MAA Minicourse \#3: Geometry and Algebra in Mathematical Music Theory Part B, Classroom Presentation II: Generalized Commuting Groups

Robert W. Peck
Associate Professor of Music Theory
Louisiana State University
〈rpeck@lsu.edu〉

Joint Mathematics Meeting 2011
94th Annual Meeting of the MAA
New Orleans, Louisiana
January 11, 2011

THE GROUP-THEORETICAL APPROACH

1.1 Interval preservation under conjugation as a result of commutativity

$$
\begin{aligned}
\alpha^{\beta} & =(\beta \alpha) \beta^{-1} & & \\
& =(\alpha \beta) \beta^{-1} & & \text { (by the commutative property) } \\
& =\alpha\left(\beta \beta^{-1}\right) & & \text { (by the associative property) } \\
& =\alpha & & \text { (by cancellation) }
\end{aligned}
$$

1.2 Centralizer of H in G

$$
C_{G} H=\{\alpha \in G \mid \alpha \beta=\beta \alpha, \text { for all } \beta \in H\}
$$

1.3 Normalizer of H in G

$$
N_{G} H=\left\{\alpha \in G \mid H^{\alpha}=H\right\}
$$

1.4 Center of H

$$
Z(H)=\{\alpha \in H \mid \alpha \beta=\beta \alpha, \text { for all } \beta \in H\}
$$

1.5 Point stabilizer of $x \in S$ in H

$$
H_{x}=\{\alpha \in H \mid \alpha(x)=x\}
$$

1.6 Transitive action

$$
\text { For any } x, y \in S \text {, there exists } \alpha \in H \text {, such that } \alpha(x)=y \text {. }
$$

1.7 Structure of a centralizer of a group H with a transitive action

$$
C_{S y m(S)} H \cong N_{H} H_{x} / H_{x}
$$

1.8 Semiregular action

$$
H_{x}=1, \text { for all } x \in S
$$

1.9 Structure of a centralizer of a group H with a simply transitive action

$$
C_{S y m(S)} H \cong N_{H} H_{x} / H_{x}=H / 1=H
$$

1.10 Orbit restriction

Let

$$
\pi: H \rightarrow \operatorname{Sym}(S)
$$

be a permutation representation of H, where $\pi(h)=h^{*}$. Next, let $P \subseteq S$ be a union of some number of H-orbits in S. Given that H has an action on P, we may define a function

$$
\left.h^{*}\right|_{P}: P \rightarrow P
$$

on P that agrees with h^{*}, which we call the restriction of h to P. Then, we may define the representation map

$$
\left.\pi\right|_{P}: H \rightarrow \operatorname{Sym}(P),
$$

where $\left.\pi\right|_{P}(h)=\left.h^{*}\right|_{P}$, for all $h \in H$. In this way, we may discuss the restriction of H to any (union) of its orbits.
1.11 Diagonal subgroup
D is a diagonal subgroup of G iff

1) for any $\alpha\left(R_{1}\right) \in D\left(R_{1}\right)$, there exists a unique $\alpha\left(R_{i}\right) \in D\left(R_{i}\right)$ for each R_{i} in the set of n orbits, such that $\alpha\left(R_{1}\right) \cdots \alpha\left(R_{n}\right) \in D$.
2) $D\left(R_{1}\right)$ is permutation isomorphic to $D\left(R_{i}\right)$ for all $R_{i} \in R$.
1.12 Wreath product $W=L \mathrm{wr}_{\pi} F$
3) W is a semidirect product of B by F where $B=L_{1} \times \ldots \times L_{n}$ is a direct product of n copies of L.
4) F permutes $Q=\left\{L_{i}: 1 \leq i \leq n\right\}$ via conjugation, and the permutation representation of F on Q is equivalent to π.
1.13 Structure of a centralizer for a group D with a diagonal action

$$
C_{S y m(S)} D=C_{\mathrm{Sym}\left(R_{i}\right)} D\left(\mathrm{R}_{i}\right) 乙 \operatorname{Sym}(R)
$$

1.14 Structure of a centralizer of a single orbit restriction for a group D with a semiregular intransitive action

$$
C_{\mathrm{Sym}\left(R_{i}\right)} D\left(\mathrm{R}_{i}\right) \cong D
$$

1.15 Maximally embedded diagonal subgroup

Let P_{j} be a union of D-orbits. $D\left(P_{j}\right)$ is a maximally embedded diagonal subgroup of G iff m is the greatest possible number of orbits R_{i} satisfying the diagonal subgroup condition for $R_{i} \subseteq P_{j}$.
1.16 Structure of a centralizer for a group D with a nonsemiregular intransitive action

$$
C_{S y m(S)} D=C_{S y m\left(P_{1}\right)} D\left(P_{1}\right) \times \ldots \times C_{S y m\left(P_{n}\right)} D\left(P_{n}\right) .
$$

