI	351						
	TOTAL	11600	Total	11600				

PRODUCT [9] 3,5 – Dichloroaniline

Process Description


PNA is charged into reactor containing desired quantity of MCB as a solvent. PNA is chlorinated to 2,6 DCPNA with the help of chlorine gas and HCl is obtained as a byproduct.

2,6 DCPNA in MCB is then diazotized with the help of Nitrosyl sulfuric acid at low temperature. Obtained reaction mass is then separate out into two layer i.e. 1. Organic layer consist MCB and trace amount of organic impurities and 2. Aqueous layer consist Diazo of 2,6 DCPNA. MCB is recycle for next chlorination.

This Aqueous layer then drawn into solution of Formaldehyde to give 3,5 DCNB. Here spent acid is separate out and used for generation of NSA.

3,5 DCNB then reduced by charging it into the polysulfide solution made by Caustic lye and sulphur. After 5-6 hours of reflux. Reaction mass is cool down and then phase separation is carried out. In Organic layer, we obtain Crude 3,5-DCA and Sodium thio solution is obtained in aqueous layer which can be sale.

Crude 3,5 DCA is further distilled out to achieve better quality.

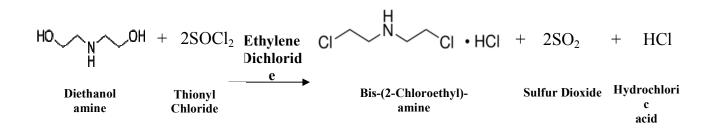
<u>Flowchart</u>

INPUT	KG	PROCESS	KG	OUTPUT
PNA	666	11100200	4329	Reaction Mass
Chlorine	685		352	HCL to Scrubber
МСВ	3330	Chlorination	552	
WICD	5550	Chlormation		
Total	4681		4681	Total
		•		
INPUT	KG		KG	OUTPUT
Reaction Mass	4329		5944	Reaction Mass
NSA	1200	Diazotization		
NSA [RECOVER]	415			
Total	5944		5944	Total
		•		
INPUT	KG		KG	OUTPUT
Reaction Mass	5944	Layer Saperation	3444	MCB **
		Layer Saperation	2500	2,6-DCPNA DIAZO
Total	5944		5944	Total
		Ļ		
INPUT	KG	•	KG	OUTPUT
2,6-DCPNA DIAZO	2500		751	3,5-DCNB
НСНО	495	Diazo	2135	Spent Acid
		Decomposition	109	N2
Total	2995		2995	Total
3,5-DCNB	751	*	4261	Reaction Mass
Sulphur	405			
Caustic Lye 48%	1055			
water	2050	Reduction		
Total	4261		4261	Total
		↓		
Reaction Mass	4261	•	575	Organic layer
Wash Water	600		3681	Thio layer for sale
				Washing Layer for
		Layer Separation	625	MEE
Total	4861		4861	Total
Reaction Mass	575	*	477	3,5 DCA
	5.5		98	Residue TO TSDF Site
		Distillation		
Total	575		575	Total
iviai	575		5/5	istai

MCB RECOVERY **

INPUT	KG		KG	OUTPUT
MCB	3444	Maching	3429	МСВ
NSA	400	Washing	415	NSA [recover]
Total	3844		3844	Total
		↓ ↓		
INPUT	KG		KG	OUTPUT
MCB	3429		3243	МСВ
		Distillation	118	MCB vent Loss
			68	Residue
Total	3429		3429	Total

Mass Balance


9. 3,5-Dichloroaniline						
Sr. No.	Input	Kg	Output	Kg		
1	PNA	666	3,5-Dichloroaniline	477		
2	Chlorine	685	Gaseous Emission (HCI)	352		
3	МСВ	3330	МСВ	3243		
4	NSA	2015	Loss	118		
5	нсно	495	Spent Acid (H2SO4)	2135		
6	Sulphur	405	N2	109		
7	Caustic Lye	1055	Thio Layer	3661		
8	Water	2650	Residue	166		
			NSA	415		
			Effluent to ETP	625		
	TOTAL	11301	Total	11301		

PRODUCT [10] Bis-(2-Chloroethyl)-amine Hydrochloride

Process Description

Diethanolamine is charged into the reactor having desired quantity of Ethylene dichloride as a solvent. Then charge Thionyl chloride into it. Reaction is exothermic. After completion of reaction, reaction mass is cool down to room temperature and then filtered. Mother liquor consisting Ethylene dichloride is recycle where as sulfur dioxide and hydrochloric acid gas fumes are scrubbed in appropriate scrubbers.

