Machine Design

Bolt Selections and Design

- Dimensions of standard threads (UNF/UNC)
- Strength specifications (grades) of bolts.

Clamping forces

The bolt force is

$$
F_{b}=F_{i}+\frac{k_{b}}{k_{b}+k_{c}} F_{e}
$$

Where K_{b} and K_{C} are the bolt and the clamping material stiffness and F_{i} is the initial bolt tensioning. Calculating K_{b} and K_{c} are relatively difficult and exam problems often give you theses stiffnesses or their ratio.

The clamping force is

$$
F_{c}=F_{i}-\frac{k_{c}}{k_{b}+k_{c}} F_{e}
$$

Recommended initial tension (for reusable bolts)

$$
\mathrm{F}_{\mathrm{i}}=(0.75 \text { to } 0.90) \mathrm{S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{t}}
$$

Where S_{p} is the proof strength and A_{t} is the tensile area of the bolt.

Recommended tightening torque (based on power screw formulas):

$$
\mathrm{T}=0.20 \mathrm{~F}_{\mathrm{i}} \mathrm{~d}
$$

Where d is the nominal bolt size.

Design of bolts in tension

$$
\mathrm{F}_{\mathrm{b}}=\mathrm{A}_{\mathrm{t}} \mathrm{~S}_{\mathrm{p}}
$$

Where A_{t} is the tensile area.

Example $\mathbf{M}_{\mathbf{1}}$

Given: Two plates are bolted with initial clamping force of 2250 lbs. The bolt stiffness is twice the clamping material stiffness.

Find: External separating load that would reduce the clamping force to 225 lbs . Find the bolt force at this external load.

Solution

$$
\begin{aligned}
& F_{c}=F_{i}-\frac{k_{c}}{k_{b}+k_{c}} F_{e} \\
& 225=2250-\frac{1}{1+2} F_{e} \\
& F_{e}=6075 \mathrm{lbs} \\
& F_{b}=F_{i}+\frac{k_{b}}{k_{b}+k_{c}} F_{e}=2250+\left(\frac{2}{3}\right)(6075)=6300 \mathrm{lbs}
\end{aligned}
$$

Example $\mathbf{M}_{\mathbf{1 b}}$

Select a bolt that would withstand 6300 lbs load in direct tension. Apply a factor of safety of 2.5 . Use a bolt with SAE strength grade of 2 (which has a proof strength of 55 ksi).

$$
\begin{aligned}
& F_{b, d e s i g n}=6300(2.5)=15750 \\
& F_{b, d e s i g n}=S_{p} A_{t} \\
& A_{t}=\frac{(15750)}{55000}===>A_{t}=0.286 \mathrm{in}^{2}
\end{aligned}
$$

A $3 / 4 " 10-\mathrm{UNC}$ bolt has a tensile area of 0.336 square inches.

Bolts under shear loading

Example $\mathbf{M}_{1 \mathrm{c}}$

A 1"-12 UNF steel bolt of SAE grade 5 is under direct double shear loading. The coefficient of friction between mating surfaces is 0.4 . The bolt is tightened to its full proof strength. Tensile area is $0.663 \mathrm{in}^{2}$. Proof strength is 85 kpsi, and yield strength is 92 kpsi
a) What shear force would the friction carry?
b) What shear load can the bolt withstand w/o yielding if the friction between clamped members is completely lost? Base the calculation on the thread root area.

Approximate Answers: a) 22500 lbs, b) 70740 lbs

Design of Bolt Groups in Bending

- Assume bolted frame is rigid.
- Use geometry to determine bolt elongations.
- Assume load distribution proportional to elongations.
- Assume shear loads carried by friction.

Example \mathbf{M}_{3}

Consider the bracket shown above. Assume the bracket is rigid and the shear loads are carried by friction. The bracket is bolted by four bolts. The following is known: $\mathrm{F}=5400 \mathrm{lbs}, \mathrm{L}=40$ inches, $\mathrm{D}=12$ inches, $\mathrm{d}=4$ inches. Find appropriate UNC bolt specifications for bolts of 120 Ksi proof strength using a factor of safety of 4 .

Answer: $3 / 4 "-10 \mathrm{UNC}$

Design of Bolt Groups in Torsion

- Assume bolted frame is rigid.
- Use geometry to determine bolt distortion.
- Assume torque distribution proportional to distortions.
- Assume bracket rotates around the bolt group C.G.
- Ignore direct shear stress if its magnitude is small.
- Assume friction is lost
- Usually the bolt shank areas are used for analysis of stresses.

