M6 6-1: Properties

Directions: Apply the property to complete the number sentence.

PROPERTY	KEY IDEA	Number Sentence
Commutative Property of Addition or Multiplication	Changing the ORDER of numbers when adding or multiplying	1. $3+2+1=$ \qquad 2. $5 \bullet 8 \bullet 7=$ \qquad
Associative Property of Addition or Multiplication	ReGROUPING the numbers without changing the order	3. $(3+2)+1=$ \qquad 4. $5 \bullet(8 \bullet 7)=$ \qquad
Identity Property of Addition or Multiplication	Keeping the value of the number the SAME	5. $3+0=$ \qquad 6. $5 \bullet 1=$ \qquad
Inverse Property of Addition or Multiplication	UNDOING or CANCELING the number Doing the OPPOSITE!	7. $3+-3=$ \qquad 8. $5 \cdot \frac{1}{5}=$ \qquad
Distributive Property	Pass out a number to a grouping. Outside times the $1^{\text {st }}$, outside times the $2^{\text {nd }}$.	9. $3(2+1)=$ \qquad 10. $5(x+2)=$ \qquad
Multiplicative Property of Zero	MULTIPLYING BY ZERO	11. $3 \cdot 0=$ 12. $x \bullet 8 \bullet 0=$

M6 Unit 6: Properties, Equations, \& Proportions NOTES Page 3

Properties Practice

Name the property for each.

1) $-2+2=0$	2) $2 \cdot \frac{1}{2}=1$
3$) \quad 2 \cdot 0=0$	4) $\quad(a+b)+c=a+(b+c)$
5) $\frac{2}{3} \bullet \frac{3}{2}=1$	6) $0+6=6$
7) $2(x+3)=2 \mathrm{x}+6$	8) $(2+1)+0=2+(1+0)$
9) $18 \cdot 1=18$	10) $3+x y=3+y x$
11) $x+4=4+x$	12) $5(x+2)=5 x+10$

Answer the following questions true or false. Then justify your answer.
13) $2+0=2$ is an example of multiplicative property of zero
14) $(3 x+4)=6 x+8$ has parenthesis so it is an example of associative property.
15) If $2+3=6$ then $3+2=6$ is an example of commutative property T
16) $3 \cdot 0=0$ illustrates multiplicative identity
17) $5(2+6)=10+30$ is an example of distributive property
18) $8 \cdot 1=8$ is illustrates multiplicative identity

M6 Unit 6: Properties, Equations, \& Proportions NOTES Page 4

Properties Practice

1) Four students simplified expressions and showed their work.

Renee's work	Jesse's work	Terri's work	Morgan's work
$5+x(4-1)-2$	$4(x+2)+5 \cdot(2+0)$	$(6+1) \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot(4-1)$
$5+x \cdot 3-2$	$4(x+2)+5 \cdot 2$	$7 \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot 3$
$5+3 x-2$	$4 x+8+5 \cdot 2$	$7+3 \cdot 0+x$	$(x+4)+18$
$3 x+5-2$	$4 x+8+10$	$7+0+x$	$x+(4+18)$
$3 x+3$	$4 x+18$	$7+x$	$x+22$

Which student used the associative property of addition?
2)

Four students were asked to simplify an expression.

Student 1	Student 2	Student 3	Student 4
$8(-6+0) \cdot 2$	$7 \cdot 4+0-2$	$9+0 \cdot 1+2$	$1-9+0 \cdot 2$
$8(0) \cdot 2$	$28+0-2$	$9+0+2$	$1-9+0$
$0 \cdot 2$	$28-2$	$0+2$	$-8+0$
0	26	2	0

Which student applied the additive identity property correctly?
3) Four students simplified expressions and showed their work.

Renee's work	Jesse's work	Terri's work	Morgan's work
$5+x(4-1)-2$	$4(x+2)+5 \cdot(2+0)$	$(6+1) \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot(4-1)$
$5+x \cdot 3-2$	$4(x+2)+5 \cdot 2$	$7 \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot 3$
$5+3 x-2$	$4 x+8+5 \cdot 2$	$7+3 \cdot 0+x$	$(x+4)+18$
$3 x+5-2$	$4 x+8+10$	$7+0+x$	$x+(4+18)$
$3 x+3$	$4 x+18$	$7+x$	$x+22$

Which student used the commutative property of multiplication?

4)

Four students simplified expressions and showed their work.

