If you do not agree with the given answers, answer "E" for "None of the above".

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

1) $2^{X} - 4x - 1 = 0$				1)		
A) 4.131	B) 0.000, 4.131	C) 0.000	D) 17.526			
Solve the system by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solutions.						
2) $x + 2y = -4$ -5x - 10y = 20				2)		
A) {(-4, 0)}		B) Ø				
C) {(x, y) $x + 2y = -4$	}	D) {(0, 0)}				
Use the compound interest formu	Ias A = P $\left(1 + \frac{r}{n}\right)^{nt}$ and A =	- Pe ^{rt} to solve.				
 Find the accumulated va years. 	alue of an investment of \$1	000 at 12% compounded	semiannually for 11	3)		
A) \$3603.54	B) \$1898.30	C) \$2320.00	D) \$3478.55			
Evaluate the exponential expressi 4) 5 ⁻²	on.			4)		
A) $\frac{1}{25}$	B) <u>1</u> 10	C) -25	D) 25			
Solve the system by the addition method.						
5) $6x + 3y = 51$ 2x - 6y = 38				5)		
A) {(-3, 10)}	B) {(10, -3)}	C) {(-10, 3)}	D) {(3, -10)}			
6) $x^2 + y^2 = 4$ $x^2 - y^2 = 4$				6)		
A) {(2, 0), (-2, 0)}	B) {(2, 2), (-2, 2)}	C) {(2, 0), (2, 2)}	D) {(-2, 0), (-2, 2)}			
Find the inverse of the one-to-one function.						
7) $f(x) = \frac{5}{7x - 6}$				7)		
A) $f^{-1}(x) = \frac{7x - 6}{5}$		B) $f^{-1}(x) = \frac{5}{7y} + \frac{6}{7}$				
C) $f^{-1}(x) = -\frac{6}{7} - \frac{5}{7x}$	-	D) $f^{-1}(x) = \frac{5}{7x} + \frac{6}{7}$				

Determine the slope and the y-intercept of the graph of the equation.

8) x + 12y - 1 = 0	
A) m = 1; (0, 1)	B) m = $\frac{1}{12}$; $\left[0, \frac{1}{12}\right]$
C) m = -12; (0, 12)	D) m = $-\frac{1}{12}; \left(0, \frac{1}{12}\right)$

Solve the problem.

c					
	9) The cost in millions of dollars for a company to manufacture x thousand automobiles is given by				
	the function $C(x) = 4x^2 - 32x + 128$. Find the number of automobiles that must be produced to				
	minimize the cost.				
	A) 8 thousand automobiles		B) 64 thousand au	utomobiles	
	C) 4 thousand automobiles		D) 16 thousand au		
10	10) A machine produces open boxes using square sheets of plastic. The machine cuts equal-sized squares measuring 4 inches on a side from each corner of the sheet, and then shapes the plastic into an open box by turning up the sides. If each box must have a volume of 1600 cubic inches, find the length of one side of the open box.				
	A) 20 in.	B) 24 in.	C) 28 in.	D) 19 in.	
11	11) One number is 2 less than a second number. Twice the second number is 24 more than 4 times the first. Find the two numbers.				
	A) -11 and -9	B) -10 and -8	C) 8 and 10	D) -9 and -7	
12) The function A = A ₀ e ^{-0.01155x} models the amount in pounds of a particular radioactive material stored in a concrete vault, where x is the number of years since the material was put into the vault. If 800 pounds of the material are placed in the vault, how much time will need to pass for only 356 pounds to remain?					12)
	stored in a concrete value of the r	ault, where x is the numbe	er of years since the mate	rial was put into the vault.	12)
	stored in a concrete value of the r	ault, where x is the numbe	er of years since the mate	rial was put into the vault.	
	stored in a concrete va If 800 pounds of the r pounds to remain? A) 75 years A) A steel company proc \$2.00 profit on each par x = the number of par	ault, where x is the numbernaterial are placed in the v	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each part d y = the number of part	rial was put into the vault. Il need to pass for only 356 D) 70 years The company makes a rt B that it produces. Let	13)
	stored in a concrete va If 800 pounds of the r pounds to remain? A) 75 years A) A steel company proc \$2.00 profit on each par x = the number of par	ault, where x is the number material are placed in the v B) 140 years duces two types of machine art A that it produces and t A produced in a week an	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each part d y = the number of part	rial was put into the vault. Il need to pass for only 356 D) 70 years The company makes a rt B that it produces. Let	
	stored in a concrete va If 800 pounds of the r pounds to remain? A) 75 years b) A steel company proc \$2.00 profit on each par x = the number of par Write the objective fu	ault, where x is the number material are placed in the x B) 140 years duces two types of machine art A that it produces and t A produced in a week an nction that describes the to	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each par d y = the number of part tal weekly profit.	rial was put into the vault. Il need to pass for only 356 D) 70 years The company makes a rt B that it produces. Let	
13	 stored in a concrete value of the result of the r	ault, where x is the number material are placed in the x B) 140 years duces two types of machine art A that it produces and t A produced in a week an nction that describes the to - 2)	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each part d y = the number of part tal weekly profit. B) $z = 8(x + y)$ D) $z = 2x + 6y$	The company makes a The company makes a t B that it produces. Let B produced in a week.	
13	 stored in a concrete value of the result of the r	ault, where x is the number material are placed in the x B) 140 years duces two types of machine art A that it produces and t A produced in a week an nction that describes the to - 2) unction f(t) =	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each part d y = the number of part tal weekly profit. B) $z = 8(x + y)$ D) $z = 2x + 6y$ \overline{t} describes the population	The company makes a The company makes a t B that it produces. Let B produced in a week.	13)
13	 stored in a concrete value of the result of the r	ault, where x is the number material are placed in the x B) 140 years duces two types of machine art A that it produces and t A produced in a week an nction that describes the to - 2) unction f(t) = $\frac{800}{1 + 12.3e^{-0.14}}$ fter they are introduced to	er of years since the mate vault, how much time wi C) 80 years e dies, part A and part B. a \$6.00 profit on each part d y = the number of part tal weekly profit. B) $z = 8(x + y)$ D) $z = 2x + 6y$ \overline{t} describes the population	Prial was put into the vault. Il need to pass for only 356 D) 70 years The company makes a rt B that it produces. Let B produced in a week. On of a species of at. How many butterflies	13)