Example \mathbf{M}_{4}

The bolts are $1 / 2 "-13 \mathrm{UNC}$. The distance between bolts is $1.25^{\prime \prime}$. The load is 2700 lbs and $\mathrm{L}=8^{\prime \prime}$. Find the shear stress on each bolt.

Answer: 44250 psi

Design of Bolts in Fatigue Loading

The factor of safety against fatigue failure of a bolt or screw is:

$$
n=\frac{S_{a}}{\sigma_{a}}
$$

Where $S_{a}=\frac{S_{e} S_{u}-\sigma_{i} S_{e}}{S_{e}+S_{u}}$ and σ_{i} is the stress due to initial tension

Example: A M16*2 SAE grade 8.8 bolt is subject to a cyclic stress. The minimum nominal stress in the tensile area is calculated to be 400 Mpa (for initial tension with no external load) and maximum nominal stress is 500 Mpa (for maximum external load). Determine the factor of safety guarding against eventual fatigue failure for this bolt. Fully corrected endurance limit, including thread effects, is 129 Mpa . The ultimate strength of the bolt material is 830 Mpa.

$$
\begin{aligned}
& \sigma_{a}=\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{500-400}{2}=50 \quad M P a \\
& S_{a}=\frac{129(830)-400(129)}{129+830}=57.8 \\
& n=\frac{57.8}{50}=1.15
\end{aligned}
$$

Gear Geometry

Kinematic model of a gear set

Terminology

Diametral pitch (or just pitch) P : determines the size of the tooth. All standard pairs of meshing gears have the same pitch.

$$
\begin{array}{ll}
P=\frac{N}{d} & \text { Teeth per inch } \\
p=\frac{\pi d}{N} & \text { Inches per tooth } \\
m=\frac{d}{N} & \text { mm per tooth } \\
P p=\pi &
\end{array}
$$

P is pitch, p is circular pitch and m is the module.
I) Regular Gear Trains (External gears)

N_{1} and N_{2} are the number of teeth in each gear, and n_{1} and n_{2} are the gear speed in rpm or similar units.

Internal gears

$$
\frac{n_{1}}{n_{2}}=\frac{N_{2}}{N_{1}}
$$

II) Epicyclic (Planetary) Gear Trains

Planetary gear trains have two degrees of freedom - They require two inputs.

Note: When Arm is held stationary, or with respect to the Arm, the gears behave like regular gear trains:
$n_{2 / A}$: the rpm of 2 with respect to Arm
$n_{1 / A}$: the rpm of 1 seen standing on Arm

Planetary gear trains can be solved by the following two relationships. (two equations in three unknowns)

1) Relative angular velocity formula:

$$
\frac{n_{2}-n_{A}}{n_{1}-n_{A}}=\frac{n_{2 / A}}{n_{1 / A}}
$$

2) Regular gear train formula with Arm stationary

$$
\frac{n_{2 / A}}{n_{1 / A}}=-\frac{N_{1}}{N_{2}}
$$

The Toy Gearbox

- Sun gear N2=24
- Planet gear $\mathrm{N} 3=18$
- Ring Gear $=$ N2 +2 N3 $=60$

Find Arm speed (assume $\mathrm{n}_{2}=100 \mathrm{cw}$)

$\frac{n_{2 / A}}{n_{4 / A}}=\frac{n_{2}-n_{A}}{n_{4}-n_{A}}=\frac{100-n_{A}}{0-n_{A}}$
$\frac{n_{2 / A}}{n_{4 / A}}=\frac{n_{2 / A}}{n_{3 / A}} \frac{n_{3 / A}}{n_{4 / A}}=-\frac{N_{3}}{N_{2}}\left(+\frac{N_{4}}{N_{3}}\right)=-2.5$
$100-n_{A}=-2.5\left(-n_{A}\right) \Rightarrow n_{A}=28.5 c w$

Problem \#M5: Gear kinematics

The figure shows an planetary gear train. The number of teeth on each gear is as follows:

$$
\begin{array}{ll}
\mathrm{N}_{2}=20 & \mathrm{~N}_{5}=16 \\
\mathrm{~N}_{4}=30 &
\end{array}
$$

The input is Gear 2 and its speed is 250 rpm clockwise. Gear 6 is fixed. Determine the speed of the arm and the speed of Gear 4. The drawing is not to scale.

