

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Internet of Things & Sensor Systems

(M.Tech MTS)

Curriculum (2019-2020 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international, industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry
- 3. Graduates will function in their profession with social awareness and responsibility
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country
- 5. Graduates will be successful in pursuing higher studies in engineering or management
- 6. Graduates will pursue career paths in teaching or research

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_11: Having a good cognitive load management skills related to project management and finance

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO_03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning

APO_07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Internet of Things & Sensor Systems) programme, graduates will be able to

- PSO1: Competent, and innovative with a strong cognizance in the area of sensors, IoT, data science, controllers and signal processing through the application of acquired knowledge and skills
- PSO2: Apply advanced techniques and tools of sensing and computation to solve multi-disciplinary challenges in industry and society.
- PSO3: To exhibit independent and collaborative research with strategic planning, while demonstrating the professional and ethical responsibilities of the engineering profession.

CREDIT STRUCTURE

Category	Credits
University core (UC)	27
Programme core (PC)	21
Programme elective (PE)	16

University elective (UE)

Total credits

06

70

Category-wise Credit distribution

DETAILED CURRICULUM

University Core

S. No	Course Code	Course Title	L	Т	Р	J	С
1	MAT6001 Advanced Statistical Methods		2	0	2	0	3
2	ENG5001	Fundamentals of Communication Skills	0	0	2	0	2
	ENG5001 and	Technical English I and	{0	0	2	0	
3	ENG5002 or	Technical English II (or)	0	0	2	0}	2
	GER5001	Deutsch fuer Anfaeger	2	0	0	0	
4	STS5001 &	Soft Skills	0	0	0	0	2
4	STS5002						
5	SET5001	SET Project-I	0	0	0	0	2
6	SET5002	SET Project-II	0	0	0	0	2
7	ECE6099	Master's Thesis	0	0	0	0	16

Programme Core

S. No	Course Code	Course Title	L	Т	Р	J	С
1	ECE5060	Principles of Sensors and Signal Conditioning	2	0	2	0	3
2	ECE5061	IoT Fundamentals and Architecture	3	0	0	0	3
3	ECE5062	Data Acquisition	0	0	4	0	2
4	ECE5063	Control Systems	0	0	4	0	2
5	ECE5064	Programming and scripting languages	0	0	4	0	2
6	ECE5065	Microcontrollers for IoT Prototyping	2	0	2	0	3
7	ECE6001	Wireless Sensor Networks and IoT	2	0	0	4	3
8	ECE6030	Signal Processing and Data Analytics	2	0	2	0	3

Programme Electives

S.No	Course Code	Course Title	L	Т	Р	J	C
1	ECE5006	Flexible and Wearable Sensors	3	0	0	0	3
2	ECE5008	Micro and Nano Fluidics	2	0	0	4	3
3	ECE5066	Chemical and Environmental Sensor	2	0	2	0	3
4	ECE5067	Cloud and Fog Computing	2	0	2	0	3
5	ECE5068	IoT Security and Trust	2	0	0	4	3
6	ECE5069	IoT Applications and Web development	2	0	0	4	3
7	ECE6003	Micro Systems & Hybrid Technology	2	0	2	0	3
8	ECE6004	RF and Microwave Sensors	3	0	0	0	3
9	ECE6007	Biomedical sensors	2	0	2	0	3
10	ECE6087	Multi-disciplinary Product Development	3	0	0	4	4
11	ECE6088	Deep Learning — An Approach to Artificial Intelligence	3	0	0	0	3
12	ECE6089	Automotive Sensors & in-Vehicle Networking	2	0	2	0	3
13	ECE6090	Fibre optic Sensors and Photonics	3	0	0	0	3

	(Deemed to be University under section 3 of UGC Act, 1956)	T		D	T	C
Course Code ECE5060	Course Title PRINCIPLES OF SENSORS AND SIGNAL	L 2	<u>Т</u> 0	P 2	J 0	C 3
ECE5000	CONDITIONING	2	U	2	U	3
Pre-requisite	Nil	Sv	llah		versi	on
rie-requisite	1911	Sy	IIau	<u>1.0</u>		UII
Course Objective	DQ.			1.0		
× ×	e in depth knowledge in physical principles applied in sensing	z me	asu	rem	ent a	nd
-	nensive understanding on how measurement systems are de	-				
characteris	sed, and analysed.					
	ce the students to sources and detectors of various Optical ser	-			nism	S
	le in-depth understanding of the principle of measurement, an	d the	ory	of		
	s and sensors for measuring velocity and acceleration		1		4:00	- f
	fundamental knowledge on the basic laws and phenomena on asformation of energy is based.	whit	ch o	pera	tion	OI
	a reasonable level of competence in the design, construction,	and (exec	cutio	on of	
_	l measurements strain, force, torque and pressure					
Expected Outcom						
	pts in common methods for converting a physical parameter	er int	o a	n el	ectri	cal
quantity		• 1	1.			1
	n appropriate sensor comparing different standards and g					аке
	neasurements of physical parameters like pressure, flow, acce		ion,	etc.		
	d develop sensors using optical methods with desired properti erformance characteristics of different types of sensors	62				
	fferent types of sensors used in real life applications an	d na	iran	hras	e th	eir
importanc		u pu	uup	mus	C II	UII
-	lytical design and development solutions for sensors.					
	in the design, construction, and execution of systems for a	meas	urir	ng p	hysi	cal
quantities				01	5	
Student Learnin	g Outcomes (SLO): 1, 5, 14					
	or fundamentals and characteristics 2 hours					
Sensor Classificat	ion, Performance and Types, Error Analysis characteristics					
	cal Sources and Detectors 4 hours					
	Optical properties of semiconductor as sensors, LED, Sem					
	ors, Thermal detectors, Photo multipliers, photoconductive	e det	tecto	ors,	Pho	to
	ne photodiodes, CCDs.					
Sens						
	Microbending concept, Interferometers, Mach Zehnder, I		elso	on, İ	Fabr	у-
	c, Phase sensor: Phase detection, Polarization maintaining fibe	ers.				
	in, Force, Torque and Pressure sensors 5 hours	- 11				
	ain gage beam force sensor, piezoelectric force sensor, load o					
	nd capacitive pressure sensor, optoelectronic pressure sensor					
sensors	conditioning circuits for strain gauges, piezo, capacitance a	110 0	ριο	elect	roni	CS
	tion, Direction, Displacement and Level 4 hours					
100000000000000000000000000000000000000	ton, Direction, Displacement and Level 4 nours					

Total Lecture: 30 hours Text Book(s)	[[]	SONSOFS							
current, transverse inductive, Hall effect, magneto resistive, magnetostrictive sensors. Fiber optic liquid level sensing, Fabry Perot sensor, utrasonic sensor, capacitive liquid level sensor. Signal condition circuits for reactive and self generating sensors. Module:6 Velocity and Acceleration sensors 3 hours Electromagnetic velocity sensor, Doppler with sound, light, Accelerometer characteristics, capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, McGraw-Hill Science, Delhi. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 8 Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4 Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. 8 Bours Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathor/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges-Strain, Force, pressure, and torque measurement 1. Strain measurement with Bridge Circuit 3 Behuar Strain Gauge Bridge 3 Nours 8 hours 8 hours 8 hours 8 hours 8 hours 9 hours 1 Diaphragm pressure sensor using Strain Gauge Bridge 3 Nourg	Dotontionat		Letic concor I		WDT adder				
 liquid level sensing, Fabry Perot sensor, ultrasonic sensor, capacitive liquid level sensor. Signal condition circuits for reactive and self generating sensors. Module:6 Velocity and Acceleration sensors 3 hours Electromagnetic velocity sensor, Doppler with sound, light, Accelerometer characteristics, capacitive, piezo-resistive, piezolectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensor. Acoustic sensors - microphones-resistive, capacitive, piezoelectric, fiber optic, solid state electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Total Lecture: 30 hours Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. Reference Books Jon G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2nd edition, CRC Press, Florida. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2012, 1st edition, John Wiley, New York. Bahaa E. A. Salch and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. John Wiley, New York. John Wiley, New York. Shear strain and angle of shift measurement of hollow shaft After completing the 1st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivy of 100 mg. Design of signal conditioning circuits for strain gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Dia									
condition circuits for reactive and self generating sensors. 3 hours Module:6 Velocity and Acceleration sensors 3 hours Bolt Velocity sensor. Doppler with sound, light, Accelerometer, characteristics, capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer, microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John S Weasurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey.									
Module:6 Velocity and Acceleration sensors 3 hours Electromagnetic velocity sensor, Doppler with sound, light, Accelerometer characteristics, capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. 6 hours Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anenometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) Total Lecture: 30 hours I Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1 GerdKiser,"Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, Neitex, 700 yet. Sentists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Node of Explautaton:CAT. Digital Assignments, Quiz, Online course, Pap	-	• •	pacifive inquid	level se	ensor. Signal				
Electromagnetic velocity sensor, Doppler with sound, light, Accelerometer characteristics, capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Text Book(s) Text Book(s) Text Book(s) Reference Books GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, Elsevier, Netherland. Reference Books GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. John G Webstr, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. List of Experiments: (Indicative) I. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iii. Beam force sensor using Strain Gauge Bridge iii. Beam force sensor using Strain Gauge Bridge iii. Beam force sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iii. Beam force sens				1					
capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer, microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours 30 hours Total Lecture: 30 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 ^{rdl} edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 1. Strain measurement with Bridge Circuit 1. Beam force sensor using Strain Gauge Bridge 1. Diaphragm pressure sensor using Strain Gauge Bridge 2. Diaphragm pressure sensor using Strain Gauge Bridge 2. Diaphragm pressure sensor using Strain Gauge Bridge 3. Inductive transducer (LVDT) 3. Inductive transducer (LVDT) 3. Inductive transducer (LVDT) 3. Inductive transducer (LVDT) 3. In									
and optical gyroscopes. Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) I Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. Reference Books GerdKciser, "Optical Fiber Communications", 2017, 5th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2th edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2th edition, Wiley, New Jersey. 4. Bahae E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge v.<									
Module:7 Flow, Temperature and Acoustic sensors 6 hours Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensors. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books I 3. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 ^{ad} edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) I. <td< td=""><td></td><td></td><td>al acceleromet</td><td>er, roto</td><td>r, monolithic</td></td<>			al acceleromet	er, roto	r, monolithic				
 Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors- thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours 30 hours Total Lecture: 30 hours Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York. Jon S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. Reference Books GerdKeiser, "Optical Fiber Communications", 2017, 5th edition, McGraw-Hill Science, Delhi. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2^{ad} edition, CRC Press, Florida. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientist", 2013, 2nd edition, Wiley, New Jersey. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) Strain measurement with Bridge Circuit Beam force sensor using Strain Gauge Bridge With Beam force sensor using Strain Gauge Bridge Shear strain and angle of shift measurement of hollow shaft After completing the 1st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. Develop a			1	r					
Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors- thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2 Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. 4. Bohae E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. 4. Boate fevaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. 4. List of Experiments: (Indicative) 4. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 4. Strain measurement with Bridge Circuit 4. Beam deflection sensing with Strain Gauge Bridge 4. Biam force sensor using Strain Gauge Bridge 4. Beam deflection sensing with Strain Gauge Bridge 4. Shear strain and angle of shift measurement of hollow shaft 4. After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg									
sensors- thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours 2 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahae E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam deflection sensing with Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with th									
sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone. Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 6erdKeiser, "Qptical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Erric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 8 hours i. Strain measurement with Bridge Circuit 8 hours ii. Beam force sensor using Strain Gauge Bridge 9 hours v. Shear strain and an									
electrect microphone. Image: Total Lecture: Image: Total Lecture: Image: Total Lecture: Total Lecture: 30 hours Text Book(s) Image: Lecture: 30 hours Image: Lecture: 30 hours Text Book(s) Image: Lecture: 30 hours Image: Lecture: 30 hours Image: Lecture: 30 hours Text Book(s) Image: Lecture: 30 hours Image: Lecture: 30 hours Image: Lecture: Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. Reference Books Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Image: Lecture: Im									
Module:8 Contemporary Issues 2 hours Total Lecture: 30 hours Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Salch and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1 1. Beam force sensor using Strain Gauge Bridge ii. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a	sensor. Acou	ustic sensors- microphones-resistive, capacitive, pie	ezoelectric, fib	er optic	, solid state -				
Total Lecture: 30 hours Text Book(s)	electrect mic	crophone.							
Text Book(s) Text Book(s) 1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 8 hours i. Strain measurement with Bridge Circuit 8 hours ii. Beam deflection sensing with Strain Gauge Bridge 9 hours iii. Beam deflection sensing with Strain Gauge Bridge 9 kours iii. Beam deflection sensing with Strain Gauge B	Module:8	Contemporary Issues	2 hours						
1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books		Total Lecture:	30 hours						
1 Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3 rd edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books		<u></u>							
edition, Springer, New York. 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1 st edition, Elsevier, Netherland. Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iii. Beam after consensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displ				<u>.</u>	an and a ard				
 Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. Reference Books GerdKeiser, "Optical Fiber Communications", 2017, 5th edition, McGraw-Hill Science, Delhi. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2nd edition, CRC Press, Florida. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2nd edition, Wiley, New Jersey. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) Strain measurement with Bridge Circuit			esigns and Ap	plication	$13^{20}, 2015, 3^{10}$				
Reference Books 1. GerdKeiser, "Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 4hours 2. Develop a displacement measurement system with the following sensors: 4hours </td <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td>			· · · · · · · · · · · · · · · · · · ·						
1. GerdKeiser,"Optical Fiber Communications", 2017, 5 th edition, McGraw-Hill Science, Delhi. 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2 nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam deflection sensing with Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 4hours 2. Develop a displacement measurement system with the following sensors: 4hours i. Inductive transducer (LVD			^a edition, Elsev	vier, Net	herland.				
 2. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2nd edition, CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement Strain measurement with Bridge Circuit Beam deflection sensing with Strain Gauge Bridge Beam deflection sensing with Strain Gauge Bridge No Shear strain and angle of shift measurement of hollow shaft After completing the 1st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: Inductive transducer (LVDT) Hall effect sensor 									
CRC Press, Florida. 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 4hours 2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor 									
 3. Eric Udd and W.B. Spillman, "Fiber optic sensors: An introduction for engineers and scientists", 2013, 2nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement Strain measurement with Bridge Circuit Beam force sensor using Strain Gauge Bridge Beam deflection sensing with Strain Gauge Bridge Diaphragm pressure sensor using Strain Gauge Bridge Shear strain and angle of shift measurement of hollow shaft After completing the 1st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: Inductive transducer (LVDT) Hall effect sensor 	2. John G	Webster, "Measurement, Instrumentation and sen	isor Handbook	", 2017,	, 2 nd edition,				
scientists", 2013, 2 nd edition, Wiley, New Jersey. 4. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1 st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft 8 fter completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 4hours 2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) 4hours									
 Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York. Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 	3. Eric Ud	dd and W.B. Spillman, "Fiber optic sensors: A	n introduction	n for en	igineers and				
John Wiley, New York.Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT.List of Experiments: (Indicative)1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement8 hoursi. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft8 hoursAfter completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.4 hours2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor4 hours									
Mode of Evaluation:CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.	4. Bahaa I	E. A. Saleh and Malvin Carl Teich, "Fundamental	ls of photonics	s", 2012	, 1 st edition,				
Hackathon/Makeathon and FAT. List of Experiments: (Indicative) 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors:	John W	iley, New York.							
List of Experiments: (Indicative) 8 hours 1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 8 hours i. Strain measurement with Bridge Circuit 8 hours ii. Beam force sensor using Strain Gauge Bridge 9 iii. Beam deflection sensing with Strain Gauge Bridge 9 iv. Diaphragm pressure sensor using Strain Gauge Bridge 9 v. Shear strain and angle of shift measurement of hollow shaft 9 After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 9 2. Develop a displacement measurement system with the following sensors: 4hours i. Inductive transducer (LVDT) 4hours	Mode of Eva	aluation:CAT, Digital Assignments, Quiz, Online of	course, Paper p	oublicati	on, Projects,				
1. Design of signal conditioning circuits for strain gauges- Strain, Force, pressure, and torque measurement 8 hours i. Strain measurement with Bridge Circuit 8 hours ii. Beam force sensor using Strain Gauge Bridge 8 hours iii. Beam deflection sensing with Strain Gauge Bridge 8 hours iv. Diaphragm pressure sensor using Strain Gauge Bridge 8 hours v. Shear strain and angle of shift measurement of hollow shaft 8 hours After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 9 hours 2. Develop a displacement measurement system with the following sensors: 9 hours i. Inductive transducer (LVDT) 4 hours	Hackathon/N	Makeathon and FAT.							
and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor 4hours	List of Expo	eriments: (Indicative)							
and torque measurement i. Strain measurement with Bridge Circuit ii. Beam force sensor using Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor 4hours	1. Design of	f signal conditioning circuits for strain gauges- St	rain, Force, pr	essure,	8 hours				
 ii. Beam force sensor using Strain Gauge Bridge iii. Beam deflection sensing with Strain Gauge Bridge iv. Diaphragm pressure sensor using Strain Gauge Bridge v. Shear strain and angle of shift measurement of hollow shaft After completing the 1st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor 			_						
iii.Beam deflection sensing with Strain Gauge Bridge iv.iv.Diaphragm pressure sensor using Strain Gauge Bridge v.v.Shear strain and angle of shift measurement of hollow shaftAfter completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.2. Develop a displacement measurement system with the following sensors: i.4hoursii.Inductive transducer (LVDT) ii.4hours		i. Strain measurement with Bridge Circuit							
iv.Diaphragm pressure sensor using Strain Gauge Bridge v.v.Shear strain and angle of shift measurement of hollow shaftAfter completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.2. Develop a displacement measurement system with the following sensors: i.4hoursi.Inductive transducer (LVDT) ii.4hours		ii. Beam force sensor using Strain Gauge B	ridge						
v.Shear strain and angle of shift measurement of hollow shaftAfter completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.2. Develop a displacement measurement system with the following sensors: i.4hoursi.Inductive transducer (LVDT) ii.4hours		iii. Beam deflection sensing with Strain Gau	ge Bridge						
After completing the 1 st set of characteristics. Design a weighing machine having a range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor 		iv. Diaphragm pressure sensor using Strain	Gauge Bridge						
range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.4400 mg.2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor4400 mg.		v. Shear strain and angle of shift measurem	ent of hollow s	shaft					
range of 0-5 Kg with a sensitivity of 5 mg. What modification he/she has to do to change the upper range to 100 Kg with a sensitivity of 100 mg.4400 mg.2. Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor4400 mg.	After compl	eting the 1 st set of characteristics. Design a weight	ing machine ha	aving a					
change the upper range to 100 Kg with a sensitivity of 100 mg. 2. Develop a displacement measurement system with the following sensors: 4hours i. Inductive transducer (LVDT) 4hours ii. Hall effect sensor 4hours	-		-	-					
2. Develop a displacement measurement system with the following sensors: 4hours i. Inductive transducer (LVDT) ii. Hall effect sensor	-								
i. Inductive transducer (LVDT)ii. Hall effect sensor									
i. Inductive transducer (LVDT)ii. Hall effect sensor	2. Develop a	a displacement measurement system with the follow	ving sensors:		4hours				
ii. Hall effect sensor			-						
3 After studying the characteristics of temperature sensors listed below develop a Charge									
J. After surving the characteristics of temperature sensors listed below, develop a 1 offours	3 After stud	lying the characteristics of temperature sensors lis	ted below, dev	velop a	6hours				