Table. Partition of the universe of non-empty pitch-class sets into unions of set-classes over which the action of T / I has a maximally diagonal embedding

Label	$(x, y)=$ number of T_{n} and I_{n} operators that hold a member of P_{j} invariant; I_{n} parity	Representative inclusive set-class	Number of set-classes
P_{1}	$(1,0)$	$[0,3,7]$	127
P_{2}	$(1,1)$ even parity for I_{n} index	$[0]$	56
P_{3}	$(1,1)$ odd parity for I_{n} index	$[0,1]$	25
P_{4}	$(2,0)$	$[0,1,3,6,7,9]$	1
P_{5}	$(2,2)$ even parity for I_{n} indices	$[0,2,6,8]$	5
P_{6}	$(2,2)$ odd parity for I_{n} indices	$[0,1,6,7]$	2
P_{7}	$(3,3)$ even parity for I_{n} indices	$[0,4,8]$	2
P_{8}	$(3,3)$ odd parity for I_{n} indices	$[0,1,4,5,8,9]$	1
P_{9}	$(4,4)$ even and odd parity for I_{n} indices	$[0,3,6,9]$	2
P_{10}	$(6,6)$ even parity for I_{n} indices	$[0,2,4,6,8,10]$	1
P_{11}	$(12,12)$ even and odd parity for I_{n} indices	$[0,1,2, \ldots, 11]$	1

1.17.1 Structure of $C_{S y m(S)} T / I$, where $S=\{$ universe of non-empty pcsets $\}$
$\left(D_{24} w r S_{127}\right) \times\left(C_{2} w r S_{56}\right) \times\left(C_{2} w r S_{25}\right) \times\left(D_{12} w r S_{1}\right) \times\left(C_{2} w r S_{5}\right) \times\left(C_{2} w r S_{2}\right) \times$ $\left(C_{2} w r S_{2}\right) \times\left(C_{2} w r S_{1}\right) \times\left(1 w r S_{2}\right) \times\left(C_{2} w r S_{1}\right) \times\left(1 w r S_{1}\right)$
1.17.2 Size of $C_{S y m(S)} T / I$, where $S=\{$ universe of non-empty pcsets $\}$
$\left(24^{127} \cdot 127!\right) \cdot\left(2^{56} \cdot 56!\right) \cdot\left(2^{25} \cdot 25!\right) \cdot\left(12^{1} \cdot 1!\right) \cdot\left(2^{5} \cdot 5!\right) \cdot\left(2^{2} \cdot 2!\right) \cdot$ $\left(2^{2} \cdot 2!\right) \cdot\left(2^{1} \cdot 1!\right) \cdot\left(1^{2} \cdot 2!\right) \cdot\left(2^{1} \cdot 1!\right) \cdot\left(1^{1} \cdot 1!\right)$

THE GRAPH-THEORETICAL APPROACH

Figure 1. Arrow preservation for network N_{1} ("book diagram")

Figure 2. Arrow preservation in a T / I network

Figure 3. An unconnected graph

2.1 Number of networks that preserve arrow labels for groups G with semiregular actions ($n=$ number of orbits, $m=$ number of connected components; $p=$ size of orbit)

$$
v=(n!/(n-m)!) \cdot p^{m} \quad(\text { visible on the network })
$$

Example 1. Voice exchanges (and quasi voice exchanges) in Tristan Prelude

Example 1. Voice exchanges (and quasi voice exchanges) in Tristan Prelude, (cont.)

2.2.1 $\quad S=\left(3 \mathbb{Z}_{12}+2\right) \times \mathbb{Z}_{12}$
2.2.2 $\mathrm{l}:(a, b) \in S \rightarrow(b-(b-a+3 \bmod 6), a+(b-a+3 \bmod 6))$
2.2.3 $\quad \mathrm{T}_{3}:(a, b) \in S \rightarrow(a+3, b+3)$
2.2.4 $\chi:(a, b) \in S \rightarrow(a, b+1)$

Figure 4. Arrow preservation in intransitive semiregular networks
a) unconnected network of voice exchanges in Tristan

b) connected network

Example 2. Three trichords from Schoenberg's Op. 19, No. 6
c)

a)

b)