Arm

input

$\mathrm{d}_{5}+\mathrm{d}_{6}=\mathrm{d}_{2}+\mathrm{d}_{4}$ and assuming all P are the same we get $\mathrm{N}_{5}+\mathrm{N}_{6}=\mathrm{N}_{2}+\mathrm{N}_{4}$ and $\mathrm{N}_{6}=34$ teeth

$$
\frac{n_{2 / A}}{n_{6 / A}}=\frac{n_{2}-n_{A}}{n_{6}-n_{A}}=\frac{250-n_{A}}{0-n_{A}}
$$

$$
\frac{n_{2 / A}}{n_{6 / A}}=\frac{n_{2 / A}}{n_{4 / A}} \frac{n_{4 / A}}{n_{5 / A}} \frac{n_{5 / A}}{n_{6 / A}}=-\frac{N_{4}}{N_{2}}(1)\left(-\frac{N_{6}}{N_{5}}\right)
$$

Substituting for the number of teeth on each gear

$$
\begin{aligned}
& \frac{n_{2 / A}}{n_{6 / A}}=\left(-\frac{30}{20}\right)\left(-\frac{34}{16}\right)=3.187 \\
& n_{A}=-114.3
\end{aligned}
$$

Also

$$
\begin{aligned}
& \frac{n_{4 / A}}{n_{2 / A}}=\frac{n_{4}-n_{A}}{n_{2}-n_{A}}=\frac{n_{4}-(-114.3)}{250-(-114.3)} \\
& \frac{n_{4 / A}}{n_{2 / A}}=-\left(\frac{N_{2}}{N_{4}}\right)=-\frac{20}{30}
\end{aligned}
$$

From above:
$\mathrm{n}_{4}=-357.1 \mathrm{rpm}$

Kinematics of Automobile Differential
Considering the Right Wheel, Left Wheel, the Ring Gear and the Drive Shaft.
$n_{R W}+n_{L W}=2 n_{R G}$

Gear Force Analysis

F_{n} : Normal force
F_{t} : Torque-producing tangential force
F_{r} : Radial force.
When n is in rpm and d is in inches:

$$
F_{t}=\frac{33000(h p)}{V} \quad \text { and } \quad V=\frac{\pi n d}{12}
$$

and

$$
F_{r}=F_{t} \tan \phi
$$

In SI units:

$$
\text { Watts }=T \omega \quad \text { and } \quad T=F_{t}\left(\frac{d}{2}\right)
$$

Helical gears

Geometric parameters
P_{n} : Normal pitch
P : Plane of rotation pitch
ψ : Helix angle
ϕ_{n} : Normal pressure angle
ϕ : Plane of rotation pressure angle
N : Number of teeth
d : pitch diameter
p_{n} and p : circular pitches
p_{a} : axial pitch

Geometric relationships:

$$
P=\frac{N}{d} \quad \text { and } \quad P=P_{n} \cos (\psi)
$$

$$
\tan (\phi)=\frac{\tan \left(\phi_{n}\right)}{\cos (\psi)}
$$

$$
P p=P_{n} p_{n}=\pi \quad \text { and } \quad p_{a}=\frac{p}{\tan (\psi)}
$$

Helical gear forces

$$
\begin{aligned}
& F_{t}=\text { From Power } \\
& F_{r}=F_{t} \tan (\phi) \\
& F_{a}=F_{t} \tan (\psi)
\end{aligned}
$$

When shaft axes are parallel, the helix hands of the two gears must be opposite of each other.

Straight Bevel gears

Geometric Parameters

 (Pinion)d_{p} : pitch diameter
$\mathrm{d}_{\text {avg,p }}$: average diameter
b: Face width
γ_{p} : Pitch cone angle

Bevel gear forces

$$
\begin{aligned}
& F_{t}=\frac{33000(h p)}{V_{\text {avg }}} \text { where } V_{\text {avg }}=\frac{\pi n d_{\text {avg }}}{12} \text { and } \\
& d_{\text {avg }}=d-b \sin (\gamma) \\
& F_{r}=F_{t} \tan (\phi) \cos (\gamma) \\
& F_{a}=F_{t} \tan (\phi) \sin (\gamma)
\end{aligned}
$$

These forces are for pinion and act through the tooth midpoint. Forces acting on the gear are the same but act on opposite directions.

Worm Gear Kinematics

The velocity ratio of a worm gear set is determined by the number of teeth in gear and the number of worm threads (not the ratio of the pitch diameters).

$$
\frac{\omega_{g}}{\omega_{w}}=\frac{N_{w}}{N_{g}}
$$

$\mathrm{N}_{\mathrm{w}}=$ Number of threads (single thread $=1$, double thread $=2$, etc)
The worm's lead is

$$
L=p_{a} N_{W}
$$

The worm's axial pitch p_{a} must be the same as the gear's plane of rotation circular pitch p.

