M6 6-1: Properties

Directions: Apply the property to complete the number sentence.

PROPERTY	KEY IDEA	Number Sentence
Commutative Property of Addition or Multiplication	Changing the ORDER of numbers when adding or multiplying	1 . $3 + 2 + 1 = $ 2 . $5 \bullet 8 \bullet 7 = $
Associative Property of Addition or Multiplication	Re <i>GROUPING</i> the numbers without changing the order	3 . $(3 + 2) + 1 = $ 4 . $5 \bullet (8 \bullet 7) = $
Identity Property of Addition or Multiplication	Keeping the value of the number the <i>SAME</i>	5 . $3 + 0 =$ 6 . $5 \bullet 1 =$
Inverse Property of Addition or Multiplication	UNDOING or CANCELING the number Doing the OPPOSITE!	7. $3 + -3 =$ 8. $5 \bullet \frac{1}{5} =$
Distributive Property	Pass out a number to a grouping. Outside times the 1 st , outside times the 2 nd .	9 . $3(2 + 1) = _$ 10 . $5(x + 2) = _$
Multiplicative Property of Zero	MULTIPLYING BY ZERO	11 . $3 \bullet 0 =$ 12 . $x \bullet 8 \bullet 0 =$

Properties Practice

Name the property for each.

1) $-2+2=0$	2) $2 \cdot \frac{1}{2} = 1$
3) 2•0=0	4) $(a+b)+c=a+(b+c)$
5) $\frac{2}{3} \cdot \frac{3}{2} = 1$	6) $0+6=6$
7) $2(x+3) = 2x+6$	8) $(2+1)+0=2+(1+0)$
9) 18•1=18	10) $3 + xy = 3 + yx$
11) $x+4=4+x$	12) $5(x+2) = 5x+10$

Answer the following questions true or false. Then justify your answer.

13)	2 + 0 = 2 is an example of multiplicative property of zero	Т	F
14)	(3x + 4)= 6x + 8 has parenthesis so it is an example of associative property.	Т	F
15)	If 2 + 3 = 6 then 3 + 2 = 6 is an example of commutative property	т	F
16)	3 • 0 = 0 illustrates multiplicative identity	т	F
17)	5(2 + 6) = 10 + 30 is an example of distributive property	т	F
18)	8 • 1 = 8 is illustrates multiplicative identity	т	F

Properties Practice

1) Four students simplified expressions and showed their work.

Jesse's work	Terris work	Morgan's work
$4(x + 2) + 5 \cdot (2 + 0)$	$(6+1) \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot (4 - 1)$
$4(x + 2) + 5 \cdot 2$	$7 \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot 3$
$4x + 8 + 5 \cdot 2$	$7 + 3 \cdot 0 + x$	(x + 4) + 18
4x + 8 + 10	7 + 0 + x	x + (4 + 18)
4x + 18	7 + x	x + 22
	$4(x + 2) + 5 \cdot (2 + 0)$ $4(x + 2) + 5 \cdot 2$ $4x + 8 + 5 \cdot 2$ 4x + 8 + 10 4x + 18	$4(x + 2) + 5 \cdot (2 + 0)$ $(6 + 1) \cdot 1 + 3 \cdot 0 + x$ $4(x + 2) + 5 \cdot 2$ $7 \cdot 1 + 3 \cdot 0 + x$ $4x + 8 + 5 \cdot 2$ $7 + 3 \cdot 0 + x$ $4x + 8 + 10$ $7 + 0 + x$ $4x + 18$ $7 + x$

Which student used the associative property of addition?

2)

Four students were asked to simplify an expression.

Student 1	Student 2	Student 3	Student 4
8(-6 + 0) • 2	7 • 4 + 0 - 2	9+0•1+2	1 – 9 + 0 • 2
8(0) • 2	28 + 0 - 2	9 + 0 + 2	1 – 9 + 0
0 • 2	28 – 2	0 + 2	-8 + 0
0	26	2	0

Which student applied the additive identity property correctly?

3) Four students simplified expressions and showed their work.

Renee's work	Jesse's work	Terri's work	Morgan's work
5 + x(4 - 1) - 2	$4(x+2)+5 \cdot (2+0)$	$(6+1) \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot (4 - 1)$
$5 + x \cdot 3 - 2$	$4(x+2)+5\cdot 2$	$7 \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot 3$
5 + 3x - 2	$4x + 8 + 5 \cdot 2$	$7 + 3 \cdot 0 + x$	(x + 4) + 18
3x + 5 - 2	4x + 8 + 10	7 + 0 + x	x + (4 + 18)
3x + 3	4x + 18	7 + x	x + 22

Which student used the commutative property of multiplication?