			10			
temperature	measu	rement system for a	particular applic	cation using the	suitable	
sensor.						
	i.	Thermocouple print	ciples			
	ii.	Thermistor and line	arization of NTC	Thermistor		
	iii.	Resistance Tempera	ature Detector			
	iv.	Semiconductor Ten	nperature sensor (DA79		
	v.	Current output abso	olute temperature	sensor		
4. Develop a	a sensor	system for force meas	surement using pi	ezoelectric trans	ducer	4hours
5. Measuren	nent of s	shear strain and angle	twist using strain	n gauge is not su	itable for	8hours
many applic	ations.	Based on other sensir	ng experiments ca	arried out sugge	st a non-	
contact meth	nod and	try to complete its pro	of of concept.	00		
		· · ·	*	Total Laborate	ory hours	30hours
Mode of Eva	aluation	:Continuous Assessme	ent and FAT		•	
Recommend	led by B	Board of Studies	26-06-2019			
Approved by	y Acade	mic Council	No. 55	Date	13-06-201	19

Course code	Course title	L	TI) J	C
ECE5061	IoT Fundamentals and Archite		0 0		3
Pre-requisite	Nil	S	yllabus	s versi	on
•			v. 1		
Course Objecti	/es:				
	ution of internet technology and need for IoT.				
2. Discuss on Io	Γ reference layer and various protocols and so	ftware.			
3. Train the stud	ents to build IoT systems using sensors, single	e board computers a	and ope	en sou	rce
IoT platforms.					
4. Make the stuc	ents to apply IoT data for business solution in	various domain in s	ecured	mann	er.
Expected Cour					
	T networking components with respect to OSI	layer.			
	ic for IoT solutions .				
	velop IoT based sensor systems.				
	tocols and software. vireless technologies for IoT.				
	e need for IoT Trust and variants of IoT.				
0. Appreciate th	The field for 101 Trust and variants of 101.				
Student Learni	ng Outcomes (SLO): 5,6,14				
Student Learm					
Module:1 Ev	lution of IoT			7 ho	urs
	outer communication concepts (OSI layers, co	mponents_packet	commu		
-	IP, subnetting, IPV4 addressing and challenges)	1 · 1			
reference layer.	,	0			
¥					
	coduction to IoT components			6 ho	
	oT sensor nodes, Edge computer, cloud an		d, sing	le bo	ard
computers, open	source hardwares, Examples of IoT infrastruct	ure			
	<u>C protocols and softwares</u>	D VMDD og d gotorug		<u>6 ho</u>	urs
MQT1, UDP, MQ	TT brokers, publish subscribe modes, HTTP, COA	P,XMPP and gatewa	y protoc	cols,	
Module:4 Io	F point to point communication			6 ho	ure
	hnologies			0 110	uis
	0	Wireless technologi	es (6I	JoWP	٩N.
	, BLE,SIG,NFC, LORA,Lifi,Widi)	e	,		Í
	roduction to Cloud computation and Big			6ho	urs
Module:5 Int	• . •				
dat	a analytics				
Evolution of C	loud Computation, Commercial clouds and		oen sou	urce	[oT
Evolution of C	e de la companya de la		ben sol	urce	[oT
dat Evolution of C platforms, cloud	loud Computation, Commercial clouds and dashboards, Introduction to big data analytics		ben so		
datEvolution of Cplatforms, cloudModule:6IoT	loud Computation, Commercial clouds and dashboards, Introduction to big data analytics a security	and Hadoop.		6ho	urs
datEvolution of Cplatforms, cloudModule:6Io1Need for encrypt	loud Computation, Commercial clouds and dashboards, Introduction to big data analytics security tion, standard encryption protocol, light weig	and Hadoop.		6ho	urs
datEvolution of Cplatforms, cloudModule:6Io1Need for encrypt	loud Computation, Commercial clouds and dashboards, Introduction to big data analytics a security	and Hadoop.		6ho	urs
datEvolution of Cplatforms, cloudModule:6IoTNeed for encrypModel for IoT-A	loud Computation, Commercial clouds and dashboards, Introduction to big data analytics security tion, standard encryption protocol, light weig	and Hadoop.		6ho	urs rust

M.TECH (MTS)

		es: IoT for smart cities, he , Industrial IoT, Industry 4.		ure, s	mart meters.N	M2M, Web of things,
Мо	dule:8	Contemporary issues:				2hours
			Total Lecture ho	ours:	45hours	
Тех	kt Book(s)				
1.	Alessar Sebasti	ndro Bassi, Martin Bauer, an Lange, Stefan Meissner Architecture Reference Mo	, "Enabling things	s to ta	ılk – Designi	
2.	Jan Ho	oller, Vlasios Tsiatsis, Cat Boyle, "From Machine to N	therine Mulligan,	Stam	atis Karnousl	
Ref	ference l	Books			-	
1.		, Yan Zhang, Laurence T. Y Next-Generation Pervasive 1	0			0
2.		Aadisetti , Arshdeep Bahga, et of Things A Hands-on-A				
3.		K Talukder and Roopa R Y				
4	Barrie	Sosinsky, "Cloud Computir	ng Bible", Wiley-In	ndia, 2	2010	
5		L. Krutz, Russell Dean V Computing,Wiley-India, 20		ty: A	Comprehens	sive Guide to Secure
Mo	de of Ev	aluation: CAT / Assignmen	nt / Quiz / FAT / Pr	oject	/ Seminar	
		ded by Board of Studies	26-04-2019			
App	proved b	y Academic Council	No. 55	Date	13-06-2	019

	(Deemed to be University under section 3 of UGC Act, 1956)	
Course Code	Course Title	L T P J C
ECE5062	DATA ACQUISITION	0 0 4 0 2
Pre-requisite	NIL	Syllabus Version
		1.0
Course Objectives:		
-	e fundamentals of data acquisition using sensors, NI data	acquisition hardware,
and LabVIEW		
	basics of hardware selection, including resolution and	1
	sensor connectivity, including grounding and wiring config	
-	owledge on using the NI-DAQmx driver to measure, gene	erate, and synchronize
	n tasks and analyze the data in MATLAB/ LabVIEW	acquisitions as well as
	quate knowledge on programming finite and continuous a	acquisitions, as well as
-	in hardware/software timing, triggering, and logging.	visition hardware using
NI-DAQmx ar	-on experience configuring and programming NI data acqu	instition naruware using
NI-DAQIIIX ai		
Course Outcomes:		
	ased data acquisition and signal conditioning.	
-	by to control the analog input, analog output, counter/t	timer and digital I/O
	a DAQ device.	unior, una argitar 1/0
	ent types of data acquisition and identify the correct sensor	r for their
	Develop integrated, high-performance data acquisition sys	
accurate measu		······ F·····
4. Acquire data f	rom sensors, such as thermocouples and strain gages, using	g NI DAQ
	analyse the results in LabVIEW and MATLAB	-
5. Apply advance	ed understanding of LabVIEW and the NI-DAQmx API to	create applications
Student Learning Ou	itcomes (SLO): 1,6	
Task 1	8 hou	urs
	Programming, NI DAQmx, Data acquisition Toolbox to rea	
_	e data into DAQ device.	
Task 2	6 hou	ars
Acquire and generate		I
1 00000000		
Task 3	6 hou	ırs
	non-clocked digital data.	I
Task 4	6 hou	ırs
	ulse width and count pulses using NI devices	I
Task 5	6 hou	ırs
Generate Pulse Width		I
Task 6	4 hou	ırs
Acquire and generate		I
1 U	<u> </u>	

Task 7				6 hours	
Simultaneo	us and synchronized data acquisition	l			
Task 8				4 hours	
Simulink da	ata acquisition				
Task 9				6 hours	
Arduino bas	sed multi-channel data acquisition				
Task 10				8 hours	
Remote data	a acquisition with NI WSN Gateway	and nodes, CC3	3200 (WiF	i)	
		Total Practic	al Hours	60 hours	
Text Book(
1.	BehzadAhzani "Data Acquisition u				
2.	Data Acquisition Toolbox – User's	Guide, MathWo	orks, 2016		
Reference					
1.	Lab VIEW: A Developer's Guide to		tegration e	dited by Ian Fa	air weather,
	Anne Brumfield, 2011, CRC Press.				
2.	DSP for Matlab and LabVIEW: F	fundamentals of	discrete s	ignal processi	ng, Morgan
	and Claypool Publishers, 2009				
3.	Maurizio Di Paolo Emilio, "Dat	a Acquisition S	Systems- F	Fundamentals	to Applied
	Design", Springer, 2013.				
4.	"Data Acquisition Handbook", Me	easurement and c	computing	corporation, 2	012
Mode of Ev	aluation:Continuous Assessment and	d FAT			I
		Γ			
	ded by Board of Studies	26/04/2019	•		
Approved b	y Academic Council	55	Date: 13/	/06/2019	

~	~ -	(Deemed to be University under section 3 of UGC Act, 1956)		Т		
	e Code	Course Title		T	P J	C
ECE5		SYSTEM DYNAMICS AND CONTROL	0	0	4 0	2
Prerec	quisite:	Nil				
<u> </u>						
	e Objectives		. 11			
	-	edge on performance specification, limitations and structure of cone edge on design of controllers using root-locus and frequency doma			ques	
Cours	e Outcome					
1.	Realize the simulate the	need of control system and its recent developments. Able to mod model.	el the	e sys	stem	and
2.	Analyze the domain.	behavior of the first and second order systems in time doma	in an	d fr	eque	ncy
	techniques.	e system stability based on time domain, frequency domain				
	requirement	ne need for incorporating the three term controller based on of the control action				
	corrective ac	systems behavior in digital domain and develop digital control ction.	algor	ithn	1 for	the
	Book(s)					
1.	USA.	Ogata, "Modern Control Engineering", 2010, 5 th ed., Prentice Ha			-	-
2.	Delhi, India	"Modern Control System Theory", 2014, 2 nd ed. New Age Inter a.	rnatio	onal,	Nev	V
Refere	ence Book(s)					
1.	M. Gopal,' USA.	'Digital control and state variable methods", 2012, 4th ed., Tata	McC	iraw	' Hill	,
2.	ed., PHI, N	eis, "Programmable Logic Controller - Principles and Application ew Delhi, India.	-			
3.		ath and M. Gopal, "Control Systems Engineering", 2017, 6 th l al (p) Limited. New Delhi, India.	Ed., 1	New	' Ag	е
List of	Experiment	s: (Through Inlab/Remotelab)				
1.	Introducti	on to real time controller system operations	4 ho	urs		
2.	Speed reg	ulation measurement of DC motor using armature control system	4 ho	urs		
3.	-	gulation and torque measurement of AC Servomotor using control system	4 ho	urs		
4.	Modeling system	and performance analysis of stepper motor position control	4 ho	urs		
5.	Performan estimation	nce analysis of BLDC motor control system and its parameter	4 ho	urs		
6.	ON/OFF t	emperature control system using LabVIEW platform	4 ho	urs		

		(Deemed to be University under section 3					
7	Step response analysis of second order system using Matlab4 hour						
8	Frequency response analysis of l	LEAD/LAG compens	sating network	6 hours			
9	Temperature control of a plan platform/MSP430	oller with LabVIEW	6 hours				
10	Modelling and implementation of	n using PLC	6 hours				
11	Modelling and implementation of a. Speed regulation of ser with Matlab/MSP430 b. Water level controller c. Comparison of plant p controller	6 hours					
12	 (a) Vertical take-off and landin Flight Control (b) Inverted pendulum control s & Up control c. HVAC system (Quanser NI E d. DC motor speed control (Qua & Position Control. 	system: Modelling Ba	alance Control design	8 hours			
		Tot	al Laboratory Hours	60 hours			
Mode of	f Evaluation: Continuous Assessme	ent LabCAT and Lab	oFAT				
Recomm	nended by Board of Studies						
	13-06-2019						

Course CodeCourse TitleLTNJCECE5064Programming and scripting languages000202Prorequisite:NiiSyllabus VersionImage: Single Course Objectives:1.0Image: Single Course Objective:Image: Single Course objective:Task: Embedded ProgrammingInterview object: Single Course object: Single Co			(Deemed	to be University under section 3								
Prerequisite: Nil Syllabus Version I.0 1.0 Course Objectives: 1.0 1. To expose the students to the fundamentals of embedded Programming. 1.0 2. To Introduce the GNU C, C++ Programming Tool Chain in Linux. 3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to . 1. Solve problems using C . 2. Appreciate and apply C++ . 3. Perform tasks using linux scripts. . 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours Task: C ++ Programming. Task:2 C++ Programming. Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming Basic operations, String manipulation, Dictionary, Signal plotting and processing. Graphics Task 4 Linux Shell programming, Regular expression, Process creation, Inter process communication Task 5 <td< td=""><td>Cour</td><td>se Code</td><td></td><td></td><td></td><td>L T P J C</td></td<>	Cour	se Code				L T P J C						
Image: Construction of the students in the fundamentals of embedded Programming. 1.0 Course Objectives: 1.0 I. To expose the students to the fundamentals of embedded Programming. 2. To Introduce the GNU C, C++ Programming Tool Chain in Linux. 3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to 1. 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. 4. Understanding the basic concepts of process and IPC mechanisms 5. 5. Program R for simple data oriented applications Corregramming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task: C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Datatypes, Data plotting ,analysis and regression, Machine intelligence Text Book(s) I. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, I" edition	EC	E5064	Programming and	d scripting lan	guages	0 0 4 0 2						
Course Objectives: 1. To expose the students to the fundamentals of embedded Programming. 2. To Introduce the GNU C, C++ Programming Tool Chain in Linux. 3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming Take: Imbedded Programming Take: Embedded Programming. Take: C++ Programming. Take: Imbedded C (Keil). Task: Imbedded C (Keil). Task: Impedded Programming Task: Impedded C (Keil). Task: Impedded C (Keil). Task: Impedded C (Keil). <td< td=""><td>Prere</td><td>equisite:</td><td>Nil</td><td></td><td></td><td>Syllabus Version</td></td<>	Prere	equisite:	Nil			Syllabus Version						
1. To expose the students to the fundamentals of embedded Programming. 2. To Introduce the GNU C, C++ Programming Tool Chain in Linux. 3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task: 2 C++ Programming 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 4 Linux 6 hours Shell programming Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 nd edition, Morgan & Claypol Publishers. Basic operation, Shing analysis and regression, Machine intelligence <td co<="" td=""><td></td><td colspan="10">1.0</td></td>	<td></td> <td colspan="10">1.0</td>		1.0									
2. To Introduce the GNU C, C++ Programming Tool Chain in Linux. 3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications 7ask1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). 7ask:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output 7ask 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics 7ask 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication 1 Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence 1 Text Book(s) 1 Davi	Cours	se Object	ives:									
3. To study the basic programming of Python and R . Expected Outcomes: The students will be able to 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programsing 2 hours Data types, Data plotting , analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 ^m edition, Morgan & Claypool Pub	1.	To expo	ose the students to the fundame	entals of embed	ded Programmi	ing.						
Expected Outcomes:	2.	To Intro	oduce the GNU C, C++ Progra	mming Tool Cl	nain in Linux.							
The students will be able to 1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. Tak 2 Prython Programming Task 3 Python Programming Task 4 Linux G hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux Shell programming Shell programming Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edi	3.	To stud	y the basic programming of Py	thon and R.								
1. Solve problems using C 2. Appreciate and apply C++ 3. Perform tasks using linux scripts. 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming Data types, Data plotting , analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4.	Expec	cted Outo	comes:									
 Appreciate and apply C++ Perform tasks using linux scripts. Understanding the basic concepts of process and IPC mechanisms Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence Text Book(s) I David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education 												
 Perform tasks using linux scripts. Understanding the basic concepts of process and IPC mechanisms Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. Brandon Rhodes, John Gorzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019 		-	-									
 4. Understanding the basic concepts of process and IPC mechanisms 5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Gorzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/OReilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019 		11										
5. Program R for simple data oriented applications Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). 12 hours Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGra			e 1									
Task1 Embedded Programming 12 hours C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Image: Constructs, Data structures and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017,			0 1 1		mechanisms							
C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/OReilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Ze/04/2019	5.	Program	n R for simple data oriented ap	plications								
C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Shell programming, Regular expression, Process creation, Inter process communication Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Ze/04/2019												
C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/OReilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Ze/04/2019		· []			101							
Linked list, Embedded C (Keil). Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Task 5 R programming 2 hours Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publishe			0 0									
Task:2 C++ Programming. 12 hours Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) Image: Stell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	-		1	ons, Arrays, Po	inters, Constru	cts, Data structures and						
Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication 7 hours Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence 7 hours 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	Linke	a list, Em	bedded C (Kell).									
Programs for class, objects, member functions, access modifiers, OOPS encapsulation, inheritance polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication 7 hours Task 5 R programming 2 hours Data types, Data plotting , analysis and regression, Machine intelligence 7 hours 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019												
polymorphism functions, constructors, and destructors Stream class to perform File input-output Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Ze/04/2019		_	<u> </u>									
Task 3 Python Programming 12 hours Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication 7 Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence 7 Text Book(s) 7 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019												
Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	polym	norphism	functions, constructors, and de	structors Stream	n class to perfo	orm File input-output						
Basic operations, String manipulation, Dictionary, Signal plotting and processing, Graphics Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019			<u> </u>		101							
Task 4 Linux 6 hours Shell programming, Regular expression, Process creation, Inter process communication 7 Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence 7 Text Book(s) 1 David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019				0. 1.1		· 0 1:						
Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	Basic	operation	is, String manipulation, Diction	nary, Signal plo	tting and proce	essing, Graphics						
Shell programming, Regular expression, Process creation, Inter process communication Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	Taala	4 T			(h anna							
Task 5 R programming 2 hours Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019				and anastion In		munication						
Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	Shell	programm	ing, Regular expression, Proc	ess creation, in	ter process con	Infunction						
Data types, Data plotting ,analysis and regression, Machine intelligence Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019	Tock	5 D	nrogramming		2 hours							
Text Book(s) 1. David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT 26/04/2019			<u> </u>	sion Machine i								
 David Russell, "Introduction to Embedded systems Using ANSI C and the Arduino development Environment", 2010, 1rd edition, Morgan & Claypool Publishers. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 	Data t	.ypcs, Dai	a plotting , analysis and regres.		interingence							
development Environment", 2010, 1 rd edition, Morgan & Claypool Publishers. 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019	Text]											
 2. Brandon Rhodes, John Goerzen, "Foundations of Python Network Programming", 2014, 3rd ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019 	1.	David H	Russell, "Introduction to Em	bedded system	ns Using ANS	SI C and the Arduino						
ed. edition Apress Publisher 3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019		develop	ment Environment", 2010, 1 rd	edition, Morgar	a & Claypool P	ublishers.						
3. Garrett Grolemund, "Hands-On Programming with R: Write Your Own Functions and Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019	2.			ndations of Pyth	on Network Pr	rogramming", 2014, 3rd						
Simulations", 2014, Shroff/O'Reilly Publisher 4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019			1									
4. Richard Petersen, "Linux: The Complete Reference", 2017, Sixth Edition, McGraw Hill Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019	3.				R: Write Yo	ur Own Functions and						
Education Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019												
Mode of Evaluation:Continuous Assessment and FAT Recommended by Board of Studies 26/04/2019	4.			olete Reference	", 2017, Sixth	Edition, McGraw Hill						
Recommended by Board of Studies 26/04/2019												
Approved by Academic CouncilNo. 55Date13/06/2019												
	Appro	oved by A	cademic Council	No. 55	Date	13/06/2019						