Reaction Mechanism

Flowchart

INPUT	KG	PROCESS	KG	OUTPUT
DEA	590.00		2000.00	Reaction Mass
Thionyl Chloride	1340.00		204.00	HCl to Scrubber
Ethylene Dichloride [Recovered]	950.00	Condensation	716.00	SO2 to Scrubber
Ethylene Dichloride [Fresh]	50.00		10.00	Evaporation Loss to Scrubber
Total	2930.00		2930.00	Total
Reaction Mass	2000.00	•	1000.00	Bis-(2-Chloroethyl)-Amine HCl
			950.00	EDC [Recovered]
		Filtration	50.00	Loss
		FILIATION		
Total	2000.00		2000.00	Total

Mass Balance

	10. Bis-(2-Chloroethyl)-amine Hydrochloride				
Sr. No.	Input	Kg	Output	Kg	
1	DEA	590	Bis-(2-Chloroethyl)-amine Hydrochloride	1000	
2	Thionyl Chloride	1340	нсі	204	
3	Ethylene Dichloride (Recovered)	950	SO2	716	
4	Ethylene Dichloride (Fresh)	50	Eva Loss	60	
			EDC	950	
	TOTAL	2930	Total	2930	

ANNEXURE-IV

WATER CONSUMPTION AND WASTEWATER GENERATION

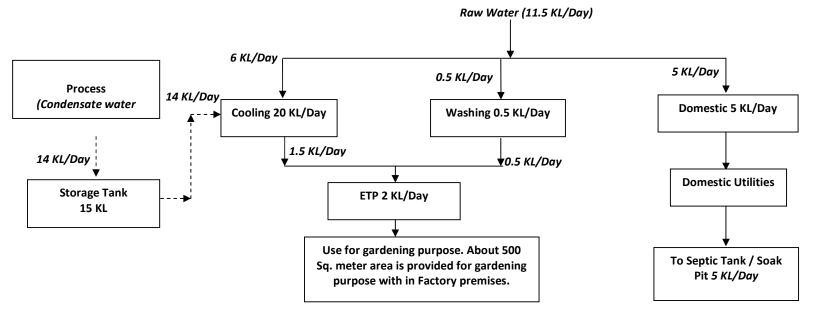
Existing

Sr. No.		Water Consumption	Waste Water Generation KL/Day	
	Description	KL/Day		
1	Cooling	20.0	1.5	
2	Washing	0.5	0.5	
	Total Industrial	20.5	2.0	
3	Domestic	5.0	5.0	
	Grand Total	25.5 (Fresh: 11.5 KL/Day + Recycle: 14 KL/Day)*	7.0	

Note :-* 14 KL/day of Condensate water is generated only from the manufacturing of Nytrosyl Sulphuric Acid (from spent sodium thio sulfate solution and Spent H₂SO₄ (used as raw materials)), otherwise only fresh water is used in to Cooling Tower.