Renee's work	Jesse's work	Terri's work	Morgan's work
$5+x(4-1)-2$	$4(x+2)+5 \cdot(2+0)$	$(6+1) \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot(4-1)$
$5+x \cdot 3-2$	$4(x+2)+5 \cdot 2$	$7 \cdot 1+3 \cdot 0+x$	$(x+4)+6 \cdot 3$
$5+3 x-2$	$4 x+8+5 \cdot 2$	$7+3 \cdot 0+x$	$(x+4)+18$
$3 x+5-2$	$4 x+8+10$	$7+0+x$	$x+(4+18)$
$3 x+3$	$4 x+18$	$7+x$	$x+22$

Which student used the multiplicative identity property?

M6 6-2: Equations Vocabulary and Properties

Word	Definition	Example
Variable	A \qquad used to represent one or more numbers in an expression, equation, or inequality.	
Term	A real number, a variable, or a \qquad of real numbers and variables.	
Coefficient	The number that is \qquad by the variable.	When a variable has no number in front the coefficient is automatically \qquad !
Constant	A term that does not contain a \qquad .	

Label the parts below:

$$
x+3 y+10
$$

On your own, label the parts below coefficient term variable constant

M6 Unit 6: Properties, Equations, \& Proportions NOTES Page 14 Equations Vocabulary
Not only can we determine the parts of a number sentence, we can determine if it is either an
\qquad or an \qquad .

Word	Definition	Example
Expression	A term or a of terms and operators.	
Equation	A mathematical sentence stating that two __are equal	

Circle if the problem is an expression or an equation.

1) $2 x+17=35$	Expression	Equation	6) $5 x-13+72$	Expression	Equation
2) $10-4 j=19$	Expression	Equation	7) $34 x-5=9$	Expression	Equation
3) $4 x-5 x+7$	Expression	Equation	8) $17 w=10$	Expression	Equation
4) $14 x-15=75$	Expression	Equation	9) $3 x+7$	Expression	Equation
5) $4 j-5 j-3$	Expression	Equation	10) $3 y-2 y+4$	Expression	Equation

On your own, label the parts below
coefficient term variable constant

Equations Vocabulary

Examples:

Create an algebraic expression with three terms and an invisible coefficient.	Create a numerical expression with 2 terms.

Create an expression or equation following the directions for each problem below. ***Numerical - numbers only Algebraic - letters and numbers***

1) Create a numerical expression with 3 terms	2) Create an algebraic expression with three terms
3) Create an equation with 3 terms	4) Create an equation that has 9 as a coefficient
5) Create an algebraic expression with the variable y	6) Create an equation with two constants and two variables
7) Create an equation with 4 as a coefficient and three terms	8) Create an algebraic expression with an invisible coefficient and a constant

Properties Practice

Solve the following properties problems.

1) Which property is shown in the following number sentence?

$$
2 x+(5+0)=2 x+5
$$

3) Identify each number sentence that illustrates the commutative property of multiplication.

$2+(3 \bullet 7) \bullet 10=2+3 \bullet(7 \bullet 10)$
$3+4 \bullet 6=3+6 \bullet 4$
$5+8 \bullet 0=5+0$
$2 \bullet(8 \bullet 7)+1=2 \bullet(7 \bullet 8)+1$

2) What is the additive inverse of $-\frac{4}{5}$?
3) Identify each equation that represents the multiplicative property of zero.

$7 \bullet 0=0$	$7 \bullet 1=7$
$-3+3=0$	$-7+7=0$
$0+5=5$	$0 \bullet 3=0$

5) Which student correctly applied the additive identity property?

Student 1	Student 2	Student 3	Student 4
$8(-6+0) \cdot 2$	$7 \cdot 4+0-2$	$9+0 \cdot 1-2$	$1-9+0 \cdot 2$
$8(0) \cdot 2$	$28+0-2$	$9+0-2$	$1-9+0$
$0 \cdot 2$	$28-2$	$0-2$	$-8+0$
0	26	0	0

6) Name the property

$$
8+3+2 \cdot 1=8+3+2
$$

7) Which property is used in the following number sentence?

$$
4(3+n)=4(3)+4(n)
$$

8) Which student correctly applied the multiplicative identity property?

Student 1	Student 2	Student 3	Student 4
$9+2 \cdot 1-0$	$2(9+4) \cdot 1$	$4-2(5 \cdot 1)$	$-3(7+2) \cdot 1$
$9+2-0$	$2 \cdot 13 \cdot 1$	$4-2(5)$	$-3(9) \cdot 1$
$11-0$	$26 \cdot 1$	$4-10$	$-27 \cdot 1$
11	26	-6	27

Cut out on the dotted line and fold on the solid line to create cards.