Course Code	Course Title		т	Т	Р	IC	
ECE5065	MICROCONTROLLERS FOR IOT PRO	TOTVPING	L 2	<u> </u>	г 2	J C 0 3	
	Prerequisite: Nil Syllabus Version						
Trerequisite.			1.0		10 1		
Course Object	ives: The course is aimed to		1.0				
v	the low power microcontrollers and to develop	the skill set of	pro	oran	nmir	ig low	
	ensing applications.	the skill set of	pro	Sian		15 10 11	
-	he knowledge of various peripheral related to	sensing and con	mmu	inica	ation	using	
	wireless means.	-				-	
10	e the students by introducing them Advanced AI				ers		
4. Develop	the skill set of students to build IoT systems an	d sensor interfac	cing.				
Course Outcor	mes (CO): At the end of the course the student s	hould be able to					
000000000000							
1. Design a	and develop embedded programs for low power	microcontrollers	s for	sens	sor		
applicat							
	ARM basic and advanced programs.						
	e and deploy analog and digital sensors						
	communication system with sensor units						
	develop IoT systems using Wi-Fi CC3200.	and neating in a	1				
6. Program	the single board computers to read sensor data	and posting in c.	Ioua	•			
	T						
Student Learn	ing Outcomes (SLO): 5,6,14						
Module:1 M	SP430 microcontrollers	6 hours					
	f the MSP430, Memory, Addressing modes, Ref		TPL	inst	ructi	on set	
	Exceptions: Interrupts and resets. Functions						
	Lage, Interrupts, Interrupt service routines, Issu						
power modes of					1	,	
	RM Cortex MX microcontroller	6 hours					
	14: Assembly language basics, Thumb-2 Technology						
	e, advantages, peripherals, instruction set, flo	pating point ope	eratio	ons,	Adv	vanced	
Cortex MX Mic	crocontroller, core, architecture, on-chip wi-fi.						
Module:3 D	isplay and Communication modules	4 hours					
	isplay, graphical display, relays, Peripheral prog		2C	ΙΙΔΙ	<u>?</u> т ?	7ighee	
controller.	ispiay, graphical dispiay, iciays, i cripicial prog		2C,	UAI	\\\\	Liguee	
controller.							
Module:4 Se	nsors interfacing	4 hours					
	cing techniques- Port Programming, ADC, SI		I2C	the	ermo	meter,	
	on and demodulation, DTH11, single wire therm						
Module:5 M	icrocontrollers for IoT	2 hours					

			et, 1956)		
tra		odeMCU,TI-CC3200,Access point and station	point mod	de, HT	ΓP, MQTT,
	nsmissio	n and receiving, Intel-Gallileo boards.			
Mo	odule:6	Single board computers	4 hours		
Ra	spberry p	i board, porting Raspbian, sensor interface example	les, Python p	rogramm	ing for cloud
acc	ess, sens	or systems using Arduino boards			
	odule:7	Cloud interfacing	2 hours		
Int	erfacing	and data logging with cloud: Thing speak, Things be	oard, Blync j	platform.	
Mo	odule:8	Contemporary Issues	2 hours		
		Total Lecture:	30 hours		
Te	xt Book(s)			
1.	John H	I. Davies, "MSP430 Microcontroller Basics", 2011,	2 nd ed., New	nes publi	shing, New
	York.				
2.	Jacob H	Fraden, "Hand Book of Modern Sensors: physics, D	esigns and A	oplication	ns", 2014, 4 th
	ed., Sp	ringer, New York.			
Re	ference 1	Book(s)			
1.	Sergey	Y. Yurish,"Digital Sensors and Sensor Systems: Pr	actical Desig	n", 2011,	1 st ed., IFSA
		ing, New York.			
2.	Jonatha	n W Valvano, "Introduction to ARM Cortex -M	3 Microconti	ollers",	2012, 5 th ed.,
	Create	Space publishing, New York.			
3.	Muhan	nmad Ali Mazidi, Shujen Chen, SarmadNaimi, Se	pehrNaimi,	"TI ARN	M Peripherals
	Program	nming and Interfacing: Using C Language", 2	015, 2^{nd} ed.	, Mazid	i and Naimi
		ing, New York.			
Mo	ode of Ev				
Ha		valuation:CAT, Digital Assignments, Quiz, Online	course, Paper	publicat	tion, Projects,
110	ckathon/	valuation:CAT, Digital Assignments, Quiz, Online Makeathon and FAT.	course, Paper	publicat	tion, Projects,
Lis	st of Exp	Makeathon and FAT. eriments: (Indicative)	course, Paper	publicat	tion, Projects,
Lis	s t of Exp Working	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio)		publicat	ion, Projects,
Lis	st of Exp Working • Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro	llers		
Lis	st of Exp Working • Sub • Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43	llers		
Lis	t of Exp Working Sub Sub Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers.	llers		
Li s 1. '	st of Exp Working • Sub • Sub • Sub • Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer	llers		6 hours
Lis 1. '	it of Exp Working Sub Sub Sub Sub Working	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia)	llers		
Li s 1. '	st of Exp Working Sub Sub Sub Working Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board	llers		6 hours
Li s 1. '	st of Exp Working • Sub • Sub • Sub • Sub Working • Sub • Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation	llers 30 microcontr	oller	6 hours
Li s 1. '	st of Exp Working Sub Sub Sub Working Sub Sub Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H'	llers 30 microcontr	oller	6 hours
Lis 1. 7 2.	st of Exp Working Sub Sub Sub Working Sub Sub Sub Prot	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H' ocol	llers 30 microcontr	oller	6 hours 8 hours
Lis 1. 7 2.	t of Exp Working Sub Sub Sub Working Sub Sub Sub Prot Low pov	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H ^r ocol ver wireless transmission using Zigbee	Ilers 30 microcontr	oller TT	6 hours
Lis 1. 7 2.	st of Exp Working Sub Sub Sub Working Sub Sub Sub Prot Low pov	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H' ocol ver wireless transmission using Zigbee Task 1 : Interfacing Zigbee controller with MSP 43	Ilers 30 microcontr	oller TT	6 hours 8 hours
Lis 1. 7 2.	st of Exp Working Sub Sub Sub Working Sub Sub Sub Prot Low pov	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H' ocol ver wireless transmission using Zigbee Task 1 : Interfacing Zigbee controller with MSP 43 g SPI/UART.	Ilers 30 microcontr TTP and MQ 0 microcontro	oller TT	6 hours 8 hours
Lis 1. ¹ 2. 3.	t of Exp Working Sub Sub Sub Sub Working Sub Sub Sub Low pov Sub usin Sub	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H ocol ver wireless transmission using Zigbee Task 1 : Interfacing Zigbee controller with MSP 43 g SPI/UART. Task 2: Programming sleep and wake up mode of M	Ilers 30 microcontr TTP and MQ 0 microcontro	oller TT	6 hours 8 hours 8 hours
Lis 1. ¹ 2. 3.	st of Exp Working Sub Sub Sub Working Sub Sub Sub Prot Low pov Sub usin Sub	Makeathon and FAT.eriments: (Indicative)with MSP430 (CCStudio)Task 1: Port programming of MSP430 microcontroTask 2: Analog to Digital Conversion using MSP43Task 3: LCD display of characters and numbers.Task 4: Timerwith ARM (Keil and energia)Task 1: Peripheral programming of ARM7 boardTask 2: PWM generationTask 3:Configuring CC3200, wifi configuration ,H'ocolver wireless transmission using ZigbeeTask 1 : Interfacing Zigbee controller with MSP 43g SPI/UART.Task 2: Programming sleep and wake up mode of Mms	Ilers 30 microcontr TTP and MQ 0 microcontro	oller TT	6 hours 8 hours
Lis 1. ¹ 2. 3.	st of Exp Working Sub Sub Sub Working Sub Sub Sub Prot Low pov Sub usin Sub toT syste Wor	Makeathon and FAT. eriments: (Indicative) with MSP430 (CCStudio) Task 1: Port programming of MSP430 microcontro Task 2: Analog to Digital Conversion using MSP43 Task 3: LCD display of characters and numbers. Task 4: Timer with ARM (Keil and energia) Task 1: Peripheral programming of ARM7 board Task 2: PWM generation Task 3:Configuring CC3200, wifi configuration ,H' ocol ver wireless transmission using Zigbee Task 1 : Interfacing Zigbee controller with MSP 43 g SPI/UART. Task 2: Programming sleep and wake up mode of M ms king with Raspberry pi using Python.	Ilers 30 microcontr TTP and MQ 0 microcontro	oller TT	6 hours 8 hours 8 hours
Lis 1. ¹ 2. 3.	st of Exp Working Sub Sub Sub Sub Working Sub Sub Sub Prot Low pov Sub usin Sub toT syste Wor	Makeathon and FAT.eriments: (Indicative)with MSP430 (CCStudio)Task 1: Port programming of MSP430 microcontroTask 2: Analog to Digital Conversion using MSP43Task 3: LCD display of characters and numbers.Task 4: Timerwith ARM (Keil and energia)Task 1: Peripheral programming of ARM7 boardTask 2: PWM generationTask 3:Configuring CC3200, wifi configuration ,H'ocolver wireless transmission using ZigbeeTask 1 : Interfacing Zigbee controller with MSP 43g SPI/UART.Task 2: Programming sleep and wake up mode of Mms	Ilers 30 microcontr TTP and MQ 0 microcontro	oller TT	6 hours 8 hours 8 hours

	Total I	Laboratory Hours	30 hours			
Mode of Evaluation:Continuous Assessment and FAT						
Recommended by Board of Studies	26/04/2019					
Approved by Academic Council	Date	13/06/2019				

Course Code	Course Title		L	Т	P	J	С		
ECE6001WIRELESS SENSOR NETWORKS AND IoT2004						4	3		
Pre-requisite	Pre-requisite ECE 5061- IoT Fundamentals and Architecture Syllabus Version								
1.0									
Course Objectiv									
2. To dissem WSNs reg 3. To get the based on query prod 4. To associ sensor net Course Outcome 1. Assess th applicatio 2. Confirms based netw 3. Proactive transmissi 4. Able to es 5. Contribute network a 6. Familiariz platform t	ate, hardware platforms and software frameworks work s e applicability and limitations of communication n. the behavior of mobile ad hoc networks (MANETs	c requirements smission capacit plementation iss agement, sensor used to realize protocols for a and correlates and their imp roadcast and flo to develop new	for y y ues, da dyn a re lica odin v w te-o	appl and amid amid al t infr tions ng te virel f-th	lica d s out c V im rast s ech ess e-a	ations olutions ing a Wirel wirel e W tructu on c uniqu s sen urt clo	s in ons and ess SN ure- lata es. sor oud		
Module:1	Network for embedded systems	3 hours							
	PI, I2C, CAN, LIN, FLEXRAY.								
RS232, RS485, S									
Module:2	Embedded wireless communication and Protocols	5 hours							
Module:2	Embedded wireless communication and	5 hours							
Module:2	Embedded wireless communication and Protocols	5 hours 4 hours							

Dvnamic m		considerations in WSNs, Energy usage pro	ofile, Choice of modulation scheme,
J	nodulation	n scaling, Antenna considerations.	
Module:4		WSN (Medium access control)	5 hours
Fundamenta	als of M	AC protocols - Low duty cycle protocols an	d wakeup concepts, Contention Based
protocols,	Schedule	-based protocols - SMAC - BMAC, Traf	fic-adaptive medium access protocol
(TRAMA),	The IEE	E 802.15.4 MAC protocol.	
Module:5		Sensor Network Architecture	5 hours
Data Disser	mination.	Flooding and Gossiping-Data gathering Ser	nsor Network Scenarios, Optimization
		f Merit, Design Principles for WSNs- Gatew	
		nication, WSN Tunneling	
Module:6		IP based WSN	4 hours
	itching r	packet switching, concept of IPV4, IPV6,	
6LOWPAN		• •	obowinit and it, it based work,
OLO WI AN	V Dascu V	511.	
Module:7		Tiny OS	2 hours
	" WCN of	Tiny OS	
Tiny OS Ioi	r won ai	nd IoT, M2M communication, Alljoyn networ	rk
<u> </u>			
Module:8		Contemporary issues	2 hours
		Total Lecture ho	ours: 30 hours
Text Book	(c)•		
		Karl, Andreas Willig, "Protocols and Archite	actures for Wireless Sensor Networks"
		Kall. Anuleas while. Thougons and Alcinu	ectures for whereas bensor networks
1.			
	2011, 1	st ed., John Wiley & Sons, New Jersey.	latworks: A Natworking Perspective?
2	2011, 1 Jun Zh	st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N	Networks: A Networking Perspective",
2	2011, 1 Jun Zh 2014, 1	st ed., John Wiley & Sons, New Jersey.	Networks: A Networking Perspective",
2 Reference	2011, 1 Jun Zh 2014, 1 Book(s)	st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA.	
2	2011, 1 Jun Zh 2014, 1 Book(s) Walten	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, 	"Fundamentals of Wireless Sensor
2 Reference 1.	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John N 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey.
2 Reference	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F.	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey.
2 Reference 1. 2	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley &	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John
2 Reference 1.	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John
2 Reference 1. 2 3	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S ed., Joh	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V on Wiley & Sons, New Jersey. 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st
2 Reference 1. 2 3 Mode of E	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S ed., Joh	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. n:CAT, Digital Assignments, Quiz, Online 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st
2 Reference 1. 2 3 Mode of H Hackathon/	2011, 1Jun Zh2014, 1Book(s)WaltenNetwordIan F.Wiley &Zach Sed., JohEvaluationMakeathe	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. n:CAT, Digital Assignments, Quiz, Online on and FAT 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects,
2 Reference 1 1. 2 3 Mode of E Hackathon/ List of Pro	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S ed., Joh Evaluation Makeath jects: (In	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. n:CAT, Digital Assignments, Quiz, Online on and FAT indicative) 15 Hours 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7
2 Reference 1. 2 3 Mode of F Hackathon/ List of Pro 1. Smart do	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S ed., Joh Evaluation (Makeathor jects: (In oor locks	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. n:CAT, Digital Assignments, Quiz, Online on and FAT dicative) 15 Hours offer sophisticated "access control" feature 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7 s to any home or business. Proximity
2 Reference 1. 2 3 Mode of F Hackathon/ List of Pro 1. Smart do sensors like	2011, 1Jun Zh2014, 1Book(s)WaltenNetworIan F.Wiley &Zach Sed., JohEvaluationMakeathjects: (Inoor locksBluetoo	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. n:CAT, Digital Assignments, Quiz, Online on and FAT dicative) 15 Hours offer sophisticated "access control" feature th and NFC can enable a door to unlock whe 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7 s to any home or business. Proximity enever an authorized user's smartphone
2 Reference 2 1. 2 3 Mode of E Hackathon/ List of Pro 1. Smart do sensors like approaches.	2011, 1 Jun Zh 2014, 1 Book(s) Walten Networ Ian F. Wiley & Zach S ed., Joh Evaluation Makeathe jects: (In oor locks e Bluetoo . Users c	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. in:CAT, Digital Assignments, Quiz, Online on and FAT dicative) 15 Hours offer sophisticated "access control" feature th and NFC can enable a door to unlock whe 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7 s to any home or business. Proximity enever an authorized user's smartphone , or share access with any number of
2 Reference 1. 2 3 Mode of E Hackathon/ List of Pro 1. Smart do sensors like approaches others, using	2011, 1Jun Zh2014, 1Book(s)WaltenNetworIan F.Wiley &Zach Sed., JohEvaluation/Makeathjects: (Inoor lockse Bluetoo. Users cng mobi	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. in:CAT, Digital Assignments, Quiz, Online on and FAT dicative) 15 Hours offer sophisticated "access control" feature th and NFC can enable a door to unlock whe an also remotely lock and unlock the door, le apps. Keeping the above design paran 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7 s to any home or business. Proximity enever an authorized user's smartphone , or share access with any number of
2 Reference 1. 2 3 Mode of E Hackathon/ List of Pro 1. Smart do sensors like approaches others, using	2011, 1Jun Zh2014, 1Book(s)WaltenNetworIan F.Wiley &Zach Sed., JohEvaluation/Makeathjects: (Inoor lockse Bluetoo. Users cng mobi	 st ed., John Wiley & Sons, New Jersey. eng, Abbas Jamalipour, "Wireless Sensor N st ed., Wiley-IEEE Press, USA. egus W. Dargie, Christian Poellabauer, ks: Theory and Practice", 2014, 1st ed., John V Akyildiz, Mehmet Can Vuran, "Wireless S & Sons, New Jersey. helby, Carsten Bormann, "6LoWPAN: The V in Wiley & Sons, New Jersey. in:CAT, Digital Assignments, Quiz, Online on and FAT dicative) 15 Hours offer sophisticated "access control" feature th and NFC can enable a door to unlock whe 	"Fundamentals of Wireless Sensor Wiley & Sons, New Jersey. Sensor Networks", 2011, 1 st ed., John Wireless Embedded Internet", 2009, 1 st e course, Paper publication, Projects, SLO: 6,7 s to any home or business. Proximity enever an authorized user's smartphone , or share access with any number of