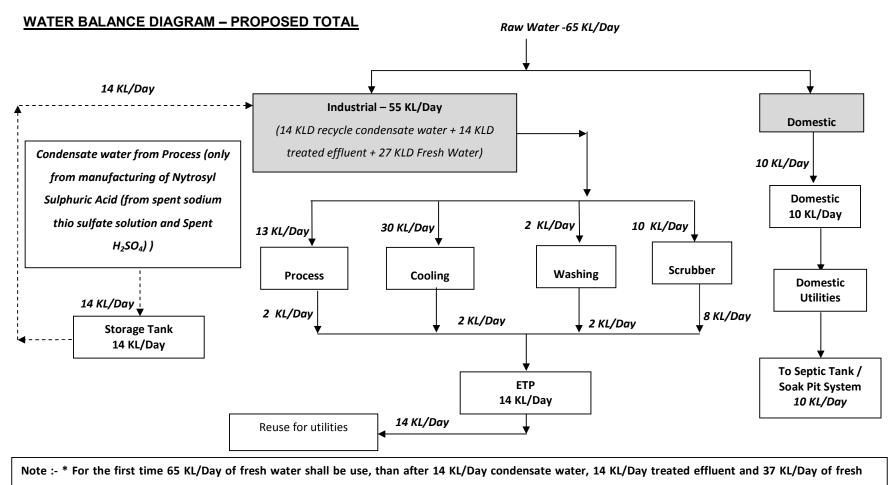
Source of Water: SMC

Total after Proposed Expansion:


Sr. No.	Description	Water Consumption	Waste Water Generation	
		KL/Day	KL/Day	
1	Process	13.0	2.0	
2	Cooling	30.0	2.0	
3	Washing	2.0	2.0	
4	Scrubber	10.0	8.0	
	Total Industrial	55.0	14.0	
5	Domestic	10.0	10.0	
	Grand Total	65.0	24.0	

Note :- * For the first time 65 KL/Day of fresh water shall be use, than after 14 KL/Day condensate water, 14 KL/Day treated effluent and 37 KL/Day of fresh water shall be used.

** The Condensate water is generated only from the manufacturing of Nytrosyl Sulphuric Acid (from spent sodium thio sulfate solution and Spent H_2SO_4)


Source of Water: SMC

Note :-* The Condensate water is generated only from the manufacturing of Nytrosyl Sulphuric Acid from spent sodium thio sulfate solution and Spent H_2SO_4 (used as raw materials), otherwise only fresh water is used in to Cooling Tower.

Source of Water: SMC

water shall be used.

** The Condensate water is generated only from the manufacturing of Nytrosyl Sulphuric Acid (from spent sodium thio sulfate solution and Spent

H₂SO₄)

ANNEXURE-V:

EXISTING ETP DETAILS & DIAGRAM

DETAILS OF EFFLUENT TREATMENT PLAN - EXISTING

We have installed Effluent Treatment Plant having primary and tertiary treatment facilities for the treatment of effluent generated from the cooling tower blow down and floor washing.

Mostly the effluent is neutral in nature, however pH correction is done if required in primary treatment Plant.

Raw industrial effluent from the industrial unit is collected in collection-cum-equalization tank. Lime and Acid solution tank is provided for the neutralization *(if required)* of industrial effluent. Than the neutralized effluent is sent to nutch filter to remove the SS load in the form of ETP sludge, Filtrate effluent is collected in to primary treated effluent collection tank and the treated effluent is used for gardening purpose within factory premises after passing through Dual Media Filter. About 500 Sq. Meter area is provided for gardening purpose.

The dewatered sludge from Nutch Filter is collected and packed in HDPE / Plastic bags and stored in a proper solid / hazardous waste storage area.

The specification of ETP is as under ...

No.	Treatment Unit	Qty.	Brief Specification
1.	Chemical Dosing Tank	2	Capacity: 100 Liters MOC: HDPE
2.	Collection / Equalization Tank (for cooling tower blow down and Floor washing effluent water)	1	Capacity: 5,000 Liters MOC: HDPE chemical grade
3.	Primary Settling Tank	1	Capacity: 5,000 Liters MOC: HDPE chemical grade
4	Nutch Filter	1	Capacity: 2 m2 MOC: HDPE With Cloth
4	Primary treated effluent storage tank	1	Capacity : 5000 Liters MOD: HDPE
5.	Recycling Plant	1	Type: Dual media consisting of activated carbon filter and sand filter
			Size: 1.0 m Φ x 1 m Capacity: 2 m³/hr MOC: HDPE

ETP Flow Rate: 2 KL/Day – from cooling tower blow down and floor washing

DETAILS OF EFFLUENT TREATMENT PLAN – PROPOSED TOTAL

We have installed Effluent Treatment Plant having primary and tertiary treatment facilities for the treatment of effluent generated from the from process, cooling, washing and scrubber.