The worm's lead angle λ is the same as the gear's helix angle ψ. The gear and worm must have the same hand.

Example

For a speed reduction of 30 fold and a double threaded worm, what should be the number of teeth on a matching worm gear.

$$
\mathrm{N}_{\mathrm{g}}=(2)(30)=60 \text { teeth }
$$

The geometric relation for finding worm lead angle

$$
\begin{aligned}
& \tan (\lambda)=\frac{L}{\pi d_{w}} \quad \text { Worm Gear Forces }
\end{aligned}
$$

The forces in a worm gearset when the worm is driving is
$\mathrm{F}_{\mathrm{gr}}=\mathrm{F}_{\mathrm{wr}} \quad \mathrm{F}_{\mathrm{gt}}=\mathrm{F}_{\mathrm{wa}} \quad \mathrm{F}_{\mathrm{ga}}=\mathrm{F}_{\mathrm{wt}}$

The F_{wt} is obtained from the motor $h p$ and $r p m$ as before. The other forces are:

$$
F_{w a}=\frac{\cos \left(\phi_{n}\right) \cos (\lambda)-f \sin (\lambda)}{\cos \left(\phi_{n}\right) \sin (\lambda)+f \cos (\lambda)} F_{w t}
$$

The worm and gear radial forces are:

$$
F_{w r}=\frac{\sin \left(\phi_{n}\right)}{\cos \left(\phi_{n}\right) \sin (\lambda)+f \cos (\lambda)} F_{w t}
$$

The worm gearset efficiency is:

$$
e=\frac{\cos \left(\phi_{n}\right)-f \tan (\lambda)}{\cos \left(\phi_{n}\right)+f \cot (\lambda)}
$$

Where f is the coefficient of friction. Condition for selflocking when worm is the driver

$$
f>\cos \left(\phi_{n}\right) \tan (\lambda)
$$

Note: In a RH worm, the teeth spiral away as they turn in a CW direction when observed along the worm axis. When the worm in turning in CW direction, the teeth sweep toward the observer seen along the axis of the worm (imagine a regular bolt and nut).

Bearing Reaction Forces

Total thrust load on bearings is F_{a}

For the radial reaction forces for spur gears (no axial forces) combine the radial and tangential forces into F:

$$
F=\sqrt{F_{r}^{2}+F_{t}^{2}}
$$

Flat Belts

Flat belts have two configurations: Open

Closed (Crossed)

$$
\theta_{d}=\theta_{D}=\pi+2 \sin ^{-1}\left(\frac{D+d}{2 C}\right)
$$

Where
C: Center-to-center distance
D,d: Diameters of larger and smaller rims
θ : Angle of wrap around pulley

Slippage Relationship

(True only at the verge of slippage)
$\frac{F_{1}}{F_{2}}=e^{\mu \theta}$
θ is in radians.

Transmitted Hp is

$$
H_{p}=\frac{\left(F_{1}-F_{2}\right) V}{33000}
$$

Where F_{1} and F_{2} are in lbs and V is in $\mathrm{ft} / \mathrm{min}$.

Initial Tension

Belts are tensioned to a specified value of F_{i}. When the belt is not transmitting torque:

$$
\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{\mathrm{i}}
$$

As the belt start transmitting power,

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{F}_{\mathrm{i}}+\Delta \mathrm{F} \\
& \mathrm{~F}_{2}=\mathrm{F}_{\mathrm{i}}-\Delta \mathrm{F}
\end{aligned}
$$

The force imbalance continues until the slippage limit is reached.

Problem M7

A 10 "-wide flat belt is used with a driving pulley of diameter 16 " and a driven pulley of rim diameter 36 " in an open configuration. The center distance between the two pulleys is 15 feet. The friction coefficient between the belt and the pulley is 0.80 . The belt speed is required to be $3600 \mathrm{ft} / \mathrm{min}$. The belts are initially tensioned to 544 lbs . Determine the following. (answers are in parentheses)
a) Belt engagement angle on the smaller pulley (3.03 radians).
b) Force in belt in the tight side just before slippage. (1000 lbs).
c) Maximum transmitted Hp. (99.4 hp)