2. The refrigerator is the most frequently used domiciliary/kitchen electrical appliance all over the world for food storage. Implement a Smart refrigeration module designed to convert any existing normal

refrigerator into a smart and low-cost machine using sensors. Smart refrigerator compares the status of the food for e.g. weight, quantity etc. The smart refrigerator must also able be remotely controlled and notifies the user about scarce products via wifi module (internet) on user's mobile android application. Add functionality which includes the ice ready indication, power saving, smell detection, overweighting etc.

3. Water has become a scarce resource and is crucial to the production of food. Therefore, design and implement a wireless sensor network to manage and conserve this vital resource. Part of the system includes the design and development of three sensor nodes to monitor soil moisture. An interface to display and store the status of the water content and also to be uploaded to a web server.

4. Design and provide necessary modules and service, such as command dissemination, feedback module, data logging and collection module, network programming module and time synchronization service between different sensor nodes.

5. WSN has a variety of services based on sensor network architecture. Common issues such as network bandwidth reduction, collision occurrence and performance deterioration due to the broadcasting of message in large-scale networks have become main challenges. To overcome these issues implement routing algorithm based on data-centric routing and address-based routing schemes, by which the query messages are delivered to the target area by using address-based routing scheme, then, the broadcast scheme.

Mode of Evaluation: Review I, II, III

Recommended by Board of Studies	26/04/2019		<u> </u>	
Approved by Academic Council	No. 55	Date	13/06/2019	

Course Code	Course Title	L	T	P	J	С
ECE6030	ECE6030 SIGNAL PROCESSING AND DATA ANALYTICS		0	2	0	3
Pre-requisite	Pre-requisite ECE5062 - Data Acquisition		llab	us v	versi	on
				v 1		

Course Objectives:

- 1. To introduce the concepts of *discrete* time *signal processing* and the characterization of *random signals*.
- 2. To present the basic theory of modeling the signals and the methods of estimating the unknowns using prediction filters
- 3. To provide a comprehensive understanding on applying FFT, DCT, and wavelet techniques for extracting the signal features.
- 4. To provide an overview of analysing big data using intelligent techniques and an in-depth introduction to two main areas of *Machine Learning:* supervised and unsupervised.

Expected Course Outcomes:

- 1. Apply FFT, DCT wavelet techniques for extracting the features from the big data
- 2. Develop algorithms that can be used to analyse the real-world univariate and multivariate time series data.
- 3. Design an approach to leverage data using the steps in the machine learning process.
- 4. Understand and apply both supervised and unsupervised classification methods to detect and characterize patterns in real-world data.
- 5. Estimate the signal parameters and identify the model using ARMA models and prediction filters.
- 6. Understand the methods of visualization and analysis of big data.

Student Learning Outcomes (SLO): 7,14,17

Module:1 Discrete Random Signal Processing

Random Processes, Ensemble Average, Gaussian Process, Multi variate Gaussian Process, Stationary process, Autocorrelation, Auto Covariance, Ergodicity, White noise, Power Spectrum, Filtering of Random Process

Module:2Signal Modeling4 hoursARMA, AR, MA Models. Wiener filter, Linear prediction, Kalman Filter.

Module:3Feature extraction4 hoursFFT, Power spectrum, DCT, filter banks, Wavelet, Wavelet Packets, Cepstrum

Module:4 Time series analysis 4 hours

Basic analysis, Univariate time series analysis, Multivariate time series analysis, non stationary time series.

Module:5 | Reduction of dimensionality

4 hours

4 hours

Bayesian decision, Linear discrimination, Principal Component analysis, SVD, Independent Component Analysis.

			ned to be University under section 2	01 000 Ad, 1930)					
Mo	dule:6	Machine learning		4 hours					
		learning, generative algorithm	s, Support Vector	machines, Uns	upervised learning, K				
means clustering, Neural network (SOM, ART), Expectation maximization.									
		Big Data Analytics		4 hours					
		n Big data analytics, visualize and logistic regression, dec		exploration, ba	sic and intermediate				
	-	Contemporary Issues			2 hours				
			Total Lecture	: 30 hours					
Tex	kt Book((s)							
1.		Proakis, DG. Manolakis and	-	0 0 1	processing principles,				
	algorith	nms and applications", 2012, 4	th ed., Person educ	cation, USA					
2.		eles J. Orfanidis, "Inroduction	to signal Processi	ng" 2010, 2 nd e	d., Prentice Hall, New				
	Delhi I								
	erence		V SDimmeter time	!1 D					
1.		hiem V. A.V and Schaffer R. V e Hall,. New Delhi, India	w, "Discrete- tim	e signal Process	sing ²⁷ , 2014, 3 rd ed.,				
2.		s A. Runkler, "Data Analyt	ics: Models and	Algorithms fo	or Intelligent Data				
۷.		is", 2016, 2 nd ed., Springer Ver		Aigonumis it	n memgent Data				
3.		P. Murphy, "Machine Learnir		c Perspective"	2012. 1 st ed., MIT				
	Press, I		-8	F	,				
		Evaluation: CAT, Digital As	signments, Quiz	, Online cours	e, Paper publication,				
		ackathon/Makeathon and FAT							
		llenging Experiments (Indica							
1.	U	and implementation of Wiener			6 hours				
2.	-	and implementation of filter b	anks and wavelet	s for random	6 hours				
2		s (speech, audio).	10	1	<u> </u>				
3.	-	and implementation of Princip	-	nalysis (PCA)	6 hours				
1		ngle Value Decomposition (SV	,	magazitian	6 hours				
4.		an expert system for simple ap r recognition, face recognition)		recognition,	6 hours				
5.		er a real time data available in		nd develop a da	ta 6 hours				
5.		c system to determine the average			0 110015				
	anaryth		<u> </u>	Laboratory Hou	urs 30 hours				
1.4	de of Ev	valuation:Continuous Assessme							
MO									
		ded by Board of Studies	26/04/2019						

	(Deemed to be University under section 3 of UGC A			I		
Course code	Course title	L	Т	Р	J	С
ECE5006	FLEXIBLE AND WEARABLE SE		0	0	0	3
Prerequisite:	ECE5001-Principles of Sensors	S	yllab		ersi	on
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				1.1		
Course Object		1 1.1 1	•			-
-	ide the overview of flexible electronics techno	logy and the issue	s wit	h m	ateri	als
-	ng for thin film electronics.	l mattamin a matha	da fa		: f:	1
	ose the students for the materials selection and ics development.	i patterning metho	as ic	r th	in n	Im
	write the process involved in transferring the	flevible electronic	e fro	nm f	foile	to
	and also the challenges, opportunities and the fu				0115	10
	use the students to the design, challenges of wear				sensi	ing
	sical and biological parameters and the proce					
	ing and semiconducting fibers to smart textiles.					
Expected Cour	se Outcome:					
	the technology developments in the flexible elec	ctronics technology				
	to identify the suitable materials and its processi			of th	in fi	ilm
electron	ics	-				
3. Ability t	to design the pattern and develop with suitable p	atterning methods.				
4. Realize	the process involved in the transformation of ele	ectronics from foils	to te	xtile	S	
5. Acquire	the design knowledge for developing wearable	e sensors for physic	al an	d ch	iemi	cal
paramet						
	e competency in transferring the conducting a	nd semiconducting	fibe	rs to) sm	art
textiles						
	ing Outcomes (SLO): 1,5					
	verview of flexible electronics technology		- £		5 hou	
•	xible electronics - Materials for flexible electronics	0				
	plane electronics, front plane technologies, enca	-				
	tronics - Fabrication on sheets by batch processAdditive printing.	ang, fabrication on	web	Uy r	1011-	10-
Kon processing	- Additive printing.					
Module:2 Ar	norphous and nano-crystalline silicon			7	/ hou	irs
	aterials and Thin film transistors					
	ssues for low temperature processing - low te	emperature amorph	ous	and	nai	10-
	icon - characteristics of low temperature diel					
	icon nitride and silicon oxide characteristics					
	vice performance - Contacts for the device - Dev					
Module:3 Ma	aterials and Novel patterning methods for			7	/ hou	ırs
fle	xible electronics					
	iderations for flexible electronics: Overview					
	anic semiconductors and dielectrics, conducto					
	on: Overview, control of feature sizes of jet p		orinti	ng f	or e	tch
mask patterning	g, methods for minimizing feature size, printing a	active materials.				
	· · · · · · · · · · · · · · · · · · ·					
Module:4 Fle	exible electronics from foils to textiles			6	6 hou	ırs

Introduction -Thin film transistors: Materials and Technologies - Review of semiconductors employed in flexible electronics - Thin film transistors based on IGZO - Plastic electronics for smart textiles - Improvements and limitations.

Module:5Wearable haptics6 hoursWorld of wearables - Attributes of wearables - Textiles and clothing: The meta wearable -
Challenges and opportunities - Future of wearables - Need for wearable haptic devices -
Categories of wearable haptic and tactile display.6 hours

Module:6Wearable Bio, Chemical and Inertial sensors6 hoursIntroduction-Systems design - Challenges in chemical and biochemical sensing - Application areas
-Wearable inertial sensors - obtained parameters from inertial sensors - Applications for wearable
motion sensors - Practical considerations for wearable inertial sensor - Application in clinical
practice and future scope

Module:7Knitted electronic textiles6 hoursFrom fibers to textile sensors - Interlaced network -Textile sensors for physiological state
monitoring - Biomechanical sensing - Noninvasive sweat monitoring by textile sensors and other
applications. FBG sensor in Intelligent Clothing and Biomechanics.

Contemporary issues:

			Total Lecture he	ours:	45 hours			
Te	xt Book(s)						
1.	Michael J. McGrath, Cliodhna Ni Scanaill, Dawn Nafus, "Sensor Technologies: Healthcare,							
					n, Apress Media LLC, New York.			
2.	Willian	n S. Wong, Alberto Salleo,	Flexible Electron	ics: Ma	aterials and Applications, 2011, 1 st			
	Edition	, Springer, New York.						
Ref	ference l	Books						
1.	Edward	l Sazonov, Michael R. New	man, "Wearable S	ensors	: Fundamentals, Implementation			
	and Ap	plications", 2014, 1 st Editio	n, Academic Press	s, Cam	bridge.			
2		-		•	prototype, and wear your own			
	interact	tive garments", 2014, 1 st Ed	ition, Marker Mec	lia, Net	herlands.			
3				: From	n Materials to Devices", 2015, 1 st			
		, World Scientific Publishin	0 0 1					
4	Yugang	g Sun, John A. Rogers, "	Semiconductor N	anomat	terials for Flexible Technologies:			
					nergy Storage (Micro and Nano			
		logies)", 2011, 1 st Edition,						
Mo	ode of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / P	roject /	Seminar			
Rec	commend	led by Board of Studies	21-08-2017					
Ap	proved b	y Academic Council	No. 47	Date	05-10-2017			
					•			

Module:8

2 hours

Course code	Course title		L	Т	P	J	С
ECE5008	MICRO AND NANO FLUID	ICS	2	0	0	4	3
Prerequisite:	Nil		S	yllał	ous v	versi	ion
							1.0
Course Objective							
	and discuss the fundamental physics of mic	ro and nano sca	ale 1	fluid	ls ar	nd th	neir
hydrodynai						.	
	nd techniques of miniaturization, methods		crea	te n	nicro	oflui	dıc
	es and discuss various existing microfluidic d		hin	and	hio	-	ton
application	d identify the usage of microfluidics in v	arrous lab-on-c	mp	and	DIC	oreac	
	and compare microfabrication techniques to	design vascula	ture	and	3D	mic	ro-
channels.	and compare interorabilication definiques to	o designi vasedia	luic	and	J D	mic	10-
enumers.							
Expected Course	Outcome:						
	d understand the fundamental physics of mic	ro and nano scal	e flı	iids	and	their	r
	nics. Comprehend the basics of miniaturizati						
	c architectures.						
2. Recognise	and interpret the working principle of various	s existing microf	fluid	lic d	evic	es.	
	arious microfluidic lab-on-chip applications.						
	vith various bioreactor based microchips						
	and compare various microfabrication techn	iques to design v	asc	ulatı	ure a	ind 3	BD
	nels with existing techniques.						
	simulation and microfluidic device fabricati	on knowledge fo	or de	evel	opin	g	
various mic	crofluidic devices.						
Student Learning	Outcomes (SLO): 1,5						
Student Learning	Outcomes (SLO): 1,5						
Module:1 Fund	amentals for Microscale and Nanoscale	5 hours					
Flow		c nours					
Fluids and nonflui	ds, properties of fluids, classification of flui	ds, Newtonian a	nd l	Non	Nev	vton	ian
	iven flow, reynolds number, Electrokinetic						
	pling species transport and fluid mechanics						
stress, capillary fle	ow, flow through porous media, Diffusion,	surface tension,	, co	ntac	t ang	gle a	and
Wetting.							
	odynamics	4 hours	-			• •	•
	rface, surface charge, surface energy, Therr	•				uids	in
Electrical fields, 1	The Navier Strokes equation, Boundary and I	nitial conditions	pro	blen	18,		
		41					
	cation methods and techniques	4 hours	1			וחת	
0		ding, Soft lit	nog	rapn	ıy,	PDI	M2
properties, Fabrica	tion of microfludics channels.						
Module:4 Micro	ofluidic Devices	3 hours					
	ids, Active Flow control, Microvalves,		iate	d m	niero	volu	ZAC
-	binational Mixers, Elastomeric Micromixers	•	iale	u II	1010	valv	-03,
witciolinaets, COII							
Module:5 Micro	ofluidics Lab on Chip	3 hours					
	onduce Lab on Chip	5 11001 5					

Microfluidic for Flow cytometry,	cell sorting	cell tranning	Cell culture i	n microenvironment
where the for the wey content y,	con sorung,	con napping,	Con culture i	n meroenvnomnent.

Module:6 Bioreactors on Microchips

4 hours

Enzyme assay and inhibition, Chemical synthesis in microreactors, Sequential reaction and Parallel reaction in micro reactors, chemical separation, liquid chromatography

Module:73D Vascular Network for Engineered tissues5 hours

Fabrication, Microfabrication of vasculature, Materials for 3D Microfluidic vasculature, Laser Micro-machined 3D channels, Introduction to Comsol Multiphysics, Mathematical Modeling of Microchannels in Microfludics Model builder.