Raw industrial effluent from the industrial unit is collected in collection-cum-equalization tank. Lime and Acid solution tank is provided for the neutralization of industrial effluent. Than the neutralized effluent is sent to nutch filter to remove the SS load in the form of ETP sludge, Filtrate effluent is collected in to primary treated effluent collection tank.

The primary treated effluent first pass through sand filter, carbon filter and resin filter and given ozone treatment and than reuse for utilities.

The dewatered sludge from Nutch Filter is collected and packed in HDPE / Plastic bags and stored in a proper solid / hazardous waste storage area.

The specification of ETP is as under ...

No.	Treatment Unit	Qty.	Brief Specification
1.	Chemical Dosing Tank	2	Capacity: 100 Liters
			MOC: HDPE
2.	Collection / Equalization Tank	1	Capacity: 5,000 Liters
	(for industrial effluent)		Retention time : 8.57 Hr
			MOC: HDPE chemical grade
3.	Primary Settling Tank	1	Capacity: 5,000 Liters
			Retention time : 8.57 Hr
			MOC: HDPE chemical grade
4	Nutch Filter	1	Capacity: 2 m2
			MOC: HDPE With Cloth
4	Primary treated effluent storage tank	1	Capacity : 5000 Liters
			MOC: HDPE
5.	Sand Filter	1	Size: 1.0 m Φ x 1 m
			Capacity: 2 m ³ /hr
			MOC: HDPE

ETP Flow Rate: 14 KL/Day

6.	Carbon Filter	1	Size: 1.0 m Φ x 1 m
			Capacity: 2 m ³ /hr
			MOC: HDPE
7.	Ozone Treatment	1	Capacity : 70 gm/hr
8.	Treated Water Storage Tank	1	Capacity : 15 KL
			MOC: HDPE

INDUSTRIAL:		
Existing :-	16 KL/Day	 Out of total 16 KL/Day of effluent 1. About 14 KL/Day of Condensate water (is generated only from the manufacturing of Nytrosyl Sulphuric Acid(from spent sodium thio sulphate solution and Spent H2SO4 (as a raw material)) is recycled back in to cooling tower. 2. And remaining 2 KL/Day waste water generated from cooling tower blow down and floor washing is treated in ETP and the treated effluent is used for gardening purpose. About 500 Sq Meter area is provided for gardening purpose.
PROPOSED TOTAL :-	28 KL/Day	Out of total 28 KL/Day of effluent 1. About 14 KL/Day of Condensate water <i>is generated only from the</i> <i>manufacturing of Nytrosyl Sulphuric Acid(from spent sodium thi</i> <i>sulphate solution and Spent H2SO4 (as a raw material))</i> i recycled back in to cooling tower.
		2. And remaining 14 KL/Day waste water generated from proces (from manufacturing of 3, 5, DCA), cooling, washing & Scrubbe shall be treated in ETP and the treated effluent shall be reuse in to utilities.
DOMESTIC :		
EXISTING :-	5 KL/Day	The domestic waste water is discharged in to the septic tank / soal
PROPOSED TOTAL :-	10 KL/Day	pit system.

1. Laboratory Treatability Studies

Effluent shall be generated from the Process (from the manufacturing of 3, 5 Di Chloro Aniline), Cooling, Washing & Scrubber

No.	Parameter	Process (3, 5 DCA)	Cooling	Washing	Scrubber	Composite Sample
	Quantity, KL/Day	2	2	2	8	14
1.	рН	4.9	7.9	7.1	8.8	7.87
2.	Oil and Grease, mg/l	12	0.5	7.8	1.9	4.00
3.	COD, mg/l	1350	160	450	980	840
4.	BOD ₃ , mg/l	240	45	90	190	162
5.	Suspended Solids, mg/l	110	110	180	130	131
6.	Phenolic Compound, mg/l	BDL	BDL	BDL	BDL	BDL
7.	TDS	1600	1200	1400	2200	1857

The stream wise characteristic of effluent is as under...

The above characteristics effluent shall be given Primary & Tertiary Treatment and will reuse in to utilities after given ozonization treatment.

2. Primary Treatment

For study of primary treatment on effluent i. e. neutralization, flocculation and settlement effluent sample was treated with Lime as neutralizing agent and $FeSO_4$ as flocculating agent. Various parameters were studied such as lime dose, $FeSO_4$ dose, settling time, influent and effluent suspended solids and COD. The summary of the result is tabulated herewith in below Table.