8)

A) 4 inches and 81	inches	B) 2 inches and 9 ir	nches	
C) 1 inches and 18		D) 4 inches and 4.5 inches		
	0.022t models the populat opulation of the city react	tion of a particular city, in t n 339 thousand?	housands, t years after	16) _
A) 2013	B) 2014	C) 2011	D) 2012	
	w many will there be in t	ng at the rate of 2.8% per y he year 2002? Use f(x) = y ₀		17) _
A) 11,630,000	B) 9,690,000	C) 10,660,000	D) 9,500,000	

18) A vineyard produces two special wines, a white and a red. A bottle of the white wine requires 14 pounds of grapes and 1 hour of processing time. A bottle of red wine requires 25 pounds of grapes and 2 hours of processing time. The vineyard has on hand 2,198 pounds of grapes and can allot 160 hours of processing time to the production of these wines. A bottle of the white wine sells for \$11.00, while a bottle of the red wine sells for \$20.00. How many bottles of each type should the vineyard produce in order to maximize gross sales?

A) 132 bottles of white and 14 bottles of red

B) 14 bottles of white and 132 bottles of red

- C) 42 bottles of white and 59 bottles of red
- D) 76 bottles of white and 42 bottles of red

Solve the equation by isolating the natural logarithm and exponentiating both sides. Express the answer in terms of e. 19) $7 + 6 \ln x = 10$ 19)

A) {e^{1/2}} B) $\left\{ \ln\left(\frac{1}{2}\right) \right\}$ C) $\left\{ \frac{e^3}{6} \right\}$ D) $\left\{ \frac{3}{6 \ln 1} \right\}$

Solve the logarithmic equation. Be sure to reject any value of x that produces the logarithm of a negative number or the logarithm of 0.

20) $\log_2 (x + 4) = 2 + \log_2 (x - 4)$ A) $\{\frac{20}{3}\}$ B) $\{-\frac{20}{3}\}$ C) $\{\frac{8}{3}\}$ D) $\{-\frac{8}{3}\}$

Solve and check the equation.

21) $(x + 7)^{3/2} = 27$ A) 2 B) -4 C) $\sqrt[3]{3} - 7$ D) 16 Begin by graphing the standard square root function $f(x) = \sqrt{x}$. Then use transformations of this graph to graph the given function.

Graph the solution set of the system of inequalities or indicate that the system has no solution.

24)

23)

Use the given conditions to write an equation for the line in the indicated form.