Module:8 Contemporary issues:

2 hours

			Total Lecture ho	ours: 3	0 hours			
Tex	xt Book(s)						
1.	Cleme	ent Kleinstreuer, "Micro	ofluidics and	Nanoflui	dics: The	ory and Selected		
	Applications", 2013, 1 st ed., John Wiley & Sons, New Jersey.							
2.	2. Shaurya Prakash, JunghoonYeom, "Nanofluidics and Microfluidics: Systems and							
	Applica	ations",2014, 1 st ed., William	m Andrew; Norwi	ch, New	York.			
Ref	ference l	Books						
1.	Albert	Folch, "Introduction to Biol	MEMS", 2012, 1 st	ed., CRO	C Press, Uni	ted Kingdom.		
2	Patric	k Tabeling, "Introduction	to Microfluidics"	, 2011,	Reprint ed.	, Oxford University		
	Press,	Great Britain.						
3	Xiuju	n James Li, Yu Zhou, "Mi	crofluidic Devices	s for Bio	medical Ap	plications", 2013, 1 st		
	ed., V	Vood head Publishing, Cam	bridge.					
4	Terrer	nce Conlisk. A, "Essential	s of Micro- and	Nanoflu	idics: With	Applications to the		
	Biolog	gical and Chemical Sciences	s", 2012, 1^{st} ed., (Cambridg	ge Universit	y Press, New York.		
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pi	oject / S	eminar			
Mo	de of ass	sessment: Continuous Asses	ssment and FAT					
Rec	commen	ded by Board of Studies	21-08-2017					
Ap	proved b	y Academic Council	No. 47	Date	05-10-20	17		

Course Code	Course Title		L	Т	P	J	С
ECE5066	ECE5066 Chemical and Environmental Sensor 2 0 2 0 3						
Pre-requisite:	ECE5060-Principles of Sensors and Signal Co		Sy	llab	us V	ersi	on
					1.0		
Correct Ohio di					1.0		
Course Objectiv		mor davala	n m01	at m	,ith	o ol	0.01
	nd engineering principles to electrochemical se		pme	IL W	/1111	a ci	ear
	ing of oxidation and reduction of an electrolytic co ound the conception of ion selective and enzymetry		d ala	otro	dag	for	tha
	of chemical and biomolecules.	The stabilized		cuo	ues	101	uie
	pedient in applying specific interaction methods i	n the record	ition	of i	on e	alact	ive
	ng metal oxide based sensors.	If the recogn	nion	011	on s	cicci	1100
Ũ	o analyze the modes of vibration and develop	the suitable	e ma	222	and	therr	nal
sensitive		the suitable	e me		ina	unen	mai
Course Outcom							
	he need for half-cell and to analyze potential devel	loped in any	elect	roch	emi	cal c	ell
	Apply the same for ion selective measurement						C 11.
	iar with a wide range of chemical sensing method	ds and mater	rial c	hara	cteri	stics	s to
	d in biosensors.						
* *	design gas sensors for commercial and industrial	applications					
•	wledge of nanomaterials for biological and medica						
	discuss, develop and apply site specific antigen-a			desi	gn fe	or m	lost
	diseases like metabolic disorders	•					
Evaluate	process design criteria for gas treatment and air qu	ality analysi	s				
	ng Outcomes (SLO): 1,5,14						
Module:1	Electrochemistry				4	4 ho	urs
Thermodynamic	s, , Enthalpy, Entropy, Gibbs free Energy, Law	of Mass Acti	ion, s	simp	ole G	lva	nic
Cells, Electrode	- Electrolyte Interface, Fluid Electrolytes, Dissoc	iation of Salt	t, So	lubil	ity F	Produ	lct,
Ion Product, pH	Value, Ionic Conductivity, Ionic Mobility, Phase I	Diagrams.					
Module:2	Transduction Principles					4 ho	urs
Transduction E	Elements- Electrochemical Transducers-Introdu	ction Poten	tiom	etry	an	d I	on-
	odes: The Nernst Equation Voltametry and an	1					ΞT,
Modified Electro	odes, Thin-Film Electrodes and Screen-Printed electrodes	ctrodes, phot	ome	tric s	senso	ors	
		1					
Module:3	Chemical Sensing Elements					4 ho	
-	n, molecular recognition-chemical recognition a			-		-	
	nition agents. Immobilization of biological com						
	, Amino Acid Biosensors, Glucose Biosensors and	d Uric Acid,	facto	ors a	iffec	ting	the
performance of s	sensors.						
		1					
Module:4	Potentiometric and Amperometric Sensors		• •	1 0		4 ho	
	Ion selective electrodes- pH linked, Ammonia li						
	selective, amperometric -bio sensors and gas		-			-	
	trate and enzyme activity, Detection mode and tra					lied a	ina
modified electro	des, pH glass and ion selective electrodes, solid sta	are and redox	c elec	troc	les,		
Module:5	Ontical Diagonaon and Immun againgant					1 .	
Module:5	Optical Biosensor and Immunosensors Biosensor				4	4 ho	urs
Fiber ontio his	sensor, Fluorophore and chromophore based b	piosensor D	iolur	nina	000	00 1	and
The optic blo	sensor, muorophore and enromophore based t	JUSCHSUL, D	IUIUI	mile	SUCI	ilt à	unu

chemiluminescence based biosensors, Non labled and labled immune sensors, Microbial Biosensors: electrochemical, photomicrobial, Microbial thermistor. Application of microbial biosensors in glucose, ammonia, acetic acid, alcohol, BOD, methane sensing

Module:6Sensors in exhaust gas treatment4 hoursEngine combustion process, Catalytic exhaust after treatment, Emission limits, Exhaust sensors and Engine
control, Emission test cycles, On-board diagnose (OBD): Diagnose Strategies, Exhaust sensors for OBD,
Control Sensors: Hydro-Carbon Sensors, NOx-Sensors, Temperature Sensors, Oxygen Sensors.

		· · · ·					
Modu	le:7	Measurement techniques for air quality		4 hours			
contro	l- Measur	chniques for particulate matter in air. Specific ement of oxides of sulphur, oxides of nitrogen mist and fog.					
Modu	le:8	Contemporary Issues	2 hours				
		Total Lecture:	30 hours				
Text I	Book(s)						
1.	Janata, J	firi,"Principles of Chemical sensors", 2014, 2nd edi	tion, Springer, I	New York.			
Refer	ence Book	S(S)					
1.		Eggins, "Chemical Sensors and Biosensors", (John Wiley Sons Ltd, New York.	Part of AnTS	Series), 2010, 1 st			
2.	edition,	Peter Grundler, "Chemical Sensors: Introduction for Scientists and Engineers", 2011, 1 ^s edition, Springer, New York.					
3.	R.G.Jac Physics.	R.G.Jackson, "Novel Sensors and Sensing", 2012, 1st edition, Philadelphia Institute o					
4.		-Gabriel Banica "Chemical Sensors and E tions" 2012, 1 st edition, Wiley-Blackwell, New Jer		indamentals and			
5.	M. Ca	mpbell, "Sensor Systems for Environmenta mental Monitoring", 2011, 1 st Edition, Springer, N	l Monitoring:	Volume Two:			
	of Evalua	tion:CAT, Digital Assignments, Quiz, Online con eathon and FAT		lication, Projects,			
List of	f Challeng	ging Experiments: (Indicative)					
1	contami the dete	a suitable electrochemical cell which can distinnated water samples. Cyclic voltammetry techniquection method. Develop the electronic circuitr the type of water.	ue can be used	as			
2	applicati	itated Electrodes (IDT) are required for effective ion. Using copper as the electrode material, develo es using suitable deposition method.		-			
3	After an depositin oxide or	alysing the advantages and drawbacks of various r ng the oxide materials on planar rigid substrates, d n the IDT electrodes fabricated on alumina substrat deposition method.	eposit zirconiun				

Among the various types of conductometric sensors, identify a suitable

4

6 hours

	sensor which can measure the humidity and develop asensor system which can measure the relative humidity in the range of 40 to 60 percent.						
5	Develop a potentiostat circuit for gas sensing application. The to 130 ohms and the expected electronic circuit which can co signal/current signal.	e nominal resi change in resi	stance of the sensor w stance will +/-5%. De	ill be 100 evelop the	6 hours		
Total Laboratory Hours 30hours							
Mode of	Mode of Evaluation: Continuous Assessment and FAT						
Recom	mended by Board of Studies		26-04-2019				
Approv	ved by Academic Council	No. 55	Date	13-06-202	19		

Course code		med to be University under section 3 of UGC As Course Title		L	Т	P	J	C
ECE5067	Cloud	and Fog Computing		2	0	2	0	3
Prerequisite	ECE5061- IoT Fundam	entals and Architecture		Sy	llab	us V	/ersi	ion
		1.00						
Objectives:	1			l				
The course is a	imed to							
1. Introduce clo	oud computing and enabl	ing technologies						
2. Explore the r	need for fog and edge con	nputation						
3. Impart the kr	nowledge to log the sense	or data and to perform fu	irther data analy	vtics				
Expected Outo	come:							
At the end of th	ne course student will be	able to						
1. Deploy their	data in the cloud for sim	ple applications						
2. Apply the an	alytics in cloud to extrac	t information						
3. Appreciate a	nd deploy fog data proce	ssing layers						
4. Integrate sen	sor data to cloud through	fog computation layers						
5. Understand a	and implement edge com	putation						
6. Develop edg	ge analytics using python	and tensor flow						
7. Perform data	a pushing and processing	in commercial clouds.						
Student Learn	ing Outcomes (SLO):	5,7,17						
	loud Computing ba chnologies	sics and enabling				5	5 ho	urs
characteristics	l computing-Need for clo – Cloud delivery model ecture – Data Center Tec	s – Cloud deployment	models. Broadb					
Module 2 Cl	loud Virtualisation					5	5 ho	urs
Lambda functio	 Virtual Machines (Iaa Ons – App, Biz function, nalytics services (SaaS). 		0					

	Cloud Application Development in Python	4 hours
Python for MapReduce	Cloud: Amazon Web Services – Google Cloud	– Windows Azure. Python for
Module 4	Federated Cloud Service Management and IoT	3 hours
	vice management (federated) –Cloud Life Cycles s -Self organizing cloud architectures	e-service and management-Cloud
Module 5	Fog computing	4 hours
Business pr	og computation, Fog data processing layers – Sec ocess integration – Big data interfaces – Wireless e Harmonization Between Cloud Radio Access N	sensors and actuators, Fog in 5G,
Module 6	Fog and edge computing	4 hours
-	edge computation-Edge computing architectu SW update, Geo distributed computing-concept of c width networks/ Security/ protcols),WAN vs Low b	cloud orchestration, Edge Networks
Module 7	Overview of Edge Data Analytics tools	3 hours
-		
	ance libraries(Pandas, Scikit Learn), Tensor flow and	d Yolo
	ance libraries(Pandas, Scikit Learn), Tensor flow and Contemporary Issues	
Python adva	Contemporary Issues	2 hours
Python adva	Contemporary Issues Total Lecture:	d Yolo 2 hours 30 hours
Python adva	Contemporary Issues Total Lecture:	2 hours

Γ

٦

2.	Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-on Approach", 2013.					
3.	Ovidiu Vermesan, Peter Friess, "Internet	of Things – I	From	Research	and	Innovation to
	Market Deployment", River Publishers, 201	-				
4.	Michael Missbach, Thorsten Staerk, Came	eron Gardiner	, Josł	nua McC	loud,	Robert Madl,
	Mark Tempes, George Anderson, "SAP on	Cloud", Sprin	ger, 2	016.		
5	John Mutumba Bilay , Peter Gutsche, Mand	ly Krimmel, V	olker	Stiehl,"	SAP	Cloud
	Platform Integration: The Comprehensive C	Juide", Rheinv	werg p	oublishing	g, 2 nd	edition, 2019,
Refe	erence Books:			Ì		, ,
1.	Honbo Zhou, "The Internet of Things in the	Cloud: A Mie	ddlew	are Persp	oectiv	e", CRC Press,
	2012.					
2.	SC. Hung et al.: Architecture Harmonizati	on Between C	loud	RANs an	d Fog	g Networks,
	IEEE Access: The Journal for rapid open ac					
Lab	Tasks (30 Hours)		0			SLOs : 5,14
Clot	id Platforms: Microsoft Azure/IBM Bluem	nix				
Lan	guage: Python					
	Pushing documents					
	2. Pushing Images and Processing					
3	3. Mini Weather Station					
4	 Image analytics at cloud 					
5	5. Python Scikit learn					
6	6. Tensor flow					
7	7. Live video					
Reco	ommended by Board of Studies	13-09-2019				
App	pproved by Academic Council No. 56 Date 24-09-2019					
11						

	(Deemed to be University under section 3 of UGC A				
Course code	Course Title		L T P J C		
ECE5068	E5068 IoT Security and Trust				
Pre-Requisite:	ECE6001-Wireless Sensor Networks and IoT Version				
•			1.0		
Objectives:					
	nowledge and technical skills in designing secur	ed and trustable IoT	systems.		
Expected Outco	· · · ·		2		
At the end of the	e course students will be able to				
1. Design and in	nplement cryptography algorithms using C prog	grams			
-	k security problems in various networks	·			
3. Build security	v systems using elementary blocks				
	le cloud based IoT systems				
	urity problems using light weight cryptography				
	e need for cyber security laws and methods.				
**	ng Outcomes (SLO): 5,6,14				
Module 1 Fu	ndamentals of encryption for cyber		5 hours		
	urity.				
	Need and the Mathematical basics- History of	f cryptography, sym	metric ciphers,		
	DES – AES. Public-key cryptography: RSA,				
-	stems, Algebraic structure, Triple Data Encl	-			
cipher,					
1 /					
Module 2 Io	Security framework		5 hours		
	ame work, Security in hardware, Bootprocess,	OS & Kernel, appli			
	d containers. Need and methods of Edge Se				
	Wireless Networks, Wireless cellular networks,	•	•		
Module 3 Ele	ementary blocks of IoT Security & Models		4 Hours		
for	Identity Management				
Vulnerability of	F IoT and elementary blocks of IoT Security,	Threat modeling -	Key elements.		
	ement Models and Identity management in Io				
Device-centric a			-		
	•				
Module 4 Ide	entity Management and Trust		4 Hours		
Est	tablishment				
Trust managen	nent lifecycle, Identity and Trust, Web	of trust models.	Establishment:		
	- Mutual establishment phases - Comparis				
management fra	mework.				
Module 5 Ac	cess Control in IoT and light weight		3 Hours		
	ptography				
	access control schemes, Concepts, identity	-based and identity	-driven, Light		
	aphy, need and methods, IoT use cases		· U		
	curity and Digital Identity in Cloud		4 Hours		
	mputing				
	, Digital identity management in cloud, Classi	cal solutions. altern	ative solutions		
		,	an o boraciono.		

Ma	inagemer	t of privacy and personal data in Clou	ıd.		
	C				
	odule 7	Cyber Crimes, Hackers and Fore			3 Hours
-		es and Laws – Hackers – Dealing with	n the rise tide o	f Cyber Crime	es – Cyber Forensics
and	l inciden	t Response – Network Forensics.			
Mo	odule:8	Contemporary Issues			2 Hours
			tal Lecture:	30 Hours	
	xt Books				
1.		Vacca, "Computer and Information S			
		it Narendra Mahalle , Poonam N.	Railkar, "Iden	tity Managem	ent for Internet of
	0	", River Publishers, 2015.			1
2.		n Stallings, "Cryptography and Ne	twork security	7: Principles	and Practice", 5th
2		, 2014, Pearson Education, India.	1.	()) [1]	. 2015
3.		ne Laurent, Samia Bouzefrane, "Digita			evier, 2015.
<u>4.</u>	_	Migga Kizza, "Computer Network Se	curity", Spring	er, 2005.	
	ference		Currente currente	x A Tarriha	als for Charlents and
1.		f Paar and Jan Pelzl, "Understanding oners", Springer, 2014.	g Cryptography	$\gamma - A$ Textboo	ok for Students and
2.		z A.Forouzan : Cryptography & Ne	twork Security	The McG	raw Hill Company
2.	2007.	z A.Porouzan : Cryptography & Ne	twork Security		raw min Company,
3.	Charlie	Kaufman, Radia Perlman, M	ike Speciner	Network	Security: "Private
5.		inication in a public World", PTR Pre	1 ,		•
4.		ir Gilchrist, "IoT security Issues", Ore			
		t of Projects(not limited to)	51)	SLO: 5,6,14
<u> </u>	-	it weight cryptography			510.5,0,14
		rid block ciphers.			
		yption using applets			
		tal signatures			
		iew of Trust in IoT transactions.			
		ot analysis			
		id security			
		t management in clouds			
Re		ded by Board of Studies	13-09-2019		
		oy Academic Council	No. 56	Date	24-09-2019