Table: Summary of Primary Treatment Study

Initial COD: 840 mg/L

	Run 1	Run 2	Run 3
Effluent Sample taken, ml	500	500	500
Lime Dose mg/L	100	150	175
FeSO₄ Dose mg/L	50	65	75
COD after neutralization with FeSO ₄ mg/L	476.78	358.85	317.52
% reduction of COD	43.24	57.28	62.20

Observation:

1. Reduction of 62.20 % in COD load is found at primary treatment level with Lime dose of 175 mg/L and FeSO₄ dose of 75 mg/L.

After primary treatment, characteristic of effluent is as under:

Parameter	Primary Treated effluent
рН	7.15
Oil and Grease, mg/L	0.8
COD, mg/L	317
BOD ₃ , mg/L	89
Suspended Solids, mg/L	57
Phenolic Compound mg/L	BDL
TDS, mg/L	1920

The primary treated effluent shall be given tertiary treatment by passing through sand filter, carbon filter and resin filter. The characteristics of tertiary treated effluent shall be as under

Parameter	Tertiary Treated effluent
рН	7.10
Oil and Grease, mg/L	BDL
COD, mg/L	302
BOD ₃ , mg/L	75
Suspended Solids, mg/L	30
Phenolic Compound mg/L	BDL
TDS, mg/L	1920

The above characteristics effluent shall be reused in to utilities after given ozonization treatment. The characteristics of final treated effluent shall be as under

Parameter	Tertiary Treated effluent
рН	7.10
Oil and Grease, mg/L	BDL
COD, mg/L	65
BOD ₃ , mg/L	20
Suspended Solids, mg/L	22
Phenolic Compound mg/L	BDL
TDS, mg/L	1922

ANNEXURE-VI

DETAILS OF HAZARDOUS WASTE STORAGE, TREATMENT AND DISPOSAL

CAT.	TYPE OF SOLID / HAZARDOUS WASTES	SOURCE OF WASTE	QUANTITY GENERATED				
NO.			Existing	Additional	Proposed Total	METHOD OF DISPOSAL	
5.1	Used Oil	Plant and Machinery	0.085 MT/Year i. e. 100 Liters/Year	Nil	0.085 MT/Year i. e. 100 Liters/Year	Collection / storage / transportation / sent to registered recycler	
33.1	Discarded containers / barrels / liners/ Carboys/Bags	Raw material packaging	4.8 MT/Year i. e. 600 Nos/Year	1.6 MT/Year i. e. 200 Nos/Year	6.4 MT/Year i. e. 800 Nos/Month	Collection / Storage / Transportation / Supplier / Sent To Registered Recycler	
35.3	ETP Sludge	From ETP	100 Kg/Year	500 Kg/Year	600 Kg/Year	Collection / Storage / Transportation / Sent To TSDF Site for Secured Land Filling	
29.5				4.1 MT/Month	4.1 MT/Month 4 - METHOXY ACET	Collection / Storage / Transportation / Given Back to Manufacturer for Re- Generation OPHENONE, 4-METHYL	
29.6	ACETOPHENONE of Spent Acid (H₂SO₄)	From manufacturi ng of 3,5- Dichloroanili ne	286 MT/Month Nil	Nil 224 MT/Month	286 MT/Month * 224 MT/Month	Reception / Storage / Transportation / used as a raw material for the manufacturing of Nytrosyl Sulphuric Acid (from Sodium Thio Sulphate Solution and Spent Acid (H ₂ SO ₄)) Reuse For The Manufacturing of Nytrosyl Sulphuric Acid (From Sodium Thio Sulphate Solution And Spent Acid (H ₂ SO ₄))	
	Sodium Thio Sulfate Solution		501 MT/Month	Nil	501 MT/Month*	Reception / usage / storage / transportation / use as a raw material for the manufacturing of nytrosyl sulphuric acid (from sodium thio sulphate solution and spent acid (H ₂ SO ₄))	

