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Moving Beyond One Dimensional Models
Now that we have more than one state variable, our phase space is no longer the line.

For a two dimensional model, we have the phase plane
(we will typically stick to 2D, because sketching things gets more difficult for 3+ dimensions)

We look at the point (x,y), and 
how this changes with time

dx
dt
= f (t, x, y)

dy
dt
= g(t, x, y)

Solution traces out a curve in 
the phase plane
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Velocity vector at time t is tangent to 
solution curve at that point

Velocity vector has two components, one in x direction, one 
in y direction, given by dx/dt and dy/dt, respectively



Vector Fields for Two Dimensional Models
Consider an autonomous two dimensional model

dx
dt
= f (x, y)

dy
dt
= g(x, y)

Right hand side of the differential equation does not depend explicitly 
on time, so there is a unique velocity, (dx/dt, dy/dt), associated with 
each point (x,y) in the phase plane
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Create vector field:

1. Take a grid of points in the phase plane and calculate velocity at each

2. Draw arrows that depict these velocities

Each arrow is tangent to the solution curve passing through that point

Length of an arrow tells us about speed of motion, signs of components and their relative 
sizes tell us about direction of motion

By following arrows we can get a very good idea of what solution curves look like

An important consequence of having a unique velocity at each point: 
solution curves cannot cross



Vector Fields for Two Dimensional Models
Example: dx

dt
= x 3− 2y( )

dy
dt
= y 2x −1( )

(This is a model for a predator-prey interaction, 
but we shall talk about that later…)

Use PPLANE web app to create vector field:

Link is on “resources” page on course website; then click on PPLANE button

Type equations into boxes (note * for multiply), select ranges for x and y axes, then click 
“Graph Phase Plane”

One nice feature of PPLANE: you 
can use state variables other than x
and y… enter different symbols in 
the boxes before the primes



PPLANE: Vector Fields for 2D Models
dx
dt
= x 3− 2y( )

dy
dt
= y 2x −1( )

Click on graph and PPLANE will 
draw the solution curve (trajectory) 
through that point.

By default, PPLANE draws curves 
forward and backward in time

Can change this: 
“Options->Solution Direction”

(Another interesting option:
“Options->Delay Time Per Point” 
allows you to see curve being 
traced out over time)

Notice: solution curve returns to its 
starting point… then behavior will 
repeat. Oscillatory solution … 
possible in 2D because you can 
return to a point without 
backtracking (unlike on the line) 



Lotka-Volterra Predator Prey Model

dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Per-capita growth rate of prey (N) is a–bP … depends on the number of predators (P)

a, b, c, d are positive constants

Per-capita growth rate of predators is cN–d … depends on the number of prey

Model Assumptions:

1. In the absence of predators, prey grow exponentially with per-capita growth rate a

2. Predation reduces per-capita growth rate of prey in a linear fashion (slope b)

3. In the absence of prey, predator population declines exponentially, per-capita decay rate d

4. Consumption of prey increases growth rate of predators in a linear fashion (slope c)

We will return to discuss these assumptions later on…

Two species: one is a predator, the other its prey



Canada Lynx-Snowshoe Hare 

Often given as an example of a 
predator-prey system

Numbers of hares and lynx oscillate with 
(approximately) ten year period: 



Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator
a, b, c, d are positive constants

How much understanding can we get about the behavior of the model?

As we discussed some time ago, there are three ways to analyze a model:

1. Analytic: we cannot find formulae for N(t) and P(t)   
(although there is some analysis that we can do… see later)

2. Numerical: we already saw a numerically-obtained solution curve 
one issue with this approach: we have to choose values for a, b, c, d

3. Graphical/qualitative analysis: Can we understand the nature of the vector field and 
get a fair idea of behavior without solving numerically?



Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Constant solutions?

a, b, c, d are positive constants

Require both dN/dt and dP/dt to equal zero

dN
dt

= 0 means N a− bP( ) = 0

so either N = 0 or a – bP = 0 (1) Either N = 0 or P = a/b
dP
dt

= 0 means P cN − d( ) = 0 (2) Either P = 0 or N = d/c

For both dN/dt = 0 and dP/dt = 0, pick combinations of conditions, one from (1) and one from (2)

Four possibilities, but two are incompatible: 
N cannot equal both 0 and d/c;   P cannot equal both a/b and 0

Leaves two equilibria:  (N,P) = (0,0) and (d/c, a/b)

First: neither present; second: co-existence



Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Can we figure out anything about the 
directions of arrows on the vector field? 

