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MA 131 Lecture Notes 

Exponential Functions, Inverse Functions, and Logarithmic Functions 

 

Exponential Functions 
 

We say that a function is an algebraic function if it is created by a combination of algebraic processes 

such as addition, subtraction, multiplication, division, roots, etc.  Functions that are not algebraic are 
called transcendental functions.  Examples of algebraic functions include polynomials and rational 

functions and examples of transcendental functions include exponential and logarithmic functions. 

 

Definition 

The exponential function f with base a is denoted by 
xaxf )( where 0a , 1a , and x is any real 

number. 

 

Note that when a=1 the expression is a constant function.  Also, a is non-negative since the function 

would not be defined for any even root.   

The graph of all exponential functions follows the same pattern and shape.  Graph the following by 

finding coordinates on the graph. 

 

Graph xaxf )( where a is greater than one. 
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Graph xaxf )( where a is greater than one. 

 

Characteristics of Exponential Functions 

Graph of xay  , a>1 Graph of xay  , a>1 

Domain:    ,  Domain:    ,  

Range:  ,0  Range:  ,0  

Intercept:  1,0  Intercept:  1,0  

Increasing Decreasing 

x-axis is a horizontal asymptote x-axis is a horizontal asymptote 

Continuous Continuous 

 Reflection of graph of xay  about the y-axis 

  

There exists a very special irrational number that is often used as a base for exponential functions.  This 

base is ...71828.2e  and we call it the natural base.  The function given by xexf )( is called the 

natural exponential function.  Note that in exponential functions the variable is the exponent and the 

base stays the same. 

Exercise 

Sketch the graph of xexf )( . 
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We use the natural exponential function to determine the investment earnings of continuously 

compounded interest.  Previously we discussed the formula to find compound interest.  We evaluated it 

based on different compounding times such as yearly, monthly, and daily.  But if we are interested in 

doing the compounding continuously we can modify the formula that we used.  (This is due to one 

definition of the value of e as 













n

n

n
e

1
1lim .)   

Formulas for Compound Interest 

After t years, the balance A in an account with principal P and annual interest rate r  (in decimal form) is 

given by the following formulas. 

I.)  For n compounding per year: 

nt

n

r
PA 








 1  

II.) For continuous compounding:  rtPeA   

Example: 

Suppose you invested $5000 into an account with an interest rate of 8% and left it there for five years.  If 

the amount was compounded continuously, how much money would you have in the account at the end 

of the fifth year? 

 

 

 

(Answer:  $7459.12) 

 

Example: 

Suppose you wanted a balance of $100,000 after ten years for an interest bearing account paying 9% 

compounded continuously.  How much would your initial investment need to be? 

 

 

 

(Answer:  $40,656.97) 
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The formula for continuously compounded interest can be used in other examples by modifying what 

each variable stands for.  Consider the following: 

The number of a certain type of bacteria increases according to the model tetP 01896.0100)(  .  Where t 

is the time (in hours.) 

 

Find P(0) and interpret.   

 

 

 

What is the rate?  How do we interpret it? 

 

 

 

What is P(10)?  And what does it represent? 

 

 

 

Is the number of bacteria growing?  Can we determine how the function would be different if we 

wanted the number to be decreasing?   

 

 

 

 

(Answer:  about 121) 
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Inverse Functions 

Since a function can be represented by the collection of ordered pairs satisfying the equation, we can 

reverse the ordered pairs to create another relation called the inverse relation.  Only when that inverse 

relation is a function do we say the function has an inverse function.  We may arrive at this by 

restricting the domain of the inverse relation to create a function.  We use the following notation, for a 

function f, we say the inverse function is 1f  .   

It is true then that if we apply a function followed by its inverse function, we arrive back to the value we 

started with.  We can think of an inverse function as un-doing what the function did.   

Thus     xxffxff   )()( 11  . 

Some common examples of inverse functions would be the following: if 5)(  xxf then 

5)(1  xxf since the way to undo adding five is by subtracting five.  Another example would be 

2)( xxf  and xxf  )(1 but only if we restrict the domain on f to be the set of non-negative real 

numbers. 

Definition of Inverse Functions 

Let f and g be two functions such that xxgf ))((  for every x in the domain of g and xxfg ))((  for 

every x in the domain of f.  Under these conditions, the function g is the inverse function of the function 

f.  The function g is denoted by 1f (read “f inverse”).  So   xxff  )(1 and   xxff  )(1  .  The 

domain of f must be equal to the range of 1f , and the range of f must be equal to the domain of 1f . 

Note: 1f  means the inverse function, it does not mean the reciprocal (like negative exponents mean in 

other parts of algebra.) 

Finding Inverse Functions 

1.  In the equation )(xf , replace )(xf  by y. 

2. Interchange the roles of x and y. 

3. Solve the new equation for y.  If the new equation does not represent y as a function of x, the 
function f does not have an inverse function.  If the new equation does represent y as a function 
of x, continue to step 4. 