		_							
		From	Nil	384 MT/Month	384 MT/Month	Reuse For The			
		manufacturi				Manufacturing of			
		ng of 3,5-				Nytrosyl Sulphuric Acid			
		Dichloroanili				(From Sodium Thio			
		ne				Sulphate Solution And			
						Spent Acid (H ₂ SO ₄)) / 3,			
						5 DCA			
	-					tes as a supplementary			
	-			-	-	waste (management,			
	handling & transboundary) rules, 2008] for the reception (from actual generator) & usage of spent h_2so_4 8								
	•	•		•		syl sulphuric acid from			
	sodium thio sul	phate solution &	& spent h₂so₄ on a	lated 9/3/2016. pe	ermission for the sam	ne is awaited.			
	N					T/Days of 2 5 Di Chlore			
				• •		T/Day of 3, 5 Di Chloro			
		-		-	•	ulphate Solution shall be			
		•	•		•	case industry will receipt			
	-					stry will manufacture 50			
			•	•	• •	e. 62 MT/Month of Spent			
20.4				•	from actual genero				
29.4	Spent Solvent	From the manufacturi	Nil	161 MT/Month	161 MT/Month	Collection / storage /			
	(Anisol)					reuse in to next batch			
		ng of 4 -				in same process			
		Methoxy							
		Acetopheno							
		ne -							
29.4	Spent Solvent	From	Nil	274 MT/Month	274 MT/Month				
	(IPA OR	manufacturi							
	Methanol)	ng of Alpha							
		Napthylami							
		ne				Collection / storage /			
			OR			reuse in to next batch			
	Spent Solvent	From	Nil	386 MT/Month	386 MT/Month	in same process			
	(Aniline OR	manufacturi							
	ODCB)	ng of Alpha							
	,	Napthylami							
		ne							
	If industry will us	-	ol as a raw mate	rial for the manufo	cturing of alpha na	pthylamine, then IPA /			
		-		• •		aniline / ODCB shall be			
	recovered.			,	, , ,, .	-,			
29.4	Spent Solvent	From	Nil	340 MT/Month	340 MT/Month	Collection / Storage /			
	(MCB)	manufacturi		,	,	Reuse in to Next Batch			
	. ,	ng 3,5-				in same process			
		Dichloroanili							
		ne							
29.4	Spent Solvent	From	Nil	56.6 MT/Month	56.6 MT/Month	Collection / Storage /			
20.4	(Aniline)	manufacturi				Reuse in to Next Batch			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ng Phenyl				in Same Process			
		Alpha							
		Naphthylam							
		ine							
		iiie							

29.4	Spent Solvent	From	Nil	1329 MT/Month	1329 MT/Month	Collection / Storage /
	(Toluene)	manufacturi				Reuse in to Next Batch
		ng of 4-				in Same Process
		Methyl				
		Acetopheno				
		ne				
29.4	Spent Solvent	From	Nil	28.5 MT/Month	28.5 MT/Month	Collection / Storage /
	(EDC)	manufacturi				Reuse in to Next Batch
		ng of Bis-(2-				in Same Process
		Chloroethyl)				
		-amine				
29.1	Distillation	From	Nil	38.5 MT/Month	38.5 MT/Month	Collection / Storage /
	Residue	Process				Transportation / Sent
						To Cement Industries
						for Co-Processing of
						CHWIF
	Distillation residu	ie generated fr	om the manufact	uring of 4-Methox	y Acetophenone, 4-l	Methyl Acetophenone,
	Alpha Napthylam	ine, Phenyl Alp	ha Naphthylamin	e (Pana), 3,5-Dichlo	proaniline	
	Acetic	From	Nil	109 MT/Month	109 MT/Month	Collection / Storage /
	Anhydride	manufacturi				Transportation / Reuse
		ng of 4-				in to Next Batch in
		Methyl				Same Process
		Acetopheno				
		ne				