4)

Four students simplified expressions and showed their work.

Renee's work	Jesse's work	Terri's work	Morgan's work
5 + x(4 - 1) - 2	$4(x + 2) + 5 \cdot (2 + 0)$	$(6+1) \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot (4 - 1)$
$5 + x \cdot 3 - 2$	$4(x + 2) + 5 \cdot 2$	$7 \cdot 1 + 3 \cdot 0 + x$	$(x + 4) + 6 \cdot 3$
5 + 3x - 2	4x + 8 + 5 • 2	$7 + 3 \cdot 0 + x$	(x + 4) + 18
3x + 3 = 2	4x + 6 + 10 4x + 18	7 + x 7 + x	x + (4 + 10) x + 72

Which student used the multiplicative identity property?

M6 6-2: Equations Vocabulary and Properties

Word	Definition	Example
Variable	A used to represent one or more numbers in an expression, equation, or inequality.	
Term	A real number, a variable, or a of real numbers and variables.	
Coefficient	The number that is by the variable.	When a variable has no number in front the coefficient is automatically!
Constant	A term that does not contain a	

Label the parts below:

x + 3y + 10

On your own, label the parts below

5x + 7

M6 Unit 6: Properties, Equations, & Proportions NOTES Page 14

Equations Vocabulary

Not only can we determine the parts of a number sentence, we can determine if it is either an

_____ or an _____.

Word	Definition	Example
Expression	A term or a of terms and operators.	
Equation	A mathematical sentence stating that two are equal	

Circle if the problem is an expression or an equation.

1) $2x+17=35$	Expression	Equation	6) 5 <i>x</i> -13+72	Expression	Equation
2) $10-4j=19$	Expression	Equation	7) $34x - 5 = 9$	Expression	Equation
3) $4x - 5x + 7$	Expression	Equation	8) $17w = 10$	Expression	Equation
4) $14x - 15 = 75$	Expression	Equation	9) 3 <i>x</i> +7	Expression	Equation
5) 4 <i>j</i> -5 <i>j</i> -3	Expression	Equation	10) $3y-2y+4$	Expression	Equation

On your own, label the parts below

coefficient term variable constant

15x - 9 = 14

Equations Vocabulary

Examples:

Create an algebraic expression with three terms and an invisible coefficient.	Create a numerical expression with 2 terms.

Create an expression or equation following the directions for each problem below.

	Numerical – numbers only	Alg	ebraic – letters and numbers
1)	Create a numerical expression with 3 terms	2) C	Create an algebraic expression with three erms
3)	Create an equation with 3 terms	4) C c	Create an equation that has 9 as a coefficient
5)	Create an algebraic expression with the variable y	6) C	Create an equation with two constants and wo variables
7)	Create an equation with 4 as a coefficient and three terms	8) C ii	Create an algebraic expression with an nvisible coefficient and a constant

Properties Practice

Solve the following properties problems.

1)	1) Which property is shown in the following number sentence? 2x+(5+0) = 2x+5		2)	What is the ac	lditive inv	erse of –	4 <u>5</u> ?	
3)	3) Identify each number sentence that illustrates the commutative property of multiplication.		4)	Identify each e multiplicative	equation t property	hat repres of zero.	sents the	
	2+($(3 \bullet 7) \bullet 10 = 2 + 3 \bullet (7)$	7•10)		7 • 0 =	0	7	•1=7
		3+4•6=3+6•4			-3+3=0 -7		-7	+7 = 0
		$5 + 8 \bullet 0 = 5 + 0$			0+5=	5	0	• $3 = 0$
	2•	$(8 \bullet 7) + 1 = 2 \bullet (7 \bullet 8)$	b)+1					
5)	Which stude	nt correctly applied	the additive identi	ty pro	operty?			
		Student 1	Student 2	1	Student 3	Stud	ent 4	
		8(-6 + 0) • 2	7 • 4 + 0 - 2		9 + 0 • 1 - 2	1-9-	+ 0 • 2	
		8(0) • 2	28 + 0 - 2		9 + 0 - 2	1 - 9	9 + 0	
		0 • 2	28 – 2		0 - 2	-8	+ 0	
		0	26		0 0		0	
				71			:	
6) Name the property		/)	sentence?	ty is used	in the roll	owing number		
8+3+2•1=8+3+2			4	4(3+n) = 4	4(3)+4(<i>n</i>)			
8)	Which stude	nt correctly applied	the multiplicative i	dent	ity property?			
		Student 1	Student 2		Student 3	St	udent 4	
		9 + 2 • 1 - 0	2(9 + 4) • 1		4 – 2(5 • 1)	-3(7	7 + 2) • 1	
		9 + 2 - 0	2 • 13 • 1		4 – 2(5)	-	3(9) • 1	
		11 – 0	26 • 1		4 - 10		-27 • 1	
		11	26		-6		27	
	L			1]