Course code	Course Title	L	Τ	P	J	С
ECE5069	IoT Applications and Web develo		0	0	4	3
Pre-requisite	ECE5061-IoT fundamentals and Archite		Syllab		ersi	ion
^			U C	1.0		
Course Objective	25:					
1. To acquire spec	ific scripting knowledge to develop interactiv	ve applications.				
2. To understand t	he basics of android application development	L.				
11 • 1	ogramming skills in developing application p	ertaining to Industri	ial, m	edic	al,	
agricultural, etc.						
-	Outcome: Students will be able to	1.				
-	c web forms to acquire and process user & se					
	as using Java Script with a focus on internet o	if things				
	ile application using android SDK for smart systems in a distributed environmer	ht.				
	IoT architecture and building blocks for vario					
	ciplinary case to case modelling and execute		ication	ı		
	espinary case to case moderning and excelute			-		
Student Learning	g Outcomes (SLO): 5,7,20					
	hinking capability					
	ational thinking (Ability to translate vast data	in to abstract conce	epts a	nd to	0	
understand databa			1			
20. Having a good	l digital footprint					
	kup Language				hou	
	Markup language, HTML document struct					
	esheets, DHTML, Tools for image creation	and manipulation,	User	expe	erier	nce
	opment using charts	1				
Module:2 Scrip			TT		hou	
	vaScript, Functions, DOM, Forms, and Even					
platforms, alerts	, application design using J2ME , IoT de	velopment using r	tear t	me	Tui	es,
plationiis, alerts						
Module:3 And	roid Programing Framework			5	hou	irs
	lopment: Android Development environmen	nt. Simple UI Lav	outs a			
	pjects, Event Driven Programming, opening a				J	
<u> </u>		U				
Module:4 Indu	strial Internet Application			4	hou	urs
IIoT Fundamental	s and Components, Industrial Manufacturing,	, Monitoring, Contr	ol, Op	otim	izati	ion
and Autonomy, In	troduction to Hadoop and big data analytics					
		-				
	lications in agriculture				hou	
Smart Farming: W	Veather monitoring, Precision farming, Smart	Greenhouse, Drone	es for	pest	icid	es.
	lications in IoT enabled Smart			4	hou	urs
Citie		automation Smart	Cmid		hou	urs

	odule:7 Healthcare applica				5 hours
	chitecture of IoT for Healthcare,				
	hitecture. Use Cases : Wearable		monitor	ing of Phys	siological parameter,
EC	CG, EEG, Diabetes and Blood Pre	ssure.			
Mo	odule:8 Contemporary issues	S:			2 hours
		Total Lecture hou	1rs: 30) hours	
Te	xt Book(s)	1 0000 2000000 0 1100		, nours	
1.	John Dean, Web Programmir	ng with HTML5. CSS	S and J	JavaScript.	2018. Jones and
	Bartlett Publishers Inc., ISBN-1			I .,	
2.	DiMarzio J. F., Beginning Au		with Ar	droid Stud	io, 2016, 4 th ed.,
	Wiley, ISBN-10: 97881265655				
Re	ference Books				
1.	Fadi Al-Turjman, Intelligence	in IoT- enabled Smar	rt Cities	, 2019, 1 st	edition, CRC Press,
	ISBN-10: 1138316849				
2.	Giacomo Veneri, and Antonio				
	powerful industrial IoT infrastr				
3.	Subhas Chandra Mukhopad		0	υ.	r Agriculture and
	Environmental Monitoring, 201	2, Springer, ISBN-10:	364227	6377	
4.					
Mc	ode of Evaluation: CAT / Assignr	nent / Quiz / FAT / Pro	oject / Se	eminar	
Lis	st of Challenging Experiments (Indicative)			
1.	Design and development of wir		e robot		15 hours
2.	Design and implementation of			o speech	
	conversation	0	C	1	
3.	IoT based home automation with	th security features			
4.					
5.					
6.	Smart Energy meters to minimi	ze power consumption	s with a	statistical	
	approach				
7.	Bringing intelligence body area	network – Smart Heal	thcare s	ystems	
	ode of assessment: Mid CAT, FA				
Ree	commended by Board of Studies	13-09-2019			
Ap	proved by Academic Council	No. 56	Date	24-09-20	19

Course code	(Deemed to be University under section 3 of UGC Act, 1956)	L	Т	P	т	C
ECE6003	MICROSYSTEMS AND HYBRID TECHNOLOGY	2	0	r	J O	C 3
			-		-	
Prerequisite	ECE5001 Principles of Sensors	S	yllał		ersi	on
Carrier Obligation				1.1		
Course Objective						
 To acquaint To provide of 	e the fundamental concepts of MEMS based sensors and actuato the students with various materials and material properties for M comprehensive understanding of various micromachining technic design simulation and analysis actuary	licros				
	lesign, simulation and analysis software. he basics of thick film and hybrid technologies for sensor develo	nmen	t			
1. Elinanenig t	the busies of the k finit and hybrid technologies for sensor develo	pinen				
Expected Course	Outcome:					
 Familiar wit The students Determine a Recognize a of various M Acquainted 	I understand the fundamental concepts and background of MEM th the basics of various sensors and actuators. s were acquainted with various materials for Microsystem design and compare the scaling effects in miniaturizing devices. and interpret various micromachining techniques and design, an <i>IEMS</i> devices micromachining tools and techniques with thick film and hybrid technologies for sensor development. simulation and micro-fabrication knowledge for developing vari-	ing. alysis	and	appl	icati	ons
		00001			1000	
Student Learning	g Outcomes (SLO): 1,5					
Module:1 Intro	oduction to MEMS and Microsystems				3 ho	urs
	rosystems, Miniaturization, Benefits of Microsystems, ducts, Evolution of Micro fabrication and Applications.	Гуріс	al I	MEN	1S a	ind
Module:2 Intro	oduction to Sensors and Actuators				3 ho	urs
Various domains principles: electros	and classification of transducers: electrostatic, piezoelectrostatic, resistive, chemical etc. SAW devices. Micro actuate agineering Science for Microsystem design and fabrication.			nal. S	Sens	ing
Module:3 Mate	erials for Microsystems			,	1 ho	1100
Silicon, Silicon c	compounds, Silicon Piezo resistors, Gallium Arsenide, G rs, Shape Memory Alloys, ferroelectric and rheological mat	-				
Module:4 Scali	ng Effects in Microsystems			4	1 ho	urs
Introduction to Se	caling, Scaling laws, Scaling in Geometry, Scaling in R nagnetic, Electrostatic, magnetic, optical and Thermal dom	-	•	dy:	nam	ics,
Module:5 Micr	omachining Technologies			4	1 ho	urs
Overview of sili Chemical Vapor D	icon processes techniques, Photolithography, Ion Imp Deposition, Physical vapor Deposition, Epitaxy, Etching, B hining, LIGA and other techniques.			Di	ffusi	on,
N. 1. 1. 7 NOTA					4 1	
Module:6 MEN	AS and micro systems applications			4	1 ho	urs

Details of application in actual systems, introduction to RF- MEMS, MOEMS, future of smart structures and MEMS leading to NEMS. Packaging, test and calibration of MEMS.

Module:7Hybrid Technology2 hoursThick-filmandhybridtechnology in sensorproduction.Basicmaterials, components,manufacturingScreen manufacturing,Screen printing,Parameters,Comparison:thick-vs.thin-filmtechnologyStructure dimensions,Assembly andpackagingSurface mounttechnology (SMT)Active andpassive devices (SMD),Connection technologies,Packaging.

Act	tive and passive devices (SMD), Connection te	echnologies, P	ackaging.	
Mo	dule:8 Contemporary issues:			2 hours
	Total Le	cture hours:	30 hours	
Tex	kt Book(s)			
1.	G.K.Ananthasuresh, K J Vinoy, S Gopalakr	ishnan, KN B	hatt, V K Aatr	e," Micro and smart
	systems", 2012, 1 st ed., Wiley, New York.	·		
2.	Tai-Ran Hsu, "MEMS & Microsystem, Desi	gn and Manuf	acture", 2017,	1 st ed., McGraw Hill
	India, New Delhi.	-		
Ref	ference Books			
1.	Mahalick NP, "MEMS", 2017, 1st ed., Tata M			
2	Wolfgang Menz, Jürgen Mohr, Oliver Paul, New York.	"Microsystem	Technology", 2	2011, 2 nd ed., Wiley,
3	Banks H.T. Smith R.C. and Wang Y.Smart,	'Material Stru	uctures – Mode	ling, Estimation and
	Control', 2011, 1 st ed., John Wiley & Sons, N	NewYork.		
4	Massood Tabib – Arar, 'Microactuators – Ele	ectrical, Magn	etic Thermal, O	Optical, Mechanical,
	Chemical and Smart structures', 2014, 1 st ed.			rs, New York .
Mo	de of Evaluation: CAT / Assignment / Quiz / I	FAT / Project	/ Seminar	
Lis	t of Challenging Experiments (Indicative)			
1.	Design and Simulation of MEMS Capacitand	ce based Acce	lerometer:	15 hours
	In this topic, you need to design a capacitiv scale Measurement range of \pm 10 g. The a using a closed loop or an open-loop. You nee protection in your device. Specification: Measurement range: \pm 10g Output capacitance: at least tens of fF level	accelerometer	may be design	ned
	Device simulation results (must take into acc	ount parasitic	capacitance of	
	your design): (a) Static analyses:			
	 Gap vs. acceleration Capacitance (or differential capacitance (identify sensitivity [F/g]) (b) Dynamic analyses: 	e) vs. accelera	tion	
	Your device's response on vibration.			
2.	Piezoresistive barometric pressure sensor:			15 hours

	2		2. B			
	In this topic, you need to design a	piezoresistive pre	ssure sens	or that has the		
	measurement range of 0 - 1.1 bar.	You need to have	a reasonal	ole over range		
	protection in your device.					
	Specification:					
	Measurement range: 0 -1.1 bar.					
	Device simulation results:					
	(i) Strain in the piezoresistor vs. pressure					
	(ii) Resistance vs. pressure					
	(iii) Voltage output vs. pressure	for Wheatstone be	ridge circu	it output.		
	Circuit integration issues:					
	Temperature compensation circu	uit design				
	Total Laboratory Hours					
Mo	Mode of assessment: Continuous Assessment and FAT					
Rec	Recommended by Board of Studies 28.01.2017					
App	Approved by Academic Council No. 47 Date 05-10-2017					
Rec	Temperature compensation circuit design Total Laboratory Hours Mode of assessment: Continuous Assessment and FAT Recommended by Board of Studies 28.01.2017					

Course code	Course title		L	Т	P	J	С
ECE6004	004 RF AND MICROWAVE SENSORS					0	3
Prerequisite:	ECE5001-Principles of Sensors		Sv	llab	us v	ersi	on
•	^		·		1.0		
Course Objective		·					
1. To introdu	ce the students with different RF and Microw	ave sensors,					
	arize antenna design with a good unders	standing of their	r p	arar	nete	rs a	ınd
application							
	ce comprehensive knowledge of wearable and	tenna.					
4. To explore	and understand basics of RFID technology.						
Exposted Course	Outcomo						
Expected Course	oper antenna design to be used in the RF spec	tral region					
	cific radiation pattern and evaluate them in di	_					
	he principle behind different radar systems		ario	us a	nnli	catio	ns
	ne radar systems.			u b u	PP.	oun	/110
	basic knowledge in the measurement of RF ra	adiation.					
	ledge about the RFID technology.						
	g Outcomes (SLO): 1,6,17						
	ensors					6 hou	
	nna-Introduction, types of Antenna, fund						
	sm, Fresnel and Fraunhofer regions. Antenn	a for communica	atio	n ar	id A	nter	ina
for sensing, radion	heter and radar						
Module:2 Ante	nna for personal area communication.				5	5 hou	ire
	ed Antennas, Broadband Microstrip Patch	Antennas Anten	mas	foi			
	Requirements, Modeling and Characterization						
	aracterization and Effect of Wearable Antenn						
	ly, Compact Wearable Antenna for different		1		,		
Module:3 Rada						5 hou	
	ADAR, RADAR range equation, MTI and	pulse Doppler R	RAE)AR	., Tı	acki	ng
RADAR, SAR pul	se RADAR, CW RADAR						
Module:4 Appl	ications of Radar	[-	i hou	189
	te sensing, agriculture, medicine, detection		ata	ND			
	he performance of RADAR, RADAR transmi	0	.18,	ΝD	1, (ICICI	150
Tactors affecting th	e performance of KADAK, KADAK transmi	tters, Receivers,					
Module:5 Radi	ometers				6	5 hou	ırs
	r theory, SMMR, Types of radiometers -	and Bolometers	s, A	Appl			
	lture, medicine, weather forecasting			•••			
		1					
	owave power Sensors					<u>6 ho</u>	
	ode detector principles, dynamic range avera			-			
	asurement uncertainty of diode sensors. Th	ermocouple Sens	sors	. Pr	111C1]	pies	OI
r nermocoupie sen	sor, power meters for thermocouple sensors.						

Mo	dule:7	RFID Sensors				8 hours
Intr	oduction	, Components of RFID sys	tems, hardware an	d softwa	are compone	ents, RFID standards,
RF	ID applic	cations.				
Mo	dule:8	Contemporary issues:				2 hours
					F 1	
			Total Lecture ho	ours: 4	5 hours	
		<u> </u>				
Tex	<mark>xt Book</mark> (, ,				
1.		zeuer Klaus, "RFID Handbo				
2.	Consta	ntine A. Balanis, "Antenn	a Theory Analysi	is and I	Design", 20	6, 4 th edition, John
	Wiley a	and Sons, New Jersey.				
Ref	ference I	Books				
1.	B. Hoff	man - Wellenhof, H.Lichte	negger and J.Colli	ns, "GPS	S: Theory an	d Practice ", 5 th
	edition,	Springer, New York, 2012			-	
2	Lillesa	nd & Kiefer, "Remote Se	nsing and Image	Interpre	etation", 201	1, 6 th edition, John
	Wiley a	and Sons, New Jersey.		-		
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pi	roject / S	Seminar	
Rec	commend	led by Board of Studies	28.01.2017			
		y Academic Council	No. 47	Date	05-10-20	17

ECE6007 BIOMEDICAL SENSORS 2 0 2 0 2 0 2 0 3 Prerequisite: ECE5001-Principles of Sensors Syllabus version 1.1 Course Objectives: 1.1 I. Introduce the students in recognizing electrode configuration and issues related with the electrode relative motions. 3. To expose the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response. 4. Review the cardiac, respiratory and muscular physiological systems. Study the designs of several instruments used to acquire signals from living systems. 5. To proclaim the conception in detection of chemical and biomolecules. 6. Students will be expedient in applying specific radiology methods in diagnostics and analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: . 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. <td< th=""><th colspan="6">Course code Course title</th><th>J</th><th>С</th></td<>	Course code Course title						J	С
Course Objectives: 1.1 Course Objectives: 1. Introduce the students to different types of electrodes used in bio potential recording 2. To facilitate the students in recognizing electrode configuration and issues related with the electrode relative motions. 3. To expose the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response. 4. Review the cardiac, respiratory and muscular physiological systems. 5. To proclaim the conception in detection of chemical and biomolecules. 6. Students will be expedient in applying specific radiology methods in diagnostics and analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments 3 hours Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes		BIOMEDICAL SENSORS	5	2	0	2	0	3
Course Objectives: 1. Introduce the students to different types of electrodes used in bio potential recording 2. To facilitate the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response. 3. To expose the students to acquire signals from living systems. 5. To proclaim the conception in detection of chemical and biomolecules. 6. Students will be expedient in applying specific radiology methods in diagnostics and analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Be to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Amediane, polarization effects of electrode – nonpolarizable electrodes. Module:2 EEG, EMG & ECG 3 hours Origin of bio potential and its propagation. Electrode-s and their equivale	Prerequisite:	ECE5001-Principles of Sensors		Sy	llab	us v	versi	on
1. Introduce the students to different types of electrodes used in bio potential recording 2. To facilitate the students in recognizing electrode configuration and issues related with the electrode relative motions. 3. To expose the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response. 4. Review the cardiac, respiratory and muscular physiological systems. Study the designs of several instruments used to acquire signals from living systems. 5. To proclaim the conception in detection of chemical and biomolecules. 6. Students will be expedient in applying specific radiology methods in diagnostics and analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues						1.1		
 To facilitate the students in recognizing electrode configuration and issues related with the electrode relative motions. To expose the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response. Review the cardiac, respiratory and muscular physiological systems. Study the designs of several instruments used to acquire signals from living systems. To proclaim the conception in detection of chemical and biomolecules. Students will be expedient in applying specific radiology methods in diagnostics and analysis. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: Realize the need for reusable electrodes and understands the method of implementation. Will be familitar with electrode placements for various biopotential recording as per the voltage range. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues	v							
several instruments used to acquire signals from living systems. 5. To proclaim the conception in detection of chemical and biomolecules. 6. Students will be expedient in applying specific radiology methods in diagnostics and analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues	 To facilitate electrode re To expose 	e the students in recognizing electrode configuration electrone configuration electrone motions. The students to perceive the need for bio a	guration and issu amplifiers and th	les r	elat	ed w	vith	
analysis. 7. The students also understand the theory behind the sound and tissue interaction, and able to apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues	several inst	ruments used to acquire signals from living s	systems.	udy	the	des	igns	of
apply in therapeutic application. Expected Course Outcome: 1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes 3 hours Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction study		vill be expedient in applying specific radio	ology methods i	n d	liagr	nosti	ics a	nd
1. Realize the need for reusable electrodes and understands the method of implementation. 2. Will be familiar with electrode placements for various biopotential recording as per the voltage range. 3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. 4. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes 3 hours Origin of bio potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven		•	d and tissue inter	racti	ion,	and	able	e to
 Will be familiar with electrode placements for various biopotential recording as per the voltage range. Capable of understanding the design principles of bio-amplifiers and drawback related with noises. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes State and micro electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers State and bio-amplifier – right leg driven 	Expected Course	Outcome:						
 Capable of understanding the design principles of bio-amplifiers and drawback related with noises. Gain knowledge for implementing different types of physiological parameter measurement using appropriate sensors. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes Studence, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven 	2. Will be far	niliar with electrode placements for various		-				the
using appropriate sensors. 5. Able to discuss, develop and apply site specific chemical sensors design and imaging techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes 3 hours Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skim interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven 3 hours	3. Capable of	understanding the design principles of bio	o-amplifiers and	dra	awba	ack	rela	ted
techniques for typical issues a. To disseminate the design knowledge in analyzing in-vivo ailments Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes 3 hours Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven			ysiological paran	nete	er me	easu	rem	ent
Student Learning Outcomes (SLO): 1,5,14 Module:1 Biopotential Electrodes 3 hours Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction study 3 hours Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven 3 hours	techniques	for typical issues		esig	n ar	nd in	magi	ing
Module:1Biopotential Electrodes3 hoursOrigin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes.Module:2EEG, EMG & ECG3 hoursBio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG- unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential. EMG- procedure and signal analysis, Nerve conduction studyModule:3Bio Amplifiers3 hoursNeed for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven	<u>a. 100</u>	insseminate the design knowledge in analyzing in	-vivo annients					
Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven	Student Learning	Outcomes (SLO): 1,5,14						
Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-skin interface, half-cell potential, impedance, polarization effects of electrode – nonpolarizable electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes. Module:2 EEG, EMG & ECG 3 hours Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers 3 hours Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven								
Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG- unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven	Origin of bio po interface, half-cell electrodes. Types of	otential and its propagation. Electrode-ele l potential, impedance, polarization effec of electrodes - surface, needle and micro elec	ts of electrode	_	non	ctroc pola	le–sl uriza	kin ble
Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG- unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study Module:3 Bio Amplifiers Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven	Module:2 EEG,	EMG & ECG				3	3 hou	ırs
Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven	Bio signal characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG– unipolar and bipolar mode. EEG- procedure, signal artefacts, signal analysis, evoked potential, EMG- procedure and signal analysis, Nerve conduction study							
Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven	Modulo-3 Bio A	mnlifiers				2	k hor	ire
			al bio-amplifier	_ ri	ght			
- Loo amplition Datio pass intering, isolation amplitudes – transformed and optical isolation -	-	• •	-		-	-		