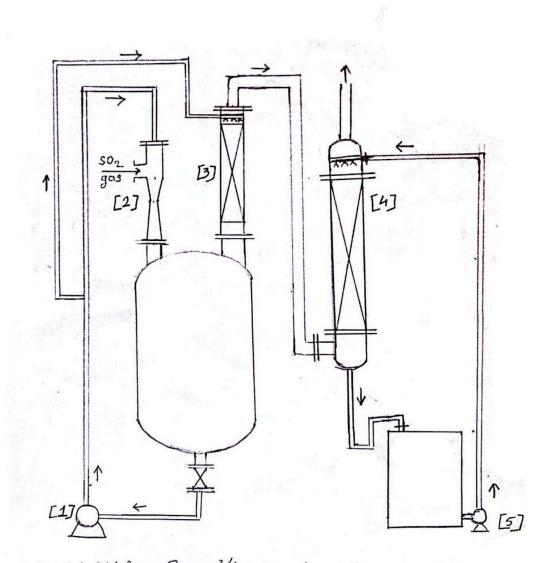
Details of Solid / Hazardous Waste Storage Area:

The Solid / Hazardous Waste Storage Area shall be 5.0 m x 5.5 m x 4.0 m in size, covered with roof from the top, has impervious flooring with leachate collection system and is closed from the four sides by boundary.

ANNEXURE – VII

DETAILS OF STACK AND VENT

The details of stack provided for stand by D. G. Set is as under...


FLUE	GAS EMISSION						
Sr. No.	Stack Attached To	Stack Height	Fuel Consumption	Air Pollution Control System			
Α	EXISTING						
1.	Thermo pack Unit Cap.: 600 U	Height-12 meter	Natural Gas 82 SCM/Hr.	As natural gas is used as a fuel, adequate stack height is provided.			
2.	D. G. Set (Stand By) Capacity: 250 KVA	Height-7 meter	Diesel: 30 Liter/Hr.	As diesel is used as a fuel, adequate stack height is provided.			
В	ADDITIONAL						
1.	D. G. Set (Stand By) Capacity: 365 KVA *	Height-7 meter	Diesel: 45 Liter/Hr.	As diesel shall be used as a fuel, adequate stack height is provided.			
	* Industry shall remove the existing D. G. Set having capacity of 250 KVA and will install D. G. Set having capacity of 365 KVA.						
С	PROPOSED TOTAL						
1.	Thermo pack Unit Cap.: 600 U	Height-12 meter	Natural Gas: 82 SCM/Hr.	As natural gas is used as a fuel, adequate stack height is provided.			
2.	D. G. Set (Stand By) Capacity: 365 KVA	Height-7 meter	Diesel: 45 Liter/Hr.	As diesel shall be used as a fuel, adequate stack height is provided.			

	PROCESS GAS EMISSION								
Sr. No.	Vent Attached To	Vent Height & Diameter	Pollutants	Air Pollution Control System					
Α	Existing								
1.	Acidification Vessels			Two Stage Scrubber (i.e. Ventury					
2.	Acidification Vessels	12 meter	SO ₂	Scrubber & Vertical column pack scrubber) is provided.					
В	Additional								
	There shall be no change in existing process gas emission.								

The details of APCM are as under...

> TECHNICAL SPECIFICATION OF SCRUBBER:

1 st Stage :- VENTURY SCRUBBER				
MOC :	SS 316			
Scrubbing Capacity :	200 Kg SO ₂ Gas/Hrs			
Scrubbing Solution :	Mix Acid of H_2SO_4 98% & HNO ₃ 98%			
Jet Capacity :	13 M ³ /Hrs 50 MTR Head			
2 nd Stage :- VERTICAL SCR	UBBER			
MOCL :	SS 316			
Туре :	Pack column with Poll Ring			
Scrubbing Capacity :	50 Kg SO ₂ Gas/Hrs			
Scrubbing Solution :	Mix Acid of H_2SO_4 98% & HNO ₃ 98%			
Pump Capacity :	5 M ³ /Hrs 50 MTR Head			
3 nd Stage :- VERTICAL SCR	UBBER			
MOCL :	SS 316			
Туре :	Pack column with Poll Ring			
Scrubbing Capacity :	50 Kg SO₂ Gas/Hrs			
Scrubbing Solution :	Caustic Soda Lye Solution			
Pump Capacity :	5 M ³ /Hrs 50 MTR Head			

