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THE GROUP-THEORETICAL APPROACH 

 

1.1 Interval preservation under conjugation as a result of commutativity 

 

α
β
 = (βα)β

-1
 

= (αβ)β
-1

   (by the commutative property)   

= α(ββ
-1

) (by the associative property) 

= α  (by cancellation) 

1.2  Centralizer of H in G  

 

CGH = {α  G | αβ = βα, for all β  H} 

 

1.3  Normalizer of H in G  

 

NGH = {α  G | H
α
 = H} 

 

1.4  Center of H 

 

Z(H) = {α  H | αβ = βα, for all β  H} 

 

1.5  Point stabilizer of x  S in H  

 

Hx = {α  H | α(x) = x} 

 

1.6 Transitive action 

 

For any x, y  S, there exists α  H, such that α(x) = y. 

 

1.7 Structure of a centralizer of a group H with a transitive action 

 

CSym(S)H  NHHx/Hx 

 

1.8 Semiregular action 

 

Hx = 1, for all x  S 

 

1.9 Structure of a centralizer of a group H with a simply transitive action 

 

CSym(S)H  NHHx/Hx = H/1 = H 
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1.10 Orbit restriction 

 

Let  

 : H  Sym(S) 

be a permutation representation of H, where (h) = h*.  Next, let P  S be a union of 

some number of H-orbits in S.  Given that H has an action on P, we may define a 

function 

h*|P : P  P 

on P that agrees with h*, which we call the restriction of h to P.  Then, we may define the 

representation map  

|P : H  Sym(P), 

where |P(h) = h*|P, for all h  H.  In this way, we may discuss the restriction of H to any 

(union) of its orbits. 

 

1.11 Diagonal subgroup 

 

D is a diagonal subgroup of G iff 

1) for any α(R1) ∊ D(R1), there exists a unique α(Ri) ∊ D(Ri) for each Ri in the set of 

n orbits, such that α(R1) ⋯ α(Rn)  D.   

2) D(R1) is permutation isomorphic to D(Ri) for all Ri  R.   

 

1.12 Wreath product W = L wr F 

 

1) W is a semidirect product of B by F where B = L1    Ln is a direct product of n 

copies of L. 

2) F permutes Q = {Li : 1  i  n} via conjugation, and the permutation 

representation of F on Q is equivalent to . 

 

1.13 Structure of a centralizer for a group D with a diagonal action 

 

CSym(S)D = D(Ri) ≀ Sym(R) 

 

1.14 Structure of a centralizer of a single orbit restriction for a group D with a semiregular 

intransitive action 

 

D(Ri)  D 

 

1.15 Maximally embedded diagonal subgroup 

 

Let Pj be a union of D-orbits. D(Pj) is a maximally embedded diagonal subgroup of G iff 

m is the greatest possible number of orbits Ri satisfying the diagonal subgroup condition 

for Ri  Pj. 

 

1.16 Structure of a centralizer for a group D with a nonsemiregular intransitive action 

 

CSym(S)D = CSym(P1)D(P1)  ...  CSym(Pn)D(Pn). 
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Table.  Partition of the universe of non-empty pitch-class sets into unions of set-classes over 

which the action of T/I has a maximally diagonal embedding 

 

Label (x, y) = number of Tn and In operators that 

hold a member of Pj invariant; In parity 

Representative 

inclusive set-class 

Number of set-classes 

P1 (1, 0) [0, 3, 7] 127 

P2 (1, 1) even parity for In index [0] 56 

P3 (1, 1) odd parity for In index [0, 1] 25 

P4 (2, 0) [0, 1, 3, 6, 7, 9] 1 

P5 (2, 2) even parity for In indices [0, 2, 6, 8] 5 

P6 (2, 2) odd parity for In indices [0, 1, 6, 7] 2 

P7 (3, 3) even parity for In indices [0, 4, 8] 2 

P8 (3, 3) odd parity for In indices [0, 1, 4, 5, 8, 9] 1 

P9 (4, 4) even and odd parity for In indices [0, 3, 6, 9] 2 

P10 (6, 6) even parity for In indices [0, 2, 4, 6, 8, 10] 1 

P11 (12, 12) even and odd parity for In indices [0, 1, 2, …, 11] 1 

 

1.17.1 Structure of CSym(S)T/I, where S = {universe of non-empty pcsets} 

 

(D24 wr S127)  (C2 wr S56)  (C2 wr S25)  (D12 wr S1)  (C2 wr S5)  (C2 wr S2)   

(C2 wr S2)  (C2 wr S1)  (1 wr S2)  (C2 wr S1)  (1 wr S1) 

 

1.17.2 Size of CSym(S)T/I, where S = {universe of non-empty pcsets} 

 

(24
127

  127!)  (2
56

  56!)  (2
25

  25!)  (12
1
  1!)  (2

5
  5!)  (2

2
  2!)   

(2
2
  2!)  (2

1
  1!)  (1

2
  2!)  (2

1
  1!)  (1

1
  1!) 