Formula for V-belts

Disk Brakes and Clutches

Torque capacity under "Uniform Wear" condition per friction surface (when brake pads are not new)

$$
T=\frac{\pi f p_{a} d}{8}\left(D^{2}-d^{2}\right)
$$

Where
f: Coefficient of friction
p_{a} : Maximum pressure on brake pad
d,D: Inner and outer pad diameters
Torque capacity under "Uniform Pressure" conditions per friction surface (when brake pads are new)

$$
T=\frac{\pi f p_{a}}{12}\left(D^{3}-d^{3}\right)
$$

Maximum clamping forces to develop full torque

For Uniform Wear

$$
F=\frac{\pi p_{a} d}{2}(D-d)
$$

For Uniform Pressure

$$
F=\frac{\pi p_{a}}{4}\left(D^{2}-d^{2}\right)
$$

Example M \mathbf{M}_{8}

Given: A multi-plate disk clutch

$$
\begin{aligned}
& \mathrm{d}=0.5 " \\
& \mathrm{D}=6 " \\
& \mathrm{P}_{\max }=100 \mathrm{psi} \\
& \text { Coefficient of friction }=0.1
\end{aligned}
$$

$$
\text { Power transmitted }=15 \mathrm{hp} \text { at } 1500 \mathrm{rpm}
$$

Find: Minimum number of friction surfaces required
Answer: $\mathrm{N}=2$ (uniform pressure)
$\mathrm{N}=9$ (uniform wear)

Energy Dissipation in Clutches and Brakes

The time it takes for two rotational inertia to reach the same speed after engagement through a clutch is:

$t=\frac{I_{1} I_{2}\left(\omega_{1}-\omega_{2}\right)}{T\left(I_{1}+I_{2}\right)}$
where
T: Common transmitted torque
ω : angular speed in rad/sec
The total energy dissipated during clutching (braking) is:

$$
E=\frac{I_{1} I_{2}\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}
$$

If the answer is needed in BTU, divide the energy in in-lb by 9336 .

Problem M9

A brake with braking torque capacity of $230 \mathrm{ft}-\mathrm{lb}$ brings a rotational inertia I_{1} to rest from 1800 rpm in 8 seconds. Determine the rotational inertia. Also, determine the energy dissipated by the brake.

Solution hints:
Convert rpm to rad/sec: $\omega_{1}=188 \mathrm{rad} / \mathrm{sec}$
Note that $\omega_{2}=0$
Find the ratio $\left(\mathrm{I}_{1} \mathrm{I}_{2} / \mathrm{I}_{1}+\mathrm{I}_{2}\right)$ using time and torque $=>9.79$
Note that I_{2} is infinitely large $=>\mathrm{I}_{1}=9.79$ slugs- ft
Find energy from equation=> $173000 \mathrm{ft}-\mathrm{lb}$

Springs

Coverage:

- Helical compression springs in static loading

Terminology:

- d: Wire diameter
- D: Mean coil diameter
- C: Spring index (D/d)
- N_{t} : Total \# of coils
- N : Num. of active coils
- p: Coil pitch
- L_{f} : Free length $=\mathrm{N}^{*} \mathrm{p}$
- L_{s} : Solid length

End detail and number of active coils:

	Plain	 Ground	Square	 Ground
L_{s}	$\left(\mathrm{N}_{\mathrm{t}}+1\right) \mathrm{d}$	$\mathrm{N}_{\mathrm{t}} \mathrm{d}$	$\left(\mathrm{N}_{\mathrm{t}}+1\right) \mathrm{d}$	$\mathrm{N}_{\mathrm{t}} \mathrm{d}$
N_{t}	N	$\mathrm{N}+1$	$\mathrm{~N}+2$	$\mathrm{~N}+2$
$\mathrm{~L}_{\mathrm{f}}$	$\mathrm{pN}+\mathrm{d}$	$\mathrm{p}(\mathrm{N}+1)$	$\mathrm{pN}+3 \mathrm{~d}$	$\mathrm{pN}+2$

Note: Spring geometry, especially the end-condition relationships, are not exact. Other books may have slightly different relationships.

Spring Rate of Helical Springs (compression/extension)

$$
k=\frac{d^{4} G}{8 D^{3} N}=\frac{d G}{8 N C^{3}}
$$

where : N is the number of active coils

$$
\mathrm{G}: \text { shear modulus }=\mathrm{E} / 2(1+v)
$$

$$
\mathrm{G}=11.5 * 10^{6} \mathrm{psi} \text { for steels }
$$

Shear stress in helical springs for static loading

$$
\tau_{\max }=K_{s} \frac{8 F D}{\pi d^{3}}
$$

where $K_{s}=1+\frac{1}{2 C}$ and C is the spring index.

Shear strength in springs

$$
\begin{aligned}
& \tau \leq 0.45 S_{u} \quad \text { Ferrous without presetting } \\
& \tau \leq 0.65 S_{u} \quad \text { Ferrous with presetting }
\end{aligned}
$$

Note: it is common in practice (but not academia) to specify strength as "Allowable Stress". Allowable stress is defined as the strength (yield or shear strength) divided by the factor of safety.