isolated D	C amplifier and AC carrier amplifier. Chopper ampl	lifier. Power line interference
Module:4	Physical Sensors in Biomedicine	8 hours
measurement blood press pressure put flow measure	e measurement: core temperature,-surface tem nt: skin blood- hot film anemometer- Doppler so sure measurement: noninvasive- hemodynamic lses and movement- ocular pressure sensor- acous rement, sensors for bio-magnetism, tactile senso copy, artificial retina.	nography- electromagnetic sensor - invasive. Spirometry- sensors for stic sensors in hearing aid, in blood
Module:5	Sensors for Chemical Quantities in Biomedicine	3 hours
-	and pH sensor, electrochemical sensor, transcutar, optical oximetry, pulseoximetry, earoximetry.	aneous, optical fiber sensor, mass
Module:6	Detectors in Radiology	4 hours
X ray imag	ing with sensors, detectors in nuclear radiology, n sonance imaging.	
Module:7	Sound in Medicine	4 hours
	of Ultrasound with matter; Cavitations, Reflection, Iltrasound- Doppler-Double Doppler shift-Clinical	÷.
Module:8	Contemporary issues:	2 hours
	Total Lecture hours:	30 hours
Text Book(s)	
	ebster, J. G. Webster, "Medical Instrumentation; A, Inc., New York, 4 th Edition, 2015	application and Design", John Wiley
Reference l		
1. Khandı	pur R.S, "Handbook of Biomedical Instrumentation ,2014.	on", Tata McGraw-Hill, New Delhi,
3 rd Edit	nderle, Joseph Bronzino, "Introduction to Biomedion, 2011.	
Biomed	Kutz, "Biomedical Engineering and Design H lical Engineering Fundamentals", McGraw Hill Pul	blisher, USA, 2 nd Edition 2009.
	aluation: CAT / Assignment / Quiz / FAT / Project	/ Seminar
1. Pulse c saturati a circu activity normal alarm.	Ilenging Experiments (Indicative) ximetry can be a useful aid in decision-making, of on fluctuates, due to changing activities and health it to determine oxygen range, and record each m log. A SpO2 of greater than 95% is generally . If SpO2 of 92% or less (at sea level) indicate the Use two led source and two detectors to measure in the test subject.	n condition. Design neasurement in the considered to be condition using an

	Lange and Lange Age (De	eemed to be University under section	3 of UGC Act, 1956	.)	
2	The overall aim, of this experime and study its noise interference pr				6 hours
	stored and processed. Modify the				
	DC offset cancellation and driven				
	voltage due to interference and s				
	-				
3	Also, include a low-pass filter that				(h anna
3	Impedance plethysmography is a		-		6 hours
	volumes in the body, based on the				
	body surface. Determine the cha	-	•		
	volume which in turn changes the				
	the volume conductor. Measure an	nu anaryze the co	nductivity	using a DAQ	
4	system.	ware used mean	activaly	to study the	6 hours
4	Strain gauge plethysmography				o nours
	hemodynamic changes. Design a which the strain gauges should be	00	-		
	gauge is the same as the circumfer				
	This allows the plethysmograph		-	-	
	change. The size for limb strain			-	
	circumference of the limb so they				
	should be 0.5 cm less than the				
			the digit	. Analyze the	
5.	volume change using a DAQ syste Design a method to analysis light		ty using	a non-contact	6 hours
5.	measurement technique(Laser/Ultr				0 HOUIS
	velocity using LabView	asonie sensor). K		dynamic now	
	velocity using Lab view		Total Lab	oratory Hours	30 hours
Mo	de of assessment: Continuous Asses	sment and FAT	I Utal Lat		50 110015
	commended by Board of Studies	28.01.2017			
-	proved by Academic Council	No. 47	Date	05-10-2017	
Ар	broved by Academic Council	110.4/	Date	05-10-2017	

Course Code	Course Title	L	Т	Р	J	C
ECE6087	Multi-disciplinary Product Development	3	0	0	4	4
Prerequisite:	Nil	Sy	llab	us V	'ersi	on
				1.0		

Course Objectives:

1. To develop the students for integrative thinking on good engineering practices.

2. To emphasis the students from shifting their mindset from theoretical to practical multidisciplinary skills through installing the know-how of actual practice in industry field.

Expected Outcomes:

The student will be able

- 1. To demonstrate an understanding of the overview of all the product development processes and knowledge of concept generation and selection tools
- 2. To value the voice of the customer in getting the feedback
- 3. To demonstrate an understanding of quality in a product or service through tools.
- 4. To improve the design of the product in accordance with the quality standards
- 5. To apply various strategies of designing experiments, methods to uphold the status of six sigma and improve the reliability of a product.
- 6. Strive towards efficient manufacturing process by systematic resource procurement
- 7. Analyze and demonstrate knowledge in product development

Student Le	arning Outcomes (SLO): 4,9,12,20	
Module:1	Customer Value and Market Segmentation	6 hours
The way to	measure value by what a customer is willing to	pay. It is used as critical input for
product fur	action requirement development. No product can	satisfy all the customers. Marke
	on shows the methodology to target a specific custo	
Module:2	Voice of customer	6 hours
Voice of c	sustomer: A disciplined approach to directly co	llecting feedback and input from
customers.	Used throughout the Engineering and Marketing pro	DCess.
Module:3	Quality Function deployment	6 hours
Critical to (Quality and Quality function Deployment: Specify	and quantify customer needs. Flow
down those	customer needs in each step of product developmen	nt.
Module:4	Design of Six Sigma	6 hours
	0	
-	atistics into quality continuous improvement opera	
-	hout the product development process in order to	improve the correction of the first
design deliv	/ery.	
Module:5	Design Principles	6 hours
Sample des	ign Principles: As little design as possible to satisfy	-
	any unnecessary complexity helps maximize busine	

M	odule:6	Design of Manufacturing				6 hours
De	sign of N	Manufacturing: Consider product man	ufacturability	durin	ng design	phase. Manufacture
pro	oduct effi	ciently increases the organization com	petitive powe	er.		
M	odule:7	Strategic sourcing and e-sourcing				7 hours
	-	ourcing and Standardized Parts: Lever				
-	-	es to success. Parts standardization in	-		-	•
		ssue. e-sourcing: Leverage web-base	d applications	s to de	liver savi	ngs and productivity
gai	ns while	conducting the strategic sourcing.				
				1		
M	odule:8	Contemporary Issues				2 hours
		Το	tal Lecture:	30	hours	
Te	xt Books	:				
1.	Tempe	lman, <u>Shercliff</u> , <u>Van Eyben</u> , "Manufa	cturing and D	esign	, Elsevier	, 1 st edition, 2014
2		· · · · · · · · · · · · · · · · · · ·			T ('	
2.		einstein, "Handbook of Market Segr logy Firms, Third Edition (Haworth				
), 3 rd ed. Routledge, Taylor and Franc			a, Targe	ieu, and Custonnizeu
3.		Lamoureux, "The e-Sourcing Han			Guide to	Supply and Spend
5.		ement Success, Lasta publishing, 2008		Jucili	Suide II	, supply and spend
	manag	chieft Success, Easta publishing, 2000	,			
M	de of Ev					
		aluation:Continuous Assessment and	FAT			
	commen	aluation:Continuous Assessment and led by Board of Studies				
Re		aluation:Continuous Assessment and led by Board of Studies y Academic Council	FAT 26-04-2019 No. 55		13	-06-2019

Course Code	Course Title		L	Т	Р	J	С
ECE6088	DEEP LEARNING - AN APPROACH TO		3	0	0	0	3
	ARTIFICIAL INTELLIGENCE						
Prerequisite:	Nil		Syll	labı	us V	⁷ ersi	ion
							1.0
Course Objectives:							
	the fundamental theory and concepts of machine	learni	ng	an	d a	rtifi	cial
intelligence	community foundation to optificial neural network	1			J_1:		ار میں م
-	comprehensive foundation to artificial neural networ ons to pattern recognition.	ks, net	10-1	mo	uem	ng, i	ana
11	ne learning paradigms of supervised and unsupervised	sed sha	illov	w/d	een	nei	ıral
networks.	ie ioanning paradigins of supervised and ansupervi	oca on		, u	υυp	net	arur
4. To provide ex	posure to the recent advances in the field of and facili	itate in	dep	oth o	disc	ussi	ons
on chosen topi			-				
_	quate knowledge on deep learning frameworks and the	ir appli	cati	ions	s to	solv	ving
engineering pr	oblems						
Course Outcomes:							
	ge about basic concepts of machine learning algorith	ms and	ide	entif	fy n	nach	nine
-	iques suitable for the given problem.	1	-			1	c
	e differences between shallow neural networks and c	leep ne	ural	l ne	etwo	orks	for
-	l unsupervised learning. ain neural networks for classification, regression and c	luctorin	'n				
-	foundations of neural networks, how to build neural network		-	hov	v to	lead	
	nine learning projects		um	110 1	0	icuu	
5. Identify the de	eep feed forward, convolution and recurrent neural n	etwork	s w	hicl	h ar	e m	ore
	r various types of learning tasks in various domains						
6. Implement dee	ep learning algorithm and solve real world problems						
	atcomes (SLO): 1, 5, 7						
	ions of Machine Learning-I	-				5 ho	
	pervised learning, parametric vs non-parametric model						
•	ression- Linear Regression, Logistic Regression, Naïve fier-K-nearest neighbour, support vector machines.	e Bayes	cia	ISS11	ner,	sim	ipie
non-parametric classif	ner-K-nearest nerghbour, support vector machines.						
Module:2 Foundat	tions of Machine Learning-II				5	hou	rs
	based- K-means, density based, association rule minin	g, valio	latio	on t			
	ure selection and dimensionality reduction, principal c						
	Orthogonality- challenges motivating deep learning	1			2		0
Module:3 Neural N	Networks for Classification and Regression				(6 ho	urs
	for regression and classification, structure of an art						
	vation, sigmoid andsoftmax. Feedforward neural ne						
	n, multi-layer perceptron as complex decision classifier						
	propagation algorithm, risk minimization, loss function,	regulai	izat	uon	i, ne	uris	tics
Tor faster training and	avoiding local minima.						
Module:4 Deep Fee	ed Forward Neural Networks					5 ho	iire
						<i>y</i> 110	u1 3

Feed forward neural networks- deep model- output units and hidden units, training deep modelshyper parameters and validation sets-cross validation, capacity, overfitting and under fitting, bias vs variance trade off, cross validation - vanishing gradient problem, new optimization methods (adagrad, adadelta, rmsprop, adam), regularization methods (dropout, batch normalization, dataset augmentation), early stopping.

Module:5	Convolutional Neural Networks		7 hours
	on operation- kernel and feature map, sparse connectivity, equ		
sharing, p	poling function for invariant representation, convolution a	nd pooling as s	strong prior,
convolutio	n with stride, effect of zero padding, single-channel and mul	ti-channel data t	ypes used in
ConvNet,	variants of basic convolution- locally connected, tiled Cor	nvNet- spatial se	eparable and
depthwise	separable convolutions, fully connected layers, ConvNet arch	itecture- layer pa	atterns, layer
sizing para	meters, case studies- LeNet, AlexNet		
	Recurrent Neural Networks		6 hours
-	earning with neural nets, unrolling the recurrence, training RN	1 1 0	•
· ·	T), vanishing gradient problem, Gated recurrent unit (GRU	J), Long short te	erm memory
(LSTM), B	idirectional LSTMs, bidirectional RNNs		
N. 1 1. 7			0.1
Module:7	Deep Learning Tools and Applications		8 hours
	sorFlow, Keras, PyTorch, Caffe, Theano, MXNet. Applica	itions: Object de	etection with
RCNN - Y	OLO, SSD. Speech recognition with RNN.		
Refuit I			
Module:8	Contemporary Issues	2 hours	
	Contemporary Issues		
Module:8	Contemporary Issues Total Lecture:		
Module:8 Text Book	Contemporary Issues Total Lecture: (s)	45 hours	' 2015 MIT
Module:8	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press	45 hours	
Module:8 Text Book	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville.	45 hours	
Module:8 Text Book 1. 2.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA.	45 hours	
Module:8 Text Book 1.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA.	45 hours	
Module:8 Text Book 1. 2.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA.	45 hours "Deep learning" Practitioner's A	
Module:8 Text Book 1. 2. Reference	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s)	45 hours "Deep learning" Practitioner's A Springer, 2011	Approach"
Module:8 Text Book 1. 2. Reference 1.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s) Bishop, C. ,M., Pattern Recognition and Machine Learning,	45 hours "Deep learning" Practitioner's A Springer, 2011 , TMH, New Del	Approach"
Module:8 Text Book 1. 2. Reference 1. 2.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s) Bishop, C. ,M., Pattern Recognition and Machine Learning, Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed.	45 hours "Deep learning" Practitioner's A Springer, 2011 , TMH, New Del	Approach"
Module:8 Text Book 1. 2. Reference 1. 2.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s) Bishop, C. ,M., Pattern Recognition and Machine Learning, Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed. Bengio, Yoshua. "Learning deep architectures for AI- F	45 hours "Deep learning" Practitioner's A Springer, 2011 , TMH, New Del oundations and	hi, trends in
Module:8 Text Book 1. 2. Reference 1. 2. 3. 4.	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s) Bishop, C. ,M., Pattern Recognition and Machine Learning, Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed. Bengio, Yoshua. "Learning deep architectures for AI- F Machine Learning, 2(1)- 2009	45 hours "Deep learning" Practitioner's A Springer, 2011 , TMH, New Del coundations and ation (India) Pvt 1	hi, trends in Ltd, 2013.
Module:8 Text Book 1. 2. Reference 1. 2. 3. 4. Mode of F	Contemporary Issues Total Lecture: (s) Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Press Josh Patterson and Adam Gibson, "Deep Learning- A O'Reilly Media Inc., 2017, USA. Book(s) Bishop, C. ,M., Pattern Recognition and Machine Learning, Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed. Bengio, Yoshua. "Learning deep architectures for AI- F Machine Learning, 2(1)- 2009 Tom M. Mitchell, "Machine Learning", McGraw-Hill Education	45 hours "Deep learning" Practitioner's A Springer, 2011 , TMH, New Del coundations and ation (India) Pvt 1	hi, trends in Ltd, 2013.

Recommended by Board of Studies	26-04-2019		
Approved by Academic Council	No. 55	Date: 13-06-2019	

Course Code	Course Title		LT	P	J	С
ECE6089	AUTOMOTIVE SENSORS AND IN-VEHICLE		2 0	2	0	3
	NETWORKING					
Pre-requisite	ECE5060- Principles of Sensors and Signal Condition	ning 🖁	Syllat	ous v	ersi	on
				1.00)	
Course Object	tives:					
-	nt with the basic automotive parts and the need for sense	or integ	ration	in d	iffer	ent
	tive systems					
	the basics of various Power train sensors and associ	ated sy	stems	for	pro	per
	dynamics and stability in Automotive systems.					
	ehend various sensors for vehicle body management and			lous	sens	ors
	nnologies for passenger convenience, safety and security s			out		:
-	nt various communication standards and protocols follow	ea with	in the	auto	omot	1VE
systems).					
Course Outco	me					
1. Identify	and understand the basic automotive parts and the rec	uireme	nt of	sens	ors a	and
their in	egration in different automotive systems.					
	and identify the basics of various Power train sensors.					
	ehend and analyse various systems like ABS, ESP, TC	S, etc 1	for un	Iders	tand	ing
	dynamics and stability.					
-	ehend the various sensors for vehicle body management,	conver	nience	e & s	secu	rity
systems		<u>،</u> .	р			
	v various technologies developed for passenger convenier	nce, All	· Bag	depi	oym	ent
	t Belt Tensioner System, etc with the students ize various communication standards and protocols follow	ad with	in the	out	mot	
systems				aun	лпо	100
•	o and create analytical designing of novel prototype mode	ls for v	arious	auto	mot	ive
	nic systems.	15 101 1	unous	uui	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
Student Learn	ing Outcomes (SLO): 2,5,14					
Module:1 In	troduction to Automotive Engineering,			4	4 ho	urs
	utomotive Management systems					
	ombustion Engines, Transmission, Differential Gear, Brak					
	o Modern Automotive Systems and need for elect					
	eas of electronics in the automobiles, Possibilities and cha	llenges	in the	auto	omot	1Ve
industry, Enabl	ing technologies and Industry trends.					
Module:2 Po	ower train Sensors				4 ho	irc
	aust temperature sensor, NOx sensor, PM sensor, fuel qu	ality sei	nsor 1			
		unity ser	.1501, 1	0,01	Sem	, ion,
λ sensors, exh	1 1 1					
λ sensors, exh	speed sensor, mass flow sensor, manifold pressure sensor.					
λ sensors, exh torque sensor,	1 1 1			4	4 ho	urs
λ sensors, exh torque sensor, s Module:3 Se	speed sensor, mass flow sensor, manifold pressure sensor.	turn), a	cceler			
λ sensors, exh torque sensor, sModule:3Set SetWheel speed s	speed sensor, mass flow sensor, manifold pressure sensor.			ation	sen	sor
λ sensors, exh torque sensor, s Module:3 Se Wheel speed s (inertia measur	ensors for Chassis management ensors/direction sensors, steering position sensor (multi			ation ity se	sen	so1 `.