 

THE GRAPH-THEORETICAL APPROACH 

 

Figure 1.  Arrow preservation for network N1 (“book diagram”) 
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Figure 2.  Arrow preservation in a T/I network 

 

   I3 

Db+  G- (b) N2 

 

    T1    = T11 

   I3 

C+  Ab- (a) N1 

 

    I7                  = I11 

   I3 

C-  Ab+ (c) N3 

 

Figure 3.  An unconnected graph  

 
 

2.1  Number of networks that preserve arrow labels for groups G with semiregular actions 

  (n = number of orbits, m = number of connected components; p = size of orbit)  

 

v = (n!/(n - m)!)  p
m
   (visible on the network) 

 

 

Example 1.  Voice exchanges (and quasi voice exchanges) in Tristan Prelude 

 

a) mm. 2-3     b) mm. 6-7 

    
 

(cont.) 



5 

 

Example 1.  Voice exchanges (and quasi voice exchanges) in Tristan Prelude, (cont.) 

 

c) mm. 10-11     d) mm. 60-61 

    
 e) mm. 66-67 

 
 

2.2.1 S = (3 12 + 2)  12 

2.2.2  : (a, b)  S  (b - (b - a + 3 mod 6), a + (b - a + 3 mod 6)) 

2.2.3 T3 : (a, b)  S  (a + 3, b + 3)   

2.2.4  : (a, b)  S  (a, b + 1) 

 

Figure 4.  Arrow preservation in intransitive semiregular networks 

 

a) unconnected network of voice exchanges in Tristan 

           (11,8) 

 

 (8,11)  (11,2)  (2,6)  (5,10)    (8,2) 

 

                         
  

 (11,8)  (2,11)  (5,3)  (8,7)    (11,11) 

 

           (8,11) 

 

b) connected network  

           (11,8) 

 

 (8,11)  (11,2)  (2,6)  (5,10)    (8,2) 

  T3  T3  T3       T3 

                         
  T3  T3  T3       T3 

 (11,8)  (2,11)  (5,3)  (8,7)    (11,11) 

 

           (8,11) 
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Example 2. Three trichords from Schoenberg’s Op. 19, No. 6 

        c) 

    
 a)       b) 

 

Figure 5.  Three strongly isographic K-nets for Example 2 (from Lambert’s 2002 analysis) 

 

    a)          b)    c)
 

 
 

Example 3.  Ran, String Quartet No. 1, Mov. II, mm. 121-125 
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Figure 6.  T/MI-inclusive networks for Examples 3 and 4 

 

   

 

   
 

Example 4.  Ran, String Quartet No. 1, Mov. II, mm. 1-3 

 

 
 

 

a)  3  T/MI-inclusive network for m. 121 

 

 

     MI5     MI11     T2 

  8 

 

             T6                MI9 

2    5 

  MI3 

 

b)  5  T/MI-inclusive network for m. 124 

 

 

     MI5     MI11     T2 

            10 

 

             T6                MI9 

4    7 

  MI3 

 

c)  2  T/MI-inclusive network for m. 3 

 

 

    MI11     MI5      T2 

  7 

 

             T6                MI3 

1    4 

  MI9 
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Figure 7. S/W networks with arrow preservation 

 

   

 

   
 

 

 

 

  

 

b)  5   S/W-inclusive network for m. 124 

 

 

      W5    W11     S2 
            10 

 

             S6                W9 

4    7 

  W3 
 

c)  2  S/W-inclusive network for m. 3 

 

 

      W5    W11     S2 
  7 

 

             S6                W9 

1    4 

  W3 

 

b)  3  S/W-inclusive network for m. 121 

 

 

     W5     W11     S2 
             8 

 

             S6                W9 

2    5 

  W3 
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SAMPLE HOMEWORK PROBLEMS 

 

1) Determine generators for the commuting group in the symmetric group on the set of integers 

mod 6 for the group generated by (0,2,4)(1,3,5).  How does the fact of this group’s being 

abelian impact the commuting group? 

 

2) Determine the size and structure of the commuting group in symmetric group on 12 pitch-

classes for the group generated by the inversion operator I1 := (0,1)(2,11)(3,10)(4,9)(5,8)(6,7).  

How does this structure contrast with the commuting group (in the same symmetric group) for 

the group generated by the inversion operator I0 := (1,11)(2,10)(3,9)(4,8)(5,7)? 

 

3) What is the kernel of the action of the (dihedral) musical transposition (translation) and 

inversion group’s action on the set class of octatonic collections (i.e., all pitch-class sets that 

are translations and translated reflections of the pitch-class set {0,1,3,4,6,7,9,10})?  How does 

this kernel function in determining the commuting group for the action of the musical 

transposition and inversion group on this set class? 

 

4) Provide generators as operations on pitch-classes for a group whose commuting group is 

isomorphic to the wreath product 2
2
 ≀ S3 (Klein four-group by symmetric group of degree 3). 

 

5) How many networks with nodes populated by pitch-classes have the same arrow labels as the 

network below?  Is this the same as the size of the commuting group in in symmetric group on 

12 pitch-classes for the musical transposition (translation) group? 

 

 

  T10 

  4    2 

  
     T4           T6 

      8  
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