Figure 5. Three strongly isographic K-nets for Example 2 (from Lambert's 2002 analysis)
a)

b)

c)

Example 3. Ran, String Quartet No. 1, Mov. II, mm. 121-125

Figure 6. T/MI-inclusive networks for Examples 3 and 4

Example 4. Ran, String Quartet No. 1, Mov. II, mm. 1-3

Figure 7. S^{\prime} / W^{\prime} networks with arrow preservation

SAMPLE HOMEWORK PROBLEMS

1) Determine generators for the commuting group in the symmetric group on the set of integers mod 6 for the group generated by $(0,2,4)(1,3,5)$. How does the fact of this group's being abelian impact the commuting group?
2) Determine the size and structure of the commuting group in symmetric group on 12 pitchclasses for the group generated by the inversion operator $\mathrm{I}_{1}:=(0,1)(2,11)(3,10)(4,9)(5,8)(6,7)$. How does this structure contrast with the commuting group (in the same symmetric group) for the group generated by the inversion operator $\mathrm{I}_{0}:=(1,11)(2,10)(3,9)(4,8)(5,7)$?
3) What is the kernel of the action of the (dihedral) musical transposition (translation) and inversion group's action on the set class of octatonic collections (i.e., all pitch-class sets that are translations and translated reflections of the pitch-class set $\{0,1,3,4,6,7,9,10\}$)? How does this kernel function in determining the commuting group for the action of the musical transposition and inversion group on this set class?
4) Provide generators as operations on pitch-classes for a group whose commuting group is isomorphic to the wreath product 2^{2} ᄂ S_{3} (Klein four-group by symmetric group of degree 3).
5) How many networks with nodes populated by pitch-classes have the same arrow labels as the network below? Is this the same as the size of the commuting group in in symmetric group on 12 pitch-classes for the musical transposition (translation) group?

REFERENCE LIST

Aschbacher, Michael. 1986. Finite Group Theory. Cambridge: Cambridge University Press.
Babbitt, Milton. 1960. Twelve-Tone Invariants as Compositional Determinants. The Musical Quarterly 46: 46-59.
Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. Generalized Voice-Leading Spaces. Science 320: 346-48.
Clough, John. 1998. A Rudimentary Model for Contextual Transposition and Inversion. Journal of Music Theory 42.2: 297-306.
Cohn, Richard. 2003. A Tetrahedral Graph of Tetrachordal Voice-Leading Space. Music Theory Online 9.4.
Dixon, John D., and Brian Mortimer. 1996. Permutation Group Theory. New York: SpringerVerlag.
Hook, Julian. 2002. Uniform Triadic Transformations. Journal of Music Theory 46: 57-126.
Klumpenhouwer, Henry. 1991. A Generalized Model of Voice-Leading for Atonal Music. Ph.D. diss., Harvard University.
Kochavi, Jonathan H. 2002. Contextually Defined Musical Transformations. Ph.D. dissertation. State University of New York, Buffalo.
Lambert, Philip. 2002. Isographies and Some Klumpenhouwer Networks They Involve. Music Theory Spectrum 24.2: 165-195.
Lewin, David. 1987. Generalized Music Intervals and Transformations. New Haven: Yale University Press.
Peck, Robert. 2004-2005. Aspects of Recursion in M-Inclusive Networks. Intégral 18/19: 25-70.
—_. 2009. "Interval Preservation in Group- and Graph-Theoretical Music Theories: A Comparative Study." In Mathematics and Computation in Music, Communications in Computer and Information Science 37, ed. Timour Kloche and Thomas Noll. Berlin: Springer-Verlag, 489-92.
——. 2009. The String Quartets of Shulamit Ran. In Intimate Voices: Aspects of Construction and Character in the Twentieth-Century String Quartet, ed. Evan Jones. Rochester: University of Rochester Press. . 2009. "Wreath Products in Transformational Music Theory." Perspectives of New Music 47:1, 193-210.
——. 2010. "Generalized Commuting Groups." Journal of Music Theory 54:2 (forthcoming).
Rahn, John. 2007. Cool tools: Polysemic and non-commutative Nets, subchain decompositions and cross-projecting pre-orders, object-graphs, chain-hom-sets and chain-label-hom-sets, forgetful functors, free categories of a Net, and ghosts. Journal of Mathematics and Music 1: 7-22.
Straus, Joseph N. 2005. Atonal Pitch Space. Presentation to the 28th Annual Meeting of the Society for Music Theory, Cambridge, Massachusetts.
Tymoczko, Dmitri. 2006. The Geometry of Musical Chords. Science 313: 72-74.