A number that is multiplied by a variable	coefficient
A term or a combination of terms and operators	expression
Either a single number, a variable, or numbers and/or variables multiplied together	term
A mathematical sentence stating that two expressions are equal	equation
A symbol for an unknown value	variable
A number on its own	constant
A symbol (,$+ \times,-$, or \div) representing a mathematical operation	operator

M6 6-3: Modeling Equations and Equations Vocabulary

When \qquad equations it is important to look at the \qquad .
The \qquad will tell you what the picture means.

Example 1:
What is the solution for the following models?

Example 2:

Modeling the equations using the key above.

$$
x+5=11
$$

Solve or model the following equations.

1) What is the solution to the following model?

2) Model the equation $x-2=6$

Solve or model the following equations.
3) Model the equation $x+4=7$

4) What is the solution to the following model

5) Model the equation $-10+x=12$

6) What is the solution to the following model?

7) Model the equation $3 x=-9$

Modeling Equations Practice

Solve or model the following equations.
8) What is the solution to the following model?

9) Model the equation $x+5=13$

10) What is the solution to the following model?

11) Model the equation $7 x=21$

Modeling Equations Practice

Solve or model the following equations.
12) Model the equation $x+2=8$

13) What is the solution to the following model?

14) Model the equation $5 x=30$

15) What is the solution to the following model?

Modeling Equations Practice

16) Model the equation $x+6=9$

17) What is the solution to the following model?

Equations Vocabulary Practice

Create an expression or equation following the directions for each problem below.

| 18)Create a numerical expression with 3
 terms | 19)
 Create an equation with two constants
 and two variables | |
| :--- | :--- | :--- | :--- |
| 20) | Create an equation with 3 terms | 21)Create an equation that has 7 as a
 constant |

M6 6-4: Solving 1-Step Equations and Properties

What is the goal of solving an equation?
In order to do this, we need to perform the inverse operation.
The inverse of Addition is \qquad
The inverse of Subtraction is \qquad
The inverse of Multiplication is \qquad
The inverse of Division is \qquad

Solving EXAMPLES:

1) $b+14=27$	Check	2) $5=w-4$	Check
3) $7 s=56$	Check	4) $\frac{r}{6}=3$	Check
5) $\frac{1}{2} c=12$			

Solve and check.

1) $v-10=9$	2) $\frac{x}{5}=2$
3) $22=11 k$	4) $x+4=12$

Solving Equations Dominoes

1) Remove this page from your binder.
2) Cut out the following domino pieces along the lines.
3) Place the dominoes in order on page 26.
4) Once they have been checked by your teacher glue them into place.

Start	$\frac{v}{8}=2$	0	$3+p=8$
5	$\frac{1}{2} x=4$	16	$21=7 n$
3	$a+11=20$	8	$6=\frac{b}{18}$
108	$10 n=40$	9	$x-7=13$
20	$16=\frac{k}{11}$	4	$n-16=9$
25	Finish	176	$15 x=0$

M6 6-5: Solving Equations and Properties

REMEMBER!!!

What is the goal of solving an equation?
In order to do this, we need to perform the inverse operation.
The inverse of Addition is \qquad
The inverse of Subtraction is \qquad
The inverse of Multiplication is \qquad
The inverse of Division is \qquad

Review. Don't forget a check step!

1) $9+V=10$	2) $\frac{x}{15}=2$
3) $24=\frac{1}{4} k$	4) $x-4=12$

Solving Equations Practice

Solve the following problems. Don't forget to do a check step!

5) $10+h=13$	6) $10 \mathrm{~m}=300$
7) $5=p-13$	8) $\frac{a}{20}=5$
9) $m+4=12$	10) $\frac{1}{3} x=5$
11) $14 b=56$	12) $\frac{v}{7}=8$

Properties

1) Which of the following equations is an example of the associative property of addition?

$2 x^{2}+4 x=4 x+2 x^{2}$
$\left(2 x^{2}+4 x\right)+6=2 x^{2}+(4 x+6)$
$3\left(2 x^{2}+4 x\right)=6 x^{2}+12 x$

2) Identify each number sentence that illustrates the additive identity property.

$0+3+6=3+6$	$8+(-8)-4=0-4$
$3+7+(-7)=3+0$	$3+0+7=3+7$
$5 \bullet(4+0)=5 \bullet 4$	$4+6 \bullet 0=4+0$

3) Identify each number sentence that illustrates the distributive property.

