M.Sc. (Chemistry) Sem- II Question Bank-CHP-4201-Fundamentals of Physical Chemistry-II

SECTION-I

A) Multiple choice question

- 1. On which factors the vibrational stretching frequencies of diatomic molecule depend?
 - a) Force constant
 - b) Atomic population
 - c) Temperature
 - d) Magnetic field
- 2. Since the nuclei in a polyatomic molecule do not always vibrate in a simple harmonic manner, there arises one of the following situations?
 - a) Harmonicity
 - b) Anharmonicity in molecular vibrations
 - c) Fundamental frequencies
 - d) All of the above
- 3. What is order of decreasing vibrational frequency for C-Cl, C-Br, C-C,C-O,C-H
 - a) C-H, C-C,C-O,C-Cl, C-Br
 - b) C-Cl, C-Br, C-C,C-H, C-O
 - c) C-Cl, C-H, C-C,C-O,C-Br
 - d) C-Cl, C-Br, C-C,C-O,C-H
- 4. In IR spectroscopy which frequency range is known as the fingerprint region?
 - $^{a)}$ 400-1400cm⁻¹
 - b) 1400-900cm⁻¹
 - c) 900-600cm⁻¹
 - d) 600-250cm⁻¹
- 5. Chemical shifts originates from
 - a) Magnetic momentum
 - b) Electron shielding
 - c) Free induction decay
 - d) Scalar coupling
- 6. Which of the following transitions are of weak intensities and lie in the visible region?
 - a) n-n*
 - b) σ- σ*
 - c) Π-Π*
 - d) n- σ*
- 7. Which of the following shift leads to the decreased intensity of absorption?
 - a) Hypochromic
 - b) Hyper chromic
 - c) Hypochromic
 - d) Bathochromic

- 8. Which of the following is an application of electronic spectroscopy?
 - a) Detection of impurities
 - b) Control of purification
 - c) Study of kinetics of the chemical reaction
 - d) All of the above
- 9. The microwave active molecules are
 - a) HCl, OCS
 - b) $C0,CO_2$
 - c) Both a) and b)
 - d) None of the above
- 10. Selection rule for Raman spectroscopy
 - a) $\Delta J = \pm 1$
 - b) $\Delta J=0,\pm 1,\pm 2...$
 - c) $\Delta J = \pm 2$
 - d) $\Delta J=0$

B) One sentence answer

- 1) Write a definition of spectroscopy?
- 2) Enlist different regions of electromagnetic spectrum.
- 3) What is mean by zero point energy?
- 4) Define the terms frequency and wavelength.
- 5) Write down one example of symmetric top and spherical top molecules.
- 6) Why N_2 molecule is inactive to rotational spectroscopy?
- 7) Give the equations of fundamental absorption and first overtone.
- 8) Write down the rule of mutual exclusion.
- 9) What are the Stokes lines and antistokes lines?
- 10) Write down the Stark effect.
- 11) Define and explain predissociation.
- 12) Write down Born-Oppenheimer approximation.
- 13) Give the equation of Rotational constant and moment of inertia.
- 14) Write down the applications of microwave spectroscopy.
- 15) Define the term plane polarized light.

C) Short notes

- 1) Write a short note on predissociation
- 2) Write a short note on factors affecting width of spectral lines.
- 3) Write a short note on factors affecting intensity of spectral lines.
- 4) Write in short applications of Raman spectroscopy.
- 11. Explain I short 'electronic spectra of diatomic molecules'.
- 12. Write down radiometric titrations.
- 13. Write down Frank-Condon principle
- 14. Write down the applications of electronic spectroscopy.
- 15. Write in short chemical applications of ¹H-NMR.
- 16. Write in short applications of ESR and Mossbauer spectroscopy

- 17. Write a note on polarization of light and Raman effect
- 18. Write a note on Vibrational coarse structure.
- 19. Write a note on Birge- Sponer extrapolation.
- 20. Write a short note on coarse and fine structure.
- 21. Write a note on Frank- Condon principle.
- 22. Give the classification of rigid rotors.
- 23. Write a note on transitions observed in the rotational spectrum.
- 24. Define degeneracy and explain it in detail for energy levels J=1 and J=2.
- 25. Write down the effect of isotopic substitution on the spectrum of carbon monoxide.