Spring Surge Frequency

$$
f_{n}=\frac{1}{2} \sqrt{\frac{k g}{W_{a}}}
$$

Where g is the gravitational acceleration and W_{a} is the weight of the active coils:

$$
W_{a}=\frac{1}{4} \pi^{2} d^{2} D N \gamma
$$

with γ being the specific gravity of spring material. For steel springs when d and D are in inches:

$$
f_{n}=\frac{13900 d}{N D^{2}} H Z
$$

Example \mathbf{M}_{10}

Consider a helical compression spring with the following information (not all are necessarily needed):

Ends: Squared and ground
Spring is not preset
Material: Music wire (steel) with $\mathrm{S}_{\mathrm{ut}}=283 \mathrm{ksi}$
$\mathrm{d}=.055$ inches and $\mathrm{D}=0.48$ inches
$\mathrm{L}_{\mathrm{f}}=1.36$ inches and $\mathrm{N}_{\mathrm{t}}=10$
Find the following. Answers are given in parentheses.
Spring constant, K ($14.87 \mathrm{lb} / \mathrm{in}$)
Length at minimum working load of 5 lbs (1.02")
Length at maximum load of 10 lbs (0.69 ")
Solid length (0.55 ")
Load corresponding to solid length (12.04 lbs)
Clash allowance ($\mathrm{L}_{\mathrm{Fmax}}-\mathrm{L}_{\mathrm{S}}$) (0.137")
Shear stress at solid length (93496 psi)
Surge frequency of the spring $(415 \mathrm{~Hz})$

Design of Welds

Welds in parallel loading and transverse loading

Weld Geometry

Analysis Convention

- Critical stresses are due to shear stresses in throat area of the weld in both parallel and transverse loading.
- For convex welds, $\mathrm{t}=0.707 \mathrm{~h}$ is used.
- The shear strength in weld analysis is taken as 30% of the weld ultimate strength.

Analysis Methodology

- Under combined loading, different stresses are calculated and combined as vectors.

Stresses based on weld leg (h)
Direct tension/compression:

$$
\tau=\frac{F}{L t}=\frac{1.41}{L h}
$$

Direct shear:

$$
\tau=\frac{1.41 V}{L h}
$$

Bending:

$$
\tau=\frac{M c}{I}=\frac{M c}{I_{u} t}
$$

Torsion:

$$
\tau=\frac{T r}{J_{u} t}
$$

Formulas for I_{u}, and J_{u} are attached for different weld shapes.

Table 9-1
Torsional Properties of Fillet Welds *

* 6 is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper, all welds are of unit width.

Table 9-2

Bending Properties of Fillet Welds*
Weld Throat Area Location of G Unit Second Moment of Area

$$
A=1.414 h d
$$

$\bar{x}=b / 2$
$\tilde{y}=d / 2$
$I_{u}=\frac{d^{3}}{6}$

$A=1.414 h d$
$\bar{x}=b / 2$
$\bar{y}=d / 2$
$I_{u}=\frac{b d^{2}}{2}$

$A=0.707 h(2 b+d)$
$\bar{x}=\frac{b^{2}}{2 b+d}$
$\bar{y}=d / 2$
$I_{v}=\frac{d^{2}}{12}(6 b+d)$

$A=0.707 h(b+2 d)$
$\bar{x}=b / 2$
$\tilde{y}=\frac{d^{2}}{b+2 d}$
$\left.l_{u}=\frac{2 d^{3}}{3}-2 d^{2} \bar{y}+l b+2 d \right\rvert\, \bar{y}^{2}$

$$
A=1.414 h(b+d) \quad \begin{array}{ll}
\bar{x}=b / 2 \\
& \bar{y}=d / 2
\end{array}
$$

$I_{u}=\frac{d^{2}}{6}(3 b+d)$

$$
A=0.707 h(b+2 d)
$$

$$
\bar{x}=b / 2
$$

$$
\bar{y}=\frac{d^{2}}{b+2 d}
$$

$\left.\iota_{u}=\frac{2 d^{3}}{3}-2 d^{2} \tilde{y}+l b+2 d\right] \bar{y}^{2}$

Problem $M_{11 a}$-Welds subject to direct shear

Two steel plates welded and are under a direct shear load P. The weld length is 3 inches on each side of the plate and the weld leg is 0.375 inches. What maximum load can be applied if the factor of safety is 2 against yielding? The weld material is E 60 .