Nullclines: curves where either dN/dt = 0 (“N nullcline”) or dP/dt = 0 (“P nullcline”) 

dN/dt = 0 means horizontal component 
of velocity is zero: motion is purely 
vertical at such points

Notice: N and P nullclines intersect at equilibrium points

We just saw that this occurs when
either N = 0 or P = a/b

0 d/c N

0

a/b

P

dN/dt = 0

0 d/c N

0

a/b

P

dN/dt = 0

We will focus on non-negative values of N
and P, but similar reasoning can be 
applied to explore behavior when one or 
both is/are negative



0 d/c N

0

a/b

P

dN/dt = 0

Nullclines: curves where either dN/dt = 0 (“N nullcline”) or dP/dt = 0 (“P nullcline”) 

Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Can we figure out anything about the 
directions of arrows on the vector field? 

dP/dt = 0 means vertical component 
of velocity is zero: motion is purely 
horizontal at such points

We just saw that this occurs when
either P = 0 or N = d/c

Notice equilibria at intersections 
between N and P nullclines
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dP/dt = 0

0 d/c N

0
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P

dN/dt = 0
dP/dt = 0

0 d/c N

0
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P

dN/dt = 0
dP/dt = 0
equilibrium



Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

The sign of dN/dt changes as you cross the N nullcline:
dN/dt is the product of N and a – bP
sign of N changes as you cross N = 0
sign of a – bP changes between P < a/b and P > a/b 

N nullcline: dN/dt = 0 , so either N = 0 or P = a/b

The sign of dP/dt changes as you cross the P nullcline:
dP/dt is the product of P and cN – d
sign of P changes as you cross P = 0
sign of cN – d changes between N < d/c and N > d/c

P nullcline: dP/dt = 0 , so either P = 0 or N = d/c



0 d/c N

0

a/b

P

dN/dt = 0
dP/dt = 0
equilibrium

0 d/c N

0

a/b

P

dN/dt = 0
dP/dt = 0
equilibrium

dN/dt < 0
dN/dt = 0

dN/dt > 0

dP/dt > 0
dP/dt = 0

dP/dt < 0

0 d/c N

0

a/b

P

dN/dt = 0
dP/dt = 0
equilibrium

dN/dt < 0
dN/dt = 0

dN/dt > 0

dP/dt > 0
dP/dt = 0

dP/dt < 0

Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

The sign of dN/dt changes as you cross the N nullcline
The sign of dP/dt changes as you cross the P nullcline

Can fill in directions on line segments



0 d/c N
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dN/dt = 0
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Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

The sign of dN/dt changes as you cross the N nullcline

The sign of dP/dt changes as you cross the P nullcline
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P

dN/dt = 0
dP/dt = 0
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dN/dt < 0
dN/dt = 0
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dN/dt < 0 dN/dt < 0
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Conclusion: nullclines divide up the phase plane into regions where arrows 
share a common orientation

e.g. dN/dt > 0 , dP/dt > 0  : 
arrows are up and to the right

dN/dt < 0 , dP/dt > 0  : 
arrows are up and to the left

and so on…
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Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Nullclines divide up the phase plane into regions 
where arrows share a common orientation

0 d/c N

0
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P

dN/dt = 0
dP/dt = 0
equilibrium

dN/dt < 0
dN/dt = 0

dN/dt > 0

dP/dt > 0
dP/dt = 0

dP/dt < 0

dP/dt < 0
dN/dt < 0 dN/dt < 0

dP/dt > 0

dN/dt > 0
dP/dt < 0

dN/dt > 0
dP/dt > 0

Finally, fill in directions on 
axes

Note decay of predator 
when prey absent, 
growth of prey when 
predator absent

Diagram gives us a pretty good idea of behavior! It suggests the possibility of oscillations, but our 
nullcline analysis doesn’t give enough information for us to be sure 



Biological Comments on Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator
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Direction of the arrows, the oscillatory behavior and its anti-clockwise direction make sense 
biologically:
What happens when prey are abundant, predators are few?

Prey will increase, predators will increase (arrow up and to the right)

When both predator and prey are abundant, predator numbers will increase, prey will decrease
(arrow up and to the left)

When predator is abundant and prey few, both predator and prey numbers will decrease
(arrow down and to the left)

When predator and prey are both few, prey will increase, predators will decrease
(arrow down and to the right)

Cycle repeats… This broad behavior, with anti-clockwise oscillatory motion (possibly damped), 
is common to many predator-prey models/systems



Oscillations in the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

An odd thing: whatever your initial condition (provided you aren’t on the axes or at the 
equilibrium), the solution curve loops around and returns to its starting point

Infinitely many periodic solutions 

On average, solution curves neither approach nor move away from the co-existence equilibrium

Neutral stability is a fairly uncommon phenomenon in biological models.

Neutral stability

Interesting fact: there is a class of physical models where neutral 
stability is common… e.g., when you have conservation of energy



Oscillations in the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

What do oscillations look like when plotted as N and P vs time?