D) Short answer questions

- 1. Discuss the principle of IR spectroscopy in the molecular structure elucidation.
- 2. Write down the rule of mutual exclusion in Raman spectroscopy...
- 3. Define and explain predissociation.
- 4. State Frank-Condon principle.
- 5. Discuss the general rules governing the number of lines observed in ESR spectroscopy.
- 6. Sketch and explain Fortrat diagram.
- 7. Describe in brief rotational fine structure of electronic-vibration transitions.
- 8. Explain quantum theory and classical theory of Raman effect.
- 9. Write down the rule of mutual exclusion.
- 10. Explain Stokes and antistokes lines.
- 11. Define and explain predissociation.
- 12. State Frank-Condon principle.
- 13. Write down selection rule for pure rotational Raman activity in linear molecules.
- 14. Explain factors determining the intensity of spectral lines.
- 15. Describe in brief rotational fine structure of electronic-vibration transitions.
- 16. Explain simple harmonic oscillator and anharmonic oscillator and give selection rules.
- 17. Why is the selection rule for pure rotational Raman spectrum is $\Delta J = \pm 2$ and $\Delta J = \pm 1$ for pure rotational spectroscopy?
- 18. What is the effect of isotopic substitution on microwave spectra of linear diatomic molecule?
- 19. Write a note on Born-Oppenheimer approximation.
- 20. What is Stark effect? Discuss its applications.
- 21. What is Raman scattering?
- 22. Describe the quantum theory of Raman effect.
- 23. Explain predissociation spectra using a suitable diagram..
- 24. Write a short note on P,Q and R branches observed in IR spectrum of a diatomic molecule.
- 25. Note down a principle of ESR spectroscopy.
- 26. Write down a principle of NMR spectroscopy.
- 27. Write down a principle of Mossbauer spectroscopy.
- 28. Discuss the general rules governing the number of lines observed in the ESR spectrum.
- 29. Discuss the principle of IR spectroscopy in the molecular structure elucidation.
- 30. What is the significance of zero point energy? Obtain an expression for zero point energy of an anharmonic oscillator.
- 31. Explain quantum theory of Raman effect.

- 32. Discuss the theory of pure rotational Raman spectra of linear molecule. Sketch the energy levels and the spectrum arising from transition between them.
- 33. Write a note on vibrational coarse structure.
- 34. Write a note on rotational fine structure.
- 35. How is the dissociation energy of a diatomic molecule determined from vibrational coarse structure in its electronic spectrum?
- 36. What is force constant? What is its significance? Write the units.
- 37. Why is CH₄ Raman active?
- 38. What is Born-Oppenheimer approximation?
- 39. Explain the variation of intensities of spectral transitions in vibrational- electronic spectra of diatomic molecule.
- 40. Classify the following molecules based on moment of inertia. H₂O, HCl, C₆H₆, BF₃
- 41. Define symmetric top and spherical top and give examples of it.
- 42. What is the equation of rotational constant, B?
- 43. State and explain rule of mutual exclusion and its converse.
- 44. What are parallel and perpendicular vibrations? Explain with an example.
- 45. Explain any two factors which affect the width of spectral lines.
- 46. Explain classical theory of Raman Effect.
- 47. Explain photoelectron spectroscopy. Why is high vaccum needed for its study?
- 48. Discuss rotational fine structure of electronic-vibration transition.
- 49. Explain the term resolving power and signal to noise ratio.
- 50. Distinguish between harmonic and anharmonic oscillator with respect to energy, selection rule, and zero point energy.
- 51. Explain the applications of Mossbauer spectroscopy.
- 52. Sketch and explain the polarisability ellipsoids for CO₂ molecule.

E) Long answer questions and problems

- 1. The fundamental vibrational frequency of HCl is 86.63×10¹² Hz. Calculate zero point energy and force constant for HCl.
- 2. If band origins at the midpoint of P_1 and $R_{(0)}$, is at 2143.26 cm⁻¹. This, then is fundamental vibration frequency of CO, if anharmonicity is ignored. First overtone is observed at 4260.04 cm⁻¹. Calculate $\tilde{\omega}$ and X_e .
- 3. The average spacing between successive rotating lines of CO₂ is 3.826 cm⁻¹. Determine the transition which gives most intense spectral line at 3.
- 4. The equilibrium vibration frequency of the iodine molecule is 215 cm⁻¹ and the anharmonicity constant x_e is 0.003. What is the intensity of the hot band for V=1 to V=2, relative to the fundamental V=0 to V=1, if the temperature is 300K.
- 5. Show the fluctuations in the dipole moment of carbon dioxide during asymmetric stretching vibrations.
- 6. Explain various advantages of Fourier transform spectroscopy.
- 7. Discuss merits and demerits of Raman spectroscopy.
- 8. Find the value of rotational constant for the molecule ⁷⁹Br¹⁹F if the most intense spectral line at 300K is for the transition J=17 to J=18.
- 9. The rotational constant for the V=0 state of the molecule is 10cm⁻¹ and V=1 state is 9.5 cm⁻¹. Estimate the rotational constant in the state V=2.