Use the given conditions to write an	n equation for the line in t	he indicated form.			
29) Passing through (2, 5) and parallel to the line whose equation is $y = -2x + 3$; point-slope form				29)	
A) $y - 2 = -2(x - 5)$	B) y = 2x	C) y - 5 = x - 2	D) y - 5 = -2(x - 2)		
Use the given conditions to write an 30) Slope = $\frac{8}{9}$, passing throug		slope-intercept form.		30)	
A) $y = \frac{8}{3}x + \frac{38}{3}$	B) $y = \frac{8}{9}x - \frac{38}{9}$	C) $y = mx - \frac{38}{3}$	D) $v = \frac{8}{3}x + 7$		
Use the given conditions to write ar 31) Passing through (4, 5) and	n equation for the line in t	he indicated form.	,	31)	
slope-intercept form	1 17	1 17	1 17		
A) y = - 6x - 34	B) $y = -\frac{1}{6}x - \frac{17}{3}$	C) $y = \frac{1}{6}x - \frac{17}{3}$	D) $y = -\frac{1}{6}x + \frac{17}{3}$		
Write the equation in its equivalent 32) $5^2 = y$ A) $\log_2 y = 5$		C) log ₅ y = 2	D) log _y 2 = 5	32)	
Find the coordinates of the vertex for the parabola defined by the given quadratic function.					
33) $f(x) = -x^2 + 14x + 9$		() (7 (0)	D (7 40)	33)	
A) (-7, -138)	B) (14, 9)	C) (7, 58)	D) (-7, -40)		
Solve the radical equation, and chere 34) $\sqrt{3x + 18} = x$	ck all proposed solutions.			34)	
A) {- 9}	B) {6}	C) {-3,6}	D) Ø		
Solve the inequality by first rewriting it as an equivalent inequality without absolute value bars. Graph the solution set					

Solve the inequality by first rewriting it as an equivalent inequality without absolute value bars. Graph the solution set on the number line. Express the solution set using interval notation. $35) 5 + \left|1 - \frac{x}{2}\right| \ge 8$ 35)

$35) 5 + \left 1 - \frac{2}{2}\right \ge 6$	55)
<pre><++++++++++++++++++++++++++++++++++++</pre>	
A) [-4, 8]	B) (-∞, -8] or [4, ∞)
<pre><!--</th--><th>-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10</th></pre>	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10
C) [-8, 4]	D) (-∞, -4] or [8, ∞)
CI I E I I I I I I I I I I I I I I I -10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 10

Perform the indicated operation and express the answer in decimal notation.

38) log ₂₅ 5

A) 10 B) $\frac{1}{2}$

C) 2

D) 1

Solve the inequality and graph the solution set on the number line. Express the solution set using interval notation.

Graph the solutions of the inequality on a number line.

40) $-4 \le x < 0$

Write the equation in its equivalent exponential form.

41)
$$\log_{b} 81 = 4$$

A) $81^{b} = 4$ B) $b^{4} = 81$ C) $81^{4} = b$ D) $4^{b} = 81$

Solve the exponential equation. Express the solution set in terms of natural logarithms.

42)
$$e^{2x} = 5$$

A) $\left\{\frac{5}{2}e\right\}$
B) $\left\{\frac{\ln 5}{2}\right\}$
C) $\left\{2 \ln 5\right\}$
D) $\left\{\frac{\ln 2}{5}\right\}$

Simplify the exponential expression.

39)

40) _____

42)

43)

Approximate the number using a calculator. Round your answer to three decimal places.

44) 3-1.1				44)
A) -1.331	B) 0.599	C) -3.300	D) 0.299	
Find the domain of the logarit	hmic function.			
45) f(x) = In (8 - x)				45)
A) (-∞,8)	B) (-∞, 0)	C) (- ∞ , 8) or (8, ∞)	D) (-8,∞)	

Begin by graphing the standard absolute value function f(x) = |x|. Then use transformations of this graph to graph the given function.

Solve the quadratic inequality and graph the solution set on a number line. Express the solution set in interval notation. 47) $x^2 + 3x \le -2$ 47)

Use the given conditions to write an equation for the line in point-slope form.

(g ∘ f)(x)

49) Passing through (5, 3) and (8, 7) A) $y - 3 = \frac{4}{3}(x - 8)$ or $y - 7 = \frac{4}{3}(x - 5)$ B) y - 3 = 5(x + 5) or y - 7 = 8(x - 3)C) $y - 3 = \frac{4}{3}(x - 5)$ or $y - 7 = \frac{4}{3}(x - 8)$ D) $y + 3 = \frac{4}{3}(x + 5)$ or $y + 7 = \frac{4}{3}(x + 8)$

Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation.

$$50) \frac{x + 14}{x + 1} < 5$$

$$(-12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12)$$

$$A) (-\infty, \frac{9}{4}) \text{ or } (1, \infty)$$

$$B) (-1, \frac{9}{4})$$

$$(-12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12)$$

$$C) \emptyset$$

$$(-12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12)$$

$$D) (-\infty, -1) \text{ or } (\frac{9}{4}, \infty)$$

$$(-12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12)$$

$$(-12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12)$$