Sensors for automotive vehicle convenience and security systems

Gas sensors (CO₂), Temperature/humidity sensor, air bag sensor, key less entering sensor, radar sensors. Tire pressure monitoring systems, Two wheeler and Four wheeler security systems, parking guide systems, anti-lock braking system, future safety technologies, Vehicle diagnostics and health monitoring, Safety and Reliability, Traction Control, Vehicle dynamics control, Accelerators and tilt sensors for sensing skidding and anti-collision, Anti-collision techniques using ultrasonic Doppler sensors.

Module:5 Air Bag and Seat Belt Pre tensioner Systems	3 hours
--	---------

Principal Sensor Functions, Distributed Front Air Bag sensing systems, Single-Point Sensing systems, Side-Impact Sensing, and Future Occupant Protection systems.

Module:6Passenger Convenience Systems3 hoursElectromechanical Seat, Seat Belt Height, Steering Wheel, and Mirror Adjustments, Central
Locking Systems, Tire Pressure Control Systems, Electromechanical Window Drives, etc.3 hours

Module:7Modern Trends and Technical Solutions4 hoursEnabling Connectivity by Networking:-In vehicle communication standards (CAN & LIN),
Telematic solutions, Portable or embedded connectivity- Endorsing Dependability in Drive-by-
wire systems:- Terminology and concepts , Why by-wire, FLEXRAY, Requirements on cost and
dependability, Drive-by-wire case studies- prototype development-future of In vehicle
communication.

Mo	odule:8	Contemporary Issues			2 hours
		Total			30 hours
Te	xt Book((s)			
1.	Autom BOSCI	otive Electrics, Automotive Electronics: Systems & H.	Com	ponents,	2014, 5 th Edition,
2.	John T	urner, Automotive Sensors, 2010, 1 st Edition, Mome	entum	Press, N	ew York.
Re	ference 1	Books			
1	Autom	otive Sensors Handbook, 8th Edition, 2011, BOSCH	[.		
2.		arek, Hans-Peter Trah, Yasutoshi Suzuki, IwaoY	okom	ori, Sens	sors for Automotive
		ology, 2010, 4 th Edition, Wiley, New York.			
3.	Ernest	O. Doebelin, "Measurement Systems - Application	on and	d Design	", 2017, 6 th Edition,
	McGra	w-Hill, New Delhi.			
		valuation: CAT, Digital Assignments, Quiz, Online	course	e, Paper p	oublication, Projects,
Ha	ckathon/	Makeathon and FAT			
Lis	st of Cha	Illenging Experiments: (Indicative)			
1	Tire Pr	essure Monitoring Systems uses a wireless radio fro	equen	cy signal	6 hours
	to com	municate the tire pressure from sensors inside t	he wł	neel to a	L
	receive	r centrally located in the vehicle. The sensors an	re pov	wered by	r
	batterie	s that eventually wear out, so the amplitude of t	he tra	insmitted	

$\begin{array}{ c c c c c } \mbox{signal is minimized in order to conserve power. Unfortunately, this has resulted in unreliable communication and it is not uncommon to lose communication with the sensors resulting in a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. \end{alselose} (bound of the vehicle to conserve power and improve communication. \end{alselose} (bound of the vehicle to conserve power and improve communication. (b) a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. (b) a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. (b) a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. (b) a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. (b) a false low-pressure indication system which can measure the automotive systems to merve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers. (c) for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. (accelerometers), rotation sensors (gyrosopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of mover.) of an automotive system. (b) hours to be develowed by Board of Studies (26-04-2019) (b) a false (26-04-2019) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c$		5			
communication with the sensors resulting in a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. 2 After studying the characteristics of various types of thermal sensors, develop a suitable system which can measure the automotive engine temperature in a non-contact method with an accuracy of +/-0.5°C. 6 hours 3 Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers. 6 hours 4 In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. 6 hours 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 hours Mode of Evaluation: Continuous Assessment and FAT Zeouty assessment and FAT Zeouty assessment and FAT					
indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. 4 2 After studying the characteristics of various types of thermal sensors, develop a suitable system which can measure the automotive engine temperature in a non-contact method with an accuracy of +/-0.5°C. 6 hours 3 Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers. 6 hours 4 In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. 6 hours 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 hours Mode of Evaluation: Continuous Assessment and FAT 80 hours 30 hours					
to the vehicle to conserve power and improve communication.2After studying the characteristics of various types of thermal sensors, develop a suitable system which can measure the automotive engine temperature in a non-contact method with an accuracy of +/-0.5°C.6 hours3Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers.6 hours4In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.6 hours5Develop an intelligent inertial navigation system using motion sensors (accelerometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies26-04-2019			-	-	
develop a suitable system which can measure the automotive engine temperature in a non-contact method with an accuracy of +/-0.5°C.3Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers.6 hours4In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.6 hours5Develop an intelligent inertial navigation system using motion sensors (accelerometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies26-04-2019		1 1	0 0		
temperature in a non-contact method with an accuracy of +/-0.5°C.3Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers.6 hours4In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.6 hours5Develop an intelligent inertial navigation system using motion sensors (accelerometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies26-04-2019	2				
3 Anti-collision system is preferred for all the automotive systems to improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers. 6 hours 4 In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. 6 hours 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 30 hours Mode of Evaluation: Continuous Assessment and FAT 26-04-2019 30		develop a suitable system which can	measure the	automotive engi	ne
 improve the passenger safety. Using the Doppler effect as the detection principle, develop an anti-collision system using ultrasonic transceivers. In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 		temperature in a non-contact method w	ith an accuracy	of +/-0.5°C.	
principle, develop an anti-collision system using ultrasonic transceivers.4In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.6 hours5Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.30 hoursMode of Evaluation: Continuous Assessment and FATRecommended by Board of Studies26-04-2019	3	Anti-collision system is preferred fo	r all the autor	notive systems	to 6 hours
4 In certain situations, airbag triggering in the automotive systems must be prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. 6 hours 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 hours Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 26-04-2019			11		
prevented when deployment would be injurious to one of the vehicle's occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.6 hours5Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies			-		
occupants (for instance, if a child is sitting in the seat next to the driver, or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.5Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.6 hoursTotal Laboratory Hours30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies26-04-2019	4			•	
or a child's safety seat is fitted). Develop an intelligent occupant classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response.65Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system.6Total Laboratory Hours30 hoursMode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies					
classification system which can classify based on distance between hip bones, occupied surface, profile structure and dynamic response. 6 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 26-04-2019		± .	0		
bones, occupied surface, profile structure and dynamic response. 5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 hours Total Laboratory Hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies		•	-	U 1	
5 Develop an intelligent inertial navigation system using motion sensors (accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. 6 hours Total Laboratory Hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 26-04-2019		•	•		nip
(accelerometers), rotation sensors (gyroscopes), and magnetic sensors (magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 26-04-2019					
(magnetometers), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of an automotive system. Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT 26-04-2019 26-04-2019	5				
velocity (direction and speed of movement) of an automotive system. Total Laboratory Hours 30 hours Mode of Evaluation: Continuous Assessment and FAT Recommended by Board of Studies 26-04-2019			▲ / /	U	
Total Laboratory Hours30 hoursMode of Evaluation: Continuous Assessment and FAT26-04-2019Recommended by Board of Studies26-04-2019					nd
Mode of Evaluation: Continuous Assessment and FATRecommended by Board of Studies26-04-2019		velocity (direction and speed of movem			
Recommended by Board of Studies 26-04-2019				Laboratory Ho	ars 30 hours
• • • • • • • • • • • • • • • • • • •					
Approved by Academic CouncilNo. 55Date13-06-2019				-	10.04.0010
	Ap	proved by Academic Council	No. 55	Date	13-06-2019

	Course Title		L	Т	P J	C
ECE6090	Fiber optic Sensors and Photonics		3	0	0 0	3
Prerequisite	ECE5060 Principles of Sensors and Signal Condition	ning	Syll	abu	s Ver	sion
					1.0	
Course Objectives						
	he theory and technology of fiber optics sensing to im-	prove the	ir un	ders	tandir	g in
rapidly growin	e					
-	optical parameters in optical devices to understand the	e phenom	ena i	ndu	ced di	le to
intensity based		facts and	ita	onn	liantia	n in
optical sensing	he phase, charge distribution due to polarization ef	liects and	115	app	incatio	1 111
	nd decide the process flow conditions and steps invo	olved for	diffe	erent	nolvi	ners
	ate optical characteristic for polymer waveguides based		unne	1011	polyl	
······································	···· · · · · · · · · · · · · · · · · ·					
Course Outcomes						
1. Attainment of	basic knowledge of optical waveguides and optical of	devices ei	mplo	yed	in op	tical
sensors.						
	rsance in optical parameters involved in active and pas	-				
	haracteristics of a suitable optical materials for the	sensing	devi	ce i	n a g	iven
application.	pply the knowledge in designing interferometric devic	a which				
	DDIV the knowledge in designing interferometric devic		in m	~ **~	offoot	
used in sensin		es which	is m	ore	effecti	vely
used in sensin 5 Will be awar	g.					
5. Will be awar	g. e of different polymers and their chemical, optical					
5. Will be awar	g.					
 Will be awar miniaturized of Student Learning O 	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12				form	ılate
5. Will be awar miniaturized o Student Learning O Module:1	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides	character	istics	s to	form 7 h	ilate
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla	characteri ab waveg	istics	s to	form 7 h	ilate ours gular
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method,	characteri ab waveg Marcatil	istics guide li's r	s to	formu 7 h Rectang od, E	ulate ours gular eam
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method.	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A	characteri ab waveg Marcatil	istics guide li's r	s to	formu 7 h Rectang od, E	ulate ours gular eam
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method.	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method,	characteri ab waveg Marcatil	istics guide li's r	s to	formu 7 h Rectang od, E	ulate ours gular eam
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A	characteri ab waveg Marcatil	istics guide li's r	s to	formu 7 h acctang iod, E Nume	ulate ours gular eam
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides.	characteri ab waveg Marcatil Acceptance	istics guide li's r e ang	e, R neth gle,	formu 7 h Rectang lod, E Nume 7 h	ours gular rical
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components	character ab waveg Marcatil Acceptance	istics guide li's r e ang swit	e, R meth gle,	formu 7 h ectang iod, E Nume 7 h	ours gular eam rical ours and
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and accor amplitude modulator	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components pusto optic wave guide devices, directional couplers	character ab waveg Marcatil Acceptance	istics guide li's r e ang swit	e, R meth gle,	formu 7 h ectang iod, E Nume 7 h	ours gular eam rical ours and
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling,	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc,Yjunction,powersplitters,arrayedwaveguide FBG and fabrication of FBG,Tapered couplers.	character ab waveg Marcatil Acceptance	istics guide li's r e ang swit	e, R meth gle,	formu 7 h ectang iod, E Nume 7 h phase iling,	ours gular eam rical ours and end-
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiatio propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc, Yjunction, powersplitters, arrayed waveguide FBG and fabrication of FBG, Tapered couplers. Intensity and Polarization Sensors	character ab waveg Marcatil Acceptance s, optical edevices,fi	istics guide li's r e ang swit	s to e, R meth gle, igta	formu 7 h lectang lod, E Nume 7 h phase iling, 7 h	ours gular eam rical ours and end-
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc,Yjunction,powersplitters,arrayedwaveguide FBG and fabrication of FBG,Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending	character ab waveg Marcatil Acceptance s, optical edevices,fi	guide li's r e ang swit iberp	s to e, R meth gle, igta	formu 7 h Rectang od, E Nume 7 h phase iling, 7 h	ours gular eam rical ours and end- ours and
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran Reflection with other	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components pusto optic wave guide devices, directional couplers s,filtersetc,Yjunction,powersplitters,arrayedwaveguide FBG and fabrication of FBG,Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending optic effect-Interferometers –Mach Zehnder-Michelse	characteri ab waveg Marcatil Acceptance s, optical edevices,fi g concept on-Fabry-	istics guide li's r e ang swit iberp -Tra -Perc	s to e, R neth gle, igta	formu 7 h ectang iod, E Nume 7 h phase iling, 7 h iission id Sag	ours gular eam rical ours and end- ours and nac-
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran Reflection with other Phase sensor: Phase	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc, Yjunction, powersplitters, arrayed waveguide FBG and fabrication of FBG, Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending optic effect-Interferometers –Mach Zehnder-Michelss detection-Polarization maintaining fibers. Displaceme	characteri ab waveg Marcatil Acceptance s, optical edevices,fi g concept on-Fabry- ent and te	istics guide li's r e ang swit iberp —Tra -Percempe	s to e, R neth gle, igta insm ot an ratu	formu 7 h dectang od, E Nume 7 h phase iling, 7 h ission d Sag re sen	ours gular eam rical ours and end- ours and nac-
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method, aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran Reflection with other Phase sensor: Phase	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components pusto optic wave guide devices, directional couplers s,filtersetc,Yjunction,powersplitters,arrayedwaveguide FBG and fabrication of FBG,Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending optic effect-Interferometers –Mach Zehnder-Michelse	characteri ab waveg Marcatil Acceptance s, optical edevices,fi g concept on-Fabry- ent and te	istics guide li's r e ang swit iberp —Tra -Percempe	s to e, R neth gle, igta insm ot an ratu	formu 7 h dectang od, E Nume 7 h phase iling, 7 h ission d Sag re sen	ours gular eam rical ours and end- ours and nac-
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and accor amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran Reflection with other Phase sensor: Phase reflective and Micro B	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Clectromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc,Yjunction,powersplitters,arrayedwaveguide FBG and fabrication of FBG,Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending optic effect-Interferometers –Mach Zehnder-Michelse detection-Polarization maintaining fibers. Displacement pending Technology- Applications of displacement and	characteri ab waveg Marcatil Acceptance s, optical edevices,fi g concept on-Fabry- ent and te	istics guide li's r e ang swit iberp —Tra -Percempe	s to e, R neth gle, igta insm ot an ratu	formu 7 h aectang iod, E Nume 7 h phase iling, 7 h nission id Sag re sen ors.	ours gular eam rical ours and end- ours and nac– sors:
5. Will be awar miniaturized of Student Learning O Module:1 Wave theory of op waveguide, Radiation propagation method. aperture, skewrays- E Module:2 Electro-optic and acc amplitude modulator fiber prism coupling, Module:3 Intensity sensor: Tran Reflection with other Phase sensor: Phase reflective and Micro H	g. e of different polymers and their chemical, optical optical devices. utcomes (SLO): 2, 6, 12 Theory of Optical Waveguides tical waveguides, formation of guided modes, Sla n fields from waveguide, Effective index method, Basic characteristic of Optical Fiber Waveguides, A Electromagnetic Modes in Cylindrical Waveguides. Active and Passive Optical Components ousto optic wave guide devices, directional couplers s,filtersetc, Yjunction, powersplitters, arrayed waveguide FBG and fabrication of FBG, Tapered couplers. Intensity and Polarization Sensors nsmissive concept –Reflective concept-Micro bending optic effect-Interferometers –Mach Zehnder-Michelss detection-Polarization maintaining fibers. Displaceme	characteri ab waveg Marcatil Acceptance s, optical edevices,fi g concept on-Fabry- ent and te d temperat	guide li's r e ang swit iberp	s to e, R meth gle, igta nsm ot an ratu sens	formu 7 h Rectang od, E Nume 7 h phase iling, 7 h ission d Sag re sen ors. 7 h	ours ours and end- ours and nac- sors:

velocity sensors-Applications- Sagnac Interferometer for rotation sensing. Magnetic and electric field sensors: Intensity and phase modulation types- applications.

Module:5Polymer based waveguide in sensing7 hoursPolymer based waveguide, materials, properties, fabrication process of polymer based waveguide,
Polymer based optical components - Passive, Active polymer devices, Ring Resonator, structure, theory,
Filter using Ring Resonator-application in sensing7 hours

Modul	e:6	Fit	er based (Che	emical Senors				5 hours
Fiber	based	Chemical	Sensing	:	Absorption,	Fluorescence,	Cher	ni-luminescence,	Vibrational
Spectroscopic, SPR.									

Fiber based Bio-molecules sensing: High Index, SPR, Hollow core fiber probes, Label Free bio-molecules.	Module:7	Fiber based Bio-Senors	3 hours		
		lecules sensing: High Index, SPR, Hollow cor	e fiber probes, Label Free bio-		

Module:8

2 hours

	Total Lecture hours: 45 hours					
Text]	pok(s):					
1.	David A. Krohn, Trevor W. MacDougall, Alexis Mendez, "Fiber Optic Sensors:					
	Fundamentals and Applications" SPIE Press, 4th ed. 2015. ISBN: 1628411805					
2.	Eric Udd , William B. Spillman Jr., "Fiber Optic Sensors: An Introduction for Engineers					
	and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841					
Refer	ce Book(s)					
1.	Zujie Fang & et. al., "Fundamentals of Optical Fiber Sensors" Wiley, 1 st Ed., 2012.ISBN:					
	0470575409					
2	Shizhuo Yin, Paul B. Ruffin, and Francis T.S. Yu, "Fiber Optic Sensors", CRC Press, 2 Ed,					
	2017. ASIN: B078JN75QW					
3	F.Baldini&et.al.,"Optical Chemical Sensors", NATO Science Series II: Mathematics					
	Physics and Chemistry, Springer, 2008. ISBN: 1402046103					
Mode	F Evaluation: CAT, Digital Assignments, Quiz, Online course and FAT					
R	commended by Board of Studies 26/04/2019					

Recommended by Board of Studies	26/04/2019			
Approved by Academic Council	No. 55	Date	13/06/2019	