Solution (of \mathbf{M}_{112})

$$
\begin{aligned}
& \mathrm{L}=2 \mathrm{~d}=6 \\
& \tau=\frac{1.41 V}{L h}=\frac{1.41 P}{6(.375)}=0.6284 P \quad p s i
\end{aligned}
$$

The design strength of the weld material in shear is:

$$
\mathrm{S}_{\mathrm{ys}}=0.3 \mathrm{~S}_{\mathrm{ut}}=0.3(60)=18 \mathrm{ksi}
$$

Using a factor of safety of 2 , the allowable shear stress is:

$$
\tau_{\mathrm{all}}=18 / 2=9 \mathrm{ksi}
$$

Equating stress and strength
$.6284 \mathrm{P}=9000 \rightarrow \mathrm{P}=14322 \mathrm{lbs}$

Problem $\mathbf{M}_{11 b}$ - Welds subject to torsion

A round steel bar is welded to a rigid surface with a $1 / 4$ " fillet weld all around. The bar's outer diameter is 4.5 ".
Determine the critical shear stresses in the weld when the bar is subjected to a $20,000 \mathrm{lb}$-in pure torque.

$$
\begin{aligned}
& J_{u}=2 \pi\left(r^{3}\right)=2 \pi(4.5 / 2)^{3}=71.57 \quad \mathrm{in}^{3} \\
& J_{t}=(71.57)\left(\frac{1}{4}\right)(0.707)=12.6 \quad \mathrm{in}^{4}
\end{aligned}
$$

$$
\tau=\frac{T c}{J_{t}}=\frac{(20000)(2.25)}{12.6}=3571 \mathrm{psi}
$$

Problem $\mathbf{M}_{11 c}$ - Welds subject to bending

Solve the previous problem with a bending moment of 35000 lb -in acting on the welds instead of the torsion load.

$$
\begin{aligned}
& I_{u}=\pi r^{3}=\pi(2.25)^{3}=35.78 \mathrm{in}^{3} \\
& I_{t}=35.78(0.25)(0.707)=6.32 \quad \mathrm{in}^{4}
\end{aligned}
$$

$$
\tau=\frac{M c}{I_{t}}=\frac{(35000)(2.25)}{6.32}=12460 \mathrm{psi}
$$

Problem $\mathbf{M}_{11 d}$ - Welds subject to combined loads

If the shear strength $\left(\mathrm{S}_{\mathrm{ys}}\right)$ in the weld is 27800 psi , what is the factor of safety against yielding when both stresses in previous two problems are acting on the bar.

$$
\tau=\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}=\sqrt{3571^{2}+12460^{2}}=12961 \mathrm{psi}
$$

$\mathrm{FS}=27800 / 12961=2.14$

Ball and Roller Bearings

Terminology

- Rated or catalog Capacity, C_{10} : Radial load for a life of 1000,000 cycles (or other L_{10}) and 90% reliability.
- Application or design radial load F_{r}.
- Application or design life L

Load/Life relationships (Palmgren formula)

$$
F_{1} L_{1}^{0.333}=F_{2} L_{2}^{0.333}
$$

This means if we double the load, the life of the ball bearing would be reduced by a factor of 10 . This formula is for ball bearings. For roller bearings use 0.3 as the exponent.

Example: By what factor the radial load capacity of a roller bearing has to be increased if the bearing is to last twice as long as its catalog rating.

$$
\left(\frac{F_{1}}{F_{2}}\right)=\left(\frac{L_{2}}{L_{1}}\right)^{0.3}=\left(\frac{2}{1}\right)^{0.3}=1.23 \Rightarrow F_{2}=\frac{F_{1}}{1.23}
$$

Example: Given:

02 series Deep Groove ball bearing,
Radial load is 4 KN ,
Application factor $K_{D}=1.2$
Design life 540 million cycles
95\% reliability
Find: Suitable bearing catalog rating based on 10^{6} cycle L_{10} life.

Solution:

Life multiplier due to reliability

$$
x_{1}=0.65(\text { at } 95 \%)-\text { See reliability multiplier below }
$$

Adjusted design life:

$$
\mathrm{L}_{\mathrm{D}}=540 / 0.65=830.77 \text { million cycles }
$$

Force multiplier due to life being different from 10^{6} cycles

$$
K_{1}=(830.77)^{.333}=9.38
$$

Adjusted Design Load

$$
\mathrm{F}_{\mathrm{DA}}=4(1.2)(9.38)=45 \mathrm{KN}
$$

Selection: 60 mm bore with 47.5 KN capacity.