In PPLANE, select “Graph -> Both x-t and y-t”   

Blue: prey (N)
Red: predators (P)

Notice: prey numbers 
start increasing before 
predator numbers do; 
prey numbers fall before 
predators do

Predator oscillation is 
“behind” prey oscillation

in agreement with the 
verbal argument we gave 
before



Behavior Near the Other Equilibrium
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

In addition to the neutrally stable co-existence equilibrium, there is an equilibrium at (0,0)

Solution curves move upwards or downwards towards P = 0, but left or right away from N = 0

… first moving towards (0,0), then away from it

This type of equilibrium is known as a “saddle” – we will talk about this later in the course



Some Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Mentioned earlier that it is possible to do 
some analysis of this model

Cannot solve for N(t) and P(t), but can get a relationship 
between N and P, eliminating time 

Calculate dP/dN

This is a separable differential equation

… Chain Rule says that dP
dN

=
dP
dt
⋅
dt
dN

=
dP
dt

dN
dt

dP
dN

=
P cN − d( )
N a− bP( )

a− bP( )
P

dP
dN

=
cN − d
N
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P

dP
dN

dN∫ =
cN − d
N∫ dN
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a lnP − bP = cN − d lnN + k
k : constant of integration
if we focus on N, P > 0, we don’t 
need |N|, |P| inside logs



Some Analysis of the Lotka-Volterra Predator Prey Model
dN
dt

= N a− bP( )

dP
dt

= P cN − d( )

prey

predator

Solution curves satisfy

a lnP − bP = cN − d lnN + k

Different values of the constant of integration, k , pick out different solution curves, 
i.e. correspond to different initial conditions

Solution curves correspond to contours of the function 

Can write this as a lnP − bP − cN + d lnN = k

F(N,P) = a lnP − bP − cN + d lnN

(This analysis confirms that solution curves form closed curves, in addition to 
providing us a way of graphing solution curves without integrating numerically)



Canada  Lynx-Snowshoe Hare Revisited

Replot data as a phase plane 

plot

Trajectories move clockwise! (Compare to anti-clockwise motion that we saw previously)

From time series plot, the numbers of lynx often peak before the numbers of hare…

… lynx are the prey and hares are the predators ??? !!!

Notice: the mathematical analysis provides an important insight into this ecological system

… not the simple predator-prey system that is often claimed!

(see Krebs et al., 2001, for more discussion)



Criticisms of Lotka-Volterra Predator Prey Model
Recall model’s assumptions:

1. In the absence of predators, prey grow exponentially with per-capita growth rate a

2. Predation reduces per-capita growth rate of prey in a linear fashion (slope b)

3. In the absence of prey, predator population declines exponentially, per-capita decay rate d

4. Consumption of prey increases growth rate of predators in a linear fashion (slope c)

Exponential growth of prey is unrealistic : logistic growth might be more appropriate

Predation term is linear in the number of prey : unrealistic because a given number of predators 
can only eat a certain number of prey : predation is likely a saturating function of the 

number of prey    (c.f. harvesting model)

Improved model:
dN
dt

= rN 1− N
K
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dP
dt

=
bNP
N +D

− cP

Parameter D measures how quickly 
predation saturates with increasing 
number of prey



More Realistic Predator Prey Model
Not so easy to do analysis on this model

Use PPLANE to carry out a numerical analysis

Fix r = 12, c = 1.6, B = 20, b = 4, D = 4, and examine behavior for different values of K

Low prey carrying capacity: K = 0.5

dN
dt

= rN 1− N
K
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=
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− cP

All trajectories go to a (stable) 
equilibrium with N = 0.5, P = 0

Prey at their carrying capacity, 
predators are extinct

Prey carrying capacity is too low to 
support predators 



More Realistic Predator Prey Model

Fix r = 12, c = 1.6, B = 20, b = 4, D = 4, and examine behavior for different values of K

Higher prey carrying capacity: K = 5

dN
dt

= rN 1− N
K
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dP
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=
bNP
N +D

− cP

All trajectories go to a stable interior 
equilibrium: stable co-existence

Prey-only equilibrium (K,0) is no 
longer stable
What type of bifurcation happened 
between K = 0.5 and K = 5 ?



More Realistic Predator Prey Model

Fix r = 12, c = 1.6, B = 20, b = 4, D = 4, and examine behavior for different values of K

Higher prey carrying capacity: K = 8

dN
dt

= rN 1− N
K
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dP
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=
bNP
N +D

− cP

All trajectories go to a stable interior 
equilibrium: stable co-existence

Notice oscillatory approach to this 
equilibrium: curves spiral in towards 
equilibrium, and in an anti-clockwise 
direction

This type of equilibrium is known as a 
stable spiral (or stable focus)



More Realistic Predator Prey Model

Fix r = 12, c = 1.6, B = 20, b = 4, D = 4, and examine behavior for different values of K

Higher prey carrying capacity: K = 9.8

dN
dt

= rN 1− N
K

"

#
$

%

&
'−

BNP
N +D

dP
dt

=
bNP
N +D
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Trajectories approach a single 
oscillatory solution (closed loop)

Co-existence equilibrium is now unstable 
Inside the closed loop, trajectories spiral 
towards the closed loop

(the bifurcation that occurred–a Hopf bifurcation–is 
one that we shall discuss later in the course) 

Notice anti-clockwise motion of 
solution curves



More Realistic Predator Prey Model

Fix r = 12, c = 1.6, B = 20, b = 4, D = 4, and examine behavior for different values of K

Higher prey carrying capacity: K = 12

dN
dt

= rN 1− N
K
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=
bNP
N +D

− cP

Trajectories approach a single 
oscillatory solution (closed loop)

Amplitude of oscillations increases