Equations Vocabulary Flashcards

Cut out on the dotted line and fold	I on the solid line to create cards.
A number that is multiplied by a variable	coefficient
A term or a combination of terms and operators	expression
Either a single number, a variable, or numbers and/or variables multiplied together	term
A mathematical sentence stating that two expressions are equal	equation
A symbol for an unknown value	variable
A number on its own	constant
A symbol (+, ×, –, or ÷) representing a mathematical operation	operator

M6 6-3: Modeling Equations and Equations Vocabulary

 When _______ equations it is important to look at the ______

 The _______ will tell you what the picture means.

Example 1:

What is the solution for the following models?

Example 2:

Modeling the equations using the key above.

Equations Vocabulary Practice

Create an expression or equation following the directions for each problem below.

18)	Create a numerical expression with 3 terms	19)	Create an equation with two constants and two variables
20)	Create an equation with 3 terms	21)	Create an equation that has 7 as a constant

M6 6-4: Solving 1-Step Equations and Properties

What is the goal of solving an equation?

In order to do this, we need to perform the inverse operation.

The inverse of Addition is _____

The inverse of Subtraction is _____

The inverse of Multiplication is _____

The inverse of Division is _____

Solving EXAMPLES:

1) b+14=27	<u>Check</u>	2) $5 = w - 4$	<u>Check</u>
3) 7 <i>s</i> = 56	<u>Check</u>	4) $\frac{r}{6} = 3$	<u>Check</u>
5) $\frac{1}{2}c = 12$	<u>Check</u>	6) $6 = \frac{2}{3}w$	<u>Check</u>

Solving1-Step Equations Practice

Solve and check.

1) $v - 10 = 9$	2) $\frac{x}{5} = 2$
3) 22=11 <i>k</i>	4) $x + 4 = 12$
5) $10+h=13$	6) 13 <i>m</i> =377
7) $8 = p - 13$	8) $\frac{a}{29} = 5$

Solving Equations Dominoes

- 1) Remove this page from your binder.
- 2) Cut out the following domino pieces along the lines.
- 3) Place the dominoes in order on page 26.
- 4) Once they have been checked by your teacher glue them into place.

Start	$\frac{v}{8} = 2$	0	3 + p = 8
5	$\frac{1}{2}x = 4$	16	21 = 7n
3	a + 11 = 20	8	$6 = \frac{b}{18}$
108	10n = 40	9	x - 7 = 13
20	$16 = \frac{k}{11}$	4	n-16=9
25	Finish	176	15x = 0

M6 6-5: Solving Equations and Properties

REMEMBER!!!

What is the goal of solving an equation?

In order to do this, we need to perform the inverse operation.

The inverse of Addition is _____

The inverse of Subtraction is _____

The inverse of Multiplication is _____

The inverse of Division is _____

Review. Don't forget a check step!

1) $9+v=10$	2) $\frac{X}{15} = 2$
	$(1) \times (1-1)$
3) $24 = \frac{1}{4}k$	4) $x - 4 = 12$
3) $24 = \frac{1}{4}k$	4) $x - 4 = 12$
3) $24 = \frac{1}{4}k$	4) $x - 4 = 12$
3) $24 = \frac{1}{4}k$	4) $x - 4 = 12$
3) $24 = \frac{1}{4}k$	4) $x - 4 = 12$
3) $24 = \frac{1}{4}k$	4) <i>x</i> -4=12

Solve the following problems. Don't forget to do a check step!

5) $10+h=13$	6) 10 <i>m</i> =300
7) $5 = p - 13$	8) $\frac{a}{20} = 5$
9) <i>m</i> +4=12	10) $\frac{1}{3}x = 5$
11) 14 <i>b</i> = 56	12) $\frac{v}{7} = 8$

Properties

1) Which of the following equations is an example 2) Identify each number sentence that of the associative property of addition?

$$2x^{2} + 4x = 4x + 2x^{2}$$

$$(2x^{2} + 4x) + 6 = 2x^{2} + (4x + 6)$$

$$3(2x^{2} + 4x) = 6x^{2} + 12x$$

illustrates the additive identity property.

0+3+6=3+6	8 + (-8) - 4 = 0 - 4
3+7+(-7)=3+0	3+0+7=3+7
$5 \bullet (4+0) = 5 \bullet 4$	$4 + 6 \bullet 0 = 4 + 0$

3) Identify each number sentence that illustrates the distributive property.