- 10. How does IR spectroscopy differ from Raman spectroscopy?
- 11. Pure rotational Raman spectra of linear molecule exhibit first line at 6B cm⁻¹ but remaining at 4B cm⁻¹.Explain.
- 12. Obtain the expression for moment of inertia for rigid diatomic molecule.
- 13. The rotational constant for ⁷⁹Br¹⁹F is 0.35717cm⁻¹. What is the value of J for which the most intense line will be seen at 300K?
- 14. How is the dissociation energy of a diatomic molecule determined from vibrational coarse structure in its electronic spectrum?
- 15. Calculate the force constant for HCl molecule, as it shows absorption band at 2890 cm⁻¹ [Given: Atomic weight: Cl =35.5, H=1.008]
- 16. What is the effect of breakdown of Born-Oppenheimer approximation on P and R branches of the IR spectrum of a diatomic molecule?
- 17. The first line in the rotational spectrum of ¹²C¹⁶O molecule is 3.84235cm⁻¹. Find out the bond length of the molecule.
- 18. The Fundamental vibrational frequency of ¹H³⁵Cl molecule is 86.63×10¹²Hz.Calculate the zero point energy and force constant of HCl.
- 19. Explain the factors influencing width and intensity of spectral lines.
- 20. Explain effect of isotopic substitution on rotational constant B.
- 21. If band origins at the midpoint of P_1 and $R_{(0)}$, is at 2143.26 cm⁻¹. This, then is fundamental vibration frequency of CO, if anharmonicity is ignored. First overtone is observed at 4260.04 cm⁻¹. Calculate $\tilde{\omega}$ and x_e .
- 22. The average spacing between successive rotating lines of CO₂ is 3.826 cm⁻¹. Determine the transition which gives most intense spectral line at 300K?
- 23. Explain the activity of the following molecules with respect to IR and microwave spectrum.H₂,HCl,CO₂,CH₄&CH₃Cl
- 24. What are symmetric and asymmetric vibrations? Explain with the example of H_2O molecule.

25.

SECTION-II

A) Multiple choice question

- 1. In which of the following processes neutrons emitted
 - e) Inverse beta decay
 - f) Nuclear fission.
 - g) Spontaneous fission
 - h) Nuclear fusion
- 2. Why neutrons with lower energy should be capable of causing fission?
 - a)For faster reaction processes
 - b)For sustained reaction processes
 - c)For safety purpose
 - d)In order to not waste the nuclear fuel
- 3. What happens when a neutron is absorbed by a nucleus of an atom of ²³⁵U
 - a)Mass number of atom increases
 - b)One electron is let out

c) ²³⁶ U isotope is formed
d)Nucleus becomes unstable
Who invented nuclear fission?
a) Rutherford
b) Hans Bethe
c) Otto Hahn
d) Marie Curie
A. C.1:CC . 1 . 1 . 1

- 5. Atoms of different chemical elements that have the same number of nucleons are called as
 - a) isobars

4.

- b) isotones
- c) isotopes
- d) isomers
- 6. Most of the energy released in fission process is in the form of
 - a) Kinetic energy
 - b) Thermal energy
 - c) Light energy
 - d) Heat energy
- 7. Combining of two light nuclei of low mass to produce a heavy nucleus is called
 - a) Nuclear fusion
 - b) Nuclear fission
 - c) Spontaneous fission
 - d) Double beta
- 8. What type of reaction take place in sun?
 - a) Nuclear fusion
 - b) Nuclear fission
 - c) Spontaneous fission
 - d) Double beta decay
- 9. Fusion reactions are called
 - a) Thermonuclear b) thermoduric c)thermo uric d) compound reactions
- 10. How is tritium made from sea water?
 - a) By bombarding lithium
 - b) By bonding with carbon
 - c) By bombarding beryllium
 - d) By reacting with oxygen
- 11. Which nuclear fuel is usually used in thermal nuclear reactor ton create fission?

a.
235
U b) 236 U c) 234 U d) 237 U

- 12. ²³²Th₉₀ is fertile isotope produced by fission
 - a. True b)False

B) One sentence answer

- 1. Write a definition of natural radioactivity?
- 2. What is unit of radioactivity?
- 3. What are the moderators and coolant used in nuclear reactors.