- 1. 5.5. 316 Pump @ 20 m3/hr, 50 mts Head 2. Ventury Scrubber 3. vertical Parked column Scrubber [Acidic] 4. Vertical Parked Column Scrubber [Alkaline] 5. 5.5.316 pump @ 5 m3/hr, 20 mtr. Head

ANNEXURE – VIII

Sr. No.	Raw Materials	Storage Capacity (MT)	Type of Storage & MOC	No. of Vessel	Vessel Capacity (MT)	Type of Hazard
1.	Sulfuric acid (98%)	20	MS Tank	1	20	Corrosive
2.	Nitric Acid	20	AluminiumTank	1	20	Corrosive
3.	NSA (Nitrosyl Sulfuric Acid)	20	MS Tank	2	10	Corrosive
4.	Spent Acid	20	HDPE Tank	1	20	Corrosive
5.	Sodium Thio Sulphate	20	HDPE Tank	1	20	Corrosive
6.	IPA/ODCB/MCB/EDC	20	MS Tank			
7.	Hydrogen	1	Rack	1	20	Explosive
8.	SO ₂	9	Tonner	10	900 Kg	Toxic

DETAILS OF HAZARDOUS CHEMICALS STORAGE & HANDLING

ANNEXURE-IX

SOCIO-ECONOMIC IMPACTS

1) EMPLOYMENT OPPORTUNITIES

The manpower requirement for the proposed project is being expected to generate some permanent jobs and secondary jobs for the operation and maintenance of plant. This will increase direct / indirect employment opportunities and ancillary business development to some extent for the local population.

This phase is expected to create a beneficial impact on the local socio-economic environment.

2) INDUSTRIES

Required raw materials and skilled and unskilled laborers will be utilized maximum from the local area. The increasing industrial activity will boost the commercial and economical status of the locality, to some extent.

3) PUBLIC HEALTH

The company regularly examines, inspects and tests its emission from sources to make sure that the emission is below the permissible limit. Hence, there will not be any significant change in the status of sanitation and the community health of the area, as sufficient measures have been taken and proposed under the EMP.

4) TRANSPORTATION AND COMMUNICATION

Since the existing factory is having proper linkage for the transport and communication, the development of this project will not cause any additional impact.

In brief, as a result of the proposed project there will be no adverse impact on sanitation, communication and community health, as sufficient measures have been proposed to be taken under the EMP. The proposed project is not expected to make any significant change in the existing status of the socio - economic environment of this region.

ANNEXURE-X

PROPOSED TORs

1. Project Description

- Justification of project.
- Promoters and their back ground
- Project site location along with site map of 5 km area and site details providing various industries, surface water bodies, forests etc.
- Project cost
- Project location and Plant layout.
- Existing infrastructure facilities
- Water source and utilization including proposed water balance.
- List of Products and their capacity
- List of hazardous chemicals with their toxicity levels.
- Mass balance of each product along with the batch size
- Storage and Transportation of raw materials and products.

2. Description of the Environment and Baseline Data Collection

- Micrometeorological data for wind speed, direction, temperature, humidity and rainfall in 5 km area.
- Study of Data from secondary sources.
- Existing environmental status Vis a Vis air, water, noise, soil in 5 km area from the project site. For SPM, RSPM, SO₂, NOx.
- Ground water quality at 5 locations within 5 km.
- Complete water balance

3. Socio Economic Data

• Existing socio-economic status, land use pattern and infrastructure facilities available in the study area were surveyed.

4. Impacts Identification and Mitigatory Measures.

- Impact on air and mitigation measures including green belt
- Impact on water environment and mitigation measures
- · Soil pollution source and mitigation measures
- Noise generation and control.
- Solid waste quantification and disposal.
- Control of fugitive emissions

5. Environmental Management Plan

- Details of pollution control measures
- Environment management team
- Proposed schedule for environmental monitoring including post project

6. Risk Assessment

- Details on storage facilities
- Identification of hazards

- Consequence analysis
- Recommendations on the basis of risk assessment done
- Disaster Management Plan.
- 7. Information for Control of Fugitive Emissions
- 8. Post Project Monitoring Plan for Air, Water, Soil and Noise.
- 9. Occupational Health and Safety Program for the Project.