4. Replace y by )(1 xf  in the new equation. 

5. Verify that  f and 1f  are inverse functions of each other by sowing that the domain of f is 

equal to the range of 1f , the range of f is equal to the domain of 1f , and 

))(())(( 11 xffxxff   . 

 

 

Examples:  Find 1f . 
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The graph of an inverse function is going to be symmetric with respect to the line y=x.   

Horizontal Line Test for Inverse Functions 

A function f has an inverse function if and only if no horizontal line intersects the graph of f at more than 

one point. 

Consider the function 2)( xxf  .  What does the graph say about this function having an inverse 

function?  Is there a way to restrict the domain to remedy this? 

 

 

 

 

 

 

Exercises: 

Verify that the following are inverse functions of one another. 
 

1

1
)(




x
xf and 

x

x
xf


 1

)(1  

 
 
 
 
 
 
 

Find the inverse function for  2
5)(  xxf  
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Logarithmic Functions 

The function xaxf )( passes the horizontal line test and therefore has an inverse function.  Since it is 

a transcendental function, we cannot define the inverse algebraically.  Instead we use a new type of 

function called the logarithmic functions (or “log” functions.)  The log function is actually defined to be 

the inverse of the exponential function.  It undoes raising numbers to a power. 

Definition 

For 0x , 0a , and 1a ,then xy alog  if and only if yax  . 

The function given by xxf alog)(   is called the logarithmic function with base a. 

We say xy alog is the logarithmic form of the same equation yax   which is called the exponential 

form.  We think of a logarithm as being an exponent.  It answers the question, “a raised to what power 

is x?”  Then y is the power. 

Examples: 

38log 2  since 328   

Find the following: 

32log 2  










4

1
log 2  

1log 2  

 
 
 
 

9log3  3log9  64log 4  

 
 
 
 
 

 374859log374859  1log398   10.0log10  

 
 
 
 
 

Since the log function is the inverse function of the exponential function, it follows that the domain of 

the log function is the range of an exponential function.  We learned in the last section that the range of 

an exponential function is  ,0 .  Therefore the domain of any log function is  ,0 .  We call x the 

argument of the log function for )(log xa . 
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Evaluate )500(log10 .   

 

 

Since  500 is not an exact power of ten we cannot find an exact value for this log.  It is considered 

simplified as written (and therefore an exact value.)  However, if we needed a decimal approximation 

for this we would plug it into our calculator.  There should be a “log” button on the calculator.  After 

plugging it in, you should get about 2.7.  (This answer makes sense since we know 10 to the power of 2 

is 100 and to the power of 3 is 1000, so the answer is somewhere in between.  Note it is not exactly half 

way.) 

Properties of Logarithms 

1.  01log a because 10 a  

2.  1log aa because aa 1  

3.  xa x

a log  and xa
xa 

log  (Inverse Property) 

4.  If yx aa loglog  , then yx  (One-to-One Property) 

 

Examples:  Solve 

7loglog 22 x  

 

 

2log 4 x  

 

 

x52

6 6log  

 

 

We find the graph of a logarithmic function with base a by sketching the appropriate exponential 

function with base a and reflecting it across the line xy  . 
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Sketch both xaxf )( and xxg alog)(  , a>1 

 

Characteristics of Logarithmic Functions 

Domain  ,0  

Range   ,  

Intercept  0,1  

Increasing 

One-to-one, therefore has an inverse 

y-axis is a vertical asymptote 

Continuous 

Reflection of graph of xaxf )( about the line xy   

 

Definition 

The function defined by )ln()(log)( xxxf e  , ox   is called the natural logarithmic function. 

Properties of the Natural Logarithm 

1.  01ln  because 10 e  

2.  1ln e because ee 1  

3.  xe x ln  and xe x ln  (Inverse Property) 

4.  If yx lnln  , then yx  (One-to-One Property) 
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Evaluate the following: 


2

1
ln

e
 

 
 

eln3  6lne  

 

  

Earlier we said that the domain of a log function is restricted to positive real numbers.  This makes for a 

third consideration when finding the domain of a function (the first two being no division by zero and no 

negatives under radicals.)   

Find the domain for the following.   

 5ln)(  xxf  

 
 
 
 
 

)4ln()( 2  xxf  

 
 
 
 
 

 4ln)( xxf   

 
 
 
 
 
 

 

)  Properties of Logarithms 

Usually you will only find two options for logarithms on a calculator, either “log” or “ln.”  “Log” without 

any subscript implies the base is ten.  We’ve already noted that “ln” is the natural base, or base e.  

Sometimes we wish to evaluate a log that does not have either of those bases, in that case we need the 

change of base formula to convert the log as written into something we can plug into the calculator. 

Change-of-Base Formula 
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Let a, b, and x be positive numbers such that  1a and 1b .  Then xalog can be converted to a 

different base as follows: 

Base b  Base 10 Base e 

a

x
x

b

b

a
log

log
log   

a

x
xa

log

log
log   

a

x
xa

ln

ln
log   

 

Example: 

Rewrite the following in base ten and then in the natural base. 