4(3+1) = 4(3) + 4(1)	7 + 5(4 + 2) = 7 + 5(4) + 5(2)
$(4 \bullet 7) \bullet 1 + 6 = 4 \bullet (7 \bullet 1) + 6$	7(9-1)+2=7(9)-7(1)+2
$5(3+7 \bullet 0) = 5(3+0)$	1(5+2) = 1(2+5)

4) Identify each number sentence that illustrates the associative property of addition.

$(4 \bullet 7) \bullet 1 + 6 = 4 \bullet (7 \bullet 1) + 6$	2+6+7=2+7+6
7 + (3 + 8) = (7 + 3) + 8	1 - (5 + 2) = 1 - (2 + 5)
(5+(-1))+6=5+((-1)+6)	(4+1)+3-7=4+(1+3)-7

5) Which property justifies this step?

$$(4x+2) + x = 27$$

 $(4x+x) + 2 = 27$

Equations Puzzle

Solve the following problems, write the answers in the boxes. Then place the answers in the correct places to solve the puzzle. This puzzle is similar to a crossword puzzle.

4x = 88	2 + x = 100	
$70 \div x = 2$	2600 ÷ x = 10	
30 = x - 9	4050 = 10x	
4 + x = 50	800 = x + 25	
$25 = x \div 2$	x - 80 = 700	
60 - x = 6	x ÷ 5 = 181	
112 = 2x	900 = x - 12	
$67 \div x = 1$	$322 = x \div 3$	
x ÷ 11 = 7	3 + x = 6710	
100 - x = 14	79550 - x = 1	

M6 6-6: Proportions & Equations

A ______ states that two ______ are ______.

To prove if two ratios are equal we ______.

AKA: The butterfly method

** If the 2 ratios are equal they are considered a _______.

Examples:

Are the following true proportions? Yes or No and prove it!

1) $\frac{1}{2} = \frac{6}{12}$	2) $\frac{9}{12} = \frac{1}{4}$
3) $\frac{50}{10} = \frac{5}{2}$	4) $\frac{18}{3} = \frac{6}{1}$

You Try:

Are the following true proportions? Yes or No and prove it!

5) $\frac{3}{9} = \frac{5}{15}$	6) $\frac{5}{7} = \frac{80}{102}$
7) $\frac{8}{9} = \frac{72}{64}$	8) $\frac{1}{4} = \frac{25}{100}$
9) $\frac{2}{4} = \frac{8}{16}$	$_{10)}\frac{4}{7} = \frac{12}{9}$

Proportions & Equations

Examples:

Solve for the missing value.

11) $\frac{x}{24} = \frac{75}{120}$	12) $\frac{7}{n} = \frac{63}{108}$
13) $\frac{x}{9} = \frac{2}{3}$	14) $\frac{2}{9} = \frac{8}{x}$
15) At the conference, there are 8 men for every 6 women. There are 64 men at the conference. How many women are there at the conference?	

You Try:

Solve for the missing value.

16) $\frac{x}{14} = \frac{5}{7}$	17) $\frac{9}{x} = \frac{3}{18}$
18) $\frac{x}{3} = \frac{30}{9}$	19) $\frac{8}{24} = \frac{2}{x}$

Proportions & Equations

Are the following true proportions? Yes or No and prove it!

Solve for the missing value.

7)	8)
12 x	n _ 6
$\frac{1}{6} = \frac{1}{4}$	$\frac{1}{12} = \frac{1}{18}$
0 4	
9)	10)
51 17	3 5
$\frac{1}{x} = \frac{1}{7}$	-=
	X 10
	12)
11)	12)
$\frac{10}{10} = \frac{8}{10}$	$\frac{x}{10} = \frac{10}{10}$
x 4	10 3

Proportions & Equations

Solve for the missing value.

13) Jasmine bought 32 kiwi fruit for \$16. How many kiwi can Lisa buy if she has \$4?	14) If you can buy four bulbs of elephant garlic for \$8 then how many can you buy with \$32?
15) Fred bought 4 sodas for \$5. What was the cost of 1 soda?	16) One bunch of seedless black grapes costs \$2. How many bunches can you buy for \$20?
17) The money used in Jordan is called the Dinar. The exchange rate is \$3 to 2 Dinars. Find how many dollars you would receive if you exchanged 22 Dinars.	18) A 3-inch length by 9-inch width photo is enlarged so that the length of the new photo is 7 inches. Find the width of the new photo.
19) Gabriella bought three cantaloupes for \$7. How many cantaloupes can Shayna buy if she has \$21?	20) One package of blueberries costs \$3. How many packages of blueberries can you buy for \$9?