Problem M_{12} - Bearings

An angular contact 02 -series ball bearing is required to run for 50000 hours at 480 rpm . The design radial load is 610 lbs and the application factor (load multiplier) is 1.4 . For a reliability of 90%, what is the required capacity of this bearing? Answer: 42.9 KN (capacities are in SI units)

- If the required reliability is different than 90%, apply a reliability factor to the life. (See Juvinall).

$$
\begin{array}{cl}
\mathrm{K}_{\mathrm{r}}=\text { Reliability factor } & \\
90 \% \mathrm{~K}_{\mathrm{r}}=1 & 50 \%: \mathrm{K}_{\mathrm{r}}=5 \\
95 \% \mathrm{~K}_{\mathrm{r}}=0.65 & 99 \%: \mathrm{K}_{\mathrm{r}}=0.20
\end{array}
$$

- If there is substantial thrust or axial loading, then an equivalent radial load should be used. For radial ball bearings (F_{t} is thrust load):

Ignore F_{t} and use $\mathrm{F}_{\mathrm{e}}=\mathrm{F}_{\mathrm{r}}$ if $\mathrm{F}_{\mathrm{t}}<35 \% \mathrm{~F}_{\mathrm{r}}$ Use $\mathrm{F}_{\mathrm{e}}=1.18 \mathrm{~F}_{\mathrm{t}}$ if $\mathrm{F}_{\mathrm{t}}>10 \mathrm{~F}_{\mathrm{r}}$
If $F_{t}>35 \% F_{r}$ but less than $10 F_{r}$ use

$$
F_{e}=F_{r}\left(1+1.115\left(\frac{F_{t}}{F_{r}}-.35\right)\right)
$$

- When a bearing system includes several bearings (n bearings), and the reliability of the entire system is given ($\mathrm{R}_{\text {sys }}$), then the reliability of each bearing must be:

$$
R_{D}=\sqrt[n]{R_{s y s}}
$$

Keys

Square keys

$$
\begin{aligned}
& \mathrm{w}=\mathrm{d} / 4 \quad(\mathrm{~d} \text { is shaft diameter }) \\
& \text { Length }=\mathrm{L}
\end{aligned}
$$

Shear stresses at torque T

Setting $\mathrm{F}=2 \mathrm{~T} / \mathrm{d}$ and balancing the force and stress

$$
\frac{2 T}{d}=\frac{d}{4}(L) \tau \quad \Rightarrow \quad \tau=\frac{8 T}{d^{2} L}
$$

Torque capacity for this key in shear is obtained by setting stress to its yielding limiting value:

$$
T_{\max }=\frac{L d^{2}}{8}\left(0.58 S_{y}\right)
$$

For round pins in double shear

$$
\tau=\frac{4 T}{\pi D d^{2}}
$$

The torque capacity is

$$
T=\frac{\pi D d^{2}}{4}\left(0.58 S_{y}\right)
$$

Other key types and splines are all treated similarly: Equating the shear area to the force created by the transmitted torque.

Power Screws

Torque required to raise a load

$$
T_{R}=\frac{F d_{m}}{2}\left(\frac{L+\pi f d_{m}}{\pi d_{m}-f L}\right)+\frac{F f_{c} d_{c}}{2}
$$

F: Load, $\mathrm{d}_{\mathrm{m}}=$ Screw mean diameter
L: Screw lead $=\mathrm{N}_{\mathrm{W}}$ * p
f: Thread coefficient of friction
f_{c} : Collar coefficient of friction
d_{c} : Mean collar diameter

Torque required to lower the load

$$
T_{L}=\frac{F d_{m}}{2}\left(\frac{-L+\pi f d_{m}}{\pi d_{m}+f L}\right)+\frac{F f_{c} d_{c}}{2}
$$

Note: All formulas are for power screws with square threads which are the most common type.

Condition for self locking:

$$
f>\tan (\lambda)=\frac{L}{\pi d_{m}}
$$

Efficiency of power screws (includes collar losses)

$$
e=\frac{F L}{2 \pi T_{R}}
$$

Problem M13 - power screws

A single thread power screw is carrying a load of 12500 lbs. The mean screw diameter is 1 inch and the screw pitch is 0.25 (4 threads per inch). The mean collar diameter is 1.5 inch. The coefficient of friction of both threads and collar are 0.1 . The thread shape is square. Find a) Major diameter of the screw, b) Torque required to lift the load, c) Minimum f to make the screw self locking if $f_{c}=0, d$) power screw efficiency

Answers a) 1.125 in , b) $2070 \mathrm{lb}-\mathrm{in}, \mathrm{c}) 0.08$, d) 24%