8log5  

 

 

100log17  

 

 

Properties of Logs 

Since the log function is the inverse function of the exponential function there are many properties of 

logs that are corresponding properties to exponentials.  For example, we learned early on that an 

exponent to an exponent means we multiply them.  Or division meant subtraction of exponents.   The 

following are rules that we need to use to work with logs. 

 

Properties of Logarithms 

Let a be a positive number not equal to one, and let n  be a real number.  If u and v are positive real 
numbers, then the following properties are true. 

Logarithm with base a Natural logarithm  

  vuuv aaa logloglog     vuuv lnlnln   Product Rule 

vu
v

u
aaa logloglog 








 vu

v

u
lnlnln 








 

Quotient Rule 

  unu a

n

a loglog
`
    unu

n
lnln

`
  Power Rule 

 

 



  Morrison MA 131  Morrison MA 180 

Examples 

Express the following logs in terms of ln3 and ln4. 

12ln  

 

4

9
ln  

 

We are much more interested in using these properties to solve equations and therefore it is more 

important to be able to apply these to logs with algebraic expressions as arguments.   

Example: 

Expand the following 










1

3
ln

5

y

x
 

 

 

 )2(3log3 yx  

 

 

Condense the following: 

 

yx loglog4   

 

xx 7

2

7 log5)2(log   

 

 

8lnln5ln  x  
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Optional 

Solving Exponential and Logarithmic Equations 

We will use the inverse properties rule and the one-to-one property to solve exponential and 

logarithmic equations.   

Recall the following: 

5. xa x

a log  and xa
xa 

log  (Inverse Property) 

6.  If yx aa loglog  , then yx  (One-to-One Property) 

 

And the following is true for the natural log. 

5. xe x ln  and xe x ln  (Inverse Property) 

6.  If yx lnln  , then yx  (One-to-One Property) 

 

We can also conclude the following: 

If ya x  , if we “apply the log” to both sides, we get ya a

x

a loglog  and thus yx alog , which is 

actually our original definition of logarithms.   

Strategies for Solving Exponential and Logarithmic Equations 

1.  Rewrite the original equation in a form that allows the use of the One-to-One Property of 
exponential or logarithmic functions. 

2.  Rewrite an exponential  equation in logarithmic form and apply the Inverse Property of 
logarithmic functions. 

3.  Rewrite a logarithmic equation in exponential form and apply the Inverse Property of 
exponential functions. 

 

Examples:  Solve for x 

Using the One-to-One Property-look for a common base and rewrite. 

162 x  

 

 

27

1
3 x  
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Using the One-to-One Property-get a log on both sides. 

0ln5ln  x  

 

 

 

Using the inverse property-take the log of both sides 

15xe  

 

 

 

 

35 x  

 

 

 

 

Using the inverse property-raise both sides as a power of a base (Sometimes you can think of this one as 

applying the definition of a log) 

5ln x  

 

 

3log 2 x  
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Solving Exponential Equations (with more complicated expressions) 

If the two sides cannot be expressed as the same base, then we should isolate the exponent (with the 

variable) and apply the log to both sides. 

Example:  

First solve by taking the 2log of both sides.  Then solve by taking ln of both sides.  Determine why these 

are equivalent answers. 

112 x  

 

 

 

Solve the following by taking the log of both sides using any base you choose.  Determine why every 

base will give an equivalent answer.  (Remember to isolate the exponent first.) 

643 5  x  

 

 

 

 

Solve 

53
2

x  

 

 

Recall quadratic type to solve the next equation. 

0452  xx ee  
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Solving Logarithmic Equations 

The process we use is to raise both sides of the equation as a power to a base.  We call this process 

exponentiating each side of the equation. 

Examples:  Solve 

3log x  

 

 

 

72log3 4 x  

 

 

 

 

 

Recall the One-to-One Property to solve the following 

   25log23log 55  xx  

 

 

 

Solve the following using techniques we have already learned to solve equations. 

13)1ln(23  x  
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Sometimes we need to use the properties of log to combine logs into a single log before we can 

exponentiate.  

Since the argument of a log function must be positive, it is possible to have extraneous solutions.  You 

should always check your answer. 

Solve (and check) 

2)1log()5log(  xx  

 

 

 

 

 

 

Exercises:  Solve for x. 

5

1
5 2 


x

 

 
 
 
 
 
 

502 xe  
 
 
 
 
 

97)2(6 13 x  
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432  xx ee  
 
 
 
 
 
 
 
 

7
14

119
6


xe

 

 
 
 
 
 
 
 
 

72ln x  
 
 
 
 
 

12ln x  

 
 
 
 
 
 

5ln37  x  
 
 
 
 
 
 

1)3ln(ln  xx  
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)2log(log)4log(  xxx  

 
 
 
 
 
 
 
 
 
 

2)12log(4log  xx  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