- 4. Write down different units of radioactivity.
- 5. Write down four factor formula.
- 6. Define isobar and isotope.
- 7. Write down the definition of nuclear fission.
- 8. Write down principle of G. M. counter.
- 9. Define "breeder".
- 10. Write down equation of Decay constant and enlist the terms involved into it.
- 11. Define the term fission energy.
- 12. Define the terms fission and fusion.
- 13. Give one example of beta decay kinetics.
- 14. Define projectile and ejectile.
- 15. What is mean by enrichment factor?
- 16. Define the term 'Dose'.
- 17. Define the term 'Curie'.

C) Short notes

- 1. Write a short note on breeder reactors.
- 2. Write a short note on G.M. counter
- 3. Write a short note on the classification of reactors.
- 4. Write in short physico chemical applications of radioactivity
- 5. Write a note on neutron activation analysis
- 6. Write down radiometric titrations.
- 7. Write a note on isotope separation.
- 8. Write a note on isotope dilution analysis.
- 9. Write a short note on radiation dosimetry.
- 10. Write a short note on radiolysis of water.

D) Short answer question.

- 1. Write the nuclear reactions involving natural and artificial synthesis of ³H.
- 2. Half-life of Rn = 3.8 days, after how many days will 1/20 th of Rn sample be left over?
- 3. Define isotope and isobars.
- 4. Write down construction and working of GM counter.
- 5. What are breeder reactors? Explain.
- 6. Explain the preparation of radiotracer 14 C.
- 7. Write the four factor formula? Explain the significance of each term involving in it.
- 8. What are the units of radioactivity? Give the relationship between them.
- 9. Discuss the principle involving in isotope dilution analysis.
- 10. What are the primary radiolytic products (prp) of water radiolysis?
- 11. Write the four factor formula? Explain the significance of each term involving in it.
- 12. What is separation factor? Explain the electromagnetic method for separation of isotope.
- 13. Write a note on Fricke dosimeter.
- 14. Explain three phases in India's nuclear energy programme.
- 15. What is reproduction factor? Derive Fermi's four factor formula.
- 16. Explain the principle of isotope dilution analysis.
- 17. Activity of 1g Ra-226 is found to be 1Ci. How much of it will remain after four half-lives?
- 18. Define isotope and isobars.
- 19. Define radioactivity. Write down difference between natural radioactivity and artificial radioactivity.

20. Write down reactions involved in the preparation of radioisotopes ³⁵S and ³²P.

E) Long answer questions and problems

- 1. The activity of a substance drops to 1/32 of its initial value in; 1) 7.5 h and 2) 64.45 min. Find its half-life period in two cases.
- 2. Give an account of nuclear waste management.
- 3. Discuss the four factor formula used in reactor technology.
- 4. Give the classification of nuclear reactor.
- 5. Describe the different types of radioactive decay processes. Give example one example of each.
- 6. Explain separation of isotopes by the gaseous diffusion method.
- 7. Give the typical nuclear reactions involving synthesis of ³²P and ¹²⁷I.
- 8. Explain the nuclear reactions involving natural and artificial synthesis of tritium.
- 9. Explain the terms a) Stopping power of medium, b) resolving time of G.M. counter.
- 10. Explain the preparation of radiotracers a) 22- Na, b) 35 –S in detail.
- 11. Discuss the principle of neutron activation analysis (NAA). Explain any two applications of it.
- 12. Radioisotope can be used to determine diffusion coefficients of the diffusing Species, Explain.
- 13. Calculate the mass and molecular absorption coefficient for chloroform and

Sodium iodate.

Given;
$$e \mu = 0.211 \text{ b}$$
, Z of Na=11, I = 53, O = 8, C = 6, H = 1, Cl = 17.

- 14. Note down the types of nuclear reactors based on moderator materials and explain in detail.
- 15. 0.1 gm. of Mn sample was irradiated with a neutron flux of 1077 neutron cm⁻²s⁻¹for 30 min. What will be its activity at the end of irradiation, if isotopic abundance is 100%, neutron absorption coefficient is 13.3 b and half-life of ⁵⁶Mn is 2.58 hour?
- 16. Write down industrial applications-radiation gauging, friction and wear out.