$4(3+1)=4(3)+4(1)$	$7+5(4+2)=7+5(4)+5(2)$
$(4 \bullet 7) \bullet 1+6=4 \bullet(7 \bullet 1)+6$	$7(9-1)+2=7(9)-7(1)+2$
$5(3+7 \bullet 0)=5(3+0)$	$1(5+2)=1(2+5)$

4) Identify each number sentence that illustrates the associative property of addition.

$(4 \bullet 7) \bullet 1+6=4 \bullet(7 \bullet 1)+6$	$2+6+7=2+7+6$
$7+(3+8)=(7+3)+8$	$1-(5+2)=1-(2+5)$
$(5+(-1))+6=5+((-1)+6)$	$(4+1)+3-7=4+(1+3)-7$

5) Which property justifies this step?

$$
\begin{aligned}
& (4 x+2)+x=27 \\
& (4 x+x)+2=27
\end{aligned}
$$

M6 Unit 6: Properties, Equations, \& Proportions NOTES Page 34

Equations Puzzle

Solve the following problems, write the answers in the boxes. Then place the answers in the correct places to solve the puzzle. This puzzle is similar to a crossword puzzle.

$4 \mathrm{x}=88$	$2+\mathrm{x}=100$	
$70 \div x=2$	$2600 \div \mathrm{x}=10$	
$30=x-9$	$4050=10 \mathrm{x}$	
$4+x=50$	$800=x+25$	
$25=x \div 2$	$x-80=700$	
$60-x=6$	$\mathrm{x} \div 5=181$	
$112=2 \mathrm{x}$	$900=x-12$	
$67 \div x=1$	$322=\mathrm{x} \div 3$	
$x \div 11=7$	$3+\mathrm{x}=6710$	
$100-\mathrm{x}=14$	$79550-\mathrm{x}=1$	

M6 6-6: Proportions \& Equations

A \qquad states that two \qquad are \qquad
To prove if two ratios are equal we \qquad .
AKA: The butterfly method
** If the 2 ratios are equal they are considered a \qquad .

Examples:

Are the following true proportions? Yes or No and prove it!

1) $\frac{1}{2}=\frac{6}{12}$	2) $\frac{9}{12}=\frac{1}{4}$
3) $\frac{50}{10}=\frac{5}{2}$	4) $\frac{18}{3}=\frac{6}{1}$

You Try:

Are the following true proportions? Yes or No and prove it!

5) $\frac{3}{9}=\frac{5}{15}$	6) $\frac{5}{7}=\frac{80}{102}$
7) $\frac{8}{9}=\frac{72}{64}$	8) $\frac{1}{4}=\frac{25}{100}$
9) $\frac{2}{4}=\frac{8}{16}$	10) $\frac{4}{7}=\frac{12}{9}$

Proportions \& Equations

We can also use proportions to find a \qquad .
To find the missing value follow these steps.

1) \qquad
2) \qquad
3) \qquad

Examples:

Solve for the missing value.

11) $\frac{x}{24}=\frac{75}{120}$	12) $\frac{7}{n}=\frac{63}{108}$
13) $\frac{x}{9}=\frac{2}{3}$	14) $\frac{2}{9}=\frac{8}{x}$

15) At the conference, there are 8 men for every 6 women. There are 64 men at the conference. How many women are there at the conference?

You Try:

Solve for the missing value.

16) $\frac{x}{14}=\frac{5}{7}$	17) $\frac{9}{x}=\frac{3}{18}$
18) $\frac{x}{3}=\frac{30}{9}$	19) $\frac{8}{24}=\frac{2}{x}$

Proportions \& Equations

Are the following true proportions? Yes or No and prove it!

1)	2) 3$\frac{12}{2}$
$\frac{3}{2}=\frac{18}{8}$	
3)	

Solve for the missing value.

7) $\frac{12}{6}=\frac{x}{4}$	8) $\frac{n}{12}=\frac{6}{18}$
9) $\frac{51}{x}=\frac{17}{7}$	10) $\frac{3}{x}=\frac{5}{10}$
11) $\frac{10}{x}=\frac{8}{4}$	12) $\frac{x}{10}=\frac{10}{3}$

Proportions \& Equations

Solve for the missing value.

13) Jasmine bought 32 kiwi fruit for $\$ 16$. How many kiwi can Lisa buy if she has \$4?	14) If you can buy four bulbs of elephant garlic for $\$ 8$ then how many can you buy with $\$ 32$?
15) Fred bought 4 sodas for \$5. What was the cost of 1 soda?	16) One bunch of seedless black grapes costs $\$ 2$. How many bunches can you buy for $\$ 20$?

